
 
 

University of Central Oklahoma   

 

Masters Theses Dissertations and Theses   

May 2023   

Design of Smart Tool Organizer 

Mohmed Yaeesh Shaikh 

University of Central Oklahoma   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

 

 

Design of Smart Tool Organizer 

A Thesis Presented  

by  

MOHMED YAEESH SHAIKH  

Submitted to the Graduate School of the  

University of Central Oklahoma in partial fulfillment of the 

requirements for the degree of  

MASTER OF SCIENCE IN MECHANICAL ENGINEERING  

May 2023  

Mechanical Engineering 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 





v 
 

Acknowledgements 

 

I would like to appreciate the support I received from the UCO Engineering and Physics 

departments, my thesis committee members, my peers, friends and family throughout my journey of 

working on this thesis. It was a bumpy road with a lot of ups and downs but with all the support I 

received, I stayed persistent and was able to finish my prototype and report. I would like to thank Dr. 

Moussa for always being there when I needed him and for sharing his excellent knowledge and 

support through this process. I would also like to thank Dr. Khandaker and Dr. Alsbou for all their 

support, help and being on my thesis committee.  

 

 I always got help when I needed it from the department of Engineering and Physics at UCO. 

Dr. Moussa assisted me with many things throughout this process such as 3D printing, design 

suggestions and report writing & formatting suggestions. Dr. Khandaker and Dr. Alsbou also 

supported me with their assistance when needed. I would also like to thank my family for their 

support during the times of hardships and frustrations. I ran into many difficult situations during 

building and designing my prototype and had many difficult and frustrating moments but with the 

help and encouragement of my family, my supervisor Dr. Moussa, my thesis committee members Dr. 

Khandaker and Dr. Alsbou and the department of Engineering and Physics I was able to build a 

working prototype and test it. 

 

 

 

 



vi 
 

ABSTRACT  

Design of Smart Tool Organizer  

MAY 2023  

MOHMED YAEESH SHAIKH  

B.E., UNIVERSITY OF CENTRAL OKLAHOMA  

M.S.M.E., UNIVERSITY OF CENTRAL OKLAHOMA 

Directed by: Dr. Abdellah Ait Moussa   

The increasing demand for compact and energy efficient machines and mechanisms, led to 

the emergence of a series of scalable instruments and devices used for testing, storage, manufacturing, 

and prototyping. The emergence of these devices indeed provided the flexibility and low capital cost 

that were necessary for product development and personal use. Furthermore, the demand is expected 

to proliferate to all domestic and industrial sectors of the economy, which brings us to the subject of 

the current investigation. 

 

The main objective of the proposed project is the design and prototyping of a compact 

electromechanical smart tool organizer that is capable of storing, tracking personal use and 

availability of machine shop tools in the college of Mathematics and Science at the University of 

Central Oklahoma. 

 

The proposed design incorporates a micro-controlled electro-mechanical dispensing unit,  

an interactive digital interface with key activation and a database for data collection & tracking of 



vii 
 

tools and personnel users. The dispensing unit consists of a CNC machine, linear actuator and a 3D 

printed mechanical clamp which enables the unit to efficiently hold and move various tools to the 

desired location. The skeleton of the CNC machine is assembled using five stainless steel v-slots 

operating on a belt and pinion system. Pinons are fitted to NEMA 17 stepper motors to achieve 2D 

motion by converting rotational motion to linear motion using a belt driven actuator. The assembly 

of the CNC machine utilizes various gantry plates to hold v-slots in position along with providing 

mounts for stepper motors and linear actuator. The linear actuator acts as a third axis which allows 

the motion of the dispensing unit to operate in three directions. This provides mobility to the machine 

to precisely take the mechanical clamp to a predetermined position within the frame of the dispensing 

unit.  

 

The design of mechanical clamp includes assembly of the base of the clamp, rack and pinion 

system, two gripper arms and a servo motor. The pinion converts the rotational motion to linear 

motion of the racks enabling the grip to open and close as required. The final assembly of the 

mechanical clamp is mounted on the linear actuator using the 3D printed mount bracket on the base 

of the clamp. The electronics and controls of the smart tool organizer includes low and high voltage 

operating components such as Nema 17 stepper motors, MG996R servo, linear actuator, limit 

switches, buck converter, DS3231 RTC module, SD card module, L298N motor drive module, 

TB6600 motor drivers, a 7” touch screen LED display and an arduino mega. The firmware arduino 

IDE is used to program these electronic components and ASCII is used to program the Interactive 

GUI and HMI on the Nextion display which connect to arduino using serial port and synchronizes to 

achieve the goal of the smart tool organizer. 

 

 

 



viii 
 

 

TABLE OF CONTENTS 

 

 

Chapter          Page number 

1. Motivation and Objective of Smart Tool Organizer …………………………......………...1 

         1.  Introduction ……………………………………………………………………......…….…..1 

1.1 Motivation………………………………………………………………………......….….1 

1.2 Objective of the Smart Tool Organizer ……………………………………….......…….2 

2. Background of Smart Tool Organizer and related research……………………......….…..4 

         2.  Literature review ………………………………………………………………......………..4 

2.1 History of Automation and Robotics………………………………………........……….4 

   2.1.1 Organizer model for intelligent robotic systems……………………....……………5 

   2.1.2 Organizer model operational procedures……………………………....…..………..8 

 2.2 Example of Previous work in Robotics…………………………………..……..……….9 

   2.2.1 The Robotic arm assembly……………………………………..……………..………9 

   2.2.2 The Kinematics of Robotic arm…………………………………………….………10 

3. Mechanical Design and Fabrication…………………………………………..……………15 

         3.  Mechanical Design of the Smart Tool Organizer………………………………………….15 

3.1 Robotic Unit………………………………………………………………..…………….16 

   3.1.1 The CNC machine ………………………………………………………..…………16 

      3.1.1.1 The Y-axis gantry plate assembly…………………………………...…………..17 

      3.1.1.2 The X-axis gantry plate assembly    ………………………………..…………..18 

      3.1.1.3 The XY-axis V-slot assembly……………………………………………………19 

      3.1.1.4 The CNC frame assembly  ………………………………………..……………21 

      3.1.1.5 The supporting frame assembly    ………………………………..……………22 

      3.1.1.6 The Z-axis gantry plate assembly   …………………………………………….23 

   3.1.2 The electro-mechanical gripper…………………………………………………….24 



ix 
 

  3.2 Base of the Smart Tool Organizer……………………………………...……………….27 

4. Electronics and Controls…………………………………………………………...…………31 

4.1 High voltage circuit…..…………………………………………………………..……….31 

   4.1.1.1 Nema 17 Stepper Motors and TB6600 motor driver………….……….……..…..31 

   4.1.1.2 Programming of Nema 17 Stepper Motors and TB6600 motor driver…....……36 

   4.1.2.1 Linear actuator and L298N motor drive module……………………….………..39 

   4.1.2.2 Programming of the Linear actuator and L298N motor drive module…..…….42 

   4.1.3.1 Electro-Mechanical clamp and servo motor……………………………………..44 

   4.1.3.2 Programming of the Electro-Mechanical clamp and servo motor……………..46 

   4.1.4.1 Limit switches…………………………………………………………...…………47 

   4.1.4.2 Programming of the Limit switches…………………………………..…………..48 

4.2 Low voltage circuit………………………………………………………………………50 

   4.2.1.1 SD card module…………………………………………………………………….50 

   4.2.1.2 Programming of the SD card module……………………………….……………52 

   4.2.2.1 DS3231 RTC module…………………………………………………..…………..56 

   4.2.2.2 Programming of the DS3231 RTC module…………………………..…………..58 

   4.2.3.1 Arduino Mega………………………………………………………….…………..60 

4.3 Wiring and connections…………………………………………………………………62 

5. Interfacing and Firmware…………………………………………………………………..63 

         5.1 User-Interface of the Smart Tool Organizer….…………………………….…………….63 

             5.1.1 Nextion LED display………………………………………………….………………..63 

             5.1.2 Nextion Editor and Arduino programming…………………………..………………65 

6. Results and Discussion………………………………………………………………………74 

6.1  Performance and accuracy testing of the smart tool organizer……………………...74 

     6.1.1 Stepper motor performance and accuracy testing……………………………….74 

     6.1.2 Servo motor performance and accuracy testing…………………………………82 



x 
 

6.2 Criteria for tool selection for the smart tool organizer………………………………..84 

       7. Conclusion and future works………………………………………………………….………88 

References………………………………………………………………….…………………91 

Appendix A - Smart Tool Organizer Code……………………………...………………….95 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

 

LIST OF FIGURES 

Figure                        Page number 

1. Intelligent robotic system hierarchical structure block diagram ………………………...7 

2. Labeled diagram of robotic arm assembly………………………………...………………10 

3. Wheel assembly and drawing………………………………………………………………16 

4.  Y axis gantry plate assembly……………………………………………………….………17 

5. Stepper motor mount gantry plate model and drawing…………………………………..18 

6. V-slot timing belt and pulley assembly…………………………………………..…………19 

7. V-slot timing belt and pulley assembly model and drawing……………………..………..20 

8. X and Y V-slots assembly……………………………………………………………………21 

9. Angled corner connector model and drawing……………………………………...………22 

10. Limit switch assembly……………………………………………………………………….22 

11. Electro-Mechanical clamp assembly……………………………………………………….24 

12. Base of the clamp model and drawing………………………………………..……………25 

13. Arm of the clamp model and drawing……………………………………………………..26 

14. Linear actuator mounting bracket…………………………………………………………27 

15. Base of the smart tool organizer assembly…………………………………..……………..28 

16. Supporting and mounting brackets for CNC machine………………………...………….29 

17. L bracket model and drawing………………………………………………...…………….29 

18. Push to Open dropbox assembly……………………………………………………………30 

19. Stepper motor winding diagram…………………………..………………………………..32 

20. Nema 17 stepper motor dimensional drawing………………………,,,,,,,,………………..33 

21. Nema 17 Stepper motor torque curve………………………………….…………………..34 



xii 
 

22. Code defining direction and pulse for stepper motor……………………………………..36 

23. Code setting stepper motor pins as output…………………………………………………37 

24. Code setting stepper motor direction……………………………………………….………37 

25. Code for rotation of the stepper motor……………………………………………………..38 

26. Linear actuator dimensional drawings……………………………………………………..39 

27. L298N module pinouts…………………………………………………...………………….41 

28. Wiring diagram of linear actuator and L298N module…………………..........………….41 

29. Code defining L298N pins………………………………......................................………….43 

30. Code setting and enabling L298N pins………..............................................………………43 

31. Code for the linear motion of linear actuator………………………...............……………43 

32. PWM signal representation of servo motor………………………..................……………45 

33. Dimensional drawing of servo motor…………………….........................…………………45 

34. Code including servo library and defining variable……….............………………………46 

35. Code for the rotational motion of servo motor………...........……………………………..47 

36. Limit switch positioning on a V-slot………………………..........…………………………48 

37. Limit switch conditions……………………………………..............………………………49 

38. Code for bringing stepper back to home position……………......……………………….49 

39. Logic level shifter……………………………................................…………………………51 

40. microSD card slot…………………………............................................……………………51 

41. SD card module pinouts………….........................................................…………………….52 

42. Defining initializeSD function………................................…………………………….……53 

43. Defining createFile function…………………..........................……………………………..53 

44. Defining writeToFile function……………...........................………………………………..54 

45. Defining closeFile function…………….........................…………………………….……….54 

46. Defining openFile function……………..............................………………………….………55 

47. Defining readLine function………….....................................………………….……………55 



xiii 
 

48. S3231 RTC chip……………….......................................................……………………….….56 

49. Graph of oscillator frequency’s relation with temperature………................…….……….57 

50. EEPROM chip and I2C address selection jumper………….................…………………..57 

51. RTC module pinouts…………………………………...................……………………….…58 

52. Defining print2digits function………………………....................................………………59 

53. Code for storing time and date to SD card……….......................………………………….59 

54. Arduino mega pinouts and components…………....................……………………………61 

55. Wiring diagram of the smart tool organizer’s components……………………………….62 

56. Nextion display components………………………..............……………………………….64 

57. Selection of display type……………………………………..........................………………66 

58. Display orientation selection…………………………..................…………………………67 

59. Main interface of the nextion editor…………………..............……………………………67 

60. Pages setup in nextion editor…………………………........................……………………..68 

61. Home page of the nextion display……………………................…………………………..69 

62. Numeric keyboard for entering student ID…………….........……………………………..69 

63. ASCII coding for next button in nextion editor…………..………………………………..70 

64. Error page for invalid id number………………………….........…………………………..70 

65. Tool selection status page……………………………...........................……………….…….71 

66. Tool receiving selection page…………………………............…………………….………..71 

67. Tool returning selection page…………………………............…………..…………………72 

68. Final status page……………………………………….....................……….………………73 

 

 

 



xiv 
 

 

LIST OF TABLES 

Table                         Page number 

1. Nema 17 stepper motor specifications …………………...........................................……...34 

2. TB6600 microstep and current settings………………........................……………………35 

3. Linear actuator specifications………………………....................…………………………40 

4. MG996R servo motor specifications………………................……………………………..44 

5. Arduino mega specifications…………………………….................………………………..62 

6. Nextion display general and electronics specifications……...........………………………..65 

7. Nextion display memory specifications……………………….……………………………65 

8. Accuracy test data for x-axis stepper motor……………………………………………….75 

9. Accuracy test data for y-axes stepper motors……………………………………………...76 

10. Test data for linear speed of the stepper motors with varying steps……………………..77 

11. Test data for linear speed of the stepper motors with varying delays……………………79 

12. Test data for linear speed of the stepper motors with varying current…………………..81 

13. Test data for linear speed of the servo motors with varying voltage……………………..83 

14. Test data for normal force applied to the tool by the gripper arms……………………...85 

15. Test data for application of various tools…………………………………………………..86 

16.  Requirements for the selection of tools…………………………………………………….87 

 

 

 

 



xv 
 

 

LIST OF GRAPHS 

Graphs                      Page number 

1. Linear speed of the stepper motors with varying steps………………………….……..79 

2. Linear speed of the stepper motors with varying delay………………………………..80 

3. Linear speed of the stepper motors with varying current……………………………..82 

4. Linear speed of the servo motors with varying voltage………………………………..84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 
 

 

List of Abbreviations 

 

AI        Artificial Intelligence 

CNC        Computer numerical control 

RPA        Robotic process automation 

STP        Straight through processing 

IM        Intelligent machines 

RA        Robotic assemblies 

IRS        Intelligent robotic systems 

UIC        User input commands 

CIC        Compiled input command 

IRED        Infrared emitting diode 

PSD        Position sensitive detector 

T        Torque 

F        Force 

L        Length 

A        Area 

W        Weight 

M        Total degrees of freedom 

J        Joints 

PWM        Pulse width modulation 

DIP        Dual in-line package 

PCB        Printed circuit board 

LDO        Low dropout voltage 



xvii 
 

SD        Secure Digital 

MISO        Master in Slave Out 

MOSI        Master Out Slave In 

SCK        Serial Clock 

CS        Chip select 

SPI        Serial peripheral interface 

RTC        Real time clock 

EEPROM    Electrically Erasable Programmable Read-only Memory 

I2C        Inter-integrated controller 

TCXO      Temperature compensated crystal oscillator 

SDA        Serial Data 

SCL        Serial clock line 

ADC        Analog-to-digital converter 

UART      Universal asynchronous receiver-transmitter 

ICSP        In-circuit serial programming 

IOREF        Input/output reference 

AREF        Analogue reference 

TXD        Transmit Data 

RXD        Received data 

HMI        Human-Machine Interface 

GUI        Graphical user interface 

GPIO        General Purpose Input/Output 

SRAM        Static random-access memory



 

1 

CHAPTER 1 

 

Motivation and Objective of Smart Tool Organizer  

 

1. Introduction 

1.1 Motivation 

With advancements in technology, the fourth industrial revolution has led to significant 

automation of manual functions using robotics. The human-automation occurred in various dedicated 

domains starting in the 1990s when tasks that are time-sensitive and safety-critical were intensively 

researched and implemented [1]. This domain included automation of tasks such as flight monitoring 

[2], monitoring dynamic processes in factories and power plants and other professional settings [3]. 

Automation took a moderate turn to Embodied systems and AI in the 90s where systems interacted 

with the environment using sensors through which it perceived the world [4]. Human-robot 

interaction using embodied systems is some of the pioneering achievements in this domain leading to 

the rise of robotics. The use of automation technology was introduced to a wider domain in the last 

trend which was previously limited to professional use. The modern automation technologies don't 

require extensive technical training to operate which enables non-professional consumers to use 

automation and robotics. Robots as social companions, automated vehicles and various interactive 

systems emerged increasing the quality of life [5].  

 

The utilization of robotics using electric and mechanical components has led to increase in 

automation and remarkably increased the output of industries as well as facilitating the betterment of 



 

2 

domestic life. Industries such as manufacturing, construction, information technology, space 

exploration, agriculture and automobiles are some of the major beneficiaries of automation. 

Automation assists with testing, prototyping, assembling and designing products with much more 

accuracy, ease and reduced cost. The advent of robotics has also had a major impact on domestic life 

making everyday tasks to be performed with ease in a more efficient manner. The current 

investigation motive is to take another step towards advancement of automation using robotics and 

prototyping a compact device easing some of the tedious and time-consuming tasks. 

 

With the advancement of technology, there has been a surge in various types of machines and 

tools. The tools developed for various purposes come in different shapes and sizes for their specific 

applications. The storage and organization of the tools creates a challenge in a publicly accessible 

dynamic work environment where different groups or individuals work on their projects requiring a 

multitude of tools such as an engineering machine shop. Traditionally, hooks, compartments and 

drawers are used to separate and organize tools to make them accessible and easy to find when 

required. These methods can lead to missing and misplaced tools due to lack of tracking and 

management and can cause setbacks in timing of the project. The motivation for the smart tool 

organizer is to design a prototype of a compact and scalable device that tracks, organizes, manages 

and dispenses tools as per the requirement for the machine shop in UCO School of Engineering. 

 

1.2 Objective of the Smart Tool Organizer 

 

The objective of the design and prototype of a smart tool organizer is to automate the tracking 

and managing of tools using numerous mechanical and electrical components in the machine shop. 

Accessing tools in a machine shop can sometimes be a laborious process due to the variety of tools 

and the unorganized nature of the machine shop. Misplacement of tools is a common occurrence. A 



 

3 

device which can manage, dispense and track tools would be ideal for a machine shop saving time and 

effort. The proposed prototype uses automation and robotics to achieve this outcome.  

 

The principal objective of the proposed project is the design and prototyping of a compact 

electromechanical smart tool organizer that is capable of storing, tracking personal use and 

availability, dispensing and managing of machine shop tools in the school of engineering at the 

University of Central Oklahoma. 

 

Following list states, the objective of finalized design of the prototype: 

1) The smart tool organizer includes a mechanism for the automatic retrieval of operator 

     requested tools 

2) The smart tool organizer requests an operator ID for access and bookkeeping (including 

day, 

     time) 

3) The smart tool organizer includes a mechanism for appropriate tool return 

4) The smart tool organizer is compact and operator friendly 

 

 

 

 

 

 

 



 

4 

CHAPTER 2 

 

Background of Smart Tool Organizer and related research 

 

2. Literature review 

  

 This chapter presents the prior research and literature review of the smart tool organizer. The 

review consists of detailed research about automation and its impact on everyday life, uses of robotics  

in machines and advantages of 3D motion control, linear actuators utilization and properties of other 

electronic components.  

 

     2.1 History of Automation and Robotics 

As discussed in chapter 1, automation and robotics has transformed the way interaction 

occurs between humans and machines. From the initial applications on time sensitive and safety 

critical settings to embodied systems in automobiles, planes etc. the advancements and utilizations of 

automation can be seen in every modern industry. The next major phase of automation came with the 

introduction of robotics where actuators and sensors work simultaneously with the help of a 

microcontroller or computer to perceive and work on its environment. This led to the introduction of 

automated devices to a wider population regardless of their technical proficiency or knowledge about 

the technology. Currently, many such smart devices are in use from smartphones and smart speakers 

to automatic transmission and vending machines. 

 



 

5 

2.1.1 Organizer model for intelligent robotic systems 

Automation and robotics continue to evolve and advance into the future with more 

functionalities and uses. With the developments in machine learning, data science and AI, new models 

of automations are developed such as robotic process automation (RPA) [8]. RPA allows tools to 

operate on other computers using their user interface. RPA executed scripts in the control dashboard 

by mapping the process in RPA tool language. This allows RPA to reduce the repetitive tasks for 

employees leading to reduced cost and return on investments (RoI). Commercial vendors such as 

AutomationEdge, Blue Prism and Softomotive offer RPA software which can quickly link 

applications together. RPA replaced many straight through processing (STP) software that were 

invented in the mid-nineties which allowed the information to electronically be transferred to required 

agents without human involvement [7]. The difference between RPA and STP is that the RPA uses an 

“outside-in” approach while STP uses an “inside-out” approach which allows RPA to remain 

unchanged [8]. It also allows RPA to keep the key content unchanged when the layout of the system 

changes. These applications and tools allowed for automation to make everyday tasks easier in 

information technologies.  

 

Design and implementation of intelligent systems for the purpose of automation and robotics 

requires concepts involving mathematics and engineering [9]. Intelligent machines (IM’s) consisting 

of robotic assemblies (RA’s), artificial intelligence (AI’s) and intelligent robotic systems (IRS’s) 

design’s major hurdle is the overall system coordination or simultaneous operation and not the 

operation of individual components [10]. To achieve the overall goal of an IM, it is imperative for all 

the components such as actuators, sensors and microcontroller to synthesize and follow a sequence of 

order. Programming and implementation of such systems is another major factor in its reliable 

operation. The RA and IRS designs have been studied considerably and numerous models of 

operation have been derived. One such model, hierarchically intelligent control, derived by Saridis 



 

6 

includes a tree-like structure of organization, coordination and execution of tasks by the IM’s and 

IRS’s with little interaction with humans [11]. This model follows the principle of decreasing 

precision with increasing intelligence derived mathematically. Another approach tackles the problems 

of intelligence control theory with nested hierarchical information structures derived by Meystel [12]. 

For AI modeling, planning systems, state representation and architecture of the system surround the 

central issue where logical models and symbolic models of distinct operations are used to achieve 

specific goals such as task planning and path planning. Here, task planning includes systems that don't 

include robotics and actuators while path planning and motion systems deal with robotics using 

mapping algorithms, geometry and metric fields [13]. 

 

In an effort to develop automated planning techniques for RA’s powerful and efficient general 

procedures have been developed which is applicable to a wide variety of situations instead of specific 

instances [14]. In the development phase of an RA’s automation, the effective planning of automation 

can be achieved using either real time planning or offline planning. In real time planning, the plan is 

executed and information is collected during the process to make a decision which is more efficient 

for a fuzzy or uncertain environment [15]. Offline planning is used when the system has learning 

capabilities to assist it to make a decision and execute a complex plan. For the robotic assemblies, AI 

planning is considered a dominating approach which uses operators, initial state and the goal of the 

system to generate a domain-independent engine [16]. Planning tasks for an RA includes a data 

structure that makes sure that the sequence of the task is followed. These data structures can be 

represented in various forms such as graphs, trees, triangle tables or a simple list of orders [17]. The 

IRS’s task planning can be achieved using a hierarchical structure which consists of three levels such 

as organization which is the highest level where making decisions and planning takes place, 

coordination following the sequence of assigned tasks and finally the execution level [18]. This 

system allows improving the performance using self-learning and modifications of algorithms and 



 

7 

iterative processes to make a decision. Figure 1 below represents this hierarchical structure for an IRS. 

 

 

Figure 1- Intelligent robotic system hierarchical structure block diagram [9]  

 

The function of the organizer level is to interpret the user command received from the user 

interface and feedback received from coordination level and output a sequence of tasks in real-time to 

be executed. The output can include decision making, planning, learning feedback, reasoning and 

memory exchange for robotic assemblies and systems [11]. This level also processes huge user input 

or feedback data. The function of coordination level is to create an actual control action to be 

executed at the next level using coordinators which run a set of specified functions. This level 

transfers the information received from organization level to the execution level after converting it 

into executable steps [15]. The function of execution level is to execute the precise information or 



 

8 

commands received from coordinators. This level is usually made of actuators and hardware such as 

stepper motors.  

 

For RA’s and IRS’s to work in a real world environment, they need to be able to interpret 

uncertainty or fuzziness if they run into imprecise descriptions of events or information. One such 

model of RA’ and IRS’s organization level was proposed by Valavanis and Stellakis where a 

unification and generalization of binary logic was researched to allow IM’s to operate in fuzzy 

environments [9]. The model helps the organization level to pass down decisions to coordination level 

which then develop scenarios for execution. It also includes troubleshooting of IM’s failures such as 

malfunction of a sensor, actuator or microcontroller. Another advantage of the model is that the 

system can operate on whether it's an idealized or fuzzy environment. A quick review of this model is 

discussed to better understand the proposed algorithms and operational procedures [9].  

 

2.1.2 Organizer model operational procedures 

The initial information is provided to the organizer workspace which includes a set of 

definitions that establishes this workspace and a set of governing operational functions. The set of 

definitions includes the interpretation for fuzzy sets found in user input commands (UIC’s) alongside 

certain or crisp information which is concerned with the operation of RA’s or IRS’s in an uncertain 

environment [9]. This interpretation pairs the fuzzy and crisp input in the form of (un, tk) where n = 1, 

2, 3, …., M and k = 0, 1, 2, …., 𝞇 where M and 𝞇 are finite number. n represents a number of 

commands and assigns a name to UIC and k represents a fuzzy or uncertain linguistic term such as 

“some”, “more”, “a lot”, etc. Therefore, the set (un, tk) is able to represent an imprecise UIC, for 

example a UIC “slice some” can be represented by (UIC)2 = (u2, tk = “some”). The UIC depends on 

the specific application and the next term, for example overall (UIC)2 for a bread cutting intelligent 

robotic system will represent “slice some bread”. The UIC is received by a user interface such as a 



 

9 

remote, an led screen or a smart speaker’s microphone. Upon receiving this information, classification 

and conversion of fuzzy or crisp commands to coding language understandable by machine occurs at 

the organization level. The un in UIC is first converted to machine language since it carries critical 

information and following that tk is classified [9]. This classification outputs a compiled input 

command (CIC) corresponding to a UIC. The CIC provides the RA’s and IRS’s with a well-defined 

environment to execute the UIC. It uses 5 functions in its set to achieve this task including compiled 

name, specific terms set, fuzzy set, 1-1 mapping of distribution functions and linguistic term. Using 

this model, a general organization model for intelligent robotic systems and robotic assemblies is 

achieved with sets of functions and algorithms for user input commands.  

 

     2.2 Example of Previous work in Robotics 

2.2.1 The Robotic arm assembly 

 Using Mechatronics and the three branches: Mechanical design, electrical circuits-electronics 

and computer programming a robotic arm was developed by Tolis and Fragulis to automate the 

identification and sorting of different size objects. The light weight design of robotic arm uses 

infrared sensors and low cost actuators to reduce the cost of the design which was a major issue due to 

the complexity of the design and high cost of advanced actuators and sensors. The use of 

mechatronics assists in tackling problems related to power, compatibility, torque and kinetics for the 

complete design of the robotic arm. The robotics arm has five degrees of freedom and consists of five 

rotary joints along with a grip. The design of rotary joints include a rotation of the grip, a rotation of 

the wrist, a rotation of the elbow, a rotation of the shoulder and finally a base rotation providing the 

five degrees of freedom. The mechanical parts for the robotic arm are of AL5 type and were selected 

as per the requirement of the assembly using Lynxmotion. The assembly uses the infrared sensor 

which comprises IRED (infrared emitting diode), PSD (Position sensitive detector) and a circuit for 

processing signals made by Sharp [19]. The sensor Sharp 2Y0A21 F46 is a distance sensor and 



 

10 

correlates distance detected to voltage output. The position of the sensor is on the gripper which 

allows it to measure the distance of the objects. The Torque was calculated and used to select the 

servo motors by Hitec to control the rotation of the rotary arms. The operation of the robotic arm is 

controlled by a BotBoarduino microcontroller using a computer.  

 

2.2.2 The Kinematics of Robotic arm  

 Forward and inverse kinematics were developed to study the operation of the robotic arm. 

The degree of freedom and torque were calculated to analyze the use of servo motors and determine 

the kinetics of the assembly. The weight of the object being lifted was used as the force (F) in the 

vertical plane to calculate the torque (T) along with the length of the arm from the pivot point (L). The 

equation for force is given by: (𝐹 =  𝑔 ∗  𝑚) corresponding to the weight equation: (𝑊 =  𝑔 ∗  𝑚) of 

an object due to the gravitational force acting on the object. Here g represents the gravitational 

acceleration and m is the mass of the object. To calculate the required torque from the servos the 

torque equation: (𝑇 =  𝐹 ∗  𝐿) was used.  

 

 

Figure 2- Labeled diagram of robotic arm assembly [19] 



 

11 

 

 The figure 2 shows a labeled diagram of weights of sensor bracket, wrist bracket, grip, 

various servos and mechanical parts used in the assembly. It also shows the lengths of each rotary arm 

and the weight of the object held by the grip. Here, A1 is the weight held by the grip while A2, A3,.. 

A6  is the weight of the servo actuators used. The lengths L1 to L6 show the lengths of the arms while 

W1 to W5 shows the weight of the arms considering the centre of mass at the centre of the lengths. 

For this application, A2 for HS-422 servo is 45.5g, A3 for HS-225MG is 31g, A4 for HS-645MG with 

the arm ASB-24 is 55.2g + 7g = 62.2g, A5 for HS-755HB with the arm ASB-201 is 110g + 13g = 

123g and A6 for HS-805BB along with the part ASB-204 = 197g + 18g=215g. The weight of the grip 

(W1) is  15.7g, weight of sensor bracket (W2) is 10g, weight of wrist bracket (W3) is 9g, combined 

weight of AT-04, ASB-06 and HUB-08 (W4) is 10g + 6g + 8g =24g and Combined weight of ASB-

205 and ASB-203 (W5) is 16g + 15g = 31g. The lengths L1, L2, L3, L4 and L5 were measured and 

listed as 2.8 cm, 2.8cm, 2.85 cm, 18.73 cm and 14.6 cm respectively [19]. Now that all the parameters 

were measured, the calculation of torque was accomplished using the discussed equation. The T1 for 

HS-422 servo was calculated using the equation:  

𝑇1  =  𝐴1 ∗ 𝐿1  +  𝑊1 ∗ 
𝐿1

2
 

Plugging in the values mentioned above, for the T1 the torque was calculated to be 0.021 kg/cm. The 

torques for the servo HS-225MG T2 was calculated using equation: 

𝑇2  =  𝐴1 ∗ (𝐿1 + 𝐿2) + 𝑊1 ∗ (
𝐿1 + 𝐿2

2
) + 𝐴2 ∗ 𝐿2 + 𝑊2 ∗ (

𝐿2

2
) 

The T2 resultant value is 0.207 kg/cm. The torque value for HS-645MG servo T3 was calculated 

using the equation: 

𝑇3 =  𝐴1 ∗ (𝐿1 + 𝐿2 + 𝐿3) + 𝑊1 ∗ (
𝐿1 + 𝐿2 + 𝐿3

2
) + 𝐴2 ∗ (𝐿2 + 𝐿3) + 𝑊2 ∗ (

𝐿2 + 𝐿3

2
) + 

𝐴3 ∗ (𝐿3) + 𝑊3 ∗ (
𝐿3

2
) 



 

12 

Using this equation, the value for T3 is calculated to be 0.511 kg/cm for the A3 servo motor. The 

torque for servo motor HS-755HB T4 was calculated using the equation: 

𝑇4 =  𝐴1 ∗ (𝐿1 + 𝐿2 + 𝐿3 + 𝐿4) + 𝑊1 ∗ (
𝐿1 + 𝐿2 + 𝐿3 + 𝐿4

2
) + 𝐴2 ∗ (𝐿2 + 𝐿3 + 𝐿4) + 𝑊2

∗ (
𝐿2 + 𝐿3 + 𝐿4

2
) + 

𝐴3 ∗ (𝐿3 + 𝐿4) + 𝑊3 ∗ (
𝐿3 + 𝐿4

2
) + 𝐴4 ∗ (𝐿4 + 𝐿5) + 𝑊4 ∗ (

𝐿4 + 𝐿5

2
) 

This equation gives a resultant value for T4 to be 5.122 kg/cm. The required torque value for the 

servo motor HS-805BB T5 was calculated using the equation: 

𝑇5 = 𝐴1 ∗ (𝐿1 + 𝐿2 + 𝐿3 + 𝐿4 + 𝐿5) + 𝑊1 ∗ (
𝐿1 + 𝐿2 + 𝐿3 + 𝐿4 + 𝐿5

2
) + 𝐴2 ∗ (𝐿2 + 𝐿3 + 𝐿4 + 𝐿5) + 

𝑊2 ∗ (
𝐿2 + 𝐿3 + 𝐿4 + 𝐿5

2
) + 𝐴3 ∗ (𝐿3 + 𝐿4 + 𝐿5) + 𝑊3 ∗ (

𝐿3 + 𝐿4 + 𝐿5

2
) + 𝐴4 ∗ (𝐿4 + 𝐿5) + 

𝑊4 ∗ (
𝐿4 + 𝐿5

2
) + 𝐴5 ∗ (𝐿5) + 𝑊5 ∗ (

𝐿5

2
) 

The torque value for servo motor A5 was calculated to be 12.25 kg/cm [19]. These calculated values 

were then compared to the nominal values of torque provided by the manufacturer. The nominal value 

for servo motor HS-422 is given to be 4.1 kg/cm, HS-225MG is 4.8 kg/cm, HS-665MG is 9.6 kg/cm, 

HS 755HB is 13.2 kg/cm and HS-805BB is 24.7 kg/cm. The torque values calculated above were 

using just the weights of the material used and servo motors without adding any load value. 

Comparing these values with the nominal values shows that the robotic arm assembly should be able 

to operate without any load present. Next, an object of weight 100 g was added to the above equation 

to compare the torque values to the nominal values. The final calculated values for the torque using a 

load of 100 g were calculated to be 0.3 kg/cm for the HS-422 servo, 0.767 kg/cm for HS-225MG 

servo, 1.356 kg/cm for the HS-665MG servo, 7.84 kg/cm for the HS-755HB servo and 16.43 kg/cm 

for the HS-805BB servo. Comparing these values with the nominal values of the servo motors, it can 

be concluded that the robotic arm assembly will be able to withstand a load of 100 g. Next, the load 

values were increased to 300 g for the calculations and the calculated values for torque using the 



 

13 

given equation were 0.86 kg/cm for the HS-422 servo, 1.887 kg/cm for HS-225MG servo, 3.04 kg/cm 

for the HS-665MG servo, 13.27 kg/cm for the HS-755HB servo and 24.79 kg/cm for the HS-805BB 

servo. As these values reach the nominal values of the servo motors, it was concluded that the 

maximum load value for the robotic arm assembly is about 300 g.   

 

 The robotic arm assembly has five degrees of freedom. This can be determined using the five 

rotary actuators used in the assembly, not including the actuator responsible for opening and closing 

of the gripper. Mathematically, this was calculated using the Gruebler-Kutzbach equation: 

𝑀 =  (𝑛 − 1) ∗ 3 − (𝐽1 − 𝐽2) ∗ 2 

In this equation, n represents the links used in the assembly, joints with one degree of freedom are 

represented by J1 and joints with two degrees of freedom are represented by J2. M represents the total 

degrees of freedom of the system [19]. For this application, there are no rotary arms with two degrees 

of freedom, while there are five joints with one degree of freedom and from the figure it can be seen 

that there are a total of six links. Thus, plugging these values in the equations results in M or total 

degrees of freedom of the system to be five.  

 

 The power required for the operation of servos and the sensor is provided by two different 

sources. The servos operate on the power supplied by the adapter of the BotBoarduino which is 

connected to a power source. This adapter outputs a current of 2.25 A at 6 volts. The infrared sensor is 

supplied 0.5 A at 5 volts using a USB cable connected to the computer. This power source is 

regulated by the BotBoarduino at 1.5 A and 5 volts. The source of the adapter for the computer and 

BotBoarduino is supplied power using an outlet of 220 V and a frequency of 50 Hz. The computer’s 

adapter receives a current at 6.5A at 18.5 volts [19]. It is imperative that all the components receive 

proper power for the robotic arm to be functional. The communication between the sensor and the 

actuators is carried out by the microcontroller which uses the output values of the sensor to control 



 

14 

and operate the actuators. The selection of the microcontroller BotBoarduino was carried out due to 

the fact that it can output two different current values and can match the needs of the servos and the 

infrared sensor. For this application, the servos are connected to the VS output of the microcontroller 

which acts as a 6V power source and the infrared sensor is connected to the VL output of the 

microcontroller which acts as a 5V source. The BotBoarduino microcontroller also has 

LD29150DT50R, an onboard regulator which can regulate a current up to 1.5 A. This current can be 

supplied using the VL input at 5V. For applications of devices that require more power input an 

adapter can be connected to the VS input like the one discussed earlier.  

 

 

 

 

 

 

 

 

 

 

 



 

15 

 

CHAPTER 3 

Mechanical Design and Fabrication 

3. Mechanical Design of the Smart Tool Organizer 

With the intention to design a prototype that has the ability to organize, store and trade tools 

in an efficient manner, the design of smart tool organizer was developed and fabricated. The design 

development of the smart tool organizer was carried out to obtain an optimum performance and 

provide ease of use to the end user. The design incorporated a base which will be used to store and 

dispense the tools and a robotic unit which is capable of operating on three axes and has three degrees 

of freedom. As mentioned in chapter two, the degree of freedom can be  calculated using the 

Gruebler-Kutzbach equation: 

𝑀 =  (𝑛 − 1) ∗ 3 − (𝐽1 − 𝐽2) ∗ 2 

In this equation, n represents the links used in the assembly, joints with one degree of 

freedom are represented by J1 and joints with two degrees of freedom are represented by J2. M 

represents the total degrees of freedom of the system [19]. In the Smart Tool Organizer, the links used 

for the assembly includes two links with stepper motors on the x and y axis, one link with the linear 

actuator on the z axis and one link with the electro-mechanical clamp attached to the linear actuator 

resulting in four total numbers of links in the assembly of the robotic unit. The joints used in the 

assembly offered one degree of freedom and three such joints were used enabling a motion in x-y-z 

direction. Using the equation mentioned above, the degree of freedom for the smart tool organizer is 

calculated where n is 4, 𝐽1 is 3 and 𝐽2 is 0 resulting in three degrees of freedom.  

This chapter includes a description of the design components used in the assembly of the base 

and the robotic unit. It also includes the components used in the overall assembly and how each 



 

16 

component plays an important role in realizing the idea of a compact, automated and efficient design 

of the smart tool organizer. 

 

3.1 Robotic unit 

3.1.1 The CNC machine 

 The design of the smart tool organizer incorporates a CNC machine to assist it to move to 

various locations of tools. The CNC machine operates on stepper motors where rotational motion is 

converted to linear motion using a belt and pinion drive system. The assembly of the CNC machine 

includes 20 x 40 mm linear V-slots, acrylic gantry plates, solid V wheels, L-brackets, GT2-2M timing 

pulleys with 14 teeth,  GT2 timing belt both 2 and 4 feet and two 20 x 20 V-slot linear rails for 

support. These parts were selected based on the research carried out for performance and the weight 

of a cnc machine to achieve a precise motion control and optimal performance of the smart tool 

organizer. This assembly enables the prototype to move in x-y direction linearly to the desired 

location to get access to the tools.  

 

 In the assembly of the CNC machine, twelve solid V wheels were used to achieve the linear 

motion. Sets of four wheels were attached to the acrylic gantry plate in a manner where they were 

allowed to roll in the slots of the V-slot linear rails. The wheels were assembled using a rubber wheel 

shell, two bearings to reduce friction, a hex nut to secure it and two precision shims for alignment.  

  

Figure 3- Wheel assembly and drawing   



 

17 

3.1.1.1 The Y-axis gantry plate assembly 

The y-axis acrylic gantry plate was assembled to achieve the motion in y direction over the v-

slot using a Nema 17 stepper motor. This assembly consists of a Nema 17 motor to provide rotational 

motion, four solid V wheels, a 14 tooth timing pulley which was attached to the shaft of the Nema 17 

stepper motor using a set screw, four M5 30 mm screws to attach the wheels to the acrylic gantry 

plate, 6 mm aluminium spacer to maintain clearance between the wheels and the acrylic gantry plate, 

four nylon hex nuts to secure the wheels in place along with precision shims for alignment and four 

M3 10 mm screws were used to secure the Nema 17 stepper motor to the acrylic gantry plate.  

 
Figure 4- Y axis gantry plate assembly  

 

This assembly would allow the timing belt to run though the 14 tooth timing pulley and 

achieve a linear motion in the y direction. A similar y-axis gantry plate was assembled for the 

opposite side using a different orientation for the stepper motor. This enabled the cnc machine to 

achieve precise motion in the y-axis using two stepper motors rotating in the opposite direction i,e. 



 

18 

One clockwise and another counter clockwise.  

 

Figure 5- Stepper motor mount gantry plate model and drawing 

 

3.1.1.2 The X-axis gantry plate assembly  

The motion in the x-axis was achieved by using a Nema 17 stepper motor which connects to a 

14 tooth pulley and having a belt run through the pulley. For the assembly of the x-axis stepper motor 

on the 20 x 40 v-slot, two acrylic carriage plates were used with appropriate holes in position to insert 

screws for the wheels and the stepper motor. One carriage plate contains a clearance for the shaft of 

the stepper motor to make it accessible for the pulley and another carriage plate contains slotted and 

fixed holes for the assembly and adjustment of the wheels. The two plates are attached to hold the 

stepper motor and wheels between them in a sandwich configuration and use spacers to adjust the 

spacing between the plates. For the assembly of the wheels, four M5 40mm screws were used along 

with eight 6mm aluminium spacers, and for the assembly of the stepper motor onto the carriage plates 



 

19 

four M3 10 mm screws were used. To secure the assembly, nylon hex nut and precision shims were 

utilized. The holes on one carriage plate were aligned with the hole of the stepper motor in a way that 

the shaft of the stepper motor was accessible for the pulley through a shaft hole and M3 10 mm 

screws were inserted and secured to attach the stepper motor to the carriage plate. Four M5 4 mm 

screws were then inserted in the second carriage plate along with the 6mm spacers and precision shim. 

The wheels were added next on the M5 40 mm screw followed by the 6mm spacers and another set of 

precision shims. The plates were then attached using the nylon hex nuts to secure them in place. The 

14 tooth timing pulley was attached to the shaft of the stepper motor using a set screw on the flat 

surface to secure it in place.  

 

Figure 6- V-slot timing belt and pulley assembly  

 

3.1.1.3 The XY-axis V-slot assembly 

The assembly of the x-carriage plates was then run across the 20 x 40 mm v-slot by adjusting 

the preload on the wheels in such a manner that the v-slot was held by two wheels on the bottom and 

two wheels on the top. The preload on the wheels was adjusted by using the slotted hole where the 

height of the bottom two wheels can be adjusted to achieve a smooth motion of the carriage plates on 

the v-slots. A GT-2 timing belt was inserted in the v-slot and attaching it on the 14 tooth pulley. Two 



 

20 

M5 tee nuts were slided in the v slot on each end to secure the belt in place. After adjusting the 

appropriate tension in the belt two M5 set screws were inserted and secured onto the tee nut. A similar 

process was applied for the assembly of two y axis v-slot with the y-axis gantry plate assembly. The 

preload on the wheels was adjusted to achieve a smooth motion on the v-slot followed by the insertion 

of the GT-2 timing belt in the v-slot. The belt was secure on the pulley and after adjusting appropriate 

tension on the belt a pair of set screws and M5 tee nuts were used on each side of each axis to secure 

the belt in place.  

 

Figure 7- V-slot timing belt and pulley assembly model and drawing  

 

 Following the assemblies of the x-axis and y-axis v-slots, acrylic end plates were attached to 

the y-axis assemblies to add support to the system. These end plates will be used to attach the 20 x 20 

v-slots to the assembly to make a rigid assembly. The acrylic end plates include holes for attachment 

of y-axis 20 x 40 v-slots, two holes for attachment of a double tee nut which will slide in the support 

20 x 20 v-slots and a hole at the bottom for the attachment of the L bracket which will be attached to 

the base assembly.  The end plates were attached on each end of the 20 x 40 v-slots using self-tapping 

screws.  



 

21 

 
Figure 8- X and Y V-slots assembly  

3.1.1.4 The CNC frame assembly  

After successfully assembling the x and y axis assemblies, the CNC machine frame assembly 

was carried out. This assembly includes two y-axis assemblies and one x-axis assembly. The 

components needed for this assembly includes four M5 15 mm screws, four nylon hex nuts, four self 

tapping screws and four angled corner connectors to assemble the axes together. The four angled 

corner connectors were first attached to the ends of the x-axis on each side orthogonally. A tee nut 

was used along with an M5 10 mm screw for this attachment where the tee nut was slid into the v-slot 

and tightening the screw held it in place. The y-axis gantry plate consists of four holes for attachment 

to the x-axis assembly on the top of the plate. It also has slots for the extra GT2 timing belt to pass 

through the y-axis gantry plates to avoid any undesired spacing between the y-axis gantry plate and x-

axis v-slots. The centre two holes were used to attach the end hole on the 20 x 40 v-slot of the x -axis 

using a self tapping screw. The holes of the sides were connected to the angled corner connector with 

M5 15 mm screws and secured by the nylon hex nuts of the other side of the y-axis gantry plate. The 

vertical alignment of the hole prevents any motion in y-direction and the horizontal alignment of the 

hole prevents any motion in x-direction during the operation of the CNC machine. This process was 

repeated for both sides of the x-axis assembly, securing the y-axis assemblies on each side of the x-

axis v-slot.  



 

22 

 

Figure 9- Angled corner connector model and drawing  

 

The limit switches were added on the left side of both the x and y axis using a M5 10 mm screw and a 

tee nut. 

 

 
Figure 10- Limit switch assembly  

 

3.1.1.5 The supporting frame assembly  

 With the completion of assembling x and y axes together, the basic frame of the machine was 

accomplished with the exception of the supporting 20 x 20 v-slots which will provide support to the y-



 

23 

axes v-slots. These supporting rails evenly distribute the compression stress due to the weight of the 

stepper motors, gantry plates assemblies and the v-slots. The end plates assembled earlier with double 

tee nuts were used to attach additional 20 x 20 v-slots to each side of the frame. The double tee nuts 

were slid into the supporting v-slots on parallel ends of the y-axis connecting the end plates and to the 

supporting v-slots parallel to x -axis. Similarly, the second supporting v-slot was attached to the frame 

of the CNC machine and was secure in place by using the double tee nuts. With the addition of the 

supporting v-slots the basic frame of the CNC machine was completed. The two stepper motors 

attached to the y-axis and one stepper motor attached to the x-axis allows the CNC machine to go to 

any desired position within the x-y plane in the constraints of the framework.  

 

3.1.1.6 The Z-axis gantry plate assembly  

The motion in the z-axis was achieved by using a linear actuator. A gantry plate was attached 

to the x-axis gantry plate assembly using four M5 15 mm screws and two double tee nuts. The four 

screws were inserted in the new gantry plate followed by a spacer and then through the slots in the 

existing gantry plate assembly. The new gantry plate for the attachment of the linear actuator was 

secure in place by attaching the M5 screws to the double tee nuts of the back of the gantry plate. The 

purpose of adding this new gantry plate to the existing assembly was to have more attachment options 

to the current CNC machine. The linear actuator was attached to the new gantry plate by using a 3D 

printed linear actuator holding bracket. This bracket was modeled using the dimensions of the linear 

actuator and the spacing of holes on the gantry plate to secure the linear actuator to the CNC 

assembly. After establishing the linear actuator to the CNC frame, the goal of achieving motion in all 

three directions i,e. x-y-z was accomplished. 

 

 The attachment of the CNC machine to the base was accomplished by using the L-brackets 

which would attach to the end-plates and the base. The L-brackets contain holes on each face to 



 

24 

establish the connection between the CNC machine and the base. M5 15mm screws were used to 

secure the L-brackets to the end plates of the CNC machine and 1-¼” wood screws were used to 

attach the L-brackets to the wooden base. To support the weight of the CNC machine, four 3D printed 

mounting brackets were installed in a way where they were attached to the wooden base and firmly 

held the CNC machine’s supporting rails in the slots.  

 

3.1.2 The electro-mechanical gripper 

  For the organization, dispensation and sorting of the tools, a 3D printed mechanical gripper or 

clamp was used. This gripper would allow the Smart Tool Organizer to grab and release the tools as 

required. The assembly of the clamp uses a rack and pinion system in order to achieve the motion of 

gripper arms to grab a hold of the tools with enough torque and release them. The  rack and pinion 

system operates using a MG996R servo motor and converts the rotation motion of the servo shaft to 

linear motion of the gripper arms. 

 

Figure 11- Electro-Mechanical clamp assembly 

 

 The base of the gripper for the robotic arm was designed with slots and holes in place to 

assemble the racks, pinion, MG996R servo motor, the gripper arm and the connecting linear actuator. 

The initial design of the base included a mounting slot for the linear actuator aligned the servo 



 

25 

mounting holes but due to the constraints faced during the mounting process and non-alignment of the 

gripper arms with the desired orientation of the tools on the magnetic strip, modifications were made. 

The new design of the base of the gripper included the mounting slots for the linear actuator 

orthogonal to the position of the servo to align the arm of the gripper with the position of the tool on 

the magnetic strip on the base of the smart tool organizer. The slot of mounting the linear actuator was 

designed using the dimensions of the shaft of the linear actuator to accommodate a perfect fit of the 

assembly. The base of the gripper includes two slots for racks and a centre slot for positioning the 

pinion. The position of the pinion is aligned with the position of the servo motor. The pinion 

connected directly to the servo motor shaft gear increasing the radius of the servo motor shaft gear 

which in turn increased the torque provided by the servo motor for the motion of the gripper arms. 

The pinion is connected to the racks on each side using the linear gears on the rack to convert the 

rotational motion of the pinion into linear motion of the racks. The holes for mounting the servo are 

raised to accommodate the clearance between the mounting holes and the shaft of the servo motor. 

The servo motor was connected to the base of the gripper assembly using four M3 10 mm screws and 

M3 nuts were inserted in the slots designed below the hole to secure the servo motor on the base. 

These mounting holes are aligned in such a manner that the pinion fits in its slot after being connected 

to the servo motor and the gears engage with the rack slots on each side of the pinion.   

 

Figure 12- Base of the clamp model and drawing  

 The gripper arms were connected to the rack on the opposite side of the base using four M3 



 

26 

15 mm screws and secured using four M3 nuts. The motion of the rack is translated to the gripper 

arms using the designed slots where the rack and gripper arms connect. A clockwise motion of the 

servo motor shaft results in clockwise motion of the pinion which moves the front rack and the 

gripper arm attached to the rack in left direction and the rack and gripper arm in the back towards the 

right direction translationally. This causes the gripper arms to close and hold the tools. A rotation of 

the servo motor in counter-clockwise direction produces the opposite motion in the gripper arm and 

allows the gripper to open the arms to release the tools.  

 

Figure 13- Arm of the clamp model and drawing  

 

The assembly of the gripper was connected to the linear actuator using the designed slot for 

the shaft of the linear actuator.  



 

27 

 

Figure 14- Linear actuator mounting bracket 

 

The linear actuator was connected to a gantry plate using a 3D printed mounting bracket. This 

bracket holds the linear actuator in position on the x-axis gantry plate assembly using two 15 mm 

screws inserted in the holes designed for the screws on the mounting bracket and existing holes on the 

gantry plate. With this assembly in place, the assembly of the robotic unit of the smart tool organizer 

was accomplished.  

 

3.2 Base of the Smart Tool Organizer 

The assembly of the CNC robotic unit is mounted on a base where the tools will be organized, 

dispensed and returned to. The base assembly is made of wood and includes styrofoam for holding the 

tools in place, mounting supports for the robotic unit and a push to open dropbox mechanism for 

access to tools.  



 

28 

 

Figure 15- Base of the smart tool organizer assembly  

 

For the assembly of the base, a half inch sheet of hardwood was used. This wood sheet was 

cut according to the dimension of the CNC machine base and a cut out for the dropbox was made. The 

clearance between the base and the CNC machine was measured and 3” of clearance for the linear 

actuator to extend fully and the robotic gripper arm to grab a hold of tools. The gantry plate provided 

a couple inches of adjustment for the linear actuator which allows the linear actuator to be lowered or 

raised accordingly. A 2 x 2” square pressure treated weather shield wood was used to design and 

make mounting supports for the robotic unit with the calculated clearance. Two styrofoam strips were 

used to hold the tools in position, one for the organization and storage of the tools within the smart 

tool organizer and another one for the dropbox for dispensation and retrieval of the tools. The position 

of these styrofoam strips was calculated using the working area of the robotic unit to ensure the 

accessibility of the tools to the gripper arm. These styrofoam strips were secured in place using four 

mounting tape. The four mounting supports for the robotic units were inserted in four corners of the 

base using 1-½ inch #10 wood screws after measuring the height of the supports to provide 3” 

clearance.  



 

29 

 

Figure 16- Supporting and mounting brackets for CNC machine  

 

The CNC machine was mounted on the supporting brackets using L brackets which were 

attached to the supporting bracket using ½” wood screws and to the base of the CNC end plates using 

a M5 screw and nut.  

 

Figure 17- L bracket model and drawing  

 

 A push to open mechanism was installed to make the dropbox accessible to the user. This 

mechanism was attached to the base using an assembly of four 12 x 2.5” wooden brackets which were 

attached to both faces of the push to open mechanical sliders using ½” wooden screws. Two 



 

30 

assemblies of mechanical slider were made and were attached to the base and the 12 x 4” dropbox 

designed with 1” wooden screws for accessibility. The base of the smart tool organizer was mounted 

on four 2 x 2 x 3” mounts to provide clearance for the dropbox and raise the smart tool organizer 3” 

above the table.  

 

Figure 18- Push to Open dropbox assembly 

 

 

 

 

 

 

 



 

31 

CHAPTER 4 

Electronics and Controls 

4. Electronic components and software 

The Smart Tool Organizer is designed to organize, store, track and trade tools automatically 

using an interface to communicate with the user. To achieve this outcome it utilizes various electronic 

components which enables the automation of the prototype. Along with the electronic components, 

automation also involves extensive programming of both the controller and the interface device to 

achieve successful outcomes. The design of the Smart Tool Organizer incorporates electronics such as 

Nema 17 stepper motors, MG996R servo, linear actuator, limit switches, buck converter, DS3231 

RTC module, SD card module, L298N motor drive module, TB6600 motor drivers, a 7” touch screen 

LED display and an arduino mega. All these components work simultaneously to achieve a shared 

goal. In this chapter, the components used in Smart Tool Organizer and their controls are discussed. 

 

4.1 High voltage circuit 

The High voltage circuit operates on 12 V and includes components such as stepper motors, 

TB6600 motor driver module, linear actuator, L298N motor drive module, MG996R servo motor and 

limit switches. These components and their programming are discussed in detail in this section. 

  

4.1.1.1 Nema 17 Stepper Motors and TB6600 motor driver 

The main component driving the CNC machine in the robotic unit of the smart tool organizer 

is Nema 17 stepper motors. These motors were installed on the gantry plates attached to the wheels 

and the rails of the CNC machine. Two stepper motors are used to drive the y-axis, and one to drive 

the x -axis. The Nema 17 stepper motor offers precise control over the positioning of the electro-



 

32 

mechanical gripper which will be used to transfer tools to various positions. The shaft of the stepper 

motor is connected to a 14 tooth pulley which translates the rotational motion of the stepper motor to 

wheels attached to the rails using a connected 14 tooth timing belt. The assembly of the gantry plate 

moves translationally through the rotation of the pulley through the fixed belt as the rotation pushes 

the assembly forward or backward depending on the direction of rotation. This causes the four wheels 

to rotate over the slots in v-slot rails providing translation motion in one dimension. The y-axis 

stepper motors rotate at the same speed and in opposite direction to achieve linear motion in y 

direction and the x-axis stepper motor provides the linear motion in x direction. 

 

 The Nema 17 stepper motor used in the CNC machine of the robotic unit is a unipolar, 4 

phase stepper which uses a permanent magnet. This motor has two split windings and four wires 

attached to those windings. As shown in the figure 19 below, two wires are used in the first winding 

in which black and green wire acts as coil ends. Similarly, in the second winding, the red and blue 

wires act as the coil ends. During the wiring of the stepper motor, the ends of the coils are connected 

to the ground and powered alternatively by a motor driver. The order A+, B+, A-, B- is followed in 

the stator poles inside the motor arrangement.  

 

Figure 19- Stepper motor winding diagram [20] 



 

33 

The motor faceplate is 1.7 x 1.7 inches and the diameter of the shaft of the motor is 5 mm. 

The dimensions of the Nema 17 stepper motor is shown in the figure 20 below. 

 

 

Figure 20- Nema 17 stepper motor dimensional drawing [22] 

 

It has a step angle of 1.8 degrees and to complete one full revolution, the motor takes 200 

steps. The motor is operated on 12 V, 400 mA current with a peak current of 1.68A/phase[21] [22]. 

The three stepper motors are connected in parallel using a solder breadboard and supplied with the 12 

volts using a 12 V power supply. The torque of the stepper motor is 76 oz*in and it changes with the 

numbers of phases per second.  



 

34 

 

Figure 21- Nema 17 Stepper motor torque curve [22]  

 

 

Table 1- Nema 17 stepper motor specifications [21] 

 



 

35 

The stepper motors in the smart tool organizer’s CNC machine are operated using a TB6600 

motor driver. The TB6600 motor driver comes with overheating protection, under-voltage and over-

current shutdown to protect and ensure the safety of  the stepper motor operation. The TB6600 motor 

driver operating voltage is 9 - 42 V DC and 3.5 A per phase current with peak current being 4 A. the 

Tb6600 offers a wide range of microstep resolution including full microstep resolution, ½, ¼, ⅛, 1/16 

and 1/32 microstep resolution. This motor driver has a clock frequency of 200 kHz [23]. 

 

The TB6600 motor driver is connected to the stepper motor using the four wires from the stepper 

motor connected to A+, A-, B+ and B- pins on the TB6600. The VCC is connected to the power 

supply of 12 V and GND is connected to the ground of the power supply. The TB6600 module is 

connected to an arduino mega using DIR+, DIR-, Pul+ and Pul- pins to receive the signals from the 

arduino [23]. The DIR- and PUL- pins of the TB6600 module are connected to the ground and DIR+ 

and PUL+ is connected to digital pins of the arduino.  

 

The microsteps and current supplied to the TB6600 module can be controlled using the DIP switches. 

The settings of microsteps and current using the DIP switch is printed on top of the TB6600 module. 

For the application of the stepper motor in the CNC machine, the microsteps are set to a full step 

meaning the stepper will make 200 steps per revolution and step size is 1.8. The current is set to 0.5 A 

with a peak current of 0.7 A according to the requirement of current from the stepper motor. The 

following table shows the adjustable microstep and current settings on a TB6600 motor driver. 

 

Table 2- TB6600 microstep and current settings [23] 



 

36 

 

4.1.1.2 Programming of Nema 17 Stepper Motors and TB6600 motor driver 

All three stepper motors in the CNC machine are connected to TB6600 motor drivers which 

receive signals from arduino mega for operational instructions. For the programming of the TB6600 

motor driver, the arduino IDE was used. In the programming, first the signal pins on TB6600 module 

i,e. DIR+ and PUL+ were declared for all motors according to the connection of the digital pins on the 

arduino. To do this, #define function was used and pins for x and y-axis stepper motors were defined 

as follows: 

 

Figure 22- Code defining direction and pulse for stepper motor 

 

Here, dirPinA refers to the direction pin of the y2 motor, dirPinB refers to the direction pin of 

the y1 motor and dirPinC refers to the direction pin of the x-axis motor. The direction pin sets the 

direction of revolution for the motors. According to the connection of the stepper motors to the 

TB6600 module, if the direction pin is set to high, it will result in a clockwise rotation and if the 

direction pin of the motor is set to low, it will result in counter-clockwise rotation. These pins are 

changed from low to high and vice versa depending on the direction of the x and y axis. The dirPinA 

is connected to digital pin 4 on the arduino, dirPinB is connected to the digital pin 6 on the arduino 

and the dirPinC is connected to the digital pin 2 of the arduino as shown in the code above. The 

stepPins are the PUL+ on the TB6600 motor driver and it represents the number of microsteps a 

stepper will rotate. Since the stepper motors on the y-axis are intended to move the same number of 

microsteps, the stepPins on the TB6600 motor driver for y1 and y2 were combined on the breadboard 



 

37 

and set to the same digital pin 5 on the arduino. The stepPinC is the microstep pin for the x-axis motor 

and is connected to digital pin 2 on the arduino mega.  

 

Next, in the setup loop of the arduino IDE, these pins were set as outputs using the pinMode 

command. The dirPins and the stepPins will send the signal from the arduino to the TB6600 for the 

operating instructions of the stepper motors.  

 

Figure 23- Code setting stepper motor pins as output 

 

To achieve the rotation from the stepper motors, first the direction is set either clockwise or 

counterclockwise depending on the objective of the CNC machine and then a number of microsteps 

are defined according to the desired location of the x and y axis. To set the direction of the 

digitalWrite function was used to set driPin to either high or low. The y axis motors are rotated in 

opposite directions to achieve linear motion in one direction as explained in chapter 3. The following 

figure 24 shows an example of setting direction for x and y axis stepper motors. 

 

Figure 24- Code setting stepper motor direction 

 

 Once the directions for the stepper motors are set, the microstep pins are set to high to achieve 

the rotation of the stepper motors and then set to low to stop the stepper motor. Since the microstep is 



 

38 

set to a full step as explained earlier, one microstep will result in the motor turning 1.8 degrees and it 

will take 200 microsteps for the motor to complete a full revolution. To achieve the rotation of the 

stepper motor shaft multiple times, for function was used with an integer i, such that if i is less than 

the number specified the for function will repeat. In the for function, the stepPins of the arduino were 

set to high and after a certain delay were set to low to achieve continuous rotation of the motors. The 

following figure 25 illustrates an example of the rotation of the stepper motors.  

 

Figure 25- Code for rotation of the stepper motor 

 

 This programming format was used to control the linear motion of the x and y axis with the 

goal of taking the electro-mechanical clamp to the desired position of different tools and dropbox. 

This enabled the CNC machine to retrieve and dispense various tools for various positions on the base 

of the smart tool organizer assembly.  

 

 

 

 



 

39 

4.1.2.1 Linear actuator and L298N motor drive module 

A linear actuator was used to achieve the motion in the z axis. This linear actuator was 

selected due to the size and the power requirements of the linear actuator. The length of the linear 

actuator motor bracket is 40.5 mm, the minimum installing length is 2.97” and maximum installing 

length is 3.77” [24]. The size of the linear actuator was appropriate for using it in the robotic unit. The 

linear actuator operates on a 12 V dc power supply which is provided using the power supply for the 

robotic unit by connecting the linear actuator in parallel with the stepper motors on the breadboard. 

 

 

Figure 26- Linear actuator dimensional drawings [24] 

 

The main components of the linear actuator are motor, limit switch, DC brushes, lead screw, 

gears and cylinder. The 12 V motor inside the linear actuator is responsible for the motion of the 

linear actuator. The limit switches in the linear actuator control the limit of the extension and 

retraction of the linear actuator. When the limit switches are triggered, it stops the motor avoiding any 

damage that could occur by over extending or retracting the actuator. The dc brushes conduct the 

current to the wires and the actuators. The lead screw provides linear motion by converting the 

rotational motion of the motor to linear motion and moves up and down depending on the polarity of 



 

40 

the motor. The lead screw is connected to the motor using gears which facilitates the motion of the 

actuator [26]. The cylinder contains the interconnected parts of the linear actuator and allows the shaft 

to move freely inside it. 

 

Table 3- Linear actuator specifications [24] 

 

For the operation of the linear actuator, a 12 v power source is connected to the two wires 

from the linear actuator. If the 12 V positive side is connected to the positive wire and the negative 

side is connected to the ground, the linear actuator extends at 50mm/s. Similarly, if the linear 

actuator's negative wire is connected to the 12 V power source positive side and the positive wire of 

the linear actuator is connected to the ground, the linear actuator retracts at the same speed until it 

reaches the limit. If the power source is cut off during the extension of the retraction of the linear 

actuator, it holds the position of the shaft and stops the motion. The speed of the linear actuator can be 

controlled by decreasing the supplied voltage which will cause the linear actuator to move at slower 

speed. The speed of the linear actuator can also be controlled using a PWM such that if the duty cycle 

of the PWM is increased, it increases the speed of the linear actuator.  

 

The linear actuator is controlled by an arduino mega which sends the linear actuator signal to 

extend or retract. But since the arduino cannot provide the linear actuator with 12 V power, an L298N 

motor drive module was used. The L298N motor drive module receives the signal from the arduino 

and amplifies it and it allows the arduino to change the polarity of the signal making the linear 

actuator extend or retract while keeping the same connection [25].  

 



 

41 

 

Figure 27- L298N module pinouts [25] 

 

 The L298N module is capable of controlling two linear actuators simultaneously since it has 

two channels. For this application, only channel 1 will be used. The Vcc pin is connected to a 12 V 

power source which supplies power to the linear actuator and 5 V pin is connected to a 5 V power 

source which supplies power to the L298 motor drive module. The 5 V power is received from the 

same power source by using a buck converter which will be discussed later in this chapter. The 

ground pin is connected to ground. The ENA pin is used to enable the L298N module and can also be 

used to control the PWM input and consequently the speed to the linear actuator. The IN1 and IN2 

pins are connected to the arduino digital pins and OUT1 and OUT2 pins are connected to the wire of 

the linear actuator.  

 

Figure 28- Wiring diagram of linear actuator and L298N module [25] 



 

42 

 

4.1.2.2 Programming of the Linear actuator and L298N motor drive module 

The linear actuator and L298N are programmed to extend and retract for location the electro-

mechanical clamp in position where it has close proximity with tools and is able to grab or drop the 

tools.  

 

The linear actuator extends when the CNC machine or x and y axis reaches its desired 

position or the position of the desired tool. This allows the clamp to grab the tool using its mechanical 

arms. Once the clamp holds the tool, the linear actuator retracts and it takes the tool to the required 

position using x and y axis stepper motors. This process repeats many times depending on the 

required output from the smart tool organizer.  

 

For the programming of the L298N module, first the digital pins connected to the arduino 

were declared. Three pins on L298N are connected to the arduino i,e,. ENA, IN1 and IN2. The ENA 

pin is connected to digital pin 7 on arduino mega, the IN1 pin is connected to digital pin 8 on arduino 

mega and IN2 pin is connected to digital pin 9 on arduino mega. These pins were declared using const 

int function.  

 

Figure 29- Code defining L298N pins 

 

After declaring the pins connections, the pins were set as outputs since the L298N motor 

drive module and linear actuator will receive signals from the arduino. To do this, pinMode function 

was used and the three pins ENA, IN1 and IN2 were set as output pins. The ENA pin was set to high 



 

43 

to enable the L298N module. This pin can also be used to limit the extension and retraction and the 

speed of the linear actuator but it was not necessary in this application. 

 

Figure 30- Code setting and enabling L298N pins 

 

Next, to extend the linear actuator, the IN1 pin was set to high and IN2 pin was set to low 

using digitalWrite function. Similarly, to retract the linear actuator, the IN1 pin was set to low and the 

IN2 pin was set to high. By doing this, the L298N module reverses the polarity of the motor in the 

linear actuator causing it to rotate in opposite direction and the shaft of the linear actuator to retract. 

Some delays were added before and after the digitalWrite command to make sure the linear actuator 

extends and retracts fully.   

 

 

Figure 31- Code for the linear motion of linear actuator 

 

This programming format was used throughout the code to extend and retract the linear 

actuator as necessary. 

 

 

 



 

44 

4.1.3.1 Electro-Mechanical clamp and servo motor 

The electro-mechanical clamp is the component which grabs and drops the tools as needed in 

the smart tool organizer. The clamp is attached to the shaft of the linear actuator as discussed in 

chapter 2. This clamp operates using a MG996R servo motor and converts the rotation of the servo 

motor into linear motion using the gear and pinion mechanism discussed in chapter 2. The clockwise 

rotation of the servo motor causes the mechanical arm of the clamp to close and the counterclockwise 

rotation of the clamp causes the mechanical arm to open.  

 

The MG996R operates using the duty cycle of the PWM signal received from the arduino 

mega. This motor has a stall torque of 9 kg/cm with maximum stall torque of 11 kg/cm and has a 

metal gear. The stall torque is more than enough for this application since the motor can hold the tool 

up to 11 kg at a distance of 1 cm. The motor has 3 connections i,e. Power, ground and signal. The 

brown wire of the servo motor is the ground connection, the red wire is power connection and the 

orange wire is the PWM signal connection which will be connected to the arduino. This motor 

operates on 5 V and 2.5 A current. The torque of the motor increases with increase in volts and has a 

rotation angle of  0 to 180 degrees. The circuit can be modified in order to achieve full 360 degrees of 

rotation. This motor typically operates at 0.17s/60 degree speed [27].  

 

Table 4-MG996R servo motor specifications [27] 



 

45 

 

The PWM signal produced by the arduino has a frequency of 50 HZ or 20 ms. The degree of 

rotation of the motor can be controlled by using the on-time of the PWM signal which can vary from 

1 to 2 ms. This means at 1 ms of on-time the motor will be at 0 degree and 2 ms of on-time the motor 

will be at 180 degree [27]. The interval being the 1 and 2 ms of on-time will result in the motor being 

at an intermediate degree such as at 1.5 ms the motor will be at 90 degrees.  

 

 

Figure 32- PWM signal representation of servo motor [27] 

 

The MR996R servo motor is 47.6 mm in overall length and has 20 mm thickness. The width of the 

screw mounts of the servo motor is 53.6 mm and the body of the servo motor is 40.3 mm wide [27].  

 

Figure 33- Dimensional drawing of servo motor [27] 



 

46 

 

In the previous chapter, it was discussed how the servo motor is mounted using 4 screws onto 

the base of the mechanical clamp. The gear of the servo motor interacts with the linear gears on the 

rack using another gear which converts the rotational motion into linear motion.  

 

4.1.3.2 Programming of the Electro-Mechanical clamp and servo motor 

The function of the electro-mechanical clamp and the servo motor is to grab and drop the 

tools as required. To do this the servo motor needs to rotate at various degrees and hold the tool in 

position till it is transported to the destination. The degree of rotation of the servo motor depends on 

the width of the tool it is grabbing which varies with different tools. Each tool was calibrated for 

different degrees of rotation of the servo motor to achieve this goal. The servo motor was powered 

using the same power source and was connected in parallel with the linear actuator. The signal for the 

servo motor was connected to arduino mega pin 10.  

 

The programming of the servo motor was accomplished using the Servo.h in-built library in 

the arduino. First the library was included using the #include function and then an object named 

myservo was created using the Servo function. An integer was created next by the name of pos, short 

of position of the servo, and was set to 0 for the home position. This integer will be changed 

according to the required degrees of rotation from the servo. 

 

Figure 34- Code including servo library and defining variable 

 

The home position of the servo motor is set to 0 degrees. To enable the servo myservo.attach 



 

47 

function was used with the pin 10. This is an in-built function which needs to be called out before 

operating the servo motor. A for function was used to increase the degrees of rotation of the servo 

motor with the increment of one step. The function myservo.write was used to assign the value of pos 

to the servo which was used in the for loop. A delay of 15 ms was included for the servo to get in 

position. After the operation, the function myservo.detach is used to disable the servo motor. This 

process can be used to increase or decrease the degrees of rotation of the servo motor or in other 

words, open or close the mechanical clamp.  

 

Figure 35- Code for the rotational motion of servo motor 

 

This format of programming was used throughout the code whenever the servo was needed to 

change the degree of rotation to grab or drop the tool and to bring the servo back to the home position. 

 

4.1.4.1 Limit switches 

Two limit switches were used on the CNC machine x and y axis to stop the rotational motion 

of the stepper motors when the gantry plates had reached the end of the axis. When the limit switch is 

triggered it disables the motors and stops the linear motion of the x and y gantry plate assemblies. 

These limit switches were also used to specify a home position for the CNC machine where it would 

begin the operation and come back after the operation of the CNC machine.  

 

The limit switches used in the assembly of the CNC machine operate on 12 V by using a PCB 

and have three wire connections. These wired connections include power +12 V wire, ground wire 



 

48 

and a signal wire. The power wire was connected to the 12 V power supply in parallel with the 

stepper motors, the ground wire was connected to the ground and the signal wire was connected to 

analog pins of arduino mega. The limit switch used in the assembly is normally open meaning when 

the switch is triggered by contact of the gantry plate it will close and send a signal to the arduino to 

stop the rotation of the stepper motors.  

 
Figure 36-Limit switch positioning on a V-slot 

 

4.1.4.2 Programming of the Limit switches 

The limit switches were programmed to avoid any damage that would occur by collision of 

the x and y axis gantry plates and to specify a home position for the CNC machine. The signal pins 

from the limit switches were connected to arduino analog pins where x limit switch was connected to 

analog pin A1 on the arduino and y limit switch was connected to analog pin A0 of the arduino.  

 

First the limit switches pins were declared using the #define function setting limitX to A1 and 

limtY to A0. For each action performed by the CNC machine an if loop was included before the 

action which made sure that the CNC machine was in home position. This was accomplished using 

conditions in the if loop which send signals to the arduino if the limit switches were triggered. This 



 

49 

made sure that the CNC machine only operated if the conditions were met or in other words the limit 

switches were triggered.  

 

 

Figure 37- Limit switch conditions 

 

After each operation of the CNC machine, the stepper motors were sent back to the home 

position. This was accomplished by first using an if condition meaning that if the limit switches were 

not triggered do the following. Then the direction for the home position was set using the digitalWrite 

function on dirPins. A do while loop was used next to bring the steppers back to the home position 

which told stepper to move toward the limit switches while the limit switches were not triggered.  The 

homing of the stepper motor was carried out for both the x and y axis. A delay function was added for 

2 sec after the homing to prepare the CNC machine to operate again. 

 

Figure 38- Code for bringing stepper back to home position 

 

This formatting of programming was used throughout the code whenever a tool retrieval or 

dissension request was placed. 



 

50 

 

 

4.2 Low voltage circuit 

The low voltage circuit operates on 5 V and includes components such as SD card module, 

DS3231 RTC module, nextion display and arduino mega. The nextion display is discussed in detail in 

chapter 5 interface and firmware. The low voltage components were operated on the same 12 V power 

supply after reducing the voltage to 5 V using a buck converter. The buck converter comes with a 

potentiometer which can be turned to reduce the amount of outlet voltage. One side of the buck 

converter was connected to the 12 V power source and ground and the other side was connected to the 

opposite side of the breadboard which provided power to components requiring 5 V.  

 

 

4.2.1.1 SD card module 

The SD card module is used to store data and entry logs of the user of the smart tool 

organizer. Anytime a user requests the dispensation or returns a tool the user’s student ID number is 

stored along with the returned or dispensed tool number and date and time on a text file in the SD 

card. This data can be reviewed to determine which user received or returned which tool from the 

smart tool organizer with the exact date and time data. This data is very helpful to keep track of tools 

and manage and organize tools in the smart tool organizer. 

 

The SD card module used for this application is Hiletgo SD card module with 6 pins SPI 

interface. This module has an on-board 3.3V LDO voltage regulator which converts the supplied 5V 

of dc power to 3.3 V. This voltage regulator is necessary because any voltage above 3.6 V may 

permanently damage the SD card. The SD card module also includes a 74LVC125A logic level shifter 



 

51 

chip which allows the communication between the SD card module and the microcontroller which is 

an arduino mega for this application. The SD card module includes a microSD memory card pocket 

where the microSD card up to 16 GB can be installed. 

 

Figure 39- Logic level shifter [29] 

 

 

Figure 40-microSD card slot [29] 

 

The SD card module comes with six pins such as VCC, GND, MISO, MOSI, SCK and CS. 

Here, the VCC is the power pin which is connected to the 5V power source, the GND pin is connected 

to the ground. The MISO (Master in Slave Out)  is an SPI output for the SD card module, the MOSI 

(Master Out Slave In) is an SPI input for the SD card module, the SCK (Serial Clock) pin 

synchronizes the data transmission by using the clock pulse from the master or arduino mega, the CS 

pin regulates the SPI bus by selecting the control pin to select a slave [29]. 



 

52 

 

Figure 41-SD card module pinouts [29] 

 

The SD card module only accepts the microSD card formatted in FAT16 or FAT32 format. 

The microSD card used in the application was formatted in FAT32 format before inserting it in the 

SD card module. The VCC pin of the SD card module was connected to the breadboard 5 V power 

side and the GND pin was connected to the ground. The MOSI, MISO, SCK and CS pins were 

connected to the hardware SPI pins of the arduino mega to achieve the best performance while the 

transfer of the data. The hardware SPI pins of the arduino mega are pin 51 for MOSI pin, pin 50 for 

MISO pin, pin 52 for SCK pin and pin 53 for CS pin [29]. Following the connection of the SD card 

module to the arduino, the programming of the SD card module was accomplished which is discussed 

in the next section.  

 

4.2.1.2 Programming of the SD card module 

For the programming of the SD card module, the arduino in-built libraries SD.h and SPI.h 

were used. The #include function was used to include these libraries in the program. After including 

the libraries, the CS pin was declared using an int function to pin 53 of the arduino. The in-built file 

function was used to call out a file. For the operation of the SD card module, six functions were 



 

53 

defined such as initializeSD, createFile, writeToFile, closeFile, openFile and readLine. The 

initializeSD function set CS pin as an output and used SD.begin function to enable the SD card 

module.  

 

Figure 42- Defining initializeSD function 

 

The createFile function creates or opens a file in the SD card using the given name.  

 

Figure 43- Defining createFile function 



 

54 

 

The writeToFile function enters the given data in the file created in the SD card using in-built 

file.println function.  

 

Figure 44-Defining writeToFile function 

 

The closeFile function uses file.close function to close the opened file.  

 

Figure 45- Defining closeFile function 

 

The openFile function opens the file with a given name using SD.open in-built function.  



 

55 

 

Figure 46- Defining openFile function 

 

The readLine function reads a given line in a file using file.read function and returns it as a 

string.  

 

Figure 47- Defining readLine function 

 

These functions were used throughout the code to enter data in the SD card file whenever a 



 

56 

tool was dispensed or returned. 

 

4.2.2.1 DS3231 RTC module 

The DS3231 RTC module was used to keep track of date and time in the smart tool organizer. 

The date and time were stored whenever a tool request for dispensation or return was made to keep 

track of the tools. The time and date data was stored alongside the student ID number, the tool number 

and the status whether it is being dispensed or returned by the user. 

 

The DS3231 RTC module used in this application includes a DS3231S RTC chip along with 

an AT24C32 EEPROM chip. The DS3231S chip keeps accurate timekeeping of years, months, days, 

hours, minutes and seconds. It also keeps tracks of leap years and can be used either in 12 hour or 24 

hour format. The DS3231 chip includes INT/SQW pins which send square waves at 1, 4, 8 or 32 Hz 

and also provide interrupt signals. The DS3231 chip is also responsible for communication with the 

arduino using an I2C bus [31]. 

 

Figure 48- DS3231 RTC chip [31] 

 



 

57 

The DS3231 keeps track of time using the oscillation frequency and includes a 32 kHz TCXO 

(Temperature compensated crystal oscillator) which can operate at wide external temperature 

differentials[31]. To compensate for the frequency changes due to external temperature, the TCXO 

includes an internal temperature sensor and control logic which adjust the time by adding or removing 

seconds to keep an accurate track of time.  

 

Figure 49- Graph of oscillator frequency’s relation with temperature [31] 

 

 

The DS3231 RTC module comes with a backup battery of 3V which is inserted on the back of 

the chip. The module uses this battery power when the power is cut off on the VCC pin of the module 

to keep an accurate timekeeping. The 32-byte AT24C32 EEPROM chip included on the DS3231 RTC 

module is used for data logging and storing[31]. It uses the same I2C bus to communicate with 

arduino as the DS3231S chip.  

 

Figure 50- EEPROM chip and I2C address selection jumper [31] 



 

58 

 

The DS3231 RTC module has 6 pins such as 32K, INT/SQW, SCL, SDA, VCC and GND. 

The 32K pin outputs a reference clock which is compensated for temperature and is accurate. The 

Int/SQW pin sends square waves at 1, 4, 8 or 32 Hz and also provides interrupt signals. For the I2C 

interface, the SCL pin is used as a serial clock pin and the SDA pin is used as a serial data pin. These 

pins are connected to the I2C pins on the arduino mega i,e. SCL pin is connected to pin 21 and SDA 

pin is connected to  pin 20 of the arduino mega. The Vcc pin is used to supply 5V of power and the 

GND pin is connected to the ground.  

 

Figure 51- RTC module pinouts [31] 

 

4.2.2.2 Programming of the DS3231 RTC module 

The DS3231 RTC module was programmed using the in-built libraries Wire.h, TimeLib.h and 

DS1307RTC.h. First these libraries were included using #include function. The in-built function 

tnElemnets_t was used to declare a variable tm which would receive time and date from the RTC 

module. A function print2digits was used to print only 2 digits of each hour, minute and second. This 

was needed to ensure only two digits were stored excluding any extra zero before or after the time.  



 

59 

 

Figure 52- Defining print2digits function 

 

The time and date were read using the inbuilt functions of tm.Hour, tm.Minute, tm.Second, 

tm.Day, tm.Month and tm.Year. This data was displayed on the serial monitor using Serial.print 

command and was stored in various strings for storing it on the SD card. All the acquired data was 

combined in a string now and converted to character using a buffer and toCharArray function. This 

was necessary because to be able to store data on an SD card, it has to be in character format and not 

string format. This data was written to the file in the SD card. The following figure 53 displays how 

the time and date data was manipulated for each iteration and stored on the SD card.  

 

Figure 53- Code for storing time and date to SD card 



 

60 

4.2.3.1 Arduino Mega 

The microcontroller arduino mega was used to control all the previously mentioned 

components making it the brain of the smart tool organizer. All components including stepper motor, 

TB6600 motor driver, servo, linear actuator, L298N module, limit switches, RTC module, SD card 

module and nextion display were programmed using the arduino mega and were connected to arduino 

in some way. Arduino mega synchronizes all the components and makes them work together to 

achieve the goal of the prototype. It facilitates the organization, tracking, dispensation, retrieval along 

with interfacing for the smart tool organizer.  

 

The arduino mega uses an 8-bit microcontroller chip Atmega2560P which in a single clock 

cycle allows the arduino to execute instructions and provide excellent processing speed with low 

power consumption. The microcontroller includes 54 digital input/output digital pins which includes 

14 PWM pins, 16 analog pins and 6 hardware serial ports. Teh arduino digital pins can be in either 

state 1 or 0 which is either high or low depending if there is voltage in those pins. All pins from 0 to 

53 can be used as a digital pin. The arduino analog pins use ADC or analog to digital converter and 

they can be used either as an analog pin or a digital pin. The analog pins can return a value ranging 

from 0 to 1023. Since the arduino operates on 5 V, each value of the analog pin represents 4.88 mV of 

power meaning if the value is 4.88 mV, it will return 1 as analog value and increase to 1023 in the 

increments of 4.88 mV. The UART pins or hardware serial ports allow the arduino to communicate 

with other devices using the serial port. The UART TXD pins on arduino are pins 1, 18, 16 and 14 

and UART RXD pins on arduino are pins 0, 19, 17 and 15. The SPI pins on arduino are 50, 51, 52 and 

53 which allows the arduino to communicate with various peripheral devices. The three pins SCK, 

MISO and MOSI for peripheral devices were discussed earlier in the SD card module section which 

uses these pins to transfer data from arduino to the SD card. The SS or CS pin used for peripheral 

devices is used for master slave communication which is dependent on whether the CS pin is high or 



 

61 

low to allow communication between multiple devices. Arduino mega also includes an in-built LED 

which is connected to pin 13 and turns on or off depending on the state of that pin. The on-board 6 

ICSP (In-Circuit Serial Programming) pins on the arduino mega can be used to program the 

arduino[33]. 

 

Figure 54-Arduino mega pinouts and components [32] 

 

Arduino mega includes a crystal oscillator which provides basic timing and clock signal to the 

board. The reset button on arduino can be used to reset the board by pressing and holding the button 

till on-board power led flashes. The I/O reference voltage pin or IOREF pin is used as a reference at 

what voltage the microcontroller is currently operating and the AREF or analogue reference pin is 

used as a reference pin to compare the analog voltages[33]. For this application, the arduino mega was 

powered using the Vin pin which was connected to a 5 V power source and the ground pin was 

connected to the ground of the power source. The Following table includes the specifications of the 

arduino mega.  



 

62 

 

Table 5- Arduino mega specifications [32] 

4.3 Wiring and connections 

The smart tool organizer uses 17 components and synchronizes these components to work 

together and achieve the common goal of organizing, dispensing, retrieving, tracking and keeping 

record of data. The following wiring diagram shows how all these components are connected and 

wired together.  

 

Figure 55-Wiring diagram of the smart tool organizer’s components 



 

63 

CHAPTER 5 

Interfacing and Firmware 

5.1 User-Interface of the Smart Tool Organizer 

The Smart Tool Organizer is a compact device which allows the user to choose the desired 

tool and receive or return it using a dropbox. It also keeps track of user identity by requesting for 

student ID number and storing it alongside the tools number, tool status whether it was received or 

returned and accurate date and time. To operate the smart tool organizer, the user needs to interact 

with the machine and provide information. The interaction of the user with the smart tool organizer is 

designed to be on a 7” touch screen LED display which will take the user through the step of 

interaction to accomplish the goal of providing the user with requested tools or returning them. The 

interface designed for the end user is very easy to use, allowing anyone with the right credentials to 

operate the smart tool organizer. In this chapter, the interface design and user interaction with the 

smart tool organizer is discussed.  

 

5.1.1 Nextion LED display 

 

The nextion display is an interactive user interface or HMI which can be connected to an 

arduino through the serial port and send and receive signal. The connection of arduino mega and the 

nextion display is established using a peripheral TTl serial connection. The nextion display comes 

with 4 connections: 5V power connection, a ground connection, TX connection and RX connection. 

The serial connection interacts with the TX and RX pins on the arduino and sends and receives signals 

upon touch event. The touch event can be set to when the display is touched or released. The nextion 



 

64 

display is used as a GUI (Graphical User Interface) and HMI (Human Machine Interface) for the 

interaction with the smart tool organizer. The nextion display operates on 5V and 430mA current. It 

typically uses 9600 bps baud rate through the serial port which can be changed to a minimum of 2400 

bps and maximum of 921600 bps if required. The nextion display comes with an SD card slot which 

is used to upload files to the display which contains instructions about the GUI interface. The nextion 

display also includes flash storage to store data and files on-board, GPIOs, RTC to keep track of time, 

an audio interface, a touch controller, MCU and an SRAM [33].  

 

Figure 56- Nextion display components [34] 

 

The display sizes of the nextion can vary from 4.3” up to 10.1” and has multiple product 

families such as basic, enhanced and intelligent. For the application of the smart tool organizer a 7” 

intelligent series nextion display was selected. The touch screen is a 65K RGB resistive and 

capacitive display and the on-board MCU is 200MHz and contains flash memory of 128 MB. The 

SRAM is 512 KB and has 1024 Byte of EEPROM.  The following table includes specifications of the 

nextion display[34]. 



 

65 

 

Table 6- Nextion display general and electronics specifications [33] 

 

 

Table 7- Nextion display memory specifications [33] 

 

 

5.1.2 Nextion Editor and Arduino programming 

 

The nextion display uses nextion editor software to design the HMI software and GUI layout. 

It uses ASCII for programming the display functions such as touch event or touch release event and 

allows to assign attributes to value components at runtime. It also includes a built-in debugger which 



 

66 

allows the user to simulate the GUI interface before uploading it to the nextion display.  

 

During the process of making a new project, the device needs to be selected to configure the 

nextion editor according to the device. In the device selection, the series of devices and the model 

number is required. The device was selected by entering the series as intelligent and the model 

number NX8048P070_11 to match the model being used in the smart tool organizer.  

 

Figure 57- Selection of display type 

 

 

In the next screen the viewing angle and the orientation of the screen was selected to be 

vertical at 270. This selection affects how the screen will be orientated. The vertical orientation was 

selected for designing the user interface of the smart tool organizer.  



 

67 

 

Figure 58- Display orientation selection 

 

After selecting the orientation, the nextion editor displays the main user interface where the 

project will be edited and designed.  

 

Figure 59- Main interface of the nextion editor 



 

68 

 

The page panel on the right side of the screen helps manage view delete and modify the pages 

in the editor. It includes functions such as add, delete, copy, insert, move up, move down, delete all, 

etc. The pages will be displayed one after the another on the nextion display as the user interacts with 

the smart tool organizer. The page can be named with up to 14 characters and the names are case 

sensitive. For smart tool organizer, six pages were used including a page for numeric keyboard for 

entering student ID. The six pages includes a home page, a tool status page which asks the user if it is 

a receive tool request or return tool request, two tools selection pages, a final status page and an error 

page.   

 

Figure 60- Pages setup in nextion editor 

 

On the home page, the user will be asked to enter their student id number and the numeric 

keyboard page will be activated when the user touches the number field. The student id will then be 

verified against the list of allowed student ids and the user will be taken to the tool selection status 

page if the student id is valid or shown the error page if the student id is not valid. This action will 

occur when the user touches and releases the next button on the home page. The next button is also 



 

69 

programmed to save the student id and send it to the arduino via serial port. The program for the next 

button is written as ASCII and it first converts the text field to a number field using the covx 

command and then prints it on the serial port a string value to send it to the arduino. The tsw 

command prevents users from accidentally touching the button twice by disabling the button for a 

second after it is pressed. The arduino will convert the student id number received in string format to 

char format and save it on the sd card.  

 

Figure 61- Home page of the nextion display 

 

 

Figure 62- Numeric keyboard for entering student ID 



 

70 

 

Figure 63- ASCII coding for next button in nextion editor 

 

 

 

Figure 64- Error page for invalid id number 

 

Upon entering a valid student id number the user is taken to the next page where the request 



 

71 

type will be prompted asking the user if the tool is to be received or returned. If the user selects the 

receive tool option, page 2 will be displayed and if the user selects the return tool option, page 3 will 

be displayed. These pages have the same buttons but the programming of the buttons on these pages 

are different.  

 

Figure 65- Tool selection status page 

 

 

Figure 66- Tool receiving selection page 

 



 

72 

 

Figure 67- Tool returning selection page 

 

The tool options will be displayed on these pages for receiving and returning. Each button is 

programmed to send a unique string to the arduino. When the button is touched and released arduino 

receives the unique string signal for the particular button. The arduino is programmed to save the date 

and time using the RTC module on the SD card along with the unique tool identity. When it receives 

that unique signal, the arduino synchronizes all the previously stated electronics components in 

chapter 4 such as CNC machine, linear actuator, the servo motor, TB6600 module and L298N module 

accordingly to either dispense or retrieve the tool selected by the user. The code arduino uses to 

achieve this goal is stated in appendix A. After the user received or returned the tool successfully, the 

final status page is displayed which thanks the user for using the smart tool organizer. 



 

73 

 

Figure 68- Final status page 

 

 

 

 

 

 

 

 

 

 



 

74 

CHAPTER 6 

Results and Discussion 

6.1 Performance and accuracy testing of the smart tool organizer 

The smart tool organizer was tested for accuracy and performance and the test data was 

acquired. The data acquired for the performance and accuracy testing was analyzed and the optimum 

operating parameters were selected to achieve the best and most accurate performance of the smart 

tool organizer.    

6.1.1 Stepper motor performance and accuracy testing 

The smart tool organizer is designed to carry various tools to different locations on the base 

to organize, dispense and retrieve tools as per the request of the user. To achieve this task, linear 

motion in x, y and z direction is necessary. This motion is achieved by using a CNC machine which 

operates on NEMA 17 stepper motors and a linear actuator. Three stepper motors are utilized to 

achieve linear motion in x and y direction such that one motor controls the motion in x direction and 

two motors controls the motion in y direction. Due to the rectangular frame of the CNC machine 

made of stainless-steel V-slots, the x axis is twice the length of the y axis and therefore, to achieve 

precise motion on two y axes, which are spread over a larger distance, two stepper motors are used. 

The stepper motors on y axes operate with synchronization of steps and pulses per second in opposite 

directions to achieve linear motion in one direction. This was accomplished by combining the pulse 

input for both motors enabling them to receive identical inputs for the number of pulses per second.   

 

The stepper motors operate on two inputs i.e, pulse and direction. The direction input 

instructs the stepper motors to rotate either clockwise or counter-clockwise and the pulse input 

energizes the winding or the phases in the motor. This either magnetizes or demagnetizes the coils 

and enables the magnetic rotor to spin accordingly. The step size of the stepper motors controls the 



 

75 

angle of rotation of the rotor, which is 1.8 degrees for a full step. The speed of the stepper motor can 

be controlled by changing the steps sizes. In a full step mode, the motor takes 200 steps to complete 

one rotation.  

For the accuracy testing of the stepper motors, the stepper motors were operated in both axes 

at different pulse/sec rates and data regarding the distance traveled was acquired. For each number 

of steps set, three trails were performed and mean of the three trails were calculated. The standard 

deviation of the three trails represents the accuracy of the stepper motors using a full step at the 

operating current of 0.5 A at 12 volts. The following table shows the data acquired for accuracy 

testing of the stepper motor used for linear motion in the x axis. 

 

X FULL STEP 

Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) 

Trail 1 100 1.42 Trail 1 200 2.8 Trail 1 300 4.18 

Trail 2 100 1.4 Trail 2 200 2.78 Trail 2 300 4.2 

Trail 3 100 1.41 Trail 3 200 2.8 Trail 3 300 4.19 

 Mean 

1.416666

667  Mean 

2.793333

333  Mean 4.19 

 STD. 

0.008164

965809  STD. 

0.009428

090416  STD. 

0.008164

965809 

         

Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) 

Trail 1 400 5.6 Trail 1 600 8.4 Trail 1 800 11.19 

Trail 2 400 5.59 Trail 2 600 8.38 Trail 2 800 11.18 

Trail 3 400 5.58 Trail 3 600 8.4 Trail 3 800 11.2 

 Mean 

5.583333

333  Mean 

8.393333

333  Mean 11.19 

 STD. 

0.008164

965809  STD. 

0.009428

090416  STD. 

0.008164

965809 

         

Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) 

Trail 1 1000 13.89 Trail 1 1200 16.78 Trail 1 1400 19.58 

Trail 2 1000 13.99 Trail 2 1200 16.79 Trail 2 1400 19.6 



 

76 

Trail 3 1000 13.9 Trail 3 1200 16.8 Trail 3 1400 19.58 

 Mean 

13.92666

667  Mean 16.79  Mean 

19.58666

667 

 STD. 

0.044969

12521  STD. 

0.008164

965809  STD. 

0.009428

090416 

         

Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) 

Trail 1 1600 22.39 Trail 1 1800 25.2 Trail 1 2000 27.99 

Trail 2 1600 22.37 Trail 2 1800 25.19 Trail 2 2000 27.97 

Trail 3 1600 22.39 Trail 3 1800 25.19 Trail 3 2000 27.98 

 Mean 

22.38333

333  Mean 

25.19333

333  Mean 27.98 

 STD. 

0.009428

090416  STD. 

0.004714

045208  STD. 

0.008164

965809 

Table 8- Accuracy test data for x-axis stepper motor 

 

The data shows the standard deviation of the Nema 17 stepper motor in x axis for different 

number of steps is normally less than a 100th of a centimeter with the exception of 1000 steps where 

the standard deviation is maximum at 0.044969 cm. For the purpose of the Smart Tool Organizer, 

the accuracy of the stepper motors at a full step mode is practical and viable for the performance of 

the CNC machine.  

The following table shows the data acquired of the y axis which operates using two stepper 

motors at a distance of 61 cm. The mean values and the standard deviation of the three trials are 

calculated to measure the accuracy of the CNC machine in y direction.  

Y FULL STEP 

Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) 

Trail 1 100 1.38 Trail 1 200 2.75 Trail 1 300 4.1 

Trail 2 100 1.4 Trail 2 200 2.78 Trail 2 300 4.08 

Trail 3 100 1.4 Trail 3 200 2.78 Trail 3 300 4.09 

 Mean 

1.393333

333  Mean 2.77  Mean 4.09 

 STD. 

0.009428

090416  STD. 

0.014142

13562  STD. 

0.008164

965809 

         



 

77 

Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) 

Trail 1 400 5.47 Trail 1 600 8.31 Trail 1 800 11.11 

Trail 2 400 5.5 Trail 2 600 8.29 Trail 2 800 11.01 

Trail 3 400 5.49 Trail 3 600 8.32 Trail 3 800 11.02 

 Mean 

5.486666

667  Mean 

8.306666

667  Mean 

11.04666

667 

 STD. 

0.012472

19129  STD. 

0.012472

19129  STD. 

0.044969

12521 

         

Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) Trails 

Steps 

(pul/sec) 

Distance 

(cm) 

Trail 1 1000 13.78 Trail 1 1200 16.75 Trail 1 1400 19.3 

Trail 2 1000 13.85 Trail 2 1200 16.73 Trail 2 1400 19.5 

Trail 3 1000 13.87 Trail 3 1200 16.75 Trail 3 1400 19.49 

 Mean 

13.83333

333  Mean 

16.74333

333  Mean 19.43 

 STD. 

0.038586

12301  STD. 

0.009428

090416  STD. 

0.092014

49161 

Table 9- Accuracy test data for y-axes stepper motors 

 

The above data shows the accuracy of two stepper motors operating together to achieve the 

linear motion in y direction. The maximum standard deviation from the data above is less than a mm 

at 0.920144 mm. For the practical use of the smart tool organizer this standard deviation is viable. 

The error in the accuracy of the stepper motor could result from friction between the wheels and the 

v-slot. This error is not compounded because the CNC machine goes back to the home position after 

every iteration.  

Next, to maximize the performance and rapid positioning of the smart tool organizer, the 

linear speed of the stepper motors using a belt and pulley were measured at various pulse/sec, 

microseconds delays and current supplied to the stepper motors. The following table shows the 

changes in the speed of the stepper motors with changing number of steps. 

 



 

78 

Microsteps 

per 

revolution 

Delay time 

between steps distance (cm) time (sec) 

Speed of the 

motor (cm/s) 

200 1000 14 2.64 5.303030303 

400 1000 14 4.69 2.985074627 

800 1000 14 8.85 1.581920904 

1600 1000 14 16.91 0.8279124778 

3200 1000 14 33.21 0.4215597712 

6400 1000 14 66 0.2121212121 

Table 10- Test data for linear speed of the stepper motors with varying steps  

 

The data above shows a trend of linear speed of the stepper motors decreasing by increasing 

the microsteps per revolution. The accuracy and the precision increases with increasing the 

microsteps per revolution but since the full steps accuracy data in Table 10 proved the accuracy of 

the stepper motor to be viable and practical in the operation of the smart tool organizer, maximizing 

the speed at full step is opted for to increase the performance of the smart tool organizer. The 

following graph shows the trend of the linear speed of the stepper motors vs. microsteps per 

revolution.  



 

79 

 

Graph 1- Linear speed of the stepper motors with varying steps  

 

The microsecond delay between the steps was next compared to the linear speed of the 

stepper motor and the trend was plotted. The following table represents the change in the speed of 

the stepper motor with change in the microsecond delay in the code.  

Microsteps 

per 

revolution 

Delay time 

between steps distance (cm) time (sec) 

Speed of the 

motor (cm/s) 

200 600 14 1.6 8.75 

200 700 14 1.41 9.929078014 

200 800 14 1.49 9.395973154 

200 900 14 2.34 5.982905983 

200 1000 14 2.64 5.303030303 

200 1200 14 3.31 4.229607251 

200 1400 14 3.38 4.142011834 

Table 11- Test data for linear speed of the stepper motors with varying delays  



 

80 

 

Based on the data acquired for microseconds delay, the fastest linear speed achievable by 

stepper motors is approximately 9.93 cm/s at a delay of 700 microseconds. Further attempts to reduce 

the microsecond delay below 600 resulted in failure for operation of the stepper motors. This sets the 

limit of minimum delay between each step to be 600 microseconds. The following graph shows the 

trend of linear speed of the stepper motor with change in delay.  

 

Graph 2- Linear speed of the stepper motors with varying delay 

 

The Graph 2 shows that the linear speed of the stepper motor peaks at 700 microseconds of 

delay. The delay was thus chosen to be 700 microseconds for the optimal performance of the stepper 

motors. 

Next, the current supplied to the stepper motor was optimized for maximum performance of 

the smart tool organizer. The current was changed for each data point and the speed of the stepper 



 

81 

motors were recorded. The current ranges from 0.5A to a maximum of 3.5 A. The following table 

shows the effects of changing the current supplied to the stepper motors on the linear speed of the 

stepper motors on V-slots.  

 

Current 

Microsteps 

per 

revolution 

Delay time 

between steps distance (cm) time (sec) 

Speed of the 

motor (cm/s) 

0.5 200 700 14 1.6 8.75 

1 200 700 14 1.54 9.090909091 

1.5 200 700 14 1.47 9.523809524 

2 200 700 14 1.35 10.37037037 

2.5 200 700 14 1.27 11.02362205 

3 200 700 14 1.28 10.9375 

3.5 200 700 14 1.26 11.11111111 

Table 12- Test data for linear speed of the stepper motors with varying current 

 

According to the data gathered by changing the input current to the stepper motor, a trend of 

increasing linear speed of the stepper motor is observed when the current supplied is increased. The 

maximum speed of the stepper motor is observed at an input current of 3.5A increasing the speed of 

the motor to approximately 11.11 cm/s. With increasing current, a higher tendency of the stepper 

motors to heat was observed and the noise produced by the motors was increased. The NEMA 17 

stepper motors used in the CNC machine are rated at 0.45 A and to achieve the repeatability, 

consistency and prevent overheating of the stepper motors used in the CNC machine the current of 

0.5A was selected to be the optimum current. The following graph shows the trend of changing 

current Vs. the speed of the stepper motor.  



 

82 

 

Graph 3- Linear speed of the stepper motors with varying current 

 

A linear trend is observed in the graph above representing the linear speed of the stepper 

motor in cm/s with change in current with the increments of half an Amp.  

Using the data collected for the linear speed of the stepper motor, the parameters for the 

optimum performance of the stepper motors were determined. The number of steps per revolution, 

supplied current and the microseconds delay between each step affects the speed and performance 

of the stepper motor. Based on the data provided in tables above and the trends observed from the 

graphs above, 200 steps/revolution, 0.5A input current and 700 microseconds of delay between each 

step was selected to be the most optimum conditions to achieve highest performance of the smart 

tool organizer.  

6.1.2 Servo motor performance and accuracy testing 

The servo motor is used to operate the mechanical 3D printed gripper. The servo motor shaft 



 

83 

is connected to a geared pinion which translates the rotational motion of the servo motor to linear 

motion of the geared rack. Two racks are connected tangent to the pinion and parallel to each other. 

The rotation of the pinion connected to the shaft causes these racks to move linearly in opposite 

directions. The racks are connected to the gripper arm on the bottom of the base which causes this 

gripper arm to come closer closing the gripper and move away opening the gripper. The voltage 

supplied to the servo motor was compared to the speed of the servo motor. The linear distance 

traveled by the gripper arm was measured along with the time it took to cover the distance to calculate 

the speed of the servo motor. The MG996R servo motor can rotate 0-180° and it requires 160° to 

close the gripper arms. The following table shows the data acquired for linear speed and voltage of 

the servo motor.  

 

MG996R Servo 

Voltage distance (mm) time (sec) speed (cm/s) 

5.2 13.4 1.861 0.7200429876 

6.3 13.4 1.852 0.7235421166 

7.6 13.4 1.847 0.7255008121 

8.15 13.4 1.834 0.7306434024 

9.1 13.4 1.802 0.743618202 

10.3 13.4 1.765 0.7592067989 

11.7 13.4 1.712 0.7827102804 

12.3 13.4 1.663 0.8057726999 

Table 13- Test data for linear speed of the servo motors with varying voltage 

 

From the data acquired for the servo motor, a trend of increasing velocity with increase in 

voltage is observed. The voltage supplied to the servo motor was incremented by approximately 1 V 

using a potentiometer and the time for the linear geared rack to move a constant distance was 

measured. Using this data, the speed of the gripper arms was calculated. The trend observed from 

the data in the table was plotted and is shown below. 



 

84 

 

 

 

Graph 4- Linear speed of the servo motors with varying voltage 

 

6.2 Criteria for tool selection for the smart tool organizer 

The gripper arm is in contact with the tool when the smart tool organizer is relocating the 

tool, either from the original position to the dropbox or from the dropbox to its original position. The 

tool will be held by two gripper arms from both sides exerting normal force onto the tools. The 

coefficient of friction between the gripper arm connected to the servo motor using a gear and rack 

system and the surface of the tool in contact with the gripper arm can be calculated using the normal 

force exerted by the gripper arms on the tool and the weight of the tool. The normal force applied to 

the surface of the tool stays constant and the weight of the tool will change depending on the tool. 

This changes the friction coefficient for different tools. Since the linear actuator can lift the tool up 



 

85 

to 4.5 lbs, the limiting factor for the weight of the tool is the friction coefficient between the tool and 

the gripper arms. To determine if a tool is compatible and operable in the smart tool organizer, the 

friction coefficient of the tool, the surface area in contact with the gripper arms and the width of the 

tool are used. For a tool to be operable in the smart tool organizer, all these requirements must be 

met. The normal force acting on a tool by the gripper arm was measured using a weighing scale 

between the arms of the gripper. The average of 15 trials is used as the normal force for further 

calculations. The following table shows the data acquired for the normal force with a rotation angle 

of 160°. 

 

Trail Normal Force (N) 

1 2.062338495 

2 2.14373369 

3 1.88679946 

4 2.14569502 

5 2.01428591 

6 1.934852045 

7 1.685763135 

8 1.72400907 

9 1.697531115 

10 1.748525695 

11 1.92602606 

12 1.770100325 

13 1.68282114 

14 1.711260425 

15 1.991730615 

Mean 1.87503148 

Standard deviation 0.1691972967 

Table 14- Test data for normal force applied to the tool by the gripper arms  

 

The friction coefficient for various tools were calculated using the normal force and the 

weight of the tool. The friction coefficient calculated is used to determine if the tool can be operated 



 

86 

in the smart tool organizer. The limiting factor for a tool to be used in the smart tool organizer 

includes weight, width and surface area. A variety of tools with different shapes, sizes and forms 

were tested with the smart tool organizer to establish a tool selection criterion. The following table 

shows the test results of the smart tool organizer operating with various tools. 

 

Table 15- Test data for application of various tools 

 

The data acquired through testing the smart tool organizer helps establish the criteria for 

tools that can be operated in the smart tool organizer. The criteria include minimum and maximum 

width of the tool, the weight of the tool and the friction coefficient of the tool. The first three 

screwdrivers with friction coefficient of 17.7, 16.8 and 15.2 and with a width of 10 mm were operable 

by the smart tool organizer. The wrench 1 was not operable because the friction coefficient is 1.98. 

Therefore, the criteria for the friction coefficient of the tool is set to a minimum of 2.5 with a factor 

of safety of 1.26. The allen keys were not operable because the minimum width parameter was less 

than the space between the gripper arm when it is in fully closed position. The minimum space 

Tool 

Normal 

force (N) Weight(N) 

Friction 

Coefficient 

Surface area 

(mm) 

width(m

m) Operable Limitation 

Screwdriver 1 1.87503148 0.10591182 17.7037037 5.24 10 yes None 

Screwdriver 2 1.87503148 0.11179581 16.77192982 5.24 10 yes None 

Screwdriver 3 1.87503148 0.12258312 15.296 5.24 10 yes None 

Wrench 1 1.87503148 0.94536106 1.98340249 6.2 12.4 no 

Friction 

Coefficient 

Wrench 2 1.87503148 0.50210048 3.734375 6.2 10.7 yes None 

Allen key 1 1.87503148 0.22849494 8.206008584 7.6 5.7 no Min Width 

Allen key 2 1.87503148 0.13337044 14.05882353 5.2 4.8 no Min Width 

Metallic 

screwdriver 1 1.87503148 0.29812216 6.289473684 3.72 7.1 yes None 

Metallic screw 

driver 2 1.87503148 0.09022118 20.7826087 2.25 4.3 yes None 

handle of rubber 

screw driver 1.87503148 0.20397832 9.192307692 5.92 11.3 yes None 

Ball driver 1.87503148 0.23830159 7.868312757 10.3 21.2 no Max Width 



 

87 

between the gripper arms was measured and the minimum width of the tool requirement was set to 

6.5 mm with a factor of safety of 1.14. The limiting factor for maximum tool width is set by the 

distance between the lowest point of the gripper arms and the position of the tool on the base of the 

smart tool organizer. The space between the arms of the gripper is 28.4 mm and the space between 

the lowest point of the gripper arms and the position of the tool on the base of the smart tool organizer 

is 20.3 mm. Therefore, the maximum height of the tool requirement is set to 18 mm and the maximum 

width of the tool requirement is set to 25 mm. These requirements are set with a factor of safety of 

1.128 and 1.136 respectively. The following table shows the minimum and maximum requirements 

for the tool used in the smart tool organizer. 

 

Limiting factors Minimum Maximum 

Width of the tool (mm) 6.5 25 

Height of the tool (mm) None 18 

Length of the tool (mm) None 157.6 

Friction of Coefficient 2.5 None 

Weight of the tool (g) None 76.48 

Surface are in contact (mm²) 3.5 None 

Table 16- Requirements for the selection of tools 

 

The current design of the smart tool organizer requires the tool to meet all the requirements 

mentioned in the table above. All the requirements include a factor of safety and can be used for 

selection of tools intended to be used in the smart tool organizer. For future work, the design of the 

gripper can be modified to extend the criteria for the tools and include more tools.  

 

 

 



 

88 

CHAPTER 7 

Conclusion and future works 

The goal of the prototype of the smart tool organizer is to have a compact electromechanical 

smart tool organizer that is capable of storing, tracking personal use and availability of machine shop 

tools in the college of Mathematics and Science at the University of Central Oklahoma. The following 

are the deliverable and the design requirements for the design of the smart tool organizer. 

Design requirements: 

1) The device must include a mechanism for the automatic retrieval of operator requested tools 

2) The device must request an operator ID for access and bookkeeping (including day, time) 

3) The device must include a mechanism for appropriate tool return 

4) The device must be compact and operator friendly 

 

The prototype of the smart tool organizer met all the requirements mentioned above using 

electronics, mechanics, controls, firmware and interfacing.  

 

The machine shop in the UCO engineering department has many unorganized tools and as a 

result, often the tools are misplaced and missing. The smart tool organizer is a prototype designed to 

tackle this problem by pristinely organizing, storing, tracking, dispensing and retrieving the tools to 

and from the authorized user. The smart tool organizer is a compact design which operates on a 12 V 

power source which can be plugged into a 120 V 60 Hz wall outlet. The smart tool organizer has a 7” 

LED touch screen display for user interface which is used to interact with the prototype. The smart 

tool organizer has an automatic tool dispensation and retrieval mechanism which keeps track of the 

users, tools, date and time for bookkeeping.  

 



 

89 

The design of the smart tool organizer includes a microcontroller, electro-mechanical 

clamping device, a CNC machine, an interactive digital interface and a data-base for collecting & 

tracking the tools. The CNC machine uses a belt and pinion system to convert the rotation motion of 

the stepper motors into linear motion and operates on a skeleton made of 5 stainless steel v-slots. The 

acrylic gantry plates are used to assemble the stepper motors, belt and pinion system, wheels and V-

slots together. The CNC machine only operates in the x and y axis, so to obtain the motion in the z 

axis a linear actuator was incorporated which gave the robotic unit three degrees of freedom. The 

mechanical clamp operating using a servo motor was used as a gripper to grab and drop the tools as 

required. Limit switches were used to safely operate the robotic unit avoiding any damage that could 

occur from collisions of gantry plates and x and y axis. Motor drivers such as TB6600 and L298N 

were used to operate the stepper motors and linear actuator. The DS3231 RTC module was used to 

keep track of time and date and an SD card module was used to store the data. The user interface 

display was used to collect information from the user such as student ids and tool numbers and stored 

accordingly in the sd card. The smart tool organizer uses ten electronics components and various 

mechanical components to accomplish the goal of pristinely organizing, storing, tracking, dispensing 

and retrieving the tools. 

 

During the process of designing the smart tool organizer, many mechanical, electronics and 

controls problem were encountered such as not being able to synchronize the components to work 

together, problematic communication between the nextion display and arduino, inoperable 

components, problems with the dropbox mechanism, lack of friction between the rails and the wheels 

of the gantry plates, various mechanical constraints, etc. These problems were resolved using 

ingenious ideas and troubleshooting techniques.  

 

Future work on the prototype of smart tool organizer can include face recognition of the user 



 

90 

to identify the user without the need for student id number, tool recognition for automatic 

dispensation and retrieval of tools, expanding the capabilities and tools selection to include more 

bigger and heavier tools in the smart tool organizer by increasing the torque of the gripper, uploading 

the acquired data on a cloud for remote data access and the use of lead screw mechanism to convert 

the rotational motion of the stepper motors into linear motion to operate the smart tool organizer in 

vertical orientation such as mounting on a wall.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

91 

References 

[1] Janssen, Christian P., et al. “History and Future of Human-Automation Interaction.” International 

     Journal of Human-Computer Studies, vol. 131, 2019, pp. 99–107, 

     https://doi.org/10.1016/j.ijhcs.2019.05.006. 

[2] Singh, Indramani L., et al. “Automation-Induced Monitoring Inefficiency: Role of Display 

     Location.” International Journal of Human-Computer Studies, vol. 46, no. 1, 1997, pp. 17–30, 

     https://doi.org/10.1006/ijhc.1996.0081. 

[3] Lee, John D., and Neville Moray. “Trust, Self-Confidence, and Operators' Adaptation to 

     Automation.” International Journal of Human-Computer Studies, vol. 40, no. 1, 1994, pp. 153–84, 

     https://doi.org/10.1006/ijhc.1994.1007. 

[4] Pfeifer, Rolf, and Christian Scheier. Understanding intelligence. MIT press, 2001. 

     Understanding Intelligence - Rolf Pfeifer, Christian Scheier - Google Books 

[5] Leite, Iolanda, et al. “The Influence of Empathy in Human–robot Relations.” International 

     Journal of Human-Computer Studies, vol. 71, no. 3, 2013, pp. 250–60, 

     https://doi.org/10.1016/j.ijhcs.2012.09.005. 

[6] Hollnagel, Erik, and Andreas Bye. “Principles for Modelling Function Allocation.” International 

     Journal of Human-Computer Studies, vol. 52, no. 2, 2000, pp. 253–65, 

     https://doi.org/10.1006/ijhc.1999.0288. 

[7] Van Hee, Kees. Workflow Management. 1st ed., vol. 1, The MIT Press, 2002, 

      https://doi.org/10.7551/mitpress/7301.001.0001. 

[8] Van der Aalst, Wil M. P., et al. “Robotic Process Automation.” Business & Information Systems 

     Engineering, vol. 60, no. 4, 2018, pp. 269–72, https://doi.org/10.1007/s12599-018-0542-4. 

[9] Valavanis, K. P., and K. M. Stellakis. “A General Organizer Model for Robotic Assemblies and 

      Intelligent Robotic Systems.” IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, 

      no. 2, 1991, pp. 302–17, https://doi.org/10.1109/21.87079. 

https://doi.org/10.1016/j.ijhcs.2019.05.006
https://doi.org/10.1006/ijhc.1996.0081
https://doi.org/10.1006/ijhc.1994.1007
https://books.google.com/books?hl=en&lr=&id=iIv6-rxTCkoC&oi=fnd&pg=PR11&ots=nUW17LDDs1&sig=qlhMwoCRXmxY7UmpHgQYQHZV2ug#v=onepage&q&f=false
https://doi.org/10.1016/j.ijhcs.2012.09.005
https://doi.org/10.1006/ijhc.1999.0288
https://doi.org/10.7551/mitpress/7301.001.0001
https://doi.org/10.1007/s12599-018-0542-4
https://doi.org/10.1109/21.87079


 

92 

[10] A. C. Sanderson, “Applications of neural networks in robotics and automation for 

       manufacturing,” CIRSSE Document no. 30, Rennselaer Polytechnic Institute, Troy, NY, 1988. 

[11] Saridis, G. “Intelligent Robotic Control.” IEEE Transactions on Automatic Control, vol. 28, no. 

       5, 1983, pp. 547–57, https://doi.org/10.1109/TAC.1983.1103278. 

[12] A. Meystel, “Intelligent control in robotics,” J. Robotic Syst., vol. 5, no. 4, Aug. 1988 

[13] Charniak, Eugene., and McDermott, Drew V. Introduction to Artificial Intelligence. 

         Addison-Wesley, 1985. 

[14] Homem de Mello, L. S., and A. C. Sanderson. “AND/OR Graph Representation of Assembly 

       Plans.” IEEE Transactions on Robotics and Automation, vol. 6, no. 2, 1990, pp. 188–99, 

       https://doi.org/10.1109/70.54734. 

[15] K. P. Valavanis, “A mathematical formulation for the analytical design of intelligent machines,” 

        Ph.D. Dissertation, Rensselaer Polytechnic Institute, Troy, NY, 1986 

[16] Homem de Mello, L. S., and A. C. Sanderson. “A Correct and Complete Algorithm for the 

        Generation of Mechanical Assembly Sequences.” IEEE Transactions on Robotics and 

        Automation, vol. 7, no. 2, 1991, pp. 228–40, https://doi.org/10.1109/70.75905. 

[17] Homem de Mello, L. S., and A. C. Sanderson. “Planning Repair Sequences Using the AND/OR 

       Graph Representation of Assembly Plans.” Proceedings. 1988 IEEE International Conference on 

        Robotics and Automation, IEEE Comput. Soc. Press, 1988, pp. 1861–1862 vol.3, 

        https://doi.org/10.1109/ROBOT.1988.12341. 

[18] Saridis, G. N. “Toward the Realization of Intelligent Controls.” Proceedings of the IEEE, vol. 67, 

        no. 8, 1979, pp. 1115–33, https://doi.org/10.1109/PROC.1979.11407. 

[19] Tolis, Christos, and George F. Fragulis. An Experimental Mechatronic Design and Control of a 5 

       DOF Robotic Arm for Identification and Sorting of Different Sized Objects. 2017, 

       https://doi.org/10.48550/arxiv.1711.03808. 

[20] Utmel. “Nema17 Stepper Motor: Datasheet PDF, 1.5 A 1.8° Stepper Motor and Dimensions.” 

https://doi.org/10.1109/TAC.1983.1103278
https://doi.org/10.1109/70.54734
https://doi.org/10.1109/70.75905
https://doi.org/10.1109/ROBOT.1988.12341
https://doi.org/10.1109/PROC.1979.11407
https://doi.org/10.48550/arxiv.1711.03808


 

93 

       Utmel, Utmel Electronics, 29 Nov. 2021, 

https://www.utmel.com/components/nema17-stepper-motor-datasheet-pdf-1-5-a-1-8%C2%B 

-stepper-motor-and-dimensions?id=914. 

[21] Clifford, Paul. “Stepper Motor Specifications, NEMA 17 1.8 Degree 200 Steps-per-Revolution 

        Four-Phase Unipolar Permanent-Magnet Stepper-Motor.” Find Controllers for Instrumentation 

        and Automation at the Mosaic Industries Site, Mosaic Industries, Inc., 

http://www.mosaic-industries.com/embedded-systems/microcontroller-projects/stepper-moto 

s/specifications. 

[22] Styger, Gary, et al. “Nema 17 Stepper Motor.” OpenBuilds Part Store, 

        https://openbuildspartstore.com/nema-17-stepper-motor/. 

[23] “TB6600 Stepper Motor Driver with Arduino.” MYTECTUTOR, 

        https://mytectutor.com/tb6600-stepper-motor-driver-with-arduino/. 

[24] Mini Electric Linear Actuator Stroke 0.4"–Force 4.5 Lbs–12v | High … 

https://www.amazon.com/Actuator-Force-High-Speed-sec-Weight-Intelligent-Automation/dp 

B0B4R8X95Q. 

[25] “Arduino - Actuator: Arduino Tutorial.” Arduino Getting Started, 

        https://arduinogetstarted.com/tutorials/arduino-actuator. 

[26] Olson, Doug. “Guide to Working of Electric Linear Actuators.” Venture Mfg. Co., 12 June 2019, 

       https://www.venturemfgco.com/blog/guide-working-electric-linear-actuators/. 

[27] “MG996R Servo Motor.” Components101, 

       https://components101.com/motors/mg996r-servo-motor-datasheet. 

[28] Dale, et al. “Xtension Limit Switch Kit.” OpenBuilds Part Store, 

        https://openbuildspartstore.com/xtension-limit-switch-kit/. 

[29] Last Minute Engineers. “In-Depth Tutorial to Interface Micro SD Card Module with Arduino.” 

        Last Minute Engineers, Last Minute Engineers, 10 Oct. 2022, 

https://www.utmel.com/components/nema17-stepper-motor-datasheet-pdf-1-5-a-1-8%C2%B0-stepper-motor-and-dimensions?id=914
https://www.utmel.com/components/nema17-stepper-motor-datasheet-pdf-1-5-a-1-8%C2%B0-stepper-motor-and-dimensions?id=914
http://www.mosaic-industries.com/embedded-systems/microcontroller-projects/stepper-motors/specifications
http://www.mosaic-industries.com/embedded-systems/microcontroller-projects/stepper-motors/specifications
https://openbuildspartstore.com/nema-17-stepper-motor/
https://mytectutor.com/tb6600-stepper-motor-driver-with-arduino/
https://www.amazon.com/Actuator-Force-High-Speed-sec-Weight-Intelligent-Automation/dp/B0B4R8X95Q
https://www.amazon.com/Actuator-Force-High-Speed-sec-Weight-Intelligent-Automation/dp/B0B4R8X95Q
https://arduinogetstarted.com/tutorials/arduino-actuator
https://www.venturemfgco.com/blog/guide-working-electric-linear-actuators/
https://components101.com/motors/mg996r-servo-motor-datasheet
https://openbuildspartstore.com/xtension-limit-switch-kit/


 

94 

       https://lastminuteengineers.com/arduino-micro-sd-card-module-tutorial/. 

[30] “5pcs Micro SD Carte TF Adater Reader Module.” 5pcs Micro SD Carte TF Adater Reader 

        Module,Shenzhen HiLetgo Technology Co., Ltd, 

        http://www.hiletgo.com/ProductDetail/2158021.html. 

[31] Last Minute Engineers. “In-Depth: Interface DS3231 Precision RTC Module with Arduino.” Last 

       Minute Engineers, Last Minute Engineers, 10 Oct. 2022, 

       https://lastminuteengineers.com/ds3231-rtc-arduino-tutorial/. 

[32] Howell, Bernarr. “Ultimate Guide to Arduino Mega 2560 Pinout, Specs & Schematic.” 

        ETechnophiles, 3 Apr. 2023, 

https://www.etechnophiles.com/arduino-mega-pinout-pin-diagram-schematic-and-specificati 

ns-in-detail/#arduino-mega-pinoutdetailed-board-layout. 

[33] “NX8048P070-011R.” Nextion, 8 Nov. 2022, 

        https://nextion.tech/datasheets/NX8048P070-011R/. 

[34] “Intelligent Series Introduction.” Nextion, 1 Dec. 2022, 

        https://nextion.tech/intelligent-series-introduction/. 

[35] “The Nextion Editor Guide.” Nextion, 23 Dec. 2022, https://nextion.tech/editor_guide/. 

 

 

 

 

 

 

 

 

 

https://lastminuteengineers.com/arduino-micro-sd-card-module-tutorial/
http://www.hiletgo.com/ProductDetail/2158021.html
https://lastminuteengineers.com/ds3231-rtc-arduino-tutorial/
https://www.etechnophiles.com/arduino-mega-pinout-pin-diagram-schematic-and-specifications-in-detail/#arduino-mega-pinoutdetailed-board-layout
https://www.etechnophiles.com/arduino-mega-pinout-pin-diagram-schematic-and-specifications-in-detail/#arduino-mega-pinoutdetailed-board-layout
https://nextion.tech/datasheets/NX8048P070-011R/
https://nextion.tech/intelligent-series-introduction/
https://nextion.tech/editor_guide/


 

95 

Appendix A 

Smart Tool Organizer Code 

#include <Wire.h> 

#include <TimeLib.h> 

#include <DS1307RTC.h> 

#include <SD.h> 

#include <SPI.h> 

#include <Servo.h>                     //servo 

 

Servo myservo;                         

int pos = 0; 

 

#define dirPinA 4                      //stepper motors 

#define stepPinAB 5 

#define dirPinB 6 

#define stepPinC 3 

#define dirPinC 2 

 

 

#define limitX A1                      //limit switches 

#define limitY A0 

 

const int ENA_PIN = 7; 

const int IN1_PIN = 8; 

const int IN2_PIN = 9; 

 

int dly=500; 

 

 

int CS_PIN = 53; 

 

File file; 

String dfd = ""; 

 

union { 

    char charByte[4]; 

    long valLong; 

} value; 

 

void setup() { 

  // put your setup code here, to run once: 

 Serial.begin(9600); 

 delay(500);                           

  pinMode(ENA_PIN, OUTPUT); 



 

96 

  pinMode(IN1_PIN, OUTPUT); 

  pinMode(IN2_PIN, OUTPUT); 

 

  digitalWrite(ENA_PIN, HIGH); 

                                                

  pinMode(stepPinAB, OUTPUT);          //stepper motor pins 

  pinMode(dirPinA, OUTPUT); 

  pinMode(dirPinB, OUTPUT); 

  pinMode(dirPinC, OUTPUT); 

  pinMode(stepPinC, OUTPUT); 

  

  

  pinMode(limitY, INPUT);              //limit switches 

  pinMode(limitX, INPUT); 

 

 

 

} 

 

void loop() { 

 

if(Serial.available()) { 

 dfd += char(Serial.read()); 

  } 

 

 if ((dfd.substring(0,3)=="txt") & (dfd.length()==12)){ 

  Serial.println(dfd); 

  String test = dfd.substring(4); 

  Serial.println(test); 

  initializeSD(); 

  createFile("test.txt"); 

  char buf1[200]; 

  test.toCharArray(buf1,test.length()+1); 

  Serial.println(buf1); 

  writeToFile(buf1); 

  closeFile(); 

 dfd = ""; 

 } 

 

if (dfd == "ToolA"){ 

    Serial.println("Tool 1"); 

      while (!Serial) ; 

  delay(200); 

  Serial.println("-------------------"); 

 

  initializeSD(); 

  createFile("test.txt"); 



 

97 

 

  String now = ""; 

 

  tmElements_t tm; 

 

if (RTC.read(tm)) { 

    Serial.print("Ok, Time = "); 

    print2digits(tm.Hour); 

    String h = String (tm.Hour); 

    Serial.write(':'); 

    print2digits(tm.Minute); 

    String m = String (tm.Minute); 

    Serial.write(':'); 

    print2digits(tm.Second); 

    String s = String (tm.Second); 

    Serial.print(", Date (D/M/Y) = "); 

    Serial.print(tm.Day); 

    String d = String (tm.Day); 

    Serial.write('/'); 

    Serial.print(tm.Month); 

    String mn = String (tm.Month); 

    Serial.write('/'); 

    Serial.print(tmYearToCalendar(tm.Year)); 

    String y = String (tmYearToCalendar(tm.Year)); 

    Serial.println(); 

    now = ("Tool 1 Dispensed Time =" + h+ ":" +m+ ":" +s+ ",Date(D/M/Y)= "+ d + "/" + mn + "/" + y ); 

    Serial.println("hey" + now); 

    char buf[200]; 

    now.toCharArray(buf,now.length()+1); 

    Serial.println(buf); 

    writeToFile(buf); 

    closeFile(); 

    

   } else { 

    if (RTC.chipPresent()) { 

      Serial.println("working"); 

    } else { 

      Serial.println("not working"); 

    } 

    delay(9000); 

  } 

//////////////////////////////////////////////////Tool 1   

 

  if ((digitalRead(limitY) == 0) && (digitalRead(limitX) == 0)) { 

 

                                               //direction from HOME position 

      digitalWrite(dirPinA, HIGH);            //UP 



 

98 

      digitalWrite(dirPinB, LOW);           //UP 

      digitalWrite(dirPinC, HIGH);           //Right 

  

  

  

 

                                       //steppers move to grab tool 

      for (int i = 0; i < 1525; i++) {                               

        digitalWrite(stepPinAB, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinAB, LOW); 

        delayMicroseconds(1000); 

 

      } 

      for (int i = 0; i < 500; i++) {                               

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      }       

      delay(2000); 

      digitalWrite(IN1_PIN, HIGH);            //OPEN ACTUATOR 

      digitalWrite(IN2_PIN, LOW); 

      delay(2000); 

      myservo.attach(10);                     //CLOSE SERVO 

      for (pos = 0; pos <= 160; pos += 1) {   

        myservo.write(pos);                   

        delay(15);                           

      } 

      myservo.detach(); 

      delay(2000); 

      digitalWrite(IN1_PIN, LOW);          //CLOSE ACTUATOR 

      digitalWrite(IN2_PIN, HIGH); 

      delay(2000); 

                                         //direction from Tool 1 position 

      digitalWrite(dirPinA, LOW);            //down 

      digitalWrite(dirPinB, HIGH);           //down 

      digitalWrite(dirPinC, HIGH);           //RIGHT 

  

  

  

 

                                       //steppers move to drop tool 

        for (int i = 0; i < 2450; i++) {                               

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 



 

99 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      }       

      

      for (int i = 0; i < 1245; i++) {                               

        digitalWrite(stepPinAB, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinAB, LOW); 

        delayMicroseconds(1000); 

 

      }       

 

 

      

      delay(2000); 

      digitalWrite(IN1_PIN, HIGH);          //OPEN ACTUATOR 

      digitalWrite(IN2_PIN, LOW); 

      delay(580); 

      digitalWrite(ENA_PIN, LOW); 

  

 

      delay(2000); 

      myservo.attach(10);                     //OPEN SERVO 

      for (pos = 160; pos >= 0; pos -= 1) {   

        myservo.write(pos);                   

        delay(15);                           

      } 

      myservo.detach(); 

      delay(2000); 

      digitalWrite(ENA_PIN, HIGH); 

 

      digitalWrite(IN1_PIN, LOW);          //CLOSE ACTUATOR 

      digitalWrite(IN2_PIN, HIGH); 

      delay(2000);       

        

 

      delay(2000); 

  } 

    if (!digitalRead(limitY) == 0) { 

 

                                       //direction back to HOME position 

      digitalWrite(dirPinA, LOW);         //DOWN 

      digitalWrite(dirPinB, HIGH);          //DOWN 

      // 

 

      do { 



 

100 

                                       //moves Y-steppers till Y-limit is ON 

          digitalWrite(stepPinAB, HIGH); 

          delayMicroseconds(1000); 

          digitalWrite(stepPinAB, LOW); 

          delayMicroseconds(1000); 

       } while (!digitalRead(limitY) == 0); 

    } 

    if (!digitalRead(limitX) == 0)     { 

        digitalWrite(dirPinC, LOW);          //LEFT       

        do { 

                                       //moves X-stepper till X-limit is ON 

          digitalWrite(stepPinC, HIGH); 

          delayMicroseconds(1000); 

          digitalWrite(stepPinC, LOW); 

          delayMicroseconds(1000); 

       } while (!digitalRead(limitX) == 0); 

 

      delay(2000); 

 

  }   

  

delay(1000); 

dfd = ""; 

  } 

 

if (dfd == "ToolB"){ 

    Serial.println("Tool 2"); 

      while (!Serial) ; 

  delay(200); 

  Serial.println("-------------------"); 

 

  initializeSD(); 

  createFile("test.txt"); 

 

  String now = ""; 

 

  tmElements_t tm; 

 

if (RTC.read(tm)) { 

    Serial.print("Ok, Time = "); 

    print2digits(tm.Hour); 

    String h = String (tm.Hour); 

    Serial.write(':'); 

    print2digits(tm.Minute); 

    String m = String (tm.Minute); 

    Serial.write(':'); 

    print2digits(tm.Second); 



 

101 

    String s = String (tm.Second); 

    Serial.print(", Date (D/M/Y) = "); 

    Serial.print(tm.Day); 

    String d = String (tm.Day); 

    Serial.write('/'); 

    Serial.print(tm.Month); 

    String mn = String (tm.Month); 

    Serial.write('/'); 

    Serial.print(tmYearToCalendar(tm.Year)); 

    String y = String (tmYearToCalendar(tm.Year)); 

    Serial.println(); 

    now = ("Tool 2 Dispensed Time =" + h+ ":" +m+ ":" +s+ ",Date(D/M/Y)= "+ d + "/" + mn + "/" + y ); 

    Serial.println("hey" + now); 

    char buf[200]; 

    now.toCharArray(buf,now.length()+1); 

    Serial.println(buf); 

    writeToFile(buf); 

    closeFile(); 

    

   } else { 

    if (RTC.chipPresent()) { 

      Serial.println("working"); 

    } else { 

      Serial.println("not working"); 

    } 

    delay(9000); 

   }     

 

///////////////////////////////////////////Tool 2   

 

  if ((digitalRead(limitY) == 0) && (digitalRead(limitX) == 0)) { 

 

                                               //direction from HOME position 

      digitalWrite(dirPinA, HIGH);            //UP 

      digitalWrite(dirPinB, LOW);           //UP 

      digitalWrite(dirPinC, HIGH);           //Right 

  

  

  

 

                                       //steppers move to grab tool 

      for (int i = 0; i < 1535; i++) {                               

        digitalWrite(stepPinAB, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinAB, LOW); 

        delayMicroseconds(1000); 

 



 

102 

      } 

      for (int i = 0; i < 1000; i++) {                               

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      }       

      delay(2000); 

      digitalWrite(IN1_PIN, HIGH);            //OPEN ACTUATOR 

      digitalWrite(IN2_PIN, LOW); 

      delay(2000); 

      myservo.attach(10);                     //CLOSE SERVO 

      for (pos = 0; pos <= 160; pos += 1) {   

        myservo.write(pos);                   

        delay(15);                           

      } 

      myservo.detach(); 

      delay(2000); 

      digitalWrite(IN1_PIN, LOW);          //CLOSE ACTUATOR 

      digitalWrite(IN2_PIN, HIGH); 

      delay(2000); 

                                         //direction from Tool 3 position 

      digitalWrite(dirPinA, LOW);            //down 

      digitalWrite(dirPinB, HIGH);           //down 

      digitalWrite(dirPinC, HIGH);           //RIGHT 

  

  

  

 

                                       //steppers move to drop tool 

      for (int i = 0; i < 1970; i++) {                               

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      }       

      

      for (int i = 0; i < 1235; i++) {                               

        digitalWrite(stepPinAB, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinAB, LOW); 

        delayMicroseconds(1000); 

 

      }       

 



 

103 

 

      

      delay(2000); 

      digitalWrite(IN1_PIN, HIGH);          //OPEN ACTUATOR 

      digitalWrite(IN2_PIN, LOW); 

      delay(2000); 

      myservo.attach(10);                     //OPEN SERVO 

      for (pos = 160; pos >= 0; pos -= 1) {   

        myservo.write(pos);                   

        delay(15);                           

      } 

      myservo.detach(); 

      delay(2000); 

      digitalWrite(IN1_PIN, LOW);          //CLOSE ACTUATOR 

      digitalWrite(IN2_PIN, HIGH); 

      delay(2000);       

        

 

      delay(2000); 

  } 

    if (!digitalRead(limitY) == 0) { 

 

                                       //direction back to HOME position 

      digitalWrite(dirPinA, LOW);         //DOWN 

      digitalWrite(dirPinB, HIGH);          //DOWN 

      // 

 

      do { 

                                       //moves Y-steppers till Y-limit is ON 

          digitalWrite(stepPinAB, HIGH); 

          delayMicroseconds(1000); 

          digitalWrite(stepPinAB, LOW); 

          delayMicroseconds(1000); 

       } while (!digitalRead(limitY) == 0); 

    } 

    if (!digitalRead(limitX) == 0)     { 

        digitalWrite(dirPinC, LOW);          //LEFT       

        do { 

                                       //moves X-stepper till X-limit is ON 

          digitalWrite(stepPinC, HIGH); 

          delayMicroseconds(1000); 

          digitalWrite(stepPinC, LOW); 

          delayMicroseconds(1000); 

       } while (!digitalRead(limitX) == 0); 

 

      delay(2000); 

 



 

104 

  }   

  

dfd = ""; 

  } 

 

if (dfd == "ToolC"){ 

    Serial.println("Tool 3"); 

      while (!Serial) ; 

  delay(200); 

  Serial.println("-------------------"); 

 

  initializeSD(); 

  createFile("test.txt"); 

 

  String now = ""; 

 

  tmElements_t tm; 

 

if (RTC.read(tm)) { 

    Serial.print("Ok, Time = "); 

    print2digits(tm.Hour); 

    String h = String (tm.Hour); 

    Serial.write(':'); 

    print2digits(tm.Minute); 

    String m = String (tm.Minute); 

    Serial.write(':'); 

    print2digits(tm.Second); 

    String s = String (tm.Second); 

    Serial.print(", Date (D/M/Y) = "); 

    Serial.print(tm.Day); 

    String d = String (tm.Day); 

    Serial.write('/'); 

    Serial.print(tm.Month); 

    String mn = String (tm.Month); 

    Serial.write('/'); 

    Serial.print(tmYearToCalendar(tm.Year)); 

    String y = String (tmYearToCalendar(tm.Year)); 

    Serial.println(); 

    now = ("Tool 3 Dispensed Time =" + h+ ":" +m+ ":" +s+ ",Date(D/M/Y)= "+ d + "/" + mn + "/" + y ); 

    Serial.println("hey" + now); 

    char buf[200]; 

    now.toCharArray(buf,now.length()+1); 

    Serial.println(buf); 

    writeToFile(buf); 

    closeFile(); 

    

   } else { 



 

105 

    if (RTC.chipPresent()) { 

      Serial.println("working"); 

    } else { 

      Serial.println("not working"); 

    } 

    delay(9000); 

   }     

 

//////////////////////////////////////////////Tool 3     

 

  if ((digitalRead(limitY) == 0) && (digitalRead(limitX) == 0)) { 

 

                                               //direction from HOME position 

      digitalWrite(dirPinA, HIGH);            //UP 

      digitalWrite(dirPinB, LOW);           //UP 

      digitalWrite(dirPinC, HIGH);           //Right 

  

  

  

 

                                       //steppers move to grab tool 

      for (int i = 0; i < 1515; i++) {                               

        digitalWrite(stepPinAB, HIGH); 

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinAB, LOW); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

      } 

      

        for (int i = 0; i < 60; i++) {                               

        digitalWrite(stepPinAB, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinAB, LOW); 

        delayMicroseconds(1000); 

 

      } 

      delay(2000); 

      digitalWrite(IN1_PIN, HIGH);            //OPEN ACTUATOR 

      digitalWrite(IN2_PIN, LOW); 

      delay(2000); 

      myservo.attach(10);                     //CLOSE SERVO 

      for (pos = 0; pos <= 160; pos += 1) {   

        myservo.write(pos);                   

        delay(15);                           

      } 

      myservo.detach(); 



 

106 

      delay(2000); 

      digitalWrite(IN1_PIN, LOW);          //CLOSE ACTUATOR 

      digitalWrite(IN2_PIN, HIGH); 

      delay(2000); 

                                         //direction from Tool 3 position 

      digitalWrite(dirPinA, LOW);            //down 

      digitalWrite(dirPinB, HIGH);           //down 

      digitalWrite(dirPinC, HIGH);           //RIGHT 

  

  

  

 

                                       //steppers move to drop tool 

        for (int i = 0; i < 1460; i++) {                               

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      }       

      

      for (int i = 0; i < 1285; i++) {                               

        digitalWrite(stepPinAB, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinAB, LOW); 

        delayMicroseconds(1000); 

 

      }       

 

 

      

      delay(2000); 

      digitalWrite(IN1_PIN, HIGH);          //OPEN ACTUATOR 

      digitalWrite(IN2_PIN, LOW); 

      delay(2000); 

      myservo.attach(10);                     //OPEN SERVO 

      for (pos = 160; pos >= 0; pos -= 1) {   

        myservo.write(pos);                   

        delay(15);                           

      } 

      myservo.detach(); 

      delay(2000); 

      digitalWrite(IN1_PIN, LOW);          //CLOSE ACTUATOR 

      digitalWrite(IN2_PIN, HIGH); 

      delay(2000);       

        

 



 

107 

      delay(2000); 

  } 

    if (!digitalRead(limitY) == 0) { 

 

                                       //direction back to HOME position 

      digitalWrite(dirPinA, LOW);         //DOWN 

      digitalWrite(dirPinB, HIGH);          //DOWN 

      // 

 

      do { 

                                       //moves Y-steppers till Y-limit is ON 

          digitalWrite(stepPinAB, HIGH); 

          delayMicroseconds(1000); 

          digitalWrite(stepPinAB, LOW); 

          delayMicroseconds(1000); 

       } while (!digitalRead(limitY) == 0); 

    } 

    if (!digitalRead(limitX) == 0)     { 

        digitalWrite(dirPinC, LOW);          //LEFT       

        do { 

                                       //moves X-stepper till X-limit is ON 

          digitalWrite(stepPinC, HIGH); 

          delayMicroseconds(1000); 

          digitalWrite(stepPinC, LOW); 

          delayMicroseconds(1000); 

       } while (!digitalRead(limitX) == 0); 

 

      delay(2000); 

 

  } 

  

dfd = ""; 

  } 

if (dfd == "ToolD"){ 

    Serial.println("Return Tool 1"); 

      while (!Serial) ; 

  delay(200); 

  Serial.println("-------------------"); 

 

  initializeSD(); 

  createFile("test.txt"); 

 

  String now = ""; 

 

  tmElements_t tm; 

 

if (RTC.read(tm)) { 



 

108 

    Serial.print("Ok, Time = "); 

    print2digits(tm.Hour); 

    String h = String (tm.Hour); 

    Serial.write(':'); 

    print2digits(tm.Minute); 

    String m = String (tm.Minute); 

    Serial.write(':'); 

    print2digits(tm.Second); 

    String s = String (tm.Second); 

    Serial.print(", Date (D/M/Y) = "); 

    Serial.print(tm.Day); 

    String d = String (tm.Day); 

    Serial.write('/'); 

    Serial.print(tm.Month); 

    String mn = String (tm.Month); 

    Serial.write('/'); 

    Serial.print(tmYearToCalendar(tm.Year)); 

    String y = String (tmYearToCalendar(tm.Year)); 

    Serial.println(); 

    now = ("Tool 1 Return Time =" + h+ ":" +m+ ":" +s+ ",Date(D/M/Y)= "+ d + "/" + mn + "/" + y ); 

    Serial.println("hey" + now); 

    char buf[200]; 

    now.toCharArray(buf,now.length()+1); 

    Serial.println(buf); 

    writeToFile(buf); 

    closeFile(); 

    

  } else { 

    if (RTC.chipPresent()) { 

      Serial.println("working"); 

    } else { 

      Serial.println("not working"); 

    } 

    delay(9000); 

  } 

 

//////////////////////////////////////////////Return Tool 1   

 

 

 if ((digitalRead(limitY) == 0) && (digitalRead(limitX) == 0)) { 

 

                                               //direction from HOME position 

      digitalWrite(dirPinA, HIGH);            //UP 

      digitalWrite(dirPinB, LOW);           //UP 

      digitalWrite(dirPinC, HIGH);           //Right 

  

  



 

109 

  

 

                                       //steppers move to grab tool 

      for (int i = 0; i < 290; i++) {                               

        digitalWrite(stepPinAB, HIGH); 

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinAB, LOW); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      } 

      for (int i = 0; i < 2660; i++) {                               

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      }       

      delay(2000); 

      digitalWrite(IN1_PIN, HIGH);            //OPEN ACTUATOR 

      digitalWrite(IN2_PIN, LOW); 

      delay(2000); 

      myservo.attach(10);                     //CLOSE SERVO 

      for (pos = 0; pos <= 160; pos += 1) {   

        myservo.write(pos);                   

        delay(15);                           

      } 

      myservo.detach(); 

      delay(2000); 

      digitalWrite(IN1_PIN, LOW);          //CLOSE ACTUATOR 

      digitalWrite(IN2_PIN, HIGH); 

      delay(2000); 

                                         //direction from dropbox Tool 1 position 

      digitalWrite(dirPinA, HIGH);            //up 

      digitalWrite(dirPinB, LOW);           //up 

      digitalWrite(dirPinC, LOW);           //LEFT 

  

  

  

 

                                       //steppers move to drop tool 

      for (int i = 0; i < 1235; i++) {                               

        digitalWrite(stepPinAB, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinAB, LOW); 

        delayMicroseconds(1000); 



 

110 

 

      }       

            for (int i = 0; i < 2475; i++) {                               

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      }       

 

      

      delay(2000); 

      digitalWrite(IN1_PIN, HIGH);          //OPEN ACTUATOR 

      digitalWrite(IN2_PIN, LOW); 

      delay(2000); 

      myservo.attach(10);                     //OPEN SERVO 

      for (pos = 160; pos >= 0; pos -= 1) {   

        myservo.write(pos);                   

        delay(15);                           

      } 

      myservo.detach(); 

      delay(2000); 

      digitalWrite(IN1_PIN, LOW);          //CLOSE ACTUATOR 

      digitalWrite(IN2_PIN, HIGH); 

      delay(2000);       

        

 

      delay(2000); 

  } 

    if (!digitalRead(limitY) == 0) { 

 

                                       //direction back to HOME position 

      digitalWrite(dirPinA, LOW);         //DOWN 

      digitalWrite(dirPinB, HIGH);          //DOWN 

      // 

 

      do { 

                                       //moves Y-steppers till Y-limit is ON 

          digitalWrite(stepPinAB, HIGH); 

          delayMicroseconds(1000); 

          digitalWrite(stepPinAB, LOW); 

          delayMicroseconds(1000); 

       } while (!digitalRead(limitY) == 0); 

    } 

    if (!digitalRead(limitX) == 0)     { 

        digitalWrite(dirPinC, LOW);          //LEFT       

        do { 



 

111 

                                       //moves X-stepper till X-limit is ON 

          digitalWrite(stepPinC, HIGH); 

          delayMicroseconds(1000); 

          digitalWrite(stepPinC, LOW); 

          delayMicroseconds(1000); 

       } while (!digitalRead(limitX) == 0); 

 

      delay(2000); 

 

  }     

  

dfd = ""; 

  } 

 

if (dfd == "ToolE"){ 

    Serial.println("Return Tool 2"); 

      while (!Serial) ; 

  delay(200); 

  Serial.println("-------------------"); 

 

  initializeSD(); 

  createFile("test.txt"); 

 

  String now = ""; 

 

  tmElements_t tm; 

 

if (RTC.read(tm)) { 

    Serial.print("Ok, Time = "); 

    print2digits(tm.Hour); 

    String h = String (tm.Hour); 

    Serial.write(':'); 

    print2digits(tm.Minute); 

    String m = String (tm.Minute); 

    Serial.write(':'); 

    print2digits(tm.Second); 

    String s = String (tm.Second); 

    Serial.print(", Date (D/M/Y) = "); 

    Serial.print(tm.Day); 

    String d = String (tm.Day); 

    Serial.write('/'); 

    Serial.print(tm.Month); 

    String mn = String (tm.Month); 

    Serial.write('/'); 

    Serial.print(tmYearToCalendar(tm.Year)); 

    String y = String (tmYearToCalendar(tm.Year)); 

    Serial.println(); 



 

112 

    now = ("Tool 2 Return Time =" + h+ ":" +m+ ":" +s+ ",Date(D/M/Y)= "+ d + "/" + mn + "/" + y ); 

    Serial.println("hey" + now); 

    char buf[200]; 

    now.toCharArray(buf,now.length()+1); 

    Serial.println(buf); 

    writeToFile(buf); 

    closeFile(); 

    

  } else { 

    if (RTC.chipPresent()) { 

      Serial.println("working"); 

 

    } else { 

      Serial.println("not working"); 

    } 

    delay(9000); 

  }     

 

//////////////////////////////////////////////////Return Tool 2   

 

  if ((digitalRead(limitY) == 0) && (digitalRead(limitX) == 0)) { 

 

                                               //direction from HOME position 

      digitalWrite(dirPinA, HIGH);            //UP 

      digitalWrite(dirPinB, LOW);           //UP 

      digitalWrite(dirPinC, HIGH);           //Right 

  

  

  

 

                                       //steppers move to grab tool 

      for (int i = 0; i < 290; i++) {                               

        digitalWrite(stepPinAB, HIGH); 

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinAB, LOW); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      } 

      for (int i = 0; i < 2660; i++) {                               

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      }       



 

113 

      delay(2000); 

      digitalWrite(IN1_PIN, HIGH);            //OPEN ACTUATOR 

      digitalWrite(IN2_PIN, LOW); 

      delay(2000); 

      myservo.attach(10);                     //CLOSE SERVO 

      for (pos = 0; pos <= 160; pos += 1) {   

        myservo.write(pos);                   

        delay(15);                           

      } 

      myservo.detach(); 

      delay(2000); 

      digitalWrite(IN1_PIN, LOW);          //CLOSE ACTUATOR 

      digitalWrite(IN2_PIN, HIGH); 

      delay(2000); 

                                         //direction from dropbox Tool 1 position 

      digitalWrite(dirPinA, HIGH);            //up 

      digitalWrite(dirPinB, LOW);           //up 

      digitalWrite(dirPinC, LOW);           //LEFT 

  

  

  

 

                                       //steppers move to drop tool 

      for (int i = 0; i < 1240; i++) {                               

        digitalWrite(stepPinAB, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinAB, LOW); 

        delayMicroseconds(1000); 

 

      }       

      for (int i = 0; i < 1965; i++) {                               

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      }       

 

      

      delay(2000); 

      digitalWrite(IN1_PIN, HIGH);          //OPEN ACTUATOR 

      digitalWrite(IN2_PIN, LOW); 

      delay(2000); 

      myservo.attach(10);                     //OPEN SERVO 

      for (pos = 160; pos >= 0; pos -= 1) {   

        myservo.write(pos);                   

        delay(15);                           



 

114 

      } 

      myservo.detach(); 

      delay(2000); 

      digitalWrite(IN1_PIN, LOW);          //CLOSE ACTUATOR 

      digitalWrite(IN2_PIN, HIGH); 

      delay(2000);       

        

 

      delay(2000); 

  } 

    if (!digitalRead(limitY) == 0) { 

 

                                       //direction back to HOME position 

      digitalWrite(dirPinA, LOW);         //DOWN 

      digitalWrite(dirPinB, HIGH);          //DOWN 

      // 

 

      do { 

                                       //moves Y-steppers till Y-limit is ON 

          digitalWrite(stepPinAB, HIGH); 

          delayMicroseconds(1000); 

          digitalWrite(stepPinAB, LOW); 

          delayMicroseconds(1000); 

       } while (!digitalRead(limitY) == 0); 

    } 

    if (!digitalRead(limitX) == 0)     { 

        digitalWrite(dirPinC, LOW);          //LEFT       

        do { 

                                       //moves X-stepper till X-limit is ON 

          digitalWrite(stepPinC, HIGH); 

          delayMicroseconds(1000); 

          digitalWrite(stepPinC, LOW); 

          delayMicroseconds(1000); 

       } while (!digitalRead(limitX) == 0); 

 

      delay(2000); 

 

  }     

 

dfd = ""; 

  } 

 

if (dfd == "ToolF"){ 

    Serial.println("Return Tool 3"); 

      while (!Serial) ; 

  delay(200); 

  Serial.println("-------------------"); 



 

115 

 

  initializeSD(); 

  createFile("test.txt"); 

 

  String now = ""; 

 

  tmElements_t tm; 

 

if (RTC.read(tm)) { 

    Serial.print("Ok, Time = "); 

    print2digits(tm.Hour); 

    String h = String (tm.Hour); 

    Serial.write(':'); 

    print2digits(tm.Minute); 

    String m = String (tm.Minute); 

    Serial.write(':'); 

    print2digits(tm.Second); 

    String s = String (tm.Second); 

    Serial.print(", Date (D/M/Y) = "); 

    Serial.print(tm.Day); 

    String d = String (tm.Day); 

    Serial.write('/'); 

    Serial.print(tm.Month); 

    String mn = String (tm.Month); 

    Serial.write('/'); 

    Serial.print(tmYearToCalendar(tm.Year)); 

    String y = String (tmYearToCalendar(tm.Year)); 

    Serial.println(); 

    now = ("Tool 3 Return Time =" + h+ ":" +m+ ":" +s+ ",Date(D/M/Y)= "+ d + "/" + mn + "/" + y ); 

    Serial.println("hey" + now); 

    char buf[200]; 

    now.toCharArray(buf,now.length()+1); 

    Serial.println(buf); 

    writeToFile(buf); 

    closeFile(); 

    

  } else { 

    if (RTC.chipPresent()) { 

      Serial.println("working"); 

    } else { 

      Serial.println("not working"); 

    } 

    delay(9000); 

  }     

 

  

/////////////////////////////////////////Return Tool 3   



 

116 

 

  if ((digitalRead(limitY) == 0) && (digitalRead(limitX) == 0)) { 

 

                                               //direction from HOME position 

      digitalWrite(dirPinA, HIGH);            //UP 

      digitalWrite(dirPinB, LOW);           //UP 

      digitalWrite(dirPinC, HIGH);           //Right 

  

  

  

 

                                       //steppers move to grab tool 

      for (int i = 0; i < 290; i++) {                               

        digitalWrite(stepPinAB, HIGH); 

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinAB, LOW); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      } 

      for (int i = 0; i < 2660; i++) {                               

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      }       

      delay(2000); 

      digitalWrite(IN1_PIN, HIGH);            //OPEN ACTUATOR 

      digitalWrite(IN2_PIN, LOW); 

      delay(2000); 

      myservo.attach(10);                     //CLOSE SERVO 

      for (pos = 0; pos <= 160; pos += 1) {   

        myservo.write(pos);                   

        delay(15);                           

      } 

      myservo.detach(); 

      delay(2000); 

      digitalWrite(IN1_PIN, LOW);          //CLOSE ACTUATOR 

      digitalWrite(IN2_PIN, HIGH); 

      delay(2000); 

                                         //direction from dropbox Tool 1 position 

      digitalWrite(dirPinA, HIGH);            //up 

      digitalWrite(dirPinB, LOW);           //up 

      digitalWrite(dirPinC, LOW);           //LEFT 

  



 

117 

  

  

 

                                       //steppers move to drop tool 

      for (int i = 0; i < 1275; i++) {                               

        digitalWrite(stepPinAB, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinAB, LOW); 

        delayMicroseconds(1000); 

 

      }       

        for (int i = 0; i < 1465; i++) {                               

        digitalWrite(stepPinC, HIGH); 

        delayMicroseconds(1000); 

        digitalWrite(stepPinC, LOW); 

        delayMicroseconds(1000); 

 

      }       

 

      

      delay(2000); 

      digitalWrite(IN1_PIN, HIGH);          //OPEN ACTUATOR 

      digitalWrite(IN2_PIN, LOW); 

      delay(2000); 

      myservo.attach(10);                     //OPEN SERVO 

      for (pos = 160; pos >= 0; pos -= 1) {   

        myservo.write(pos);                   

        delay(15);                           

      } 

      myservo.detach(); 

      delay(2000); 

      digitalWrite(IN1_PIN, LOW);          //CLOSE ACTUATOR 

      digitalWrite(IN2_PIN, HIGH); 

      delay(2000);       

        

 

      delay(2000); 

  } 

    if (!digitalRead(limitY) == 0) { 

 

                                       //direction back to HOME position 

      digitalWrite(dirPinA, LOW);         //DOWN 

      digitalWrite(dirPinB, HIGH);          //DOWN 

      // 

 

      do { 

                                       //moves Y-steppers till Y-limit is ON 



 

118 

          digitalWrite(stepPinAB, HIGH); 

          delayMicroseconds(1000); 

          digitalWrite(stepPinAB, LOW); 

          delayMicroseconds(1000); 

       } while (!digitalRead(limitY) == 0); 

    } 

    if (!digitalRead(limitX) == 0)     { 

        digitalWrite(dirPinC, LOW);          //LEFT       

        do { 

                                       //moves X-stepper till X-limit is ON 

          digitalWrite(stepPinC, HIGH); 

          delayMicroseconds(1000); 

          digitalWrite(stepPinC, LOW); 

          delayMicroseconds(1000); 

       } while (!digitalRead(limitX) == 0); 

 

      delay(2000); 

 

  }   

dfd = ""; 

  } 

 

} 

void print2digits(int number) { 

  if (number >= 0 && number < 10) { 

    Serial.println("working"); 

 

    Serial.write('0'); 

  } 

  Serial.println("working"); 

  Serial.print(number); 

} 

void initializeSD() 

{ 

  pinMode(CS_PIN, OUTPUT); 

 

  if (SD.begin()) 

  { 

  } else 

  { 

    return; 

  } 

} 

 

int createFile(char filename[]) 

{ 

  file = SD.open(filename, FILE_WRITE); 



 

119 

 

  if (file) 

  { 

    return 1; 

  } else 

  { 

    return 0; 

  } 

} 

 

int writeToFile(char text[]) 

{ 

  if (file) 

  { 

    file.println(text); 

    Serial.println(text); 

    return 1; 

  } else 

  { 

    return 0; 

  } 

} 

 

void closeFile() 

{ 

  if (file) 

  { 

    file.close(); 

  } 

} 

 

int openFile(char filename[]) 

{ 

  file = SD.open(filename); 

  if (file) 

  { 

    return 1; 

  } else 

  { 

    return 0; 

  } 

} 

 

String readLine() 

{ 

  String received = ""; 

  char ch; 



 

120 

  while (file.available()) 

  {Serial.println("working"); 

    ch = file.read(); 

    if (ch == '\n') 

    {Serial.println("working"); 

      return String(received); 

    } 

    else 

    {Serial.println("working"); 

      received += ch; 

    } 

  } 

  return ""; 

} 

 

 

 

 

 

 

 

 

 


