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Chapter 1 

Introduction 

It is known that the performance of observer-based control techniques may be highly sensitive to 

the accuracy of the applied observer. Thus, the need to investigate methods of state estimation 

becomes critical. The control input, determined by the observer-based control technique, relies on 

the accuracy and availability of state estimates calculated from output measurements. This control 

input must be determined for each sample period ( denoted byTJ) so that the system may be adjusted 

adequately. For many cases, however, the available output measurements are not available every 

sample period, as in typical disk drive applications. They, in fact, may only be available once every 

k sample periods. 

1.1 Problem Statement 

Equation (1.1) describes a liriear, single-input continuous time system. 

x(t) = Ax(t) + Bu(t) + W(t) 

y(t) = Cx(t) (1.1) 

The system is controllable and observable. The state vector x is such that x E R nxl and the mea

surement y is such that y E Rpxl. The control input is u(t) and W(t) represents any uncertainties 

in the system. 
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In discrete time, the traditional estimation problem is to provide reliable state estimates to the 

controller u(t). It is usually assumed that the measurement y is also available at every control 

sample step Ti, so that the observer may update its state estimates accordingly. 

However, in this study, the output measurement sampling period, denoted by Ts, is such that 

Ts = kT1, where k is an integer that satisfies the condition that k E Z+. In other words, the output 

measurement signal is available only once every k control time steps. 

The estimation problem is to provide the estimation-based controller with accurate state esti

mates at each control sample period Ti, even though the measurement output needed to update the 

observer is available only once every k control sample steps, or once every system cycle. (Here the 

term cycle refers to the time period Ts, the time period between two consecutive measurements.) 

1.2 Overview 

1.2.1 General Multirate Systems 

As the name suggests, the term multirate refers to any system whose signals are sampled at more than 

one rate. Multirate system analysis owes its beginnings to the age of digital processing. Significant 

points of multirate sampled-data control systems were first studied in the 1950's and 1960's with 

the stability analysis of Krane (l], Ragazinni and Franklin (2], Jury [3], and then by Kalman and 

Bertram [4) who also introduce the used of time-invariant difference equations to describe multirate 

systems. Later, Araki and Yama:moto's work (5) derived a discrete time state space description for 

multirate systems in addition to four stability criteria. 

A solution for the pole placement problem for multivariable, multirate sampled-data systems 

was proposed by Colaneri et al. [6] via the use of a periodic state observer and an output feedback 

controller. 

Meyer (7) defined the concept of N-periodicity in multirate sampled-data systems and introduced 

the corresponding shift-varying operators generalized by N-periodicity. Applications of [l) were also 

used in this work which extended into implementations into multi-input, multi-output systems. In 
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contrast to the shift-varying parameters used in [7) to define multirate sampled-data systems, Longhi 

[8] used a state space representation which is an extension of the single rate. case. He also analyzed 

the structural properties inherent to multirate systems, namely those of reachability, controllability, 

and stabilizability. 

Further studies in stability of multirate sampled-data systems were made in Fang and Chu's 

work [9), where they present sufficient requirements for robust stability. 

1.2.2 General Multirate Control Systems 

Major work involving general multirate control was developed by Berg et al. [10). They developed a 

method for determining sample rate selection, used a discrete time state space to model the system, 

and developed a constrained optimization control design for multirate systems. The work in [10) was 

continued by Mason and Berg [11), implementing an infinite time cost function to generate reduced 

order compensators. Berg and Mason [12) developed a parameter optimization algorithm to generate 

control laws, assuming a priori knowledge of the system sampling and control input rates. 

A periodically time-varying multirate controller was used in Serrano and Ramadge's contribution 

[13) to solve the Sample Disturbance Decoupling Problem (SDDP) in multirate systems. A feedback 

control law was used to nullify the effects of the unknown output disturbance at specified periodic 

rates. Zhu and Skelton [14) confronted the issue of robustness in periodic discrete and multirate 

systems. They derived bounds for disturbance attenuation and stability with time varying structured 

and unstructured parameter variations. 

For general multirate systems whose output and control sample rates are different, reduced order 

control methods were developed by Haddad and Kapila [15) and Patton et al. (16]. Haddad and 

Kapila used a discrete time periodically varying structure for their reduced-order controller. Patton 

et al. used eigenstructure assignment for use in feedback control. They determined a method to 

obtain minimum sampling rates and address the issue of intersample ripple. 

There is noted work in the area of multirate controls specifically for the case when the output 

measurement is taken at a slower rate than the input control. An application was presented by 
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Natarajan [17], who designed a controller for a DC motor using LQG methods and states conditions 

for zero steady-state ripple. Colaneri et al. [18] addressed this type of multirate system by using 

LQG techniques and a state augmentation form to derive a prediction algorithm to develop a periodic 

control law. Scattolini and Schiavoni [19] proposed a technique for these types of multirate systems 

to stabilize the system despite the existence of added reference signals and disturbances. 

1.2.3 Multirate Estimation 

Multirate estimation was introduced in single rate systems by Henriksen and Mellichamp [20] for 

accurate parameter estimation of discrete, stiff systems. Estimation was implemented in input-

output form at slow and fast sample rates, so as to be able to estimate parameters in the slow modes 

and fast modes, respectively. 

Apostolakis [21] developed a methodology for prediction type estimation, a technique used in 

conjunction with a state feedback controller for multirate systems with synchronized sampling rates. 

In [22] and [23], Haddad et al. developed a reduced order multirate estimator to facilitate the 

existence of sensors with different sampling rates by the use of linear periodic time-varying (LPTV) 

state space matrices. 

'\ 
Although multirate systems were not dealt with directly by_!?emirbasj~4l! he did develop a 

discrete state estimation technique for nonlinear systems with missing measurements by use of 

interpolating functions for use at times when output measurements are not available, in addition 

to trellis diagram representations. More recently, Savkin and Petersen [25] developed a general 

information structure to accomplish the dual problem of state estimation and model validation 

for hybrid systems of continuous time models in addition to continuous time and discrete time 

measurements. This work also takes into account missing data and system uncertainties. 

Chiang [26] developed a controller for actuator and Voice Coil Motor (VCM) dynamics for a disk 

drive which implements a state estimator predictor running at an integer multiple of the output 

sample rate. 
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Prediction/ Correction-Based Estimation 

In Phillips and Tomizuka's work of [27] and [28] and Lu and Fisher's work of [29] and [30], a 

multirate estimation technique was developed to increase controller performance. The technique 

is a linear model-based technique. In this approach, a Prediction/Correction type method is used 

which performs at two sampling rates: one at the input sampling rate k and the other at the output 

sampling rate kTJ, Note that ti :S kTt :S ti+i, where k = 0,1,2, ... ,n; -1. Here n; is such that 

(t; + n;T1) :S t;+1 < (t; + (n; + l)T1), A prediction ~quation estimates the states at every k time 

steps. Meanwhile a correction equation estimate.s the states at every kTt time steps. It follows that 

at kTJ, the corrector term is updated and that the predictor is updated every k steps. In this way, 

the controller, which, in this case, is running at a faster rate than that of the measured output, may 

be updated at its own sampling time. 

As mentioned before, this method is model-based. It is a linear estimation technique. Further-

more, the estimator parameters for the predictor equation are calculated on-line, while those of the 

corrector equations may be calculated off-line. 

Numerical Methods-Based Estimation 

Ramachandran,' Young, and Misawa [31] proposed two numerical methods techniques to estimate 

multirate systc~ms. The techniques involve the use of a polynomial fit prediction method and another 

based on a Ta,ylor Series fit prediction method. In the first approach, two polynomial predictions are 

used: the Divided Difference Polynomial Prediction and the Newton-Gregory Polynomial Prediction. 

/ 
For the Div\.ided Difference Method, a quadratic is fit using the most recent output sample and those 

of the two \previous ones. In the Newton-Gregory Method, another second degree polynomial is 
t 

used, exceJ,.t that, here, the polynomial is of a specific form and a calculation of the coefficients is 
; 

derived via( a difference table. The latter approach develops the Taylor Series approximation about 
\ 

the most refcent output measurement. 

~ 
f 
\ 
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Perturbation Theory-Based Estimation 

The work of Kando, Aoyama, and Iwazumi [32] and Shousse and Taylor [33] showed a multirate 

observer design that is used for singularly perturbed systems. They, also, as with Phillips and 

Tomizuka [27] and [28], used a slow and fast sampling observer together. The method in [32] uses 

decomposition to estimate the states. It is assumed that one has available measurements of states 

in each of the time rate scales, implying that more than one state is being measured although not 

the same state in both time scales. Shousse and Taylor used two separate reduced order observers, 

again, one in the fast rate and the other in-the slow-sampling rate. 

Multirate Kalman Filter Design 

Most recently, Hara and Tomizuka [34], [35] proposed a modified state estimator of [36], which is 

designed to provide estimates at both measurement instances and at intersample instances during 

the updating of the control input. The method is model-based and uses a multirate Kalman filter 

design. The design is similar to the prediction/correction technique of [27], [28], [29], and [30] 

except that the same preceding measurement with the Kalman filter gain is used to update the 

state estimates each control sample instant until the next output measurement is available. This 

stochastic estimator is primarily designed to provide smooth state estimates at each control step so 

that resonance modes of the dynamic system are not excited. Therefore, the accuracy of the state 

estimates may not be as dependable. 

Need for a New Multirate Estimation Approach 

All of the multirate estimation techniques above that apply to the problem under study assume that 

the output measurement signal is not aliased by the existing system resonance frequencies. This may 

result in poor estimation performance. Therefore, a new multirate estimation technique is needed 

to proceed towards a solution to account for these aliased frequencies. 

6 



1.3 Contributions 

In this study, the main contributions of this work are as follows: 

1. A multirate estimation technique is proposed that provides reliable state estimates to an 

estimation-based controller for each control sample step, despite the fact that the output 

measurement is only available once every k control sample steps. The proposed multirate 

estimation technique is referred to as the Parallel Observer System. 

2. The proposed Parallel Observer System is shown to produce stable estimates for each control 

sample step. This is shown through the development of a stability proof. 

3. It is shown that the errors of the Parallel Observer System's state estimates are bounded even 

in the presence of matched and unmatched uncertainties. The maximum possible errors bounds 

are calculated conservatively. These error bounds, take into account matched and unmatched 

uncertainties, so long as the uncertainties, themselves, are bounded. 

4. A modified form of the Parallel Observer System implements an already existing discrete 

adaptive observer technique to improve overall robustness in the presence of system parameter 

changes or differing parameter estimates during the control process. This modification results 

in a new structure of the Parallel Observer System and is called the Adaptive Parallel Observer 

System. 

5. A genetic algorithm is implemented for the automated tuning of the applied discrete adaptive 

observer technique, 

6. An neural network system is implemented to illustrate how the parameter estimates from the 

Adaptive Parallel Observer System may be used to estimate system damping ratio and aliased 

resonant frequency values. 
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1.4 Organization of Contents 

The organization of the report is as follows: The problem statement is defined in Chapter 2. In 

Chapter 3, the multirate estimation technique, the Parallel Observer System is proposed. Optional 

modifications to the Parallel Observer System to improve performance are described, and a stabil

ity proof for the error bounds of the Parallel Observer System's state and uncertainty estimates is 

presented. The Parallel Observer System is applied to a magnetic disk drive, and the results are 

compared to that of 2 single rate observers and the present industry standard estimation technique 

in Chapter 4. In Chapter 5, a modified form of the Parallel Observer System is proposed which im

plements a Discrete Adaptive Observer system within the proposed multirate estimation technique. 

The stability proof for this Adaptive Parallel Observer System is given. Chapter 6 simulates this 

modified Parallel Observer System on the same magnetic disk drive, and the observer performances 

are compared. Chapter 7 describes the implementation of a genetic algorithm for the automated tun

ing of the observer parameters for use in the Adaptive Parallel Observer System. A neural network 

system is applied in Chapter 8 to exemplify how accurate estimates of system damping ratios and 

aliased resonant frequencies may be obtained from the Adaptive Parallel Observer System. Finally, 

Chapter 9 presents concluding remarks and areas of future work. 
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Chapter 2 

The Problem Statement 

The following equation is a discretized system of Equation (1.1) at a sample period of T1 ( the control 

sampling period): 

x(m,n+l) = A1x(m,n)+B1u(m,n)+W(m,n) 

y(m) = C x(m) (2.1) 

Here, A f and Bf represent the discretized state space matrices of the system described in Equation 

(1.1) with the same disturbance W(m, n) and output measurement y(m) but in discrete-time form. 

The output measurement sampling period is Ts = kTt, where k is an integer value with k > 1. 

Here, m refers to the output measurement cycle number and n refers to the control input sample 

step within the cycle. The estimation problem in this case is to provide dependable state estimates 

x(m, n) to the observer-based controller u(m, n) at each of its sample steps n, despite the presence of 

uncertainties and the fact that the output measurements are only available once every cycle m. The 

cycle lasts a duration of kTt. As one refers to Equation (2.1), the output measurement is available 

at t = (m, 0) for every cycle m. In addition, the following terms are defined: 

Definition 1. Referring to Figure 2.1, an ON sample point refer to those sample points where the 

output measurement is available, i.e. at t = (m, 0). 

Definition 2. An INTER sample point refers to those sample points in a cycle where the output 
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Control Input Points 
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TIME 

m=O m=l m=2 

Output Measurement Points 

Figure 2.1: Cycle and INTER Sample Points 

measurement is not available, i.e. at t = (m, n) where n = 1, 2, 3, ... k - 1. 

Definition 3. A cycle, as described earlier, refers to the time period between two consecutive 

output measurements and is denoted by m. 

It should be noted that noise is not considered in this study. Furthermore, to realistically limit 

the scope of this project, the following assumptions are made: 

Assumption 1. The system described in Equation (2.1) is stable and observable. 

Assumption 2. The control input is available at each INTER sample point. 
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Chapter 3 

A Parallel Observer System for 

Multirate State Estimation 

3.1 Motivation and Background 

Stable discrete observers have been established for many years. It can be argued, then, that the 

stability of already established discrete time estimation techniques may be used advantageously in 

multirate estimation. 

The discrete time Luenberger Observer has a simple form and is easy to implement. Given the 

system in Equation (2.1), the Luenberger Observer has the following form 

x(m + 1) 

y(m) 

Adx(m) + Bdu(m) + L[ y(m) - y(m)] 

Cx(m) (3.1) 

where Ad and Bd describe the discretized system in Equation (2.1) and L is a Luenberger gain. 

The stability of the observer is guaranteed, so long as the observer gain L is chosen such that the 

eigenvalues of [ Ad - LC] are stable. In fact, the speed of convergence of the state estimates 

may be controlled by choosing appropriate eigenvalues of [ Ad - LC] . Furthermore, the model

based structure of this state estimation technique offers easier manipulation and implementation 

11 



into systems which, themselves, have model-based structures. 

It is evident that the use of the Luenberger Observer would be advantageous if its stability and 

simplicity may be exploited for use in multirate estimation. 

3.2 The Parallel Observer System (POS) 

A multirate state estimation technique is developed to take into account the situations where the 

output measurement is only periodically available. The proposed observer design involves two Lu

enberger Observers running parallel to each other, hence the name Parallel Observer System 

(POS). The general schematic of the Parallel Observer System is shown in Figure 3.1. The multi

rate implementation of the system is shown in Figure 3.2. The state estimation method is model 

based. The POS method assumes that the control input signal into the plant is available (known) 

at every sampling period Ti and that the output measurement is available once every k sampling 

periods (or once every cycle) and at a fixed time in each cycle, leaving k-1 sampling instances each 

cycle where the output measurement is not available. 

As mentioned earlier, the POS has two separate observers running in parallel. The Slow Observer 

System performs at the output measurement period Ts, and the Fast Observer System runs at the 

control input period Ti, Both systems are Luenberger Observers. The Slow Observer System state 

estimates are used as feedback by the Fast Observer System. By using a full order set of stable Slow 

Observer estimates during the times of available measurement and using these estimates to drive a 

Fast Observer, a stable set of estimates is available during all control sample points. 

3.2.1 The Slow Observer System 

The POS technique relies on a stable discrete-time Luenberger observer which is implemented at 

the same sample period as that of the output measurement. Since this observer's sample rate is the 

same as that of the measured output, the feedback output measurement is always available at each 

sample period Ts. In addition, since the control input sample rate is k times faster than that of the 

measured output, it is obvious that the control input values are also always available at every sample 
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time step. This observer system is referred to as the Slow Observer System. The structure of 

the Slow Observer is as follows: 

:i\(m + 1) = As Xs(m) + Bs u(m) + Ls [ y(m) - Ys(m)] 

Ys(m) = C Xs(m) (3.2) 

where m refers to the output measurement time step (or cycle). Also, As and Bs define the system 

in Equation (I.I) discretized with a sample period of Ts (kT1 ), and Ls is the Luenberger gain. The 

values of the Slow Observer state estimates are held constant during the INTER sample points when 

the output measurement is not available. This structure is of the typical discret&-time Luenberger 

Observer system. Since it is running at the same rate as the output measurements and always has 

a control input value available, there is no multirate component. 

3.2.2 The Fast Observer SystE;lm 

In this Parallel Observer System, another discrete-time Luenberger observer is running in parallel 

with the Slow Observer, except this parallel observer is implemented at the same sample rate as 

that of the input control. It follows that this observer system is referred to as the Fast Observer 

System. The proposed Fast Observer is of the following form: 

where 

x1(m,n + I) = A1x1(m,n) + B1u(m,n) + L1[ Y1(m,n) -y1(m,n)] 

Y1(m, n) 

{ 
Xs(m,n), if n = 0 

Y1(m,n) = 
Y1(m,n), ifn=l,2, ... k-1 

(3.3) 

(3.4)_ 

Here, n refers to the control input time step and L1 is a Luenberger gain. Referring to Equations 

(3.3) and (3.4), one can see that this Fast Observer uses the state estimates of the Slow Observer 

as feedback during the ON sample points. It should be noted that since the Fast Observer uses the 

full order state estimates of the Slow Observer, C1 is the identity matrix of the same size as that of 
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the state vector. That is, Yt E Rnxl. In other words, 

Y1(m, n) 
= { ~s(m, n), 

x1 (m, n), 

if n = 0 
(3.5) 

if n = 1, 2, ... k - 1 

Again, as with the Slow Observer, the Fast Observer also has the control input values available at 

each time step, since it is running at the same sample period of T1 . However, the Fast Observer 

System has one available set of estimates from the Slow Observer every k time steps. The whole 

premise of the Parallel Observer System is that the Slow Observer is stable. It is believed that the 

Fast Observer may take advantage of the Slow Observer's stability by using the Slow Observer's 

estimates of its full state for feedback, which occurs once every cycle. During the INTER sample 

points, however, the Fast Observer is forced to operate in an open-loop fashion. 

The advantage to this Parallel Observer System is that state estimates from the Fast Observer 

are always available for use in the control input calculations. Meanwhile, the Slow Observer provides 

stable, full order state estimates which serve as feedback measurement equivalents to the Fast Ob-

server during the ON sample points. In this way, the Fast Observer is designed to provide estimates 

at each control sample time step while converging to the stable Slow. Observer's state estimates 

during the ON sample points. 

3.3 Parallel Observer Modifications for System Implementa-

tion 

3.3.1 Implementation for Quickly Changing Control Inputs 

Since the output sampling period Ts is k times slower than that of the control sample period Ti, it 

is possible, therefore, that the control input changes too quickly for the Slow Observer. Hence, it 

becomes necessary to account for this quickly changing control input. The following system is that 

of Equation (1.1) discretized about the sampling period Ts: 

Xs(m + 1) As x(m) + Bs u(m) 

y(m) = C x(m) (3.6) 
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Note that the parameters used here are the same used for the Slow Observer. 

If At and Bi correspond to the parameters of the discretization of Equation (1.1) about the 

control sampling period Ti such that 

T. (3.7) 

then the following lemmas are proposed. 

Lemma 1. Given Equations (3.6) and (3. 7), Equation (1.1) may be written as 

x(m + 1) = A} x(m) + B.u(m) (3.8) 

Proof. This proof is quite trivial, as one notes that 

(3.9) 

Here, A refers to the system defined in Equation (1.1). From Equations (3.6) and (3.7), the result 

in Equation (3.8) is easily established as follows: 

(3.10) 

D 

Lemma 2. Given Equations (3.6), (3.7), and (3.8) and that x.(m) = x1(m,O), then 

k-1 

B.u(m) = LA~-i-1B1u(m,i) (3.11) 
i=O 

and Equation (3.6) may then be written as 

k-1 

x(m+l) = A.x(m)+I:A}-i-1B1u(m,i) (3.12) 
i=O 

Proof. Equation (1.1) may be discretized about Ti such that 

k-1 

x(m, k) = A} x(m, 0) + L A~-i-l Bt u(m, i) (3.13) 
i=O 
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Note that x(m, k) = x(m + 1). Theil, by transitivity and Equations (3.8) and (3.13), 

k-1 

Bsu(m) = LA~-i-IBI u(m,i) 
i=O 

and through this result and the substitution into Equation (3.6), 

k:....1 

x(m + 1) = Asx(m) + L A~-i-l Bi u(m, i) 
i=O 

D 

Lemma 2 may also be perceived in the following equivalent manner: 

Xs(m + 1) = As Xs(m) + lTi eA r drB u(m) 

12~ 137, + ekr drB u(m + Tt) + eA r drBu(m + 2T1) 
~ 2~ 

+ ... + rT· eATdrBu(m+(k-l)Tt)+Ls[y(m)-:Os(m)] (3.14) 
l~-T, . 

or 

Xs(m + 1) 

(3.15) 

Remark 1. Note that the implementation of Lemma (2) to the Slow Observer is now 

k-1 

Xs(m + 1) = As Xs(m) + L A~-i-l Bi u(m, i) + Ls [ y(m) - Ys(m)] 
i=O 

Ys(m) Cxs(m) (3.16) 

Remark 2. The implementation of Lemma (2) to the Slow Observer may also be written as 

. k-'-1 

Xs(m + 1) = A} X8 (m) + L A/-i-l Bi u(m, i) + Ls [ y(m) - y8 (m)] 
i=o· 

Ys(m) = · C Xs(m) (3.17) 

All control inputs at any given time are accounted for, as the control input contribution is being 

calculated at the higher sample period Ti. In other words, no change in input goes undetected from 

the Slow Observer. This implementation is consistently used as necessary in multirate systems, as 

in the works of Hara and Tomizuka [34], (36] and in the works of Lu and Fisher [29], (30]. 
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3.3.2 Parallel Observer System with Uncertainty Estimation Compensa-

tion 

A common practice in state estimation problems is to augment the system under study to differen-

tiate uncertainties which follow a matching cQndition, as in Franklin, Powell and Workman (37). In 

this way, the observer state is augmented which allows for the estimation of these uncertainties in 

the system. A discrete-time system assuming matched uncertainties is presented below: 

x(t) = [A+ AA] x(t) + [B + AB] [u(t) + u(t)] 

· y(t) = Cx(t) (3.18) ·. 

where AA and AB represent the unmodeled plant dynamics arid Au represents added input distur-

bances to the system. It is assumed that the magnitudes of parameter variances are not significantly 

large. 

The term w(t) represents matched uncertainties and is defined by the following relation: 

B w(t) = AA x(t) + AB u(t) + B Au(t)+ AB Au(t), (3.19) 

Equation (3.18) may be written in a form with an augmented state to include the matched uncer-

tainties, where 

x(t) = Ax(t) + Bu(t) + Bw(t) 

w(t) = o 

y(t) Cx(t) (3.20) 

A new augmented state X ( t) may be used such that 

X(t) = [ x(t) l 
w(t) 

(3.21) 
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and Equation (3.20) may written as 

X(t) = [ x(t) l 
w(t) 

[ A B ]· [·x(t) l + [ B.·] u(t) 
0 0 w(t) 0 

Y(t) = [ C O ] X(t) (3.22) 

The corresponding Slow Observer for the discretized system of Equation 3.18, then, is 

W8 (m + 1) W8 (m) + lsw [y(m) - y8 (m)] 

Ys(m) (3.23) 

or, using Lemmas (1) and (2), as 

k-1 

Xs(m + 1) = As Xs(m) + L A}c-i-l B1 u(m, i) + Bsws(m) 
i=O 

+ Ls [ y(m) - ys(m)] 

Ws(m + 1) Ws(m) + lsw [ y(m) - Ys(m)] 

Ys(m) C xs(m) (3.24) 

where Ws(m) is the Slow Observer estimate of the matched uncertainties and Ls and lsw are appro-

priate Luenberger gains for the state estimates and uncertainty estimation, respectively. Using the 

same augmented from as Equation (3.22), one may define a new state matrix 

(3.25) 
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such that 

Xs(m + 1) = [ Xs(m) l 
W8 (m) 

[ 
A~ . Bs ] ·[ X.8 (m") ] [ Bs. ] = · + ·. · u(m) 
0 1 W8 (m) · 0 . 

+ [. Ls ]· [ y(m) - Ys(m)] 

lsw 

Ys(t) = [ C 6 ] Xs(m) 

The Fast Observer is 

where 

i:t(m,n+l) = Ati:t(m,n)+Btu(m,n)+Btwt(m,n) 

+ Lt [ Yt(m, n) - yt(m, n)] + Ltw [ Ws(m, n),..::. Btwt(m, n)] 

wt(m,n+l) = wt(m,n)+lt [Yt(m,n)-yt(m,n)] 

+ltw [ Ws(m) -Wt(m,n)} 

Yt(m,n) = i:t(m,n) 

{ 
Xs(m), 

Yt(m,n) 
.. - Xt(m,n), 

·· { Ws(m), 
w8 (m,n) =. · 

Wt(m,n), 

if n = 0 

ifn = (2, ... k-1. 

if n = 0 

if n = 1, 2, ... k - 1 

(3.26) 

(3.27) 

(3.28) 

Here, wt(m, n) is the Fast Observer estimation of the matched disturbance, and Lt, Ltw; lt and ltw 

are Luenberger gains. Again, using the same augmented from as Equation (3.22), one may define a 

new state matrix 

[ 
i:t(m,n) l 
Wt(m,n) 

(3.29) 
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and rewrite Equation (3.27) as 

X1(m,n + 1) [ ::::::: :: l 
[ 

At B1 ] .. [· x1(m,n) ] .. [ B1 ·] + u(m,n) 

0 1 · w1(m,n) 0 

[ 
Lj l,fw i·· [ [ Y1(m, n) - y1(m, n)] ] 

+ . l1 . ltw- [ w1(m, n) - w1(m, n)]. 

{ Xs(m), if ri = 0 
Y1(m,n) = 

x1(m,n), if n = 1, 2, ... k - 1 

{ w8 (m), if n = 0 
w1(m,n) = 

w1(m,n), if n = 1, 2, ... k ~ 1 

(3.30) 

The following is the described in Equation (3.18) but with addi.tional uncertainties that do not 

satisfy the matching condition of Equation (3.19): 

:i; = [A+ AA] x(t) + [B + AB] [u(t) + Au(t)] + A(t) 

y(t) = C x(t) (3:31) 

The added uncertainty A(t) represents any existing unmatched uncertainties. Equation (3.31) may 

be written in a form with an augmented state to include the matched and unmatched uncertainties, 

that is, any other uncertainties that do not follow the matching condition of Equation (3.19), where 

x(t) Ax(t) + Bu(t) + Bw(t) + A(t) 

w(t) = o 

y(t) = C x(t) (3.32) 

Here, w(t) represents the uncertainties that follow the same matching condition as described in 

Equation (3.19). Using the same augmented state X(m,n) as in Equation (3.21), Equation (3.32) 

21 



may written as 

[ 
x(t) l 
w(t) 

X(t) 

= [ A B l [ x(t) l [ B 1 l [ u(t) l 
0 0 w(t) + 0 0 c51(m,n) 

Y(t) = [ C O ] X(t) (3.33) 

The same Slow Observer System described in Equation (3.26) and the same Fast Observer System 

described in Equation (3.28) and (3.30) are applied for this case when unmatched uncertainties are 

added. The Slow and Fast Observer cannot detect the unmatched uncertainties, but can only 

compensate for them by using the observer correction feedback terms. 

3.4 Stability Analysis for the Parallel Observer System 

The following terms are defined for use in this section of development of stability proofs: 

es = x(m) - X8 (m) 

ews = w(m) -ws(m) 

e1 = x(m,n) - x1(m,n) 

ewf = w(m,n) -w1(m,n) 

€st(m) = xs(m) - x1(m, 0) 

€wst(m) ws(m) - w1(rri, 0) (3.34) 

The proof of convergence for the Slow and Fast Observer Systems involve manipulations of Lemma 

2 and the use of eigenvalue stability analysis. The proposed Slow Observer from Equation (3.23) is 

W8 (m + 1) = W8 (m) + Bs u(m) + lswes(m) 

Ys(m) = Cxs(m) (3.35) 
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and the Fast Observer from Equation (3.27) is 

w1(m,n+l) 

'[)j(m, n) 

where 

= ·{ SsJ(m), if n = 0 
SsJ(m, n) 

0, if n = 1, 2, ... k - 1 

{ 
SwsJ(m), if n = 0 

Swsj(m,n) = 

0, if n = 1, 2, ... k - 1 

Assumption 3. The system described in Equation (3.18) is stable. 

(3.36) 

(3.37) 

Assumption 4. The frequency content of the system in study is less than the half the sampling 

frequency. 

Assumption 5. The sample rnte of the Fast Observer System is fast enough to react to any cor-

rections from the Slow Observer System. 

Furthermore, define the matrices S, f, and Fi such that 

s = 
[ [A, - L,GJ ~· l -lswC 

(3.38) 

f 
[ [At ~L,J BJ l -l1 1 

(3.39) 

and 

F1 
[ [A, -At' Lt] [B, - At' Ltw] l 

-lj (1 - ljw) 

(3.40) 

Denoting c58 (m) as the unmatched uncertainties during the ON sample points and c51(m,n) as the 

unmatched uncertainties during the INTER sample points, the following assumption is made: 
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Assumption 6. The unmatched uncertainties c55 (m) and c51(m,n) are bounded such that 

(3.41) 

(3.42) 

where 680 and c5 lo are finite values. 

Theorem 1. Let Assumptions (3) through (6) hold. In addition, it is assumed that k is a finite 

integer. Given the system in Equation {3.31), define the same S, f, and Ft described in Equations 

{3.38) through {3.40). If the proposed Slow Observer System described in Equation {3.23) and the 

Fast Observer System described in Equations (3.27)-(3.28) are designed such that the poles of S, f, 

and Ft are stable, then 

1. The Slow Observer state estimates are stable and the errors of the state and uncertainty esti-

mates have a finite bound. 

2. The Fast Observer state and uncertainty estimates converge to the Slow Observer state and 

uncertainty estimates, respectively, during the ON sample points with a finite error bound. 

3. The Fast Observer state and uncertainty estimates are stable during the INTER sample points. 

Furthermore, at a general time step n, the state estimates error has a finite bound of 

iie1(m, n + l)lloo < Ag+1 Fo + AgC10 

1 An+1 
+ ;_~0 [Bo(wo+Cwo)+c510] 

and the uncertainty estimation error has a finite bound of 

iew1(m, n + 1)1 ::; Wo + Cw0 

(3.43) 

(3.44) 

Proof: The proof for this theorem has two parts. First, bounded error is shown for the ON sample 

points. Then the proof is completed by showing bounded error during the INTER sample points for 

a finite k. The first part involves analyzing an augmented error dynamics matrix comprised of: (1) 

the error dynamics of the Slow Observer estimates of states and uncertainties to the actual states 
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and uncertainties; respectively, and (2) the error dynamics between the Slow and Fast Observers. 

The second part involves analyzing the error dynamics of the Fast Observer and calculating the 

propagated error during each of the INTER sample points. 

Remark 3. Note that S and f are the exact structures of the dynamics of the Slow and Fast 

Observers, respectively. Therefore, the eigenvalues of Sand f are, also, identically those of the Slow 

and Fast Observers .. 

304.1 Proof for Theorem l: The ON Sample Points 

The system in Equation (3.32) is represented at the slow and fast sampling time rates and the 

resulting systems are 

··. x(m+ 1) As x(m} + Bs u(m) + Bs w(m) + Os(m) 

w(m +1) = w(m) 

y(m) = C x(m) · 

at the slow sampling rate and 

x(m,n + 1) = Ai x(m,n) + B1u(m,n) + B1w(m,n) + 61(m,n) 

w(m, n + 1) = w(m, n) 

y(m,n) · - C XJ(m,n) 

(3.45) 

(3.46) 

· at the fast sampling rate, noting that the sets ofrnodel parameters (As, Bs) and (Ai, Bi) are 

analogous to. those of the discretized system.s at the slow and fast sample periods, Ts and . T1, 

respectively. 

For the ON sample points, the Fast Observer may be summed at each INTER sample point n 

until n = k and, therefore, can be representecl as 

x1(m + 1) As x1(m) -A~-i L1 cs1(m) + Bswf -A~-i L1w cws1(m) 

Wj(m + 1) = WJ(m) - lJ csJ(m) - ljw cwsJ(m) (3.47) 
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Thus, the corresponding error dynamics between the Slow Observer System and the Fast Observer 

System during the ON sample points are 

es1(m,n+l) 

ewst(m,n + 1) 

Using the error definitions given in Equation (3.34), es(m) and ews(m) are such that the error 

dynamics for the Slow Observer System with uncertainty estimation is. 

ews(m + 1) = ews(m) - lsw O es(m) 

If one uses an augmented form of the system such that 

e~(m) 

Ewst(m) = 

ewst(m) 

. then the augmented system error dynamics becomes, 

Ewsf(m+ 1) = AwsfEwst(m + 1) + Awst(m) 

where 

[As - LsC] Bs 

-lswC 1: 
Awsf = 

LsC onxl 

lswC 0 

and 

Awsf 

Furthermore, Equation (3.52) may be written as 

Awsf = 

onxn onxl 

oixn 0 

[As .,- A}-1£1] · [Bs - A}-l Ltwl 

-l1 

[ J,(m} l 
o(n+2)xl . 
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Q(n+l) X (n+l) l 
F1 

(1 - lfw) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 



where S and F are defined previously and 

onx. 1 .]· 

0 

If Eo is defined to be. Ews1(m = 0), then the propagated error based on Eo .and flws1(m) may 

be written as function of cycle m, such that if the error matrix Ews1(m) is summed at each ON 

sample point for for a general sample step m, 

m 

Ewsf(m + 1) = [Awsf]m+l Eo + 2)Awsf] m-i flwsf (i) (3.54) 
i=O 

From the restriction on S, f and F defined in the theorem problem statement, it is known that 

Awsf is stable. Let 

Awsio · - ... IIAwsJllioo (3.55) 

Then, because of the stability of Awsf, 

lim [Awsfo]m 
m-:too · . 

0 (3.56) 

In addition, it is previously assumed that 8 s ( m) is bounded by 8 so, which means that 

II flwsf II 6o = 8so (3.57) 

Hence, it is shown that 

(3.58) 

Therefore, it is shown that Part (1) and Part (2) of Theorem 1 are proven. 
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3.4.2 Proof for Theorem 1: The INTER Sample Points 

Define the following parameters such that 

Jo = e1(m, 0) 

Wo ew1(m,O) 

fso = C1(m,O) 

Wso = cw1(m, 0) 

C1 = !,I fso + Ltw Wso 

Cw = lt fso + ltw Wso 

Ao = IIAtllioo 

Bo = IIB1II ocj 

Fo = 11/oll oo 

C10 IICtllioo 

Cwo !Cwl 

Wo = lwol (3.59) 

Using the error definitions given in Equations (3.34) and the Equations (3.30) and (3.46), e1(m, n) 

and ew1(m,n) are such that the errnr dynamics for the Fast Observer System with uncertainty 
,. 

estimation are 

ew1(m, n + 1) = ew1(m, n) - l1 cs1(m, n) - liw €ws1(m, n) (3.60) 

Using the expressions defined for Theorem (1), one may calculate the resulting propagated error as 

n n n 

e1(m,n+l) = At1 fo-A1JC1+ LA}B1wo-EA}B1Cw- LA}o1(m,i) (3.61) 
i=O i=O i=O 

and 

ew1(rri, n + 1) = Wo ~ Cw (3.62) 
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for the Fast Observer state estimates and uncertainty estimates, respectively. Utilizing Schwartz's 

Inequality and the triangle inequality, the error bound of Equation (3.61) is 

n 

\\e1(m,n + l)\\oo < A;+i Fo + A; C10 + I:Ab Bo wo 
i=O 

n n 

+ L Ab Bo Cw0 + L Ab O Jo (3.63) 
i=O i=O 

and 

lew1(m,n+l)\ < wo+Cw0 (3.64) 

Using finite series analysis, one can simplify the second, third and fourth terms of Equation (3.63). 

To satisfy Assumption 3, Ao < 1. Then, 

i=O 

i=O 
n 

LAbo10 
i==O 

. l -An+1 
Bo wo 1 _ ~o 

1 An+1 
= Bo Cw0 1-_ ~o 

1- A;+1 

= Ofo l -Ao 

The resulting calculation of the error bound of the Fast Observer estimates is 

< 

(3.65) 

(3.66) 

Q.E.D 

Remark 4, It is proven that the state and uncertainty estimates of the Slow Observer are stable 

and that the Fast Observer's state and uncertainty estimates converge to that of the Slow Observer's 

state and uncertainty estimates, respectively, during the ON sample points. Then, it can be inferred 

that the state and uncertainty estimates of the· Fast Observer are stable with a finite error bound. 

during the ON sample points. 

3.4.3 Maximum Error Bounds 

Remark 5. In the worst case scenario, the error in the state estimates for the Fast Observer System 

continue to increase during the INTER sample points until the start of the next cycle (i.e., the next 
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ON point). Under this condition, the greatest maximum bound for any INTER sample point occurs 

at the time step just before the next ON point. At this time, n = k - 1 such that t = (m, n + 1) = 

(m, k - 1) (t). 

Corollary 1. Given the results of Theorem i and the worst case scenario in which the maximum 

estimation error occurs at the time step oft== (m, k - 1), an upper bound of the error estimates of 

the Fast Observer state estimates x r( m, k - 1) is 

lle1(m, k - l)lloo < A~-l Fa+ A~-2 Ct0 

1 Ak-1 

+ l--t [Bo(wo +Cw)+ 010 ] 

and the upper bound of the uncertainty estimation w1(m, k ""-· l) is 

lew1(m, k ,- 1)1 :S Wo + Cw 

(3.67) 

(3.68) 

Proof. The proof, here, is straightforward. Using the fact that, at the sample point prior to tj:ie 

following cycle period, as described in Remark 5, n == k - 2 in Equations (3.64) and (3.66). 

Substituting this relation into Equations (3.43) and (3.44), the result is the same as that described 

in Equations (3.67) and (3.68), respectively. D 

Remark 6. The reader should note that the above bounds may be extremely conservative and may 

not be of practical use except to show the that the INTER sample estimate bound is, indeed, finite. 

Corollary 2. If there are no unmatched uncertainties in the system and the Slow and Fast Observers 

have the same initial conditions, the error bound is further reduced to 

llew1(m, k - l)lloo < Wo (3.69) 

Proof. The proof, here, is again straightforward in that now, all terms except A 0 , B 0 , w0 , and F0 

are eliminat.ed from Equations (3.67) and (3,68). D 
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Remark 7. Furthermore, if the initial conditions of the actual states and uncertainties are the same 

as those for the Slow Observer and the Fast Observer, the parameters w0 and F0 become 0. These 

initial conditions settings, of course, result in perfect state and uncertainty estimates. This can be 

easily seen, as all the remaining terms i.n Equation (3.69) are eliminated. 
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Chapter 4 

Implementation of a Parallel 

Observer System to a Hard Disk 

Drive System 

In this chapter, the Parallel Observer System is applied to an IBM disk drive system running in 

open-loop control. The POS is implemented on a reduced order form of this magnetic Head/Disk 

Assembly (HDA). Input disturbances and unmodeled resonance dynamics are incorporated into the 

disk drive system to illustrate the performance ofthe POS in the presence of matched and unmatched 

uncertainties. 

For further illustrations, the multfrate POS is then compared to two single rate Luenberger 

· Observers. One observer runs at the rate of the output measurement and the other runs at the rate 

of the control input. Both the are Luenberger Observers and have control input values and output 

measurements available at each of their respective sample time steps so that a basis of "best" and 

"worst" case estimates can be compared. In addition, the performance of the POS is compared to 

that of the method currently being implemented in the standard disk drive. This method is referred 

to as the Present Observer System. 
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Primary coil resistance, R1 4.o n 

Shorted turn reflected to primary, R2 2.33 n 

Coil leakage inductance, £ 1 0.171 mH 

Shorted turn leakage inductance, £ 2 0.137 mH 

Coil and shorted turn mutu.al inductance, £ 3 5.95 mH 

Power amplifier output current sense resistor, Rpa . 0.25 n 

Actuator Mass ,MAcT 120 grams 

Actuator back EMF constant, KBEMF .15 Volts/meter/sec 

Actuator force factor, Kp 15 Newton 
amp 

Voltage Controlled Motor (VCM) mass· 2.0 kilograms 

Base casting mass (including spindle) 4.0 kilograms 

VCM/damper natural resonant frequency, wvcM 50·2·1r rad sec 

VCM/damper damping ratio, (vcM 0.707 

Base casting/shock mounts natural. resonant frequency, Wnsm 5.2.7r rad 
cSec 

Base casting/shock mounts damping ratio, (nsm 0.707 

Track Pitch 2400 TPI ( tracks per inch) 

Disk Diameter 5 ! inches 

Table 4.1: IBM HDA System Parameters 

4.1 The IBM Magneti~ Head/Disk Assembly 

The disk drive in study, as previously mentioned, is that of an IBM Magnetic Head/Disk Assembly 

(HDA), as described in (38] and [39]. The SIMULINK diagrams which describe this system as 
. . . - . . . ' 

modeled in [38] are shown in Figures 4.1 through 4.5. (The r~ader is referred to (40] and [41] for 

more information on MATLAB/SIMULINK). In addition, the disk drive parameters and states are 

described by Tables 4.1, 4.2 and the following relations: 
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X1 (t) coil current 

X2(t) shorted turn current 

X3 (t) motor voltage 

X4(t) power amplifier compensation capacitor voltage 

X5(t) actuator position 

X6(t) actuator velocity 

X7(t) VCM position 

xs(t) VCM velocity 

Xg(t) base· casting position 
CC 

X10(t) base casting velocity 

Table 4.2: IBM HDA System States 

denom = L1L2 + L1L3 + L2L3 

a11 
-R1(L2 +£3) 

den om 
-R2L3 

a12 
den om 

a14 
-(£2 + L3)Kref 

den om 

-R1L3 
a21 

den om 

a22 = 
-R2(L1 + L3) 

den om 

KvcM MvcM ·wicM 

DvcM 2MvcM · frcM · wvcM 

Ksm (MvcM + MBc)w;,sm 

Dsm = 2(MvcM + MBc)(Bc · Wnsm (4.1) 

The HDA is modeled by four main dynamic parts: the power amplifier dynamics, the coil dy-

namics, the Voice Coil Motor (VCM) and Basecasting dynamics, and the actuator dynamics. The 

input into the system is the desired coil voltage, which is fed through the power amplifier. The 
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a_ 12 • shorted turn current Motor 
Voltage 

Motor Voltage a_ 12 * shorted turn current Input 

Motor+BEMF Voltage 
Input Kbemf • x6 

BEMF Voltage 
Motor Current 

Power Amplifier 

'-------~Kbemf • x6 

BEMF 
voltage 

Motor Current 

Coil Dynamics 

Clocking 
and Media noise 

Clocking and Media Noise 14---------' 

Position 
Error 
Signal 

Position Error 
Channel 

Electronics 

External Disturbance 

~---<Kf • Motor Current 

Actuator Dynamics 

Coupled >-------..i External. Disturbance Spindle Unmodeled 
Dynamics Through HDA Shock Mounts 

VCM and Basecasting Dynamics 

Figure 4.1: IBM Head/Disk Assembly 

Spindle 
Windage 

final output of the system is the position error signal, the relative error displacement between the 

read/write head and the center of the track. (For more details, the reader is referred to [38] and 

[39].) The actual input driving the power amplifier and, thus, the entire HDA system is a test input 

signal comprised of a series of step inputs, as shown in Figure 4.6. 

4.2 The HDA System Model 

The full model is of a tenth order linear system. However, for purposes of simulation, a reduced 

second order actuator dynamics model is used,. placed in series with a second order resonance dy-

namics model. The SIMULINK diagram illustrating the model in study is shown in Figure 4.7. The 

input to the system is the motor current and is acting in open-loop control, which is the output of 

the coil dynamics. The output of the reduced order system is the actuator position. 
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Motor+BEMF 
Voltage 

a_12 * 
shorted turn 

current 

Input 

Power Amplifier 

x4 

Motor current 

current 

Figure 4.2: HDA Power Amplifier 

Coil Dynamics 

Motor Current 

Figure 4.3: HDA Coil Dynamics 
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1 

Kl• 
Motor 

Current 

Spindle 
Windage 

Kf(ll ,12,pos) 

VCM and Basecasting Dynamics 

du/dt 

Figure 4.4: HDA VCM and Basecasting Dynamics 

Actuator Dynamics 

N(s) 

D(s) 

Actuator Unmodeled 
Dynamics 

Iv: 
ViScous fric 

'----------<:b_v14---------t 

L---------<O 
Coulomb 
friction 

x7 

x9 

R/W cable force 

VCM 
Position 

Basecasting 
Position 

2 

External Disturbance 

x5 

Actuator 
Position 

L---------------<-K_cti.--------~ 

Figure 4.5: HDA Actuator Dynamics 
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E 
~ 
E 0 
~ 
:, 

Ll -0.2 
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-0.8 

atched Uncertainty 

Spindle 
Windage 

Kf(l1,12,pos) 

0.001 0.002 0.003 0.004 0'.005 0.006 0.007 0.008 0.009 
Time (sec) 

Figure 4.6: RDA Power Amplifier Input Current 

wn"2 

s~2·zeta•wns+wn"2 

Resonance Model 

Gain19 

Gain21 

Iv: 
Viscous Irie 

0 

Gain18 

Coulomb 
friction 

Figure 4.7: Simulation Actuator Model 
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The second order resonance model R(s) which precedes the actuator dynamics is 

R(s) = 
w2 

n (4.2) 

where Wn is the resonance natural frequency and ( is the damping ratio. In this simulation, wn = 

350rad/s and ( = 0.30. 

Neglecting Coulombic friction, the two second order systems joined together in series fashion 

results in the linear fourth order model: 

±1 (t) 0 1 0 0 X1 (t) 0 

±2(t) _.!i:.1_ _ __Q,,_ 1 0 x2(t) 0 Ma.ct Ma.ct Ma.ct 

+ u(t) 
· ±3 (t) 0 0 0 1 X3(t) 0 

x4(t) 0 0 --:w; -2(wn X4(t) K1w; 

y(t) I 1 o o o l (4.3) 

Here, x1 and x2 denote the actuator position and velocity, respectively, while x3 and x4 denote the 

resonance dynamics. In addition, the motor current is u(t) and the actuator position is y(t). Also, 

Mact corresponds to the actuator mass, KcJ corresponds to the R/W cable force spring coefficient, 

bv corresponds to th~ viscous fricti_on coefficient, and K1 corresponds to the actuator force factor. 

In this simulation of the HDA system, the disk drive model is run in continuous time, and sampled 

data signals of u(t) and y(t) are ob.tained frqm the continuou~ time system at sampling periods of 

Ti and T8 = kT1, respectively, where k is 5. No process or measurement noises are introduced. 

The Parallel Obser;er System is applied to the magnetic Head/Disk Assembly in discrete time. 

While the actual control input signal im(t) to the actuator system is the motor current, and an 

added spindle windage input is incorporated as a sinusoid rather than a random input such that 

· u(t) = im (t) + 2sin(185t) (4.4) 

This spindle windage input acts as the unmo~eled matched uncertainty to th_e system. The model 

39 



used for the Parallel Observer System is the same as that of Equation ( 4.3) except for the additional 

spindle windage input and that the resonant frequency and damping ratio from the resonance model 

is estimated to be at different values than the actual respective values. That is, 

±1 (t) 0 1 0 0 . X1 ( t) 0 

±2(t) Kc! _ --1!.,,_ 1 0 X2(t) 0 - Mact Mact Mact 

+ u(t) 
i:3 (t) 0 0 0 1 X3(t) 0 

i:4(t) 0 0 A2 
'-Wn -2(wn X4(t) K1w;. 

X1(t) 

y(t) [ l 
X2(t) 

1 0 0 0 (4.5) 

X3(t) 

X4(t) 

where(, jn, and u(t) are such that 

( = 0.85( 

wn 0.85 Wn 

u(t) im (t) (4.6) 

and Mact , Kcf , bv, and Ki are such that 

lvfact 120 grams 

Ket 0.04 N/in 

bv 0.01 N/(in/s) 

Kt 15 N/amp (4.7) 

It should be noted that the differences in the parameters of the resonance model correspond to. 

unmatched uncertainties in the actuator dynamics. To illustrate the effects of the added matched 

and unmatched uncertainty dynamics, a plot of the position and velocity of the actual input and 

the estimated input are shown in Figure 4.8. In addition, a plot of the nominal model, the model 

accounting for matched uncertainties, and the actual system with matched and unmatched uncer-

tainties are shown in Figures 4.9 and 4.10, respectively. These plots show the degree to which the 

40 



30 

i (t) 
t(t) + 2sin(185t) 
m 

20 

10 

············· 

-10 

-20 

-30 ... EJ .. 

-4o~~~~~~~~'--~-'-~~-'---~---'~~ ......... ~~...,__~__.~~-' 
0 · 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0,009 0.01 

Time (sec) · 

Figure 4.8: Actuator Modeled Input and Actual Input 

matched and unmatched uncertainties change the actual system and to the extent to which the 

applied observers must adjust and correct themselves for these uncertainties. 

Equation (4.5) is discretized via method of zero order hold at sampling periods of Ti = 70µs 

for the Fast Observer System and T8 = 5T1 =. 350µs for the Slow Observer system. Also, the 

state vectors of both systems are respectively augmented to X(m) and X(m, n) for the Slow and 

Fast Observers, respectively; as discussed in Chapter 4, !30 as to accommodate matched uncertainty 

estimation. 

The approximations Wn and ( are used for the resonant frequency and damping ratio, respectively, 

to calculate the system model parameters As, Bs, Ai, and Bf for the system model discretized at 

the corresponding siow and fast sample rates. The resulting firial aug1+1ented discrete state space 

model does not take into account any of the matched or unmatched uncertainties. 
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MATLAB calculates the system model parameters As, Es to be 

l.OOOOe - 00 3.4999e - 04 

- l.1666e - 04 9.9997e - 01 

As 0 0 

0 0 

0 0 

5.0996e - 07 

2.9114e - 03 

9.9468e - 01 

-3.0115e + 01 

0 

6.8421e - 09 

7. 7975e '- 05 

7.9823e - 02 

4.5172e + 02 

0 

5.8734e - 11 6.8421e - 09 

5.0104e - 07 7.7975e - 05 

3.4025e - 04 7.9823e - 02 

9.4305e - 01 4.5172e + 02 

0 l.OOOOe + 00 

and Ai and Bi to be 

l.OOOOe - 00 7.0000e - 05 2.0416e - 08 4. 7512e - 13 l.1044e - 11 

-2:3333e - 05 9.9999e - 01 5.8329e - 04 2.0344e - 08 6.3076e - 07 

0 

0 

0 

E1 

0 

0 

0 

= 

9.9978e - 01 6.9625e - 05 3.2410e - 03 

-6.1622e + 00 9.8922e - 01 9.2433e + 01 

0 0 l.OOOOe + 00 

l.1044e - 11 

6.3076e - 07 

3.241oe :_ 03 

9.2433e + 01 

0 
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IBM Head/Disk Assembly 
(HOA) 

HOA Current Input 

Fast Observer Estimates 1--------i.i Fast Observer Esti 

Observer Feedbackt--------. 

Slow Observer Estimates 1--------Slow Observer Esti 
Fast Observer Feedback 

Parallel Observer System Multirate Block 

Figure 4.11: The Parallel Observer System and HDA System 

4.3 The Implementation of the Parallel Observer System to 

the IBMHDA 

4.3.1 The Parallel Observer System Model 

The Parallel Observer System is applied, as in Equations (3.26) and (3.30). The general SIMULINK 

implementation of the POS in the simulations are shown in Figures 4.11 and 4.12. It should be noted 

that all observers implemented in this chapter are applied within the same simulation to insure that 

all observers share identical simulation conditions. 

Using the parameters calculated in Equation (4.8), the Slow Observer System and the Fast Ob-

server System are obtained, as in Equations (3.26) and (3.30). The Slow Observer System gains 

are calculated so that the observer poles are located arbitrarily close to the origin. The Fast Ob-

server System observer gains are calculated using the MATLAB command DLQE.m [41] to obtain 
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3 1------..-iFast_Mult 

yh (m,n) 

2 1--------------..i Fast Input 

u (m,n) 
Fast Observer 

System 

ZOH_Slow 

Fast Observer 
State Estimates 

1 1--------------..i Measurement 

y(m) 

Slow Observer 
System 

Single Rate 
'Luenberger Observers 

xsf---...i 2 

Slow Observer 
State Estimates 

Figure 4.12: · The Parallel Observer System and Comparison Observers 

appropriate Kalman estimator gains. The pLQRrn c9~mand cakulates the necessary parameters, 

. including the Kalman gains, for the design of a discrete Kalman filter using the knowledge of the co-

variances of the discrete system's unbiased process and measurement noises. These calculated gains 

are guaranteed to be stable. In this case, no noise is introduced. Therefore, to tune the Kalman 
. . . 

gains, the norm of the covariance matrix of the measurement noise is made very small. In addition, 

the coefficient matrix cif the process noise is an identity matrix of the augmented state· order. The 

norm of the covariance matrix of the process noise is increased accordingly for acceptable estimation 

results. The resulting gains for the Parallel Observer System are as follows: 

· 4.4437e + oo 

l.5509e + 04 

4.5863e+ 06 (4.10) 

7.4154e + 09 

3.8496e+ 06 
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and 

l.OOOOe - 00 7.0000e - 05 2.0416e - 08 4.7512e - 13 l.1044e - 11 

-2.3333e - 05 9.9999e - 01 5.8329e - 04 2.0344e - 08 6.3076e - 07 l L1 L1w j 
5.4581e - 26 3.7298e - 22 9.9978e - 01 6.9625e - 05 3.2410e - 03 

l1 ljw 
- l.1295e - 24 -4.4998e - 21 -6.1622e + 00 9.8922e - 01 9.2433e + 01 

-7.7850e - 27 4.1891e.,... 25 2.0745e - 21 5.9157e - 17 l.OOOOe- 00 

The initial conditions for the Slow Observer System and the Fast Observer System are 

0 

[ x,co,o) l 0 

[ ±,(0) j = 0 
ws(O) w1(o,o) 

0 

(4.11) 

0 

while those for the actual system are set to 

0.0001 

0.1000 
x(O,O) ( 4.12) 

5.0000 

2000.0 

4.3.2 The Parallel Observer System Simulation Results 

Simulations of the applied Parallel Observer System on the IBM magnetic Head/Disk Assembly 

are performed using MATLAB/SIMULINK. The comparison between the actual actuator position 

and the position estimates of the Parallel Observer System's Slow Observer System (SOS) and 

Fast Observer System (FOS) are shown in Figure 4.13. Those for the actual velocity and velocity 

estimates are shown in Figure 4.14. 

Referring to Figure 4.13, it can be seen that both the Slow Observer System and Fast Observer 

System of the POS, after the initial transient, estimate the actuator position rather well, despite the 

added matched and unmatched uncertainties. The Fast Observer estimate tends to be very sensitive 
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Figure 4.14: Actuator Velocity and POS Velocity Estimates 
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to the accuracy of the Slow Observer estimates, as can be seen by the marked transient oscillations 

at the points where the Slow Observer is still attempting to converge to the actual position signal. 

The same behavior is noticed in .Figure 4.14. The initial transient behavior before the actual 

velocity estimate converges to the actual signal is significantly greater and persists for a· longer 

amount of time, most likely because the Slow Observer System estimates do not converge as quickly 

. . ' 

to the actual velocity values. However, as in the case of the position estimates, once convergence 

is obtained; .estimation of velocity for both the Slow Observer and the Fast Observer remain highly 

accurate. 

It should· be noted that the Parallel Observer System . gains are tuned for accuracy in position 

estimates, as opposed to any of the other state estimates, since, in a real application, the observer-
. . . . . 

based controller is ddven mostly, if not entirely, by the position estimates obtained by the observer. 

Because of this tuning, the velocity estimation is not necessarily as accurate as it can possibly be. 

4.4 Comparison Luenberger Observers 

As mentioned previously, to have a basis for comparison, two separate, single rate observers are 

. applied to the IBM HDA. Both of these observers are of the standard Luenberger form but run at 

different rates. The first single rate observer is applied at the measurement output sampling rate. 

It is referred to as the Slow Luenberger Observer. The second single rate observer is applied at the . . , .. • . ,) 

control input rate and is referred to as the Fast Luenberger Observer. 
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4.4.1 The Luenberger Observer Models 

The Slow Luenberger Observer is given as follows: 

Xszo(m + 1, n) [ 
Xsto(m + 1) ]· 

Wszo(m + 1) 

[
. As Bs ] ·[· ~slo(m) ] + [·. Bs .] u(m) 

0 1 · W 8 10 (m) 0 

+ [. L;io ·] [ y(m) - Ys1o(m)] 

. lslo. ·: 

Ysio(m) = [ C · O ] Xsio(m) ·.· (4.13) 

where As and Bs are the same as given in Equation (4.8). One should note that this is the exact 

form of the Slow Observer System, as both are single rate observers running at the same sampling 

period. In so doing, it is only logical to use .the same observer gains from the Slow Observer System 

on the Slow Luenberger Observer. In other words: 

Lslo = Ls 

lslo = lsw (4.14) 

Also, the Sl<?w Luenberger Observer is held constant during the INTER sample· points. The Fast 

Luenberger Observer is given as fQllows: 

X11o(m;n + 1) [ 
Xf1o(m,n+l)] 

= .. · . w11o(m,n + 1) . 

= [ A: B: ][ ::::::·,:; ] + [ B: ] u{m,n) 

[ 
L110 l + [ Y1(m, n) - Y11o(m, n)] 

l110 

Y11o(m,n) = [ C O] X11o(m,n) 
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where A f and Bf are the same as given in Equation ( 4.9). The observer gains of the Fast Luenberger 

Observer are calculated using the same observer poles obtained from the Parallel Observer System's 

Fast Observer gains. These Fast Luenberger Observer gains are as follows: 

4.4950e + 00 

[ l 
7.7787e + 04 

L110 
(4.16) 1.l466e + 08 

ljlo 

8.6198e + 11 

l.8829e + 09 

Again, one should note that this Fast Luenberger Observer form is the exact form of the Slow 

Observer System except that it is running at the faster sampling period and, more importantly, that 

it is given the knowledge of the output actuator position during each ON and INTER sample point. 

The reason for choosing these single rate Luenberger Observers for comparison is to show the 

worst and best case scenarios. For the worst case, as in the Slow Luenberger Observer, an output 

measurement is used every ON sample point to update the observer, and then the observer is forced 

to hold its estimates constant during the INTER sample points until the next output measurement 

is available. In contrast, the best case scenario is when the output measurement is available dur

ing every control sample point and no multirate estimation is needed, as in the case of the Fast 

Luenberger Observer. 

4.4.2 The Comparative Luenberger Observers Simulation Results 

Comparing the results of the Parallel Observer System's Fast Observer System position estimate 

errors to those position estimate errors of the single rate Slow Luenberger Observer (SLO) and Fast 

Luenberger Observer (FLO) in Figure 4.15, one can see that, besides the initial transient, the POS 

is much more accurate than the Slow Luenberger Observer, as it accounts for INTER sample state 

estimation. Also, the errors of the POS estimate is highly affected by that of the Slow Observer 

System's estimate accuracy. 

Although the Fast Luenberger Observer is still considerably faster than the POS, the POS 
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Figure 4.15: POS and Comparison Observers Position Estimate Errors· 

position error signal eventually decreases to zero just as in the best case situation of the Fast 

. Luenberger Observer. The extremely quick convergence of the Fast Luenberger Observer state .·· 

estimates is not surprising because the Fast Luenberger Observer has the added unfair advantage of 

having output measurement feedback during all sets of sample points. 

The same trend is seen in Figure 4;16, where the velocity estimates of the Parallel Observer 

System and the single rate Slow Luenberger Observer and Fast Luenberger Observer are shown. 

The POS'velocity estifuates converge to actual velocity values relatively q~ickly, while the estimate 

errors of the Slow Luenberger Observer are still forced.to osciHate during the INTER sample points. 

In addition, the velocity error signal of the POS has a much less amplitude of oscillation in its initial 

transient than even the best case Fast I,u,enberger Observer. 
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Figure 4.16: POS and Comparison Observers Velocity Estimate Errors 

4.5 The Present Observer System (PRES) 

In this section, the performance effects of aliased resonant frequencies and vibration on the Parallel 

Observer System compared to that of the industry standard estimation technique, referred to in 

this work as the Present Observer System (PRES), is analyzed. With this in mind, the emphasis of 

analysis is on the POS and the PRES when the resonant frequency is higher than that of half the 

measurement sampling frequency and when the system oscillates at this resonant frequency. 

4.5.1 The Present Observer System (PRES) Model 

The Present Observer System (PRES) which is used in today's standard industry disk drive is of 

the following form: 

Xpres(m, n + 1) A1x1 (m, n) + B 1u(m, n) + Lpres[ Ypres(m, n) - Ypres(m, n)] 

Ypres(m, n) = Cxpres(m, n) ( 4.17) 
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where 

Ypres(m, n) { 
y(m), 

- Ypres(m,n), 

if n = 0 
(4.18) 

if n = 1, 2, ... k - 1 

Here, Lp is a Luenberger gain. The state estimates Xpres are calculated every sample point and are 

updated during the ON sample points, as with the Fast Observer System of the POS, but the PRES 

uses the actual measurement output for feedback. Because both the Fast Observer System and 

PRES are running at the same sampling period and instances, it follows that the system parameters 

used, namely At and Bt are used in the PRES. This Present Observer is very similar to that of the 

Fast Observer System, except that the only feedback available is the single measurement output, as 

opposed to the full state estimate. 

For purposes of comparison to the Parallel Observer System, the PRES is also augmented to 

allow for matched uncertainty estimation. That is, 

Xpres(m, n + 1) [ 
Xpres(m,·n·+ 1) ] 

'Wpres(m, n + 1) 

[ 
At Bt ] [ Xpres(m,n) ] [ Bt 1 + u(m, n) 

0 1 'Wpres(m, n) 0 

+ [ Lpres] [ [Ypres(m,n)-flpres(m,n)]] 
lpres 

(4.19) 

where 

Ypres(m,n) { 
y(m), 

Xpres (m, n), 

if n = 0 
(4.20) 

if n = 1, 2, ... k - 1 

Here, Wpres ( m, n) is the Present Observer System estimation of the matched disturbance, and Lpres 

and lpres are Luenberger gains. 

4.5.2 The HDA Test Simulation 

The scheme of the simulation system with the implemented Parallel Observer System and the Present 

Observer System is shown Figure 4.17. For these set of tests, the input to the system is a test signal 
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Figure 4.17: Simulation Model of the Fourth Order HDA Actuator System for the POS and PRES 

comprised of a series of step inputs. Furthermore, the system is continuously excited by an input 

sine wave which mimics a constant vibration input at the system resonant frequency. The resulting 

effective input is shown in Figure 4.18. 

Two cases of simulations are presented. In the first case, there are no added matched or un-

matched uncertainties. The sampling rate is the same as in the past simulations, that is a Nyquist 

frequency of 8.9760x103rad/s (1.4286x1Q3Hz). The natural frequency is chosen to be aliased at a 

frequency of l.5745x104rad/s (2.5059x103Hz). The damping ratio is set to 0.0995. In the second 

case, matched and unmatched uncertainties are added to the system. For both cases, the observer 

gains of the Present Observer are calculated using the closest available poles obtained from the 

Parallel Observer System's Fast Observer gains. 
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Figure 4.18: Total Input into Fourth Order HDA Actuator Model 

Case I: Perfect Model 

In the first case, a perfect model is used and no matched or unmatched uncertainties are introduced 

into the system. 

l.OOOOe - 00 3.4999e - 04 6.0269e - 08 l.2383e - 11 6.7521e - 06 

-l.1666e - 04 9.9997e - 01 - l.5320e - 04 2.1469e - 08 4.6047e - 02 

As = 0 0 3.6128e - 01 -2.6456e - 05 9.5807e + 00 

0 0 6.5586e + 03 4.4418e - 01 -9.8380e + 04 

0 0 0 0 l.OOOOe + 00 

6.7521e - 06 

4.6047e - 02 

Bs = 9.5807e + 00 (4.21) 

-9.8380e + 04 

0 
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and At and Bt are used for the Fast Observer and Present Observer parameters and are 

l.OOOOe - 00 7.0000e - 05 l.8514e - 08 4.2522e - 13 2.8535e - 08 

-2.3333e - 05 9.9999e - 01 4.7792e - 04 l.7182e - 08 l.5812e - 03 

A1 0 0 4.8886e - 01 5.0890e - 05 7.6671e + 00 

0 0 -l.2616e + 04 3.2941e - 01 l.8924e + 05 

0 0 0 0 l.OOOOe + 00 

2.8535e - 08 

l.5812e....,. 03 

B1 7.6671e + 00 ( 4.22) 

l.8924e + 05 

0 

The resulting Present Observer gains for this first case are 

2.9915e + .00 

2.7261e+04 

[ L,m l - l.3696e + 07 (4.23) 

lpres 

-4.5555e + 11 

2.4012e +01 

The gains for the Parallel Observer System are determined as explained earlier in this section and 

are as follows: 

2.9915e + 00 

[ ~:] 
2.7261e + 04 

- l.3696e + 07 (4.24) 

-4.5555e + 11 

2.4012e + 01 
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l.OOOOe - 00 7.0000e - 05 l.8514e - 08 4.2522e -13 2.8535e - 08 

l 
-2.3333e - 05 9.9999e - 01 4.7792e- 04 1.7182e - 08 l.5812e - 03 l L1 

Ltw 
l.6439e - 26 7.6468e '- 23 4.8886e '- 01 .5.0890e - 05 7.667le + 00 

l1 ltw 
3.9321e - 22 5.2086e - 19 -1.2616e + 04 3.2941e - 01 l.8924e + 05 

· 2.0640e - 27 3.7369e - 24 l.7198e ~ 20 4.1165e - 16 l.OOOOe - 00 

Case II: Added Matched and U nrnatched Uncertainties 

In this second case, matched and unmatched uncertainties are present in the system. The matched 
. . 

uncertainty component is a sping.le windage disturbance,. a disturbance ass6ciated with the inter-

action of air across the spindle, and is a sine wave input with a magnitude of 30 and a frequency 

of 185 Hz. The unmatched· uncertainties .are implemented by using a resonance model where the 

actual re.sonant frequency and dampin,g ratio are 0 .. 94 and 1.13 times the actual natural frequency 

and damping ratio values, respectively. 

4.5.3 The Present Observer Syst.em (PRES) Simulation Results 

Figure 4.19 show the results of the POS and the PRES position estimates under the first case of 

simulations where there is no matched or unmatched uncertainties. It can be seen that the PRES 

position estimates are more accurate than the POS position estimates. Both observers are able to 

detect the forced oscillations at the aliased resonant frequency, but the PRES is able to capture 

the oscillations 'more. accurately, although neither are truly acc;urate fo its depiction of the forced 

oscillations. These results are seen more clearly in:Figtlre 4.20 where the position estimate errors are 

shown. Both observer's estimate error oscillate about zero, with those of the PRES having smaller 

amplitudes of oscillation. · · 

The reason for the POS's poorer performance may stem from the fact that the Fast Observer is 

dependent upon the accuracy of the Slow Observer's estimates. The aliased resonant frequency and 

the oscillation about this frequency could have a negative effect on the Slow Observer's estimates. 

In addition, the Fast Observer has an additional delay in feedback because it reacts and corrects its 
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Figure 4.19: POS and PRES Position Estimates 

measurements from the Slow Observer estimates only after the Slow Observer reacts and corrects its 

own estimates. The PRES does not have this "middle" stage in that it receives its feedback directly 

from the output measurement. 

Figure 4.21 show the results of the POS and the PRES position estimates under the second case 

of simulations where there are added matched and unmatched uncertainties. As can be seen, the 

PRES position estimate shows signs of instability, while that of the POS position estimate do not 

seem to be affected by the presence of the added matched and unmatched uncertainties. The results 

of the simulation are seen more dearly in Figure 4.22 where the position estimate errors are shown. 

Here, again, both observer's estimate error oscillate about zero, but whereas the PRES shows signs 

of instability, the estimate errors of the POS appear to be the same as without the uncertainties 

and remains stable. 

The results of this latter case of simulations are not surprising, as the accuracy of the Present 

Observer is highly dependent upon the accuracy of the observer model. In addition, because the 

system is being excited at the resonant frequency and because the Present Observer shares similar 

dynamics, any significant deviation in position estimate could excite the dynamics of the Present 
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Figure 4.22: POS and PRES Position Estimate Errors with Matched and Unmatched Uncertainties 

Observer System into system instability. Because of finite escape time, the INTER sample estimates 

of the PRES are bounded, but each deviation between estimate and measurement during the ON 

sample points effects the correction for the deviation. This situation with the system oscillation about 

the resonance frequency may be exciting the dynamics of the PRES, causing further deviations. As 

the deviations grow, so do the corrections, and instability eventually occurs; 

This condition of instability is shown in Figures (4.23) and (4.24), where the simulation is rerun 

with the same conditions except that the estimated natural frequency is decreased slightly further to 

a value of 0.9 times the actual resonant frequency. Here, as the figure shows, the Present Observer 

quickly becomes unstable, while the Parallel Observer remains relatively unchanged. 

The Parallel Observer System, on the other hand, has the advantage of being based upon a stable 

set of full state order estimates from the Slow Observer. The Fast Observer, although having the 

same observer model as the Present Observer System, uses these stable full state order estimates 

for feedback. Furthermore, as long as the gains of both the Slow and Fast Observer are chosen 

appropriately, the overall POS is designed to guarantee stability, regardless of added matched and 
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Figure 4.23: PRES and POS Position Estimates with Matched and Increased Unmatched Uncer-

tainties 

unmatched uncertainties in the system. 

4. 6 Summary 

In short, the results of the simulations. of the Parallel Observer System implemented on the IBM 

magnetic Head/Disk Assembly system are. very p:romising. Despite· added matched _and unmatched 

.uncertainties, in addition to different initial conditions, the Parallel Observer System is still able to 

produce accurate and convergent state estimc;1,tes during the ON and INTER sample points. 

The results of the POS's state estimation_ in this simulation shows superior performance to that 
. . . . 

of a single rate Slow Luenberger Observer, as the POS is able to produce accurate INTER sample 

estimates. The POS's state estimation is even com.parable to a single rate Fast Luenberger Observer, 

despite the fact that the Fast Luenberger Observer is provided with output measurement feedback 

every ON and INTER sample point, while the POS has output measurements available only once 

out of every five sampling periods. 
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Figure 4,24: . PRES and POS Position Estimate Error with Matched and Increased Unmatched 

Uncertainties 

In addition, the implementation of the Pres.erit Observer to the IBM HDA system shows that the 

advantage to the POS under the conditions of system excitation at the aliased resonant frequency 

occurs in the presence of matched and unmatched uncertainties. The POS does not seem to be 

significantly affected by the . presence of these uncertainties, whereas the Present Observer tends 

towards instability. 

In short, the poles of the POS's Fast Observer System c;an be adjusted so. that extremely fast 

convergence to the POS's Slow Observer's state estimates can be obtained. However, because the 

Fast Observer is designed.to converge to the Slow Observer quickly, the Fast Observer is also highly 

affected by the accuracy of th~ estimates of the Slow Observer. In addition, the greater the speed 

of convergence of the Fast Observer to the Slow Observer, the greater the transient effects of the 

Slow Observer on the Fast Observer. This can be seen in the simulations where high amplitudes 

of oscillations occurs in the transients of the Fast Observer. It is noted, therefore, that the Slow 

Observer's state estimates must be accurate to insure the performance of the Fast Observer and the 
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overall Parallel Observer System. 

6.3 



Chapter 5 

An Adaptive Parallel Observer 

System (A'POS) 

5.1 Motivation 

The Parallel Observer System's Fast Observer is highly dependent upon the accuracy of the estimates 

of the Slow. Observer, as seen in the example in the preceding chapter. Therefore, it is crucial to 

the success of the Parallel Observer System that the Slow Observer be made robust. Namely, if the 

system parameters change during the control process or if the model parameters do not match the 

actual system parameters, it would be very advantageous if the Slow Observer is made to account 

for these changing parameters or parameter uncertainties. Specifically, it would add greatly to 

the benefits and performance of the Parallel Observer System if the Slow Observer were modified 

to estimate the actual parameters, in addition to providing stable state and uncertainty estimates 

during the ON sample points. Specifically, it is desired that these parameter estimates aid in the 

estimation of multirate systems with output measurements which are only available at fixed intervals 

and which are aliased due to high resonance frequencies in the system model. 

In this chapter, a Discrete Adaptive Observer System (DAO) is implemented in the Parallel 

Observer System, resulting in a new structure of the POS and is referred to as the Adaptive Parallel 
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Observer System (APOS). This new structure is very similar to that of the original POS in that two 

observers still are running parallel with each other. Instead of using a Luenberger Observer for both 

parallel observers,. however, only the Fast Observer System is a Luenberger Observer. In this APOS, 

a Discrete Adaptive Observer System is· used in place of the Slow Observer System. In this way, 

stable state estimates are provided by the Fast Observer at every control input sampling period, 

. despite limited output measurements and any system parameter uncertainties or parameter changes 

.that may occur during the control process .. Furthermore, the DAO is also able.to help estimate these 

uncertain and/or changing parameters. 

5.2 Existing Discrete. Adaptive Observer Techniques 

The implementation of already existing discrete time adaptive observer tec~niques would improve the 

robustnes.s of the Parallel Observer System by estimating system parameters or correcting inaccurate 

model parameter values. 

The origins of adaptive estimation .stem from the pioneer work by Carron and Lindorff [42], 

. . . 
which is intended for single-input single~output linear, continuous time systems. Many more works 

have followed. In fact, the Ei CompendexWeb [43] lists over 2500 references in adaptive estimation. 

The number of available discrete time adaptive observers, though, is far less. A couple of examples 

are those of Kudva and Narendra [44] and Suzuki and Andoh [45]. However, most of these available 

discrete adaptive observers, although all proven to. be stable, have a slow rate of convergence. 

Some methods which claim fast convergence are Shahrokhi and Morari [46] and Hong et al. [47]. 

These two techniques guarantee exponential convergence. However, they make use of several past 

measurements in each time step and require the inversion of a large matrix for each step. Because of 

the computational burden, these two methods are eliminated as possibilities. It is decided that the 

technique of Suzuki et al. [48], is to be implemented within the Parallel Observer System because 

of its smaller amount of required computation, its guaranteed stability, and its fast convergence 

properties. 
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5.2.1 The Proposed Discrete Adaptive Observer System (DAO) 

As with most adaptive observers, whether continuous or discrete systems, the system to be observed 

is assumed to be in the proper observer canonical form. That is, the system should be written in 

the following form: 

x(m + 1) = Ar x(m) + Br u(m) 

y(m) - Cr x(m) 

where 

~a1 1 0 0 0 

-a2 0 1 0 0 

Ar = :..;,,a3 0 0 1 0 

-an O O O 0 

Br = [b1 b2 b3 bnf 

Cr = · · [1 0 0 0 · · · OJ 

According to Carroll and Lindorff (42J, given a system 

Z(m + 1) = AzZ(m) + Bzu(m) 

y(m) = CzZ(m) 

there exists a transformation matrix T such that Xz = Tz and 

-a1 1 0 0 0 

-:-a2 0 1 · 0 0 

0 

[ 1 0 0 0 · · · OJ 
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From Iwai et al. [49], the transformation matrix is given such that 

1 0 0 0 0 Cz 

a1 1 0 0 0 CzAz 

T = a2 a1 1 0 0 Cz[Az]2 (5.5) 

an-1 an-2 an:-3 an-4 1 

The Discrete Adaptive Observer (DAO} as developed by Suzuki et al. assumes a single-input 

sir;tgle-output lineir plant. It is derived from an exponentially weighted least-squares method. The 

technique guarantees fast convergence of all state and parameter estimates and the asymptotic 

stability of the .overcl.11 adaptive'system, so long as the system input is sufficiently rich. The reader is 

referred to [48] for more details. The method is capable of estimating time-varying plant parameters 

quickly. The DAO scheme assumes the system of the following form: 

x(m + 1) = · Ar x(m) + Br u(m) (5.6) 

y(rrt) Crx(m) 

where 

a1 1 0 0 0 

a2 0 1 0 0 

Ar = a3 0 0 1 0 

an O O O 0 

Br = . [b1 b2 b3 bnf 

Cr = [1 0 0 0 · · · OJ (5.7) 

which is the same observer canonical output form as above. The system described in Equation (5.7) 

is re-written as 

x(m+l) = Fx+p1v1(m)+p2v2(m), x(O)=xo (5.8) 
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where 

Ji 1 0 0 0 

h O 1 0 0 

fa O· b i 0 

fn O O O 0 

and such that F is a stable matrix. Vectors P1 and pz ·are such that 

and 

Pli == ai - Ii, i = 1, 2, 3, ... n 

Pzi == ·. bi, i = l, 2, 3, ... n 

v1(m) = y(m) 

v2(m) = u(m) 

Define the state variable filter vector ¢(m) and the matrix S(m), respectively, a.s 

and 

Si ~·. 

such that 

-1 
C ¢i(mf 

CF ¢i(mf F 

CF2 ¢i(mf F 2 

¢(m) = [¢1(mf ¢2(mft 

S(m) = [S1(m) S2(m)] 
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i= 1,2 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 



the adaptive state estimation expressions are 

x(m) = S(k) p(m) + pm x(O) (5.15) 

i)(m) = ¢.(mf p(m) + C pm x(O) 

. where x(m) is the state estimate vector and i)(m) is the. output estimate scalar. In addition, p(m) 

is a vector of size 2n which denotes the parameter estimates at time m and is defined as 

{ 
&i(m) ...: Ii, if i;, 1, 2, 3, ... n 

Pi(m) = . 
bi(m), if i = n + 1,n + 2,n + 3, ... 2n 

Here, &i(m) are the parameter estimates ofthe matrix AT, and bi(m) are the parameter estimates of 

the matrix BT. This adaptive state estimation technique is guaranteed to be asymptotically stable, 

provided that the parameter estimates of p(m) converge to the actual parameter values. That is, 

the adaptive .observer system is stable if a -+ a and b -+ b. 

The adaptive law, based upon a weighted least-squares method, guarantees parameter conver-

gence and is defined by the following relation: 

p(m + 1) = p(m) +r(-X, m + 1)¢(m + 1)[ z(m + 1} - ¢(m + If p(m)] (5.16) 

where 

r(.\,m+l) = 
r r>..¢(m + 1) qi(m + l)T r>.. 

>.. - 1 + qi(m + l)T rj. ¢(m + l)T 

r>.. = 
T(X,m) 

,\2 

z(m) = y(m) - CFmx(O) (5.17) 

Here, ,\ is a weighting coefficient whose values may vary such that O <.\ < 1. Suzuki et al. note in 

their work that r may be initialized as: 

r(.X, O) = d2 I2n, d » 1 (5.18) 

As explained earlier, the APOS replaces the original Slow Observer System with the Discrete 

Adaptive Observer System described in Equations (5.8) through (5.18). The DAO transformed As 

matrix, denoted by AT is obtained by comparing coefficients of the characteristic polynomials of the 
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given As and then parameters of AT, which is in observer canonic~! form. Then, the transforma-

tion matrix T is found using Equation (5.5). In turn, the remaining DAO system parameters are 

calculated. 

It also must be noted that any changes or uncertainties in the system are interpreted by the 

Discrete Adaptive Observer as parameter changes. In so doing, any external disturbances or mea-

surement noise are to be mistaken for syst~m parameter changes. Thus, the Discrete Adaptive 

Observer will adjust itself according!)' in this incorrect assumption. In addition, although output 

measurements, as well as input data, are used to drive the DAO, the PAO still remains acting in an 

open~loop fashion. That is, the DAO does not have any correction terms, as in the Slow Observer 

or the Fast Observer, to correct itself for estimation errors. 

5~2.2 Stability Analysis of the Proposed Adaptive Parallel Observer Sys-

tern 

. . 
Assumption 7. Any changes in the system are due to system parameter changes and not due to 

any other disturbances to the system. 

The following terms are used in this chapter of development of stability proofs, somewhat similar 

tothose defined in Equation (5.19) of Chapter 3: 

e1 = x(m,n) - x1(m,n) 

ewf w(m, n) - w1(m, n) 

EsJ(m) = XDAo(m) ~- x1(m, 0) 

Ews1(m) = 'WDAo(m) -w1(m,O) (5.19) 

where, in this case, xvAo(m) is the state.estimates of the Discrete Adaptive Observer. The proof 

of convergence for the Adaptive Parallel Observer Systems involve manipulations of Lemma (2) and 

the use of stability analysis based on eigenvalues. In addition, it also assumes the stability of the 

DAO as given in [48]. 
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The Fast Observer from Equation (3.27) is 

x1(m,n+l) 

w1(m,n + 1) 

iiJ(m,n) 

where 

= {. €8 J(m), if ri = 0 
EsJ(m,n) 

0, if n = 1, 2, .,. k - 1 

"' (m n) = { EwsJ(m), if n = 0 
'-wsf , 

0, if n = 1, 2, ... k - 1 

(5.20) 

(5.21) 

Assumption 8. All of the necessary requirements for the stability of the Discrete Adaptive Ob-

server, as described in [48] are satisfied. 

Denote DDAo(m) as the sum of the unmatched uncertainties and perturbations from the feedback 

term comparing the Discrete Adaptive Observer and the Fast Observer system during the ON sample 

points. In addition, denote 51(m, n), as before as the unmatched uncertainties during the INTER 

sample points, the following assumption is made: 

Assumption 9. The unmatched uncertainties DDAo(m) and 51(m, n) are bounded s.uch that 

(5.22) 

(5.23) 

where DDAOo and 510 are finite values. 
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Re-define the following parameters such that 

Jo = e1(m, 0) 

Wo ew1(m,O) 

fDAOo = 1:1(m,O) 

WDAOo Ewt(m,O) 

Ct DAO = Lt f DAOo + Ljw WDAOo 

Cw DAO lj fDAOo + ltw WDAOo 

Ao = IIAtllioo 

Bo IIB1II oo 

Fo llfoll oo 

CjDAOo IICtDAoll ioo 

CwDAOo ·- ICwDAol 

Wo = lwol (5.24) 

Theorem 2. Let Assumptions 3 through 5, 8, and 9 hold. In addition, it is assumed that k, the 

number of INTER sample point between two consecutive measurements, is a finite integer and that 

the matrix Ft in Equation (3.40) is stable. Given the system in Equation (3.31), the proposed 

Discrete Adaptive Observer described in Equations (5.8) through (5.18), and the Fast Observer 

System described in Equations (3.27) 0 (3.28), then 

1. The Fast Observer state and uncertainty estimates during the ON sample points are stable. 

2. The Fast Observer state and uncertainty estimates are stable during the INTER sample points. 

Furthermore, at a general time step n, the state estimate error has a finite bound of 

lle1(m, n + l)lloo < A~+l Fo + A~CJDA00 

1 An+1 
+ ;_ t [Bo(wo + CwDAOo) + 810 ] 
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Stable Stable L'.p 

Dynamic - Discrete - Fr -
System - Adaptive - -

Observer 

Figure 5.1: APOS ON Sample Stability 

and the uncertainty estimation error has a finite bound of 

lew1(m,n+l)I :S wa+CwDAOo (5.26) 

Proof: The proof for this theorem is very similar to that for the stability proof for the Parallel 

Observer System. First, stable estimates are shown for the ON sample points. The second part 

involves analyzing the error dynamics of the Fast Observer and calculating the propagated error 

during each of the. INTERsample points. 

Proof for Theorem 2: The ON Sample Points 

On the ON sample points, the Fast Observer may be represented as 

[ 

Ak-1 L 
f f 

+ 
lt 

(5.27) 

Referring to Figure (5.1), one may rewrite Equation (5.27) simply as 

(5.28) 

Using Assumption (9) and the fact that the system in Equation (3.18) is stable and so that the 

input to the system in Equation (3.18) is bounded, it can be inferred that b.p is also stable. Because 

of the stability of b.p, it can be seen that the overall dynamics described in Equation (5.28) is stable. 
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Proof for Theorem 2: The INTER Sample Points 

The stability proof for the INTER sample points for the Adaptive Parallel Observer System is 

very similar to that for Theorem 1. Using the error definitions given in Equations (5.19) and the 

Equations (3.30) and (3.46), e1(m,n) and ew1(m,n) are such that the error dynamics for the Fast 

Observer System with uncertainty estimation are 

ew1(m, n + 1) = ew1(m, n) - lJ EsJ(m, n) - lfw EwsJ(m, n) (5.29) 

Using the expressions defined for Theorem (2), one may calculate the resulting propagated error as 

n n 

At1 Jo -A'] CJDAO + LA} BJ Wo - LA} BJ CwDAO 
i=O i=O 

n 

- LA} 81(m,i) (5.30) 
i=O 

and 

ew1(m,n + 1) Wo -CwDAO (5.31) 

for the Fast Observer state estimates and uncertainty estimates, respectively. Utilizing Schwartz's 

Inequality and the triangle inequality, the error bound of Equation (5.30) is, most conservatively, 

n 

lle1(m, n + l)lloo < A~+l Fo + Ao CjDAOo + L Ab Bo Wo (5.32) 
i=O 

n n 

+ LAb Bo CwDAOo + LAb Ofo 
i=O i=O 

and 

lew1(m, n + 1)1 < Wo + CwDA00 (5.33) 
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Using finite series analysis, one can simplify the second and third terms of Equation (5.33). For a 

stable system, Ao < 1. Then, 

n 

LAb Bo wo 

n 

L Ab Bo CwDA00 

i=O 
n 

LAb810 
i=O 

l -An+1 
Bo wo 1 _ 10 

l -An+l 
= Bo CwDAOo . l-1o 

The resulting calculation of the error bcmnd of the F~st. Observer is 

lle1(m,n + l)lloo 

5.2.3 Maxirmim Error Bounds 

(5.34) 

(5.35) 

Q.E.D 

Remark 8. As.discussed previously; in the worst case scenario, the error in the state estimates for 

the Fast Observer. System continue to increase during the INTER sample points until the start of 

the next cycle (i.e., the next ON point). Under this condition, then, the greatest maximum bound 

for any INTER sample point would occur at n = k - 1, or such that (m, n + 1) = (m, k - 1) (at the 

time step just before the next ON point). 

Corollary 3. Given the results of Theorem 2 and the worst case scenario in which the maximum 

estimation error occurs at the time step oft= (m, k - 1) (described in Remark 5), an upper bound 

of the error estimates of the Fast Observer state estimates x 1( m, k - 1) is 

_.lle1(m, k- l)lloo < AtFo + At-2cJDAOo (5.36) 

l -At-1 . 
+ l - Ao [Bo(wo + CwDAO) + 810 ] (5.37) 

and the upper bound of the uncertainty estimation w f is 

lew1(m, k -1)1 < Wo + CwDAO (5.38) 
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Proof. The proof, here, is straightforward. Using the fact that, at the sample point prior to the 

following cycle period, as described in Remark (5), n = k - 2 in Equations (5.31) and (5.35). 

Substituting this relation into Equations (5.25) and (5.26), the result is the same as that described 

in Equations (5.37) and (3.68), respectively. D 

Remark 9. The reader should note, as before, that the above bounds may be extremely conservative 

and may not be of practical use except to show the that the INTER sample estimate bound is, indeed, 

finite. 

Corollary 4. If there are no unmatched uncertainties in the system and the Slow and Fast Observers 

have the same init.ial conditions, the error bound is further reduced to 

ller(m, k - l)lloo < { 

.k . 1-Ak-1 
A0 Fo+ Bowo · 1_110 , 

Fo + Bo(k - l)wo, 

if Ao=/ 1 

if Ao= 1 

lew1(m, k - 1)1 < wo (5.39) 

Proof. The proof, here, is again straightforward in that now, all terms except Ao, Bo, wo, and Fo 

are eliminated from Equations (5.37) and (5.38). D 

Remark 10. Furthermore, if the initial conditions of the actual states and uncertainties are the 

same as those for the Slow Observer and the Fast. Observer, the parameters Ao, Bo, wo, and Fo 

all become 0. Theses initial conditions settings, of course, result in perfect state and uncertainty 

. . . 

estimates. This can be easily seen, as all the remaining terms in Equation(5.39) are eliminated. 

leaving 

lle1(m, k - l)lloo = 0 

lew1(m, k - 1)1 = 0 (5.40) 

Remark 11. The reader should note that the stability proof of the INTER sample points of the 

Fast Observer System does not change, regardless of whether the Discrete Adaptive Observer or 

the Slow Observer is implemented, so long as the observer being used is stable. This infers the 
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fact that the Parallel Observer System with the Fast Observer System may be used with any stable 

"feedback" observer, such as the Slow Observer System and the DAO. 

An important note here is that the overall stability· for the Adaptive Parallel Observer System 

is guaranteed only if the DAO is also stable, as inferred in Assumption 8. The DAO, however, 

does not necessarily guarantee that the a.ugmented state ( to facilit1;1,te matched uncertainty estima-
' . 

t~on) of the Discrete Adaptive Observer )ViH remain stable. Therefore, if the augmented state form 

is, in fact, applied to the APOS, there is no guarantee that the Discrete Adaptive Observer will 

interpret the matched uncert.ainties as contributions to the matched uncertainty term w(m) and 

that it will not interpret these specific uncertainties a:s ~arameter changes or mismatches in system 

parameters. Furthermore, because.the DAO assumes that any changes in the system are a result of 

changing system parameters, the DAO is expected to be very susceptible to noise and other external 

disturbances. 

77 



Chapter 6 

Implementation of an Adaptive 

Parallel Observer System to a 

Hard Disk Drive System 

6.1 DAO Implementation Issues 

In the set of simulations performed in this chapter, it is seen that the DAO may either be tuned 

specifically for the accuracy of the state estimates at the expense of oscillating parameter estimates, 

or it may tuned for the smooth convergence of the parameter estimates but with slower state estimate 

convergence. For the purposes of the following simulations, a "middle" ground is attempted in that 

the state estimation is relatively accurate while preventing excessive oscillation of the parameter 

estimates. 
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6.2 Implementation of. the DAO to a Second Order Reso-

nance Model 

To illustrate the potential benefits of the Adaptive Parallel Observer System, the same second order 

resonance model used in Chapter 4 is used in this section to analyze the effectiveness of the Discrete 

Adaptive Observer. In so doing, the results of the DAO are compared to that of the Slow Observer 

System. In addition, a comparison of the DAO parameter estimates to the actual estimates are 

made. Note that these set of simulations are of single rate at the output measurement sampling 

period. 

6.2.1 The Resonance Order Model 

The same second order resonance model R(s) used in the HDA simulation in Chapter 4 is used for 

this example. That is, R(s) is such that 

R(s) 
w2 

n 

s2 + 2(wns + w~ 
(6.1) 

where, again, the natural frequency Wn and damping ratio ( are, respectively, 1500rad/s and 0.10. 

The system is discretized at the measurement sample rate of T8 = 350µs and the resulting state 

space matrices are 

A l 8.6990e - 01 

· -7.1370e + 02 

B l l.3010e - 01 l 
7:1370e + 02 

6.2.2 The DAO System Model 

3.1720e - 04 l 
7.7473e - 01 

(6.2) 

The input into the system is composed of two sinusoidal inputs, shown in Figure 6.1, such that 

u(t) = sin(535t) + sin(615t). There are no disturbances added to the system. Therefore, the 

Discrete Adaptive Observer does not have an augmented state form. That is, since there is no need 
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Figure 6;1: Input Motor Current to a Second Order Resonance System 

for matched llncertairtty esti~ation, the matched uncertainty term w(m) is not included as part of 

the state matrix. 

The SIMULINK diagrams of the general simulation of the DAO applied to this second order 
. . . 

resonance model and the resonance model; itself, are shown in Figures 6:2 and 6.3, respectively'. The 

general SIMULINK simulation of the Discrete Adaptive Observer is shown in Figure 6.4. For a more 

detailed look at the.simulation, the readeris referred to the appendix. 

As the original HDA system is not in the usable observer canonical output form, a transformation 

is needed, as described in Equations (5.5}through (5.7). In other words, a transformation inatrix 
'·.· 

Tis needed to tra,nsform the system in Equation (4.5) to the form of Equation (5.5) such that 
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Figure 6.2: DAO .Implementation on a Resonance Model 
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z 

Figure 6.3: The Discrete Resonance Model 
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xr(m) = Tx(m) and 

Br = T Bs 

Cr = C y-i = [ 1 0 ] (6.3) 

Using the method used in [49], the transformation matrix is given: such that 

T = [ 1 0 ] · [· C l 
a1 1 . CAs · 

(6.4) 

The resulting system for the Discrete Adaptive Observer (DAO) is as follo.vs: 

__ -[ L6446e + oo 1.0-o_oo
0 

__ e __ + o_ o l -Ar =TAT.:...1 

~9.0032e - 01 . 

BT= TB - [ ::::::: :: l 
Cr = cr-1 [ 1 o ] (6.5) 

where 

[ 
l.OOOOe + 00 . 0 · ] 

-7.7473e-01 3.l720e- 04 
T = (6.6) 

In addition; the DAO parameters are initialized as follows: 

. ¢(0) o4xl 

r(O) d2 14 

,\ = v'D.5 

p(O) = o4xl 

d = 10 (6.7) 
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The state variable filter F is chosen, following the example of Suzuki et al., to be 

F = [. l.4900e +00 l.0000
0
e + 00 l 

-5,5000e - 01 
(6.8) 

The Slow Observer System is also implemented in this simulation of the resonance system to compare 

with the DAO. However, as in the previous set of simulations, the estimated parameter values are 

used. That is, 

( = 0.85 ( 

Wn = 0.85wn (6.9) 

for the observer estimated model 

R(s) 
A? w;;, 

(6.10) 

The Slow Observer System is also applied in this simulation in the augmented format, as with the 

DAO, of Equation (3.2) where the observer gains Ls are chosen so that the observer poles are at 

[ le - 8 ± 5e - 8i le - g ] . The resulting gain matrix is 

2.7383e + 00 

5.6753e + 03 (6.11) 

5.3019e + 00 

6.2.3 Resonance System Simulation Results 

The simulation results of the Discrete Adaptive Observer (DAO) System and Slow Observer System 

(SOS) position estimates are shown in Figure (6.5). The DAO estimate converges directly to the 

actual position. Although the Slow Observer System allows for the estimation of matched uncer-

tainties, it does not converge as quickly as the DAO because its design does not take into account 

any unmatched uncertainties. 

The velocity estimate of the DAO is shown in Figure 6.6. There is a large initial transient where 

the Discrete Adaptive Observer is initializing itself and reacting to different initial conditions than the 

actual system. It should be noted that this transient behavior is inherent to generaladaptive systems. 
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Figure 6.5: Actuator Position Output and Estimates 

In addition, because of the relatively large difference between the estimated initial conditions and 

actual initial conditions, this transient is much more amplified. After the initial transient, however, 

the DAO converges to the velocity output. 

The comparative results between the Discrete Adaptive·Observer and the Slow Observer System 

are shown in Figures 6.7 and 6.8. The first plot confirms thatthe DAO position estimate error 

converges quickly to 0. The latter plot shows the initial DAO transient, as mentionecl before, and 

then the decrease in error: Both plots show the SOS estimates converging to th~ actual states. 

Because it cannot adjust itself as quickly to the mismatched system parameters, however, the speed 

of convergence of the DAO l.s much quicker than that of the Slow Observer System. 

Simul~tions of the DAO paraineter estimates are showri in Figures 6.9 through 6.12. It can 

be seen that not only does the DAO position estimate converges quickly and that of the velocity 

estimate converge fairly quickly ?,fter the initial transient, but the estimates of the system parameters 

also settle to actual values. This is an added advantage over the original Slow Observer System in 

that corrections in parameter values are adjusted by the Discrete Adaptive Observer, while the Slow 
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Figure 6.6: Actuator Velocity Output and Estimates 

sos\ DAO 

ll. -0.5>-: . 

-1L-~~.L-~~.L-~~.L-~~.L-~~-'-~~-'-~~....L~~--'-~~~~~~ 
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 O.D18 0.02 

Time (sec) 

Figure 6.7: DAO and Slow Observer System Position Estimate Errors 
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Figure 6.8: DAO and Slow Observer System Velocity Estimate Errors 

Observer System can only adjust itself via its observer gain . .In addition, any additional changes to 

the system will not cause as great a transient,. as seen in the initialization, as, assuming the DAO 

has already converged to actual state estimate values, the DAO and the changing system will start 

with the same initial conditions. 

6.3 Implementation of the APOS to the IBM HDA 

The DAO algorithm as presented is implemented exactly on the IBM magnetic Head/Disk Assembly 

from Chapter 4. The sam:e concUtions. are applied except that the input current to the power 

amplifier is changed to a pseudo random binary input signal. This is to supply a sufficiently rich 

input signal to satisfy the necessary con_ditions for the stability of the Discrete Adaptive Observer 

(DAO) implemented in the Adaptive Parallel Observer System (APOS). 

The same matched uncertainty signal is also being used in this example, as in Chapter 4. In 

addition, the simulations are being run with the same augmented state form to allow for matche_d 

uncertainty estimation. It should be noted, however, that the DAO does not specifically account for 
J . 
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Figure 6.10: DAO Parameter Estimate of a2 
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either matched uncertainties or the augmented state form. However, for purposes of comparison to 

the example of Chapter 4, these conditions are being consistently implemented. 

As in the previous set of simulations, the APOS is compared to the single rate Slow Luenberger 

Observer and the Fast Luenberger Observer. To compare the POS to the modified structure APOS, 

the POS's Slow Observer System state estimates are showri with those of the APOS' Discrete 

Adaptive Observer (DAO) state·estimates. 

6.3.1 DAO Implementation Issues for the IBM HDA 

The DAO algorithm as presented is implemented exactly on the IBM magnetic Head/Disk Assembly 

from Chapter 6· as described in -Equations (5.$) through (5.18). However, to prevent unneeded 

parameter adaptation during times when the parameter estimates have already converged to their 

respective values, the parameters, according to the magnitude of the output estimation error at the 

previous sample time step, are held constant: This error, referred to as the error threshold ethresh, 

is set to le-6 inches for all of the simulations shown. This also prevents unnecessary parameter 

estimate oscillation due to the DAO continuously trying to obtain better parameter estimates when, 

in fact, it may not be possible. 

_ In addition, the output measurement y(m + 1) as needed in Equation (5.17) is assumed to be 

unavailable and that only y(m) may be used for estimation purposes. In effect, the parameter 

estimates being used for the observer is p(m -1) instead of p(m). This result, though, merely means 

that the parameter estimates obtained shows a one measurement time step delay, which should not 

noticeably affect the overall disk drive simulation. 
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6.3.2 The HOA System Model 

In this simulation, as in Chapter 4, the same actuator and resonance dynamics from the IBM 

magnetic Head/Disk Assembly system are used as the simulation: 

x1 (t) 0 1 0 0 X1 (t) 0 

x2 (t) -~ _..Jb,__ 1 0 x2(t) 0 
Mact Mact Mact 

= + u(t) 
x3 (t) 0 0 0 1 X3 (t) 0 

:i:4 ( t) 0 0 -w; -2(wn X4(t) K1w; 

y(t) [ 1 0 0 0 ) (6.12) 

where Wn = 350rad/s and ( = 0.30. 

To illustrate the effects of the new input, the matched uncertainties, .and the unmodeled dynamics 

on the actuator output, a plot of the actuator position output under each of these conditions is shown 

in Figure 6.13, and those for the actuator velocity are shown in Figure 6.14. 

6.3.3 The DAO System Model 

The DAO system is applied to the IBM magnetic Head/Disk Assembly with the presence of the 

same matched and unmatched uncertainties as before. As in the case as the of the POS, the APOS 

is also augmented to facilitate matched uncertainty estimation. The general SIMULINK simulation 

of the Adaptive Observer System is shown in Figures 6.15 and 6.16. For a more detailed look at the 

simulations, the reader is referred to Appendix A. 
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The same model is used in this example simulation as in Equation (4.5) of Chapter 4. That is, 

i:1 (t) 0 1 0 0 

x2(t) Ket bv 1 0 - Mact - Mact .Mact 

x3(t) 0 0 0 1 

x4(t) 0 0 ,2 
-wn -2(wn 

y(t) [ 1 0 0 0 ] 

X1 (t) 

x2(t) 

X3(t) 

X4(t) 

where(, wn, and u(t) are such that 

( 0.85 ( 

Wn = 0.85wn 

u(t) = im (t) 

X1 (t) 0 

x2(t) 0 
+ u(t) 

X3 (t) 0 

X4(t) K1w;, 

(6.13) 

(6.14) 

It should be noted that the design of the DAO does not necessarily take into account the matched 

certainties of the system, regardless of whether or not the system is augmented to allow for uncer-

tainty estimation, as these conditions do not satisfy those stated in the proof for stability in [48]. 

As the original HDA system is not in the usable observer canonical output form,· a transformation 

is rieeded, as described in Equations (5.5) through (5.7). In other words, a transformation matrix T. 

is needed to transform the system in (4.5) tQ the form of (5.7) such that 

1 0 0 0 0 C 

a1 1 0 0 0 CAr 

T a2 a1 1 0 0 C[Ar]2 (6.15) 

a3 a2 a1 1 0 C[Ar]3 

a4 a3 a2 a1 1 C[Ar]4 

The resulting system for the Discrete Adaptive Observer (DAO), which replaces the Slow Observer 
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System, is as follows: 

where 

T = 

Ar= TAsT- 1 = 

4.9377e + 00 

-9.7614e + 00 

9.6579e + 00 

-4. 7825e + 00 

9.4825e - 01 

6.842le - 09 

6.7586e ~ 08 

- 7.8710e - 10 

-6. 7014e - 08 

-6.6274e - 09 

Cr= C r-1 [10000) 

l.OOOOe + 00 0 0 

-3.9377e + 00 3.4999e - 04 5.0996e - 07 

5.8237e + 00 - l.0282e - 03 -4.8360e - 07 

-3.8342e + 00 l.OlOle - 03 -5.0993e - 07 

9.4825e - 01 -3.3189e - 04 4.8357e - 07 

In addition, the DAO parameters are initialized as follows: 

¢(0) = 010xl 

I'(O) = d2 lio 

>. = 0.55 

d = 10 

96 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

0 0 0 0 

(6.16) 

0 0 

5.8734e - 11 6.8421e - 09 

l.7299e - 10 7.4428e - 08 

-l.7453e - 10 7.3641e - 08 

-5.7194e - 11 6.6274e - 09 

(6.17) 



p(O) l [ABrr]i1 ] 

4.9114e + 00 

-9. 7611e + 00 

9.6579e + 00 

-4. 7825e + 00 

9.4825e - 01 

6.8421e - 09 

6.7586e - 08 

-7.8710e - 10 

-6.7014e - 08 

-6.6274e - 09 

(6.18) 

The state variable filter Fare arbitrarily chosen such that the resulting eigenvalues are 0.003±0.001, 

0.01 ± 0.002 and 0.0003. The resulting state variable filter is 

2.6300e - 02 1 0 0 0 

-2.4180e - 04 0 1 0 0 

F 8.9420e - 07 0 0 1 0 (6.19) 

-l.2872e - 09 0 0 0 1 

3.1200e - 13 0 0 0 0 

The same Fast Observer System model used in the example simulation in Chapter 4 is also 

implemented in this simulation. In addition, the same Fast Observer System observer gains in 

Equation ( 4.11) are used in this simulation as well. 

6.3.4 HDA Simulation Results 

The simulation results of the Adaptive Parallel Observer System position estimates are shown in 

Figure 6.17. There is a large initial transient where the Discrete Adaptive Observer is initializing 

itself. It should be noted that this transient behavior is inherent to general adaptive systems. In 
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Figure 6.17: Actuator Position Output and APOS Estimates 

addition, the parameter and state estimates are starting. with different initial conditions from the 

actual state and system parameters. A large transient is seen from the Fast Observer System because 

of the DAO's initialization period. After the DAO begins to converge to the actual position signal, 

however, it can be seen that the Fast Observer System position estimates converge also. 

Analogous results are obtained in the velocity estimates of the APOS, as shown in Figure 6.18. 

After the initial transient, both the DAO and the Fast Observer System converge to the velocity 

output. Again, it is clearly seen that the Fast Observer System is greatly affected by the accuracy 

of the state estimates of the driving observer which, in this case, is the DAO. 

To view the results with the comparitive Luenberver Observers between that of the APOS' Dis-

crete Adaptive Observer and the POS's Slow Observer System, the reader is referred to Figures 6.19 

and 6.20, where the position estimate errors and the velocity estimate errors are shown, respectively. 

Both plots show the initial DAO transient and then the decrease in error estimates of both the DAO 

and the Slow Observer System. The comparative results between the single rate Slow Luenberger 

Observer and Fast Luenberger Observer are shown in Figures 6.21 and 6.22. Again, the same results 
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can be seen in this set of comparisons. 

Typical simulations of the DAO parameter estimates are shown in Figures 6.23 and 6.24. The 

rest of the ten DAO parameter estimates may be found in the Appendix B. These simulations show 

that the parameter estimates vary little from their initial values and show no positive convergence to 

actual values. As pointed out earlier, however, the implemented DAO is not guaranteed to be stable 

for the case of augmented states or for matched certainty estimation, as is in this set of simulations. 

In addition, it is possible that the DAO has found other parameters that fit the model description 

and these set of parameter estimates simply do not happen to be the intended model parameter 

values. This reasoning is supported by the fact that matched uncertainties are introduced in the 

system, which may easily be mistaken by the DAO as a mismatch in system parameters. 

6.3.5 HDA System Simulation Results 

It is seen that the state estimates of the Adaptive Parallel Observer system, after the pass of finial 

transients, converges to those of the actual states, despite the added input disturbances and system 
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state augmentation. The transients are large but are indicative of general adaptive schemes and 

applications. These transients are magnified in these simulations due to the offset of initial state 

and parameter values between those of the APOS's Discrete Adaptive Observer and the actual 

system. Furthermore, it can be argued that, for the case of a disk drive system, any transients are 

insignificant because these transients disappear before the end of the computer system's "boot-up" 

period. 

The DAO's parameter estimates do not.converge to actual parameter values of the HDA system, 

possibly because stability and convergence of state and parameter estimates are not guaranteed 

under condition of state augmentation and added input disturbances. Yet, the state estimates still 

converge to actual state values. This infers that the DAO has found another set of Ar and Br 

parameters that satisfy state estimate convergence. 

It must be pointed out that tuning of the Adaptive Parallel Observer System, specifically of the 

Discrete Adaptive Observer is not a trivial matter. As discussed earlier in this chapter, a "tradeoff" 

exists between fast convergence of state estimates and parameter estimation oscillation. In addition, 

the added tuning parameter of the error threshold ethresh introduces further tuning complications, 

as there is also a tradeoff here between accuracy of estimation and estimation oscillation. The tuning 

of the DAO is especially critical, since the accuracy of the Fast Observer System estimates relies on 

the estimates of the Discrete Adaptive Observer. 

6.4 Summary Analysis of Simulation Results of the APOS 

It is shown in the simulations that the Adaptive Parallel Observer system may be very beneficial in 

providing convergent state and parameter estimates, as long as the implemented Discrete Adaptive 

Observer is reliable. This reliability is guaranteed, among other necessary conditions, when there 

are no external inputs or disturbances and when the augmented state form of the system is not 

used. This is not the case in the latter set of simulations. Large transients are observed in the 

initializations of the APOS but disappear in an appropriate range of time. 

The tuning of the APOS is difficult in that not only must the observer gains for the Fast Observer 
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System be chosen appropriately, but also the parameters >. and ethresh. These parameters must be 

chosen so as to sustain accurate state and parameter estimation without significant oscillation in 

parameter estimates. 
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Chapter 7 

Tuning of the DAO Parameters 

It is found that the DAO from Suzuki et al. is accurate and shows fast convergence of states and 

parameter estimates for a second order resonance model. However, finding the optimal observer 

parameters for the DAO is not trivial. 

The use of genetic algorithms in control applications is a relatively new concept. Furthermore, 

the added application of the genetic algorithm to tune state estimation parameters used for control 

applications is newer still. As a result of the difficulties in finding optimal observer parameters, a 

genetic algorithm (GA) is employed to automate this process. This GA uses the rank fitness method 

for the crossover selection process due to its simplicity to implement and its control over the selection 

process. This chapter presents the application of a genetic algorithm implemented off-line to obtain 

optimal observer parameters for the DAO. 

7.1 DAO Implementation Issues for the IBM HDA 

The DAO algorithm as presented is implemented exactly on the IBM magnetic Head/Disk Assembly 

as described in Equations (5.8) through (5.18). However, as before, the error threshold, ethresh, is 

implemented to prevent unnecessary parameter estimate oscillation due to the DAO continuously 

trying to obtain better parameter estimates when, in fact, it may not be possible. Also as before, 

the parameter estimates being used for the observer is p(m - 1) instead of p(m). 
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In this case, however, the IBM HDA model is scaled by time, input, and state values for numerical 

conditioning and for more effective implementation of the Discrete Adaptive Observer. The entire 

HDA model, for purposes of simulation, consists of the current input into the actuator and the 

fourth order model described in Equation (4.3). 

7.1.1 The Scaled Disc Drive Model 

Given that the state space representationof the HDA system is 

x Ax+Bu 

y = Cx 

the system is scaled using the following equations: 

where 

A 

[3 

c 

dX 
dr 

y 

= 

A+BU 

ex 

tmax[P]-l AP 

tmax[PJ- 1 BQ 

GP 
R 

X PX 

u QU 

y RY 

t 
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(7.2) 

(7.3) 

(7.4) 



and 

O(max \x1\) 0 0 0 

0 O(max\x2\) 0 0 
p = 

0 0 O(max \x3\) 0 

0 0 0 O(max \x4\) 

Q max\u\ 

R max\y\ (7.5) 

7.1.2 DAO Disk Drive Implementation 

The Discrete Adaptive Observer is applied to the disk drive system. The main emphasis of the 

following simulations is to show the performance of the DAO output and parameter estimates, given 

the implemented scaled model and the use of a genetic algorithm for optimal tuning of observer 

parameters. 

The SIMULINK simulation diagram of the overall system is shown in Figure 7.1, and the im-

plemented DAO is shown in Figure 6.15. For a detailed view of the specific parts of the DAO 

system, the reader is referred to the appendix. In this implementation, the DAO is running external 

to the system. For the system shown, k = 5 and T1 = 75 µs. These parameters are arbitrarily 

chosend. Furthermore, it should be noted here that the model described in [38] uses a single rate 

control/estimation strategy and that the sampling period used is 100 µs. 

The fourth order continuous time disk drive model is 

where 

0 

-3.3333e - 05 
A 

0 

0 

dX 

dT 
AX+BU 

.. y ex 

l.OOOOe + 00 0 

-8.3333e - 04 8.3333e - 01 

0 0 

0 -9.4090e + 01 
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0 

l.OOOOe + 02 

-1. 9303e + 01 

(7.6) 



and 

[tau U] 

Scaled Input 

,1----..-i y(m) 

Scaled IBM HOA 
, Discretized at Slow Sample Rate 

'---------------u(m) 

Adaptive Observer 
System 

Figure 7.1: The DAO Disk Drive Implementation 

0 

0 

0 

l.4114e + 06 

and the discretization of the system at the measured output rate is, 

X(m + 1) 

Y(m) = CX(m) (7.7) 

where As and Bs are the slow discretization matrices of the system described in Equation (7.6). 

l.OOOOe - 00 3.4999e - 02 2.0826e - 04 2.9425e - 04 

-l.1666e - 06 9.9997e - 01 l.4802e- 03 l.5146e - 02 
As 

0 0 -7.1019e - 01 -l.732le - 01 

0 0 l.6297e - 01 -6.7675e - 01 
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4.5322e + 00 

4.1529e + 02 

2.5653e + 04 

-2.4446e+ 03 

The DAO transformed As matrix, denoted by Ad is obtained by comparing coefficients of the 

characteristic polynomials of the given As and then parameters of Ad, which is in observer canonical 

form. Then, the transformation matrix T is found using Equation (5.5). In turn, the remaining 

DAO system parameters are calculated. The P matrix is an arbitrarily chosen stable matrix in 

observer canonical form. The roots of P are arbitrarily chosen to be 0.003 + 0.00li, 0.003 - O.OOli, 

0.01 + 0.002i, and 0.01 - 0.002i. 

Using the transformation T such that 

l.OOOOe + 00 0 

3.8697e - 01 · 3.4999e - 02 

-8. 7805e - 01 4.8542e - 02 

0 0 

2;0826e - 04 2.9425e - 04 

3.2446e - 05 4.0878e - 04 

-5.0883e - 01 l.7809e - 02 -6.7438e - 05 l.9462e - 04 

the DAO system model is as follows: 

Xd(m + 1) 

where 

1.9967 e + 00 l.OOOOe + 00 0 0 

0 -9.9709e - 01 

4.2747e - 12 

-6.3060e - 22 
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Ed 

Cd== C 

and 

2.6000e - 02 

7.6394e - 02 

7.6504e- 02 
== 

-l.7810e - 06 

-3.5733e - 17 

= [ 1 0 0 o] = C 

l.OOOOe + 00 0 

0 l.OOOOe + 00 

0 

0 -2.3400e :_ 04 

8.2400e- 07 

- l.0400e - 09 

0 

0 

0 l.OOOOe + 00 

0 0 

The parameter estimates for Ad and Ed are initialized to zero. 

7.2 Implementation of a Genetic Algorithm 

The tuning of the DAO is difficult in that decreasing ). causes the state and parameter estimates 

to converge at a faster rate. However, if the value of ). is too small, the estimates show significant 

oscillation and possible system instability. It is also found that decreasing ethresh guarantees more 

accurate state and parameter estimates, but decreasing it beyond a certain value results in excessive 

oscillations in the state and parameter estimates and eventual system instability. 

The genetic algorithm in this paper is applied as an off-line technique to choose optimal values of 

>. and ethresh· The genetic algorithm (GA) follows the standard rank fitness method format with a 

few exceptions. The first exception is that there is .a separate mutation multiplier for each parameter, 

since each parameter must search through a different range of values. It should be noted that the 

probability of a mutation occurring is set. at 10%. Second, whenever an intermediate generation is 

created, it is added to the old generation and all values are retained to create the new generation. 

The reason for this implementation is so that a history of parameters may be viewed, along with any 

existing trends. Third, instead of having a predetermined value of the cost function that terminates 
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the process, the GA stops once the two hundredth generation has been evaluated. These exceptions 

combined with the basic logic behind the genetic algorithm are converted into a code· [50] written 

for MATLAB to tune the parameters of the observer. (The reader is referred to the appendix for 

more information.) 

The individual is the ordered pair(>., ethresh), ~here the elements are the two design parameters 

of the DAO. The genetic algorithm uses the cost function .:f. Here, .:J is a function of the output 

estimation error and its derivative such that 

T,n'az 

.:J L [ei(i)ey(i) + ei(i)ev(i)] 
i=O 

ey(i) Y(i) - Y.(i) 

ev(i) V(i) - V(i) (7.8) 

It should be noted that since the GA is applied as an off-line technique to choose observer 

parameters for the DAO, it is assumed only for the implementation of the GA that the output 

of both the scaled position Y and velocity V ar.e known to take into account state and parameter 

oscillation errors. ff, in fact, the GA is im.plemented on-line, then the quantity (ey(i)-ey(i-1))/ flt 

may be used in place of ev(i). 

The initial population is set to· 

Initial Population .·· = 

( 0.78215, 3.1124e - 6) 

( 0.68451, Ll410e ,.__ 4) 

( 0.59632, 2.1203e - 2 ) 

( 0.46980; 2.9012e - 1 ) 

.. (0.46980, 3.1124e - 6) 

( 0. 78215, 2.9012e - 1 ) 

(7.9) 

The mutation rate is set to 0.92651 and 0.8 for >. and ethresh, respectively, and the algorithm ends 

within 200 generations. In addition, the bounds of>. and ethresh are set such that 0.40 ~ >. ~ 1 

and O ~ ethresh ~ 0.3 for stability reasons. The results of the rank fitness method of the genetic 

algorithm after 9 complete simulations yield consistent values of 0.49476 and O for >. and ethresh, 
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respectively. Note that the value of ethresh obtained is an expected result, since no noise is added 

to the HDA system. 

7 .3 Simulation Results 

The state variable filter Fis arbitrarily chosen such that the resulting eigenvalues are 0.003 ± O.OOlj 

and 0.01 ± 0.002j. The Discrete Adaptive Observer System is implemented on the IBM HDA with 

no added disturbances. In addition, .the input to the HDA system is a pseudo-random binary input. 

The design parameter values for .X and ethresh obtained by the genetic algorithm are applied. Figure 

7.2 shows the response of the actual position and that of the position estimate, where one sees that 

the output estimate matches well with the actual output. For a more detailed view, the reader is 

referred to Figure 7.3, where the error estimation can be seen more clearly. Here, it is shown that 

the DAO has a noticeable transient in the beginning of the simulation. This transient behavior, 

however, is expected, as this characteristic is indicative of most adaptive systems. After the initial 

transient, the estimate error converges directly to zero. 

Figure (7.4) shows the results of the actual velocity and that of the velocity estimate. It is seen 

that the velocity estimate has a noted amount. of oscillation during the characteristic "transient" 

phase. However, the velocity estimate does, in fact, converge to the actual velocity. The character

istics of the velocity estimate are seen more clearly in Figure 7.q, where the velocity error estimate 

is shown. Here, the large oscillations are seen. In addition, the negligle oscillations, as the error 

estimate proceeds to converge to zero, exist but are just barely detectable. 

A typical response of the parameter estimates for Ad is: represented for parameter ci1 as shown 

in Figure 7.6. All parameters values converge .to actual values very quickly after the passing of the 

initial transient period. Convergence of all the parameter estimates occurs concurrently, which is 

at the time period shortly following the characteristic transient period. Once parameter estimates 

are within the range of actual parameter values, convergence is maintained with no noticeable 

oscillations. 

A typical response of the parameter estimates for Ed is represented for parameter b1 as shown in 
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Parameter Actual Estimate % Error 

a1 3.2729e+00 3.2469e+00 7.9439e-01 

a2 -4.2029e+00 -4.2027e+OO 5.5667e-03 

Q,3 2.5870e+00 2.5870e+OO 3.0577e-05 

Q,4 -6.5703e-01 -6.5703e-01 l.3305e-06 

1, 

b1 2.8360e-01 2.8360e-01 9.8869e-06 

b2 2.8040e+00 2.8040e+00 7.8697e-07 

b3 2.5735e+OO 2.5735e+00 4.lOOle-07 

b4 2.2019e-01 2.2019e-01 l.2167e-05 

Table 7.1: Parameter Values and Estimates 

Figure 7. 7. The same results are obtained for those parameter estimates of Bd as obtained for Ad. 

There is no estimate oscillation after the initial transient, and convergence is quickly established and 

maintained. 

The actual parameter values, along ·with the final parameter estimates are shown in Table 7.1, 

. where the final percentage errors of the estimates are also calculated. The largest error occurs in the 

estimation of a1, which is 0.8%. All other parameter estimates are accurate to at least 4 significant 

figures. 

. . . 

7 .4 Effects of Noise on. the APOS 

For this implementation, t~o sets of simul~tioiis are run on the IBM HDA. The first set of simulations 

involves the implementation of the DAO where the observer parameters A and ethresh are tuned by 

the genetic algorithm with the assumption of a noise-free signal. These same observer parameters 

are used in the second set of simulations, but noise simulated by a normally distributed random 

~umber generator with a st.andard deviation of 5% of a track width is applied to the disk drive. The 

second set of simulations involves the disk drive in the presence of the same noise as in the previous 

set of simulations, but the DAO observer parameters are re-tuned with the genetic algorithm to 
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include the added noise. 

The actual output and output signal with noise is shown in Figure 7.8, along with the DAO 

position output estimate. It should be noted from this figure that the noise significantly overpowers 

the true position signal. lt"is shown that the DAO is significantly affected by the noise, which is 

not surprising, considering the level of the noise compared to the true position output. As can be· 

seen more clearly in Figure 7.9, the output estimate error is notably larger than the level of even 
. . . . . . 

. . . 

that of ~he ·~oise in the me~surement signai. This same characteristic also occurs in the velociy 

error estimate, as shown in Figure 7.10. In Figures 7.11 and 7.12, one sees that becau.se the DAO . . 

estimates are significantly inaccurate, the output and velocity estimates of the Fast Observer System 
. . 

are, in turn, significantly oscillatory and Unr.eliable, but they are stable. 

Sample responses of the parameter estimates for )h and BT for the case of added noise and 

without GA re-tuning ate shown in Figure 7.13 and 7.14, where the parameter estimate responses 

of a1 and b1 , respectively, are given. (The readl:lr is referred to the appendix for the responses of the 

remaining parameters.) All parameter estimates of )h are significantly inaccurate and do not even 
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oscillate about its true values. The parameter estimates of Br oscillate about their actual values, 

although the rriagnitudes of oscillation are also significant. 

It is seen that noise does greatly affect the final parameter estimates. The actual parameter 

values, along with the final parameter estimates are shown in Table 7.2, where the final percentage 

errors of the estimates are also calculated. Here, the parameters estimate errors are as large as 

In the second set of simulations, where the DAO is re-tuned by the GA to run in the presence of 

the noise, the cost function .J is used such that 

T,naz 

.J · L [e~(i)ey(i) + e;'(i)ev(i)] 
i=O 

ey(i) = y(i) - y(i) 

ev(i) = [ ey(i) - ey(i - 1) ) / 6.t. (7.10) 

Note that this form of the cost function is iised so as to fairly correlate the effects of the noise 

on the velocity output without assuming that the velocity output is known. The result of the 
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Parameter Actual Estimate % Error 

a1 3.4309e+00 · -3.4237e-01 l.0998e+02 

a2 -4.7318e+OO -3.0733e-01 9.3505e+Ol 

a3 3.1708e+OO '-l.9957e-01 l.0629e+02 

a4 -8.6994e-01 3.5842e-01 l.4120e+02 

b1 2.9925e-01 6.795le+05 2.2707e+08 

b2 3.1179e+00 -L1369e+06 3.6462e+07 

b3 3.0303e+00 -3. 7333e+05 l.2320e+07 

b4 2.7515e-01 l.8997e+06 6.9044e+08 

Table 7.2: Parameter Values and Estimates (With Noise) 
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GA simulation using this form of the cost function yield values of 1 and l.65e-2 for .X and ethresh, 

respectively. 

As can be seen from Figure 7.15 and 7.16, the DAO and FOS estimates still remain relatively 

inaccurate, as expected, due to the significance of the noise level compared to the actual output 

position. However, the estimates do appear to start to converge to the actual position and velocity 

values, respectively, as the oscillatory behavior does decrease signficantly with time. As seen in 

Figures 7.17 and 7.18, whe_re the position and velocity estimat.e errors are shown, respectively, there 

is large oscillation in the initial transient phase, but the oscillations decrease dramatically with time. 

In fact, the magnitude of oscillation of th~ position error deer.eases to below the magnitude of that 

of the noise in the output signal. 

Sample responses of the parameter estimates for Ar and Br for the case of added noise and 

with GA re-tuning are shown in Figure 7.19 and 7.20, where the parameter estimate responses of 

a1 and b1 , respectively, are given. (Thereader is referred to the appendix for the responses of the 

remaining parameters.) The responses are more or less the same as those without the retuning of 
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the DAO, except that there is less oscillation present and the overall respons:e of the DAO is slower. 

This, of course, is expected, as A is now set to 1. 

The actual parameter values, along with the final parameter estimates are shown, in Table 7.3, 

where the final percentage errors of the estimates are also calculated. The errors are significantly 

less than that without retuning but are still unacceptably high, as high as over 5000%. 

To Summarize, it appears that the Discrete Adaptive Obs~rver is very susceptible to noise, as 
. . 

expected. For one, the noise levels in these simulations are significant compared to the actual position 

output. In addition,. the DAO assumes that any perturbations in the system are assumed to be a 

result of system parameter changes, thereby forcing itself to try to adapt to the noise. However, with 

the consideration of the comparitively significant noise levels, the APOS state estimates are not too 

intolerable. It is also seen that re-tuning the DAO with the use of the genetic algorithm improves 

overall state and parameter estimates significantly. In fact, the DAO position estimate appears to 

converge to the actual position value, and its position estimate error decreases to levels below that 

of the corruptive noise. With or without retuning with the implemented genetic algorithm, however, 
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Parameter Actual Estimate % Error 

a1 3.4309e+00 -3,0645e-02 1.0089e+02 

a2 -4. 7318e+oo . 1.2475e-01 1.0264e+02 

a3. 3.l 708e+OO -1.0127e-01 1.0319e+02 

a4 -8.6994e-01 1.0971e-01 1.1261e+02 

bi 2.9925e-01 · 5.9824e+OO 1.8991e+03 

b2 3.1179e+00 -9.8094e+00 4.1461e+02 

b3 · 3.0303e+00 2.0018e+Ol 5.6058e+02 

b4 ·2. 7515e-01 1.4526e+Ol 5.1794e+03 

Table 7.3: Parameter Values and Estimates (With Noise and Re-tuning) 

. . . . . . 

the parameter estimates continue to be very inaccurate, which is expected, as any such disturbances 

that do exist are interpreted by the DAO as system parameter changes. 

7.5 . Summary of Results 

Simulation results show that the genetic algorithm used is effective in automating the process of 

choosing optimal observer gains off-line for the Discrete Adaptive Observer. Accurate estimation of 

state outputs and especially of system parameters is achieved from the DAO as a result of the GA 
. . 

. . - ' . . 

chosen optimal observer gains. ·It is found, however, that the DAO is greatly susceptible to noise, as 

it interprets any noise and other disturbances as changes in system parameters. However, the state 

estimates are significantly improved after retuning the GA with the presence of noise, although the 

parameter estimates still continue to be inaccurate. 
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Chapter 8 

Damping Ratio and Aliased 

Resonant Frequency 

Approximation for the IBM HDA 

The Parallel Observer System (POS) is presented in attempts to help solve the dual problem of 

needing an estimation technique of a multirate architecture while taking into account the effects of 

aliased output measurements. Eventually, a scheme of not only adequate state estimation is desired, 

but accurate parameter estimation is also desired so as to estimate any modeling errors and/or 

parameter changes, especially those of aliased resonance frequencies. 

In this chapter, the Discrete Adaptive Observer is applied to the same form of the IBM Head/Disk 

Assembly System as the last chapter to exemplify how system parameters, namely aliased resonant 

frequencies, may be extracted from the DAO. A neural network is trained for function approximation 

using the system parameter estimates obtained by the DAO and by using a priori information about 

the disk drive model. This neural network is primarily developed in attempts to uncover estimates 

of aliased resonant frequencies and of damping ratios in the disk drive system. 
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8.1 Uniqueness Relationship of the DAO System Parameters 

A preliminary feasibility analysis is performed to determine whether the DAO system parameter 

values and the values of the resonant frequency and damping ratio share a unique relationship. 

Using a scaled model of Equation (6.12) with varying values of ( and Wn and the transformation 

relations in Equations (5.5) through (5.7); the relationships between the DAO parameters and the 

system damping ratios and n9-tural frequencies are determined. 

Figures 8.1 through SA.show the DAO parameters a1 through a4 as a function of the IBM HDA 
. . 

natural frequency and damping ratio. Likewise, Figures 8.5 through 8.8 show the DAO parameters 

b1 through b4 as a function of the disk drive natural frequency anq. damping ratio. As one may 

observe from these plots; using the. relationships of each of the DAO system parameters with the 

corresponding values of natural frequency Wn and damping ratio (, it may be possible to construct 

and train a neural network to approximate the resulting Wn and (, given accurate DAO system 

parameter estimates. 
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8.2 DAO Parameter Estimates at Aliased Resonant Frequen-

. c1es 

For purposes of performance analysis of the extraction of aliased resonant frequencies, two cases of 

natural frequencies are applied to the IBM HDA system. For both cases, the same sampling frequency 

is maintained, resulting in a fixed Nyquist frequency of l.4286 x 103Hz (8.976x 103rad/s) . In the first 

case, the applied resonant frequency is slightly aliased at l.5438 x 104Hz (9.7 x 103rad/s). In the sec-

ond case, the applied resonant frequency is moderately aliased at 2.0690 x 103Hz or (1.3 x 104rad/ s) . 

For both cases, the damping rat io is fixed at 0.0995. 

For these simulations, it is assumed that the true resonant frequency and damping ratio is 

approximately known. This assumption is valid, otherwise, it would be impossible to differentiate 

t he actual frequency from the infinite number of possible aliasing frequencies. As a result, this 

information is used for simulations in this chapter. More specifically, the actual values of Ar and 

Br are calculated with the knowledge of the true values of ( and Wn· The parameter estimates of 
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Ar and Br are initialized at 75% and 80%, .respectively, of their actual values such that at t=O, 

4.3377e - 01 

9.4900e - 01 

-2.7691e - 01 

-3.8163e - 01 
p(O) = 

3.6258e + 00 

l.6730e + 01 

l.2810e+ 01 

2.3074e+ 00 

In addition, for fairness to the DAO performance simulation, it is assumed that only the resonant 

frequency and the damping ratio are in question and that all other system parameters are well known. 

Second, the DAO is re-tuned to the case of a natural frequency of 9.7x103rad/s and a damping ratio 

of 0.0995. The genetic algorithm parameters are re-tuned by changing the initial population and 

the mutation rates. The resulting A and ethresh values are 0.49476 and 0, respectively. The same 

.observer parameters are used for both sets of aliased natural frequencies. Furthermore, as in the 

previous chapter, the DAO is performed on the scaled version of the IBM HDA with no added noise. 

8.2.1 Case I: Slightly Aliased Resonant Frequency 
.. . . . . ,, . 

Table 8.1 shows the results of the DAO parameter estimates for the case of a slightly aliased resonant 

frequency of Wn = 9.7x103rad/s. Despite the slight aUasing, theDAO is still able to estimate the 

system parameter.swell. In fact, the estimate errors are well under 1%, except for the estimate error 

of a1, which is at 4.2%. 

The extreme accuracy of the DAO parameter estimates under the condition of a slightly aliased 

resonant frequency may seem unexpected. However, as one may recall, the knowledge of the ap-

proximate values of the the aliased resonant frequency and the damping ratio is incorporated into 

the DAO by initializing the parameter estimates to the corresponding parameter values using these 
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Parameter Actual Estimate % Error 

0:1 6.1303e-01 5.8706e-01 4.2357e+00 

0:2 l.2650e+00 l.2652e+00 l.4864e-02 

a3 ~3.6922e-01 -3.6923e-01 2.6559e-03 

a4 -5.0883e-01 . -5.088le-01 4.2006e-03 

b1 4.5322e+oo· 4.5322e+00 5.903le-05 

b2 2.0912e+Ol . 2.0912e+Ol 7.1554e-04 

b3 l.6013e+Ol l.6012e+Ol 3.6818e-03 

~4 2.8842.e+OO 2·.8841e+00 3.0130e-03 

Table 8.1: Parameter V~ues and Estimates for Wn = 9.7e3 rad/sec 

approximate values .. In addition, the DAO is solely driven by a parameter update law. Under this 

condition, it is logical that, despite the presence of an aliased resonant frequency, the parameters 

converge to the system parameters corresponding to the closest aliased frequency, rather than to 

any other aliased frequency. 

In this case the parameter estimates are initialized corresponding to the true aliased natural 

frequency of 9.7x103rad/s, but with a 20%-25% error. Therefore, it is logical that that the pa

rameter estimates eventually converge to the estimates associated with the 9.7x103rad/s frequency, 

as opposed to an aliased frequency of 19,4x103rad/s, for example, or ariy other integer multiple of 

the actual frequency. Of course, this may not be the general case if the actual parameter values 

corresponding to two sets of aliased frequencies are similar. 

8.2.2 Case II: Moderately Ali~sed Resonant Fr·equency 

Table 8.2 shows the results of the DAO parameter estimates for the case of a moderately aliased 

resonant frequency of Wn = 1.3 X 104rad/s. Despite the moderate aliasing, the DAO is still able to 

estimate the system parameters well. In fact, the estimate errors are well under 1%, except for the 

estimate error of a1 , which is at 1.5%. 
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Parameter Actual Estimate % Error 

i'ii l.7661e+OO l.7401e+00 1.4722e+OO 

ih -9.3654e-01 -9.3630e-01 2.5500e-02 

a3 5.7481e-01 5.7481e-01 l.5391e-03 

Q,4 -4.0435e-01 -4.0434e-01 9.2619e-04 

b1 6.0562e+00 6.0562e+oo 3.9058e-05 

b2 l.1587e+Ol l.1587e+Ol 2.9606e-05 

b3 4:3091e+00 4.3091e+OO 3.6746e-04 

b4 3.1332e+OO 3.1331e+00 l.1682e-03 

Table 8.2: Parameter Values and Estimates for Wn = l.3e4 rad/sec 

As in Case 1 of slightly aliased resonant frequency, it is seen that the DAO, after initializing 

the parameter estimates accordingly, is very accurate in estimating the true parameters, despite the 

moderately aliased resonant frequency. It shows that the parameter estimates eventually converge to 

the estimates associated with the 1.3 x 104rad/ s frequency. Again, this may not have been the case 

if the actual parameter values corresponding to the actual aliased resonant frequency were similar 

to that of another aliased frequency. 

8.2.3 . Aliased Resonant Frequencies in General 

For the general case of resonant frequencies ranging from 1650rad/s to 3.35x 104rad/s and damping 

ratios ranging from 0.011 to 0.191, the reader is referred to Figures 8.9 through 8.16. In these figure, 

the DAO parameter estimate errors are. shown as a function of the damping ratio and resonant 

frequency. 

It can be seen that estimate errors are minimal except about half the sampling frequency and most 

significantly about the actual sampling frequency. At the sampling frequency, since .the resonant 

frequency and the sampling frequency are identical, the output detects no changing response from 

the resonant frequency. In essence, any contributed response effected by the resonant frequency 
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Parameter Wn =WN Wn = 2 X WN Wn = 3 X WN Wn = 4 X WN Wn = 5 X WN 

a1 6.0613e+01 l.7328e+03 2.4387e+Ol 7.4993e+02 l.4274e+Ol 

a2 l.6872e+Ol l.1540e+03 3.5768e+Ol l.8299e+04 8.0756e+Ol 

0,3 5.3896e+Ol l.1774e+04 6.2254e+OO 8.6817e+04 l.1714e+Ol 

0,4 2.8253e+Ol 3.5138e+04 4.1404e+Ol 2.7627e+05 4.7624e+Ol 

b1 2.1258e-03 2.8729e+00 2.5352e-03 l.0138e+Ol 7.6416e-03 

b2 4.3135e+00 2.3139e+04 l.0193e+Ol l.9155e+04 l.0832e+Ol 

b3 2.2666e+Ol 2.1630e+04 2.6234e+Ol 8.2009e+04 2.9741e+Ol 

b4 2.8271e+Ol 3.5097e+04 4.1367e+Ol 2.7565e+05 4.7303e+Ol 

Table 8.3: Percentage Estimates Errors for Wn = k x WN, k = 1, 2, 3, 4, 5 

cannot be detected in the output measurement. 

For the resonant frequency at the Nyquist frequency w N, which is half of the sampling frequency, 

there still is a set of intermediate points available, resulting in the presence of a small degree of 

resonance information to the otherwise undetectable signal. Because of this, although there is 

somewhat of a significant estimate error, the error is not nearly as large as that corresponding to 

resonant frequencies at the sampling rate or multiples thereof. 

Table 8.3 shows a summary of estimate percentage errors for resonant frequencies that are an 

integer multiple of the Nyquist frequency WN. The damping ratio for these simulations are set to 

0.06, as this is the damping ratio at which the highest errors occur. The simulations are performed 

for resonant frequencies up to and including 5 times the Nyquist frequency, as this is the limit at 

which the control input rate is aliased. As can be seen from the summary of errors, somewhat 

significant errors occur at odd integer multiples of the Nyquist frequency but very large errors occur 

at even integer multiples of the Nyquist frequency, which correspond to integer multiples of the 

sampling frequency. It is noted that these errors, although extrememly large, only appear at or 

about these critical frequencies. 

In short, except for the frequencies near or about the Nyquist frequency and especially the sam-
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pling frequency, or multiples thereof, the DAO provides highly accurate parameter estimate results. 

Most of these parameter estimates are well under 1 % error. Therefore, if a method of extracting 

the· aliased resonant frequencies along with. the damping ratio may be constructed, then using these 

accurate parameter estimate results with this method should yield accurate DAO estimates, as long 

as the resonant frequencies to be estimated are not within the range of any critical frequencies. 

8.3 The Applied Neural Network 

Assuming that accurate DAO parameter estimates are obtained, a neural network is constructed 

and trained to extract estimates of the system aliased r(:)sonant frequency and damping ratio. The 

neural network constructed and trained for this back propagation application is via the MATLAB 

Neural Network Toolbox [41]. The constructed neural network is chosen to be two layers for the 

sake of simplicity. There are eight inputs, determined by the eight system parameters for the fourth 

order IBM HDA model. The hidden layer is set to fifty neurons so as not to exceed reasonable 

computational limits. (It should be ii.oted that the number of neurons should be decreased, so as 

to avoid over parametrization.) A log sigmoid transferfunction is chosen for the first layer and a 

pure linear transfer function for the output layer, as suggested in [51]. There are two outputs in the 

neural network: one for the determination of Wn and the other for the determination of(. In the 

training of thi.s network, 500 tra,ining points are used, simulated in MATLAB with 300 epochs with 

a performance goal of O Mean Squared Error. 

8.3.1 Training 

For this network, the training occurs off ..:line and involves varying values of natural frequency Wn and 

damping ratio ( such that 1650 rad/s :=:; Wn :=:; .3.35 x 104rad/s and 0.011 :S ( :S 0.191. These ranges 

of Wn and ( are used to calculate the exact system parameters, the data presented in Figures 8.1 

through 8.8; as a function of Wn and (. In so doing, one obtains the set of training points where the 

input is now the true DAO parameters and the output is the true values of Wn and(. 
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Figure 8.17: Mean Squared Error during Training 

8.3.2 Training Analysis 

300 

Pre-processing of data, principle component analysis,· post-processing of data, and post-training 

analysis are performed throughout the duration of the training of the neural network. During 

the principle component analysis, MATLAB determines that half of the 8 parameter inputs are 

redundant. During the training of the network, the final performance goal of O Mean Squared Error 

is not met but, instead, reaches a Mean Squared Error of 5.5941e-7. The reader is referred to 

Figure 8.17 for the training results, where the response of Mean Squared Error with respect to the 

progression in epochs is shown. 

The results of the post-training analysis, where a regression analysis is performed, is shown in 

Figures 8.18 and 8.19 for the regression analysis of Wn and (, respectively. The regression analysis 

for both Wn and ( show a practically perfect correlation between the targets and actual output. 
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Parameter Actual Estimate % Error 

( 9.9500e-02 9.9531e-02 3.0737e-02 

Wn 9.7000e+03 9.6885e+03 l.1820e-01 

Table 8.4: Case I: Neural Network Parameter Values and Estimates for Wn = 9.7e3 rad/sec 

Parameter Actual Estimate % Error 

( 9.9500e-02 9.9447e-02 5.3178e-02 

Wn l.3000e+04 l.2997e+04 2.6157e-02 

Table 8.5: Case II: Neural Network Parameter Values and Estimates for Wn = l.3e4 rad/sec 

8.3.3 Results of IBM HDA System Parameter Implementation 

For testing of the neural network, the neural network is applied to the IBM HDA system parameters, 

assuming that the exact parameter values are known. The two cases are analyzed, where Wn = 

9.7 x 103rad/s for the first case and Wn = 1.3 x 104rad/s for the second case. Again, for both cases, 

( ~ 0.0995. The results for the first and second cases are shown in Table 8.4 and 8.5, respectively. 

For both cases it is seen that the neural network is highly accurate in extracting correct values of 

aliased natural frequencies and damping ratios. As noted, however, these extracted values are the 

result of perfect knowledge of the IBM HDA in the DAO system parameter form. 

For the general performance of the neural network for the case of varying resonant frequencies 

and damping ratios, the reader is referred to Figures 8.20 and 8.21. One sees that the neural network 

is highly accurate for all values of resonant frequencies and damping ratios, except for very small 

values of (, where the resulting error in damping ratio and natural frequencies is as high as 7% and 

25%, respectively. For these smaller values of(, however, the neural network may be re-trained 

specifically to concentrate on this smaller range. 
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Parameter Actual Estimate % Error 

( 9.9500e-02 9.9298e-02 2.0310e-01 

Wn 9.7000e+03 9.6840e+03 l.6505e-01 

Table 8.6: Case I: Extraction of ( and Wn from DAO parameter estimates for Wn = 9.7e3 rad/sec 

Parameter Actual Estimate % Error 

( 9.9500e-02 9.9261e-02 2.4003e-01 

Wn l.3000e+04 l.2975e+04 l.8990e-01 

Table 8.7: Case II: Extraction of ( and Wn from DAO parameter estimates for Wn = l.3e4 rad/sec 

8.4 Natural Frequency and Damping Ratio Approximation 

of the IBM HDA 

The results of the neural network training are implemented on the final DAO parameter estimates 

on the scaled IBM HDA without noise for two cases: (1) Wn = 9.7 x 103rad/sec and (2) Wn :;= 

1.3 x 104rad/s. For both cases, the damping ratio ( = 0.0995. As the reader recalls, despite the fact 

that the resonant frequencies are both aliased, the DAO correctly determines the correct system 

parameter estimates to within at most 5% error. 

The results for the first and second cases are shown in Table 8.4 and 8.5, respectively. For the 

first case, the neural network determines that the damping ratio ( is 9.9298 x 10-2 and that the 

natural frequency Wn is 9.6840x103rad/s. For the second case, the neural network determines that 

the damping ratio ( is 9.9261x10-2 and that the natural frequency Wn is l.2975x104rad/s. From 

the results it is seen that the percentage error does increase, obviously, if the true parameter values 

are not used to extract the appropriate resonant frequencies and damping ratios. However, this 

increase is not noticeable, as the estimate errors of ( and Wn using the DAO parameter estimates 

still remain less than 1 %. 

For the general performance of the neural network using actual DAO parameter estimates, the 

reader is referred to Figures (8.22) and (8.23). Here, it is shown that the combined effort of the DAO 
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Figure 8.22: Errors for Extraction of ( Using DAO Parameter Estimates 

parameter estimates and neural network is highly accurate for all values of resonant frequencies and 

damping ratios, except for very small values of ( and, as expected, for values of Wn that lie near or 

on integer multiples of the Nyquist frequency. However, at very small values of(; the errors in this 

range of damping ratios are overshadowed by the large errors at resonant frequencies located near 

or at the system sampling frequency. 

8.5 Concluding Remarks 

Through the example of the IBM HDA, it is shown that the. Discrete Adaptive Observer may be 

substituted into the. Parallel Observer .System resulting in the Adaptive Parallel Observer Systems 

to obtain accurate values of damping ratios and aliased resonant frequencies. In the case of the 

IBM HDA, there does appear to be a unique relationship between the values of DAO parameter 

estimates and the values of ( and Wn· In addition, by using the. knowledge of the approximate values 

of the aliased natural frequency to initialize the DAO parameter estimates, the DAO is capable of 

accurately estimating system parameters, despite the presence of aliasing. It is seen, however that 
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Figure 8.23: Errors for Extraction of Wn Using DAO Parameter Estimates 

this is not the case for frequencies at or near the Nyquist frequency and especially the sampling 

frequency. 

By proper training of a neural network system, very accurate estimates of system damping ratios 

and natural frequencies may be extracted from DAO parameter esimtates, so long as the DAO 

parameter estimates are accurate. Therefore, accurate estimates of ( and Wn can only be obtained 

when Wn 3 jwN,j E Z+. 
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Chapter 9 

Conclusions and Future Work 

9.1 Conclusions 

A Parallel Observer System (POS) is proposed as a multirate estimation technique which takes into 

account periodically available output measurements. The Fast Observer is proven to converge to a 

stable Slow Observer during the ON sample points and provide stable state estimates during the 

INTER sample points with finite error bound. These results are illustrated with simulations of an 

IBM magnetic Head/Disk Assembly. It is seen that the accuracy of the Fast Observer is highly 

dependent upon the accuracy of the Slow Observer's state estimates. 
,, ' 

Furthermore, a modification of the Parallel Observer System is proposed where a Discrete Adap-

tive Observer (DAO) System is implemeritedto not 6nly provide stable state estimates, but also to 

estimate system parameters which may be initially incorrect or which may be changing during the 

control process. The overall modified Parallel Observer System, the Adaptive Parallel Observer Sys0 

tern (APOS), is proven to be stable and to provide convergent state and parameter estimates. The 

Discrete Adaptive Observer is applied to a second order resonance model and the Adaptive Parallel 

Observer is applied to the IBJ\A HDA. The simulations show that although large transients exist, 

state estimate do converge to actual values. In addition, given no additional input disturbances, a 

non-augmented state form, and an appropriately scaled system model, accurate parameter estimates 
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are obtained. 

The success of the APOS is highly contingent upon the accuracy of the applied DAO. With the 

application of a genetic algorithm to the implemented Discrete Adaptive Observer of the APOS, 

the tuning of observer parameters is a straightforward, automated task. In addition, with some 

prior knowledge of the system and using the DAO with a trained neural network system, accurate 

values of system damping ratios and aliased resonant frequencies may be obtained. This accuracy 

is achieved so long as the resonant frequencies are not integer multiple~ of the Nyquist frequency 

and especially not of the sampling frequency. and as long as the neural net.work is properly trained 

within the appropriate range of parameter values. 

9.2 Future Work·· 

Because the Discrete Adaptive Observer interprets any disturbances as system parameter changes, 
. . . 

the entire APOS is highiy susceptible to noise. In addition, the APOS is ~ot guaranteed stable under 

state augmentation to allow for matched uncertl:tlnty estimation. Therefore, future work involves 

the study of noise and its effects on the APOS and how the APOS may be modified so as to allow 

for matched uncertainty est.imation. In addition, for practical applications, it may be more suitable 

to apply another method, other than a neural network, for system parameter extraction, such as a 

polynomial fit· procedure. Hence, future work also involves investigating other types of numerical 

techniques for this: purpose. 
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Appendix A 

SIMULINK Implementation of the 

Discrete Adaptive Observer 

The following is a list of figures which illustrate the implementation of the Discrete Adaptive Observer 

in the Adaptive Parallel Observer System. Figure A.I give the general application of the DAO. 

Figure A.2 describes the simulation process for the adaptive variable z. Figures A.3 through A.5 

illustrate how the state variable filter matrix F is applied to calculate the adaptive parameters ¢1 

and ¢2 . Figure A.6 shows the calculation steps for the adaptive variable r. The calculation of the 

parameter estimates pare shown in Figure A.7. The state estimate x(m) and the output estimate 

y(m) are obtained by the SIMULINK blocks shown in Figures A.8 though Figure A.IO. 

The remaining figures in this section of the appendix describes the calculation of the values 

S(m)p(m). 
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Appendix B 

Adaptive Parallel Q,bserver System 

IBM HDA Parameter Estimate 

Results 

It should be emphasized that this application includes a system augmentation to allow for matched 

certainty estimation and that the DAO cannot guarantee stable results in this case. Figures B.l 

through B.4 represent the parameter estimation results of the AT matrix parameters when the 

Discrete Adaptive Observer is implemented on the IBM magnetic Head/Disk Assembly described in 

Chapter 6. 
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In addition, Figures B.5 through B.8 represent the parameter estimation results of the Br matrix 

parameters when the Discrete Adaptive Observer is implemented O!} the IBM magnetic Head/Disk 

Assembly described in Chapter 6. 
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Appendix C 

Discrete Adaptive Observer 

Parameter Estimate Results of 

IBM HDA with Noise 

C.1 Parameter Estimates Without Retuning of DAO 

Figures (C.l) through (C.3) represent the parameter estimation results of the Ar matrix parameters 

when the Discrete Adaptive Observer is implemented on the IBM magnetic Head/Disk Assembly 

described in Chapter 8 with noise and without retuning of the Discrete Adaptive Observer. 
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C.2 Parameter Estimates With Retuning of DAO 

Figures (C.7) through (C.9) represent the parameter estimation results of the Ar matrix parameters 

when the Discrete Adaptive Observer is implemented on the IBM magnetic Head/Disk Assembly 

described in Chapter 8 with noise and retuning of the Discrete Adaptive Observer. 
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Appendix D 

Adapted Genetic Algorithm Code 

for MATLAB 

This section of the appendix describes the genetic algorithm (GA) code [50] adapted specifically 

for the implementation ofthe Discrete Adaptive Observer (DAO) to the IBM Head/Disk Assembly 

(HDA) system used in this thesis. The code is package of M-files generated for use in MATLAB and 

as an off-line method to tune the DAO parameters A and €thresh for optimal estimation of the IBM 

HDA's states and parameters. 

'l'he original code is modified so as to incorporate a cost function which considers the output 

estimation error as well as the output velocity error, or the equivalent thereof, of the HDA actuator 

dynamics. The code is. also modified by the initial population values and the mutation factors. 

The bounds of possible values of DAO design parameters are preset for reasons of system stability. 

In addition, instead of terminating the genetic algorithm program after a specified performance or 

"score",. as it is referred to in the program, the GA ends after a specified number of generations. 

For more information, the reader is referred to [50]: 
The following is the list of M-files in the GA code: 

• ga.m - MATLAB macros file for GA code 

• start.m - defines initial settings for GA 
. . 

• setup.m - defines the cost function used to determine the population "score" 

• fit.m - ranks population according to fitness values 

• mate.m - creates parent matri.ces and a child matrix 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
%% ga.m - main MATLAB executable file 

%% Calls: start.m, setup.m, fit.m, mate.m 

%% Determines maxim:um number of generations before program termination 

%% Output: generation number, population score 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%'!.%%%%%%%%%%%%%%%%%%%%%%%%%'!.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 

start 

gen=!; 

stay=O; 

while stay==O 

setup 

fit 

old_gains~gains; 

mate 

gen=gen+1; 

[q,w}=size(score); 

for col=1:w 

rk=1; 

sm=O; 

for row=1:w 

end 

if score(col)>score(row) 

rk=rk+1; 

elseif score(col)==score(row) 

sm=sm+1; 

end 
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end 

lesserr=best(1); 

if sm>=2 

last=sm-1; 

for sig=1:last 

best(rk+sig)=col; 

end 

end 

best(rk)=col; 

%XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

if gen >200 

%XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
stay=1; 

end 

end 

member=lesserr; 

gen 

old_pop_size 

182 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
%% start.m - initialization file 

%% Sets: mutation factors for lambda and thresh 
%% GA mutation rate 
%% initial population values 
%% choice of GA cost function 

%% Output: none 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
;, ,, ,, ,, ,, ,, ,,. ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, 0, ,, ,, ,, ,, ,, ,, ,, ,, ,, .11 ,, ,,.,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ;, ,, ,, ,, ,, ,, ,, ,,. ,, ,, ,, ,,:,, ,,.,, ,,:'' '' '' '' 
/t/o/o/1/o/o/o/,/o/1/0/1/1/1/o/o/1/1/o/o/1/1/o/1/o/o/o/o/o/o/o/o/1/o/1/o/o/o/i/o/o/1/1/o/o/1/1/1/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/i/o/o/o./o/o/o/o/o/o/o/o/o 

op_~ize=6; %INITIAL POPULATION SIZE 
Pfactor=0.7; %PROBABILITY FACTOR OF SELECTING A SURVIVOR 

old_pop,..size=1; 

MUTATE_THRESH=0.97644; % mutation factor for thresh 
MUTATE_LAM=0.992651; % mutation factor for lambda: 

MUTATION_RATE=0.99; % GA mutation rate 

ISETOT=100; 

gains= [0.99999 0.0000031124; 
0.68451 0.00011410; 

0.59632 0.02126!; 
0.469800 0.29012; 
0.869800 0.0000031124; 
0.78215 0.29012]; %INITIAL POPULATION VALUES 

T=1; %SETTLING TIME 

standard=O; %VARIABLE THAT ALLOWS FOR CHOICE OF COST FUNCTION. 
%standard=! IMPLIES USE OF ISE COST FUNCTION 

%standard= anything else IMPLIES USE OF MODIFIED ISE. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
%% setup. m - determines cost function val.ues (score) for population 

%% Calls: simulation macros for DAD implementation on IBM HDA 

%% Calculates for each set of DAO gains: 

%% error in output estimation 

%% error in equivalent velocity estimation 

%% population score (from predetermined cost function) 

%% Output: score 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'!.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% CALCULATION OF THE INDIVIDUAL FITNESS 

TOTERR=O; 

for n=l:pop_size 

TOTERR=TOTERR +score(n); 

end 

AVGERR=(TOTERR/pop_size); 

changes=pop_size/3; 

for m=l:pop_size 

:Ut(in)=i-(score(m)/TOTERR); 

end 

% RANK EACH MEMBER FROM HIGHEST TO LOWEST FITNESS VALUE 

% STANDARD !SE PERFORMANCE 

for c=l:pop_size· 

rank=l; 

same=O; 
for r=l:pop_size 

if fit(c)<fit(r) 

rank=rank+l; 

elseif fit(c)==fit(r) 

same=same+l; 
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end 

end 

end 

if same>=2 

last=same-1; 

for sig=1:last 

survive(rank+sig)=c; 

end 

end 

survive(rank)=c; · 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
%% fit.m - converts population scores to fitness values 

%% Uses: score values calculated in setup.m 

%% Assigns fitness values to populati~n 

%% Ranks members accord,ing to fitness values (highest to lowest) 

%% Output: none 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

j=old_pop_size; 

while j<=pop_size 

lam=gains(j,1); 

thresh=gains(j,2); 

%%%%INSERT THE SIMULATION FILE HERE%%%%%%%%%%%%%%%% 
DAO_initial_ga 

%CALCULATION OF THE PERFORMANCE PARAMETER (SCORE) 

ISETOT=O; 

ISE_MODTOT=O; 

e=yd-ya; 

edot=sc(:,2)-va; 

esqrd=e.*e; 

edotsq=edot.*edot; 

ISE(1)=esqrd(1) *t (1); 

ISE_MOD(1)=(esqrd(1)+edotsq(1))*t(1); 

[omeg,tau]=size(t); 

for i=2:omeg 

ISE(i)=esqrd(i)*(t(i)-t(i-1)); 

ISE_MOD(i)=(esqrd(i)+edotsq(i))*(t(i)-t(i-1)); 

ISETOT=ISETOT + ISE(i); 
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ISE_MODTOT=ISE_MODTDT+ISE_MOD(i); 

end 
if standard==1 

score (j)=ISETOT; 

else 

score(j)=ISE_MODTOT; 

end 

j=j+1; 
end 

score 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
%% fit.m - creates parent matrices and offspring matrix 

%% Creates two parents 

%% Generates offspring 

%% Confirms mut.ation according to mutation rate 

%% Eliminates repetitive offspring 

%% Maintains population at an even number· 

%% Output: random number generated to determine mutation process 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% CREATING THE PARENTS 

father(1,1)=gains(survive(1),1); 

father(1,2)=gains(survive(1) ,2); 

selectiOn=1; 

hits=1; 

f=2; 

m=1; 

survive(pop_size+l)=O; 

for s=l:pop_size 

end 

a=1; 

if s>=selection 

survive{s)=survive(s+l); 

end 

while m<=(pop_size/2) 

zones=pop_size-(hits); 

if zo.nes==t 

prob(1)=1; 

else 

prob(l)=Pfactor; 

end 
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end 

for k=2:zones 

prob(k)=Pfactor*(l-prob(k-l))+prob(k-1); 

end 

choice=rand; 

prob(zones)=l; 

for d=l:zones 

end 

if f==m 

else 

end 

if choice<=prob(d) 

selection=d; 

hits=hits+l; 

break; 

end 

father(f,1)=gains(survive(selection),1); 

father(:f,2)=gains(survive(selection),2); 

f=f+1; 

mother(m,l)=gains(survive(selection),1); 

mother(m,2)=gains(survive(selection),2); 

m=m+l; 

for s=l:pop_size 

end 

a=a+l; 

if s>=selection 

survive(s)=survive(s+l); 

end 

%CREATING THE OFFSPRING 

index=!; 

count=!; 

while index<=pop_size 

child(index,1)=father(count,1); 

child(index,2)=mother(count,2); 

index=index+l; 

child(index,l)=mother(count,1); 

child(index,2)=father(count,2); 

189 



end 

index=index+1; 

count=count+1; 

old_pop_size=pop_size; 

% CHECKING FOR MUTATION AND EXECUTING .IT. 

mutate=rand; 

[cho,rho]=size(child); 

if mutate<=MUTATION_RATE 

mutate 

child(cho+1;1)=MUTATE_LAM*child(cho-3,1); 

child(cho+1,2)=MUTATE_THRESH*child(cho""'3,2); 

child(cho+2,1)=MUTATE_LAM*child(cho,1); 

child(cho+2,2)=MUTATE_THRESH*child(cho,2); 

end 

%gains=child; 

new_pop_size=pop_size; 

new_row=old_pop_size+1; 

% CHECK TO SEE IF THE NEW GENE IS ALREADY IN THE POPULATION 

for co=1:new_pop_size 

for ro=1:pop_size 

match=O; 

for p=1:2 
if child(co,p)==gains(ro,p) 

match=match+1; 

end 

end 

if match==2 
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end 

break; 
end 

end 

if match<2 

end 

for me=1:2 

gains(new_row,me)=child(co,me); 
end 
pop_size=pop_size+1; 
new_row=new_row+1; 

% TO ENSURE THAT THE POPULATION SIZE.REMAINS EVEN 

rmd=rem(pop_size,2); 

if rmd>O 

end 

pop_size=pop~size+1; 

gains(pop_size,l)=MUTATE_LAM*gains(pop_size-1,1); 
gains(pop_size,1)=MUTATE_THRESH*gains(pop_size,2); 

%IF THE POPULATION SIZE DOES NOT CHANGE THEN MUTATE TWO MEMBERS 

if pop_size==old~pop_size 

end 

gains(pop_size+1,1)=MUTATE_LAM*gains(pop_size/2,1); 

gains(pop_size+l,2)=MUTATE_THRESH*gains(pop_size/2,2); 

gains(pop_size+2,1)=MUTATE_LAM*gains(pop_size-2,1); 
'• ' .,· .. , ' . 

gains(pop_size+2,2)=MUTATE_THRESH*gaiils(pop..csize-2,2); 

pop_size=pop_size+2; 

[g_size,mu]=size(gains); 

for th=1:g_size 

if gains(th,1)<0.4 

gains(th,1)=0.76844; 
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end 

elseif gains(th,1)>1 

gains(th,1)=0.76844; 

end 

if gains(th,2)>0.3 

gains(th,2)=0.15461; 

end 
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