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PREFACE

Observer-based digital control systems are highly dependent upon the accuracy of the applied
estimation technique for the effective update of the control signals. In turn, the estimation technique is
dependent upon measurement feedback to update its state estimates. In many cases, the measurement is
only available periodically.. This work, motivated by the case of a disk drive system, proposes a multirate
estimation technique that provides stable and accurate state estimates for every control sample step, despite
the fact that the output measurement period is at a slower, but fixed, rate than that of the control input.
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Chapter 1

Introduction

It is known that the performance of observer-based control techniqués may be highly sensitive to
the accuracy of the applied observer. Thus, the need to investigate methods .of state estimation
becomes critical. The control input, determined by the observer-based control technique, relies on
the accuracy and availability of state estimates calculated from output measurements. This control
input must be determined for each sample period (denoted by Tf) so that tile systeI‘n may be adjusted
adequately. For many cases, however, the available output measurements are not available every
sample period, as in typical disk drive applications. They, in fact, may only be available once every

k sample periods.

1.1 Problem Statement
Equation (1.1) describes a linear, Single-input continuous time system.

#(t) = Aw(t) + Bu(t) + W()

i

y(t) Cuz(t) (1.1)

The system is controllable and observable. The state vector z is such that ¢ € R™*! and the mea-
surement y is such that y € RP*1. The control input is u(t) and W (¢) represents any uncertainties

in the system.



In discrete time, the traditional estimation problem is to provide reliable state estimates to the
controller u(t). It is usually assumed that the measurement y.is also available at every control
sample step 7%, so that the observer may update its state estimates accordingly.

However, in this study, the output measurement sampling period, denoted by 7%, is such that
T, = kT, where k is an integer that satisfies the condition that ¥ € Z, . In other words, the output
measurement signal is available only once every k control time steps.

The estimation problem is to provide the estimation-based controlle; with accurate state esti-
mates at each control sample period T, even though the measurement output needed to updaté the
observer is available only once every k control sample steps, or once every system cycle. (Here the

term cycle refers to the time period 7%, the time period between two consecutive measurements.)

1.2 Overview

1.2.1 General Multirate Systems

As the name suggests, the term multirate refers to any system whose signals are sampled at more than
one rate. Multirate system analysis 6wes its beginnings to the age of digital processing. Significant
points of multirate sampled-data control systems were first studied in the 1950’s and 1960’s with
the stability analysis of Kranc [1], Ragazinni and Franklin [2], Jury [3], and then by Kalman and
Bertram [4] who also introduce the used of time-invariant difference equations to describe multirate
systems. Latér, Araki and Yamamoto's work [5] derived a discrete time state space description for
multirate systems in additioﬂ to four stability criteria.

A solution for the pole piacement problem for multivari#ble, multirate sampled-data systems
was proposed by Colaneri et al. [6] via the use of a periodic state observer and an output feedback
controller.

Meyer (7] defined the concept of N-periodicity in multirate sampled-data systems and introduced
the corresponding shift-varying operators generalized by N-periodicity. Applications of [1] were also

used in this work which extended into implementations into multi-input, multi-output systems. In



contrast to the shift-varying parameters used in [7] to define multirate sampled-data systems, Longhi
(8] used a state space representation which is an extension of the single rate case. He also analyzed
the structural properties inherent to multirate systems, namely those of reachability, controllability,
and stabilizability.

Further studies in stability bf multirate sampled-data systems were made in Fang and Chu’s

work [9], where they present sufficient requirements for robust stability.

1.2.2 General Multirate Control Systems

Major work involving ge‘ne.ral multirate control was developed by Berg et al. [10]. They developed a
method for determining sample rate selection, used a discrete time state space to model the system,
and developed a constrained optimizafioh control design for multirate systems. The work in [10] was
continued by Mason and Berg [11], implementing an infinite time cost function to generate reduced
order compensators. Berg and Mason [12] developed a parameter optimization algorithm to generate
control laws, assuming a priori knowledge of the system sampling and contfol input rates.

A periodically time-varying multirate controller was used in Serrano‘and Ramadge’s contribution
[13] to solve the Sample Disturbance Decoupling Problem (SDDP) in multirate systems. A feedback
control law was used to nullify the effects of the unknown output disturbance at specified periodic
rates. Zhu and Skelton [14] confronted the issue of robustness in periodic discrete and multirate
systems. They derived bounds for disturbance attenuation and stability with time varying structured
and unstructured parameter variations.

For general multirate systems whose output and control sample rates are different, reduced order
control methods were developed by Haddad and Kapila [15] and Patton et al. [16]. Haddad and
Kapila used a discrete time periodically varying structure for their reduced-order controller. Patton
et al. used eigenstructure assignment for use in feedback control. They determined a method to
obtain ‘minimum sampling rates and address the issue of intersample ripple.

There is noted work in the area of multirate controls specifically for the case when the output

measurement is taken at a slower rate than the input control. An application was presented by



Natarajan [17], who designed a controller for a DC motor using LQG methods and states conditions
for zero steady-state ripple. Colaneri et al. [18] addressed this type of multirate system by using
LQG techniques and a state augmenfation form to derive a prediction algorithm to develop a periodic
control law. Scattolini and Schiavoni [19] proposed a technique for these types of multirate systems

to stabilize the system despite the existence of added reference signals and disturbances.’

1.2.3 Multirate Estimation

Multirate estimation was introduced in single rate systems by Henriksen and Mellichamp [20] for
accurate parameter estimation of discrete, stiff systems. Estimation was implémented in input-
output form at slow and fast sample rates, so as to be able to estimate parameters in the slow modes
and fast modes, respectively.

Apostolakis [21] developed a methodology for prediction type estimation, a technique used in
conjunction with a state feedback controller for multirate systems with synchroﬁized sampling rates.
In [22] and [23], Haddad et al. developed a reduced order multirate estimator to facilitate the
existence of sensors with different sampling rates by the use of linear periodic time-varying (LPTV)

state space matrices.

Although multirate systems were not dealt with directly by\]\)em1rbas[24]:‘ he did develbp a
discrete state estimation technique for nonlinear systems with missing measurements by use of
interpolating functions for use at times when outpﬁt measurements avre not available, in addition
to trellis diagram representation‘s.‘ More recently, Savkin and Petersen [25] developed a general
information structure to accomplish the dual problem of state estimation and model validation
for hybrid systems of continuous time models in addition to continuous time and discrete time
measurements. This work also takes into account missing data and system uﬁcertainties.

Chiang [26] developed a controller for actuator and Voice Coil Motor (VCM) dynamics for a disk

drive which implements a state estimator predictor running at an integer multiple of the output

sample rate.



Prediction/Correction-Based Estimation

In Phillips and Tomizuka’s work of [27] and [28] and Lu and Fisher’s work of [29] and [30], a
multirate estimation technique was developed to increase controller performance. The technique
is a linear model-based technique. In this approach, a Prediction/ Correction type method is used
which performs at two sampling rates: one at the input sarhpling rate k£ and the other at the output
sampling rate £Ty. Note that t,-‘ < kTy < tiyr, where k= 0,1,2,...,n; — 1. Here n; is such that
(ti + niTy) < tiy1 < (ti + (ni +1)T¥). A prediction equation estimates the states at every k time
steps. Meanwhile a correction equation estimates the states at every kT time steps. It follows that
at kT, the corrector term is updated and that the predictor is updated every k ‘steps. In this way,
the controller, which, in this case, is running at a faster rate than that of the measured output, may
be updated at its own sampling time.

As mentioned before, this method is model-based. It is a linear estimation technique. Further-
more, the estimator parameters for the predictor equation are calculated on-line, while those of the

corrector equations may be calculated off-line.

Numerical Metﬁo ds-Based Estimation

Ramachandran, Young, and Misawa [31] proposed two numerical methods techniques to estimate
multirate systérns. The techniques involve the use of a polynomial fit prediction method and another

based on a Téylor Series fit prediction method. In the first approach, two polynomial predictions are

'

used: the Divided Difference Polynomial Prediction and the Newton-Gregory Polynomial Prediction.
For the Div?iided Difference Method, a quadratic is fit using the most recent output sample and those
of the two gprevious ones. In the Newton-Gregory Method", another second degree polynomial is

used, exceﬁt that, here, the polynomial is of a specific form and a calculation of the coefficients is

H

derived via?é a difference table. The latter approach develops the Taylor Series approximation about
}
the most récent output measurement. -
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Perturbation Theory-Based Estimation

The work of Kando, Aoyama, and Iwazumi {32] and Shousse and Taylor [33] showed a multirate
observer design that is used for singularly perturbed systems. They, also, as with Phillips and
Tomizuka [27] and [28], used a slow and fast sampling observer together. The method in [32] uses
decomposition to estimate the states. It is assumed that one has available measurements of states
in each of the time rate scales, implying that more than one state is being measured although not
the same state in both time scales. Shousse and Taylor used two separate reduced order observers,

again, one in the fast rate and the other in-the slow-sampling rate.

Multirate Kalman Filter Design

Most recently, Hara and Tomizuka [34], [35] proposed a modified state estimator of [36], which is
designed to provide estimates at both measurement instances and at intersample instances during
the updating of the control inpﬁt. The method is model-based and uses a multirate Kalman filter
design. The design is similar to the prediction/correction technique of [27], [28], [29], and [30]
except that the same preceding measurement with the Kalman filter gain is used to update the
state estimates each control sample instant until the next output measurement is available. This
stochastic estimator is primarily designed to provide smooth state estimates at each control step so
that resonance modes of the dynamic system are not excited. Therefore, the accuracy of the state

estimates may not be as dependable.

Need for a New Multirate Estimation Approach

All of the multirate estimation techniques above that apply to the problem under study assume that
the output measurement signal is not aliased by the existing system resonance frequencies. This may
result in péor estimation performance. Therefore, a new multirate estimation technique is needed

to proceed towards a solution to account for these aliased frequencies.



1.3 Contributions

In this study, the main contributions of this work are as follows:

1. A multirate estimation technique is proposed that provides reliable state estimates to an
estimation-based controller for each control sample step, despite the fact that the output
measurement is only available once every k control sample steps. The proposed multirate

estimation technique is referred to as the Parallel Observer System.

2. The proposed Parallel Observer System is shown to produce stable estimates for each control

sample step. This is shown through the development of a stability proof.

3. It is shown that the errors of the Parallel Observer System’s state estimates are bounded even
in the presence of matched and unmatched uncertainties. The maximum possible errors bounds
are calculated conservatively. These error bounds, take into account matched and unmatched

uncertainties, so long as the uncertainties, themselves, are bounded.

4. A modified form of the Parallel Observer System implements an already existing discrete
adaptive observer technique to improve overall robustness in the presence of system parameter
changes or differing parameter estimates during the control process. This modification results
in a new structure of the Parallel Observer System and is célled the Adaptive Parallel Observer

System.

5. A genetic algorithm is implemented for the automated tuning of the applied discrete adaptive

observer technique,

6. An neural network system is implemented to illustrate how the parameter estimates from the
Adaptive Parallel Observer System may be used to estimate system damping ratio and aliased

resonant frequency values.



1.4 Organization of Contents

The organization of the report is as follows: The problem statement is defined in Chapter 2. In
Chapter 3, the multirate estimation technique, the Parallel Observer System is proposed. Optional
modifications to éhe Parallel Observer System to improve performance are described, and a stabil-
ity proof for the error bounds of the Parallel Observer System’s state and uncertainty estimates is
presented. The Parallel Observer System is applied to a magnetic disl% drive, and the results are
compared to that of 2 single rate observers and the present industry stan.diard estimation technique
in Chapter 4. In Chapter 5, a modified form of the Parallel Observer System is proposed which im-
plements a Discrete Adaptive Observer syétem within the proposed multirate estimation technique.
The stability proof for this Adaptive Parallel Observer System is given. Chapter 6 simulates this
modified Parallel Obéerver System on the same magnetic disk drive, and the observer performances
are compared. Chapter 7 describes the implementation of a genetic algorithm for the automated tun-
ing of the observer parameters for use in the Adaptive Parallel Observer System. A neural network
system is applied in Chapter 8 to exemplify how accurate estimates bf system damping ratios and
aliased resonant frequencies may be obtéined from the Adaptive Parallel Observer System. Finally,

Chapter 9 presents concluding remarks and areas of future work.



Chapter 2

The Problem Statement

The following equation is a discretized system of Equation (1.1) at a sample period of Ty (the control

sampling period):

z(m,n+1) = Ajz(m,n)+ By u(m,n) + W(m,n)

yim) = Cuz(m) : (2.1)

Here, Ay and By represent the discretized state space matrices of the system described in Equation
(1.1) with the same disturbance W (m,n) and output measurement y(m) but in discrete-time form.
The output measurement sampling period is 75 = kTf, where k is an integer value with & > 1.
Here, m refers to the output measurement cycle number andbn refers to the control input sample
step within the cycle.. The estimation problem in this case is to pr’ovide dependable state estimates
Z(m,n) to thé observer-based controller u(m,n) at each of its sample steps n, despite the presence of
uncertainties and the fact that the output measurements are only available once every cycle m. The
cycle lasts a duration of k. As one refers to Equation (2.1), the output measurement is available

at t = (m, 0) for every cycle m. In addifion, the following terms are defined:

Definition 1. Referring to Figure 2.1, an ON sample point refer to those sample points where the

output measurement is available, i.e. at ¢t = (m,0).

Definition 2. An INTER sample point refers to those sample points in a cycle where the output



Control Input Points

n=0 n=1

||

n=2

n=k-1

n=0
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m=0

Output Measurement Points

m=1
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Figure 2.1: Cycle and INTER Sample Points

measurement is not available, i.e. at ¢t = (m,n) wheren =1,2,3,..k — 1.

Definition 3. A cycle, as described earlier, refers to the time period between two consecutive

output measurements and is denoted by m.

It should be noted that noise is not considered in this study. Furthermore, to realistically limit

the scope of this project, the following assumptions are made:

Assumption 1. The system described in Equation (2.1) is stable and observable.

Assumption 2. The control input is available at each INTER sample point.
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Chapter 3

A Parallel Observer System for

Multirate State Estimation

3.1 Motivation and Background

Stable discrete observers have been established for many years. It can be argued, then, that the
stability of already established discrete time estimation techniques may be used advantageously in
multirate estimation.

The discrete time Luenberger Observer has a simple form and is easy to implement. Given the

system in Equation (2.1), the Luenberger Observer has the following form

Em+1) = As&(m)+ Bau(m) + L{y(m) - §(m)]

§(m) = C#(m) | , (3.1)

where A; and By describe the discretized system in Equation (2.1) and L is a Luenberger gain.
The stability of the observer is guaranteed, so long as the observer gain L is chosen such that the
eigenvalues of [ Ay — LC'] are stable. In fact, the speed of convefgence of the state estimates
may be controlled by choosing appropriate eigenvalues of [ Aq — LC]. Furthermore, the model-

based structure of this state estimation technique offers easier manipulation and implementation

11



into systems which, themselves, have model-based structures.
It is evident that the use of the Luenberger Observer would be advantageous if its stability and

simplicity may be exploited for use in multirate estimation.

3.2 The Parallel Observer System (POS)

A multirate state estimation technique is developed to take into account the situations where the
output measurement is only periodically availabie. The proposed observer design involves two Lu-
enberger Observers running parallel to each other, hence the name Paraliel. Observer System
(POS). The general schematic of the Parallel Observer System is shown in Figure 3.1. The multi-
rate implementation of the system ‘is shown iﬁ Figure 3.2. The state estimétion method is model
based. The POS method assumes that the control input signal into the plant is available (known)
at every sampling period Ty and that the output measurement is available once every k sampling
periods (or once every cycle) and at a fixed time in each cycle, leaving‘k-l sampling instances each
cycle where the output measurement is not available.

As mentioned earlier, the POS has two separate obsérvers running in parallel. The Slow Observer
System performs at the output measurement period T, and the Fast Observer System runs at the
control input period Ty. Both systems are Luenberger Observers. The Slow Observer System state
estimates are used as feedback by the Fast Observer System. By using a full order set of stable Slow
Observer estimates during the times of available measurement and using these estimates to drive a

Fast Observer, a stable set of estimates is available during all control sample points.

3.2.1 The Slow Observer System

The POS technique relies on‘a stable discrete-time Luenbérger observer which is implemented at
the same sample period as that of the output measurement. Since this observer’s sample rate is the
same as that of the measured output, the feedback output measurement is always available at each
sample period Ty. In addition, since the control input sample rate is k times faster than that of the

measured output, it is obvious that the control input values are also always available at every sample

12
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time step. This observer system is referred to as the Slow Observer System. The structure of

the Slow Observer is as follows:

Zs(m +1) 1]

It
>
oi:})
2
+
>
£
g
+
S
<
2

!
B
2

gs(m) = C &s(m) : (3.2

where m refers to the output measurement time stép (or cycle). Also, A; and By define the system
in Equation (1.1) discretized with a sample period of T (kT), and L is the Luenberger gain. The
values of the Slow Observer state estimates are held constant during the INTER sample points when
the output measurerhent is not available. This structure is of the typical discrete-time Luenberger
Observer system. Since it is running at the same rate as the output measurements and always has

a control input value available, there is no multirate component.

3.2.2 The Fast Observer System

In this Parallel Observer System, another discrete-time Luenberger observer is running in parallel
with the Slow Observer, except this parallel observer is implemented at the same sample rate as
that of the input control. It follows that this observer system is referred to as the Fast Observer

System. The proposed Fast Observer is of the following form:

Zp(m,n+1) = Afig(m,n)+ Bpu(m,n)+ L[ ys(m,n) — gs(m,n)]

g¢(m,n) = Csiy(m,n) , (3.3)

where

Zs(m,n), fn=0
ys(m,n) = : (3.4)
ge(myn), fn=12,..%k-1
Here, n refers to the control input time step and Ly is a Luenberger gain. Referring to Equations
(3.3) and (3.4), one can see that this Fast Observer uses the state estimates of the Slow Observer

as feedback during the ON sample points. It should be noted that since the Fast Observer uses the

full order state estimates of the Slow Observer, C; is the identity matrix of the same size as that of

14



the state vector. That is, y; € R™*!. In other words,

Zs(m,n), fn=0
yr(m,n) = (3.5)
gr(m,n), ifn=12,.k-1

Again, as with the Slow Observer, the Fast Observer also has the control input values available at
each time step, since it is running at the same sample period of Ty. However, the Fast Observer
System has one available set of estimates from the Slow Observer every k time steps. The whole
premise of the Parallel Observer System is that the Slow Observer is stable. It is believed that the
Fast Observer may take advantage of the Slow Observer’s stability by using the Slow Observer’s
estimates of its full state for feedback, which occurs once every cycle. Duriﬂg the INTER sample
points, however, thé Fast Observer is forced to operate in an open-loop fashion.

The advantage to this Parallel Observer System is that state estimates from the Fast Observer
are always available for use in the control input calculations. Meanwhile, the Slow Observer provides
stable, full order state estimates which serve 58 feedback measurement equivalents to the Fast Ob-
server during the ON sample points. In this way, the Fast Observer is designed to provide estimates
at each control sample time step while. converging to the stable Slow Obsefver’s state estimates

during the ON sample points.

3.3 Parallel Observer Modifications for System Implementa-
tion

3.3.1 Implementation for Quickly Changing Control Inputs

Since the output sampling period T is k times slower than that of the control sample period Ty, it
is possible, therefore, that the control input changes too quickly for the Slow Observer. Hence, it
becomes necessary to account for this quickly changing control input. The following system is that
of Equation (1.1) discretized about the sampling period T:

zs(m+1) = Asz(m)+ Bsu(m)

y(m) = Caz(m) (3.6)
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Note that the parameters used here are the same used for the Slow Observer.
If Ay and By correspond to the parameters of the discretization of Equation (1.1) about the

control sampling period T such that

then the following lemmas are proposed.
Lemma 1. Given Equations (3.6) and (3.7), Equation (1.1) may be written as

zm+1) = A’} z(m) + Bsu(m) (3.8)

Proof. This proof is quite trivial, as one notes that
As = eA Ts (39)

Here, A refers to the system defined in Equation (1.1). From Equations (3.6) and (3.7), the result

in Equation (3.8) is easily established as follows:

A, = eATrk
= [4;)* _ (3.10)
O
Lemma 2. Given Equations (3.6), (3.7), and (3.8) and that zs(m) = z7(m,0), then
» k-1 . :
Bou(m) = Y A 7!Bfu(m,i) (3.11)
=0 -
and Equation (3.6) may then be written as
k-1 '
z(m+1) = As;z(m)+ Z Al}—’”le u(m, 1) (3.12)
i=0
Proof. Equation (1.1) may be discretized about Ty such that
k-1 _
z(m,k) = A% x(m,0)+> Ay By u(m,i) (3.13)
=0

16



Note that z(m, k) = z(m + 1). Then, by transitivity and Equations (3.8) and (3.13),

k-1
Bsu(m) = ZA’}‘i_le u(m, 1)

i=0
and through this result and the substitution into Equation (3.6),

k=1
z(m+1) = Az;z(m)+ Z A’}_i_le u(m, i)

i=0

Lemma 2 may also be perceived in the following equivalent manner:

Ty
Es(m+1) = A, is(m) +/ e Tdr B u(m)
/0

2Ty 3Ty
-+-/ eA7drB u(m + Ty) + / e TdrBu(m + 2Ty)
Ty 2Ty

Ts
_— / eATdrB u(m + (k — 1)Ty) + Ly [y(m) — §s(m) ]
T,—Tf )

or

Ty
Es(m+1) = Ak i,(m) +/ e 7dr B u(m)
0

+/ e 7drB u(m + Ty) + / e Tdr Bu(m + 2Ty)
Ty " J2Ty '

T,
+ ... +/ e TdrB u(m+ (k- 1)Ty) + L [y(m) — §s(m) ]
T —T

Remark 1. Note that the implementation of Lemma (2) to the Slow Observer is now

k-1
Bs(m+1) = Asgs(m)+ > AV Bru(m,i) + L [y(m) — §s(m) ]
i=0

gs(m) = C"%S(m)

Remark 2. The implementation of Lemma (2) to the Slow Observer may also be written as

k=1 '
B(m+1) = Af&(m)+ Y A7 By u(m,i) + Ls [y(m) - §,(m) ]

1=0"

gs(m) = C#(m)

(3.14)

(3.15)

(3.16)

(3.17)

All control inputs at any given time are accounted for, as the control input contribution is being

calculated at the higher sample period T. In other words, no change in input goes undetected from

the Slow Observer. This implementation is consistently used as necessary in multirate systems, as

in the works of Hara and Tomizuka [34], [36] and in the works of Lu and Fisher [29], [30].
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3.3.2 Parallel Observer System with Uncertainty Estimation Compensa-
tion

A common practice in state estimation problems is to augment the system under study to differen-

tiate uncertainties which follow a matching condition, as in Franklin, Powell and Workman [37]. In

this way, the observer state is augmented which allows for the estimation of these uncertainties in

the system. A discrete-time system assuming matched uncertainties is presented below:

[A+ AA] z(t) + [B"+ AB] [u(t) + u(t)]

8-
—~
o+
~—

It

yt) = Cz(t) - (3.18)

where AA and AB represent the unmodeled plant dynamics and Au represents'added input distur-
bances to the system. It is assumed that the magnitudes of parameter variances are not significantly
large.

The term w(t) represents matched uncertainties and is defined by the following relation:
Bw(t) = AA z(t) + AB u(t) + B Au(t) + AB Au(t) - (3.19)

Equation (3.18) may be written in a form with an augmented state to include the matched uncer-

tainties, where

z(t) = Az(t)+ Bu(t) + Bw(t)
w(t) = 0
y(t) = Cz(t) (3.20)

Xt = (3.21)

18



and Equation (3.20) may written as

o - |
W(t)
[
A B “z(t) B
= + u(t)
0 0 || w 0
v@ = ¢ ol]x® | (3.22)

The corresponding Slow Observer for the discretized system of Equation 3.18, then, is

Bo(m+1) = A8.(m)+ Boulm) + Buby(m) + L [y(m) - o(m)
By(m+1) = o(m) + low [y(m) — Gs(m)]
gs(m) = Cis(m) ' o (3.23)

or, using Lemmas (1) and (2), as

k—1 .
Bs(m+1) = Asig(m)+ Y A7 Bru(m,i) + Botbs(m)
=0

gs(m) = C Zs(m) ' (3.24)

where 1%s(m) is the Slow Observer estimate of the matched uncertainties and L and I, are appro-
priate Luenberger gains for the state estimates and uncertainty estimation, respectively. Using the

same augmented from as Equation (3.22), one may define a new state matrix

X(m) = (3.25)
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such that

N . Z5(m)
Xs(m+1) =
v ws(m)
A, B Zs(m) By
= + u(m)
0 1 Dy (m) 0
L, X
+ [y(m) - §s(m) ]
lS'LU
2.0 = o o] (3.26)
The Fast Observer is
£r(m,n+1) = Asiz(m,n)+ Byju(m,n)+ By dg(m,n)
+ Ly [ys(m,n) = §5(m,n) |+ Lyw [ws(m, n) — Byiby(m,n)]
wg(m,n+1) = wy(m,n)+l1s [ys(m,n) —Gs(m,n)]
Hyw [ ws(m) ~ dy(m,n) ]
yAf (man) = j.f (mvn) (327)
where
Zs(m), ifn=0
yf (m’ n) - )
Zr(m,n), fn=12..k-1
Bg(m), fn=0
ws(m,n) = (3.28)
wg(m,n), fn=12..%k-1

\

Here, w¢(m, n) is the Fast Observer estimation of the matched disturbance, and L 7, Lyw, Uy and lfqy
are Luenberger gains. Again, using the same augmented from as Equation (3.22), one may define a

new state matrix

X¢(m,n) = (3.29)
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and rewrite Equation (3.27) as

~

Xf(m,n+1) =

y;(m,n) =

wg(m,n) =

+

\

Zf(m,n+1)
wf(m,ﬂ + 1)
+ u(m, n)
0 1 W (m,n) 0
Lf,..wa [y;(m,n)—ﬂf(m,n)]
lf lfw [w;(m,n) - ’lf)f(TI’L, n)]
Zs(m), ifn=0

F¢(m,n), fn=1,2.k-1
ws(m), ifn=0

wg(m,n), fn=12..k-1

(3.30)

The following is the described in Equation (3.18) but with additional uncertainties that do not

satisfy the matching condition of Equation (3.19):

T =

y(t) =

C a(t)

[A+ AA] z(t) + [B + AB] [u(t) + Au(t)] + A2)

(3:31)

The added uncertainty A(t) represents any existing unmatched uncertainties. Equation (3.31) may

be written in a form with an augmented state to include the matched and unmatched uncertainties,

that is, any other uncertainties that do not follow the matching condition of Equation (3.19), where

Az(t) + Bu(t) + Bu(t) + A(t)
0

C a(t)

(3.32)

Here, w(t) represents the uncertainties that follow the same matching condition as described in

Equation (3.19). Using the same augmented state X (m,n) as in Equation (3.21}, Equation (3.32)
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may written as

%) = (1)
_w(t)
A B z(t) B 1 u(t)
= +
0 0 w(t) 0 0 d¢(m,n)
Y(t) = L0 0 |X(®) (3.33)

The same Slow Observer System described in Equation (3.26) and the same Fast Observer System

described in Equation (3.28) and (3.30) are applied for this case when unmatched uncertainties are

added. The Slow and Fast Observer cannot detect the unmatched uncertainties, but can only

compensate for them by using the observer correction feedback terms.

3.4 Stability Analysis for the Parallel Observer System

The following terms are defined for use in this section of development of stability proofs:

€s

Cws

€f

ewf

gsf(m)

Ewsf (M)

= z(m) - Z,(m)
= w(m) —ds(m)
= z(m,n) - &;(m,n)
= w(m,n) —ws(m,n)

= Zg(m)—&s(m,0)

= dy(m) — iy (m,0) (3.34)

The proof of convergence for the Slow and Fast Observer Systéms involve manipulations of Lemma

2 and the use of eigenvalue stability analysis. The proposed Slow Observer from Equation (3.23) is

Zs(m+1) =

wg(m+1) =

I

s(m)

Asgs(m) + Bs u(m) + Lses(m)
Ws(m) + Bs u{m) + lspes(m)
Ciy(m) (3.35)
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and the Fast Observer from Equation (3.27) is

Zr(m,n+1) = Aszs(m,n) + Byug(m,n) + Lygsr(m,n) + Lywewss(m,n)
wp(m,n+1) = wr(m)+lresp(m,n) + lfwEwss(m,n)
Jpmm) = Cds(m,n) (3.36)

where

gsp(m), ifn=0
sz(m,n) =

0, ifn=1,2..k-1

Ewsf(m), fn=0

Ewsf(m,n) (3.37)

0, ifn=12.k—1

Assumption 3. The system described -in‘Equation (3.18) is stable.

Assumption 4. The frequency content of the system in study is less than the half the sampling

frequency.

Assumption 5. The sample rate of the Fast Observer System is fast enough to react to any cor-

rections from the Slow Observer System.

Furthermore, define the matrices S, f, and F ' such that

[4; — L,C] B,
S = (3.38)
—lswC 1
: A;—L;] B
/s [Af —Ly] By (3.30)
-y 1

and

Ay — ARTIL) [Bs — AN Lpy)
F, o= Ae =47 Ly 1 (3.40)
-l (1 —lfw)

Denoting d4(m) as the unmatched uncertainties during the ON sample points and §;(m,n) as the

unmatched uncertainties during the INTER sample points, the following assumption is made:
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Assumption 6. The unmatched uncertainties ;(m) and 67(m,n) are bounded such that

max [6,(1)] < bs (3.41)

max [67(m, j)| < g (3.42)
J .
where d5, and 4, are finite values.

Theorem 1. Let Assumptions (8) through (6) hold. In addition, it zs assumed that k is a finite
integer. Given the system in Equation (3.31); define the same S, f, and Fy described in Equations
(8.38) through (3.40). If the proposed Slow Observer System described in Equation (3.23) and the
Fast Observer System described in Equations (3.27)-(3.28) are designed such that the poles of S, f,

and Fy are stable, then

1. The Slow Observer state estimates are stable and the errors of the state and uncertainty esti-

mates have a finite bound.

2. The Fast Observer state and uncertainty estimates converge to the Slow Observer state and

uncertainty estimates, respectively, during the ON sample points with a finite error bound.

3. The Fast Observer state and uncertainty estimates are stable during the INTER sample points.

Furthermore, at a general time step n, the state estimates error has a finite bound of

lesmn+Dllee < AG*Fo + A5Cy,

1= Ag—f—l

[Bo(wo + Cuy) + 67,] (3.43)
1—Ag

+
and the uncertainty estimation error has a finite bound of -

lews(m,n+1)] < wo+ Cu, (3.44)

Proof: The proof for this theorem has two parts. First, bounded error is shown for the ON sample
points. Then the proof is completed by showing bounded error during the INTER, sample points for
a finite k. The first part involves analyzing an augmented error dynamics matrix comprised of: (1)

the error dynamics of the Slow Observer estimates of states and uncertainties to the actual states
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and uncertainties, respectively, and (2) the error dynamics between the Slow and Fast Observers.
The second part involves analyzing the error dynamics of the Fast Observer and calculating the

propagdted error during each of the INTER sample points.

Remark 3. Note that .5 and f are the exact structures of the dynamics of the Slow and Fast
Observers, respectively. Therefore, the eigenvalues of S and f are, ‘also, identically those of the Slow

and Fast Observers.

3.4.1 Proof for Theorem 1: The ON Sample Points

The system in Equation (3.32) is represenfed at the slow and fast sampling time rates and the

resulting systems are

z(m-+1) = Asz(m)+ Bsu(m) -+ Bs w(m) + ds(m)
wim+1) = w(m)
- ylm) = Cz(m) : ’ (3.45)

at the slow sampling rate and

g(m,n+1) = Afaz(m,n)+ Bsu(m,n)+ Brw(m,n) + 6¢(m,n)
wim,n+1) = w(m,n)

y(m,n) = Cazg(m,n) - . (3.46)

“at the fast sampling rate, noting that the sets of model parameters (As, Bs) and (Ay, By) are
analogous to those of the diséretiied systems atbthe slowv .;md fast sample periods, Ts and T,
respectively.

For the ON sample points, the Fast Observer may be summed at each INTER sample point n

until n = k and, therefore, can be represented as

a‘:f(m -+ 1) = As if(m) - AI;_lLf ssf(m) + Bs’Lf)f - AI;_Iwa swsf(m)

wy(m-+1)

Wy (m) —lf ess (m) - lfw Ewsf (m) (3.47)
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Thus, the corresponding error dynamics between the Slow Observer System and the Fast Observer

System during the ON sample points are

gsp(myn+1) = L;Ces(m)+[4s — AI}_ILf]Esf(m) + [Bs — A?—lwa]Ewsf (m)

cwsg(M,n+1) = [owCes(m) —lpesp(m) + [1 — lpy)ewss (M)

Using the error definitions given in Equation (3.34), e;(m) and ey s(m) are such that the error

dynamics for the Slow Observer System with 'uncertainty'estimation is.

es(m+1) = [As— LsC]es(m) + Bs ews(m) + d5(m)

ews(M+ 1) = eysim) —lgw Ces(m)

If one uses an augmented form of the system such that

€s (m)
ews(m)
Ewsf (m) =
Esf (m)
Ewsf(m)
then the augmented system error dynamics becomes,
Ewsf(m + 1) = Awstwsf(m + 1) + Awsf(TrL)
where
[As - LSC] Bs Onxn Onxl
: | —l5uC i otxm 0
Awsf =
‘ Lo 0™ [A,-AYTNLy) (B - A Ly
e 0 ~lg (1= lsw)
and
ds(m)
Awsf =
0(n+2)><1
Furthermore, Equation (3.52) may be written as
S 0(n+1)><(n+1)
Awsf =
AC Fy
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where S and F are defined previously and

LSO Onxl
IswC - 0
If Ey is defined to be Eysf(m = 0), then fhe propagated error based on Eg and Ay s(m) may

be written as function of cycle m, such that if the error matrix Eyss(m) is summed at each ON
sample point for for a-general sample step m,
Eysg(m+1) = .[Awsf]m+lE0 + Z[Amf] e Aw_Sf (@) (3.54)
’ i : i=0
From the restriction on S, f and F defined in the theorem problem statement, it is known that

Awsy is stable. Let

Ausso = “Aw_sinoo (3.55)
Then, because of the stability of Ay,

n}i_gnoo[Awao]m ‘= 0 . (3.56)

In addition, it is previously assumed that &, (m) is bounded by §5,, which means that

| Auwsglleo = dso o (3.57)
Hence, it is shown that
H m%l_r’noo sz;sf(m) Hoo = n}l—r)noo [Awsfo]m+lEo +v Z;[Awsf]m—iAwsf(i) :|

= lim Z[Awsfo]m_iJSO]

m—oo | 4
L i=0

S (6, x L= [Awsn]™ ]
- S e v
Jso

= — 3.58
i (3.58)

Therefore, it is shown that Part (1) and Part (2) of Theorem 1 are proven.
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3.4.2 Proof for Theorem 1: The INTER Sample Points

Define the following parameters such that

fo = ef(m,0)

wo = ‘?wf(m70)

foo = €7(m,0)

Wsy = Eqf(m,0)

Cf = Ly fso + Lpw ws,
Cow = lf fso + 15w we,
A = e
By = |IBsllos

Fo = llfolle

Cro = lICllioo

Cwe = [Cul -

wo = |wo (3.59)

Using the error definitions given in Equations (3.34) and the Equations (3.30) and (3.46), ef(m,n)
and ey¢(m,n) are such that the error dynamics for the Fast Observer System with uncertainty

estimation are

ef(mn+1) = Agep(m,n)+Byeur(m,n) — Ly eo(m,n)
—wa €¢;f(m,ﬁ) + 5f(m,n)
ewf(m,n+1) = ews(m,n) —lfess(m,n) —lw ews(m,n) (3.60)

Using the expressions defined for Theorem (1), one may calculate the resulting propagated error as

ef(m,n+1) = A?+1 fo— A} Cr + ZA} By wg — ZA} B; Cy — ZA} d¢(m, i) (3.61)

=0 =0 =0
and

ewf(m,n + 1) = wg -~ Cy (362)
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for the Fast Observer state estimates and uncertainty estimates, respectively. Utilizing Schwartz’s

Inequality and the triangle inequality, the error bound of Equation (3.61) is

lles(m,n+1)]lc < Ag+1FO+AngO+ZAéB0wO

=0
+ > A§ By Cuy + Y, Ab b5, (3.63)
i=0 =0
and

lews(m,n+1)] < wo+ Cuy ' (3.64)

Using finite series analysis, one can simplify the second, third and fourth terms of Equation (3.63).

To satisfy Assumption 3, Ag < 1. Then,

n . o : _ An+l
ZA(Z)B()LUO = Bowol——éo—

=0 1 - AO
n ) 1 _ An+1
> A§ By Cuy = BoCup—2—
1=0 ' . 1- AO
LA 1 - APt '
S AL, = Sp—a— (3.65)
izo 14

The resulting calculation of the error bound of the Fast Observer estimates is

lles(m,n+ Dl < AFTFo + A3C), + [Bo (wo + Cuy) + 65,) (3.66)

Q.E.D

Remark 4. It is ‘proven that the state and un.ceftainty estimates of the Slow Observer are stable
and that the Fast Observer’s:state and uncertainty estimates converge to that of the Slow Observer’s
stﬁte and uncertainty estimafes, respectively, during the ON sample points. Then, it can be inferred
that the state and vuncertaint}y estimates of thev'Fast Observer are stable with a finite error bound.

during the ON sample points.

3.4.3 Maximum Error Bounds

Remark 5. In the worst case scenario, the error in the state estimates for the Fast Observer System

continue to increase during the INTER sample points until the start of the next cycle (i.e., the next
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ON point). Under this condition, the greatest maximum bound for any INTER sample point occurs
at the time step just before the next ON point. At this time, n = k — 1 such that t = (m,n+ 1) =

(m,k—1) (t).

Corollary 1. Given the results of Theorem 1 and the worst case scenario in which the mazimum
estimation error occurs ot the time step of t = (m,k — 1), an upper bound of the error estimates of

- the Fast Observer state estimates &y(m,k — 1) is

lesm k=Dl < AR Ry + AE2Cy,

1 — Ak-—l
+ 0

=4 Bolwo + Cu) + 3 (3.57)

- and the upper bound of the uncertainty estimation We(m, k :_,1) i

lews(m,k—1)] < wy+Cy . (3.68)

Proof. The proof, here, is straightforward. Using the fact that, at the sample point prior to the
following cycle period, as described in' Remark 5, n = k — 2 in Equations (3.64) and (3.66).
Substituting this relation into Equations (3.43) and (3.44), the result is the same as that described

in Equations (3.67) and (3.68), respectively. : a

Remark 6. The reader should note that the above bounds may be extremeiy conservative and may

not be of practical use exeept to show the that the INTER sample estimate bound is, indeed, finite. ’

Corollary 2. If there are no unmatched uncertainties in the system and the Slow and Fast Observers
have the same initial conditions, the error bound is further reduced to

1- A

Jleg(m, k=1l < AN By + Bowg—2—
1-Ag

llews(m k= Dllc < wo (3.69)

Proof. The proof, here, is again straightforward in that now, all terms except Ao, By, wg, and Fp

are eliminated from Equations (3.67) and (3.68). O
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Remark 7. Furthermore, if the initial conditions of the actual states and uncertainties are the same
as those for the Slow Observer and the Fast Observer, the parameters wy and Fy become 0. These
initial conditions settings, of course, result in perfect state and uncertainty estimates. This can be

easily seen, as all the remaining terms vi_n Equation (3.69) are eliminated.
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Chapter 4

Imple'mentationr of a Parallel
Observer System to a Hard Disk
Drive System

In this chapter, the Parallel Observer System is applied to an IBM disk drive system running in
open-loop control. The POS is implemented on a reduced order form of this magnetic Head/Disk
Assembly (HDA). Input disturbances and unmodeled resonance dynamics are incorporated into the
disk drive system to illustrate the performance of the POS in the presence of matched and unmatched
uncertainties. “

For. further illustrations, f‘hé multifate POS is then. compared to two single rate Luenberger
Observers. One observer runs at the rate of the output measurement-and the other runs at the rate
of the control input. Both the are Luenberger Observers and have’ C(;ntfol input values and output
measurements available at each of their respective sample time steps so that a basis of “best” and
“worst” case estimates can be compared. In addition, the performance of the POS is compared to
that of the method currently being implemented in the standard disk drive. This method is referred

to as the Present Observer System.
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Primary coil resistance, R

4.0
Shorted turn reflected to primary, R; 2330
Coil leakage inductance, I, 0.171 mH
Shorted turn leakage inductance, Ly 0.137 mH
Coil and shorted turn mutual inductance, L3 5.95 mH
Power amplifier output current sense resistor, Rp, 0.25 Q
Actuator Mass ,M o B 120 grams

Actuator back EMF constant, KggaF

15 Volts/meter/sec

Actuator force factor, K

15 Neton

Voltage Controlled Motor (VCM) mass

2.0 kilograms

Base casting mass (including spindle)

4.0 kilograms

VCM/damper natural resonant frequency, wyom 50-2- %%%'
VCM /damper damping ratio, CQCM 0.707

Base casting/‘shock mount‘s natural resonant frequency, Wnsm | 9°2-1 g%g
Base casting/ sﬁock mounts damping ratio, (psm 0.707

Track Pitch

2400 TPI (tracks per inch)

Disk Diameter

5 % inches

Table 4.1: IBM HDA System Parameters

4.1 The IBM Magnetic Head/ Disk Assembly

The disk drive in study, as previously mentioned, is that of aﬁ IBM Magnetic Head/Disk Assembly
(HDA), as described in [38] and [39]. The SIMULINK diagrams which describe this system as
modeled in [38] are shown in Figures 4;1 through 4.5. "(The reaciér is referred to [40] and [41] for
more information on MATLAB/SIMULINK). In addition, the disk drive parameters and states are

described by Tables 4.1, 4.2 and the following relations:
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z1(t) | coil current

z2(t) | shorted turn current

z3(t) | motor voltage

~x4(t) | power amplifier compensation capacitor voltage

z5(t) | actuator position

z¢(t) | actuator velocity

z7(t) | VCM position

zg(t) | VCM velocity

x9(t) | base casting position

z10(t) | base casting velocity

Table 4.2: IBM 'HDA Systém States

denom = LiLo+ L1L3+ LaLs

a - -R (L2 + L3)
= denom
o _ =R
127 denom
a - —(L2 +L3)Kref
14 denom
__ -Ri
217 enom
a — ~Rs(Ly + L3)
22 denom
Kvem = Mveum - wicy
Dvem = 2Mvyeom - Gvem - wveom
Kgm = (_MVCM + Mpo)wlom
Do = 2(Mvem + Mpc)(BC - Wnsm (4.1)

The HDA is modeled by four main dynamic parts: the power amplifier dynamics, the coil dy-
namics, the Voice Coil Motor (VCM) and Basecasting dynamics, and the actuator dynamics. The

input into the system is the desired coil voltage, which is fed through the power amplifier. The
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Motor
Voltage

input P Input Motor Voltage ]+ a_12 * shorted turn current —

a_12* shorted turn current

\ 4

. Motor+BEMF Voltage
Input P Kbemf * x6 ‘ —
) BEMF Voltage| ] Motor Currentf—
Motor Current } BEMF
voltage Coil Dynamics

Power Amplifier

»)

Kbemf * x6 Motor Current

NGE) X Clocking and Media Noise j«§
[II‘—— — . ¢ Position Error
D(s) . Spindle Windage
Position Position Error . :
Error Channel —{ Kt * Motor Current < Spindle

N Spindle Position F
Signal Electronics ‘ Windage

Actuator Dynamics

and Media noise

| Clocking

A 4

Kf* Motor Current

. . Basecasting Position P> Nes)
External Disturbance D(s)
Coupled > Jp{ Extérnal Disturbance Spi
pindle Unmodeled
Through HDA Shock Mounts Dynamics

VCM and Basecasting Dynamics

Figure 4.1: IBM Head/Disk Assembly

final output of the system is thé position error signal, the relative error displacement between the
read/write head and the center of the track. (For more details, the reader is referred to [38] and
[39].) The actual input driving the power amplifier and, thus, the entire HDA system is a test input

signal comprised of a series of step inputs, as shown in Figure 4.6.

4.2 The HDA System Model

The full model is of a tenth order linear system. However, for purposes of simulation, a reduced
second order actuator dynamics model is used, placed in series with a second order resonance dy-
namics model. The SIMULINK diagram illustrating the model in study is shown in Figure 4.7. The
input to the system is the motor current and is acting in open-loop control, which is the output of

the coil dynamics. The output of the reduced order system is the actuator position.
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Input
+ Power Amplifier
.—>>—> B .
Motor Current >+
—
+ Motor
Voltage
+

a43|<
)

Motor current Kbemf * x6

% D)
. a_i2* : q

shorted turn VBiMF

current oftage

Figure 4.2: HDA Power Amplifier

Coil Dynamics

Motor+BEMF
Voltage

" shorted turn
current

- - : <
a_12*- : k : :

shorted turn
current

(D

Motor Current

Figure 4.3: HDA Coil Dynamics
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VCM and Basecasting Dynamics

G

Kf*

Motor
Current

Windage

Motor
Current

VCM
Position

Basecasting
Position

Figure 4.4: HDA VCM and Basecasting Dynamics

Spindie

Ki(11,12,pos)

Actuator Dynamics

)
External Disturbance

. 6 x5

M|yl ey 1] ! >

Dis) S S Actuator

+ = —~| Actuator Unmodeled Position

A Dynamics
4}4 Viscous fric
Cou'lomb
/l » friction
\ol‘

/(l‘ R/W cable force

<ol

Figure 4.5: HDA Actuator Dynamics
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Figure 4.6: HDA Power Ampliﬁer Input Current

Aatched Uncertainty

Spindie
Windage w2
s2+2*zeta* wns+wni2
Resonance Model x3
= P o
Motor - Actuator
Current Ki{i1,12,pos) Gain1 Position
fv:
v I P Viscous fric
Gain19 Coulomb
0 friction
Gaini8
P R/W cable force
\kcfr
Gain21

Figure 4.7: Simulation Actuator Model
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The second order resonance model R(s) which precedes the actuator dynamics is

w2

R = n .
() 8% + 2Cwns + w2 (4,2)

where w, is the resonance natural frequency and ¢ is the damping ratio. In this simulation, w, =
350rad/s and ¢ = 0.30.
Neglecting Coulombic friction, the two second order systems joined together in series fashion

results in the linear fourth order model:

i:l (t) 0 1 0 0 { Z (t) 0 —
&3(1) —iE s e O z5(1) 0
. - act acf act + U(t)
i3 (t) 0 0 0 1 - T3 (t) 0
i‘4(t) ’ 0 0 —w,% —2Cwny, 2:4(t) .K_fwi
3 T
) (t)
' :L'Q(t) )
y@) = 1100 0] (4.3)
z3(t) '
L x4(t) J

Here, 21 and 25 denote the actuator position and velocity, respectively, while z3 and z4 denote the
resonance dynamics. In addition, the motor current is u(t) and the actuator pqsitidn is y(t). Also,
Mgt corresi)onds to the actuator mass, K s corresponds to the R/W cable force spring coefficient,
by cqrresponds to the visé.ous‘fricti‘c_)n coéfﬁ-cient, and K; corresponds tqthe actuator force factor.
In this si_mula,tion of the HDA system,b the disk drive model is run in éontinﬁous timé,' and sampled
data signals of u(t) and y(t) are obtained from the Vcontinuous time system at sampling‘v periods of
Ty and T, = K1y, rvespectively_, where k is .5. No process or measurement noises are introduced.
The Parallel Obserx;er System is applied to the ma,gneticv Head/ Disk Assembly in discrete time.
While the actual control input signal i,,(¢) to the actuatoz; system is the motor current, and an

added spindle windage input is incorporated as a sinusoid rather than a random input such that
u(t) = iy (t) + 25sin(185¢) (4.4)
This spindle windagé input acts as the unmodeled matched uncertainty to the system. The model
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used for the Parallel Observer System is the same as that of Equation (4.3) except for the additional
spindle windage input and that the resonant frequency and damping ratio from the resonance model

is estimated to be at different values than the actual respective values. That is,

i1 (2) o 1 0 0 F,xl(t)- — 0 |
(1) —wk s we O z2(t) 0
= * + u(t)

i3(2) 0 0 0 1 z3(t) 0

B 0 0 —02 —20on | | za(t) Ko
il?l(t)-
IZIQ(t) : ‘

v = (100 0] : _ (4.5)

z3(t) ‘
_334(75)_

where (, &y, and 4(t) are such that

¢ = 0.85¢
Gn = 085w,
wit) = im () (4.6)
and Myt , Key , by, and Ky are such that
]\4,1& = 120 grams

K, = 0.04N/in
b, = 0.01 N/(in/s)

Ky = 15N/amp | (4.7)
It should be noted that the differences in the parameters of thé resonance model correspond to -
unmatched uncertainties in the actuator'dynainics. To illustraté the effects of the added matched
and unmatched uncertainty dynamics, a plot of the position é.nd velocity of the actual input and
the estimated input are shown in Figure 4.8. In addition, a plot of the nominal model, the model
accounting for matched uncertainties, and the actual system with matched and unmatched uncer-

tainties are shown in Figures 4.9 and 4.10, respectively. These plots show the degree to which the
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Time (sec) .

Figure 4.8: Actuator Modeled Input and Actual Input

matched and unmatched uncertainties change the actual system and to the extent .to which the
applied observers must adjust and correct themselves-for these uncertainties.

‘Equation (4.5) is discretized via method of zero order hold at sampling periods of Ty = 70us
for the Fast Observer System and T, = 5Ty = 350us for the Slow Observer system. Also, the
state vectors of both systems are respectively augmented to X (m) ‘and X (m,n) for the Slow and
Fast Observers, respectively, as discussed in Chapter 4, so as to accommodate matched uncertainty
estimation.

The approximations @, and é are used for the resonant freqtiency and damping ratio, respectively,
to calculate the system model parameters A, By, Af, and By for the system model discretized at
the corresponding slow and fast sample rates. The resulting final augmented discrete state space

model does not take into account any of the matched or unmatched uncertainties.
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MATLAB calculates the system model parameters A,, B; to be

-

1.0000e — 00
—1.1666e — 04
0
0
0

and Ay and By to be

1.0000e - 00
—2.3333e — 05
0
0
0

3.4999¢ — 04  5.0996¢ — 07  5.8734e — 11
9.9997¢ — 01  2.9114e —03  5.0104e — 07
0 9.9468¢ — 01  3.4025¢ — 04
0 —3.0115¢ + 01 9.4305¢ — 01
o - 0 0
— 6.8421¢ — 09 _

7.7975¢ — 05

By, = 7.9823¢ — 02

45172 + 02

0

7.0000e — 05  2.0416c—08 4.7512¢— 13

0.9999¢ — 01  5.8329e — 04  2.0344e — 08
0 9.9978¢ — 01  6.9625¢ — 05
0 —6.1622¢+ 00 9.892%¢ — 01
0 0 0
F 1.1044e — 11 —
6.3076¢ — 07
3.2410¢ — 03

9.2433e + 01

0
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6.8421e — 09
7.7975¢ — 05
7.9823e — 02
4.5172e + 02

1.0000e + 00

1.1044e — 11
6.3076e — 07
3.2410e — 03
9.2433e + 01

1.0000e + 00

(4.8)
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4.3 The Implementation of the Parallel Observer System to

the IBM HDA

4.3.1 The Parallel Observer System Model

The Parallel Observer System is applied, as in Equations (3.26) and (3.30). The general SIMULINK
implementation of the POS in the simulations are shown in Figures 4.11 and 4.12. It should be noted

that all observers implemented in this chapter are applied within the same simulation to insure that

all observers share identical simulation conditions.

Using the parameters calculated in Equation (4.8), the Slow Observer System and the Fast Ob-
server System are obtained, as in Equations (3.26) and (3.30). The Slow Observer System gains
are calculated so‘ that the observer poles are located arbitrarily close to the origin. The Fast Ob-

server System observer gains are calculated using the MATLAB command DLQE.m [41] to obtain
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Figure 4.12: The Parallel Observer System and Comparison Observers

appropriate Kalman estimator gains. The DLQE.m. cdmma'nd calculates the necessary parameters,

including the Kalman gains, for the design of a discrete Kalman filter using the knowledge of the co-

variances of the discrete system’s unbiased process and measurement noises. These calculated gains

are guaranteed to be stable. In this case, no noise is introduced. Therefore, to tune the Kalman

gains, the norm of the covariance matrix of the measurement noise is made very small. In addition,

the coefficient matrix of the process noise is an identity matrix of the augmented state order. The

norm of the covariance matrix of the process noise is increased accordingly for acceptable estimation

results. The résulting gains for the Parallel Observer System are as follows:

4.4437e + 00
1.5509€ + 04
4.5863¢ -+ 06

7.4154e 4 09

L 3.8496e + 06
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and

Ly Lpy

The initial conditions for the Slow Observer System and the Fast Observer System are

1.0000e — 00
—2.3333e — 05

5.4581e — 26

—1.1295e¢ — 24 —4.4998e — 21

—7.7850e — 27

7.0000e — 05
9.9999% — 01

3.7298¢ — 22

4.1891e — 25

while those for the actual system are set to

0
0
££(0,0) }
= = 0
wy(0,0)
0
L~ ]
0.0001
_ 0.1000
z(0,0) =
5.0000
2000.0

2.0416e — 08

5.8329% — 04

9.9978e — 01

-6.1622e + 00

2.0745¢ — 21

4.7512¢ — 13
2.0344e — 08
6.9625¢ — 05
9.8922¢ — 01

5.9157e — 17

4.3.2 The Parallel Observer System Simulation Results

1.1044e — 11

6.3076e — 07

3.2410e — 03

9.2433e 4 01

1.0000e — 00

(4.11)

(4.12)

Simulations of the applied Parallel Observer System on the IBM magnetic Head/Disk Assembly

are performed using MATLAB/SIMULINK. The comparison between the actual actuator position

and the position estimates of the Parallel Observer System’s Slow Observer System. (SOS) and

Fast Observer Systém (FOS) are shown in Figure 4.13. Those for the actual velocity and velocity

estimates are shown in Figure 4.14.

Referring to Figure 4.13, it can be seen that both the Slow Observer System and Fast Observer

System of the POS, after the initial transient, estimate the actuator position rather well, despite the

added matched and unmatched uncertainties. The Fast Observer estimate tends to be very sensitive
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to the accuracy of the Slow Observer estimates, as can be seen by the marked transient oscillations
at the points where the Slow Observer is still attempting to converge to the actual position signal.
The same behavior is noticed in .Figuie 4.14. The initial transient behavior before the actual
velocity estimate converges to the actual sighal is significantly greater and persists for a longer
amount of time, most likely because the Slow Observer System estimates do not converge as quickly
to the actual velocity values. However, as in the case of the position estimates, once convergence
is obtained, estimation of velocity for.Bt)th the Slow Obse_rver and the Fast Observer remain highly
accurate.
‘ It should'be noted that the Parailel Observer System gains are tuned for accuracy in position
estimates, as opposed to any of the other state estimates, since,'in a real application, the observer-
based controller is driven mostly, if not ehtireiy, by the pbsition estimates obtained by the observer.

Because of this tuning, the velocity estimation is not necessarily as accurate as it can possibly be.

4.4 Comparison Luenberger Observers

As mentioned previously, to have a basis for comparison, two separate, single rate observers are
applied to the IBM HDA. Both of these observers are of the standard Luenberger form but run at
different rates. The first single rate observer is applied at the measurement output sampling rate.
It is referred to as the Slow LuenbgrgerlObserver. The second single rate observer is applied at the

control input rate and.is referred to as the Fast Luenberger Observer.
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4.4.1 The Luenberger Observer Models

The Slow Luenberger Observer is given as.follows:

~ :Z'slo(m + 1)
Xslo(m + 1,1’1,) = :
o Wyio(m + 1)
A, Bs jslo(m) B,
= + u(m)
0 1 Ws1o(m) 0
Lélo R
+ y(m) — Jsio(m) ]
lslov l
)}slé(m) = { C -0 jl Xslo(m) _ (413)

where A; and B; are the same as given in Equation (4.8). One should note that this is the exact
form of the Slow Observer System, as both are single rate observers running at the same sampling
period. In so doing, it is only logical to use the same observer gains from the Slow Observer System

on the Slow Luénberger Observer. In other words:

L;lo = L

lso = Lsw (4-14)

Also, the Slow Luenberger Observer is held constant during t'hevINTER sample points. The Fast

Luenberger Observer is given as follows:

. aﬁﬂo(m,n-i-l)
Xﬂo(m;n-i-l) = k s

. u‘)ﬂo(m,n + 1)

/if Bf iﬂo(m,n) Bf
= + u(m,n)
0 1 ﬁ)ﬂo(m,n) 0
Ly, R
+ [y£(m,n) = Gs0(m,n) ]
ltio
Yﬂo(m,n) = [ Cc 0 } Xﬂo(m,n) (4.15)
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where A; and By are the same as given in Equation (4.9). The observer gains of the Fast Luenberger
Observer are calculated using the same observer poles obtained from the Parallel Observer System’s

Fast Observer gains. These Fast Luenberger Observer gains are as follows:

4.4950€ + 00
7.7787e + 04
Lo .
= | 1.1466¢ + 08 (4.16)
lflu o
8.6198¢ + 11
1.8829¢ + 09

Again, one should note that this Fast Luenbefgef Observgf form is the exact form of the Slow
Observer System except that it is ‘running at the faéter_'sa’mpling period and, more importantly, that
it is given the knowledge of the output actuator position ;iuring each ON and INTER sample point.
The reason for choosing these single rate Luenberger Observers for comparison is to show the
worst and best case scenarios. ‘For the worst case, as in the Slow Luenberger Observer, an output
measurement is used every ON sample point to update the observer, énd then the observer is forced
to hold its estimates constant during the INTER sample points until the next output measurement
is available. In contrast, the best case scenario is when the output measurement is available dur-
ing every control sample point and no multirate estimation is needed, as in the case of the Fast

Luenberger Observer.

4.4.2 The Comparative Luenberger Observers Simulation Results

Comparing the results of the Parallel Observer System’s Fast Observer S}ystem position estimate
errors to those position estimate errofs of ‘the single réfé Slow Luenberger Observer (SLO) and Fast
Luenberger Observer (FLO) in Figure 4.15, one can see that, besides the initial transient, the POS
is much more accurate than the Slow Luenberger Observer, as it accounts for INTER sample state
estimation. Also, the errors ofvthe POS esitiméte is highly affected by that of the Slow Observer
System’s estimate accuracy.

Although the Fast Luenberger Observer is still considerably faster than the POS, the POS
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Figure 4.15: POS and Comparison Observers Position Estimate Errors

position error signal evehtually decréases to zero just as in the best ‘casef situation of the Fast

- Luenberger Observer. The extremeiy quick converg'ence’ of the Fast Luenberger Observer state
estimates is not surprising because‘ the Fast Luenberger Observer has the added unfair advantage of
having output measurement feedback during all sets of sample points.

The same trend is seen in Figure 4.16, where the vélocity estimates of the Parallel Observer
System and the single rate Slow Luenberger Observer and Fast Luenberger Observer are shown.
The POé velocity estimates converge to actual velocity valués,felativély quickly, thile the estimate
errors of the Slow Luenberger Qbservef are still forced to o_scili_até during the INTER sample points.
in addition, the velocity error sigﬁai of the POS has a much less amplitude of oscillation in its initial

transient than even the best case Fast Luenberger Observer.
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4.5 The Present Observer System (PRES)

In this section, the performance effects of aliased resonant frequencies and vibration on the Parallel

Observer System compared to that of the industry standard estimation technique, referred to in .

this work as the Present Observer System (PRES), is analyzed. With this in mind, the emphasis of
analysis is on the POS and the PRES when the resonant frequency is higher than that of half the

measurement sampling frequency and when the system oscillates at this resonant frequency.

4.5.1 The Present Observer System (PRES) Model

The Present Observer System (PRES) which is used in today’s standard industry disk drive is of

the following form:

Epres(m,n+1) = Apig(m,n) + Bsu(m,n) + Lpres[ Ypres(m,n) — Jpres(m,n) |

gpres(myn) = Cfi'pres (m,n) (4.17)
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where

y(m), ifn=0
Ypres(myn) = ‘ ; (4.18)

Jpres(m,n), fn=12 .k - 1
Here, L, is a Luenberger gain. The state estimates ipre; are calculated every sample point and are
updated during the ON sample points, as with the Fast Observer System of the POS, but the PRES
uses the actual measurement output for feedback. Because both the Fast Observer System and
PRES are running at the same sampling period and instances, it follows that the system parameters
used, namely A ¢ and By are used in the PRES.‘This Present Observer is very similar to that of the
Fast Observer System, except that the only feedback available is the single. measurement output, as
opposed to the full state estimate.

For purposes of comparison to the Parallel Observer System, the PRES is also augmented to

allow for matched uncertainty estimation. That is,
r

- : Epres(m,n +1)
Xpres(myn+1) =

" Wpres(m,n.+ 1)

As By Epres(m,n) B;
= . + u(m,n)
0 1 Wpres (M, n) 0
Lpres
+ [ypres(m7 ’I’L) - ﬂpres(ma n)] . (4'19)
lpres
where
: y(m), ifn=20
ypres‘(m; n) = - (4.20)

Epres(m,n), fn=12,..k-1
Here, Wpyes (m,n) is the Present Observer System estimation of the matched disturbance, and Lyres

and lyres are Luenberger gains.

4.5.2 The HDA Test Simulation

Thé scheme of the simulation system with the implemented Parallel Observer System and the Present

Observer System is shown Figure 4.17. For these set of tests, the input to the system is a test signal
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Figure 4.17: Simulation Model of the Fourth Order HDA. Actuator System for the POS and PRES

cdmprised of a series of st'ep' inputs. Furthermore, thé system is“continuously excited by an input
sine wave which mimics a constant vibration input at the system resonant frequency. "I‘hebresulting
effective input is sﬁown in‘ Figure 4.18. |

Two cases of simulations are presented. In the first case, there are no added matched or un-
matched uncertainties. The sampling rate is the same as in the past simulations, that is a Nyquist
frequency of 8.9760x103réd/s (1.4286 % 103Hz). Tﬁe natural frequency is chosen to be aliased at a
frequency of 1.5745x 10%rad/s (2.5059x 10%Hz). The dafnping ratio is set to 0.0995. In the second
case, ma}tched and uﬁmatched _uhcertainfies are addéd to the system. For both cases, the obsérver
gains of tfle Present Observer ‘arevcalculat‘ed usiﬁg the closest available poles obtained from the

Paraliel Observer System’s Fast Observer gé.iﬁs.
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‘ Case I; Perfect Model

In the first case, a perfect model is used and no matched or unmatched uncertainties are introduced

into the system.

-

1.0000e = 00

—1.1666e — 04

0

0

3.4999¢ — 04
9.9997¢ — 01
-0

0

0.

hl

6.0269¢ — 08
—1.5320é ~04
3.6128¢ — 01
6.5586e + 03

0

6.7521e — 06
4.6047¢ — 02
9.5807e + 00
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0
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1.2383¢ ~ 11
2.1469¢ — 08
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0
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and Ay and By are used for the Fast Observer and Present Observer parameters and are

-

Ay = 0

0

1.0000e — 00 7.0000e — 05

—2.3333e — 05 9.9999% — 01

0

0

r

L

1.8514e — 08 4.2522e — 13 2.8535¢ — 08

4.7792¢ — 04 1.7182¢ — 08 1.5812¢ — 03

—1.2616e+ 04 3.2941e — 01 1.8924e+05

0

2.8535¢ — 08
1.5812¢ = 03
7.6671e+ 00
1.8924e + 05

0

The resulting Present Observer gains for this first case are

Lpres

lp'res

2.9915€ + 00

2.7261e + 04
~1.3696¢ + 07
~4.5555¢ + 11

2.4012e + 01

"4.8886e — 01 5.0890e — 05 7.6671e + 00

0 1.0000e+ 00

(4.22)

(4.23)

The gains for the Parallel Observer System are determined as explained earlier in this section and

are as follows:

v2.9915e‘+ 00
2.7261e + 04
—1.3696e + 07
—4.5555e + 11

2.4012¢ + 01
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1.0000e — 00  7.0000e — 05 1.8514e — 08 4.2522e — 13 2.8535e — 08

—-2.3333e — 05 9.9999¢ — 01 4.7792e — 04 1.‘7182e — 08 1.5812e—-03
Ly Ly,

= 1.6439¢ — 26  7.6468e — 23 4.8886e — 01 5.0890e — 05 7.6671e+ 00
lf ' lfw ‘
3.9321e — 22 5.2086e — 19 —1.2616e+ 04 3.2941e-—-01 1.8924e+ 05

2.0640e — 27 3.7369¢ — 24 1.7198¢ — 20 4.1165¢ — 16 1.0000e — 00

Case II: Added Matched and Unmatched Uncertainties

In this second cas;e, fnatched and unmatched.uncertainties are present in the system. The matched
uncertainty component is a spindle windage disturbance, a disturbance ésséciated ‘with the inter-
action of air across the spindle, and is a sine wavé input with a magnitﬁde of 30 and a frequency
of 185 Hz. The unmatched uncertainties afe implemented by ﬁsing a resonance model where the
actual ré_sonant frequency and damping raﬁo are 0.94 and 1.13 times the actual natural frequency

and damping ratio values, respectively.

4.5.3 The Present Observer System (PRES) Simulation Results

Figure 4.19 show the results of the POS and the PRES position estimates under the first case of
simulations where there is no matched or’unmatched uncertainties. It can be seen that the PRES
position estimétes are more accurate than the POS position estimates. Both observers are able to
detect the forced oscillations at the aliased resonanﬂfrequency, but the PRES is able to capture
the ‘oscillations more accurétely, although neither are truly é.ccurate in its depictibn of the forced
oscillations. These results are-seen more clearly in Figure 4.20 where the position estimate errors are
shown. Both observer’s estimate error oscillate abouf zero, with those of the PRES having smaller
amplitudes of oscillation.:

The reason for the POS’s poorer performance may stem from the fact that the Fast Observer is
dependent upon the accuracy of the Slow Observer’s estimates. The aliased resonant frequency and
the oscillation about this frequency could have a negative effect on the Slow Observer’s estimates.

In addition, the Fast Observer has an additional delay in feedback because it reacts and corrects its
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Figure 4.19: POS and PRES Position Estimates

measurements from the Slow Observer estimates only after the Slow Observer reacts and corrects its-
own estimates. The PRES does not have this “middle” stage in that it receives its feedback directiy
‘frorn the output measurement.

Figure 4.21 show the results of the POS and the PRES position estimates under the second case
of simulations where there are added matched and unmatched uncertainties. ‘As can be seen, the
PRES position estimate shows signs of instability, while that of the POS position estimate do not
seem to be affected by the presence of the added matched and unmatched uncertaiﬁties. The results
of the simulation are seen more clearly in Figure 4.22 where the position estimate errors are shown.
Here, agé.in, both observer’s estimate error oscillate about zero, but whe.reas the PRES shows signs
of instability, the estimatev.y errors of the POS appear to be the sarne‘as ‘without the uncertainties
and remains stable. |

The results of this latter case of simulations are not surprising, as.the accuracy of the Present
Observer is highly dépendent upon the accuracy of the observer model. In addition, because fhe
system is being excited at the resonant frequency and bécause the Present Observer shares similar

dynamics, any significant deviation in position estimate could excite the dynamics of the Present
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Observer System into’'system instability. Because of finite escape time, the INTER sample estimates
of the PRES are bounded, but. each bdeviati‘on between estimate and measurement during the ON
sample points effects the correction for the deviation. This sitiiation with the system oscillation about
the resonance frequency may be exciting the dynamics of the PRES, causing further deviations. As
the deviations grow, so do the corrections, and instability eventually occurs:

This condition of instability is shown in Figures (4.23) and (4.24), where the simulation is rerun
with the same conditions except that the estimated natural frequency is decreased slightly further to
a value of 0.9 times the actual resqrieint frequency. Here, as the figure shows, the Present Observer
quickly becomes unstable, while the Parallel Observer remains relatively unchanged.

The Parallel Observer System, on ihe other hand, has the advantage of being based upon a stable
set of full state order estimates from thé Slow Observer. The Fast Observer, althoughb having the
same observer model as the Present Observer System, uses these stable full state order estimates
for feedback. Furthermore, as long as the gains of both the Slow and Fast Observer are chosen

appropriately, the overall POS is designed to guarantee stability, regardless of added matched and

60



0.07 T T T T T T T T T

—8— Actual Position
—— PRES sl
0.06 - —b— POS "_

o

o

a
T
)

0.04

0.03+

Position and PRES Estimate (in)

0.02

0.011

0 =] q{- ) L | ! ; | | o .
0 0.001 0.002 0.003 - 0.004 0.005 0.006 0.007 0.008 0.009 0.01
: : Time (sec})

Figure 4.23: PRES and POS Position Estimates with Matched and Increased Unmatched Uncer-
tainties

unmatched uncertainties in the system.

4.6 Summary

In short, the results of the simulations of the Parallel Observer System implemented on the IBM
magnetic Head/Disk Assembly system are very promising. Despite’added‘matched and unmatched
uncertainties, in a;ddition tb diffe‘rent initial conditioﬁs, the Pérallel Observer Sysferﬁ is still able to
produce accurate and convergent state estimates during the ON and INTER sample points.

The results of the POS’s state estimation in this simulation shqws superior performance to that
of a single rate Slow Luenberger Obsefver, as the POS is able to prdduce accurate INTER sample
estimates. The POS’s state estimation is even comparable to a‘single rate Fast Lﬁenberger Observer,
despite the fact that the Fast Luenbérger Observer is provided with output measurement feedback
every ON and INTER sampie point, while the POS has output measurements available only once

out of every five sampling periods.
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Figure 4.24: PRES and POS Position Estimate Error with Matched and Increased Unmatched

Uncertainties

In addition, the implementation of the Present Observer to thé IBM HDA system shows that the
advantage 10 the POS under the conditions of system excitation at the aliased resonant frequency
occurs in the presence of matched and unmatched uncertainties. The POS does not seem to be
significantly affected by the presence of these uncertainties, whereas the Present Observer tends
towards instability.

In short, the poles of the POS’s Fast Observer System can bé. adjusted sovtha‘t extremely fast
convergence to the POS’s Slow Observer’s state estimates can be obtained. However, because the
Fast Observer is designed to convérge to the Slow Observer quickly, the Fast Observer is also highly
affected by the accuracy of the estimates of the Slow Observer. In addition, the greater the speed
of convergence of the Fast Observer to the Slow Observer, the greater the transient effects of the
Slow Observer on the Fast Observer. This can be seen in the simulations where high amplitudes
of oscillations occurs in the transients of the Fast Observer. It is noted, therefore, that the Slow

Observer’s state estimates must be accurate to insure the performance of the Fast Observer and the
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overall Parallel Observer System.
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Chapter 5

An Ada‘ptive: Paral}lél' Observer

System (APOS)

5.1 Motivation

The Parallel Observer System"s Fast Observer is highly dependent upon the accuracy of the estimates
of the Slow Observer, as seen in the example in the preceding chapter. Therefore, it is crucial to

the success of the Parallel Observer System that the Slow Observer be made robust. Namely, if the

system parameters change during the control process or if the model parameters do not match the

actual system parameters, it would be vefy advantageous if the Slow Observer is made to account
for these changing parameters or parameter uncertz;inties. Specifically, it would add greatly to
the benefits and performance of ‘the Parvallel_Obsei‘ver System if the Slow Observer were modified
to estimate the actual parameters, in addition to providing stable state and'uncertainty. estimates
during the ON sample points. Speciﬁcally, it is desired that these parameter estimates aid in the
estimation of multiratesystems with output measurements which are only avaﬂable at fixed intervals
@nd which are aliased due to high resonaﬂce frequencies in the system model.

in this chapter, a Discrete Adaptive Observer System (DAOQO) is implemented in the Parallel

Observer System, resulting in a new structure of the POS and is referred to as the Adaptive Parallel
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Observer System (APOS). This new structure is very similar to that of the original POS in that two
observers still are running parallel with each other. Instead of using a Luenberger Observer for both
parallel observers, however, only the Fast Observer System is a Luenberger Observer. In this APOS,
a Discrete Adaptive Observer System is used in place of the Slow Observer System. In this way,
stable state estimates are provided by.the Fast Obsefver at every control input sampling period,
despite limited output measurements and any system parameter uncertainties or parameter changes
that may occur duringv;. the control process. Furthermore, the DAO is also able to help estimate these

uncertain and/or changing parameters.

5.2 Existing Discrete Adaptive Observer Techriiques

The implementation of already existing discrete time adapt‘ive observer techniQues would improve the
robustness of the Pé.rallel Observer System by estimating system parameters or correcting inaccurate
model parameter values.

The oriéins of adaptive estimation stem from the pioneer work by Carroll and Lindorff [42],
which is intended for single-iﬁput single-output linear, continuous time systgms. Many more works
have followed. In fact, the Ei CompendexWeb [43] lists over 2500 references in adaptive estimation.
The number of available discrete time adaptive observers, though, is far less. A couple of examples
are those of Kudva and Narendra {44] and Suzuki and Andoh [45]. However, most of these available
discrete adaptive observers, although all proven tb be stable, have a slow rate of convergence.

Some methods which claim fast convergence ére Shahrokhi and Morari [46] and Hong et al. [47].
These two techniques guarantee exponentiéml convergence. However, vthey make use of several past
measurements in each time step .and require the inversion of a large matrix for each step. Because of
the computational burden, these tv‘vo methods are‘ eliminated as possibilities. It is decided that the
technique of Suzuki et al. [48], is to be implemented within the Parallel Observer System because
of its smaller amount of required computation, its guaranteed stability, and its fast convergence

properties.
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5.2.1 The Proposed. Discrete Adaptive Observer System (DAO)

As with most adaptive observers, whether continuous or discrete systems, the system to be observed
is assumed to be in the proper observer canonical form. That is, the system should be written in

the following form:

e(m+1) = Arz(m)+ Bru(m) (5.1)
y(m) = Cra(m)
where
-—al 100 - 0-
—ay 0 1 0 0
Ar = | —ag3 0 0 1 0
—-a, 0 O 0 0_
Br = [ by by - bn]T
Cr = 1 00 0 - 0] (5.2)

According to Carroll and Lindorff [42], given a system

Zim+1) = A,Z(m)+ Byu(m) (5.3)

y(m) = C.Z(m)

there exists a transformation matrix T such that z, = Tz and

—a; 1 0 0 -+ 0
a3 0010 - 0
Ar =TA,T! = —a3 00 1 --- 0 (5.4)
—a, 0 0 O 0
By = TB,
Cr=CT™" =1[1000 - 0



1 0 0 0 0 C,
a1 0 0 - 0| CA,
T = a @ 1 0 0 C.[A;)? (5.5)
Ap—1 ) p—-2 Q4p-3 ' p—g - 1 Cé‘[Az]n._l

The Discrete Adaptive Observer (DAO) as developed by Suzuki et ai. assumes a single-input
single—output»lineér plant. It is derived from an exponentially weighted least-squares rnethpd. The
technique guaraﬁ_tees fast convergence of all ét’ate and parameter estimatgés and the asymptotic
stability of the overall adaptive system, so lohg as'the system input is sufficiently rich. Thé reader is
referred to [48] for Jmore details. The method is cabéble éf estimating time-varying plant parameters

quickly. The DAO scheme assumes the system of the following form:

z(m+1) = Arz(m)+ Bru(m) (5.6)
y(m) = Cra(m)
where
ag 1 00 -+ 0
aa 01 0 -+ 0
Ar = az. 0 01 --- 0
an 0 0 0 - 0
Br = [bl bg ' b3 bn]T
Cr = 1000 --- 0 (5.7)

which is the same observer canonical output form as above. The system described in Equation (5.7)

is re-written as
z(m+1) = Fz + prv1(m) + pava(m), z(0) = 2o (5.8)
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where

h
fa

. fn

and such that F is a stable matrix. Vectors p;

1.0 0 0
010 0
00 1 0
000 --- 0

and p» -are such that

i = ai—fi; i:1,2,’3,...n
pai = by, 2 =1,2,3,...11
p :v[;l»?lT pzT]T
and
vi(m) = y(m)
ve(m) = u(m)

Define the state variable filter vector ¢(m) and the matrix S(m), respectively, as

¢pi(m+1) = Flgy(m)+CTvi(m), i=1,2
and
_ 1 -
C ‘ W ¢i(m)T W
CF ¢i(m)TF
Sl = CF2 ¢@(m)TF2 , 1= 1,2
CFn-1 ¢i(m)TF”—1

such that

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)



the adaptive state estimation expressions are

s(m) = S(k)p(m)+ F™ #(0) (5.15)

gm) = ¢(m)T p(m) + C F™ £(0)

where Z(m) is the state estimate vector and §(m) is the output estimate scalar. In addition, p(m)

is a vector of size 2n which denotes the parameter estimates at tirﬁe m and is defined as

a;(m) = f;, ifi=1,2,3,..n
bim),  Hi=n+ln+2n+3,.20
Here, 4;(m) are the parameter estimates of the matrix Ay, and b;(m) are the parameter estimateé of
the matrix By. This adaptive state estimation tgchnique is guafanteed to be asymptotically stable,
provided that the parameter estimates of p(m) coﬁverge to the actual parameter values. That is,
_ the adaptive observer ‘system is stableif & — a ‘and b—b.
The édaptive law, based upon a weighted least-squares method, guarantees parameter conver-

gence and is defined by the following relation:
pm+1) = pm)+T\m+1Dd(m+1)[z(m+1) — ¢(m +1)TH(m)] (5.16)

where

Tap(m+1) g(m + 1)T Ty

Fm+1) = Th- 1+ ¢(m+1)TTy g(m+ 1)T
I = T(A,m) ‘
AT T
z(m) = y(m)— CF™%(0) (5.17)

Here, X is a weighting coefficient whose values may vary such that 0 < A < 1. Suzuki et al. note in

their work that I' may be initialized as: |
T(\0) = d Ly, d>1 (5.18)

As explained earlier, the APOS replaces the original Slow Observer System with the Discrete
Adaptive Observer System described in Equations (5.8) through (5.18). The DAO transformed A

matrix, denoted by At is obtained by comparing coefficients of the characteristic polynomials of the
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givenvAs and the n parameters of A7, which is in observer canonical form. Then, the transforma-
tion matrix T is found using Equation (5.5). In turn, the remaining DAO system parameters are
calculated.

It also must be noted that any changes or uncertaﬁnties in the system are interpreted by the
Discrete Adaptive Observer as parameter ché.nges. In so doing, any external disturbances or mea-
surement noise are to be mistaken for system parameter changes. Thus, the Discrete Adaptive
Observer will adjuét itself accordingly in this incorrect assumption. In addition, although output
measurements, as well as input data, are used to drive the DAQO, the DAO still remains acting in an
open-loop fashion. That is, the DAO does not héwe any correction terms, as in the Slow Observer

or the Fast Observér', to correct itself for estimation errors.

5.2.2 ' Stability Analysis of the Proposed Adaptive Parallel Observer Sys-

tem

Assumption 7. Any changes in the system are due to system parameter changes and not due to

any other disturbances to the system.

The following terms are used in this chapter of development of stability proofs, somewhat similar

to those defined in Equation (5.19) of Chapter 3:

es = a(m,n)—&s(m,n)
ews = w(m,n)—is(m,n)
€sf(m) = Epao(m)—s(m,0)
€wss(m) = bpao(m) —dy(m,0) (5.19)

where, in this case, £pso(m) is the state estimates of the Discrete Adaptivé Observer. The proof
of convergence for the Adaptive Parallel Observer Systems involve manipulations of Lemma (2) and
the use of stability analysis based on eigenvalues. In addition, it also assumes the stability of the

DAO as given in [48].
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The Fast Observer from Equation (3.27) is

gp(myn+1) = Asd(m,n) + Brug(m,n) + Lress(m,n) + Lywewss(m,n)
wr(m,n+1) = dp(m)+Isesr(m,n) + lpwewss(m,n)
gr(m,n) = Cis(m,n) ‘ (5.20)

where
, esf(m), ifn=0
esf(m,n) = '

0, fn=1,2.k—1

€wsg(m), ifn=0
€wsg(m,n) = _ : (5.21)

0, ifn=1,2,..k-1
Assumption 8. All of the necessary requirements for the stability of the Discrete Adapti\}e Ob-

server, as described in [48] are satisfied.

Denote 6pao(m) as the sum of the unmatched uncertainties and perturbations from the feedback
term comparing the Discrete Adaptive Observer and the Fast Observer system during the ON sample
points. In addition, denote d;(m,n), as before as the unmatched uncertainties during the INTER

sample points, the following assumption is made:

- Assumption 9. The unmatched uncertainties 6pso(m) and d7(m,n) are bounded such that

max|épao(t)] < dpao, (5.22)

max |§;(m,f)] < b (5.23)

where dpao, and &y, are finite values.
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Re-define the following parameters such that

fo = ez(m,0)
wo = ews(m,0)
fDAOP = &;(m,0)
Wpao, = ‘e’wf(m,O)h
CfD‘A"OV =Ly fDAOo + Ltwwp a0,
Cwpao = lj fpao, + lfw WpAO,
Ao = |[Afllice
B = Bl
Fo o= |lfolle
Crpao, = [ICspaollico
Cwpao, = |Cupacl
wo = |wol

(5.24)

Theorem 2. Let Assumptions & through 5, 8, and 9 hold. In addi’tion, it is assumed that k, the

number of INTER sample point between two consecutive measurements, is a finite integer and that

the matriz Fy in Equation (3.40) is stable. Given the system in Equation (3.31), the proposed

Discrete Adaptive Observer described in Equations (5.8) through (5.18), and the Fast Observer

System described in Equations (3.27)-‘(3.’28}, then

1. The Fast Observer state and uncertainty 'es"‘timates during the ON sample points are stable.

2. The Fast Observer state and uncertainty estimates are stable during the INTER sample points.

Furthermore, at a general time step n, the state estimate error has a finite bound of

lles(m,n+ Dllee < AFT Fo+ A3Ctpao,

1— At

+ [Bo(wo + CwDAOo) + 5f0]
1-A4p
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and the uncertainty estimation error has a finite bound of

Iewf(m» n+1)| < wo+Cupao, (5.26)

Proof: The proof for this theorem is very similar to that for the stability proof for the Parallel
Observer System. First, stable estimates are shown for the ON sample points. The second part
involves analyzing the error dynamics of the Fast’ Observer and calculating the propagated error

during each of the INTER_s‘ample pbints.

Proof for Theorérﬁ 2: The ON Sample Points

On the ON sample points, the Fast Observer may be represented as .

&(m+1) A, By || #5(m) B,

= + | . |u(m)
By(m+1) otxn 1 iy (m) 0
A?_lLf Af,—lwa esp(m)
ly biw Ewsf(m)
As  Bs &z (m) B,
olxn 1 Wy(m) 0
| AL AR Ley, || Zpao(m) — &4 (m)
L e (5.27)
‘ I Liw ~Wpao(m) — by (m)

Referring to Figure (5.1), one may rewrite Equation (5.27) simply as

Xim+1) = F; Xi(m)+Ap(m) : (5.28)

Using Assumption (9) and the fact that the system in Equation (3.18) is stable and so that the
input to the system in Equation (3.18) is bounded, it can be inferred that A, is also stable. Because

of the stability of Ay, it can be seen that the overall dynamics described in Equation (5.28) is stable.
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Proof for Theorem 2: The INTER Sample Points

The stability proof for the INTER sample points for the Adaptive Parallel Observer System is
very similar to that for Theorem 1. Using the error definitions given in Equations (5.19) and the
Equations (3.30) and (3.46), ef(m,n) and eys(m,n) are such that the error dynamics for the Fast

Observer System with uncertainty estimation are

ef(mn+1) = Afer(m,n)+ Byeyr(m,n) — Ly €5¢(m,n)
_wa Cwsf (m,n) + 6f (man)

ewfmn+1) = eyp(m,n) —ly esp(m,n) — gy €wsp(m,n) - (5.29)
Using the expressions defined for Theorem (2), one may calculate the resulting propagated error as

n n
ef(m,n+1) = A} fo— A} Cipao+ Y, Ay Bywg— D A% Bf Cupao

=0 =0
= A% b5(m,i) (5.30)
=0
and
ewf(m,n + 1) = wgp - Cupao (5.31)

for the Fast Observer state estimates and uncertainty estimates, respectively. Utilizing Schwartz’s

Inequality and the triangle inequality, the error bound of Equation (5.30) is; most conservatively,

les(m,n+Dllee < An* Fo+ AR Crpao, + 9 A Bowo (5.32)
i=0
+ > A} Bo Cupao, + Y A 6,
=0 =0 :
and

lews(m,n+1)| < wo+ Cuwpao, (5.33)
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Using finite series analysis, one can simplify the second and third terms of Equation (5.33). For a

stable system, Ag < 1. Then,

n . _ An+1
ZABBOWO = Bowoﬁ
=0 1- AO
ZAE By Cypac, = Bo CwDAOg"l“'_j%—"
i=0 s
Y Aben, = b ﬁ (5.34)

=0

The resulting calculation of the error bound of the Fast Observer is

_ Antl

1-A4 .
[]ef(m,n + 1)“00 < Ag+lFo + AgFo + —T—z— [Bo (wo + C’wDAOg) + 5fn] (5.35)
L — Ap :

Q.ED

5.2.3 Maximum Error Bounds

Remark 8. Asvdiscus‘sed previously; in the worst case scenario? the efror in the state estimates for
the Fast Observer System continue to increase during the INTER sample points until the start of
the next cycle (i.e., the ne?ct ON point). Under this condition, then, the greatest maximum bound
for any. INTER sample point would occur at n = k — 1, or such that (m,n+ 1) = (m,k — 1) (at the

time step just before the next ON point).

Corollary 3. Given the results of Theorem 2 and the worst case scenario in which the mazimum
estimation error occurs at the time step of t = (m,k— 1) (described in Remark 5), an upper bound

of the error estimates of the Fast Observer state estimates Ep(m,k—1) is

lleg(myk—1]leo - < AXFy + AF2Cspao, , (5.36)
‘ 1- A
+ﬁ0—' [Bo(wo + Cupao) + 65,] (5.37)

and the upper bound of the uncertainty estimation ¥y is

lews(m,k—1)] < wo+ Cupao (5.38)
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Proof. The proof, here, is straightforward. Using the fact that, at the sample point prior to the
following cycle period, as described in Remark (5), n = k — 2 in Equations (5.31) and (5.35).
~ Substituting this relation into Equations (5.25) and (5.26), the result is the same as that described

in Equations (5.37) and (3.68), respectively. ' ]

Remark 9. Thereader should note, as before, that the above bounds may be extremely conservative
and may not be of practical use except to show the that the INTER sample estimate bound is, indeed,

finite.

Corollary 4. If there are no. unmatched uncertainties in the system and the Slow and Fast Observers

have the same initial conditions, the error bound is further reduced to

ik 1—Ak-1 R
AOFO +B0’U.)0———-L1_AO , if Ag 75 1

IA

lles(m, k= 1ile
’ F0+B0(k—1)’LUO, lon =1

lews(m, k — 1) wo (5.39)

IA

Proof. The proof, here, is again straightforward in that now, all terms except Ag, By, wo, and Fy

are eliminated from Equations (5.37) and (5.38). ‘ ]

Remark 10. Furthermore, if the initial conditions of the actual states and uncertainties are the
same as those for the Slow Observer and the Fast Observer, the parameters Ag, By, wo, and Fp
all become 0. Theées initial cbnditions settings, of course, result in perfect sfate and uncertainty
estimates. This can be eaéily seern, as all the remaining terms in Equation(5.39) are eliminated.

leaving

|
o

les(m, k= Dlleo

I
o

lws(m, k — 1) (5.40)

Remark 11. The reader should note that the stability proof of the INTER sample points of the
Fast Observer System does not change, regardless of whether the Discrete Adaptive Observer or

the Slow Observer is implemented, so long as the observer being used is stable. This infers the
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fact that the Parallel Observer System with the Fast QObserver System may be used with any stable

“feedback” observer, such as the Slow Observer System and the DAO.

An importantvnote here is that ‘the overall stabﬂity for the Adaptive Parallel Observer System
is guaranteed only if the DAO is also stable, as inferred in Assumption 8. The DAO, however,
does not necessarily guaréntee that the augmented state (to facilitate matched uncertainty estima-
tion) of the Discrete Adaptive Observer will remain stable. Therefore, if the augmented state form
is, in fact, applied to the APOS, th"e:fe is no guarantee that the Discréte Adaptive Observer will
interpret the matched uncertain’cies as >contributions to the matched uncertainty term w(m) and
that it will not interpret these spéciﬁc uncertainties as parameter changes or mismatches in system
parameters. ’Furfchermore, be‘causefhe DAO assuﬁes that any changes in the system are a result of
changing system parameters, the DAO .is expected to be very susceptiblé to noise and other external

disturbances.
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Chapter 6

Implementation of an Adaptive
Parallel Observer System to a

Hard Disk Drive System

6.1 DAO Implementation Issues

In the set of simulations performed in this chapter, it is seen that the DAO may either be tuned
specifically for the accﬁracy of the state estimates at the expense of oscillating parameter estimates,
or it may tuned for the smooth convergence of the parameter estimatés bﬁt with slower state estimate
convergence. For thé purposesio‘_f the following sirﬁulatiohs, a “middle” ground ‘is attempted in that
the state estimation is felaﬁively accurate while preventing excessive oscillation 0f the parameter

estimates.
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6.2 Implementation of the DAO to a Second Order Reso-

nance Model

To illustrate the potential benefits of the Adaptiye‘ Parallel Observer System, the same second order
resonance model used in Chapter 4 is used in this section to analyze the effectiveness of the Discrete
Adaptive Observer. In so .doing, the results of the DAO are compared ’po that of the Slow Observer
System. In addition, a comparison of fhe DAO parameter estimates to the actuél estimates are
made. Note that these set of simulations are of single rate at the output measurement sampling

period.

6.2.1 The Resonance Order Model

The same second order resonance model R(s) used in the HDA simulation in Chapter 4 is used for
this example. That is, R(s) is such that

w2

_ n 6.1
R(s) T a5 T 0l (6.1)

where, again, the natural frequency w, and damping ratio { are, respectively, 1500rad/s and 0.10.
The system is discretized at the measurement sample rate of Ty = 350us and the resulting state

space matrices are

4 8.6990e — 01  3.1720e — 04
171370+ 02 7.7473¢-01 |
1.3010¢ — 01
B = | (6.2)
7.1370e + 02

6.2.2 The DAO System Model

The input into the system is composed of two sinusoidal inputs, shown in Figure 6.1, such that
u(t) = sin(535t) + sin(615¢). There are no disturbances added to the system. Therefore, the

Discrete Adaptive Observer does not have an augmented state form. That is, since there is no need
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Figure 6.1: Input Motor Current to a Second Order Resonance System

for matched uncertainty estimation, the matched uncertainty te‘rm w(m) is not included as part of
the state matrix.

The SIMULINK diagrams of the general simulation of the DAO applied to this second order
resonénce model and the resonance model, itself, are shown in Figures 6.2 and‘ 6.3, respectively. The
geﬁeral SIMULINK simulation of the Discrete Adaﬁtive Observer is shown in Figure 6.4. For a more
detailed look at the:.simulation, the reader is referred to the vappendirx.‘ |

As the original HDA'system is not in the uéable observer canonical output .form, a transformation
is needed, as described in Equations (5‘.5~)vt_hrough (5.7). In other words, a transformation matrix

T is ﬁeeded to transform the system in Equation (4.5) to the form of Equation (5.5) such that
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Figure 6.2: DAO Implementation on a Resonancé Model
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Figure 6.3: The Discrete Resonance Model
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zp(m) = Tz(m) and

——alv 1
AT=TAST_1 =
—Qas 0
Br = TB;
Cr=CT = [1 0]

Using the method used in [49], the transformation matrix is given such that

‘ 1 0 C
T =
ap 1 - CA; -

The resulting system for the Discrete Adaptive Observer (DAO) is as follows:

1.6446e 400  1.0000e + 00
Ap =TAT™! =
—9.0032e — 01 0
1.3010e — 01
Br=TB =
1.2559¢ — 01

Cr=CT™" = {1 0]

where

_ 1.0000e + 00 0
T = .

—7.7473e¢ - 01 3.1720e — 04

In addition, the DAQO parameters are initialized as follows:

60) = o

ro) = d
A= V05

p0) = 0
d = 10
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The state variable filter F' is chosen, following the example of Suzuki et al., to be

1.4900e + 00  1.0000¢ + 00
F = (6.8)
—5.5000e — 01 0
The Slow Observer System is also implemented in this simulation of the resonance system to.compare

with the DAO. However, as in the previous set of simulations, the estimated parameter values are

used. That. is,

{ = 085¢
On = 085w, - (6.9)
for the observer estimated model
o &)2
R(s) = n - _ (6.10)

$2 4 2(ns + 02
The Slow Observer System is also applied in this simulation in the augmented format, as with the
DAOQ, of Equation (3.2) where the observer gains L; are chosen so that the observer poles are at

[1e—~8+5¢ —8 1le—9 J- The resulting gain matrix is

2.7383¢ + 00
Ls = | 56753¢+03 (6.11)

5.3019¢ 4- 00

6.2.3 Resonance‘Syst‘em Simulation Results -

The simulation results of the Discrete Adaptive Ob_sei‘ver (DAOQ) System and Slow Observer System
(SOS) position estimates are shown in Figure (6.5). ‘The DAO estimate converges directly to the
actual position. Although the Slow Observer System allows for the estimation of matched uncer-
tainties, it does not converge as quickly as the DAO because its design does not take into account
any unmatched uncertainties.

The velocity estimate of the DAO is shown in Figure 6.6. There is a large initial transient where

the Discrete Adaptive Observer is initializing itself and reacting to different initial conditions than the

actual system. It should be noted that this transient behavior is inherent to general adaptive systems.
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Figure 6.5: Actuator Position Output and Estimates

In addition, because of fhe reiatively large difference’between the estimatéd initial conditions and
actual initialvconditions, this transiént 1s much more amplified. After the initial transient, however,
the DAO converges to the vélocity output.

The comparative results between the Discrete Adaptive Observer and the Slow Observer System
are shown in Figures 6.7 and 6.8. The first plot confirms that the DAO position estimate error
converges quickly to 0. The latter plot shows the initial DAO transient, as mentioned before, and
then the decrease in e'rror; Both plots show the SOS estimatesv‘converging to the actual states.
Because it cannot adjust itself as quickly to the mismatched system parameters, however, the speed
of cb'nvergence of the DAO is muéh quicker than that of the Slow Observer System.

Simulations ofjthe' DAO parameter eétiﬁates are shown in Figures 6.9 through 6.12. Tt can
be seen that not only does the DAQ position estimate converges quickly and that of the velocity
estimate converge fairly quickly after the initial transient, but the estimates of the system parameters
also settle to actual values. This is an added advantage over the original Slow Observer System in

that corrections in parameter values are adjusted by the Discrete Adaptive Observer, while the Slow
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Figure 6.8: DAO and Slow Observer System Velocity Estimate Errors

Observer System can only adjust itself via its observer gain. In addition, any additional changes to
the system will not cause as great a transient, as seen in the initialization‘, as, assuming the DAO
has already converged to actual state estimate values, the DAO and the changing system will start

with the same initial conditions.

6.3 Implementation of the APOS to the IBM HDA

The DAO algorithrﬁ as pres’ented is implémented exactly oﬁ the IBM magnetic Head/ Diék Assembly
from Chapter 4. The sarﬁe conditions ;are applied except that the input current to the power
amplifier is changed to a pseudo random binary input signal. This is to supply a sufficiently rich
input signal to satisfy the necessary conditions for the stability of the Discrete Adaptive Observer
(DAO) implemented in the Adaptive Parallel Observer Systém (APOS).

The same matched uncertainty signal is also being used in this example, as in Chapter 4. In
addition, the simulations are being run with the same augmented state form to allow for matched

uncertainty estimation. It should be noted, however, that the DAO does not specifically account for
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either matched uncertainties or the aﬁgmented state form. However, for purposes of coniparison to
the example of Chapter 4, these conditions are being consistently implemented.

As in the previous set of sim‘ulations, the APOS is compared to the single rate Slow Luenberger
Observer and the Fast Luenberger Observer. To compare the POS to the modified structure APOS,
the POS’s Slow Observer System state estimates are shown with those of the APOS’ Discrete

Adaptive Observer (DAQO) state estimates.

6.3.1 DAO Implementation Issues for the IBM HDA

The DAO algorithm as presented is implemented exaétly on the IBM magnetic Head/Disk Assembly
from Chapter 6 as described in Equations (5.8) through (5.18). However, to prevent unneeded
parameter adaptation during fimes when the parameter estimates have already converged to their
respective values, the parameters, according fo the magnitude of the output estimation error at the
previoué sample time step, are held cons‘gant. This error, referred to as the error threshold epresn,
is set to le-6 inches for all of the simulations shown. This also prevents unnecessary parameter
estimate oscillation due to the DAO continuously tryiﬁg to obtain bettef parameter estimates when,
in fact, it may not be possible.

~In addition, the output measurement y(m + 1) as needed in Equation (5.17) is assumed to be
unavailable and kthat only y(m) may be used for estimation purposes. In effect, the parameter
estimates being used for the observer is p(m — 1) instead .of p(m). This result, though, merely means
that the parameter estimates obtained shows a one measurement time step delay, which should not

noticeably affect the overall disk drive simulation.
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6.3.2 The HDA System Model

In this simulation, as in Chapter 4, the same actuator and resonance dynamics from the IBM

magnetic Head/Disk Assembly system are used as the simulation:

r = B v. T r T - T
&a(2) K b L 0 2 (t) 0
— ac‘t act act + u(t)

i3(t) | 0 0 0o 1 EORE 0

Ga(t) 0 0 —w2 —2wn || @) | | K2
(L‘l(t)
z2(t)

y@ = [10 0 0] (6.12)

(Eg(t)
ECH

where w, = 350rad/s and ¢ = 0.30.
To illustrate the effects of the new input, the matched uncertainties, and the unmodeled dynamics
on'the actuator output, a plot of the actuator position output under each of these conditions is shown

in Figure 6.13, and those for the actuator velocity are shown in Figure 6.14.

6.3.3 The DAO System Model

The DAO system is applied to the IBM magnetic Head/Disk Assembly with the presence of the
samé‘ mafched and unmatched uncertainties as befére., As‘ in thé case as the of the POS, the APOS
is also augmepted to fa(;,ilitate matched uncertainty estimation. The general SIMULINK simulation
of the Adaptive Observer System is shown in Figufeé 6.15 aﬁd 6.16. For a more detailed look at the

simulations, the reader is referred to Appendix A.
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The same model is used in this example simulation as in Equation (4.5) of Chapter 4. That is,

(1) - | W M}"? , ° 72l + ° a(t)
i3 (t) 0 0 0 1 z3(t) 0
& 00 ek -als. || m) | | K
:zl(t)
) Iz(t)
y&) = [ 10 0 0] _ (6.13)
‘ z3(t)
_I4(t) .

where ¢, @, and 4(t) are such that

¢ = 085¢
Gn = 0.85wn
' at) = im (1) (6.14)

\
Tt should be noted that the design of the DAO does not necessarily take into account the matched
certainties of the system, regardless of whether or not the system is augmented to allow for uncer-

tainty estimation, as these conditions do not satisfy those stated in the proof for stability in [48].
, .

~

Al the original HDA system is not in the usable observer canonical output form, a transformation

is needed, as described in Equations (5.5) through (5.7). In other words, a transformation matrix 7.
is needed to transform the system in (4.5) ta the form of (5.7) such that

o e L -

?

1 0.0 0.0 C
@@ 1 0 0 0 CAr
T = |a a 1 0 0 ClAr)? (6.15)

agz a2 a3 1 0 C[AT]S

ag a3 ay ay 1 ClAT)*

The resulting system for the Discrete Adaptive Observer (DAO), which replaces the Slow Observer
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System, is as follows:

— 4.9377¢ 4+ 00

| ~9.7614¢ + 00
Ar =TAT™ = 9.6579 + 00

—4.7825¢ + 00

| 9.4825¢ — 01
— 6.54216 - 09 |

| 6.7586e — 08

Br=TBs = —7.8710e — 10

—6>.7014e -08

—6.6274e — 09
Cr=CT™ =100 0 0]

where

- 1.0000e + 00 0 0
—3.9377e+00  3.4999¢ — 04  5.0996e — 07
T = 5’.82‘376 +00 —1.0282¢—03 —4.8360e — 07
—3.8342¢+00  1.010le — 03 —5.0993¢ — 07
9.4825¢ — 01 —3.3189¢ — 04  4.8357¢ — 07

In addition, the DAQ parameters are initialized as follows:

010)(1

d*I1o

= 0.55

= 10

96 .

0

0

0

00 0]
10 0
010
001
000

0
5.8734¢ — 11
1.7299¢.— 10
—1.7453¢ — 10

~5.7194e — 11

0
6.8421e — 09
7.4428¢ — 08
7.3641e — 08

6.6274e — 09

(6.16)

(6.17)



[AT]a

Br

4.9114e + 00
~9.7611e -+ 00

9.6579¢ + 00
—4.7825¢ + 00

9.4825¢ — 01
_ 6;5421e - 09

6.7586¢ — 08
_7.8710¢ — 10
—6.7014¢ — 08
—6.6274¢ — 09

(6.18)

The state variable filter F’ are arbitrarily chosen such that the resulting eigenvalues are 0.003+0.001,

0.01 £0.002 and 0.0003. The resulting state variable filter is

0
1
0

0

0

0

1

0

— 2.6300e—02 1 0 0 0
—2.4180e—04. 0 1
Fo= 8.9420e —07 0 0
—~1.2872e—09 0 0
3.1200e—13 0 0

(6.19)

The same Fast Observer System model used in the example simulation in Chapter 4 is also

implemented in this simulation. In addition, the same Fast Observer System observer gains in

Equation (4.11) are used in this simulation as well.

6.3.4 HDA Simulation Results

The simulation results of the Adaptive Parallel Observer System position estimates are shown in

Figure 6.17. There is a large initial transient where the Discrete Adaptive Observer is initializing

itself. It should be noted that this transient behavior is inherent to general adaptive systems. In
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Figure 6.17: Actuator Position Output and APOS Estimates

addition, the parameter and state estimates are starting with different initial conditions from the
actual state and system parameters. A large transient is seen from the Fast Observer System because
of the DAQ’s initialization period. After the DAO begins to converge to the actual position signal,
however, it can be seen that the Fast Observer Syétem position estimates converge also.

Analogous results are obtained in the velocity' estimates of the APOS, as shown in Figure 6.18.
After the initial transient, both the DAO and the Fast Observer System convérge to the velobity
output. Again, it is clearly seen that the Fast Observer System is greatly affected by the accuracy .
of the state estimates of the driving observer which, in this case, is the DAO:

To view the results with the comparitive Luenberver Observers between that of the APOS’ Dis-
crete Adaptive Observer and the POS’s Slow Observer System, the reader is referred to Figures 6‘1‘9
and 6.20, where the position estimate errors and the velocity estimate errors are shown, respectively.
Both plots show the initial DAQO transient and then the decrease in error estimates of both the DAO
and the Slow Observer System. The comparative results between the single rate Slow Luenberger

Observer and Fast Luenberger Observer are shown in Figures 6.21 and 6.22. Again, the same results
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Figure 6.18: Actuator Velocity Output and APOS Estimates

can be seen in this set of comparisons.

Typical simulations of the DAO parameter estimates are shown in Figures 6.23 and 6.24. The
rest of the ten DAO parameter estimates may be found in the Appendix B. These simulations show
that the parameter estimates vary Httle from their initial values and show no positive convergence to
actual values. As pointed out earlier, however, the implemented DAO is not guaranteed to be stable
for the case of augmented states or for matched certainty estimation, as is in this set. of simulations.
In addition, it is possible ’cha’c the DAQO has found other parameters that fit the model description
and these set of parameter estimates simply do not happen to be the intended model parameter
values. This reasoning is supported by thevfac.’c tha‘p matched uncertainties are introduced in the

system, which may easily be mistaken by the DAO as a mismatch in system parameters.

6.3.5 HDA System Simulation Results

It is seen that the state estimates of the Adaptive Parallel Observer system, after the pass of finial

transients, converges to those of the actual states, despite the added input disturbances and system
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state augmentation. The transients are large but are indicative of general adaptive schemes and
applications. These transients are magnified in these simulations due to the offset of initial state
and parameter values between those of the APOS’S‘ Discrete Adaptive Observer and the actual
system. Furthermore, it can be argued that, for the case of a disk drive system, any transients are
insignificant because these transients disappear before the end of the computer system’s “boot-up”
period.

The DAQ’s parameter estimates-do not converge to actual parametef values of the HDA system,
possibly because stability aﬁd convergence of state and parameter estimates are not guaranteed
under condition of state augmentation and added input disturbances. Yet, the state estimates still
converge to actual state values. This infers that the DAO has found another set of Ay and By
parameters that satisfy state estimate convergence.

It must be pointed out that tuning of the Adaptive Parallel Observer System, specifically of the
Discrete Adaptive Observer is not a trivial matter. As discussed earlier in this chapter, a “tradeoft”
exists between fast convergence of state estimates and‘parvaméter estimation oscillation. In addition,
the addéd tuning parametef of the error threshold e;presn introduces further tuniﬁg complications,
as there is also a tradeoff here between accuracy of estimation and estimation oscillation. The tuning
of the DAO is especially critical, since the accuracy of the Fast Observef System estimates relies on

the estimates of the Discrete Adaptive Observer.

6.4 Summary Analysis of Simulation Results of the APOS

It is shown in the simulations that the Adaptive Parallel Observer system may be very beneficial in
providing convergeht state and parameter éstimates, as long as the implemented Discrete Adaptive
Observgr is reliable. This reliability is guaranteed, among other necessary conditions, when there
are no external inputs or disturbances and when the augmented state form of the system is not
used. This is not the case in the latter set of simulations. Large transients are observed in the
initializations of the APOS but disappear in an appropriate range of time.

The tuning of the APOS is difficult in that not only must the observer gains for the Fast Observer
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System be chosen appropriately, but also the parameters A and egpresn. These parameters must be
chosen so as to sustain accurate state and parameter estimation without significant oscillation in

parameter estimates.
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Chapter 7

Tuning of the DAO Parameters

It is found that the DAO from Suzuki et al. is accurate and shows fast convergence of states and
parameter estimates for a second ordér resonance model. However, finding the optimal observer
parameters for the DAO is>not trivial.

The use of genetic algorithms in control applications is a relatively new concept. Furthermore,
the added application of the genetic algorithm to tune state estimation parameters used for control
applications is newer still. As a result of the difficulties in finding optimal observer parameters, a
genetic algorithm (GA) is employed to automate this process. This GA uses the rank fitness method
for the crossover selection process due to its simplicity td implement and its control over the selection
process. This chapter presents the applicé.tion of a genetic algorithm implemented _oﬂ-line to obtain

optimal observer parameters for the DAO.

7.1 DAO Implementation Issues for the IBM HDA

The DAO algorithm as presented is implemented exactly on the IBM magnetic Head/Disk Assembly
as described in Equations (5.8) through (5.18). However, as before, the error threshold, etnresn, is
implemented to prevent unnecessary parameter estimate oscillation due to the DAO continuously
trying to obtain better parameter estimates when, in fact, it may not be possible. Also as before,

the parameter estimates being used for the observer is p(m — 1) instead of p(m).
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In this case, however, the IBM HDA model is scaled by time, input, and state values for numerical
conditioning and for more effective implementation of the Discrete Adaptive Observer. The entire
HDA model, for purposes of simulation, consists of the current input into the actuator and the

fourth order model described in Equation (4.3).

7.1.1 The Scaled Disc Drive Model

Given that the state space representation of the HDA system is

va': = Az + Bu

the system is scaled using the following equations:

X _ i+BU
dr
Yy = CX ’ (7.2)

where

A = tpe[P]TAP

B = tmeP]"'BQ
= CP
= 2 7.3
c = < (7.3
z-= PX
u = QU
y = RY
t = tma,;T (7-4) ‘
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and

O{max |z]) 0 0 0
0 O(maklwzl) 0 0
P =
0 0 O{max |z3]) 0
0 0 0 O(max]ml)J
@ = max|uyl
R = maxly| (7.5)

7.1.2 DAO Disk Drive Implementation

The Discrete Adaptive Observer is applied to the disk drivev system. The main emphasis of the
following simulations is to show the performance of the DAO output and parameter estimates, given
the irhplemented scaled model and the use of a genetic algorithm for optimal tuning of observer
parhameters. |

The SIMULINK simulation diagram of the overall system is’showh in Figure 7.1, and the im-
plemented DAO is shown in Figure 6.15. For a detailed view of the specific parts of the DAO
system, the reader is referred to the appendix. In this implementation, the DAQ is running external
to the system. For the system shown, k¥ = 5 and Ty = 75 ps. These parameters are arbitrarily
chosend. Furthermore, it should be noted here that the model described in [38] uses a single rate
control/estimation strategy and that the sampling period used is 100 ps. |

The fourth order continuous time disk drive model is

@ _ AX + BU
dr
Y = CX (7.6)
where
- .
0 1.0000¢e + 00 0 0
. —3.3333¢ — 05 —8.3333¢— 04 8.3333¢e - 01 0
A =
0 0 0 1.0000e + 02
0 0 —-9.4090e+01 —1.9303e+ 01
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1.4114e + 06

0
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and the discretization of the system at the measured output rate is,

X(m+1)

Y(m) =

A,X(m) + B,U(m)

CX(m)

(7.7)

where A, and B; are the slow discretization matrices of the system described in Equation (7.6).

1.0000e — 00

—1.1666e — 06

0 0

0 0
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9.9997e — 01

2.0826e — 04  2.9425e¢ — 04
1.4802¢ — 03  1.5146e — 02
—7.1019¢ — 01 —1.7321e~-01
1.6297¢ — 01 —6.7675e — 01




4.5322e 4+ 00

4.1529¢ + 02

pl
I

. 2.5653e + 04

—2.4446e + 03

The DAO Itransfovrmed A, matrix, denoted byv Ag is obtained by comparing coefficients of the
characteristic polyﬁomials of the given A, and the n parameters of Ag, which is in observer canonical
form. Then, the transformation matrix T is found using Equation (5.5). In turn, the remaining
DAO system parameters are calculated. The F matrix is an arbitrarily chosen stable matrix in
observer canonical form. The roots of F‘ | are arbiﬁrarily chosen to be 0.003 + 0.00li? 0.003 — 0.001¢,
0.01+000% and 0.01 - 0.00%.

Using the transformation T such that

1.0000e + 00 0 0 0

3.8697¢ — 01 -3.4999e — 02  2.0826e — 04 2.9425e¢ — 04

=
Il

—8.7805e — 01 4.8542¢ —~ 02  3.2446e — 05 4.0878e — 04

—5.0883¢ —~01 1.7809e — 02 —6.7438¢— 05 1.9462¢ — 04

the DAQO system model is as follows:

Xd(m + 1) = AdXd(m) + BdU(m)
Y(m) = CyXa(m)
where

1.9967¢ +00 1.0000e + 00 0 0
B -9.9709¢ — 01 0 1.0000e+ 00 0

Ay =
4.2747e — 12 0 0 1.0000e + 00
] —6.3060e — 22 0 0 0

109



7.6394e — 02
7.6504e — 02
—1.7810e — 06

~3.5733e — 17 |

Ca=C = [1 00 o}=0

and
- 2.6000e — 02 1.0000e + 00 0 0 |
o —2.3400e — 04 0 1.0000e 4 00 0
B 82400e—07 - . 0 0 1.0000e + 00
—1.0400e — 09 0 0 0

The parameter estimates for A; and B, are initialized to zero.

7.2 Implementation of a Genetic Algorithm

The tuning of the DAOQ is difficult in that decreasing A causes the state and parameter estimates
to converge at a faster rate. However, if the value of A is too small, the estimates show significant
oscillation and possible system instability. It is also found that decreasing e;nresn guarantees more
accurate state and parameter estimates, but decreasing it beyond a certain value results in excessive
oscillations in the state and parameter estimatés and eventual system instability.

The genetic algorithm in this paper is applied as an off-line technique to choose optimal values of
A and esppesn- The génetic algorithm (IGA) follows the standard rank fitness method format with a
few exceptions. The first exception is that there is a separate muta;cion multiplier for each parameter,
since each parameter must search through a different range of values. It should be noted that the
probability of é mutation occurring is set at 10%. Second, whenever an intermediate generation is
created, it is added to the old generation and all values are retained to create the new generation.

The reason for this implementation is so that a history of parameters may be viewed, along with any

existing trends. Third, instead of having a predetermined value of the cost function that terminates
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the process, the GA stops once the two hundredth generation has been evaluated. These exceptions
combined with the basic logic behind the genetic algorithm are converted into a code [50] written
for MATLAB to tune the parameters of the observer. (The redder is referred to the appendix for
more information.)

The individual is the ordered bair (A, ethresh), where the elements are the two design parameters
of the DAO. The genetic algorithm uses the cost function 7. Here, J is a function of the output

estimation error and its derivative such that

Tmaz

T = ) [eh@ey (i) + el (Dev ()]
ey(d) = Y(i)-Y(i)

ev(i) = V(i) -V() | (7.8)

It should be noted that since the GA is applied as an off-line techﬁique to choose observer
parameters for the DAQO, it is assumed only for the implementation of the GA that the output
of both the scaled position Y and velocity V are known to take into account state and parameter
oscillation errors. If, in fact, the GA is implemented on-line, then the quantity (ey (i) —ey (i—1))/At¢
may be used in place of ey (7).

The initial population is set to

(0.78215, 3.1124e -6 )
(0.68451, 1.1410e—4)

, » (0.59632, 2.1203¢ —2)
Initial Population . = .

( 0.46980, 2.9012e — 1)

(0.46980, 3.1124e — 6 )

(0.78215, 2.9012¢ — 1)

The mutation rate is set to 0.92651 and 0.8 for A and ezpresn, res pectively, and the algorithm ends
within 200 generations. In addition, the bounds of A and e¢p,esn are set such that 0.40 < XA <1
“and 0 < ezpresn < 0.3 for stability reasons. The results of the rank fitness method of the genetic

algorithm after 9 complete simulations yield consistent values of 0.49476 and O for A and esnresh,
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respectively. Note that the value of e;presn Obtained is an expected result, since no noise is added

to the HDA system.

7.3 Simulation Results

The state variable filter F is arbitrarily chosen such that the resulting eigenvalues are 0.003 £ 0.001;
and 0.01 £0.0025. The Discrete Adap_tifze Observer System is implemented on the IBM HDA with
" no added disturbances. In addition, the input to the HDA system is a pseudo-random binary input.
The design parameter values for A and €thresh Obtained by the genetic algorithm are applied. Figure
7.2 shows the response of the actual position and that of the position estimate, where one sees that
the output estimate matches well with the actual output. For a more detailed view, the reader is
referred to Figure 7.3, where the error estimation can be seen more clearly. Here, it is shown that
the DAO has a noticeable transient in the beginning of the simulation. This transient behavior,
however, is expected, as this characteristic is indicative of most adaptive systems. After the initial
transient, the estimate error converges directly to zero.

Figure (7.4) shoWs the results of the actual velocity and that of the velocity estimate. It is seen
that the velocify estimate has a noted amount of oscillation during the characteristic “transient”
phase. However, the velocity estimate does, in fact, converge to the actual velocity. The character-
istics of the velocity estimate are seen more clearly in Figure 7.5, where the velocity error estimate
is shown. Here, the large oscillations are seen. In addition, the ‘ﬁegligle oscillations, as the error
estimate proceeds to converge to zero, exist but are jusp barely detectable.

A typical response of the parameter estimates for Ag is represented for parameter @, as shown
in Figure 7.6. All parameters values converge to actuai values very quickly after the passing of the
initial transient period. Convergence of all the parameter estimates occurs concurrently, which is
at the time period shortly following the characteristic transient period. Once parameter estimates
are within the range of actual parameter values, convergence is maintained with no noticeéble
oscillations.

A typical response of the parametér estimates for By is represented for parameter b; as shownin
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Parameter Aétual Estimate % Error
ax 3.2729e+00  3.2469e+400 | 7.9439e-01
s -4.2029¢+00  -4.2027e+00 | 5.5667¢-03
as 2.5870e+00  2.5870e+00 | 3.0577e-05
('1;1 -6.5703e-01 - -6.5703e-01 | 1.3305e-06
b 2.8360e-01 2.8360e-01 | 9.8869¢-06
by 2.8040e+00  2.8040e+00 | 7.8697e-07
bs 2.5735e+00  2.5735e+00 | 4.1001e-07
by 2.2019e-01, 2.2019e-01 | 1.2167e-05

Table 7.1: Parameter Values and Estimates

Figure 7.7. The same results are obtained for those parameter estimates of By as obtained for Ag.
There is no estimate oséilla‘cion after >the initial transient, and convergence is quickly established and
maintained.
The actual parameter values, a‘long‘with the final parameter estimé.tes are shown in Table 7.1,
where the final percentage errors of bthe estimates are also calculated. The largest error occurs in the
3 ' )

estimation of @;, which is 0.8%. All otlier parameter estimates are accurate to at least 4 significant

ﬁgures.

7.4 TEffects of Noise on the APOS

For this implementatién, two séts of simulaﬁon‘s are run on thé IBM HDA. The first set of simulations
involves the impleme‘ntation of the DAO where the observer parameters A and egpresn are tuned by
the genetic algorithm with the assumption of a noise-free sigﬂal. These same observer parameters
are used in the second set of simulations, but noise simulated by a normally distributed random
number generator with a standard deviation of 5% of a track width is applied to the disk drive. The
se‘cond set of simulations involves the disk drive in the presence of the same noise as in the previous

set of simulations, but the DAQO observer parameters are re-tuned with the genetic algorithm to
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Figure 7.8: Actual Output, Signal With Noise, and DAO Estimate

include the added noise.

The actual output and output sigﬂal with noise is shown in Figure 7.8, along with the DAO
position output estimate. It should be noted from this figure that the noise significantly overpowers
the true position signal. It'is shown that the DAO is significantly affected by the noise, which is
not surprising, considering the level of the noisé compared to the true position output. As can be
seen more cléarly in Figure 7.9, the output estimate error is notably largef than the leve‘l of even
that of fhe noise in the measurement signal. This same characteristic also occuré in :the velociy
error estimate, as shown in Figure 7.10. In Figures 7.11 and 7.12, one sees4that because the DAO
' estimates are Signiﬁcantly ihaccurate, the output ahd velocity estiﬁates of the Fast Observver System
are, in turn,‘ significantly oscillatory and unreliable, but they are stable.

Sample responses of the parameter estimates for Ar and Br for the case of added noise and
without GA re-tuning are shown in Figure 7.13 and 7.14, where the parameter estimate responses
of @, and by, respectively, are given. (The reader is referred to the appendix for the responses of the

remaining parameters.) All parameter estimates of A7 are significantly inaccurate and do not even
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Figure 7.13: Parameter Estimate of a; (With Noise)

oscillate about its true values. The parameter estimates of By oscillate about their actual valués,
although the magnitﬁdes of oscillation are also significant.

It is seén that noise does greatly affect the final parameter estimates. The actual parameter
values, along with the final parameter éstimates are shown in Table 7.2'7 where the final percentage
errors of the estimates are also calculated.‘ Here, the parameters estimate errors are as large as
7x108%.

In the second set of simulations, where the DAO is re-tuned by the GA to run in the presence of

the noise, the cost function J is used such that

i=0
&) = yli)—90)
e(i) = [ey(i)—ey(i—1)]/At (7.10)

Note that this form of the cost function is used so as to fairly correlate the effects of the noise

on the velocity output without assuming that the velocity output is known. The result of the
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Figure 7.14: Parameter Estimate of b (With Noise)

Parameter Actual Estimate % Error
a1 3.4309e+00  -3.4237e-01 | 1.0998e+4-02
as -4.7318e+00  -3.0733e-01 » 9.3505e+01
as 3.1708e+00  -1.9957e-01 | 1.0629e~+02
a4 -8.6994e-01 ' 3.5842¢-01 | 1.4120e+-02

‘ bl‘ 2.9925e-01  6.7951e+05 | 2.2707e+408
bo 3.11‘796-}-00 -1.1369e+06 | 3.6462e4-07
b3 3.0303e+00 -3.7333e+05 1.23206-}-07
by 2.7515e-01  1.8997e+06 | 6.9044e+4-08

Table 7.2: Parameter Values and Estimates (With Noise)
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Figure 7.15: Actual Output and Observer Estimate (With Noise and Re-tuning)

GA simulation using this form of the cosf function yield values of 1 and 1.65e-2 for A and espresh,
respectively.

As can be seen from Figure 7.15 and 7.16, the DAO and FOS estimates still remain relatively
inaccurate, as expected, due to the significance of the noise level compared to the actual output
position. However, the estimates do appear to start to converge to thev actual position and velocity
values, respectively, as the oscillatory behaviof does decrease signficantly with time. As seen in
Figures 7.17 and 7.18, where the‘position and velocity estimate errors are shown, respectively, there
is large oscillation in the initial trdnsient phase, but the oscillations decrease dramatically with time.
In fact, the magnitude of oscillation of thé position error decreases to below the magnitude of that
of the noise in the output signal.

Sample responses of the parameter estimates for A7 and Br for the case of added noise and
with GA re-tuning are shown in Figure 7.19 and 7.20, where the parameter estimate responses of
a, and by, respectively, are given. (The reader is referred to the appéndix for the responses of the

remaining parameters.) The responses are more or less the same as those without the retuning of
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Figure 7.18: Velocity Estimate Error (With Noise and Re-tuning)

the DAQ, except that there is less éscillatioﬁ prvesent‘ and the overall response of the DAQ is slower.
This, of course, is expected, as A is now set to 1.

The actual parameter values, along with the final parameter estimates are shown.in Table 7.3,
where the final percentage errors of the estimates are also calculated. The‘errors, are significantly
less than that without retuning buﬁ are still unacéep_tably high, as high as over 5000%‘;

.To summarize, it dppears that the Discrete Adapti.ve Obsérver is \;ery susceptible to noise, as
expected. For one, the noise levels in these simulations are significant compéred to the actual position
outpﬁt. In addition, the DAO assumes that any pérturbations in the system are assumed to be a
result of system parameter -changes, thereby forcing itself to try to adapt to the noise. However, with
the consideration of the comparitively significant noise‘levels, the APOS state estimates are ﬁot too
intolerable. It is also seen that re-tuning the DAO with the use of the genetic algorithm improves
overall state and parameter estirna‘pes significantly. In fact, the DAQO position estimate appears to
converge to the actual bosition value, and its position estimate error decreases to levels below that

of the corruptive noise. With or without retuning with the implemented genetic algorithm, however,
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Figure 7.20: Parameter Estimate of b; (With Noise and Re-tuning)
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Parameter Actual Estimate % Error
a 3.4309e+00  -3.06456-02 | 1.0089e+02
as 4.7318e+00  1.2475e-01 | 1.0264e+02
as. 3.1708e+00 -1.0127e-01' 1.0319e+02
a4 -8.6994e-01  1.0971e-01 | 1.1261e+02
by 2.9925¢-01  +5.9824e+00 | 1.8991e-+03
by 3.1179e+00 -9.8094e+00 | 4.1461e+02
b 3.0303e+00 © 2.0018e+01 | 5.6058¢+02
by 2.7515e-01  1.4526e+01 | 5.1794e+03

Table 7.3: Parameter Values and Estimates (With Noise and Re-tuning)

the parameter estimates continue to be very inaccurate, which is expected, as any such disturbances

' that do exist are interpreted by the DAQO as system parameter changes.

7.5 Summary of Results

Simulation results show that the genetic algorithm used is effective in automating the process of
choosing optimal observer gains off-line for the Discrete Adaptive Observer. Accurate estimation of
state outputs and especially ’of system parameters is achieved from the DAO as a resﬁlt of the GA
chosen optimal obéerver gains. It is fouﬁd, however, that the DAOQ is greatly susceptible to noise, as
it interprets any noise and oﬁher’disturbances,as changes in system parameters. However, the state
estimates are significantly improved after retuning the GA with th.e presence of noise, although the

parameter estimates still continue to be inaccurate.
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Chapter 8

Damping Ratio and Aliased
Resonant Frequency

Approximation for the IBM HDA

The Parallel Observer System (POS) is presented in attempts to help solve the dual problem of
needing an estimation technique of a multirate architecture while taking into account the effects of
aliased output measurements. Eventually, a scheme of not only adequate state estimation is desired,
but accurate parameter estimétion is also desired so as to estimate any modeling errors and/or
parameter changes, especially those of aliased resonance fréquencies.

In this chapter, the Discrete Adéptive Observer is applied to the same form of the IBM Head/Disk
Assembly System as the last chaptef to exemplifyv how system parameters, namely aliased resonant
frequencies, may be extracted from the DAO. A neural network is trained for function approximation
using the system parameter estimates obtained by the DAO and by using a priori information about
the disk drive model. This neural network is primarily developed in attempts to uncover estimates

of aliased resonant frequencies and of damping ratios in the disk drive system.
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Figure 8.1: Parameter @; as a function of w, and {

8.1 Uniqueness Relationship of the DAO System Parameters

A preliminéry feasibility analysis is performed to determ}ine whether the DAO system parameter
values and th‘e values of the resonant frequency and damping ratio share a unique relationship.
Using a scaled model of Equation (6.12) with varying values of ¢ and w, and the transformation
relations in Equations (5.5) through (5.7), the relationships between the DAO parameters and the
system damping ratios and-natural frequencies are determined.

Figufes 8.1 through 8.4_sh0w the DAO parameters a; through @4 as a function of the IBM HDA
natural frequency and dami)iﬁg ratio. bLik‘ewise, Figures 8.5 through 8.8 show the DAO parameters
by through by as a function of the disk drive natural frequency and damping ratio. As one may
observe from thesé plots; using the relationships of each of the DAO system parameters with the .
corresponding values of natural frequency w, and damping ratio ¢, it may be possible to construct

and train a neural network to approximate the resulting wy, and (, given accurate DAO system

parameter estimates.
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Figure 8.3: Parameter a3 ag g function of w, and ¢
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Figure 8.7: Parameter b3 as a function of w, and ¢
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Figure 8.8: Parameter by as a function of w, and ¢

8.2 DAO Parameter Estimates at Aliased Resonant Frequen-
cies

For purposes of performance analysis of the extraction of aliased resonant frequencies, two cases of
natural frequencies are applied to the IBM HDA system. For both cases, the same sampling frequency
is maintained, resulting in a fixed Nyquist frequency of 1.4286x 10°Hz (8.976x10%rad/s). In the first
case, the applied resonant frequency is slightly aliased at 1.5438x10%Hz (9.7x10%rad/s). In the sec-
ond case, the applied resonant frequency is moderately aliased at 2.0690x 10*°Hz or (1.3x10%ad/s).
For both cases, the damping ratio is fixed at 0.0995.

For these simulations, it is assumed that the true resonant frequency and damping ratio is
approximately known. This assumption is valid, otherwise, it would be impossible to differentiate
the actual frequency from the infinite number of possible aliasing frequencies. As a result, this
information is used for simulations in this chapter. More specifically, the actual values of Ap and

Br are calculated with the knowledge of the true values of ¢ and w,. The parameter estimates of
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A7 and Br are initialized at 75% and 80%, respectively, of their actual values such that at t=0,

4.3377e - 01
9.4900¢ — 01
~2.7691e — 01
| —3.8163¢ — 01
3.6258¢ + 00
1.6730e + 01
1.2810e + 01

2.3074e + 00

In addition, for fairness to the DAO performence simulation, it is assumed that only the resonant
frequency and the dafnping ratio are in question and that all other system parameters are well known.
Second, the DAO is re-tuned to the case of e natural frequency of 9.7x10%rad/s end a damping ratio
of 0.0995. The genetic algorithm parameters are re-tuned by changing the initial population and
the mutadtion rates. The resulting A and e;hresh values are 0.49476 and 0, respectively. The same
‘observer parameters are used for both sets of aliased natural frequencies. Furthermore, as in the

previous chapter, the DAO is performed on the scaled version of the IBM HDA with no added noise.

8.2.1 Case I: Slightly Aliased Resonant Frequency

Table 8.1 shews the results of the DAO parameter estimates for the case of a slightly aliased resonanﬁ
frequency of w, = 9.7x10%rad/s. Despite the slight aliasing, the DAQ is still able to estimate the
system parameters well. In fact, the estimate errors are well under 1%, except for the estimate error
of a;, which is at 4.2%.

The extreme accuracy of the DAO parameter estimates under the condition of a slightly aliased
resonant frequency may seem unexpected. However, as one may recall, the knowledge of the ap-
proximate values of the the aliased resonant frequency and the damping ratio is incorporated into

the DAQ by initializing the parameter estimates to the corresponding parameter values using these
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Parameter Actual Estimate % Error
a1 6.1303e-01 ~ 5.8706e-01 | 4.2357e+00
ds 12650600 12652400 | 14864e-02
ds -3.6922¢-01 -3.6923e—01 2.6559e-03
g -5.0883e—01 ” -5.0881e-01 14.2006e-03
b 4.5322e+00"  4.5322e4+00 | 5.9031e-05
by 2.0912e+01 -2.0912e+01 | 7.1554e-04
bs 1.6013e4+01 1.6012e+01 | 3.6818e-03
by 2.8842e+4-00 2.8841e+00 3.0130e-03

Table 8.1: Parameter Values and Estimates for w, = 9.7e3 rad/sec

approximate values. In addition, the DAO is solely driven by a parameter update law. Under this
condition, it is logical that, despite the presence of an aliased resonant frequency, the parameters
converge to the system parametérs corresponding to the closest aliased frequency, rather than to
any other aliased frequen‘cy.

In this case the parameter estimates are initialized corfesponding’ to the true aliased natural
frequency of 9.7x10%rad/s, but with a 20%-25% error. - Therefore, it is logical that that the pa-
rameter estimates eventually converge to the estimates associated with the 9.7x10%rad/s frequency,
as,opposéd to an aliased frequency of 19.4x10%rad/s, for example, or any dther integer multiple of
the actual frequency. Of course, this may not be the general case if the actual parameter values

corresponding to two sets of aliased frequencies are similar.

8.2.2 Case II: Moderately Aliased Resonant Frequency

Table 8.2 shows the results of the DAQO parameter estimates for the case of a moderately aliased
resonant frequency of w, = 1.3 x 10%rad/s. Despite the moderate aliasing, the DAO is still able to
estimate the system parameters well. In fact, the estimate errors are well under 1%, except for the

estimate error of @;, which is at 1.5%.
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Parameter Actual Estimate % Error
@ 1.7661e+00 ~ 1.7401e+00 | 1.4722e+00
@2 -9.3654e-01  -9.3630e-01 | 2.5500e-02
as 5.7481e-01  5.7481e-01 | 1.5391e-03
a4 -4.0435e-01  -4.0434e-01 | 9.2619e-04
b 6.0562e+00  6.0562e+00 | 3.9058e-05
by ‘1.1587e+01 1.1587e+01 | 2.9606e-05
bs 4.3091e+00 /}4.309‘1e+00 3.6746e-04
by 3.1332e+00 3.1331e+00 1.1682¢-03

Table 8.2: Parameter Values and Estimates for w, = 1.3e4 rad/sec

As in Case 1 of slightly aliased resonant frequency, it is seen that the DAQ, after initializing
the parameter estimates accordingly, is very accurate in estimating the true parameters, déspite the
moderately aliased resonant frequency. It shows that the parameter ést'i_mzites eventually convérge to
the estimates associated with the 1.3x10%ad/s frequency. Again, this may not have been the case
if the actual parameter values corresponding to the actual aliased resonant frequency were sirﬁilar

to that of another aliased frequency.

8.2.3 . Aliased Resonant Frequencies in General

For the general case of resonant frequencies r'anging' from 1650rad/s to 3.35x10*rad/s and damping
ratios ranging from 0.011 to 0.191, the reader is referred to Figures 8.9 through 8.16. In these ﬁgure,
the DAO parameter estimate efrqrs are shown as a fu;nct'ion of the damping ratio and resonant
frequency. | |

It can be seen that estimate errors are minimal except about half the sampling frequency and most
signiﬁcantly about the actual sampling ffequency. At the sampling frequency, since the resonant
frequency and the sampling frequency are identical, the output detects no changing response from

the resonant frequency. In essence, any contributed response effected by the resonant frequency
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Parameter | w, =wpn Wy = 2 XWN | Wy =3XWN | wn=4XWN | Wn =8 Xwy
a1 6.0613e+01 | 1.7328e+03 | 2.4387e+01 | 7.4993e+02 | 1.4274e+01
) 1.6872e+01 | ~ 1.1540e+03 | 3.5768e+01 | 1.8299e+04 | 8.0756e+01
as 5.3896e+01 | 1.1774e+04 | 6.2254e+00 |. 8.6817e+04 | 1.1714e+01
a4 2.8253e+01 | 3.5138e+04 | 4.1404e+01 | 2.7627e+05 | 4.7624e+01
by 2.1258e-03 2.8729é+00 2.5352e-03 | 1.0138e+01 7.6416e-03
by 4.3135e+00 2.3139¢+04 | 1.0193e+01 | 1.9155e+04 | 1.0832e+01
bs 2.2666e+01 | 2.1630e+04 | 2.6234e+01 | 8.2009e+04 | 2.9741e+01
by 2.8271e+01 | 3.5097e+04 | 4.1367e+01 »2'.7565e+'05 4.7303e+01

Table .8.3: Percentage Estimates Errors for w, = k x wy,k=1,2,3,4,5

cannot be detected in the output measurement.

For the resonant frequency at the Nyquist frequency wy, which is half of the sampling frequency,
there still is a set of intermediate- points available, resulting in the presence of a small degree of
resonance information to the otherwise undetectable signal. Because of this, althoﬁgh there is
somewhat of a isigniﬁcant estimate error, the error is not nearly as large as that corresponding to
resonant frequencies at the sampling rate or multiples thereof.

Table 8.3 shows a summary of estimate percentage errors for resonant frequencies that are an
integer multiple of the Nyquist frequency wy. The damping ratio for these simulations are‘set to
0.06, as this is the damping ratiorat wﬁich the highest errors occur. The sirhulations a;re pefformed
for resonant frequencies uia to and including 5 times the Nyquist frequenc‘y, as this is the limit at
which the control input rate is aliased. As can be seen from the summary of errors, somewhat
significant errors occur at odd integer multiples of the Nyqﬂist frequency but very large errors.occur
- at even integer multiples of the Nyquist frequency, which ‘correspond to i‘nteger multiples of the
sampling frequency. It is noted that these errors, although extrememly large, only appear at or
about these critical frequencies.

In short, except for the frequencies near or about the Nyquist frequency and especially the sam-
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pling frequency, or multiples thereof, the DAO provides highly accurate parameter estimate results.
Most of these parameter estimates are well under 1% error. Therefore, if a method of extracting
the aliased resonant frequencies along with the damping ratio may be constructed, then using these
accurate parameter estimate results with this method should yield accurate DAO estimates, as long

as the resonant frequencies to be estimated are not within the range of any critical frequencies.

8.3 The Applied Neural Network

Assuming that accurate DAO parameter estimates are obtained, a neural network is constructed
and trained to extract estimates of ‘the system aliaised‘resonant’frequéncy and damping ratio. The
neural network constructed and trained fof this back propagation application is via the MATLAB
Neural Network Toolbox [41]. The constrﬁcted neural network is chosen to be two layers for the
sake of simplicity. There are eight inputs, determined by the eight system parameters for the fourth
order IBM HDA model. The hidden layer is set to fifty neurons so as not to exceed reasonable
computational limits. (It should be noted that t.he number of neuroﬂs should be decreased, so as
to avoid over parametrization.)‘ A log sigmoid transfer function is chosen for the first layer and a
pure linear transfer function for the output layer, as suggested in [51]. There are two outputs in the
neural network: one for the determination of w, and the other for the determination of (. In the
training of this network, 500 ‘training points aré used, simulated in MATLAB with 300 epochs with

a performance goal of 0 Mean Squared Error.

8.3.1 Training

- For this network, the trainiﬁg occurs off-line and involves vdrying values of bnatural frequency w, and
damping ratio ¢ such that 1650 rad/s < w, < 3.35 x 10*rad/s and 0.011 < ¢ < 0.191. These ranges
of wy, and ¢ are‘ used- to calculate the exact system parameters, the data presented in Figures 8.1
through 8.8, as a function of w, and ¢. In so doing, one obtains the set of training points where the

input is now the true DAO parameters and the output is the true values of wy, and ¢.
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8.3.2 Training Analysis

Pre-processing of data, principle component analysis,' post-processing of data, and post-training
analysis are perfofmed throughout the duration of the training of the neural network. During
the principle component analysis, MATLAB determines that half of the 8 parameter inputs are
redu‘ndan‘t. During the training of the n'etw‘ork7 the final performance goal of 0 Mean Squared Error
is not met but, instead, reaches a Mean Squared Error of 5.5941é—7. The reader is referred to
Figure 8.17 for the training results, where the respdonse of Mean Squared Error with respect to the
progression in epochs is shown. | |

The results of the post—training_analysis, whére a regreésion analysis is performed, is shown in
Figures 8.18 and 8.19 for the regression analysis of w, and ¢, respectively. The regression analysis

for both w, and ¢ show a practically perfect correlation between the targets and actual output.
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Parameter Actual Estimate % Error

¢ 9.9500e-02  9.9531e-02 | 3.0737e-02

Wn, 9.7000e+03 9.6885e+03 | 1.1820e-01

Table 8.4: Case I: Neural Network Parameter Values and Estimates for w;, = 9.7e3 rad/sec

Parameter Actual Estimate % Error
¢ A 19.9500e-02 9.9447e-02 | 5.3178e-02
Wn 1.3000e+04 1.2997e+04 | 2.6157e-02

Table 8.5: Case II: Neural Network Parameter Values and Estimates for w, = 1.3e4 rad/sec

8.3.3 Results of IBM HDA System Parameter Implementation

For testing of the heural network, the neural networkvis applied to the IBM HDA system parameters‘7
bassuming that the exact parameter values are known. The two cases are analyzed, where w, =
9.7 x 10%rad/s for the first case and w, = 1.3 x 10%rad/s for the second case. Again, for both cases,
¢ = 0.0995. The results for the ﬁfsf and second cases are shown in Table 8.4 and.8.5, respectively.
For both cases it is seen that the neural network is highly accurate in extracting correct values of
aliased natural frequencies and damping ratios. As noted, however, these extracted values are the
result of perfect knowledge of the IBM HDA in the DAQ system parameter form.

For the general performance of the neural network for the case of varying resonant frequencies
and damping ratios, the réader is referred to Figures 8.20 and 8.21. One sees that the neural network
is highly accurate for all values of resonant frequencies and dami)ing ratios, except for very small
values of ¢, where the resulting error in damping ratio and natural frequencies is as high as 7% and
25%, respectiveiy. For these smaller values of {, however, the neural network may be re-trained

specifically to concentrate on this smaller range.
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Parameter Actual Estimate % Error
¢ 9.9500e-02  9.9298e-02 | 2.0310e-01
W 9.7000e+03 9.6840e+03 { 1.6505e-01

- Table 8.6: Case I Extraction of ¢ and w, from DAQ parameter estimates for w, = 9.7e3 rad/sec

Parameter Actual Estimate % Error
¢ 0.9500e-02  9.9261e-02 | 2.4003e-01
wn 1.3000e+04  1.2075e-+04

1.8990e-01

Table 8.7: Case II: Extraction of ¢ and w, from DAQ parameter estimates for w, = 1.3e4 rad /sec
8.4 Natural Frequency and Damping Ratio Approximation
of the IBM HDA

The results of the neural network training are implemented on the final DAQO parameter estimates
on the scaled IBM HDA without noise for two cases: (1) wn = 9.7 x 10%rad/sec and (2) w, =
1.3 x 10*rad /s. For both cases, the damping ratio C = 0.0995.- As the reader recalls, despite the fact
that the resonant frequencies are both aliased, the DAO correctly determines the correct system
parameter estimates to within at most 5% error.

The results for the first and second cases are shown in Table 8.4 and 8.5, respectively. For the
first case, the neural network determines that the damping ratio.( is 9:9298x1072 and that the
‘natural frequency w,, is 9.6840x10%rad/s. For the second case, the neural network determines that
the damping ratio ¢ is 9.9261><10:“,2 and that the natural frequency wy, is 1.2975x10%rad/s. From
the results it is seen that the,percentag‘e error does increase, obviously, if the true parameter values
are not used to extract the appropriate resonant frequencies and damping ratios. However, this
increase is not noticeable, as the estimate errors of ¢ and wy, using the DAQ parameter estimates
still remain less than 1%.

For the general performance of the neural network using actual DAQO parameter estimates, the

reader is referred to Figures (8.22) and (8.23). Here, it is shown that the combined effort of the DAO
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parameter estimates and neural network is highly accurate for all values of resonant frequencies and
damping ratios, excépt for very sxﬂall values of ¢ and, as expected, fér values of wy, that lie near or
on integer multiples of the Nyquist frequency.. However, at very small values of ¢; the errors in this
range of damping ratios are overshadowed by the large errors at resonant frequencies located near

or at the system sampling frequency.

8.5 Concluding Remarks

Through the example df the IBM HDA, it is shown that the Discrete Adaptive Observer may be
substituted into-the Parallel Observer System resulting in the Adaptive Parallel Observer Systems
to obtain accurate values of damping ratios and aliased resonanﬁ ffequencies. In the case of the
IBM HDA, there does appear to be a unique relationship between the values of DAO parameter
estimates and the values of ¢ and w,. In addition, by using the knowledge of the approximate values
of the aliased natural frequency to initialize the DAQO parameter estimates, the DAQ is capable of

accurately estimating system parameters, despite the presence of aliasing. It is seen, however that

147



DAQ and Neural Network Estimate Error for wn

200~

150 T

ug.moo\‘__.u--‘;" |
w s0...0" :
<
Se—oS< >
0k <SS
——— X
SR 15 %%" 0.15
eSS 0.1
1 "
~ 005
wn zeta

Figure 8.23: Errors for Extraction of w, Using DAO Parameter Estimates

this is nof the case for freqﬁencies at or near the Nyquist frequency and especially the sampling
frequency.

By proper training of a neural network system, very accurate estimates of system damping ratios
and natural frequencies may be extracted from DAQO parameter esimtates, so long as the DAO
parameter estimates are accurate. Therefore, accurate estimates of { and wy, can only be obtained

when w, 3 jwn,J € Z+.
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Chapter 9

Conclusions and Fii_ture Work

9.1 Conclusions

A Parallel Observer System (POS) is proposed as a multirate estimation technique which takes into
account periodically. available output measurements. The Fast Observer is proven to converge to a
stable Slow Observer during the ON sample points and provide stable state estimates during the
INTER sample points with finite error bound. These results are illustrated with simulations of an
IBM magnetic Head/Disk Assembly. It is seen that the accuracy of the Fast Observer is highly
dependent upon the accuracy of the Slow Observer’s state estimates.

F‘urthermore, a mo’diﬁcétion of the Parallel Observer System is proposed where a Discrete Adap-

tive Observer (DAQ) System is implemented to not only provide stable state estimates, but also to

estimate system parameters which may be initially incorrect or which may. be changing during the
control process. Tfle overall modiﬁed Parallel Observer System, the Adaptive Parallel Observer Sys-
tem (APOS), is proven to be stable and to provide convergent state and parameter estimates. The
Discrete Adaptive Observer is applied to a second order resonance model and the Adaptive Parallel
Observer is applied to the IBM HDA. The simulations show that although large transients exist,
state estimate do converge to actual values. In addition, given no additional input disturbances, a

non-augmented state form, and an appropriately scaled system model, accurate parameter estimates
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are obtained.

The success of the APOS is highly contingent upon the accuracy of the applied DAO. With the
application of a genetic algorithm to the implemented Discrete Adaptive Observer of the APOS,
the tuning of observer parameters is a straightforward, automated task. In addition, with some
prior knowledge of the system and using the DAO with a trained neural network system, accurate
values of system damping ratios and aliased resonént frequencies may be obtained. This accuracy
is achieved so long as the resonant frequencies @re not integer multiples of the Nyquist frequency
and especially not of the sampling frequency and as ldng as the neural network is properly trained

within the appropriate range of parameter values.

9.2 Future Work

Because the Discrete Adaptive Observer interprets any disturbances as system parameter changes,
the entire APOS is highly susceptible to noise. In éddition, the APOS is not guaranteed stable under
state augmentation to allow for matched uncertainty estimation. Therefore, future work involves
the study of noise and its effects on the APOS and how thé APOS may be modified so as to allow

for matched uncertainty estimation. In addition, for practical applications, it may be more suitable

to apply another method, other than a neural network, for system parameter extraction, such as a

polynomial fit procedure.’ Hence, future work also involves investigating other types of numerical

techniques for this purpose.
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Appendix A

SIMULINK Implementation of the
Discrete Adaptive Observer

The following is a list of figures which illustrate the implementation of the Discrete Adaptive Observer
in the Adaptive Parallel Observer System. Figure A.1 give the general application of the DAb.
Figure A.2 describes the simulation process for the adaptive variable z. Figures A.3 through A.5
illustrate how the state variab.le filter matrix F is applied to calculate the adaptive parameters ¢;
and ¢». Figure A.6 shows the calculation steps for the adaptive variable I'. The calculation of the
parameter estimates p are shown in Figure A.7. The state estimate #(m) and the output estimate
§(m) are obtained by the SIMULINK blocks shown‘in Figures A.8 though Figure A.10.

The remaining figures in this section of the appendix describes the calculation of the values

S(m)p(m).
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Appendix B

Adaptive Parallel Observer System

IBM HDA Parameter Estimate

Results

It should be emphasized that this application includes a system augmentation to allow for matched
certainty estimation and that the DAO cannot guarantee stable resultsbin this case. Figures B.1
through B.4 represent the parameter estimation results of the Ar matrix parameters when the
Discrete Adaptive Observer is implemented on the IBM magnetic Head/Disk Assembly described in

Chapter 6.
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Parameter Estimate for a5
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In addition, Figures B.5 through B.8 represent the parameter estimation results of the Br matrix

parameters when the Discrete Adaptive Observer is implemented on the IBM magnetic Head/Disk

Assembly described in Chapter 6.
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Appendix C

Discrete Adaptive Observer
Parameter Estimate Results of

IBM HDA with Noise

C.1 Parameter Estimates Without Retuning of DAO

Figures (C.1) through (C.3) represent the parameter estimation results of the Ar matrix parameters
when the Discrete Adaptive Observer is implemented on the IBM magnetic Head/Disk Assembly

described in Chapter 8 with noise and without retuning of the Discrete Adaptive Observer.
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Parameter Estimate for a4
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C.2 Parameter Estimates With Retuning of DAO

Figures (C.7) through (C.9) represent the parameter estimation results of the Ay matrix parameters
when the Discrete Adaptive Observer is implemented on the IBM magnetic Head/Disk Assembly

described in Chapter 8 with noise and retuning of the Discrete Adaptive Observer.
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Appendix D

Adapted Genetic Algorithm Code
for MATLAB

This section of the appendix describes the genetic algorithm (GA) code [50] adapted specifically
for the implementation of ‘the Discrete Adaptive Observer (DAQO) to the IBM Head/Disk Assembly
(HDA) system used in this thesis. The code is package of M-files generated for use in MATLAB and
_ as an off-line method to tune the DAO parameters A and egpresp for optimal estimation of the IBM
HDA'’s states and parameters.

The original code is modified so as to incorporate a cost function which considers the output
estimation error as well as the output velocity error, or the equivalent thereof, of the HDA actuator
dynamics. The code is also modified by the initial population values and the mutation factors.
The bounds of possible values of DAO design parameters are preset for reasons of system stability.
In addition, instead of terminating the genetic algorithm program after a specified performance or
“score”, as it is referred to in the program, the GA ends after a specified number of generations.
For more information, the reader is referred to {50}. '

The following is the list of M-files in the GA code:

e gam - MATLAB macros file for GA code

start.m - defines initial settings for GA

setup.m - defines the cost function used to determine the population “score”
e fit.m - ranks population according to fitness values

e mate.m - creates parent matrices and a child matrix
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Il T T Tl Tl Tl le Tl T Tl sl o o o e T T T T T e o s o e e T T o e s oo o o o 2o oo 2o o 1ot oo oo oo oo
Il el l ettt e o ot T T T T T T o oo o Tt T T T T T T e oo e e o e oo oot o T o T Tt oo oo oo
hh

%% ga.m - main MATLAB executable file

hh Calls: start.m, setup.m, fit.m, mate.m
W Determines maximum number of geénerations before program termination
hh Dutput: generation number, population score

Tk : :
U A o Y Y Y Y S Y Y Y Y Y Y Y S Y S S Y o
L o T o o L T Tt Tl T A DT D T AL T AL TN AN DAL LA

clear

start

gen=1;
stay=0;

while stay==0

setup
fit

old_gains=gains;

mate

gen=gen+1;

-[q,W]=size(score);

for col=1:w
rk=1;
sm=0;
for row=i:w
if score(col)>score(row)
rk=rk+1;
elseif score(col)==score(row)
sm=sm+1;
end

end
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if sm>=2
last=sm-1;
for sig=1:last
best (rk+sig)=col;
end
end
best (rk)=col;

end
lesserr=best(1);

FA 090000 0:00.00.00.09.000000:00.00.0000000.0000099000000004

if gen >200 ’

FXXXXXXXX XXX XX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XX
stay=1;

end
end
member=lesserr;

gen

old_pop_size
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e e e e e e e e e e e e o e o s o o
T bt T T o oo T T oot oo o T e o T e o o e o T oo T o e o e e o e T o s T e o T oo 2o T o oo T T e o e o e
hh

%% start.m - initialization file

YAA Sets: mutation factors for lambda and thresh
W ' GA mutation rate

h initial population values

hth choice of GA cost function

i Qutput: none

YA

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%%%%%%%%%%%%
T T T T T e o o o o o o o T T T o o o o oo oo To ot T o o o o oo oo o 2o oo o o oo oo oo o fo o o o o o e o o 2o

op_size=6; %INITIAL POPULATION SIZE
Pfactor=0.7; %PROBABILITY FACTOR OF SELECTING A SURVIVOR

old_pop_size=1;

MUTATE_THRESH=0.97644; % mutation factor for thresh
MUTATE_LAM=0.992651; Y% mutation factor for lambda

MUTATION_RATE=0.99; % GA mutation rate

ISET0T=100;

gains = [0.99999 0.0000031124;

.68451 0.00011410;

.59632 0.021203;

.469800 0.29012;

.869800 0.0000031124;

.78215 0.29012]; . 4INITIAL POPULATION VALUES

O O O O O

T=1; %SETTLING TIME
standard=0; %VARIABLE THAT ALLOWS FOR CHOICE OF COST FUNCTION.

%standard=1 IMPLIES USE OF ISE COST FUNCTION
%standard= anything else IMPLIES USE OF MODIFIED ISE.
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It T Tl o oo 1o 1o To T o o o o o T T o o o o T T e el T T T b AT T Tl b AT Tl T Tl LA LA I T A DT
ot T o to T T T oo ot T o e T T o e T o e T T T T T L T Tl T Tl Tl AT Ll AT Tl AT Ll ATl L T T AT e
hh

%% setup.m - determines cost function values (score) for population

A2 Calls: simulation macros for DAD implementation on IBM HDA
W Calculates for each set of DAQ gains:

Py error in output estimation

hh ~ error in equivalent velocity estimation

Hh population score (from predetermined cost function)
A4 Output: score

4

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%%%%%%%%%%
Tt ls o To e lots Tt T o o T o ot o o T o o T o o T o 2o et oo oo 2o o oo T oo T oo 2 oo 2o T o T o oot o o

% CALCULATION OF THE INDIVIDUAL FITNESS

TOTERR=0;
for n=1:pop_size
TOTERR=TOTERR +score(n);

end

AVGERR=(TOTERR/pop_size);

changes=pop_size/3;

for m=1:pop_size
' fit(m)=1-(score(m)/TOTERR) ;

end

% RANK EACH MEMBER FROM HIGHEST TO LOWEST FITNESS VALUE
% STANDARD ISE PERFORMANCE
for c=1:pop_size-
rank=1;
same=0;
for r=1:pop_size
if fit(e)<fit(r)
rank=rank+1;
elseif fit(c)==£fit(r)

same=same+1;
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end

end
end
if same>=2
last=same~1;
for sig=1:last
survive(rank+sig)=c;
end
end

survive(rank)=c;
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T T to o To T oo To o T oo o T o o o o o oo oo o T o e T o T e T ol Tl T L T L e Tl b T Lo T e
Tt T T To T T T oo T T oo o 1o o o o T oo o e o o ot T o Do o T o o L o T e e e Tl e T o T T o
ol

%% fit.m - converts population scores to fitness values

YA Uses: score values calculated in setup.m

W Assigns fitness values to population

%o Ranks members according to fitness values (highest to lowest)
YA Output: none

Hh :

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%%%Z%%%%%%%%%%%%
It I T T T o do o o T T o st T e ot T o o Tt T oo Bt T T ot T o s e T T e et o T T T o b T o e o e

j=old_pop_size;

while j<=pop_size
lam=gains(j,1);
thresh=gains(j,2);

%%%HINSERT THE SIMULATION FILE HEREVLLUALALALARANLAS
DAO_initial_ga ‘

%CALCULATION OF THE PERFORMANCE PARAMETER (SCORE) .

ISETOT=0;
ISE_MODTOT=0;

e=yd-ya;
edot=sc(:,2)-va;
esqrd=e.*e;
edotsqg=edot.*edot;
ISE(1)=esqrd(1)*t(1);
ISE_MOD(1)=(esqrd(1)+edotsq(1))*t(1);
[omeg,taul=size(t);
for i=2:omeg
ISE(i)=esqrd(i)* (£ (i)-t(i-1));
ISE_MOD(i)=(esqrd(i)+edotsq(i))*(t(i)-t(i-1));
ISETOT=ISETOT + ISE(i);
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ISE_MODTOT=ISE_MODTOT+ISE_MOD(i);

end

if standard==

score(j)=ISETOT;

else
score(j)=ISE_MODTOT;

end

j=j+1;
end

score
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e e e e e o o o e o o o oo
Ttato T to oo T o 1o o T oo T T o oo oo oo oo o 2o oo o oo o o oo oo o o o e oo o e o o e o e T 2o ot e
T

%% fit.m - creates parent matrices and offspring matrix

YA Creates two parents

hhh Generates offspring

YA Confirms mutation according to mutation rate

YA Eliminates repetitive offspring

hth Maintains population at an even number

hh Output: random number generated to determine mutation process
/A

I I I Ll bl Tl Tt bt bt o to ot ot To T Tl e o to o T Tt T T o oo o oo Tt T T T T o o o oo o o e e oo o oo ot e
T te s T Tl oo toto oot T o T o o oo T o oo oo T o o o oo oo 2o T oo oo oo oo o o oo oot T o o o o ot o o o o

% CREATING THE PARENTS

father(1,1)=gains(survive(1),1);
father(1,2)=gains(survive(1),2);
selection=1;

hits=1;

f=2;

m=1;

survive(pop_size+1)=0;
for s=1:pop_size
if s>=selection
survive(s)=survive(s+1l);
end
end

a=1;

while m<=(pop_size/2)
zones=pop_size-(hits);
if zones==
prob(1)=1;
else
prob(1l)=Pfactor;

end
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end

for k=2:zones
prob(k)=Pfactor*(1-prob(k-1))+prob(k-1);
end
choice=rand;
prob(zones)=1;
for d=1:zones
if choice<=prob(d)
' selection=d;

hits=hits+1;

break;

end

end

if f==
father(f;1)=gains(survive(selection),1);
father(f,2)=gains(survive(selection),é);
f=f+1,; '

else ‘
mother (m,1)=gains(survive(selection),1);
mother (m,2)=gains(survive(selection),2);
meme 1

end

for s=1:pop_size
if s>=selection
survive(s)=survive(s+1);
end
end

a=a+1;

%CREATING THE OFFSPRING

index=1;

count=1;

while index<=pop_size

child(index,1)=father(count,1);
child(index,2)=mother(count,2);

index=index+1;

child(index,1)=mother(count,1);
child(index,2)=father(count,2);
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index=index+1;
count=count+1;

end

old_pop_size=pop_size;

% CHECKING FOR MUTATION AND EXECUTING'IT.
mutate=rand;
[cho,rho]l=size(child);

if mutate<=MUTATION_RATE

mutate

child(cho+1,1)=MUTATE_LAM#*child(cho-3,1);
child(cho+1,2)=MUTATE_THRESH*child(cho-3,2);

child(cho+2,1)=MUTATE_LAM#*child(cho,1);
child(ého+2,2)=MUTATE_THRESH*child(cho,2);

end

%gains=child;

new_pop_size=pop_size;

new_row=old_pop_size+l;

% CHECK TO SEE IF THE NEW GENE IS ALREADY IN THE POPULATION
for co=1:new_pop_size

for ro=1:pop_size
match=0;
for p=1:2
if child(co,p)==gains(ro,p)
match=match+1;
end
end

if match==
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break;

end
end
if match<2
for me=1:2
gains (new_row,me)=child(co,me);
end
pop_size=pop_size+l;
new_row=new_row+l;
end

end

% TO ENSURE THAT THE POPULATION SIZE REMAINS EVEN
rmd=rem(pop_size,2);

if rmd>0

pop_size=pop_size+l;
gains(pop_size,1)=MUTATE_LAM*gains(pop_size-1,1);
gains(pop_size,1)=MUTATE_THRESH*gains(pop_size,2);

end

%#IF THE POPULATION SIZE DOES NOT CHANGE THEN MUTATE TWO MEMBERS

if pop_size==o0ld_pop_size

gains(pop_size+1,1)=MUTATE_LAM*gains(pop_size/2,1);
gains(pop_size+1,2)=MUTATE_THRESH*gains(pop_size/2,2);

gains (pop_size+2,1)=MUTATE_LAM*gains(pop_size-2,1);
gains (pop_size+2,2)=MUTATE_THRESH*gains (pop_size-2,2);

pop_size=pop_size+2;

end

[g_size,mu]=size(gains);
for th=1:g_size
if gains(th,1)<0.4
gains(th,1)=0.76844;
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end

elseif gains(th,1)>1
gains(th,1)=0.76844;

end

if gains(th,2)>0.3
gains(th,2)=0.15461;

end
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