
GENERIC COMPONENT REPRESENTATION

FOR EFFICIENT QUALITATIVE

MODEL BUILDING

By

ESTHER L. DAVIS

Bachelor of Arts
Cameron University

Lawton, Oklahoma
1982

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
May, 1994

OKLAHOlv!A ST.ATE UNIVERSITY'

GENERIC COMPONENT REPRESENTATION

FOR EFFlCIENT QUALITATIVE

·MODEL BUILDING

Thesis Approved:

E.

ii

ACKNOWLEDGEMENTS

I sincerely thank Dr. Blayne Mayfield for the wealth

of energy, inspiration, and time he has given me during the

course of my dissertation work. Thank you just doesn't

seem adequate to express my gratitude for the many ways in

which he has helped me.

I also sincerely thank the other members of my

committee: Dr. G.E. Hedrick, for sticking with me even

through his sabbatical; Dr. Huizhu Lu, for looking out for

me and for inviting me to speak before the ACM which gave

me much needed practice for my defense presentation; Dr.

Charles Bacon, for providing helpful insights and for

staying on my committee after his official retirement. I

also thank them for all the time they invested to review

the materials and make suggestions to improve the quality

of this work.

I sincerely thank my former supervisor, Dr. John

Chandler, for hiring me as the Head TA which brought me to

Stillwater in the first place; and the Amoco Foundation,

for their generous funding of my graduate education.

Above all I want to thank my fiance, Robert Steiner,

for all his love, caring and support throughout this

project. Without his infinite patience I would have never

made it.

iii

Chapter

I. INTRODUCTION

TABLE OF CONTENTS

II. REVIEW OF LITERATURE

Page

1

5

Qualitative Modeling 5
Qualitative Modeling Ontologies . . . 6

Process-Centered Ontology 6
Molecular Ontology 6
Device-centered Ontology . . . 7

Component Connection Models . . . 7
Qualitative Simulation 10

Landmarks and Quantity Spaces . 15
Qualitative Differential Equations 16
Qualitative Simulation Tools 17

QSIM 17
cc 18

Bond Graph Theory 2 o
Power and Energy Variables 20
1-port elements 21
2-port elements 22
Junctions 23

III. GENERIC COMPONENT REPRESENTATION

Purpose
Component Types

Primitive Components
Composed Components

Component Classes
Library Components .. .
Model Components

Element Descriptions
Component Elements

Name . • • • . • .
Variables
Terminals
Constraints
Domain
x- and Y- coordinates
Bitmap
Restrictions
Modifications

iv

27
28
28
28
28
29
30
30
30
31
32
32
32
32
33
33
33
34

Chapter

IV.

V.

Restrictions . .
Modifications

Variable Elements
Terminal Elements

Generic Component Library
Terminal Compatibility

Compatibility 'Warnings and Errors
Same Component Warning ..
Different Domains Error
Direction Conflict warning

GRAPHICAL USER INTERFACE

Implementation
Hardware and Software Requirements
Program Descriptions
Starting GMBS
GMBS Main Window Sections .. .
GMBS Pulldown Menus

Model Menu
Model Menu Options

New
Load
Save
Print

Component Menu
Component Menu Options ..

Select
Modify
Delete
Save As Composed

Options Menu.
Option Settings

Snap Lines to Grid
Domain Checking
Terminal Compatibility
Prompt for Component Names
Model Completeness
Kirchoff's Laws
Energy Conservation ..

Toolbar Functions
Toolbar Button Descriptions

SUMMARY AND FUTURE WORK
Evaluation of Generic Component

Representation
Future Work

BIBLIOGRAPHY

V

Page

33
34
35
36
36
38
38
38
38
39

40

40
40
41
42
43
44
44
44
44
45
46
46
46
46
46
46
47
48
48
48
48
49
50
50
50
50
51
51
51

54

54
55

57

Chapter

APPENDIXES

Page

63

APPENDIX A - STEAM PROPULSION SYSTEM 63

APPENDIX B - ELECTRICAL CIRCUIT EXAMPLE 66

APPENDIX C - GENERIC COMPONENT LIBRARY LISTING 71

APPENDIX D - CONSTRUCTING AN EXAMPLE MODEL . . 75

vi

LIST OF TABLES

Table

I. Battery Component Definition

II. Qualitative Constraint Definitions

III. Qualitative Steam Propulsion Model

IV.

V.

VI.

Generic Component Definition

Variable Object Definition

Terminal Object Definition

VII. Library Component Descriptions

vii

Page

9

11

13

31

35

36

37

Figure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

LIST OF FIGURES

Simple Electrical Circuit

Steam Propulsion System .

Schematic for Electric Fan Circuit

Bond Graph for Electric Fan System

Component Class Hierarchy

Generic Model Building System Main Window

Model Menu Pulldown

Component Menu Pulldown

Options Menu Pulldown .

Drive Train Model Display

viii

Page

8

12

24

25

29

43

45

47

49

77

CHAPTER I

INTRODUCTION·

One of the primary goals of artificial intelligence has

been to analyze and imitate human problem solving

techniques. These techniques include reasoning with only

general knowledge of facts about objects and how they

behave. Qualitative reasoning has become an active area in

Artificial Intelligence research in recent years [B093].

The terms modeling and simulation are often used as

interchangeable terms. Although both are usually present in

research that deals with physical system design, diagnosis

and prediction, modeling and simulation are distinct, yet

strongly connected, concepts. Modeling refers to

construction of a representation of a system. The

representation may contain attributes of physical objects,

relationships between objects and their attributes, as well

as global information about the system. Simulation refers

to performing time- or action-based propagation of changes

to the system to predict its behavior according to the

limitations specified in the model [PR74].

Numerical computer simulations of physical systems can

be performed provided that precise information is available.

Exact numerical simulation produces complex, time-consuming

1

results which are often too detailed or too large for human

interpretation. Artificial intelligence researchers have

tried to overcome this drawback by developing qualitative

modeling and qualitative simulation algorithms [KU86]

[F084] .

2

Background information on qualitative modeling and

qualitative simulation, two segments of qualitative

reasoning, is given in Chapter 2. Qualitative simulation is

an attempt to duplicate human reasoning about a physical

system using basic information about its structure and

qualitative attributes to predict possible behaviors.

Qualitative simulation can provide important insights during

the design phase and can aid in the diagnosis of problems in

existing systems [WI90a] [KU90].

In order to make modeling and therefore simulation

useful in system design, i~ is important that all reasonable

and pertinent knowledge about the physical system be

incorporated without making the model unnecessarily large or

complex. Qualitative modeling research has provided useful

tools for design and diagnosis of physical systems in many

areas, but still has a long way to go. There is a need for

better representations of systems, faster and easier model

building tools, and integration of quantitative and

qualitative information to achieve an appropriate level of

detail for optimal modeling. The work done in this paper

focuses on the first two areas, model representation and

efficient model building.

3

Qualitative simulation packages often require users to

create models by means of tedious, syntactically specific

definitions. Emphasis should be on the overall purpose of

the system under design and on the general behaviors of each

component in the system. Current representations for

qualitative modeling of physical systems do not incorporate

all useful knowledge of the components, especially with

respect to connection capabilities and terminal variable

unifiability as defined later. Since qualitative modeling

is rapidly becoming a common method for systems design,

diagnosis, and tutoring, it would be advantageous to employ

all knowledge of components and their connections that can

expedite model building, but without placing additional

burden on the user.

A representation that allows flexible, efficient, model

building has been developed and is documented in Chapter 3.

A generic modeling representation is developed to take the

burden off the user, thus creating a more intuitive, faster

method of constructing model definitions for qualitative

simulation.

The representation developed in this work is based on

component-connection type modeling and draws from bond graph

theory to form a library of fundamental generic components.

Through the use of a graphical user interface, these

fundamental generic components can be combined, connected,

specialized, and stored as larger components without

requiring the user to understand a particular simulation

package syntax. To further assist the user in developing

qualitative models for simulation, a graphical user

interface has also been developed. Chapter 4 outlines the

instructions for use of the interface.

4

CHAPTER II

REVIEW OF LITERATURE

Qualitative Modeling

Qualitative modeling is designed to model physical

systems utilizing incomplete or imprecise information.

This incompleteness may stem from an actual lack of

knowledge about a particular system or a part of the

system, or it may be deliberate in that precise values of

system variables are deemed unnecessary for determining the

qualitative behavior of the system. Qualitative modeling

researchers [WE92] [GR92] [BM93] have sought to find

methods for determining"the.minimum amount of information

that must be included in the model to produce acceptable

results during simulation.

Qualitative modeling attempts to mimic the way humans

view real-world objects and actions by concentrating on

general concepts rather than on specific numerical

information. Even in systems where extensive numerical

formulae are available, qualitative modeling is often

chosen as a means of making system modeling simpler. In

cases where numerical modeling produces unnecessarily

complex or intractable simulations, qualitative modeling

5

can be used to achieve acceptable simulation results

without the time consuming details [FI92].

Qualitative Modeling Ontologies

Three distinct ontologies have been developed in

qualitative modeling research. The following sections

describe briefly these ontologies.

6

Process-Centered Ontology. In this ontology the model

is described in terms of objects, processes that act on

those objects, and influences that directly or indirectly

affect the values of object attribute values. Qualitative

Process Theory (QPT) has been developed by Forbus ··· [F084] .

Behavior of the model is derived by determining which

processes are active at each time point and propagating the

influences of those processes across objects in the model.

QPT is an alternative approach to qualitative modeling of

physical systems but will not be discussed further in this

work.

Molecular Ontology. In this ontology the model is

described in terms of cells or pixels, and has a structure

similar to that of the system being modeled. Molecular

ontology is found in neural network simulations of brain

activity and simulations of chemical reactions. Molecular

models are beyond the scope of this paper.

7

Device-Centered Ontology. This is also referred to as

constraint-based or component-based ontology. The model is

described in terms of physical objects, components or

devices with attribute variables and constraints which

determine the relationships among variables. Device

centered ontology has been developed primarily by Kuipers

[KU86] [KU92] and investigated.by many others [BM93] [FD91]

[LS92] .

Behavior of the model under given conditions is

derived by propagating constraints over time. The basis

for the model representation presented in this work has

been developed using concepts from device-centered

ontology.

Component Connection Models

Another approach to qualitative modeling based on the

constraint- or device-centered ontology is the concept of

component-connection models [FD91] [KU92]. Component

connection modeling relies on the construction of a model

from distinct components. Each component consists of a set

of terminals, variables, and constraints. Terminals, also

called ports, represent points at which the component may

interact with the outside world. Each terminal has its own

set of variables, which describe the attributes through

which it may be connected to a compatible terminal of

another component.

8

Connections, indicating how components interact with

each other, are defined by specifying links between

terminals of different components. In each connection, the

set of terminal variables and their associated variable

types determine how the interactions between components

take place, and how constraints can be propagated

throughout the system during simulation. Components cannot

interact except through the connections and cannot interact

with the system globally in any other way.

Figure 1 shows an example for a simple electrical

circuit that can be modeled using component-connection

models. The circuit is composed of five components: a

battery {B), a switch {S), a capacitor {C), a resistor {R),

R
,--------------·

-~!_\AA i . ·vv, .
I I ·--------------·

C

;--I .. --~;I"-----
·~------·

,--- ---i
I I ·-· ; Vi G ·--------·

Figure 1. Simple Electrical Circuit

and ground (G), and the associated connections needed to

link them together are indicated by solid lines drawn

between components.

Component-connection models are highly reusable.

9

Libraries of components for various types of models (for

example, a library of electrical components) can be created

and saved for later use [FD91] [KU92]. Model building is

done by specifying components to be used and the

connections between them.

Table I Battery Component Definition

Domain: Electrical

Component Variable

V

Terminal

Tl

T2

Constraints

Vl - V2 = V
Il = -I2

Variable

Vl
Il
V2
I2

variable

Voltage

Variable

Voltage
Current
Voltage
Current

V = Vbat where Vbat is a constant
V >= ¢

Type

Type

In the example, component B (battery) includes two

terminals: Tl and T2, and an additional component variable

10

which represents voltage across the battery. Each terminal

has two variables (voltage and current} associated with it.

The sign convention utilized with terminals designates a

variable that indicates flow into the component as positive.

The Table I illustrates a basic component definition for

component B.

Component-connection models provide a less restrictive

means of model building in domains where physical systems

are clearly composed of individual components. These models

have been extensively used in electrical and hydraulic

simulations.

Qualitative Simulation

The purpose of qualitative simulation of a physical

system is to produce a set of possible behaviors by

generating and filtering the set of possible transitions

from one qualitative state to another [KUS6]. A qualitative

state of the system is defined as the collection of all

variable (value, direction} pairs where value is a

qualitative value of the variable at a given time point and

direction represents the direction of value change, i.e.

increasing, steady, or decreasing, of that variable. A set

of constraints on variables in the system places limitations

on the behaviors that can occur.

Qualitative simulation can produce viable answers to

"What will happen if ... ? " questions [KUS6] [FOSS] , even in

11

systems where certain pieces of information are unknown.

For example, in design or diagnosis of a hydraulic system,

it may be useful to know "What will happen to the final

output pressure if the flow of water at the intake valve is

increased?". In a mechanical system design, one of the

questions that could be answered by qualitative simulation

is "What will happen to the torque on ·the main shaft if the

size of the third gear is reduced?".

The rules governing the progress of a qualitative

simulation are those specified in the constraints. No exact

functions of variables, no-tables of ':State changes, and no

prescribed sequences of events are used. Table II lists

Table II

Constraint

(CONSTANT a)

(EQ a b)

(ADD a b c)

(MULT a b c)

(MINUS a b)

(M+ a b)

(M- ab)

(d/dt ab)

Qualitative Constraint Definitions

Equation or Function

the value of a is a constant

a = b

a + b = C

a * b = C

a= -b

a is a monotonically increasing
function of b

a is a monotonically
decreasing function of b

a is the first-order derivative of
b with respect to time

some of the constraints that may be used in a qualitative

simulation along with the equations they represent.

By propagating the known constraints on variables

through the system, qualitative simulation can show the

effects of increasing or decreasing the value of a

particular variable on the other variables in the system.

12

Figure 2 shows a simplified drawing of a naval steam

propulsion system [FOSS]. The system has two primary

components: a boiler unit, and a superheater. Water enters

the boiler, is converted to steam, which then travels

through the superheater .

Water -->

Steam-->

:::;:::::;::::::: ,:::::;:::;: -...........,
·····························
..

Super Heater
.

Pressure
. at Output= 1200 PS I

Figure 2. Steam Propulsion System

13

In training aboard ship, Navy technicians have found

answering qualitative questions about the behavior of this

type of system very difficult. Qualitative simulation has

been used to predict and explain the system's behavior under

given conditions.

As an example, suppose the question were "What will

happen to the output steam temperature if the temperature of

the intake water increases?" This is a legitimate question

since the ship may at times sail into warmer parts of the

ocean. Naval trainees usually predict,an increase in output

temperature. However, using the qualitative information and

constraints shown in Table III, qualitative simulation shows

that the answer is just the opposite.

Table III Qualitative Steam Propulsion Model

Qualitative Information

Water is supplied as needed to keep
the level in the boiler (LB) constant
(Cl) .

Energy supplied by the boiler per unit
of time (EB) is a constant (C2).

Temperature of steam entering the
superheater (TSIN) is a constant. It
has a quantitative value of 212° F.

The temperature increase (WDIFF)
caused by the boiler is a
monotonically increasing function of
the energy supplied.

Constraints

(EQ LB Cl)
(d/dt EB 0)

(EQ EB C2)

(EQ TSIN 212)

(M+ WDIFF EB)

Table III (continued)

Qualitative Information

The rate of steam production (RSP) is
a monotonically decreasing function of
the difference (WDIFF) between the
intake temperature (TWIN) and the
output boiler temperature (212°).

The time the steam takes to travel
through the superheater (TSH) is a
monotonically decreasing function of
the rate of steam production (RSP).

The temperature difference between the
steam going into the superheater and
coming out of the superheater (TDIFF)
is a monotonically increasing function
of the time it takes to travel through
the superheater (TSH).

Constraints

(M- RSP WDIFF)
(ADD WDIFF TWIN 212)

(M- TSH RSP)

(M+ TSDIFF TSH)
(ADD TDIFF TSIN TOUT)

14

Given an initial condition (TWIN, T¢, inc) that

denotes an increase in the intake water temperature, TWIN,

starting from an initial qualitative value of T¢, the

simulation propagates constraints and determines that the

following sequence of changes will occur in the system:

• Since the intake water temperature is higher, it

takes less energy to raise it to boiling.

• The energy needed to raise the water to boiling

decreases, but the energy supplied by the boiler

is constant, so the rate of steam production will

increase.

15

• As the rate of steam production increases the

flow of steam through the superheater increases,

thus causing each unit of steam to spend less

time in the superheater.

• Since each unit of steam spends less time in the

superheater, the temperature difference imparted

by the superheater decreases.

• Since the temperature of the steam going in to

the superheater is a constant and.the temperature

difference is decreas.ing . ., . the output temperature

of the superheater decreases.

Thus, through qualitative simulation the answer to the

question is shown to be "The output steam temperature

decreases if the intake water temperature is increased." A

possible follow-up question is "What must be done to raise

the output steam temperature back to the desired level?".

Qualitative simulation could again be used to find the

answer.

Landmarks and Quantity Spaces

Instead of using precise numerical values for each

variable, qualitative values called landmarks are used in

qualitative simulation. A landmark represents a value

where the variable causes a transition of the system from

one qualitative state to another. An ordered set of

16

landmarks associated with a variable in a qualitative model

is called the variable's quantity space.

In the Steam Propulsion System example, the intake

water temperature (TWIN) has landmark values¢, T¢, and

INFINITY, where T¢ represents the initial temperature

value. The landmark INFINITY, although unreachable in

reality, is included to set a symbolic upper limit on the

temperature. The quantity space associated with TWIN would

be represented as { ¢ T¢ INFINITY}.

As another example, a pressure variable (PRESl) in a

hydraulic system may have landmarks such as¢, PMIN, POPT,

PMAX, and INFINITY, where PMIN represents the minimum

pressure which will produce the desired flow of fluid

through the component, POPT the optimal pressure, and PMAX

the maximum pressure which can be sustained without

bursting the pipe. Again, in reality, the last landmark

(INFINITY) cannot be reached. The quantity space

associated with PRESl would be represented as { ¢ PMIN

POPT PMAX INFINITY}.

Qualitative Differential Equations

An important consideration in qualitative simulation

is the use of first-order qualitative derivatives for each

variable to determine the direction of change in that

variable. Although the set of behaviors produced during

the simulation contains all of the possible real behaviors,

17

it also may contain spurious behaviors, i.e. those which

meet specified constraints but cannot occur in the actual

system. Inconsistencies detected among first-order and

higher-order derivatives during simulation can be used to

detect and eliminate spurious behaviors [KC90] [KC91].

Qualitative simulation is similar to symbolic

simulation in that it can use symbols to represent values

of variables without requiring actual numeric values.

Qualitative simulation differs from traditional symbolic

and numerical simulation methods in several ways, the most

important of which is that qualitative simulation can

produce a set of possible behaviors in systems where very

little information is known. Even in systems where

extensive numerical formulae are available, qualitative

simulation is often chosen as a means of making the

simulation simpler. In cases where numerical simulation

produces unnecessarily complex or intractable results,

qualitative simulation can be used to obtain useful

information without the time consuming details.

Qualitative Simulation Tools

OSIM. Kuipers [KU86] [KU93a] and The Qualitative

Reasoning Group at the University of Texas at Austin (UTA)

have developed a representation based on qualitative

differential equations. Using constraint-based ontology,

they created an algorithm and an associated implementation

18

known as the Qualitative Simulation (QSIM} package. QSIM

takes as input a lisp-like representation of a physical

system that includes variable definitions, quantity space

information, and qualitative constraints showing the

relationships among the variables critical to the system's

behavior. This input must be constructed by the user, with

correct syntax, continuity, and complete specification of

all variables, constraints, and transitions. From the

input and initial perturbation conditions, QSIM produces a

set of possible behaviors. A listing of the input required

for QSIM to perform the Steam Propulsion System simulation

and a sample of the output obtained from the simulation

process are given in Appendix A.

QSIM is a well-established program and is based on

proven algorithms for qualitative simulation [KU86]. The

QSIM algorithm has been shown to provide good results in

many branches of physical system modeling, including

electrical, hydraulic, chemical, and medical systems. Work

is continuing at UTA and other universities to improve the

performance of simulations produced by QSIM.

CC. In response to a need for a simpler component

based modeling method, members of The Qualitative Reasoning

Group at UTA developed cc [FD91] [KU92], a front-end

interpreter for QSIM. CC takes as input a set of component

and connection specifications, then converts these into

19

variables, transitions, and constraints that can be used as

input for QSIM. This component based format works well for

certain domains of modeling, especially electrical and

hydraulic systems.

Appendix B shows the CC input needed to create the

electrical circuit from Figure 1 as well as the output

produced by the CC interpreter. The CC representation

format of components and connections has a lisp-like

structure. This structure facilitates interpretation of

the system specification because the CC to QSIM compiler is

written in LISP.

cc allows the use of elemental components (battery,

switch, etc.} as well as composed components, i.e. those

created by connecting a set of components. The circuit

model, once created, could be used as a composed component

in a larger system.

Biswas, et al. [BM93] have provided a set of

extensions to CC that allows the use of global information

such as system-wide constraints supplied by the user.

These extensions have been tested and shown to be helpful

in the use of qualitative models as diagnosis tools.

Crawford, et al. [CF90] developed an alternative to CC

called the Qualitative Process Compiler (QPC). QPC takes

the general approach of Qualitative Process Theory by using

a description of a model in terms of views, processes, and

influences. The model is compiled into a set of

qualitative differential equations for use in QSIM by

identifying active processes and transforming influences

into constraints.

Bond Graph Theory

20

Bond graphs are a means of representing physical

systems using a set of basic elements called multiports

[KA90]. Connections between multiports are termed bonds.

A bond graph consists of a set of multiports connected by

lines or arrows which represent bonds.

Multiports of a bond graph are designed to model the

power and energy attributes of components in a physical

system; bonds model the interactions that take place among

the components. Multiports and bonds do not directly

relate to the physical components or connections and no

information about sizes or relative locations of components

can be obtained from a bond graph.

Power and Energy Variables

Four primary variables are used to describe the

behaviors of multiports: effort (e), flow (f), momentum

(p), which is the time integral of effort, and

displacement (q), which is the time integral of flow.

Effort and flow are referred to as the Power Variables,

while momentum and displacement are the Energy Variables.

21

1-Port Elements

Multiport elements are grouped according to the number

of ports they have. Each port represents a bond that may

be made between the element and another multiport.

Elements which consist of a single port (1-ports) are:

Resistor:
-R

Capacitor:
-c

Inertia:

-I

Source:

s--

A resistor element relates the effort

variable to the flow variable. It implies

that energy is dissipated from the system.

A capacitor element relates the effort

variable to the displacement variable.

Ideally, no energy is lost. A capacitor

element models the concept of potential

energy.

An inertia element relates momentum to the

flow variable. Ideally, no energy is lost.

An inertia element models the concept of

kinetic energy.

A source element adds energy to the system.

The element may be designated as either an

effort sources. or a flow source sf to

indicate the variable being supplied.

22

2-Port Elements

Elements which consist of two ports (2-ports) are:

Gyrator:

-GY-

Transformer:

-TF-

A gyrator changes the relationship between

an effort variable and a flow variable. The

relationships are defined by the equations

e 1 = rf2 and e 2 = rf1 where en is the effort

variable at port n, fn is the flow variable

at port n, and r is a constant. Ideally,

power is conserved. A gyrator usually

converts energy from one domain to another,

such as from mechanical to electrical.

A transformer changes the relationship

between the effort variable and the flow

variable in a different manner. The

relationships are defined by the equations

e 1 = me2 and mf 1 = f 2 , where m is a

constant. Ideally, power is conserved.

Although a transformer can be constructed by

placing two gyrator elements in series, it

is a convenient, frequently used element. A

transformer usually converts within the same

domain, such as an electrical transformer.

23

Junctions

Additionally, the following multiport elements are

used to represent junctions where two or more multiports

are connected by bonds.

a-junction:

-o-

1-junction:

I
-1

Also referred to as a common effort

junction, this multiport represents a

connection of multiports where the efforts

on all bonds of the junction are identical

and the flows sum to zero. In electrical

domains, the a-junction represents a

parallel connection.

Also referred to as a common flow junction,

this multiport represents a connection of

multiports where the flows on all bonds of

the junction are identical and the efforts

sum to zero. In electrical domains, the 1-

junction represents a series connection.

a-junctions and 1-junctions may be considered to have

as few as two, or as many incident bonds as necessary to

appropriately describe the physical system. Although the

junction elements do not correspond to actual components in

a physical system, they are a convenient way to represent

the interactions between multiports in terms of the

relationships among the Power Variables .

.. ------------------------- ------------
' l
l

M,

R,

Figure 3. Schematic for Electric Fan Circuit

Figure 3 shows a schematic for a simple electrical

circuit containing a power source and an electric fan.

For the purpose of this example, the schematic contains

only a minimum representation of the circuit elements.

The dashed box indicates the electrical elements that

comprise an equivalent circuit for the fan with~

24

25

representing the fan motor, and Rf representing the

combined equivalent resistance of the resistive elements in

the fan. In actuality, the fan would contain many more

electrical and mechanical components than can be

represented here.

Figure 4 shows the bond graph representation of the

electric fan system including the electrical circuit shown

in Figure 3 and the mechanical element of the fan blades.

The multiport symbol S represents the power source. The

junction among S, R, and GY represents the electrical

connections from the power source to the electric motor

contained in the fan.

The multiport GY represents the motor, which converts

electrical energy from the power source into mechanical

energy to drive the fan blades. The connection of the

motor to the moving blades is represented by the junction

GY, I, and R.

R

I
s--1-- GY ---1--- I

1
R

Figure 4. Bond Graph for Electric Fan System

26

The bond graph representation provides a convenient

way to view physical system models in terms of a small

number of basic component types, and it can be used to

represent large, complex systems. The library of

components developed in this work and outlined in the next

chapter is based on the multiport elements shown above.

CHAPTER III

GENERIC COMPONENT REPRESENTATION

Purpose

Current representations for qualitative modeling of

physical systems do not incorporate all useful knowledge of

the components, especially with respect to connection

capabilities and terminal variable unifiability. Since

qualitative modeling is rapfdly becoming a common method

for system design, diagnosis, and tutoring, the generic

component representation developed in this work has been

designed to utilize all knowledge of components and

connections that can expedite model building, yet does not

place an additional burden on the user.

Modeling with the generic component representation is

faster and easier than previous .. methods. - Through the use

of the accompanying graphical user interface, the user is

not required to know the syntax of either CC or QSIM. The

knowledge required of the user is limited to general

concepts of physical systems, beginning level modeling

concepts, and an understanding of the purpose of each of

the components in the generic component library.

27

28

Component Types

To provide compatibility with the component-connection

ontology utilized in CC [FD91], the generic component

representation is designed around two types of components:

primitive and composed~

Primitive Components

Primitive components are those components whose

definitions are self-contained, i.e. no references are made

to variables, constraints or other information outside the

component definition.

Composed Components

Composed components are those components whose

definitions consist of combinations of other components

(either primitive or composed) and the connections between

those components. A qualitative model is represented as a

composed component.

Component Classes

An object-oriented hierarchy was chosen for the

internal representation of component structures in PCL.

The four classes in the hierarchy and their relationships

to one another are shown in Figure 5.

29

Figure 5. Component Class Hierarchy

Library Components

The library component class definitions contain

information needed to represent the variables, terminals,

and behavior of the component. Library components may be

either primitive or composed. A set of library component

definitions is loaded into the model building system from a

file during the system startup phase. The user may select

a component to be added to the model from the set of

library components.

30

Model Components

The model component class definitions contain all of

the information from the library component class definition

and additional elements to represent its position in the

model, its assigned domain, and customized constraints.

Model components may be either primitive or composed.

When t.he user selects a component from the library, a

copy of the library component definition is placed into a

model component instance. The model component may then be

customized to reflect its behavior to the specific model.

Model component definitions are used to save and load

qualitative models.

When the user selects a component from the set of

previously saved composed component definitions, a

reference copy of the composed component is added to the

model. Any subsequent changes to the saved composed

component definition will be reflected in each model where

it is used.

Element Descriptions

Component Elements

The generic component representation consists of the

set of elements listed in Table IV. The "Used In" column

indicates whether a particular element is used in the

library component definition, the model definition, or

31

both. Complete descriptions of the purpose and use of each

of the elements are given in the following sections.

Table IV Generic Component Definition

Element Name Default Value/ Used In
Type

Name 11 II L, M
String

variables () L, M
List of Variable Objects

Terminals () L, M
List of Terminal Objects

Constraints () L, M
List of Constraint Forms

Domain 11 unknown 11 M
String

x-coordinate ¢ M
Integer

Y-coordinate ¢ M
Integer

Bitmap II II L, M
String

Restrictions () L, M
List of Constraint Forms

Modifications () M
List of Constraint Forms

Name. In a library component, the name field

represents a predefined string assigned to the component.

32

In a model component, the user may enter a string to use as

the external name for each component instance.

Variables. This field contains a list of variable

object definitions which denote the component-level

variables. The layout of the variable object definition is

given in Table V.

Terminals. This field contains a list of terminal

object definitions which denote the points through which

the component may be connected to other components in the

model. The layout of the terminal object definition is

given in Table VI.

Constraints. This field contains a list of constraint

forms which specify the constraints that apply to the

component-level and terminal-level variables. Constraint

forms have the following syntax:

(KEYWORD arg 1 arg 2 • • •)

where KEYWORD is one of { CONSTANT, EQ, ADD, MOLT, MINUS,

M+, M-, d/dt} and argn is either a variable specification

or a constant. Refer to Table II, Qualitative Constraint

Definitions, for a description of each of the constraint

keywords.

Domain. This field denotes the default domain for the

component instance. Its value is one of { unknown,

electrical, mechanical, hydraulic}.

X- and Y-coordinates. These contain the horizontal

and vertical coordinates of the component within the

graphical model display. The coordinates are given with

respect to the upper left corner of the display grid.

Bitmap. This field is the string name of a bitmap

file which contains a 25 pixel x 25 pixel component icon

definition used in the graphical model display.

33

Restrictions. This field contains clauses which

specify additional requirements placed on the component

which cannot be given in constraint form .. These clauses

provide two forms of information needed by the generic

model building system. First, they imply additional

constraints on the component and the model to which the

component belongs. Second, they act as signals to specify

methods of consistency·and completeness checking that will

be performed as the model is built. The following

restriction clauses have been defined as part of the

generic component modeling system.

(DOMAIN-EQ componentl component2)

This clause establishes a requirement on a composed

component (or qualitative model) that componentl and

component2 always have the same domain. This clause

prevents the inadvertent assignment of different domains to

specific components in a model. For example, in certain

models certain combinations of electrical components and

hydraulic components would not be permitted and can be

prevented by adding this clause to the set of model

restrictions.

(DOMAIN-BQ terminall terminal2)

34

This clause establishes a requirement that terminall

and terminal2 of the same component have the same domain.

This prevents the inadvertent change of domains across a

single component. For example, both terminals of a

resistor element must have the same domain since a resistor

cannot be used to convert usable energy from one domain to

another.

(OPTIONAL-TERMINAL terminal}

This clause permits the- def-inition of terminals that

may or may not be needed in a particular model. When the

model is saved, checked, or translated, an optional

terminal which has not been connected is discarded from the

component definition.

Modifications. This field contains a list of

constraint forms which the user has added to customize the

behavior of the component for the specific model.

35

Variable Elements

Components may have two different types of variables:

component variables or terminal variables. The terminal

variables are those variables which are assigned to

specific terminals of the component. Component variables

correspond to other variables of interest in the model and

are related to other variables of the component (either

component or terminal) through constraints [KU92]. The

representation of both types of variables is the same and

is shown in Table v.

Table v Variable Object Definition

Element Name Default Value/
Type

Name II II

String

Type "effort"
String

Quantity Space ()
List of Landmark Values

Domain "unknown"
String

36

Terminal Elements

A terminal object represents a means through which a

component may interact with other components. Connections

in a composed component are given by specifying the

component name and terminal name for each end point of the

connection. Terminal names within each component must be

unique but terminal names may be reused between components.

The terminal object definition is shown in Table VI.

Table VI Terminal Object Definition

Element Name Default Value/
Type

Name n II

String

variables ()
List of Variable Objects

Position none
Integer

Direction IN
E {IN, OUT, NONE}

Connected Flag false
Boolean

Generic Component Library

The initial set of generic components developed in

this work is based on the concepts of basic multiports

37

described in Chapter 2. Each generic component contains

the minimum information necessary to embody the purpose of

the multiport but without any extra information that might

restrict the user from utilizing the component as they wish

in a specific model. The library definition of each

component is fixed. Copies of the component definition are

included in the user's model and can be customized as

desired.

Table VII Library Component Descriptions

Component Name Terminals Behavior

Effort Source T1, T2 SE >= ¢
T1.effort + SE = T2.effort

Flow Source T1, T2 SF >= ¢
T1.flow + SF = T2.flow

Resistor T1, T2 EACROSS >= ¢
M+(EACROSS, T1. flow)
T2.effort + EACROSS =
T1.effort
T1.flow = T2.flow

Capacitor T1, T2 M+(T1.effort, displacement)
d/dt(displacement, T1.flow)

Inertia T1, T2 M+(T1.flow, momentum)
d/dt(momentum, T1.effort)

Gyrator Tl, T2, M+(Tl.flow, momentum)
T3, T4 d/dt(momentum, Tl.effort)

Tl.flow= T2.flow

Transformer T1, T2, Tl. flow * T2.flow = M
T3, T4 Tl.effort * T2.effort = M

Tl.effort * Tl.flow = power
T2.effort * T2.flow = power

38

The generic components in the initial test library and

their definitions are outlined in Table VII. Appendix C

contains a complete listing of the generic component test

library definitions.

Terminal Compatibility

To aid in the model building process several checks

for terminal compatibility have been defined. Each of

these checks provides a means of detecting possible errors

in the qualitative model structure early in the modeling

process rather than during the simulation phase. Terminal

compatibility checking is a feature of the generic modeling

system that is not available in other qualitative modeling

systems.

Compatibility Warnings and Errors

Same Component Warning. If the user attempts to

connect a terminal on a component to another terminal on

the same component, a warning message is issued. The user

may elect whether to proceed with the connection or cancel

the attempt.

Different Domains Error. If the user attempts to

connect a terminal on a component to a terminal with a

different domain, an error message is issued. The

connection attempt is cancelled.

39

Direction Conflict warning. If the user attempts to

connect a terminal on a component to a terminal with the

same relative direction, for example, connecting a terminal

with direction IN to another terminal with direction IN, a

warning is issued. Although this type of conflict can be

resolved by cc in some cases, deliberately connecting

components in this manner is not recommended.

CHAPTER IV

GENERIC MODEL BUILDING SYSTEM

Implementation

The implementation of concepts described in this work

has been developed as a series .of programs collectively

called .the "Generic Model Building System" (GMBS). The

purpose of the implementation is to allow a user quickly to

build a qualitative model, translate it to a format

acceptable to QSIM, then invoke the QSIM package to

simulate the model, all from a single user interface

screen. A description of each of the programs that

comprise GMBS and the options available through the

graphical user interface of the system is included in this

chapter.

Hardware and Software Requirements

GMBS has been developed on a Sequent Dynix/PTX system,

using a flavor of Unix that somewhat resembles System v,

version 3 but has several known inconsistencies. Due to

the particular instructions used to start the execution of

the GMBS component programs, GMBS is not currently portable

to operating systems other than Unix, and is not guaranteed

40

to work properly on Unix systems other than Sequent

Dynix/PTX.

41

The graphical user interface was developed using X11R5

and the Motif widget set. An X Windows terminal is

required for use of the interface.

Program Descriptions

A combination of LISP {specifically Austin Kyoto

Common Lisp AKCL} and C programs was used in the

development of the Generic Model Building System for

several reasons. First, because CC and QSIM are both

written in LISP, using LISP as the language for creating

and maintaining internal model structures provides a more

efficient basis for translating the model to cc and

subsequently simulating it with QSIM. Second, although an

x Windows interface development system written in LISP is

currently available, it is not currently portable to

Dynix/PTX for use with AKCL. As a more convenient and

familiar language, C was chosen for the X Windows interface

because of the availability of Intrinsics library and Motif

widget set. Finally, C provides appropriate commands for

linking the input and output of executables from different

programming languages. The major programs that comprise

the GMBS package are:

42

Program 1: GMstart. This executable is compiled from

a C source program. Its purpose is to invoke (by forking)

separate processes for the LISP routines and the X Windows

interface, load the LISP programs, and establish linkage

between the standard input and output (stdio/stdin) pairs

of LISP and X Windows.

Program 2. Gmbs. This executable is compiled from a

c source program. Its purpose is to establish the

X Windows environment and invoke the main X Windows

interface program.

Program 3. gmbs. This executable is compiled from a

c source program. It contains the main X Windows interface

routines.

Program 4. clos. This system wide command invokes an

executable which contains Portable Common Loops (PCL), an

object-oriented programming system, layered over AKCL.

Complete instructions for building the GMBS

executables are included with the source code distribution

in the file "README.TXT".

Starting GMBS

GMBS is invoked by typing GMstart at the Unix prompt.

This should be done without any window manager running to

avoid having any window decorations overlap the GMBS

display. Several lines of text will be displayed while the

system is loading, then the main window will appear as

shown in Figure 6.

11-+~ cc~i ~-+'-
L"+CC -... ~

[W ~,:!
11111 I

"

Figure 6.

Mode]

- -·Generic Model Building System

Mode]: fan-model

Component Options Help

............ · · : : : .

-·-·:-·::::1::::::::::::1:::::·!::::::1::::::::::·:·:::::i:::::r:::·
. .

-. - ... : : : :

. . . ·················· , : : :
,'"\.J . •: .•

-... : ·.:: ; . -.... ~ : : : : : -.

. ,!ii T i}]:i?:FII+E}-
. , .. ----1--·--· 1 --:·-···(.. ·:·-····1 1 ·r-.. ···
. ---... -..... : 1 1 : j T T

•••••:•• :•:•.; ++ 1••••1•• : Fr i I F 1 1:11 1

Generic Model Building System Main Window

GMBS Main Window Sections

43

The main window contains five important sections: a

title area at the top of the screen, a toolbar with nine

44

buttons on the left side, a menu bar with four pulldown

menus, a large drawing area with grid, and a message text

area along the bottom of the screen.

GMBS Pulldown Menus

The menu bar in the GMBS main window contains pulldown

menus for four groups of options: Model Options, Component

Options, Option Options and Help Options. The options

available on these menus are described in the following

sections.

Model Menu

The Model Menu is a collection of options designed to

allow the user perform various options at the model level.

Using the mouse pointer, the user may pull down the model

menu as shown in Figure 7. ·

Model Menu Options

New. This option allows the user to create a new

model with zero components. The user is prompted for a

model name and the default domain for the model. The model

display area is cleared and the system is ready for the

user to begin adding components to the model.

If a model already exists in the display area and it

has been modified since the last save operation, the user

45

is prompted for whether to save the existing model before

creating a .new model.

Load. This option allows the user to load a model

from a previously_ saved model definition. The user is

prompted for a file name from which to .. load the model. The

model definition is loaded into the system and the model is

drawn in the display area.

M-+Owl cc~i ~-+' -+cc -'Ir~

':.\":I
"'" I " m

Generic Model Building System

Model: fan-model

IModel I Component Options Help

. Load
... Save

Print

......... · : : ·

...............•.••.•••••••••••••.••• , TILi••T.l•••••• I :•
... ; : ······:·-···<·" : :

. - . - = ; i 1 ~ 1 ; -. -.. -. ~ -i . --· --.
. ·;·..........,..=··· ···-:c-•T.:11,:·- ... -~':'" , .. ::,..:,.;..···· '"':!i-~~ ,.,,_ ,: :-- . .-: : _., :·

·'······[······: : :: :····<······: :······:---····

i : i ; : ; : ; i I ! if) i j j i I
... ·····l·····-l············l······: ...) j ,j.!.

······i:••••• 1 1 1 1 : 11···1·····:i·· 1 ·rr]••••r•:

Figure 7. Model Menu Pulldown

46

Save. This option allows the user to saves a LISP

readable version of the model description to a file. The

user is prompted for the file name.

Print. This option allows the user to obtain a

printed copy of the model description. A temporary file

containing a GMBS-readable version of the model description

is created, then spooled to a printer. The user is

prompted for the printer name.

Component Menu

The Component Menu is designed to allow the user to

perform various options at the component level. The

appearance of the component menu when it is pulled down is

shown in Figure 8.

Component Menu Options

Select. This option allows the user to select a

component from the list of components in the current

library or the list of previously stored composed component

definitions. The user is prompted for the component

selection, the component name, and a location at which to

place the component icon in the model display.

Modify. This option allows the user to modify a

component in the current model. Elements of the component

1'1~0,, cc~i ~~, . ~cc -'lo~ ..
···= rm fflltI ?

" "

Generic Model Building System

Model: fan-model

Model Component Options Help

47

.. ::
1=.... 1 il1ITII Del1e . : : : : : : : :

... Sav: As Composed :::::r····'······1::::··:······j· .. ···j···:::c··:1::::::c··:
: ; ; : ····:······:······:············· ···---:·-····=······=······:

.
······:······:······:······:······:······: . ···:······:······:······

. . . .

, ii : ! 11 i i !T! ! i ;
................. . ···· LT r:: I 1

•· i T 1 ,

t 1
1 i i FY 1 ·1 F· •IJ i I I ::::•+::

Figure 8. Component Menu Pulldown

- .
--..---·-'-·""'~"'...-a""'c-- ·'.'-""·'-" · _,. -~=x·-.. ~--~--~~~:.. ..,..._,,.,_ •-<>-~ • .-:···•- _,...__.

that may be modified include the name, terminal positions,

component variables, and constraints.

Delete. This option allows the user to remove a

component from the current model. The component icon and

any connections drawn to it are removed from the model

display. The component definition and any connection

48

definitions referencing the component are removed from the

model definition.

Save As Composed. This option allows the user to save

the current model definition as a composed component. The

user is prompted for a file name in which to store the

composed component definition. The composed component may

be reused in future model building and the component will

appear as a single icon in the model display.

Options Menu

The Options Menu is designed to allow the user to

select which operations to Qe automatically performed on

the model. Having the appropriate options selected can

speed up model building significantly since less input is

required from the user when adding components or

connections to the model. However, the user may want to

exercise control over choices made in the model rather than

allow the system to generate them.

The appearance of the options menu with the default

settings is shown in Figure 9. A filled box appears next

to options that are enabled or set "ON".

Option Settings

Snap Lines to Grid. When this option is set, any

points selected for connection end points are moved to

intersections on the display area grid. This option is

available primarily for aesthetic considerations.

Ii: EXIT :J)
~~
loJlBI
[B][@:]

11-+0w, cc~~ ~-+'-.,.cc -'I,~

~:~ [W nm I
"

Model

Generic Model Building System

Model: fan-model

Component Opdom

• Snap lines to Grid
• Domain Checking

· · • Terminal Compatibility
Prompt for Component Names
Model Completeness

• Kirchoff's Laws
• Energy Conse1Vation

.
...... : : : : : : · · · · · · i · · · · · · i · · · · · ·: · · · · · · ~ · · · · · · : · · · · · ·: · · · · · · · · · · · · · · · · i · · ····I···· · · : · . . .

.... ·····:······:······: .. ····:······:···
. .

.......... ··········:······:······:"'··"':·· .. ··:······:······ ······:· .. ···:······:·
: . : :

................... ··········-················

Figure 9. Options Menu Pulldown

49

Domain Checking. When this option is set, the system

compares the default domain of the model to the domain

requirements of each component added to the model. Domain

50

values for components, terminals and variables in the sytem

are generated automatically whenever possible. The user is

prompted only when a domain selection cannot be resolved.

Terminal Compatibility. When this option is set, the

system compares the attributes of each terminal involved

when a connection request is made. The user is prompted

for needed information or given appropriate warning or

error messages.

Prompt for Component Names. When this option is set,

the user is prompted for a string to use for the component

name each time a component is added to the model. When the

option is disabled, GMBS automatically generates a string

name for each component.

Model Completeness. When this option is set, the

system performs a series of operations to determine the

completeness status of the model when any of the following

options are selected: Model Save, Save Component as

Composed, or Translate to CC/QSIM Format.

Kirchoff's Laws. When this option is set, the system

automatically adds appropriate constraints to the model

when the option Translate to CC/QSIM Format is selected.

These constraints are designed to ensure that the model

conforms to Kirchoff's Voltage and Current Laws.

51

Energy Conservation. When this option is set, the

system automatically adds appropriate constraints to the

model when the option Convert Model to CC/QSIM Format is

selected. These constraints are designed to ensure that

the model obeys the laws of Energy Conservation.

Toolbar Functions

At the left side of the GMBS Main Window a series of

buttons appears. These buttons represent the toolbar

functions which allow the user to rapidly perform many of

the more commonly used operations in model building.

Toolbar Button Descriptions

Exit

11: EXIT :11

Series
Connection

••••
..c:,...c:i.

l:IINN1tr•N

Activating this button initiates a process

to terminate execution of the model building

system. If the model display has been

modified since the last Save operation, the

user is prompted to save the model before

exiting.

Activating this button allows the user to

create a series connection between two

components in the model. The user is

prompted for the two terminals to use as end

points for the connection. Adding

Parallel
Connection

Examine
Component

Rotate
Component

additional connections to terminals which

are already connected is not allowed.

52

Activating this button allows the user to

insert two parallel junctions then connect

the junctions to the appropriate components

in the model. The user is prompted for the

locations of the junctions and the end point

terminals to be connected to the junctions.

Activating this button allows the user to

obtain information about a particular

component in the model display. The user is

prompted for the component. A popup window

with a description of the selected component

including name, constraints, terminals, and

modifications is displayed.

Activating this button allows the user to

rotate a particular component in the model

display 90 degrees clockwise. Rotation of a

component must be done prior to making any

connections to that component.

Translate to Activating this button initiates the process
CC/QSIM
Format of translating the current model to a format

acceptable to cc and/or QSIM. The user is

Convert cc
to QSIM

Create QSIM
initial
state

Execute QSIM

53

prompted for a file name in which to store

the translated model.

Activating this button initiates execution

of CC to convert the cc formatted file to a

QSIM input format file. The user is

prompted for a file name in which to store

the QSIM input.

Activating this button allows the user to

select initial values for variables and the

direction of value change of those

variables. The user is prompted for a file

name to store the QSIM initial state.

Activating this button initiates execution

of QSIM to simulate the model and display

the resulting behaviors. The user is

prompted for the file names of the QSIM

input and the QSIM initial state.

CHAPTER V

SUMMARY AND FUTURE WORK

Evaluation of Generic Component Representation

This paper has presented the development of a new

approach to qualitative model building using a generic

component repre~entation. The generic representation and

the accompanying implementation of the Generic Model

Building System provide several benefits over previously

existing software. Concentration has been placed on

improving the modeling phase of qualitative reasoning where

previously it has been primarily on the simulation phase.

The ease and efficiency of model building have been

increased, especially for users unfamiliar with cc or QSIM

syntax. Automated checking for possible errors during the

model building stage has been added.

The generic component representation contains elements

for including information for constructing component-based

qualitative models for simulation and for displaying those

models through a graphical user interface.

Eight b~sic library components have been developed

using the generic component representation. These

components provide a means for constructing models for

54

55

virtually any physical system consisting of components from

any combination of the electrical, mechanical, and

hydraulic domains.

A prototype generic model building system has been

developed, linking a LISP-based processing system and an

X Windows graphical user interface. This prototype can be

used to build simple models in electrical, mechanical, and

hydraulic domain combinations. With the user interface one

can rapidly construct, translate and simulate a model, as

well as quickly revise the model to improve the results of

simulation.

Several simple models were constructed using the

generic model building system to test the viability of the

representation and its compatibility for translation to

CC/QSIM formats. The details of the construction of one

model used as a test are given in Appendix D.

Future Work

Several possible avenues for further research into

generic component use in qualitative modeling have been

recognized at this time. The development of components

suitable for use in the thermodynamic and medical domains

would greatly expand the types of physical systems that

could be modeled. The addition of multi-domain terminal

capabilities, where a single terminal may have

56

qualitatively important variables from two or more domains,

would allow for creation of integrated components.

The design of multi-mode or multi-function components,

those where the value, either symbolic or numeric, of a

component variable determines which set of constraints will

be used to model the component's behavior, could be used to

develop multi-purpose qualitative models.

Further testing by individuals familiar with the

concepts of qualitative simulation, component connections

modeling, CC and QSIM can be used to provide feedback for

further enhancements of the system.

Also important to making the generic model building

system a viable method for modeling non-trivial physical

systems is the development of a larger set of library

components and a set of frequently used composed component

model definitions. This will allow even faster model

building because the user will be able to draw from the

library of predefined components rather than constructing

large models strictly from library primitives.

Implementing various operating system dependent

mechanisms to provide portability to other hardware and

software can lead to the development of a distributable

package for qualitative modeling.

[AS90]

[BB91]

[BK92]

[BM93]

[B093]

[CE??]

[CE90]

[CF90]

BIBLIOGAAPHY

Asente, P. and Swick, R. 1990. X Window System
Toolkit, The Complete Programmer's Guide and
Specification. Digital Press, Boston, MA.

Broenink, J.; J. Bekkink; A. Kok; and P.
Breedveld. 199.1. "Multibond-graph Version of
the CAMAS Modeling and Simulation Environment."
In Proceedings of the 13th IM.ACS World Congress
on Computation and Applied Mathematics (Dublin,
Ireland, Jul. 22-26). Trinity College, Dublin,
1086-1087.

Berleant, D. and B. Kuipers. 1992.
"Qualitative-Numeric Simulation with Q3". In
Recent Advances in Qualitative Physics. B.
Faltings and P. Struss (eds). MIT Press.
Cambridge, MA.

Biswas, G.; S. Manganaris; and X. Yu. 1993.
"Extending Component Connection Modeling for
Analyzing Complex Physical Systems." IEEE Expert
8, no. 1: 48-57.

Bobrow, D.G. 1993. "Qualitative Reasoning About
Physical Systems: An Introduction." Artificial
Intelligence 24: 1-5.

Crawford, J. and D. Etherington. "Formalizing
Reasoning about Change: A Qualitative Reasoning
Approach".

Cellier, F. 1990. "General System Problem
Solving Paradigm for Qualitative Modeling."

Crawford, J.; A. Farquhar; and B. Kuipers. 1990.
"QPC: A Compiler from Physical Models into
Qualitative Differential Equations." In AAAI-90
Proceedings of the Eighth National Conference on
Artificial Intelligence (Jul. 29 - Aug. 3). MIT
Press, Cambridge, MA, 365-372.

57

[CF91]

[DE93]

[DR90a]

[DR90b]

[FA82]

[FD91]

[FF90]

[FF92]

[FI92]

[FK92a]

58

Charles, A.; P. Fouche; and C. Melin. 1991.
"Recent Improvements in Qualitative Simulation."
In Proceedings of the 13th IMACS World Congress
on Computation and Applied Mathematics (Dublin,
Ireland, Jul. 22-26). Trinity College, Dublin,
1745-1746.

de Kleer, J. 1993. "A View on Qualitative
Physics." Artificial Intelligence 59: 105-114.

Dague, P.; o. Raiman; and P. Deves. 1990.
"Troubleshooting: when Modeling is the Trouble."
In Readings in Qualitative Reasoning about
Physical Systems. D. Weld and J. deKleer (eds).
Morgan Kaufmann, San Mateo, CA.

Dormoy, J. and o. Raiman. 1990. "Assembling a
Device." In Readings in Qualitative Reasoning
about Physical Systems. D. Weld and J. deKleer
(eds). Morgan Kaufmann, San Mateo, CA.

Faber, Rodney B. 1982. Applied Elect:ricity and
Electronics for Technology. John Wiley and Sons,
New York, NY.

Franke, D. and D. Dvorak. 1991. CC: Component
Connection Models. for Qualitative Simulation. A
User's Guide. Internal Documentation.
Department of Computer Sciences, University of
Texas at Austin.

Falkenhainer, B. and K. Forbus. 1990. "Setting
up Large-Scale Qualitative Models." In Readings
in Qualit:at:ive Reasoning about Physical Systems.
D. Weld and J; deKleer (eds). Morgan Kaufmann,
San Mateo, CA.

Falkenhainer, B. and K. Forbus. 1992.
"Compositional Modeling of Physical Systems." In
Recent Advances in Qualit:ative Physics. P.
Struss (ed). MIT Press, Cambridge, MA.

Fishwick, P. 1992. "An Integrated Approach to
System Modeling Using a Synthesis of Artificial
Intelligence, Software Engineering and Simulation
Methodologies." ACM Transact:ions on Modeling and
Computer Simulation 2, no. 4 (Oct.): 285-306.

Fouche, P. and B. Kuipers. 1992. "Reasoning
about Energy in Qualitative Simulation". IEEE

[FK92b]

[FL91]

[FM91]

[F084]

[FOSS]

[F092]

[FZ92]

[GR72] ·

[GR92]

[KA90]

[KC90]

59

Transactions on Systems, Man, and Cybernetics 22,
no. 1 (Jan./Feb.): 47-63.

Farquhar, A.; B. Kuipers; J. Rickel; and D.
Throop. 1992. QSIM: The Program and its Use.
Internal Documentation. Department of Computer
Sciences, University of Texas at Austin.

Fishwick, P. and P. Luker (eds). 1991.
Qualitative Simulation, Modeling, and Analysis.
Springer-Verlag, New York, NY.

Feray-Beaumont, B. and A. Morris. 1991.
"Towards Qualitative Control Engineering. 0 In
Proceedings of the 13th IMA.CS World Congress on
Computation and Applied Mathematics (Dublin,
Ireland, Jul. 22-26). Trinity College, Dublin,
1734-1735.

Forbus, K.D. 1984. 0 Qualitative Process
Theory. 0 Artificial Intelligence 24: 85-168.

Forbus, K.D. 1988. "Qualitative Physics: Past,
Present, and Future." In Exploring Artificial
Intelligence. Morgan Kaufman, New York, NY.

Forbus, K. and B. Falkenhainer. 1992. 11 Self
Explanatory Simulations: Integrating Qualitative
and Quantitative Knowledge". In Recent Advances
in Qualitative Physics. B. Faltings and P. Struss
(eds). MIT Press. Cambridge, MA.

Fishwick, P. and B. Zeigler. 1992. 0 A
Multimodel Methodology for Qualitative Model
Engineering." ACM Transactions on Modeling and
Computer Simulation 2. no. 1 (Jan.): 52-81.

Greenberg, S. · 1972. The GPSS Primer. John
Wiley and Sons, New York, NY.

Guariso, G.; A. Rizzoli; and H. Werthner. 1992.
"Identification of Model Structure via
Qualitative Simulation." IEEE Transactions on
Systems, Man, and Cybernetics 22, no. 5
(Sept./Oct.)~ 1075-1086.

Karnopp, D. 1990. System Dynamics: A Unified
Approach. John Wiley & Sons, New York, NY.

Kuipers, B.J. and C. Chiu. 1990. 0 Taming
Intractible Branching in Qualitative Simulation."

[KC91]

[KU86]

[KU90]

[KU92]

[KU93a]

[KU93b]

[LE91]

[LF90]

[LM90]

[LN93]

60

In Readings in Qualitative Reasoning about
Physical Systems. D. Weld and J. deKleer {eds}.
Morgan Kaufmann, San Mateo, CA.

Kuipers, B.J.; C. Chiu; D. Molle; and D. Throop.
1991. "Higher-Order Derivative Constraints in
Qualitative Simulation." Artificial Intelligence
51: 343-379.

Kuipers,. B.J. 1986. "Qualitative Simulation."
Artificial Intelligence 29: 289-338.

Kuipers, B.J. 1990. Diagnosis and Model
Building for Dynamic Systems. Draft of Proposal
Submitted to NASA; Department of Computer
Science. The University of Texas at Austin.

Kuipers, B.J. 1992. "Component-Connection
Models." Draft. Department of Computer Science.
The University of Texas at Austin.

Kuipers, B.J.
Then and Now."
140.

1993. "Qualitative Simulation:
Artificial Intelligence 59: 133-

Kuipers, B.J. 1993. "Reasoning with Qualitative
Models. 11 Artificial Intelligence 59: 125-132.

Leitch, R. 1991. "Themes and variations in the
Development of Qualitative Reasoning." In
Proceedings of the 13th IMA.CS World Congress on
Computation and Applied Mathematics (Dublin,
Ireland, Jul. 22-26}. Trinity College, Dublin,
966-968.

Liu, z. and A. Farley. 1990. "Shifting
Ontological Perspectives in Reasoning about
Physical Systems." In Proceedings of the Eighth
National Conference on Artificial Intelligence
{Jul. 29 - Aug. 3}. MIT Press, Cambridge, MA,
395-400.

Lawless, J. and M. Miller. 1990. Understanding
CLOS: The Common Lisp Object System. Digital
Press, Boston, MA.

Lackinger, F. and W. Nejdl. 1993. "Diamon: A
Model-based Troubleshooter Based on Qualitative
Reasoning." IEEE Expert 8, no. 1 (Feb.}: 33-39.

[LS92]

[MF92]

[MM91]

[N092]

[PR74]

[R093]

[SL91]

[ST90a]

[ST90b]

[WD91]

61

Lee, Y. and J. Stascavage. 1992. "Multitasking
Simulation of a Boiler System Using Qualitative
Model-Based Reasoning." ACM Transactions on
Modeling and Computer Simulation 2, no. 4 (Oct.):
285-306.

Miller, D.; R. Firby;
J. Rothenberg. 1992.
Really Need to Know".
Modeling and Computer
269-284.

P. Fishwick; D. Franke; and
"AI: What Simulationists
ACM Transactions on

Simulation 2, no. 4 (Oct.):

Makarovic, A. and N.J.I. Mars. 1991.
"Fundamental Limitations of Qualitative
Simulation." In Proceedings of the 13th IMACS
World Congress on Computation and Applied
Mathematics (Dublin, Ireland, Jul. 22-26).
Trinity College, Dublin, 1743-1744.

Noyes, J. 1992 ~ Artificial Intelligence with
Corrunon Lisp. D. C. Heath and Company, Lexington,
MA.

Pritsker, A. 1974. The GASP IV Simulation
Language. John Wiley and Sons, New York, NY.

Rosenberg, R. 1993. "Reflections on Engineering
Systems and Bond Graphs." Journal of Dynamic
Systems, Measurement, and Control 115 (Jun.):
242-251.

Shen, Q. and R. Leitch. 1991. "Diagnosing
Continuous Dynamic Systems Using Qualitative
Simulati'on. 11 In Proceedings of the 1991
International Conference on Control (Edinburgh,
UK, Mar. 25-28). IEE, London, 1000-1006.

Steele, G. 1990. Corrunon Lisp: The Language.
Second Edition. Digital Equipment Corporation.
Boston, MA.

Struss, P.
Qualitative
Qualitative
Weld and J.
Mateo, CA.

1990. "Global Filters for
Behaviors". In Readings in
Reasoning about Physical Systems. D.
deKleer (eds). Morgan Kaufmann, San

Williams, B. and J. de Kleer. 1991. "Qualitative
Reasoning about Physical Systems: A Return to
the Roots." Artificial Intelligence 51: 1-9.

[WE92]

[WI90a]

[WI90b]

[XL91]

[Y089]

62

Weld, D. 1992. "Reasoning about Model
Accuracy." Artificial Intelligence 56: 255-300.

Williams, B. 1990. "Temporal Qualitative
Analysis: Explaining How Physical Systems Work."
In Readings in Qualitative Reasoning about
Physical' Systems. D. Weld and J. deKleer {eds).
Morgan Kaufmann, San Mateo, CA.

Williams, B. 1990. "Interaction-based Invention:
Designing Novel Devices from First Principles."
In Proceedings of the Eighth National Conference
on Artifical Intelligence {Jul. 29 - Aug. 3).
MIT Press, Cambridge, MA, 395-400.

Xia, S.; D. Linkens; ands. Bennett. 1991.
"Integration of Qualitative Reasoning and Bond
Graphs: Project Introduction." In Proceedings
of the 13th IMA.CS World Congress on Computation
and Applied Ma~hematics {Dublin, Ireland, Jul.
22-26). Trinity College, Dublin, 1079-1080.

Young, D. 1989. The X Window System:
Applications and Programming with Xt (Motif
Version). Prentice-Hall.

APPENDIX A

STEAM PROPULSION SYSTEM

OSIM Input

;; Qualitative Model Definition
I I

(define-QDE steam-plant

; Documentation
(text "Steam plant with two major components")

(quantity-spaces
(SV (0 V* inf)
(EB (0 E* inf)
(TIN (0 T* inf)
(TOUT (0 TOUT* inf}
(TSDIFF (0 TS* inf}
(WIN (0 W* inf }
(WDIFF (0 WD* inf}
{QSP (0 Q* inf)
(SHTIME (0 ST* inf)

(constraints
((M- WDIFF WIN) (WD* W*))

"Steam Velocity")
"Boiler Energy")

"SH Input Temp")
11 SH Output Temp"}

"SH temp Difference"}
"Water Input Temp")
"Temp Diff in Boiler")
"Steam Produced")
"Time in SH"}

((M+ sv QSP} (0 0) (V* Q*) (inf inf))
((M- QSP WDIFF) (0 inf) (Q* WD*))
((ADD WDIFF WIN TIN))
((ADD TIN TSDIFF TOUT))
{{M- SV SHTIME) (inf 0) (V* ST*) (0 inf))
((M+ SHTIME TSDIFF) (ST* TS*) (0 0) (inf inf))
({constant EB)) ; energy supplied by the boiler

; is a constant
((constant TIN)) ; temperature of steam going in

; is a constant T* = 212

(layout (WIN TIN WDIFF)
{QSP SV SHTIME)
(TOUT nil nil)

63

64

(other (qspace-hierarchy ({WIN TIN TOUT) -> (*seq o W*
T* TOUT* inf)))

))

(unreachable-values (SV inf) (QSP inf) (WDIFF O)
(TIN inf) (TOUT inf))

OSIM Initial State

I I

11 Initial State Definition
I I

(defun warmer-water ()
(let ((initial-state

(make-new-state
:from-qde steam-plant
:assert-values

)
)

1 ((WIN (W* inc))
(TIN (T* std))
(TOUT (TOUT* nil))
(QSP {Q* nil))
(SHTIME (ST* nil))
(WDIFF (WD* nil))
(TSDIFF (TS* nil))
(SV (V* nil))
(EB (E* std)))

:text "Increase the water intake temperature"

11 execute the simulation for this initial state
11 and display the results
(qsim initial-state)
(qsim-display initial-state))}

OSIM Sample Output

Structure: Steam plant with two major components.
Initialization: Increase the water intake temperature (S-0)
Behavior 1 oft: (S-0 S-1 S-3).
Final state: (OF QUIESCENT COMPLETE), (NIL), NIL.

1a--8 ...

· : ':.. :. INF.:. . . ·•· ~-.:. - .:. •. :. . - • . --- . . - ·<J:NF .

t .

I

TO

. t .

Wate~ Input Temp

t .

I

TO

. t .

Steam Produced

J. •

I

TO

• J. •

SH Output Temp

., W-0

- w•

I

Tl

0

- INF

.. Q-0

- Q*

I

Tl

0

- INF

- TOUT*

.. T0-0

I
Tl

0

o , , , , , o • , , • • • T*

I

TO

SH Input Temp

t .

I
TO

. t .

Steam Velocity

I

Tl

0

- INF

., SV-0

- v•

I

Tl

0

65

CC Input

APPENDIX B

ELECTRICAL CIRCUIT EXAMPLE

(define-component Resistor electrical
"Resistor: Ohm's law"
(terminal-variables

(component-variables

(tl (vl voltage)
(i current))
(t2 (v2 voltage)
(i2 current))
(v voltage)
(r resistance
(quantity-space (0 R* inf))))

(mode-variables (mode working burnout))
(constraints ((add v v2 vl))

((mul t i r v))
((minus i i2))
((mode working) -> ((constant r R*)))
((mode burnout) -> ((constant r inf)))))

(define-component Battery electrical
"Battery: constant voltage source"
(terminal-variables (tl (vl voltage)

(i current))
(t2 (v2 voltage)
(i2 current))

(component-variables (v voltage
(quantity-space (0 vbat inf))))

(constraints ((add v v2 vl))
((minus i i2))
((constant v vbat))))

(define-component Capacitor electrical
"Capacitor: container for charge"

(terminal-variables (tl (vl voltage)
(i current))
(t2 (v2 voltage)
(i2 current)))

66

(component-variables (v voltage)
(c capacitance
(quantity-space (0 C* inf)))
(q charge))

(constraints ((add v v2 vl))
((multvcq))
((d/dt q i))
((minus i i2))
((constant c C*))))

(define-component Ground electrical
"Ground: constant voltage (current sink)"
(terminal-variables (t (v voltage)

(i current)))
(constraints ((constant v 0))

((constant i 0))))

(define-component Switch electrical
"Switch: externally opened or closed"
(mode-variables (mode open closed))
(terminal-variables (tl (vl voltage)

(il current))
(t2 (v2 voltage)
(i current)))

(component-variables (v voltage))
(constraints ((add v v2 vl))

((minus i i1))
((mode open) - > ((constant i O)))
((mode closed) - > ((constant v O)))))

(define-component RC electrical
"Resistor-Capacitor Circuit"
(components (B battery)

(R resistor)
(C capacitor)
(S switch)
(G ground))

(connections (n1 (R t1)
(n2 (R t2)
(n3 (C t2)
(n4 (B t1)

(S t1}}
(C t1))
(B t2) (G t) }
(S t2} }))

67

cc Output

(make-QDE
:name

RC_UNIQUE_WITH_S.MODE=CLOSED_WITH_R.MODE=WORKING

:qspaces

:constraints

((TIME to inf)
(B. V O vbat inf)
(R. v minf O inf)
(R.R Or* inf)
(C. v minf O inf)
(C. C O c* inf)
(C.Q minf O inf}
(S. v minf o inf)

(Nl.EFFORT ELECTRICAL
minf 0-inf)

(R. I minf O inf)
(S.Il minf O inf)
(N2.EFFORT ELECTRICAL

minf 0-inf)
(R.I2 minf O inf)
(C. I minf O inf)
(N3.EFFORT ELECTRICAL

minf 0-inf)
(C.I2 minf O inf)
(B.I2 minf O inf)
(G. I minf O inf)
(N4.EFFORT ELECTRICAL

minf 0-inf)
(B. I minf O inf)
(S. I minf O inf)
CS.MODE open

closed)
CR.MODE working

burnout))

((CONSTANT R.MODE WORKING)
(CONSTANT R.R R*)
(CONSTANTS.MODE CLOSED)
(CONSTANT S. V 0)
(ADD B.V N3.EFFORT ELECTRICAL

N4.EFFORT ELECTRICAL)
{MINUS B. I -B. I2)
(CONSTANT B.V VBAT)
(ADD R.V N2.EFFORT_ELECTRICAL

Nl.EFFORT ELECTRICAL)
{MULT R. I R. R R. V)
(MINUS R. I R. I2)
(ADD C.V N3.EFFORT ELECTRICAL

N2.EFFORT_ELECTRICAL)

68

(MULT C.V C.C C.Q)
(D/DT C.Q C.I)
(MINUS C.I C.I2)
(CONSTANT C.C C*)
(ADD S.V N4.EFFORT_ELECTRICAL

Nl.EFFORT ELECTRICAL)
(MINUS S. I -S. Il)
(CONSTANT N3.EFFORT ELECTRICAL 0)
(CONSTANT G. I 0) -
(MINUS R.I S.Il)
(MINUS R. I2 C. I)
(SUM-ZERO C.I2 B.I2 G.I)
(MINUS B.I S.I))

:independent NIL

:history NIL

:transitions NIL

:print-names ((TIME NIL NIL)
(B. V II (RC B V)" B)
(R. V "(RC R V) 11 R)
(R.R "(RC R R) II R)
(C. V II (RC CV) II C)
(C. C II (RC C C) II C)
(C.Q "(RC C Q) II C)
(S. V 11 (RC S V) 11 s.)
(Nl.EFFORT ELECTRICAL
(R. I II (RC R I) II R)
(S.Il 11 (RC S I 1) 11 S .)
(N2.EFFORT ELECTRICAL
(R.I2 "(RC-R I2) " R)
(C.I II (RC C I) II C)
(N3.EFFORT ELECTRICAL
(C.I2 "(RC-C I2)" C)
(B.I2 " (RC B I 2) " B)
(G. I "(RC GI)" G)

II (RC

II (RC

"(RC

R Vl)"

R V2)"

C V2)"

N)

N)

N)

(N4.EFFORT ELECTRICAL II (RC B Vl) II N)

:text

:layout

:other

(B.I II (RC B I) II B}
(S.I 11 (RC S I)" s.)
(S .MODE NIL NIL)
(R.MODE NIL NIL))

()

()

((DERIVED-ENERGY-CONSTRAINT
:NO-ENERGY-CONSTRAINT)

(IGNORE-QDIRS)

69

(NO-NEW-LANDMARKS)
(CC-INFO

. (RC (impl UNIQUE)))
(CC-MODE-ASSUMPTIONS (S.MODE CLOSED)

(R.MODE WORKING)))

70

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

APPENDIX C

GENERIC COMPONENT LIBRARY LISTING

gendefs.lsp

GENERIC COMPONENT BASIC LIBRARY

Variables are listed in the form (name (domain type))

Valid domain choices are:

Valid types are:

unknown
electrical
mechanical
hydraulic

effort
flow
displacement
momentum
power
constant, no units, no I I I

quantity space
I I I

(library-primitive effort-source "effort-source"
,, association list pair for component variables
,, the list of variable specifications is also an
,, association list
I I

,, key= "c-variables"
,, datum= sequence of variable list forms
I I

(c-variables
)

(SE unknown effort)

,, association list pair for terminals
I I

,, key= "terminals"
,, datum= sequence of terminal list forms
I I

(terminals (Tl 180 TERMINAL-IN (E unknown effort)
(F unknown flow))

(T2 0 TERMINAL-OUT (E unknown effort)
(F unknown flow))

71

)

11 association list pair for component constraints
11 key= "constraints"
11 datum= sequence of constraint list forms
I I

{constraints (constant SE)
{ADD Tl.ESE T2.E)

11 association list pair for component restrictions
11 key= "constraints"
11 datum= sequence of restrictions list forms
I I

{restrictions

)

{domain-eq Tl T2)
{ >= SE O)

(bitmap "effort.bit")

{library-primitive flow-source "flow,-source"
11 association list pair for component variables
;; the list of variable specifications is also an
;; association list
I I

Cc-variables {SF unknown flow)
)
11 association list pair for terminals

72

11 each terminal specification is also an association
I I list
I I

(terminals

)

(Tl 180 TERMINAL-IN (E unknown effort)
{F unknown flow))

{T2 0 TERMINAL-OUT {E unknown effort)
(F unknown flow))

11 association list pair for component constraints
11 a general list of lists is used for the constraints
I I

(constraints {constant SF)
{ADD Tl.F SF T2.F)

)
{restrictions {domain-eq Tl T2)

{>= SF 0)
)
{bitmap "flow.bit")

)
(library-primitive resistor "resistor"

Cc-variables {EACROSS unknown effort)

)
(terminals {Tl 180 TERMINAL-IN (E unknown effort)

(F unknown flow))
(T2 0 TERMINAL-OUT (E unknown effort)

(F unknown flow))

)

(constraints

)

(M+ EACROSS Tl.F)
(ADD T2.E EACROSS Tl.E)
(EQUAL Tl.F T2.F)

(restrictions (domain-eq Tl T2)
(>= EACROSS O)

)

(bitmap "resistor.bit")
)
(library-primitive capacitor

(c-variables (Q unknown
"capacitor"
displacement)

)

)
(terminals

)

(constraints

)

(Tl

(T2

180 TERMINAL-IN (E unknown effort)
(F unknown flow))

0 TERMINAL-OUT (E unknown effort)
(F unknown flow))

(M+ Tl.E Q)
(d/dt Q Tl.F)

(restrictions (domain-eq Tl T2)
)

(bitmap "capacitor.bit")

(library-primitive inertia "inertia"
(c-variables (P unknown momentum)
)

(terminals (Tl 180 TERMINAL-IN (E unknown effort)

)

(constraints

)

(F unknown flow))
(T2 0 TERMINAL-OUT (E unknown effort)

(F unknown flow))

(M+ Tl. F. P)
(d/dt P Tl.E)

(bitmap "inertia.bit")
)

(library-primitive gyrator "gyrator"
(c-variables (P unknown momentum)
)
(terminals (Tl 150 TERMINAL-IN (E unknown effort)

(F unknown flow))

73

(T2 210 TERMINAL-OUT (E unknown effort)
(F unknown flow))

(T3 30 TERMINAL-IN (E unknown effort)
(F unknown flow))

(T4 330 TERMINAL-OUT (E unknown effort)
(F unknown flow))

)

(constraints (M+ Tl.F P)

)

(d/dt P Tl. E)
(EQUAL Tl.F T2.F)
(EQUAL Tl.E T2.E)

(bitmap "gyrator.bit")

74

(library-primitive transformer "transformer"
Cc-variables (P unknown momentum)

(TPOWER unknown power)

)

)
(terminals (Tl 150 TERMINAL-IN (E unknown effort)

)

(F unknown flow))
(T2 210 TERMINAL-OUT (E unknown effort)

(F unknown flow))
(T3 30 TERMINAL-IN (E unknown effort)

. (F unknown flow))
(T4 330 TERMINAL-OUT (E unknown effort)

(F unknown flow))

(constraints (MOLT M Tl.F T2.F)
(MOLT M T2.E Tl.E)
(MOLT Tl.E Tl.F TPOWER)
(MULT T2.E T2.F TPOWER)

)

(bitmap "transformer.bit")

(library-primitive parallel-junction "parallel-junction"
Cc-variables (F unknown flow)

)

)
(terminals

)

(E unknown effort)

(Tl 180 TERMINAL-NONE (E unknown effort)
(F unknown flow))

(T2 0 TERMINAL-NONE (E unknown effort)
(F unknown flow))

(T3 90 TERMINAL-NONE (E unknown effort)
(F unknown flow))

(T4 270 TERMINAL-NONE (E unknown effort)
(F unknown flow))

(constraints (EQ Tl.F T2.F T3.F T4.F)
(ADD Tl.E T2.E T3.E T4.E E)
(EQ E 0)

APPENDIX D

CONSTRUCTING AN EXAMPLE MODEL

Physical System Description

In the mechanical domain, a commonly recognized

physical system is the drive train of an automobile. The

system involves the engine, a power source, and a series of

linkages from the engine through the driveshaft,

differential, and axle to the wheels. With appropriate

selections for initial states, a qualitative model of this

system can be used to answer questions such as "If the

friction on the tires is decreased, what will happen to the

torque on the driveshaft?" and "What effects will

increasing the rotational speed of the driveshaft have on

the differential?".

Constructing the Model with GMBS

The first step in constructing the model using GMBS is

to select NEW from the Model Menu. When the text prompt

for model name appears, the name "Drive-Train-Model" is

entered. When the selection list prompt for default model

domain appears, the domain "mechanical" is selected. The

75

display area is cleared and the model building system is

ready for components to be added to the model.

76

Using the Select/Library option from the Component

Menu, the library component· "effort-source" is selected to

represent the engine. The component icon is placed near

the left side of the display area at position (1, 4}.

Next, the library comportent "inertia" is selected to

represent the turning of- the driveshaft and is placed at

position (3, 3}. There is also a resistance applied to the

driveshaft so a "resistor" component is selected and placed

at position (4, 3}. Using the Series toolbar button, the

inertia and the resistor are connected in series.

In a similar manner, a "transformer" component is

selected to represent the converting effects of the

differential, two more "transformer" components are

selected to represent the conversion from the axle to the

rotation of the wheels. Each wheel is then represented by

a series combination of "resistor" and "inertia".

Using the Parallel toolbar button, two

"parallel-junction" components are added to represent the

parallel combination of the two wheel sections. The

effects of stored energy from road elevation and resistance

from air and friction are represented by adding a series

combination of a "capacitor" component, a "resistor"

component, and an "inertia" component in parallel with the

77

wheel sections. The display of the completed model appears

as shown in Figure 10.

Generic Model Building System

Model: drive-train
Model Component

.
······ ······1······:······1······1······1······:······1······1······1······1······1······1··
······ ······:······:······:······:······:······:······:······:······:······

: : : : : : : : :
........... ·: :. "''":"""";"'"": ... '":' : :"'"" ... ·

: : : : : : : :

: ·. : """:""":""'":""" """:"""~~ ······ ······ .. .

Options Help

. : : : : ~ : : : : : :

...... ······ ······ : : : : : : : : : : : ······ ·· ······

........................ ·····-~······~·-····!······ ·······~·····-~·--···-~·-····~·-···-~---··-~·-···· ·····-~---··-~·-···· ·· ···················· ······ ·· ···················· ~ .

Figure 10. Drive Train Model Display

VITA

Esther L. Davis

Candidate for the Degree of

Doctor of Philosophy

Thesis: GENERIC COMPONENT REPRESENTATION FOR EFFICIENT
QUALITATIVE MODEL BUILDING

Major Field: Computer Science

Biographical:

Personal Data: Born in Lawton, Oklahoma, September 22,
1960, the daughter of Robert G. and Alma L. Davis.

Education: Graduated from Douglas MacArthur Senior
High School, Lawton, Oklahoma, in May 1978;
received Bachelor of Arts Degree in Math and
Physics from Cameron University in May 1982;
received Master of Science degree in Computer
Science from Oklahoma State University in May
1992; completed requirements for the Doctor of
Philosophy degree at Oklahoma State University in
May, 1994.

Professional Experience: Programmer/Analyst, Random
House Publishers, June 1983 to December 1985;
Programmer I, Oklahoma College of Osteopathic
Medicine and Surgery, February 1986 to December
1986; Data Processing Manager, OCOMS, December
1986 to March 1988; Director of Computing and
Telecommunications, COM-OSU, March 1988 to January
1990; Programmer/Analyst, Blue Cross & Blue Shield
of Oklahoma, January 1990 to July 1990; Teaching
Assistant, Computer Science Department, Oklahoma
State University, August 1990 to July 1993.

