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CHAPTER I 

INTRODUCTION· 

One of the primary goals of artificial intelligence has 

been to analyze and imitate human problem solving 

techniques. These techniques include reasoning with only 

general knowledge of facts about objects and how they 

behave. Qualitative reasoning has become an active area in 

Artificial Intelligence research in recent years [B093]. 

The terms modeling and simulation are often used as 

interchangeable terms. Although both are usually present in 

research that deals with physical system design, diagnosis 

and prediction, modeling and simulation are distinct, yet 

strongly connected, concepts. Modeling refers to 

construction of a representation of a system. The 

representation may contain attributes of physical objects, 

relationships between objects and their attributes, as well 

as global information about the system. Simulation refers 

to performing time- or action-based propagation of changes 

to the system to predict its behavior according to the 

limitations specified in the model [PR74]. 

Numerical computer simulations of physical systems can 

be performed provided that precise information is available. 

Exact numerical simulation produces complex, time-consuming 
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results which are often too detailed or too large for human 

interpretation. Artificial intelligence researchers have 

tried to overcome this drawback by developing qualitative 

modeling and qualitative simulation algorithms [KU86] 

[F084] . 

2 

Background information on qualitative modeling and 

qualitative simulation, two segments of qualitative 

reasoning, is given in Chapter 2. Qualitative simulation is 

an attempt to duplicate human reasoning about a physical 

system using basic information about its structure and 

qualitative attributes to predict possible behaviors. 

Qualitative simulation can provide important insights during 

the design phase and can aid in the diagnosis of problems in 

existing systems [WI90a] [KU90]. 

In order to make modeling and therefore simulation 

useful in system design, i~ is important that all reasonable 

and pertinent knowledge about the physical system be 

incorporated without making the model unnecessarily large or 

complex. Qualitative modeling research has provided useful 

tools for design and diagnosis of physical systems in many 

areas, but still has a long way to go. There is a need for 

better representations of systems, faster and easier model 

building tools, and integration of quantitative and 

qualitative information to achieve an appropriate level of 

detail for optimal modeling. The work done in this paper 



focuses on the first two areas, model representation and 

efficient model building. 

3 

Qualitative simulation packages often require users to 

create models by means of tedious, syntactically specific 

definitions. Emphasis should be on the overall purpose of 

the system under design and on the general behaviors of each 

component in the system. Current representations for 

qualitative modeling of physical systems do not incorporate 

all useful knowledge of the components, especially with 

respect to connection capabilities and terminal variable 

unifiability as defined later. Since qualitative modeling 

is rapidly becoming a common method for systems design, 

diagnosis, and tutoring, it would be advantageous to employ 

all knowledge of components and their connections that can 

expedite model building, but without placing additional 

burden on the user. 

A representation that allows flexible, efficient, model 

building has been developed and is documented in Chapter 3. 

A generic modeling representation is developed to take the 

burden off the user, thus creating a more intuitive, faster 

method of constructing model definitions for qualitative 

simulation. 

The representation developed in this work is based on 

component-connection type modeling and draws from bond graph 

theory to form a library of fundamental generic components. 

Through the use of a graphical user interface, these 



fundamental generic components can be combined, connected, 

specialized, and stored as larger components without 

requiring the user to understand a particular simulation 

package syntax. To further assist the user in developing 

qualitative models for simulation, a graphical user 

interface has also been developed. Chapter 4 outlines the 

instructions for use of the interface. 

4 



CHAPTER II 

REVIEW OF LITERATURE 

Qualitative Modeling 

Qualitative modeling is designed to model physical 

systems utilizing incomplete or imprecise information. 

This incompleteness may stem from an actual lack of 

knowledge about a particular system or a part of the 

system, or it may be deliberate in that precise values of 

system variables are deemed unnecessary for determining the 

qualitative behavior of the system. Qualitative modeling 

researchers [WE92] [GR92] [BM93] have sought to find 

methods for determining"the.minimum amount of information 

that must be included in the model to produce acceptable 

results during simulation. 

Qualitative modeling attempts to mimic the way humans 

view real-world objects and actions by concentrating on 

general concepts rather than on specific numerical 

information. Even in systems where extensive numerical 

formulae are available, qualitative modeling is often 

chosen as a means of making system modeling simpler. In 

cases where numerical modeling produces unnecessarily 

complex or intractable simulations, qualitative modeling 
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can be used to achieve acceptable simulation results 

without the time consuming details [FI92]. 

Qualitative Modeling Ontologies 

Three distinct ontologies have been developed in 

qualitative modeling research. The following sections 

describe briefly these ontologies. 

6 

Process-Centered Ontology. In this ontology the model 

is described in terms of objects, processes that act on 

those objects, and influences that directly or indirectly 

affect the values of object attribute values. Qualitative 

Process Theory ( QPT) has been developed by Forbus ··· [F084] . 

Behavior of the model is derived by determining which 

processes are active at each time point and propagating the 

influences of those processes across objects in the model. 

QPT is an alternative approach to qualitative modeling of 

physical systems but will not be discussed further in this 

work. 

Molecular Ontology. In this ontology the model is 

described in terms of cells or pixels, and has a structure 

similar to that of the system being modeled. Molecular 

ontology is found in neural network simulations of brain 

activity and simulations of chemical reactions. Molecular 

models are beyond the scope of this paper. 
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Device-Centered Ontology. This is also referred to as 

constraint-based or component-based ontology. The model is 

described in terms of physical objects, components or 

devices with attribute variables and constraints which 

determine the relationships among variables. Device

centered ontology has been developed primarily by Kuipers 

[KU86] [KU92] and investigated.by many others [BM93] [FD91] 

[LS92] . 

Behavior of the model under given conditions is 

derived by propagating constraints over time. The basis 

for the model representation presented in this work has 

been developed using concepts from device-centered 

ontology. 

Component Connection Models 

Another approach to qualitative modeling based on the 

constraint- or device-centered ontology is the concept of 

component-connection models [FD91] [KU92]. Component

connection modeling relies on the construction of a model 

from distinct components. Each component consists of a set 

of terminals, variables, and constraints. Terminals, also 

called ports, represent points at which the component may 

interact with the outside world. Each terminal has its own 

set of variables, which describe the attributes through 

which it may be connected to a compatible terminal of 

another component. 
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Connections, indicating how components interact with 

each other, are defined by specifying links between 

terminals of different components. In each connection, the 

set of terminal variables and their associated variable 

types determine how the interactions between components 

take place, and how constraints can be propagated 

throughout the system during simulation. Components cannot 

interact except through the connections and cannot interact 

with the system globally in any other way. 

Figure 1 shows an example for a simple electrical 

circuit that can be modeled using component-connection 

models. The circuit is composed of five components: a 

battery {B), a switch {S), a capacitor {C), a resistor {R), 

R 
,--------------· 

-~!_\AA i . ·vv, . 
I I ·--------------· 

C 

;--I .. --~;I"-----
·~------· 

,--- ---i 
I I ·-· ; Vi G ·--------· 

Figure 1. Simple Electrical Circuit 



and ground (G), and the associated connections needed to 

link them together are indicated by solid lines drawn 

between components. 

Component-connection models are highly reusable. 

9 

Libraries of components for various types of models (for 

example, a library of electrical components) can be created 

and saved for later use [FD91] [KU92]. Model building is 

done by specifying components to be used and the 

connections between them. 

Table I Battery Component Definition 

Domain: Electrical 

Component Variable 

V 

Terminal 

Tl 

T2 

Constraints 

Vl - V2 = V 
Il = -I2 

Variable 

Vl 
Il 
V2 
I2 

variable 

Voltage 

Variable 

Voltage 
Current 
Voltage 
Current 

V = Vbat where Vbat is a constant 
V >= ¢ 

Type 

Type 

In the example, component B (battery) includes two 

terminals: Tl and T2, and an additional component variable 
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which represents voltage across the battery. Each terminal 

has two variables (voltage and current} associated with it. 

The sign convention utilized with terminals designates a 

variable that indicates flow into the component as positive. 

The Table I illustrates a basic component definition for 

component B. 

Component-connection models provide a less restrictive 

means of model building in domains where physical systems 

are clearly composed of individual components. These models 

have been extensively used in electrical and hydraulic 

simulations. 

Qualitative Simulation 

The purpose of qualitative simulation of a physical 

system is to produce a set of possible behaviors by 

generating and filtering the set of possible transitions 

from one qualitative state to another [KUS6]. A qualitative 

state of the system is defined as the collection of all 

variable (value, direction} pairs where value is a 

qualitative value of the variable at a given time point and 

direction represents the direction of value change, i.e. 

increasing, steady, or decreasing, of that variable. A set 

of constraints on variables in the system places limitations 

on the behaviors that can occur. 

Qualitative simulation can produce viable answers to 

"What will happen if ... ? " questions [KUS6] [FOSS] , even in 
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systems where certain pieces of information are unknown. 

For example, in design or diagnosis of a hydraulic system, 

it may be useful to know "What will happen to the final 

output pressure if the flow of water at the intake valve is 

increased?". In a mechanical system design, one of the 

questions that could be answered by qualitative simulation 

is "What will happen to the torque on ·the main shaft if the 

size of the third gear is reduced?". 

The rules governing the progress of a qualitative 

simulation are those specified in the constraints. No exact 

functions of variables, no-tables of ':State changes, and no 

prescribed sequences of events are used. Table II lists 

Table II 

Constraint 

(CONSTANT a) 

(EQ a b) 

(ADD a b c) 

(MULT a b c) 

(MINUS a b) 

(M+ a b) 

(M- ab) 

(d/dt ab) 

Qualitative Constraint Definitions 

Equation or Function 

the value of a is a constant 

a = b 

a + b = C 

a * b = C 

a= -b 

a is a monotonically increasing 
function of b 

a is a monotonically 
decreasing function of b 

a is the first-order derivative of 
b with respect to time 



some of the constraints that may be used in a qualitative 

simulation along with the equations they represent. 

By propagating the known constraints on variables 

through the system, qualitative simulation can show the 

effects of increasing or decreasing the value of a 

particular variable on the other variables in the system. 

12 

Figure 2 shows a simplified drawing of a naval steam 

propulsion system [FOSS]. The system has two primary 

components: a boiler unit, and a superheater. Water enters 

the boiler, is converted to steam, which then travels 

through the superheater . 

Water --> 

Steam--> 

:::;:::::;::::::: ,:::::;:::;: ........ -........... ... ., ... ..... . 
····························· 
.. .. ... .. .................... ............................. ............ ................ 

Super Heater 
. . . . . . . . . . . . . . . . . . . . . . . 

Pressure 
. . . . . . . . . . at Output= 1200 PS I 

Figure 2. Steam Propulsion System 
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In training aboard ship, Navy technicians have found 

answering qualitative questions about the behavior of this 

type of system very difficult. Qualitative simulation has 

been used to predict and explain the system's behavior under 

given conditions. 

As an example, suppose the question were "What will 

happen to the output steam temperature if the temperature of 

the intake water increases?" This is a legitimate question 

since the ship may at times sail into warmer parts of the 

ocean. Naval trainees usually predict,an increase in output 

temperature. However, using the qualitative information and 

constraints shown in Table III, qualitative simulation shows 

that the answer is just the opposite. 

Table III Qualitative Steam Propulsion Model 

Qualitative Information 

Water is supplied as needed to keep 
the level in the boiler (LB) constant 
(Cl) . 

Energy supplied by the boiler per unit 
of time (EB) is a constant (C2). 

Temperature of steam entering the 
superheater (TSIN) is a constant. It 
has a quantitative value of 212° F. 

The temperature increase (WDIFF) 
caused by the boiler is a 
monotonically increasing function of 
the energy supplied. 

Constraints 

(EQ LB Cl) 
(d/dt EB 0) 

(EQ EB C2) 

(EQ TSIN 212) 

(M+ WDIFF EB) 



Table III (continued) 

Qualitative Information 

The rate of steam production (RSP) is 
a monotonically decreasing function of 
the difference (WDIFF) between the 
intake temperature (TWIN) and the 
output boiler temperature (212°). 

The time the steam takes to travel 
through the superheater (TSH) is a 
monotonically decreasing function of 
the rate of steam production (RSP). 

The temperature difference between the 
steam going into the superheater and 
coming out of the superheater (TDIFF) 
is a monotonically increasing function 
of the time it takes to travel through 
the superheater (TSH). 

Constraints 

(M- RSP WDIFF) 
(ADD WDIFF TWIN 212) 

(M- TSH RSP) 

(M+ TSDIFF TSH) 
(ADD TDIFF TSIN TOUT) 

14 

Given an initial condition (TWIN, T¢, inc) that 

denotes an increase in the intake water temperature, TWIN, 

starting from an initial qualitative value of T¢, the 

simulation propagates constraints and determines that the 

following sequence of changes will occur in the system: 

• Since the intake water temperature is higher, it 

takes less energy to raise it to boiling. 

• The energy needed to raise the water to boiling 

decreases, but the energy supplied by the boiler 

is constant, so the rate of steam production will 

increase. 



15 

• As the rate of steam production increases the 

flow of steam through the superheater increases, 

thus causing each unit of steam to spend less 

time in the superheater. 

• Since each unit of steam spends less time in the 

superheater, the temperature difference imparted 

by the superheater decreases. 

• Since the temperature of the steam going in to 

the superheater is a constant and.the temperature 

difference is decreas.ing . ., . the output temperature 

of the superheater decreases. 

Thus, through qualitative simulation the answer to the 

question is shown to be "The output steam temperature 

decreases if the intake water temperature is increased." A 

possible follow-up question is "What must be done to raise 

the output steam temperature back to the desired level?". 

Qualitative simulation could again be used to find the 

answer. 

Landmarks and Quantity Spaces 

Instead of using precise numerical values for each 

variable, qualitative values called landmarks are used in 

qualitative simulation. A landmark represents a value 

where the variable causes a transition of the system from 

one qualitative state to another. An ordered set of 
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landmarks associated with a variable in a qualitative model 

is called the variable's quantity space. 

In the Steam Propulsion System example, the intake 

water temperature (TWIN) has landmark values¢, T¢, and 

INFINITY, where T¢ represents the initial temperature 

value. The landmark INFINITY, although unreachable in 

reality, is included to set a symbolic upper limit on the 

temperature. The quantity space associated with TWIN would 

be represented as { ¢ T¢ INFINITY}. 

As another example, a pressure variable (PRESl) in a 

hydraulic system may have landmarks such as¢, PMIN, POPT, 

PMAX, and INFINITY, where PMIN represents the minimum 

pressure which will produce the desired flow of fluid 

through the component, POPT the optimal pressure, and PMAX 

the maximum pressure which can be sustained without 

bursting the pipe. Again, in reality, the last landmark 

(INFINITY) cannot be reached. The quantity space 

associated with PRESl would be represented as { ¢ PMIN 

POPT PMAX INFINITY}. 

Qualitative Differential Equations 

An important consideration in qualitative simulation 

is the use of first-order qualitative derivatives for each 

variable to determine the direction of change in that 

variable. Although the set of behaviors produced during 

the simulation contains all of the possible real behaviors, 
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it also may contain spurious behaviors, i.e. those which 

meet specified constraints but cannot occur in the actual 

system. Inconsistencies detected among first-order and 

higher-order derivatives during simulation can be used to 

detect and eliminate spurious behaviors [KC90] [KC91]. 

Qualitative simulation is similar to symbolic 

simulation in that it can use symbols to represent values 

of variables without requiring actual numeric values. 

Qualitative simulation differs from traditional symbolic 

and numerical simulation methods in several ways, the most 

important of which is that qualitative simulation can 

produce a set of possible behaviors in systems where very 

little information is known. Even in systems where 

extensive numerical formulae are available, qualitative 

simulation is often chosen as a means of making the 

simulation simpler. In cases where numerical simulation 

produces unnecessarily complex or intractable results, 

qualitative simulation can be used to obtain useful 

information without the time consuming details. 

Qualitative Simulation Tools 

OSIM. Kuipers [KU86] [KU93a] and The Qualitative 

Reasoning Group at the University of Texas at Austin (UTA) 

have developed a representation based on qualitative 

differential equations. Using constraint-based ontology, 

they created an algorithm and an associated implementation 
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known as the Qualitative Simulation (QSIM} package. QSIM 

takes as input a lisp-like representation of a physical 

system that includes variable definitions, quantity space 

information, and qualitative constraints showing the 

relationships among the variables critical to the system's 

behavior. This input must be constructed by the user, with 

correct syntax, continuity, and complete specification of 

all variables, constraints, and transitions. From the 

input and initial perturbation conditions, QSIM produces a 

set of possible behaviors. A listing of the input required 

for QSIM to perform the Steam Propulsion System simulation 

and a sample of the output obtained from the simulation 

process are given in Appendix A. 

QSIM is a well-established program and is based on 

proven algorithms for qualitative simulation [KU86]. The 

QSIM algorithm has been shown to provide good results in 

many branches of physical system modeling, including 

electrical, hydraulic, chemical, and medical systems. Work 

is continuing at UTA and other universities to improve the 

performance of simulations produced by QSIM. 

CC. In response to a need for a simpler component

based modeling method, members of The Qualitative Reasoning 

Group at UTA developed cc [FD91] [KU92], a front-end 

interpreter for QSIM. CC takes as input a set of component 

and connection specifications, then converts these into 
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variables, transitions, and constraints that can be used as 

input for QSIM. This component based format works well for 

certain domains of modeling, especially electrical and 

hydraulic systems. 

Appendix B shows the CC input needed to create the 

electrical circuit from Figure 1 as well as the output 

produced by the CC interpreter. The CC representation 

format of components and connections has a lisp-like 

structure. This structure facilitates interpretation of 

the system specification because the CC to QSIM compiler is 

written in LISP. 

cc allows the use of elemental components (battery, 

switch, etc.} as well as composed components, i.e. those 

created by connecting a set of components. The circuit 

model, once created, could be used as a composed component 

in a larger system. 

Biswas, et al. [BM93] have provided a set of 

extensions to CC that allows the use of global information 

such as system-wide constraints supplied by the user. 

These extensions have been tested and shown to be helpful 

in the use of qualitative models as diagnosis tools. 

Crawford, et al. [CF90] developed an alternative to CC 

called the Qualitative Process Compiler (QPC). QPC takes 

the general approach of Qualitative Process Theory by using 

a description of a model in terms of views, processes, and 

influences. The model is compiled into a set of 



qualitative differential equations for use in QSIM by 

identifying active processes and transforming influences 

into constraints. 

Bond Graph Theory 

20 

Bond graphs are a means of representing physical 

systems using a set of basic elements called multiports 

[KA90]. Connections between multiports are termed bonds. 

A bond graph consists of a set of multiports connected by 

lines or arrows which represent bonds. 

Multiports of a bond graph are designed to model the 

power and energy attributes of components in a physical 

system; bonds model the interactions that take place among 

the components. Multiports and bonds do not directly 

relate to the physical components or connections and no 

information about sizes or relative locations of components 

can be obtained from a bond graph. 

Power and Energy Variables 

Four primary variables are used to describe the 

behaviors of multiports: effort (e), flow (f), momentum 

(p), which is the time integral of effort, and 

displacement (q), which is the time integral of flow. 

Effort and flow are referred to as the Power Variables, 

while momentum and displacement are the Energy Variables. 
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1-Port Elements 

Multiport elements are grouped according to the number 

of ports they have. Each port represents a bond that may 

be made between the element and another multiport. 

Elements which consist of a single port (1-ports) are: 

Resistor: 
-R 

Capacitor: 
-c 

Inertia: 

-I 

Source: 

s--

A resistor element relates the effort 

variable to the flow variable. It implies 

that energy is dissipated from the system. 

A capacitor element relates the effort 

variable to the displacement variable. 

Ideally, no energy is lost. A capacitor 

element models the concept of potential 

energy. 

An inertia element relates momentum to the 

flow variable. Ideally, no energy is lost. 

An inertia element models the concept of 

kinetic energy. 

A source element adds energy to the system. 

The element may be designated as either an 

effort sources. or a flow source sf to 

indicate the variable being supplied. 
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2-Port Elements 

Elements which consist of two ports (2-ports) are: 

Gyrator: 

-GY-

Transformer: 

-TF-

A gyrator changes the relationship between 

an effort variable and a flow variable. The 

relationships are defined by the equations 

e 1 = rf2 and e 2 = rf1 where en is the effort 

variable at port n, fn is the flow variable 

at port n, and r is a constant. Ideally, 

power is conserved. A gyrator usually 

converts energy from one domain to another, 

such as from mechanical to electrical. 

A transformer changes the relationship 

between the effort variable and the flow 

variable in a different manner. The 

relationships are defined by the equations 

e 1 = me2 and mf 1 = f 2 , where m is a 

constant. Ideally, power is conserved. 

Although a transformer can be constructed by 

placing two gyrator elements in series, it 

is a convenient, frequently used element. A 

transformer usually converts within the same 

domain, such as an electrical transformer. 
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Junctions 

Additionally, the following multiport elements are 

used to represent junctions where two or more multiports 

are connected by bonds. 

a-junction: 

-o-

1-junction: 

I 
-1 

Also referred to as a common effort 

junction, this multiport represents a 

connection of multiports where the efforts 

on all bonds of the junction are identical 

and the flows sum to zero. In electrical 

domains, the a-junction represents a 

parallel connection. 

Also referred to as a common flow junction, 

this multiport represents a connection of 

multiports where the flows on all bonds of 

the junction are identical and the efforts 

sum to zero. In electrical domains, the 1-

junction represents a series connection. 

a-junctions and 1-junctions may be considered to have 

as few as two, or as many incident bonds as necessary to 

appropriately describe the physical system. Although the 

junction elements do not correspond to actual components in 

a physical system, they are a convenient way to represent 



the interactions between multiports in terms of the 

relationships among the Power Variables . 

.. ------------------------- ------------
' l . . . . . 
l 

M, 

R, 

Figure 3. Schematic for Electric Fan Circuit 

Figure 3 shows a schematic for a simple electrical 

circuit containing a power source and an electric fan. 

For the purpose of this example, the schematic contains 

only a minimum representation of the circuit elements. 

The dashed box indicates the electrical elements that 

comprise an equivalent circuit for the fan with~ 

24 
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representing the fan motor, and Rf representing the 

combined equivalent resistance of the resistive elements in 

the fan. In actuality, the fan would contain many more 

electrical and mechanical components than can be 

represented here. 

Figure 4 shows the bond graph representation of the 

electric fan system including the electrical circuit shown 

in Figure 3 and the mechanical element of the fan blades. 

The multiport symbol S represents the power source. The 

junction among S, R, and GY represents the electrical 

connections from the power source to the electric motor 

contained in the fan. 

The multiport GY represents the motor, which converts 

electrical energy from the power source into mechanical 

energy to drive the fan blades. The connection of the 

motor to the moving blades is represented by the junction 

GY, I, and R. 

R 

I 
s--1-- GY ---1--- I 

1 
R 

Figure 4. Bond Graph for Electric Fan System 
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The bond graph representation provides a convenient 

way to view physical system models in terms of a small 

number of basic component types, and it can be used to 

represent large, complex systems. The library of 

components developed in this work and outlined in the next 

chapter is based on the multiport elements shown above. 



CHAPTER III 

GENERIC COMPONENT REPRESENTATION 

Purpose 

Current representations for qualitative modeling of 

physical systems do not incorporate all useful knowledge of 

the components, especially with respect to connection 

capabilities and terminal variable unifiability. Since 

qualitative modeling is rapfdly becoming a common method 

for system design, diagnosis, and tutoring, the generic 

component representation developed in this work has been 

designed to utilize all knowledge of components and 

connections that can expedite model building, yet does not 

place an additional burden on the user. 

Modeling with the generic component representation is 

faster and easier than previous .. methods. - Through the use 

of the accompanying graphical user interface, the user is 

not required to know the syntax of either CC or QSIM. The 

knowledge required of the user is limited to general 

concepts of physical systems, beginning level modeling 

concepts, and an understanding of the purpose of each of 

the components in the generic component library. 

27 
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Component Types 

To provide compatibility with the component-connection 

ontology utilized in CC [FD91], the generic component 

representation is designed around two types of components: 

primitive and composed~ 

Primitive Components 

Primitive components are those components whose 

definitions are self-contained, i.e. no references are made 

to variables, constraints or other information outside the 

component definition. 

Composed Components 

Composed components are those components whose 

definitions consist of combinations of other components 

(either primitive or composed) and the connections between 

those components. A qualitative model is represented as a 

composed component. 

Component Classes 

An object-oriented hierarchy was chosen for the 

internal representation of component structures in PCL. 

The four classes in the hierarchy and their relationships 

to one another are shown in Figure 5. 
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Figure 5. Component Class Hierarchy 

Library Components 

The library component class definitions contain 

information needed to represent the variables, terminals, 

and behavior of the component. Library components may be 

either primitive or composed. A set of library component 

definitions is loaded into the model building system from a 

file during the system startup phase. The user may select 

a component to be added to the model from the set of 

library components. 
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Model Components 

The model component class definitions contain all of 

the information from the library component class definition 

and additional elements to represent its position in the 

model, its assigned domain, and customized constraints. 

Model components may be either primitive or composed. 

When t.he user selects a component from the library, a 

copy of the library component definition is placed into a 

model component instance. The model component may then be 

customized to reflect its behavior to the specific model. 

Model component definitions are used to save and load 

qualitative models. 

When the user selects a component from the set of 

previously saved composed component definitions, a 

reference copy of the composed component is added to the 

model. Any subsequent changes to the saved composed 

component definition will be reflected in each model where 

it is used. 

Element Descriptions 

Component Elements 

The generic component representation consists of the 

set of elements listed in Table IV. The "Used In" column 

indicates whether a particular element is used in the 

library component definition, the model definition, or 



31 

both. Complete descriptions of the purpose and use of each 

of the elements are given in the following sections. 

Table IV Generic Component Definition 

Element Name Default Value/ Used In 
Type 

Name 11 II L, M 
String 

variables () L, M 
List of Variable Objects 

Terminals () L, M 
List of Terminal Objects 

Constraints () L, M 
List of Constraint Forms 

Domain 11 unknown 11 M 
String 

x-coordinate ¢ M 
Integer 

Y-coordinate ¢ M 
Integer 

Bitmap II II L, M 
String 

Restrictions () L, M 
List of Constraint Forms 

Modifications () M 
List of Constraint Forms 

Name. In a library component, the name field 

represents a predefined string assigned to the component. 
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In a model component, the user may enter a string to use as 

the external name for each component instance. 

Variables. This field contains a list of variable 

object definitions which denote the component-level 

variables. The layout of the variable object definition is 

given in Table V. 

Terminals. This field contains a list of terminal 

object definitions which denote the points through which 

the component may be connected to other components in the 

model. The layout of the terminal object definition is 

given in Table VI. 

Constraints. This field contains a list of constraint 

forms which specify the constraints that apply to the 

component-level and terminal-level variables. Constraint 

forms have the following syntax: 

( KEYWORD arg 1 arg 2 • • • ) 

where KEYWORD is one of { CONSTANT, EQ, ADD, MOLT, MINUS, 

M+, M-, d/dt} and argn is either a variable specification 

or a constant. Refer to Table II, Qualitative Constraint 

Definitions, for a description of each of the constraint 

keywords. 

Domain. This field denotes the default domain for the 

component instance. Its value is one of { unknown, 

electrical, mechanical, hydraulic}. 



X- and Y-coordinates. These contain the horizontal 

and vertical coordinates of the component within the 

graphical model display. The coordinates are given with 

respect to the upper left corner of the display grid. 

Bitmap. This field is the string name of a bitmap 

file which contains a 25 pixel x 25 pixel component icon 

definition used in the graphical model display. 
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Restrictions. This field contains clauses which 

specify additional requirements placed on the component 

which cannot be given in constraint form .. These clauses 

provide two forms of information needed by the generic 

model building system. First, they imply additional 

constraints on the component and the model to which the 

component belongs. Second, they act as signals to specify 

methods of consistency·and completeness checking that will 

be performed as the model is built. The following 

restriction clauses have been defined as part of the 

generic component modeling system. 

(DOMAIN-EQ componentl component2) 

This clause establishes a requirement on a composed 

component (or qualitative model) that componentl and 

component2 always have the same domain. This clause 

prevents the inadvertent assignment of different domains to 

specific components in a model. For example, in certain 



models certain combinations of electrical components and 

hydraulic components would not be permitted and can be 

prevented by adding this clause to the set of model 

restrictions. 

(DOMAIN-BQ terminall terminal2) 
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This clause establishes a requirement that terminall 

and terminal2 of the same component have the same domain. 

This prevents the inadvertent change of domains across a 

single component. For example, both terminals of a 

resistor element must have the same domain since a resistor 

cannot be used to convert usable energy from one domain to 

another. 

(OPTIONAL-TERMINAL terminal} 

This clause permits the- def-inition of terminals that 

may or may not be needed in a particular model. When the 

model is saved, checked, or translated, an optional 

terminal which has not been connected is discarded from the 

component definition. 

Modifications. This field contains a list of 

constraint forms which the user has added to customize the 

behavior of the component for the specific model. 
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Variable Elements 

Components may have two different types of variables: 

component variables or terminal variables. The terminal 

variables are those variables which are assigned to 

specific terminals of the component. Component variables 

correspond to other variables of interest in the model and 

are related to other variables of the component (either 

component or terminal) through constraints [KU92]. The 

representation of both types of variables is the same and 

is shown in Table v. 

Table v Variable Object Definition 

Element Name Default Value/ 
Type 

Name II II 

String 

Type "effort" 
String 

Quantity Space () 
List of Landmark Values 

Domain "unknown" 
String 
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Terminal Elements 

A terminal object represents a means through which a 

component may interact with other components. Connections 

in a composed component are given by specifying the 

component name and terminal name for each end point of the 

connection. Terminal names within each component must be 

unique but terminal names may be reused between components. 

The terminal object definition is shown in Table VI. 

Table VI Terminal Object Definition 

Element Name Default Value/ 
Type 

Name n II 

String 

variables () 
List of Variable Objects 

Position none 
Integer 

Direction IN 
E {IN, OUT, NONE} 

Connected Flag false 
Boolean 

Generic Component Library 

The initial set of generic components developed in 

this work is based on the concepts of basic multiports 
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described in Chapter 2. Each generic component contains 

the minimum information necessary to embody the purpose of 

the multiport but without any extra information that might 

restrict the user from utilizing the component as they wish 

in a specific model. The library definition of each 

component is fixed. Copies of the component definition are 

included in the user's model and can be customized as 

desired. 

Table VII Library Component Descriptions 

Component Name Terminals Behavior 

Effort Source T1, T2 SE >= ¢ 
T1.effort + SE = T2.effort 

Flow Source T1, T2 SF >= ¢ 
T1.flow + SF = T2.flow 

Resistor T1, T2 EACROSS >= ¢ 
M+(EACROSS, T1. flow) 
T2.effort + EACROSS = 
T1.effort 
T1.flow = T2.flow 

Capacitor T1, T2 M+(T1.effort, displacement) 
d/dt(displacement, T1.flow) 

Inertia T1, T2 M+(T1.flow, momentum) 
d/dt(momentum, T1.effort) 

Gyrator Tl, T2, M+(Tl.flow, momentum) 
T3, T4 d/dt(momentum, Tl.effort) 

Tl.flow= T2.flow 

Transformer T1, T2, Tl. flow * T2.flow = M 
T3, T4 Tl.effort * T2.effort = M 

Tl.effort * Tl.flow = power 
T2.effort * T2.flow = power 
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The generic components in the initial test library and 

their definitions are outlined in Table VII. Appendix C 

contains a complete listing of the generic component test 

library definitions. 

Terminal Compatibility 

To aid in the model building process several checks 

for terminal compatibility have been defined. Each of 

these checks provides a means of detecting possible errors 

in the qualitative model structure early in the modeling 

process rather than during the simulation phase. Terminal 

compatibility checking is a feature of the generic modeling 

system that is not available in other qualitative modeling 

systems. 

Compatibility Warnings and Errors 

Same Component Warning. If the user attempts to 

connect a terminal on a component to another terminal on 

the same component, a warning message is issued. The user 

may elect whether to proceed with the connection or cancel 

the attempt. 

Different Domains Error. If the user attempts to 

connect a terminal on a component to a terminal with a 

different domain, an error message is issued. The 

connection attempt is cancelled. 
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Direction Conflict warning. If the user attempts to 

connect a terminal on a component to a terminal with the 

same relative direction, for example, connecting a terminal 

with direction IN to another terminal with direction IN, a 

warning is issued. Although this type of conflict can be 

resolved by cc in some cases, deliberately connecting 

components in this manner is not recommended. 



CHAPTER IV 

GENERIC MODEL BUILDING SYSTEM 

Implementation 

The implementation of concepts described in this work 

has been developed as a series .of programs collectively 

called .the "Generic Model Building System" (GMBS). The 

purpose of the implementation is to allow a user quickly to 

build a qualitative model, translate it to a format 

acceptable to QSIM, then invoke the QSIM package to 

simulate the model, all from a single user interface 

screen. A description of each of the programs that 

comprise GMBS and the options available through the 

graphical user interface of the system is included in this 

chapter. 

Hardware and Software Requirements 

GMBS has been developed on a Sequent Dynix/PTX system, 

using a flavor of Unix that somewhat resembles System v, 

version 3 but has several known inconsistencies. Due to 

the particular instructions used to start the execution of 

the GMBS component programs, GMBS is not currently portable 

to operating systems other than Unix, and is not guaranteed 
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to work properly on Unix systems other than Sequent 

Dynix/PTX. 
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The graphical user interface was developed using X11R5 

and the Motif widget set. An X Windows terminal is 

required for use of the interface. 

Program Descriptions 

A combination of LISP {specifically Austin Kyoto 

Common Lisp AKCL} and C programs was used in the 

development of the Generic Model Building System for 

several reasons. First, because CC and QSIM are both 

written in LISP, using LISP as the language for creating 

and maintaining internal model structures provides a more 

efficient basis for translating the model to cc and 

subsequently simulating it with QSIM. Second, although an 

x Windows interface development system written in LISP is 

currently available, it is not currently portable to 

Dynix/PTX for use with AKCL. As a more convenient and 

familiar language, C was chosen for the X Windows interface 

because of the availability of Intrinsics library and Motif 

widget set. Finally, C provides appropriate commands for 

linking the input and output of executables from different 

programming languages. The major programs that comprise 

the GMBS package are: 
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Program 1: GMstart. This executable is compiled from 

a C source program. Its purpose is to invoke (by forking) 

separate processes for the LISP routines and the X Windows 

interface, load the LISP programs, and establish linkage 

between the standard input and output (stdio/stdin) pairs 

of LISP and X Windows. 

Program 2. Gmbs. This executable is compiled from a 

c source program. Its purpose is to establish the 

X Windows environment and invoke the main X Windows 

interface program. 

Program 3. gmbs. This executable is compiled from a 

c source program. It contains the main X Windows interface 

routines. 

Program 4. clos. This system wide command invokes an 

executable which contains Portable Common Loops (PCL), an 

object-oriented programming system, layered over AKCL. 

Complete instructions for building the GMBS 

executables are included with the source code distribution 

in the file "README.TXT". 

Starting GMBS 

GMBS is invoked by typing GMstart at the Unix prompt. 

This should be done without any window manager running to 

avoid having any window decorations overlap the GMBS 

display. Several lines of text will be displayed while the 



system is loading, then the main window will appear as 

shown in Figure 6. 
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The main window contains five important sections: a 

title area at the top of the screen, a toolbar with nine 
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buttons on the left side, a menu bar with four pulldown 

menus, a large drawing area with grid, and a message text 

area along the bottom of the screen. 

GMBS Pulldown Menus 

The menu bar in the GMBS main window contains pulldown 

menus for four groups of options: Model Options, Component 

Options, Option Options and Help Options. The options 

available on these menus are described in the following 

sections. 

Model Menu 

The Model Menu is a collection of options designed to 

allow the user perform various options at the model level. 

Using the mouse pointer, the user may pull down the model 

menu as shown in Figure 7. · 

Model Menu Options 

New. This option allows the user to create a new 

model with zero components. The user is prompted for a 

model name and the default domain for the model. The model 

display area is cleared and the system is ready for the 

user to begin adding components to the model. 

If a model already exists in the display area and it 

has been modified since the last save operation, the user 
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is prompted for whether to save the existing model before 

creating a .new model. 

Load. This option allows the user to load a model 

from a previously_ saved model definition. The user is 

prompted for a file name from which to .. load the model. The 

model definition is loaded into the system and the model is 

drawn in the display area. 
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Save. This option allows the user to saves a LISP

readable version of the model description to a file. The 

user is prompted for the file name. 

Print. This option allows the user to obtain a 

printed copy of the model description. A temporary file 

containing a GMBS-readable version of the model description 

is created, then spooled to a printer. The user is 

prompted for the printer name. 

Component Menu 

The Component Menu is designed to allow the user to 

perform various options at the component level. The 

appearance of the component menu when it is pulled down is 

shown in Figure 8. 

Component Menu Options 

Select. This option allows the user to select a 

component from the list of components in the current 

library or the list of previously stored composed component 

definitions. The user is prompted for the component 

selection, the component name, and a location at which to 

place the component icon in the model display. 

Modify. This option allows the user to modify a 

component in the current model. Elements of the component 
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that may be modified include the name, terminal positions, 

component variables, and constraints. 

Delete. This option allows the user to remove a 

component from the current model. The component icon and 

any connections drawn to it are removed from the model 

display. The component definition and any connection 
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definitions referencing the component are removed from the 

model definition. 

Save As Composed. This option allows the user to save 

the current model definition as a composed component. The 

user is prompted for a file name in which to store the 

composed component definition. The composed component may 

be reused in future model building and the component will 

appear as a single icon in the model display. 

Options Menu 

The Options Menu is designed to allow the user to 

select which operations to Qe automatically performed on 

the model. Having the appropriate options selected can 

speed up model building significantly since less input is 

required from the user when adding components or 

connections to the model. However, the user may want to 

exercise control over choices made in the model rather than 

allow the system to generate them. 

The appearance of the options menu with the default 

settings is shown in Figure 9. A filled box appears next 

to options that are enabled or set "ON". 

Option Settings 

Snap Lines to Grid. When this option is set, any 

points selected for connection end points are moved to 



intersections on the display area grid. This option is 

available primarily for aesthetic considerations. 
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Domain Checking. When this option is set, the system 

compares the default domain of the model to the domain 

requirements of each component added to the model. Domain 
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values for components, terminals and variables in the sytem 

are generated automatically whenever possible. The user is 

prompted only when a domain selection cannot be resolved. 

Terminal Compatibility. When this option is set, the 

system compares the attributes of each terminal involved 

when a connection request is made. The user is prompted 

for needed information or given appropriate warning or 

error messages. 

Prompt for Component Names. When this option is set, 

the user is prompted for a string to use for the component 

name each time a component is added to the model. When the 

option is disabled, GMBS automatically generates a string 

name for each component. 

Model Completeness. When this option is set, the 

system performs a series of operations to determine the 

completeness status of the model when any of the following 

options are selected: Model Save, Save Component as 

Composed, or Translate to CC/QSIM Format. 

Kirchoff's Laws. When this option is set, the system 

automatically adds appropriate constraints to the model 

when the option Translate to CC/QSIM Format is selected. 

These constraints are designed to ensure that the model 

conforms to Kirchoff's Voltage and Current Laws. 
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Energy Conservation. When this option is set, the 

system automatically adds appropriate constraints to the 

model when the option Convert Model to CC/QSIM Format is 

selected. These constraints are designed to ensure that 

the model obeys the laws of Energy Conservation. 

Toolbar Functions 

At the left side of the GMBS Main Window a series of 

buttons appears. These buttons represent the toolbar 

functions which allow the user to rapidly perform many of 

the more commonly used operations in model building. 

Toolbar Button Descriptions 

Exit 

11: EXIT :11 

Series 
Connection 

•••• 
..c:,...c:i. 

l:IINN1tr•N 

Activating this button initiates a process 

to terminate execution of the model building 

system. If the model display has been 

modified since the last Save operation, the 

user is prompted to save the model before 

exiting. 

Activating this button allows the user to 

create a series connection between two 

components in the model. The user is 

prompted for the two terminals to use as end 

points for the connection. Adding 



Parallel 
Connection 

Examine 
Component 

Rotate 
Component 

additional connections to terminals which 

are already connected is not allowed. 
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Activating this button allows the user to 

insert two parallel junctions then connect 

the junctions to the appropriate components 

in the model. The user is prompted for the 

locations of the junctions and the end point 

terminals to be connected to the junctions. 

Activating this button allows the user to 

obtain information about a particular 

component in the model display. The user is 

prompted for the component. A popup window 

with a description of the selected component 

including name, constraints, terminals, and 

modifications is displayed. 

Activating this button allows the user to 

rotate a particular component in the model 

display 90 degrees clockwise. Rotation of a 

component must be done prior to making any 

connections to that component. 

Translate to Activating this button initiates the process 
CC/QSIM 
Format of translating the current model to a format 

acceptable to cc and/or QSIM. The user is 



Convert cc 
to QSIM 

Create QSIM 
initial 
state 

Execute QSIM 
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prompted for a file name in which to store 

the translated model. 

Activating this button initiates execution 

of CC to convert the cc formatted file to a 

QSIM input format file. The user is 

prompted for a file name in which to store 

the QSIM input. 

Activating this button allows the user to 

select initial values for variables and the 

direction of value change of those 

variables. The user is prompted for a file 

name to store the QSIM initial state. 

Activating this button initiates execution 

of QSIM to simulate the model and display 

the resulting behaviors. The user is 

prompted for the file names of the QSIM 

input and the QSIM initial state. 



CHAPTER V 

SUMMARY AND FUTURE WORK 

Evaluation of Generic Component Representation 

This paper has presented the development of a new 

approach to qualitative model building using a generic 

component repre~entation. The generic representation and 

the accompanying implementation of the Generic Model 

Building System provide several benefits over previously 

existing software. Concentration has been placed on 

improving the modeling phase of qualitative reasoning where 

previously it has been primarily on the simulation phase. 

The ease and efficiency of model building have been 

increased, especially for users unfamiliar with cc or QSIM 

syntax. Automated checking for possible errors during the 

model building stage has been added. 

The generic component representation contains elements 

for including information for constructing component-based 

qualitative models for simulation and for displaying those 

models through a graphical user interface. 

Eight b~sic library components have been developed 

using the generic component representation. These 

components provide a means for constructing models for 
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virtually any physical system consisting of components from 

any combination of the electrical, mechanical, and 

hydraulic domains. 

A prototype generic model building system has been 

developed, linking a LISP-based processing system and an 

X Windows graphical user interface. This prototype can be 

used to build simple models in electrical, mechanical, and 

hydraulic domain combinations. With the user interface one 

can rapidly construct, translate and simulate a model, as 

well as quickly revise the model to improve the results of 

simulation. 

Several simple models were constructed using the 

generic model building system to test the viability of the 

representation and its compatibility for translation to 

CC/QSIM formats. The details of the construction of one 

model used as a test are given in Appendix D. 

Future Work 

Several possible avenues for further research into 

generic component use in qualitative modeling have been 

recognized at this time. The development of components 

suitable for use in the thermodynamic and medical domains 

would greatly expand the types of physical systems that 

could be modeled. The addition of multi-domain terminal 

capabilities, where a single terminal may have 
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qualitatively important variables from two or more domains, 

would allow for creation of integrated components. 

The design of multi-mode or multi-function components, 

those where the value, either symbolic or numeric, of a 

component variable determines which set of constraints will 

be used to model the component's behavior, could be used to 

develop multi-purpose qualitative models. 

Further testing by individuals familiar with the 

concepts of qualitative simulation, component connections 

modeling, CC and QSIM can be used to provide feedback for 

further enhancements of the system. 

Also important to making the generic model building 

system a viable method for modeling non-trivial physical 

systems is the development of a larger set of library 

components and a set of frequently used composed component 

model definitions. This will allow even faster model 

building because the user will be able to draw from the 

library of predefined components rather than constructing 

large models strictly from library primitives. 

Implementing various operating system dependent 

mechanisms to provide portability to other hardware and 

software can lead to the development of a distributable 

package for qualitative modeling. 
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APPENDIX A 

STEAM PROPULSION SYSTEM 

OSIM Input 

;; Qualitative Model Definition 
I I 

(define-QDE steam-plant 

; Documentation 
(text "Steam plant with two major components") 

(quantity-spaces 
( SV ( 0 V* inf) 
(EB ( 0 E* inf) 
(TIN ( 0 T* inf) 
( TOUT ( 0 TOUT* inf} 
(TSDIFF (0 TS* inf} 
(WIN ( 0 W* inf } 
(WDIFF (0 WD* inf} 
{QSP (0 Q* inf) 
(SHTIME (0 ST* inf) 

(constraints 
( (M- WDIFF WIN) (WD* W*)) 

"Steam Velocity") 
"Boiler Energy") 

"SH Input Temp") 
11 SH Output Temp"} 

"SH temp Difference"} 
"Water Input Temp") 
"Temp Diff in Boiler") 
"Steam Produced") 
"Time in SH"} 

( (M+ sv QSP} (0 0) (V* Q*) (inf inf)) 
( (M- QSP WDIFF) ( 0 inf) ( Q* WD*) ) 
( (ADD WDIFF WIN TIN) ) 
( (ADD TIN TSDIFF TOUT) ) 
{{M- SV SHTIME) (inf 0) (V* ST*) (0 inf)) 
((M+ SHTIME TSDIFF) (ST* TS*) (0 0) (inf inf)) 
({constant EB)) ; energy supplied by the boiler 

; is a constant 
((constant TIN)) ; temperature of steam going in 

; is a constant T* = 212 

(layout (WIN TIN WDIFF) 
{QSP SV SHTIME) 
(TOUT nil nil) 
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(other (qspace-hierarchy ({WIN TIN TOUT) -> (*seq o W* 
T* TOUT* inf) ) ) 

) ) 

(unreachable-values (SV inf) (QSP inf) (WDIFF O) 
(TIN inf) (TOUT inf)) 

OSIM Initial State 

I I 

11 Initial State Definition 
I I 

(defun warmer-water () 
(let ((initial-state 

(make-new-state 
:from-qde steam-plant 
:assert-values 

) 
) 

1 ( (WIN (W* inc) ) 
(TIN (T* std)) 
(TOUT (TOUT* nil)) 
(QSP {Q* nil)) 
(SHTIME (ST* nil)) 
(WDIFF (WD* nil)) 
(TSDIFF (TS* nil)) 
(SV (V* nil)) 
(EB (E* std))) 

:text "Increase the water intake temperature" 

11 execute the simulation for this initial state 
11 and display the results 
(qsim initial-state) 
(qsim-display initial-state))} 



OSIM Sample Output 

Structure: Steam plant with two major components. 
Initialization: Increase the water intake temperature (S-0) 
Behavior 1 oft: (S-0 S-1 S-3). 
Final state: (OF QUIESCENT COMPLETE), (NIL), NIL. 

1 ......a--8 ... 

· : ':.. :. INF.:. . . ·•· ~-.:. - .:. •. :. . - • . --- . . - ·<J:NF . 

t . 

I 

TO 

. t . 

Wate~ Input Temp 

t . 

I 

TO 

. t . 

Steam Produced 

J. • 

I 

TO 

• J. • 

SH Output Temp 

., W-0 

- w• 

I 

Tl 

0 

- INF 

.. Q-0 

- Q* 

I 

Tl 

0 

- INF 

- TOUT* 

.. T0-0 

I 
Tl 

0 

o , , , , , o • , , • • • T* 

I 

TO 

SH Input Temp 

t . 

I 
TO 

. t . 

Steam Velocity 

I 

Tl 

0 

- INF 

., SV-0 

- v• 

I 

Tl 

0 
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CC Input 

APPENDIX B 

ELECTRICAL CIRCUIT EXAMPLE 

(define-component Resistor electrical 
"Resistor: Ohm's law" 
(terminal-variables 

(component-variables 

(tl (vl voltage) 
( i current)) 
(t2 (v2 voltage) 
( i2 current)) 
(v voltage) 
(r resistance 
(quantity-space (0 R* inf)))) 

(mode-variables (mode working burnout)) 
(constraints ((add v v2 vl)) 

( (mul t i r v) ) 
( (minus i i2)) 
((mode working) -> ((constant r R*))) 
((mode burnout) -> ((constant r inf))))) 

(define-component Battery electrical 
"Battery: constant voltage source" 
(terminal-variables (tl (vl voltage) 

( i current)) 
(t2 (v2 voltage) 
(i2 current)) 

(component-variables (v voltage 
(quantity-space (0 vbat inf)))) 

(constraints ((add v v2 vl)) 
( (minus i i2)) 
((constant v vbat)))) 

(define-component Capacitor electrical 
"Capacitor: container for charge" 

(terminal-variables (tl (vl voltage) 
( i current)) 
(t2 (v2 voltage) 
(i2 current))) 
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(component-variables (v voltage) 
(c capacitance 
(quantity-space (0 C* inf))) 
(q charge)) 

(constraints ((add v v2 vl)) 
((multvcq)) 
( (d/dt q i)) 
( (minus i i2)) 
((constant c C*)))) 

(define-component Ground electrical 
"Ground: constant voltage (current sink)" 
(terminal-variables (t (v voltage) 

(i current))) 
(constraints ((constant v 0)) 

((constant i 0)))) 

(define-component Switch electrical 
"Switch: externally opened or closed" 
(mode-variables (mode open closed)) 
(terminal-variables (tl (vl voltage) 

(il current)) 
(t2 (v2 voltage) 
(i current))) 

(component-variables (v voltage)) 
(constraints ((add v v2 vl)) 

( (minus i i1) ) 
( (mode open) - > ( ( constant i O) ) ) 
( (mode closed) - > ( ( constant v O) ) ) ) ) 

(define-component RC electrical 
"Resistor-Capacitor Circuit" 
(components (B battery) 

(R resistor) 
(C capacitor) 
(S switch) 
(G ground)) 

(connections (n1 (R t1) 
(n2 (R t2) 
(n3 (C t2) 
(n4 (B t1) 

(S t1}} 
( C t1) ) 
(B t2) (G t) } 
( S t2} } ) ) 
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cc Output 

(make-QDE 
:name 

RC_UNIQUE_WITH_S.MODE=CLOSED_WITH_R.MODE=WORKING 

:qspaces 

:constraints 

( (TIME to inf) 
(B. V O vbat inf) 
(R. v minf O inf) 
(R.R Or* inf) 
(C. v minf O inf) 
(C. C O c* inf) 
(C.Q minf O inf} 
(S. v minf o inf) 

(Nl.EFFORT ELECTRICAL 
minf 0-inf) 

(R. I minf O inf) 
(S.Il minf O inf) 
(N2.EFFORT ELECTRICAL 

minf 0-inf) 
(R.I2 minf O inf) 
(C. I minf O inf) 
(N3.EFFORT ELECTRICAL 

minf 0-inf) 
(C.I2 minf O inf) 
(B.I2 minf O inf) 
(G. I minf O inf) 
(N4.EFFORT ELECTRICAL 

minf 0-inf) 
(B. I minf O inf) 
(S. I minf O inf) 
CS.MODE open 

closed) 
CR.MODE working 

burnout)) 

((CONSTANT R.MODE WORKING) 
(CONSTANT R.R R*) 
(CONSTANTS.MODE CLOSED) 
(CONSTANT S. V 0) 
(ADD B.V N3.EFFORT ELECTRICAL 

N4.EFFORT ELECTRICAL) 
{MINUS B. I -B. I2) 
(CONSTANT B.V VBAT) 
(ADD R.V N2.EFFORT_ELECTRICAL 

Nl.EFFORT ELECTRICAL) 
{MULT R. I R. R R. V) 
(MINUS R. I R. I2) 
(ADD C.V N3.EFFORT ELECTRICAL 

N2.EFFORT_ELECTRICAL) 
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(MULT C.V C.C C.Q) 
(D/DT C.Q C.I) 
(MINUS C.I C.I2) 
(CONSTANT C.C C*) 
(ADD S.V N4.EFFORT_ELECTRICAL 

Nl.EFFORT ELECTRICAL) 
(MINUS S. I -S. Il) 
(CONSTANT N3.EFFORT ELECTRICAL 0) 
(CONSTANT G. I 0) -
(MINUS R.I S.Il) 
(MINUS R. I2 C. I) 
(SUM-ZERO C.I2 B.I2 G.I) 
(MINUS B.I S.I)) 

:independent NIL 

:history NIL 

:transitions NIL 

:print-names ( (TIME NIL NIL) 
(B. V II (RC B V)" B) 
(R. V "(RC R V) 11 R) 
(R.R "(RC R R) II R) 
(C. V II (RC CV) II C) 
( C. C II (RC C C) II C) 
(C.Q "(RC C Q) II C) 
(S. V 11 (RC S V) 11 s.) 
(Nl.EFFORT ELECTRICAL 
(R. I II (RC R I) II R) 
(S.Il 11 ( RC S I 1 ) 11 S . ) 
(N2.EFFORT ELECTRICAL 
(R.I2 "(RC-R I2) " R) 
(C.I II (RC C I) II C) 
(N3.EFFORT ELECTRICAL 
(C.I2 "(RC-C I2)" C) 
(B.I2 " ( RC B I 2) " B) 
(G. I "(RC GI)" G) 

II (RC 

II (RC 

"(RC 

R Vl)" 

R V2)" 

C V2)" 

N) 

N) 

N) 

(N4.EFFORT ELECTRICAL II (RC B Vl) II N) 

:text 

:layout 

:other 

(B.I II ( RC B I ) II B} 
(S.I 11 (RC S I)" s.) 
(S .MODE NIL NIL) 
(R.MODE NIL NIL)) 

() 

() 

((DERIVED-ENERGY-CONSTRAINT 
:NO-ENERGY-CONSTRAINT) 

(IGNORE-QDIRS) 
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(NO-NEW-LANDMARKS) 
(CC-INFO 

. (RC (impl UNIQUE))) 
(CC-MODE-ASSUMPTIONS (S.MODE CLOSED) 

(R.MODE WORKING))) 
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I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

APPENDIX C 

GENERIC COMPONENT LIBRARY LISTING 

gendefs.lsp 

GENERIC COMPONENT BASIC LIBRARY 

Variables are listed in the form (name (domain type)) 

Valid domain choices are: 

Valid types are: 

unknown 
electrical 
mechanical 
hydraulic 

effort 
flow 
displacement 
momentum 
power 
constant, no units, no I I I 

quantity space 
I I I 

(library-primitive effort-source "effort-source" 
,, association list pair for component variables 
,, the list of variable specifications is also an 
,, association list 
I I 

,, key= "c-variables" 
,, datum= sequence of variable list forms 
I I 

(c-variables 
) 

(SE unknown effort) 

,, association list pair for terminals 
I I 

,, key= "terminals" 
,, datum= sequence of terminal list forms 
I I 

(terminals (Tl 180 TERMINAL-IN (E unknown effort) 
(F unknown flow)) 

(T2 0 TERMINAL-OUT (E unknown effort) 
(F unknown flow)) 
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) 

11 association list pair for component constraints 
11 key= "constraints" 
11 datum= sequence of constraint list forms 
I I 

{constraints (constant SE) 
{ADD Tl.ESE T2.E) 

11 association list pair for component restrictions 
11 key= "constraints" 
11 datum= sequence of restrictions list forms 
I I 

{restrictions 

) 

{domain-eq Tl T2) 
{ >= SE O) 

(bitmap "effort.bit") 

{library-primitive flow-source "flow,-source" 
11 association list pair for component variables 
;; the list of variable specifications is also an 
;; association list 
I I 

Cc-variables {SF unknown flow) 
) 
11 association list pair for terminals 
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11 each terminal specification is also an association 
I I list 
I I 

(terminals 

) 

(Tl 180 TERMINAL-IN (E unknown effort) 
{F unknown flow)) 

{T2 0 TERMINAL-OUT {E unknown effort) 
(F unknown flow)) 

11 association list pair for component constraints 
11 a general list of lists is used for the constraints 
I I 

(constraints {constant SF) 
{ADD Tl.F SF T2.F) 

) 
{restrictions {domain-eq Tl T2) 

{>= SF 0) 
) 
{bitmap "flow.bit") 

) 
(library-primitive resistor "resistor" 

Cc-variables {EACROSS unknown effort) 

) 
(terminals {Tl 180 TERMINAL-IN (E unknown effort) 

(F unknown flow)) 
(T2 0 TERMINAL-OUT (E unknown effort) 

(F unknown flow)) 



) 

(constraints 

) 

(M+ EACROSS Tl.F) 
(ADD T2.E EACROSS Tl.E) 
(EQUAL Tl.F T2.F) 

(restrictions (domain-eq Tl T2) 
( >= EACROSS O) 

) 

(bitmap "resistor.bit") 
) 
(library-primitive capacitor 

(c-variables (Q unknown 
"capacitor" 
displacement) 

) 

) 
(terminals 

) 

(constraints 

) 

(Tl 

(T2 

180 TERMINAL-IN (E unknown effort) 
(F unknown flow)) 

0 TERMINAL-OUT (E unknown effort) 
(F unknown flow)) 

(M+ Tl.E Q) 
(d/dt Q Tl.F) 

(restrictions (domain-eq Tl T2) 
) 

(bitmap "capacitor.bit") 

(library-primitive inertia "inertia" 
(c-variables (P unknown momentum) 
) 

(terminals (Tl 180 TERMINAL-IN (E unknown effort) 

) 

(constraints 

) 

(F unknown flow)) 
(T2 0 TERMINAL-OUT (E unknown effort) 

(F unknown flow)) 

(M+ Tl. F. P) 
(d/dt P Tl.E) 

(bitmap "inertia.bit") 
) 

(library-primitive gyrator "gyrator" 
(c-variables (P unknown momentum) 
) 
(terminals (Tl 150 TERMINAL-IN (E unknown effort) 

(F unknown flow)) 
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(T2 210 TERMINAL-OUT (E unknown effort) 
(F unknown flow)) 

(T3 30 TERMINAL-IN (E unknown effort) 
(F unknown flow)) 

(T4 330 TERMINAL-OUT (E unknown effort) 
(F unknown flow)) 



) 

(constraints (M+ Tl.F P) 

) 

(d/dt P Tl. E) 
(EQUAL Tl.F T2.F) 
(EQUAL Tl.E T2.E) 

(bitmap "gyrator.bit") 
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(library-primitive transformer "transformer" 
Cc-variables (P unknown momentum) 

(TPOWER unknown power) 

) 

) 
(terminals (Tl 150 TERMINAL-IN (E unknown effort) 

) 

(F unknown flow)) 
(T2 210 TERMINAL-OUT (E unknown effort) 

(F unknown flow)) 
(T3 30 TERMINAL-IN (E unknown effort) 

. (F unknown flow)) 
(T4 330 TERMINAL-OUT (E unknown effort) 

(F unknown flow)) 

(constraints (MOLT M Tl.F T2.F) 
(MOLT M T2.E Tl.E) 
(MOLT Tl.E Tl.F TPOWER) 
(MULT T2.E T2.F TPOWER) 

) 

(bitmap "transformer.bit") 

(library-primitive parallel-junction "parallel-junction" 
Cc-variables (F unknown flow) 

) 

) 
(terminals 

) 

(E unknown effort) 

(Tl 180 TERMINAL-NONE (E unknown effort) 
(F unknown flow)) 

(T2 0 TERMINAL-NONE (E unknown effort) 
(F unknown flow)) 

(T3 90 TERMINAL-NONE (E unknown effort) 
(F unknown flow)) 

(T4 270 TERMINAL-NONE (E unknown effort) 
(F unknown flow)) 

(constraints (EQ Tl.F T2.F T3.F T4.F) 
(ADD Tl.E T2.E T3.E T4.E E) 
(EQ E 0) 



APPENDIX D 

CONSTRUCTING AN EXAMPLE MODEL 

Physical System Description 

In the mechanical domain, a commonly recognized 

physical system is the drive train of an automobile. The 

system involves the engine, a power source, and a series of 

linkages from the engine through the driveshaft, 

differential, and axle to the wheels. With appropriate 

selections for initial states, a qualitative model of this 

system can be used to answer questions such as "If the 

friction on the tires is decreased, what will happen to the 

torque on the driveshaft?" and "What effects will 

increasing the rotational speed of the driveshaft have on 

the differential?". 

Constructing the Model with GMBS 

The first step in constructing the model using GMBS is 

to select NEW from the Model Menu. When the text prompt 

for model name appears, the name "Drive-Train-Model" is 

entered. When the selection list prompt for default model 

domain appears, the domain "mechanical" is selected. The 
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display area is cleared and the model building system is 

ready for components to be added to the model. 
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Using the Select/Library option from the Component 

Menu, the library component· "effort-source" is selected to 

represent the engine. The component icon is placed near 

the left side of the display area at position (1, 4}. 

Next, the library comportent "inertia" is selected to 

represent the turning of- the driveshaft and is placed at 

position (3, 3}. There is also a resistance applied to the 

driveshaft so a "resistor" component is selected and placed 

at position (4, 3}. Using the Series toolbar button, the 

inertia and the resistor are connected in series. 

In a similar manner, a "transformer" component is 

selected to represent the converting effects of the 

differential, two more "transformer" components are 

selected to represent the conversion from the axle to the 

rotation of the wheels. Each wheel is then represented by 

a series combination of "resistor" and "inertia". 

Using the Parallel toolbar button, two 

"parallel-junction" components are added to represent the 

parallel combination of the two wheel sections. The 

effects of stored energy from road elevation and resistance 

from air and friction are represented by adding a series 

combination of a "capacitor" component, a "resistor" 

component, and an "inertia" component in parallel with the 
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wheel sections. The display of the completed model appears 

as shown in Figure 10. 

Generic Model Building System 

Model: drive-train 
Model Component 

. . . . . . . . . . 
······ ······1······:······1······1······1······:······1······1······1······1······1······1·· 
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: : : : : : : : : 
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Figure 10. Drive Train Model Display 
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