
SPECIALIZED PARALLEL STRUCTURES FOR VLSI

IMPLEMENTATION OF THE HOUGH

TRANSFORM FOR ARBITRARY .

SHAPE DETECTION

By

OK SAM CHAE
//

Bachelor of Science
lnha University

lncheon, Korea
1977

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1982

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of

DOCTOR OF PHILOSOPHY
July, 1986

---rn~sts
\981cD
~43as
~.:t.

SPECIALIZED PARALLEL STRUCTURES FOR VLSI

IMPLEMENTATION OF THE HOUGH

TRANSFORM FOR ARBITRARY

SHAPE DETECTION

Thesis Approved:

ThelsAd\liS9r

~(p~
01--
~ ,~

lln~ 2? j)~
' Dean of the Graduate College

i i
1263154 1

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my thesis adviser, Louis

Johnson, for his guidance and friendship throughout my program. I also greatly

appreciate the time and interest offered by my doctoral committee members, Dr.

Rao Yarlagadda, Dr. John Chandler, and Dr. David Soldan.

I would like to express my special gratitude to my wife and parents for their

encouragement, support, and sacrifices which have been a source of motivation.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

Page

1

1 .1 Motivation 1
1 .2 Hough Transform for Analytic Shape Detection . . 4
1.3 Hough Transform for Nonanalytic Shape Detection . 11
1.4 Hardware Implementation of the Hough Transform . 13
1.5 Consideration for VLSI Implementation of

the Hough Transform 14
1.6 Convolution and Hough Transform • 18

II. NON-ANALYTIC SHAPE DETECTION • . . . 25

2.1 Hough Transform with No Gradient •
Direction Information • . • . . • 25

2.2 Hough Transform with Gradient Direction Information . . 29
2.3 Considerations for Parallel Implementation 32

2.3.1 Sequential Implementation • • • 35
2.3.2 Parallel Implementation . . . • • . . . • . 35

2.4 Performance Analysis of Arbitrary Shap Detection
Algorithms • • . • . • 39

Ill. REFORMULATION FOR HARDWARE IMPLEMENTATION 56

3.1 Reformulation • • ._ . . . • . . . • 57
3.1 .1 Model Generation •. . . • 59
3.1.2 Mapping . • . . • . • • . . . • 60
3.1.3 Special Property for Parallel Implementation • 63

3.2 Orientation Determination by the Hough Transform . 66

VI. HARDWARE IMPLEMENTATION .. . • . . 75

4.1 Existing Parallel Structure
4.1 .1 Computation . . •
4.1.2 Performance . • . .

. . • • 75
. . • . 76

. 79
4.2 Mesh Connected Structure

4.2.1 Computation • •
4.2.2 Hardware Implementation . . • • .
4.2.3 Performance

4.3 Linearly Connected Structure . .
4.3.1 Computation • .
4.3.2 Hardware Implementation
4.3.3 Performance .

iv

. . • • 80
87
88
93

. 96
• . • . • . 101

. . . . 109
. 110

Chapter

V. CONCLUSION AND SUGGESTIONS •

5.1 Summary . . . • • . . . • . .
5.2 Suggestions for Further Study . . • . .

5.2.1 Necessary Work for Actual
VLSI Implementation •

5.2.2 Suggestions . . • . .

SELECTED BIBILIOGRAPHY . • . . •...

v

Page

113
114

114
115

118

LIST OF TABLES

Table

I. Number of Computations . . •

II. Number of Memory Accesses .

Ill. Effect of the Number of Model Boundary Points on

Page

. • . . 36

• • • • 36

Peak Detection • • 54

IV. Polar Coordinate System Representation of the .
Reference Table for the Model in Figure 22 60

V. Rectangular Coordinate System Representation of the
Reference Table for the Model in Figure 22

VI. Use of the Mask Selection Signal • • . . • • . • . . .

vi

. 102

104

LIST OF FIGURES

Figure

1 . Illustration of the Hough Transform .

2. The Normal Parameters for a Line

3. Contents of Accumulator Array . • •

4. Systolic Convolution Array and Cell Definition

5. Procedure of Computing a Partial Sum in the First
Row of the Convolution Array • • • • • . • • •

6. Block Diagram of a 3 by 3 Convolution Array • • •

7. Given Shape S

8. Rotated Model •

9. Traces of the Rotated Model at All Edge Points

1 o. Relationship between the Gradient Direction and the Entry
of the R Table for a Model Point x • , • • • • • • • • . •

11. Effect of Error in the Gradient Direction and Radius
on Circle Detection. . . • • • • • . . . • • • • •

12. Effect of Multitude Edge Pixels on the Hough Transform

13. Digitized Picture

14. Edge Pictures • •

15. Contents of Accumulator Arrays for the Edge Picture
Thresholded at 11 O • • • • • • • • • • • • • • •

16. Contents of Accumulator Arrays for the Edge Picture
Thresholded at 51 . • • • . . • • • • .

17. Effect of the Error in the HWGD

18. Peak versus Orientation

19. Results Obtained by the HWGD with Error Compensation

vii

.

Page

5

7

9

. . . . 20

20

. . . . 21

27

. . . . 27

27

. . . . 31 .

31

. . . . 42

43

43

44

44

48

50

51

Figure - Page

20. Plier Model Superimposed upon a Gray-scale Picture · 52

21 . Connector Model Superimposed upon a Gray-scale Picture • 54

22. A Model with a Reference Point . . • 60

23. Trace of a Model Point in the Image Space

24. Boundary Points used to Encode R Table .

25. Accumulator Computed for Selected Segments

26. Detected Edge Segments Superimposed upon
a Gray-scale Picture ••

27. Overall Structure of the MCS •

28. Symbol Definition for the MCS

29. A Processing Element with Mask Bit Registers

30. An Eight Bit Asyncronous Ripple Counter . . • .

31. Arrangement of the Edge Picture in the MCS for
the Model Point (-104,-128)•.•..

32. A Building Block of the MCMCS •
33. Block Diagram of the LCS . . •

34. A Processing Element for the LCS •

35. An Example for the LCS • • . •

.

36. Arrangement of the Edge Picture and Control Signals
necessary for the Each Model Point . • . • • . .

65

70

71

73

82

83

85

86

89

91

97

98

102

105

37. Arrangement of the data and the Contents of Accumulator in
the LCS after Each Count-up Operation . . • . . • . • . 107

38. Results Obtained by the Computer Simulation of the LCS . . . 108

viii

CHAPTER I

INTRODUCTION

1 .1 Motivation

With the rapid progress of computer technology, inexpensive and powerful

industrial computer vision systems are coming into the market every year. Many

of these vision systems are equipped with a coprocessor with multiple

processors. The coprocessors in these systems can compute low leve·1

computer vision algorithms, such as Sobel edge detection, thinning, and

thresholding in real time. However, the capability of the coprocessor is limited to

a small number of low level processing algorithms dealing with local

information.

The algorithms like edge smoothing, curve fitting, classification, and

segmentation are sequential in nature and can not take advantage of the

coprocessors in current computer vision systems. Algorithms of this nature are

processed in the host computer. The slow speed of such algorithms in a

sequential host computer is not practical for many useful applications such as

bin picking, inspection, identification, etc.

A high speed host computer can increase the processing speed

somewhat, but the high cost of the system will limit its use in industrial vision

systems. One way of increasing the speed of the systems is by making use of

multiple special purpose functional units. In general, a multiple special purpose

functional unit is designed for one or a few algorithms with near 100 percent

hardware efficiency; it can also compute a given algorithm at lightning speed.

2

Advanced VLSI technology makes simple and low cost special purpose systems

possible for many computer vision algorithms. If an algorithm is general enough

so that it can be used for a large number ·of application areas, the special

purpose system for the algorithm will ·be very valuable for industrial computer

vision systems.

One such algorithm is the Hough transform, specifically the Hough

transform designed for arbitrary shape detection. The Hough transform for

arbitrary shape detection is a model based algorithm which can detect the

boundary of known objects in the input image. This type of model based

algorithm is especially useful for industrial applications where objects to appear

in the scene are known beforehand. Many other model based algorithms have

been developed for industrial parts recognition [1]-[3], but they have not been

popular due to their slow processing speed. Those algorithms deal with high

level descriptions of boundary edges obtained through a series of operations

including edge detection, edge thinning, edge segmentation, curve fitting, etc.

Most of these operations are computed sequentially.

Although the Hough transform requires a large amount of computation as

do other model based algorithms, it has two distinctive advantages over them.

First, the Hough transform makes use of raw edge data produced by

thresholding the enhanced image by an edge operator (Sobel or gradient). In

the Hough transform, a shape is represented by a set of parameters. For

example, a circle is represented by the center and radius. The Hough transform

transforms raw edge data directly into the parameter space. The problem of

finding objects is then reduced to finding maxima in the parameter space. In

other words, the Hough transform produces necessary information for object

detection directly from the raw edge data produced by coprocessors without

going through other expensive processing steps. Second, the Hough transform

3

·has a very suitable structure for parallel implementation. It consists of a few

simple operations for each input edge pixel so that it can be implemented in a

parallel machine which consists of a large number of simple processing

elements.

Though the Hough transform consists of a few simple operations, it has two

characteristics which make the algorithm less effective for parallel

implementation. First, the Hough transform is an 1/0 bound problem: the number

of 1/0 operations is larger than the number of computations in Hough transform

computation. Second, the Hough transform is a global algorithm where the

operands for basic operations are arbitrarily distributed in the memory. In

general, the performance of a global and 1/0 bound algorithm in highly parallel

structures is limited by the 1/0 bandwidth of the system. Such an algorithm is

less effective for VLSI implementation where the number of 1/0 operations is the

major factor determining the performance of the system.

The main objective of this research is investigating efficient VLSI

implementation of the Hough transform, specifically the Hough transform for

arbitrary shape detection. To design fast,inexpensive,and compact special

purpose functional units for industrial applications (partially hidden object

detection, bin picking, and robotics control), the following studies have been

conducted. First, existing arbitrary shape detection algorithms will be analyzed

in terms of their performance in detecting industrial parts in a controlled

environment and their efficiency in a parallel machine. Based on this analysis,

an algorithm will be selected for parallel implementation. Second, problems

involved in the VLSI implementation of the selected Hough transform will be

identified and the Hough transform will be reformulated for VLSI implementation.

Third, two VLSI structures will be designed specifically for the reformulated

algorithm and analyzed in terms of their performance and ease of

4

implementation. Functional simulation of these structures for this algorithm will

also be given. Finally, an algorithm will be proposed for detecting objects in an

arbitrary orientation by taking advantage of these structures. Some test results

of this algorithm for industrial scenes will be discussed.

1.2 Hough Transform for Analytic Shape Detection

The Hough transform was first introduced by Hough [4] in 1962. It replaces

the original problem of finding colinear points in an image space with the

simpler task of finding intersecting lines in a parameter space. Hough uses the

slope-intercept parameters to represent a line. Thus, the line passing through

three image points in Figure 1 a is represented by

y=ax+b (1.1)

Hough suggests the following method to determine a set of parameters

representing a line in the image space. First, rewrite the equation (1.1) as

b =-xa + y (1.2)

Second, draw a line in the parameter space by using the equation (1 .2) for every

image point on the line. This procedure is illustrated in Figure 1 b for the line

consisting of three image points. Third, find the point where all lines meet

together in the parameter space. The location of the intersecting point in the

parameter space determines the line. For example, if the peak is located at

(ai,bi) in the parameter space, the equation characterizing the line in the image

space is

y = aix +bi

To find a line in an actual image, a gray-scale image is transformed into an

edge representation using edge operators, such as Sobel, Hueckel, and

gradient operator. The set of extracted edge points is usually referred to as

"features" and an edge point is called the "feature point". All edge points in the

5

y

x
a) Three Edge Points in the Image Space.

b) Three Lines in the Parameter Space

Figure 1. Illustration of the Hough Transform

6

image space (or the picture space) are transformed into points in the parameter

space according to the equation (1.2). The parameter space is represented by a

two dimensional accumulator array in the digital computer. Each element of the

array represents a parameter point and holds the number of lines passing

through it. The parameters characterizing a line are determined by searching

the maximum value in the accumulator. If the edge pixels in an image are on a

line, all lines drawn for these edge pixels should intersect at one point in the

parameter space. However, some lines may not due to noise in the image.

Thus, the location of the accumulator cell containing the maximum value will

characterize the line with the best match.

Since its introduction, the Hough transform has attracted a lot of attention

from many researchers. It has been modified and extended to detect not only

analytic but also nonanalytic shapes. Duda and Hart [5] modified the algorithm

by Hough to eliminate the problem of sensitivity to the choice of coordinate axes

in the picture plane. In the slope-intersect representation used by Hough, both

the slope and intercept are unbounded. They can be arbitrarily large for the line

approximately parallel to the y axis, so that the parameter space can become

arbitrarily large. To avoid this problem, Duda and Hart represent a line by the

angle Q of its normal and its algebraic distance P from the origin as shown in

Figure 2. Thus, a line passing through an image point (xi.Yi) is defined by a

sinusoidal curve in the parameter space.

P=Xi cos Q + Yi sin Q

The curves corresponding to colinear points intersect each other at one point.

In the computation of the algorithm, a feature point is transformed into the

parameter space by incrementing all the accumulator cells on the ·curve for the

feature point. If P and Qare quantized with N steps and the size of the image is

N by N, the number of computations necessary for the Hough transform is

7

proportional to CN3, where CN2 is the number of edge pixels in the input image.

By quantizing P and Q using a small number of steps, some speedup can be

achieved, but the performance of the algorithm is sacrificed for the speedup.

The work of Duda and Hart is further extended by O'Gorman and Clews [6].

They use the direction of the gradient to determine the value of Q that is most

likely to be the intersecting point in the parameter space. The direction of the

local gradient is perpendicular to the picture edge. Thus, if the gradient

direction of an edge point is G, the edge point (Xi.Yi) is transformed into a point

(P ,G) in the Q-P plane. The relationship between P and G is given by

P= Xi cosG +Yi sin G

The number of computations for this algorithm is proportional to N2 unless only

edge pixels are fed into the system in which case the amount of computations is

proportional to the number of edge pixels. However, feeding only edge points

and their gradient direction to the system requires a significant amount of

overhead to convert an input image into a list of edge elements and is usually

not justifiable.

Figure 2. The Normal Parameters for a Line

8

Duda and Hart' extend the Hough transform to circle detection by

expressing a circle with the equation:

r2 = (x-a)2 + (y-b)2

where r is the radius and (a,b) is the center of the circle. For a feature point

(xi.Yi), there is a set Cx of circles passing_ through this feature point. These

circles are defined by parameters a, b, and r satisfying the following equation:

(xi - a)2 + (Yi - b)2 = r2

Kimme and Ballard [7] extend this idea for approximate circle and circular

detection. They achieved significant savings in computations by introducing two

new ideas to the work of Duda and Hart. First, they generate the locus of

possible centers, Cx for each feature point by computing the digitization of (recs

e, rsin 0) for a fixed r, while q increases in increments l'.l0. Using this

quantization method the number of computations for each feature point is

reduced to 27t/l'.l0. Figure 3b shows a locus of circles of the member of Cx for

r=ro and il8=90°. To reduce the number of computations further, they use the

direction of the gradient to select those portions of Cx that are likely to be circle

centers. In the ideal case, the gradient at the boundary of the circle points to the

center of the circle within a range of angle il0. Theoretically, the number of

computations can be reduced by a factor of 27t/l'.l8. Figure 3c shows the effect of

using the directions of the gradient. However, the quantization error and the

error in the gradient direction will affect the result of this procedure.

The Hough transform for analytic shape detection has been studied by

many other researchers including Ballard [8] and Shapiro [9]. Ballard

generalizes the Hough transform for both analytic and nonanalytic shape

detection as will be discussed in a later section of this thesis. Shapiro studies

extensively the performance of the Hough transform for the detection of curves in

noisy images. The analytic work directed toward the understanding of Hough

a) Model

~·
r.:"I"'.

*Dark boxes indicates location of edge points.

b) Contents of an accumulator with no
gradient direction information

• I.I "

'

c) Contents of an accumulator with gradient direction.
Angle increment = 90.

Figure 3. Contents of Accumulator Array

9

10

transform has been pursued by Shapiro [,10)-[12), Brown [13) [14), Thrift [15],

and Stockman [16]. Shapiro and Brown study the effect of various forms of

noise on the behavior of the Hough tran.sform. Stockman gives the relationship

between the Hough transform and the template matching method and shows

that the Hough transform is an efficient form of the template matching method.

Thrieft also shows that the Hough transform is optimal in the mean-square-error

sense when the picture is the sum of the signal and statistically independent

noise. To reduce the chance of finding false peaks in the parameter space,

Brown [17] proposes the complementary Hough transfrom. This algorithm uses

negative votes against parameters with which the feature is inconsistent, as well

as positive votes for parameters with which the feature is consistent.

The Hough transform for analytic shape detection has been used for many

different application areas including industrial part inspection, biomedical data

processing, and target detection. Perkins and Binford [18] employ the line

detection algorithm using gradient direction information to find corners on indoor

scenes. Cowart [19] and Falconer [20) use the line detection algorithm to detect

moving targets. Falconer computes the Hough transform of each frame of video

imagery and adds successive transforms together, while Cowart computes the

Hough transform of the generated image by third order frame-to-frame

differencing. Since moving targets, in time, produce a cluster in the parameter

space, the target can be detected by finding the cluster. Dyer [21] makes use of

the Hough transform to inspect the scaling accuracy of needle-type instrument

gauges. By computing the Hough transform of the difference image between the

image without signal and the image with signal, the relative angular

displacements of the needles are determined to measure the scaling accuracy

of the gauge.

One of the popular application areas of the circular segment detection

11

algorithms is radiography. Kimme [7] uses a circle detection technique to detect

tumors in the chest radiograghs· and Wechsler [22] develops a method based on

parabolic segments to detect ribs in the chest radiographs. Another application

of the circle detection transform method is given by Bastian [23] for the

recognition of bubble chamber photographs.

1.3 Hough Transform for Nonanalytic Shape Detection

Based on the fact that the Hough transform is an efficient form of template

matching, Merlin and Farber [24] propose the nonanalytic shape detection

algorithm. The algorithm consists of four steps. First, choose an arbitrary point A

on the curve as a reference point. Second, rotate the given curve 180° with

respect to the reference point. Third, trace the rotated curve with A on each of

the edge pixels and add the value of the image point to all accumulator cells on

the trace. Fourth, find the maxima in the accumulator.

This method can be interpreted as a form of the binary convolution of the

shape template T(x), where edge pixels are unity and others are zero with the

corresponding image E(x).

A(x) = T(x)*E(x)

The transformation of an N by N image to find an object boundary

consisting of T points requires TN2 operations. This algorithm has a structure

suitable for a highly parallel computer structure. However, there are many

unsolved problems when trying to implement the algorithm for industrial

applications which require inexpensive and fast systems. These problems and

their solutions will be the main subject of this thesis.

One drawback of the Merlin-Farber technique is that more than one

instance of the desired shape may be detected in a noisy image due to

coincidental pixel arrangements. We will study this problem in chapter II to

12

investigate the usefulness of the algorithm.

The idea of Merlin and Farber is generalized by Ballard [8] by using the

gradient direction. Instead of increasing all accumulator cells on the boundary

of the object with the reference point at an edge point, Ballard uses the gradient

direction at an edge point to reduce the number of cells to be increased. In this

algorithm the model is represented in a table which usually called an R table.

Detailed description of both algorithms will be given in chapter II. The

performance of these algorithms on finding industrial parts will be also

discussed in chapter II.

The Hough transform for nonanalytic shape detection has been applied to

some industrial part recognition problems. Cantoni [25] uses the generalized

Hough transform similar to Ballard's algorithm to recognize some mechanical

parts. He chooses several 20 parameter spaces, one for each subsection of the

model being sought, instead of a 30 parameter space. Since the reference

point of an arbitrary shape is unchanged regardless of its orientation, the

presence and location of the shape can be determined if all edge elements are

transformed into a 20 parameter space for all possible orientations. To

determine the orientation of the shape, a model is divided into subsections. The

transform is performed for each subsection and the orientation of the shape is

determined by examining relative positions of subsections. This technique will

be applied to Merlin's algorithm to determine the orientation of some industrial

parts in a controlled environment. This orientation determination algorithm can

take advantage of parallel architectures to be discussed in chapter IV. Turney

[26] and Koch [3] use the Hough transform in a different manner to identify

partially hidden industrial parts. They, first, extract the boundary segments of

objects in an image and represent them in slope angle-arclength space. The

model consists of many distinctive segments of the object boundary. Each

13

model segment is matched with the boundary segments represented in the

slope angle-arclength space to determined the possible orientation of the object

and then the Hough transform is used to c·ollect the evidences of the match.

Here, the Hough transform is used me-rely to keep track of the sequential edge

segment matching operation. Similar cases can be found in other model based

algorithms [1) [2).

1.4. Hardware Implementation of the Hough Transform

In the previous section, we examined many different types of Hough

transforms and their applications. I~ is clear that the Hough transform can be

used for various applications. But, one major problem of this algorithm is its

large computational requirements. Although' many clever ideas have been

suggested for computation reduction, none of them actually solved this problem.

One approach to the solution is making use of highly parallel computer

structures. In fact, many researchers have mentioned the characteristics of the

algorithm which can take advantage of parallel machines. Some of them

suggest actual hardware implementation of the algorithm.

Stockman [16) suggests the hardwired line detection systems where an

input photoelectric cell representing one input pixel is connected to all possible

accumulator cells. At each accumulator cell, all the inputs are summed,

compared with a given threshold, and generate a binary output indicating

"found" or "not found". This system may be realizable for a small image but the

complexity of the system will grow exponentially when the size of the input

image is larger.

Merlin and Farber [24) indicate that their algorithm can be efficiently

implemented in the parallel picture processing machine proposed by Kruse [27).

The parallel picture processing machine by Kruse consists of nine processing

14

elements and performs local operations of both logical and arithmetical

character on three by three neighborhoods of digitized pictures. It can perform

the Hough transform by adding nine image points from nine different translated

images at once. However, the way of generating translated images and

retrieving results from the system, which are major problems in computing the

Hough transform in a parallel machine, are not addressed. Other parallel

processors for the Hough transform were briefly mentioned in [28] and [29]. But

no one has come up with the systems that can compute the Hough transform,

specifically the nonanalytic curve detection algorithm, in real time or close to real

time. In this thesis, we will develope compact, inexpensive, and fast parallel

structures for the Hough transform for nonanalytic shape detection.

1.5 Considerations for VLSI Implementation

of the Hough Transform

The rapid progress of VLSI technology has created an NMOS chip

containing more than 106 transistors and the number of transistors in a chip is

expected to grow up to 1 o7 by late eighties [33]. One such chip may contain

more functions than one of today's large minicomputers. Recently developed

automated IC design tools allow computer designers to easily access this

powerful technology. The VLSI electronics enables not only those involved in

development of fabrication technology but also computer architects to participate

in the specification and design of actual circuits. Thus, for the given algorithm,

the circuits can be optimized by designing architectures suitable for actual

fabrication. It means that the VLSI technology gives computer designers more

freedom from the cost and size constraint for the processing logic and opens a

new architectural horizon in implementing parallel algorithms directly in

hardware. Now, computer researchers are using VLSI technology not only to

15

design building blocks of large flexible parallel computers but also to design

multiple special purpose functional units. The designer can attack problems that

once were computationally intractable by implementing systems in which

thousands or even tens of thousands of processors cooperate to solve a single

problem. Many researchers in both industry and universities are investigating

special purpose high performance multiprocessors and pipelined computing

devices for computationally intensive basic mathematical operations such as

matrix multiplication [30], convolution [31], and discrete Fourier transforms [32].

Other important operations for which multiple special purpose functional units

were investigated are low level vision algorithms including edge detection,

feature extraction, filtering, etc.

The special purpose functional units are usually designed for a few

algorithms. To justify their limited applicability, special purpose functional units

must be designed for near 100 percent hardware efficiency, require little or no

software to perform given tasks, and require relatively small design cost.

Particularly, the design cost must be reduced as much as possible because the

design cost is the dominating factor in the total cost of the low volume production

systems. To achieve these goals, most special purpose systems are designed

under the following guidelines [31], [33]. [34]: (1) choose an appropriate

architecture which can be decomposed into a few building blocks to be used

repetitively with simple interfaces; (2) choose an algorithm that supports high

degrees of concurrency; (3) employ only simple, regular communication and

control to allow efficient implementation; (4) choose algorithms which can be

implemented in a VLSI device with limited 1/0 pins.

The most difficult problem in designing a special purpose VLSI device is

the 1/0 problems. A special purpose VLSI device can contain thousands or

more processing elements (PE) and handle a large amount of computations in a

16

short time. With limited number of 1/0 pins, the VLSI device is not suitable for the

problems requiring a large 1/0 bandwidth. For such problems, the VLSI device

can not balance its computation with the 1/0 bandwidth. Thus, VLSI structures

are suitable for implementing compute-bound algorithms rather than 1/0-bound

problems. Even if a given algorithm is compute-bound, the 1/0 problem can not

be avoided in some cases. In these cases the computation must be

decomposed into subcomputations. Solving a large problem by decomposing it

into subcomputations may also require a substantial amount of 110 to store or

retrieve intermediate results.

The Hough transform for arbitrary shape may be a good choice for parallel

implementation in the sense that it consists of a few simple operations and

supports a high degree of concurrency. But it is not only a global algorithm,

where an element in the output image depends only on the corresponding

element in the input image, but also an 1/0-bound algorithm. The performance

of such an algorithm in the parallel machine is limited by the number of 110

operations necessary to compute it. Thus, if we implement this type of

algorithms in VLSI devices, the performance of the system will be limited by the

number of 1/0 pins available on a chip. This may be a factor contributing to the

scare amount of work on ~he parallel implementation of the Hough transform.

When we study the performance of an algorithm in different parallel

machines, it is essential to have good performance measures for the parallel

algorithm. Some excellent performance measures for parallel algorithms are

discussed by Siegel [35) and and Parkinson [36). To evaluate parallel structures

discussed in the thesis, some performance measures given by Siegel are listed

next.

Execution time: The execution time T E(N) is the time spent to compute an

·algorithm for an N by N input data set on the parallel system with E PEs and

17

represented by the equation: T E(N) = PE(N) + OE (N), where PE(N) is the time

spent performing computations which are actually a part of the task, and OE(N)

is .the overhead, or time required to manage the paralleHsm. Two sources of

overhead are inter-PE data transfers and masking operations to enable and

disable PEs.

Speed: The speed VE(N) = N2/ TE(N) is the number of data points

processed per unit time.

Speed up: SE(N) = T 1 (N) IT E(N), where T 1 (N) is the time required to

compute the given algorithm on a sequential computer.

The above three performance measures: speed, speed up, and utilization,

may be important measures for general purpose parallel machines. But they

may be less important for the special purpose functional units designed for a

single algorithm. More important measures for this type of systems will be the

speed and cost of the system. As long as the system can process a given

algorithm at the speed required for most applications, simplicity, cost, and size of

the system will be the three major considerations to distinguish one system from

another.

The execution time T E(N) only represents the time spent to compute an

algorithm. In special purpose functional units, the speed of the system is

dominated by the time spent to load and unload the data from a parallel

machine. In the functional unit constructed by using VLSI devices which contain

a large number of processing elements, the performance of the system is limited

by the number of 1/0 pins available on a chip. In general, the 1/0 time, denoted

by IE(N), is determined by depending on the number of 1/0 lines available in a

given system. But, even if there are pins available for 1/0 operations in the

system, increasing the number of 1/0 lines will increase the complexity and the

cost of the system. Thus, the number of 1/0 lines for a system will affect both the

18

cost and the speed of the system. In this thesis, the 1/0 time will be expressed in

terms of the number of 1/0 lines available for a given system. If a number of

input data lines is Lin and a period of the clock signal running the input data bus

is ti, then the time spent to load an N by N binary edge picture into the system

can be represented by

L(N) = tiN2/Lin·

The time required to unload N2 c-bit numbers from the system by using Laut

output lines is

O(N) = t0 cN2/Lout

where t0 is the period of the clock signal running the ouput bus. The total 1/0

time l(N) is the sum of L(N) and O(N).

The speed versus the cost of the system is represented by the cost

effectiveness: CE(N) = VE(N) /cE where cE is the cost of the system with E PEs.
I

1.6 Convolution and Hough Transform

One of the most widely studied image processir:ig algorithm is the

convolution. As mentioned in the previous section, the Hough transform is a

special form of convolution. Many structures have been proposed and actually

built for 1 D and 20 convolution. The most efficient VLSI architecture for

convolution, as well as other parallel algorithms, is a systolic architecture. The

concept of the systolic architecture was developed by Kung [31], [37] and his

colleagues at Carnegie-Mellon University. Kung described the systolic structure

as follows:

"A systolic system consists of a set of interconnected cells, each capable of

performing some simple operations. Because simple, regular communication

and control structures have substantial advantages over complicated ones in

design and implementation, cells in a systolic system are typically

19

interconnected to form a systolic array or a systolic tree. Information in a systolic

system flows between cells in a pipelined fashion, and communication with the

outside world occurs only at the boundary cells. "

Next, we will discuss a 20 systolic convolution systems described by Kung [37].

For the given sequence of weights {w1 ,w2, .. _.,wk} and the input sequence

{X1 ,x2·· .. ,Xn}, a 1 D convolution can be defined by

{Yi=w1xi+w2xi+1+ ... +wkxi+k-1 I i=1, ... , n+k-1}.

Various forms of systolic designs for this convolution problem were described

by the Kung [31]. Figure 4 shows one of systolic arrays described by Kung and

its cell definition.· In this systolic array; weights are preloaded to the cells, one at

each cell, and stay at the cells throughout the computation. Partial results Yi and

inputs xi move from cell to cell in the left-to-right direction but at different speeds.

To use the multiplier h~rdware in each cell, the xi's move twice as fast as the Yj's

by delaying each Yi one extra cycle at every cell it passes. In this configuration,

all cells work all the time while performing a single convolution. The procedure

computing the equation "y = w11 xij-2 + w12xij-1 + w13xi(is illustrated in Figure

5a through 5c. Figure 5a shows the moment to start computing Y. At this

moment, the value of Y going into the leftmost cell is zero. During the first cycle

xijw13 is computed in the leftmost cell and passed to the next cell with xij-1

(Figure 5a). The partial result is added to Xij-1w12 and passed to the rightmost

cell with xij-2 in the second cycle (Figure 5b). In the third cycle the xij-2w11 is

added to the partial result in the rightmost cell (Figure 5c).

The linear systolic convolution array in Figure 4 has been extended to

implementing 20 convolutions by Kung [37]. The general layout of a kernel cell

of the systolic 20 convolution array for a 3x3 window is shown Figure 6. Each

row of the kernel computes the partial result for a row of the input data and the

partial sums from each row are added at the row interface cell. Each row of the

a)

b)

x

x

x

Xjn r ..., Yout Xout.._X

Yin
~ -I

Yout Yout ..__Yin +WXin
L ...J

Figure 4. Systolic Convolution Array and Cell Definition

i j rx .. --, ij-2 rx .. --, IJ-4 rx .. --, -- r.-'J-1t - r.'J-~
..

r.'J-~ y
L~3....J - L~~

- L~1....J -

x

ij +L rx .. --, i j-1 rx .. --, IJ-3 rx .. --,
1-:-IJ-~

x
. .

r.'J-~
..

1-:' J --i y
L~~ - L~2....J - L~1....J

ij +2_ rx --, i j rx .. --, IJ-2 rx .. --, -...
b.IJ-~

x

I

..
r.ij+lt

..
r.'J-!,

-..
I y y

L~3....J - L~2....J - ~1.....1

Figure 5. Procedure of Computing a Partial Sum in
the First Row of the Convolution Array

... ..

-.

-
-..

20

ow 1

oad L

LS

Cir

B

cul ate

ow 2

oad L

L

Cir

SB

culate

ow 3

oad L

LS B

Ci11 culate

--
-
.._ -
-.
-..
--
-..
.... -
--
-..
--
...
--

xrowi

Load

LBS

Yaux Y
A Kernel Cell t t

Basic Cell Basic Cell Basic Cell

Row
Interface
Cell

Basic Cell Basic Cell Basic Cell

Basic Cell Basic Cell Basic Cell

: Pixel value or weighting coefficient for row i. .

: Control signal indicating weighting coefficients
are being loaded.

Indicates that the Least Significant pixel Bits
are being input.

Circulate Control signal indicating the 2'nd half cycle
(absence of input).

Yaux Optional input to be accumulated to the computed
result.

Figure 6. Block Diagram of a 3 by 3 Convolution Array

21

22

kernel computes the partial result as shown in Figure 5. For example, to

compute convolution at (i-1,j-1), three rows in the kernel cell shown in Figure 6

produce three partial sums: Y1 =W11 xi-2j-2 + w12xi-2j-1 + w13xi-2j• Y2=

w21Xi-1j-2 + W22Xi-1j-1 + w23Xi-1j• and Y3= W31Xi1j-2 + W32Xi1j-1 + W33Xij·

These partial sums are added in the row interface cell.

In this configuration, the time spent to compute the convolution is

proportional to N2 for a small template, where N is the size of the input image,

but M2 PEs are required for an M by M template. As we mentioned earlier, the

Hough transform not using gradient direction information is an efficient

implementation of the convolution of an image with the shape template where

edge pixels are unity and others are zero. If we compute the Hough transform

by using the 20 convolution, there will be the following problems. First, the size

of the template is arbitrary large, which means that M2, the number of PEs

required for the convolution, is large. Since the size of the template is close to

N2 in some cases, the size of the convolver must be N2 to accommodate all

possible shapes to appear in the scene. In addition to the processing element

array, the convolver requires a summing circuit to add up the partial sum from all

rows of the processing element array. If a parameter is represented by an 8 bit

number, the number of adders required to construct a binary tree structured

summer is (m-1). Second, the model to be detected must be loaded to the

system before starting to compute the actual convolution. If the size of the

convolver is smaller than the size of the template, the template must be divided

into several segments arid computed separately. In this case, each model

segment must be loaded to the system before the actual computation starts.

Third, each cycle consists of three operations: receiving data, adding two

eight-bit numbers, and sending the output to the next cell. This means that the

period of the clock signal will be large. Finally, a complex circuit is necessary to

23

feed the data into the system and to receive the data from the system. Therefore,

the systolic array processor for the 20 convolution is not effective to compute an

edge convolution with a large template because it does not take advantage of

the data reduction achieved when representing pictures by edges. In other

words, the systolic structure is expensive and not efficient for the Hough

transform, which can be considered to be an edge convolution.

New specialized computer structures for the Hough transform must be

designed to take advantage of the algorithm. In chapter IV, two specialized

functional units for the Hough transform will be discussed. In the first unit, a

processing element is connected to its four nearest neighbors. It has a mesh

connected structure: more specifically a torus structure. It can compute the

Hough transform in time proportional to 8, where B is the length of the model

boundary to be detected. But, loading and unloading data from the system is as

complicated as the convolver discussed above. However, this unit is the best

choice for the application where the orientation of an object is not known. The

second unit has a linearly connected structure. Each processing element in this

unit is connected to its right neighbor. The computation time of the Hough

transform in this structure is proportional to N2. This structure can be classified

as one form of systolic array processors, where edge pixels move systolically,

partial sums stay, and weights are broadcasted. It is close to the convolver

discussed above but it has two significant advantages over the convolver for

VLSI implementation. First, a template is represented by a one dimensional

array which is very small compared with the 20 template used in the convolver.

Second, weights (or template points) are broadcasted instead of loading them

to the system before the actual computation starts. Third, the summing circuit is

not necessary. In the convolver, the summing circuit consists of madders when

the size of the template is m by m. For an example, if the size of the template is

24

256x256 and a parameter is represented by an 8-bit number, then the summing

circuit requires 255 8-bit adders.

CHAPTER II

NQN;.ANAL YTIC SHAPE DETECTION

The nonanalytic shape detection algorithm can be divided into two

groups. The algorithm in the first group is close to the convolution of an image

with the shape template where edge pixels are unity and others are zero. It is

first described by Merlin and Farber [24]. The Hough transform in the second

group is suggested by Ballard [8] to improve the method proposed by Merlin and

Farber. The methods in the second group make use of the gradient direction of

the edge pixel to reduce the number of parameter points for a given edge pixel.

From now on, we simply call the algorithms in the first group "Hough transform

with No Gradient Direction information (HNGD)" and the ~lgorithms in the

second group " Hough transform With Gradient Direction information (HWGD)".

Each of these algorithms has its own strong and weak points compared to the

other in performance and computability. To determine an algorithm which is

more suitable for VLSI implementation, both algorithms will be discussed in

terms of their performance, computational requirements, and parallel

implementation in this chapter.

2.1 Hough Transform with No Gradient

Direction Information

Merlin and Farber [24] show how the Hough transform can be extended to

nonanalytic shape detection. To find the~Uitof a given shape (or curve) Sin

an edge picture P described by a set of points { (xi.Yi) I i=1,n }, they select first a

25

26

point on the given curve as a reference point 0 and rotate the curve 180

degrees with respect to the reference point. The rotated image represents the

locus of possible O's for a given edge pixel. Then, the rotated curve is traced on

each of the points of the picture with 0 placed over each edge pixel. The best fit

to the given curve is the trace with 0 on the point where the maximum number of

curves intersect. The schematical description of the above procedure is shown

in Figures 7 through 9. The curve being sought and the rotated version of the

curve are shown in Figure 7 and Figure 8, respectively. Figure 9 shows curves

traced with 0 on each edge pixel. The locations of edge pixels in the picture

space are also marked in Figure 9. As shown on Figure 9 all curves traced on

boundary points of the given curve intersect at one point P.

To restate this algorithm in pseudocode, we define the edge picture as the

matrix P and the accumulator representing the parameter plane where the loci

of the curve will be traced as M. An element at the location (i,j) in the

accumulator and the picture is represented by Mij and Pij• respectively. We

need another array (or table) to describe the given curve. It is usually called

reference table and denoted by the array R. The reference table R is a

collection of coordinates of the points in the quantized plane that belong to a

180 degree rotation of the given curve S with the reference point 0 on (0,0). and

represented as follows:

R={(ak,bk) I k=O,T},

where T is the number of points on the boundary of the given curve and (ak,bk)

represents the location of the k'th model points.

If the size of the array P and Mare N by N and M by M, respectively, then

actual transformation in the digital computer is performed by using Algorithm 2.1.

Algorithm 2.1 does not include the rotation operation (necessary to detect the

orientation of an object) and maxima finding operation. The number of

Figure 7. Given Shape S

- - T -
I I
I

I ·----1 I

I
I - - .. -

I I
I

- - ,- - ~ - - - .- - T - -. - -

I I I I

-~ - -·- -.. -I I I

I

- ~ --.-
1

-,.---- --.--
1 I I I

I

.. -
I

I - -.- - :

- -'- - I I
I I

I I

- ~ --· I I

- _1_ - I
I I

Figure 8. Rotated Model

Edge element detected
from input image

1:·:'a i11

: Parameter indicating
the best match of
the given model

Figure 9. Traces of the Rotated Model at All Edge Points

27

Algorithm 2.1

clear the accumulator M

for i = 1 to N

for j = 1 to N

fork= 1 to T

begin

compute (ak,bk);

x = i-ak;

y = j-bk;

Mx,y = Mx,y + Pi,j;

end;

Algorithm 2.2

fork= 1 to T

begin

compute (ak,bk);

for i = 1 to N

for j = 1 to N

begin

x = i-ak;

y = j-bk;

Mx,y = Mx,y + Pi ,j;

end;

end;

28

29

reference point computations is TN2 times in this algorithm. To reduce the

number of computations, Merlin and Farber modified this algorithm by changing

the order of the operations. The algorithm 2.2 is the modified version of the

Algorithm 2.1.

In the modified algorithm, the value of Pij is added to Mx,y• where X=i-ak

and y=j-bk, and this procedure is repeated for all pair (ak,bk) that define the 180

degree rotation of the given curve. With this algorithm, each value for the

increment index (ak,bk) is computed only once for all the points in P. Merlin and

Farber mentioned without explanation that Algorithm 2.2 can be executed by

translations of the P matrix and additions of the translated array to the M matrix.

2.2 Hough Transform with Gradient

Direction Information.

Ballard (8] generalizes the Hough transform to detect arbitrary shapes by

adding the O'Gorman-Clowes technique to the Merlin-Farber algorithms

. described above. This generalized Hough transform provides a mapping from

the orientation of an edge-element to a set of instances of a given arbitrary

shape S. This mapping allows all local evidence for a particular instance of S to

contribute to global decisions about the figure. A detailed description of all the

aspects of this algorithm is given by Ballard (8] and Sloan [38] . .
Let us consider the circular boundary detector with a fixed radius r0 for a

moment. If the gray-level of the object is lower than that of the background, the

gradient direction Q of an edge pixel (xi.Yi) points to the direction where the

center of the circle is. Otherwise, it points the opposite direction. We can

represent this relationship with the equation 2.1.

lrl = ro
Angle(r) = Q(r) (2.1)

30

Since the gradient direction Q is the angle of the vector pointing to the

center of the circle to be detected, theoretically, the number of votes for each

edge point is reduced to 1. As shown in the Figure 3c, we only increase a single

point x + r for each gradient point X with direction Q. Using the gradient

direction information we can have two major improvements over the algorithm

not using it. First, the number of computations is reduced by T if the number of

points used to describe the circle to be detected is T. Second, the error in

choosing a circle is significantly reduced. However, the gradient direction does

not always point to the center of the circle due to noise in an input image and

errors in the process of computing gradient directions. The success of the Hough

transform using the gradient direction depends on the reliable determination of.

edge element orientation [38], [39].

Now suppose we have an arbitrary shape like the one shown in Figure 10.

We can extend the idea of the circle detector with fixed radius to this case by

using an R table representing an arbitrary shape. The R table is constructed as

follows: first, choose a reference point 0 at the location Y=(Yx·Yy) for the shape;

second, compute Q(x) which is the gradient ciirection for the boundary point

X=(Xx,xy) and r = y - x, and then store r as a function of Q. The value of the

gradient direction Q is quantized so that the number of entries in the R table can

be reduced. Since the value of Q for each edge pixel is arbitrary and discrete,

an index Qin the R table may have many values of r.

The R table is used to detect instances of the shape S in an image in the

following manner. For each edge pixel x in the image, compute the local

gradient direction Q and increment all the corresponding points x + r in the

. accumulator array M, where r is a table entry indexed by Q. Maxima in M

correspond to possible instances of the shape S. However, a problem arises in

detecting maxima in the array M due to the effect of noise. For example, if

0 : reference point.
x · model point.
G : gradient vector

at x
r : vector pointing from

x to 0

Figure 10. Relationship between the Gradient Direction and
the Entry of the R Table for a Model Point x

Figure 11. Effect of Error in the Gradient Direction and
Radius on Circle Detection

3 1

32

uncertainties in the gradient direction Q and the radius r in the _circle detection

problem are +L\Q and +L\r, respectively, the reference point for a given feature

point is one of the points in the shaded band in Figure 11. To compensate the

effect of the noise, Shapiro [11], Brown [13], and Ballard [8] adopt a rule,

sometimes 9alled the voting rule, specifying how a particular edge-element

affects the value of M. Ballard and Shapiro increment all parameters which fall

within the shaded band of Figure 11 to compensate for the noise in the circle

finding. However, compensation of the noises for the arbitrary shape detection

is not so simple because r varies arbitrary. Furthermore, uncertainties in the

gradient direction Q is large for an arbitrary shape. Consequently, the issue of

noise compensation of the arbitrary shape detection algorithm has been

discussed very little in the literature. If we assume that the size of the image and

accumulator are N by N and M by M, respectively, and the number of r for an

index Q is N(Q), then the algorithm can be expressed by the pseudocode in

Algorithm 2.3. If the average of N(Q) for all Q in the .R table is a, the order of the

computation required for the generalized Hough transform is (a CN2+N2),

where CN2 is the number of edge pixels in the input image. The value of a is

close to 1 if the shape to be detected is a circle and it is close to T if the shape is

a line. In general, the value of a will be larger than 1. The value of a is

determined depending on the shape of the model, objects in the input image,

and the number of steps used to quantize the gradient direction. Several

different properties of this algorithm are discussed by Ballard [8].

2.3 Considerations for Parallel Implementation

The Hough transform is a simple and efficient form of template matching

designed to detect known objects in noisy images. But its excessive computa

tional requirement prohibits wide-spread use. Even if the most advanced

Algorithm 2.3

for i = 1 to N

for j = 1 to N

begin

compute the magnitude and the gradient direction

of the edge point at (i,j);

if magnitude of the edge is larger than the given

threshold,

then

for k = 1 to N(Q)

begin

end;

compute the corresponding point x-rk in

the accumulator array Mand increase a

point at x-rk or a group of points

surrounding the point x-rk to compensate

the error due to noise.

end;

33

34

sequential computer available today is used, the real time computation of the

Hough transform for an image with moderate size is almost impossible. For

practical industrial applications requiring real time computation, the Hough

transform must take advantage of highly parallel computer structures.

Specifically, it must take advantage of a fast and inexpensive VLSI architecture.

To be implemented in such parallel architectures, the Hough transform must

satisfy the conditions described in section 1.5. Next, we will discuss the HWGD

and the HNGD from a parallel implementation point of view.

Let us consider algorithms 2.2 and 2.3. For a moment, neglect the portion

of the algorithm 2.3 computing the magnitude and angle of the gradient. In the

sequential computer the magnitude and angle of the gradient are, in general,

computed while computing the Hough transform to save memory space and

some computations. But this scheme will cost more computing time when the

Hough transform is used to detect objects with arbitrary orientation and size. For

our discussion we will assume that the magnitude and angle are computed and

stored in the memory.

To compute the number of computations and 1/0 accesses, the following

assumptions have been made.

(1) Each gradient magnitude is thresholded to a binary number and stored in an

N by N array with one bit depth.

(2) Each gradient angle is represented by an one byte integer and stored in an

N by N array.

(3) Incrementing an accumulator cell and computing an index value is

performed by one and 32 bit additions, respectively.

(4) The largest possible number in the accumulator is less than 216, which

means that an accumulator cell is represented by a 16-bit register.

(5) The total number of edge pixels per frame is E.

35

(6) The number of model boundary points is T.

Under these assumptions, the order of computations and the number of the 1/0

accesses are computed and listed in tables I and II. The variable C is E/N2 and

has a value between 0.01 and 0.3. Next, we will examine some problems

related to actual implementation of these two algorithms based on the two

tables.

2.3.1 Seguential Implementation. If we use a sequential computer to

compute the Hough transform, the number of computations for the HWGD is

T/(1 +4Ca) times less than that for the HNGD. The value of a depends on the

shape of the object under consideration. If the object is a rounded shape, the

number of computations in the HWGD increases proportional to Tl(number of

steps used to quantize the gradient angle) so that the computation time is not

strongly affected by the number of template points T. For the rounded shape, the

value of a is 1. However, if the boundary of the object consists of straight lines,

then the value of a is close to T and the HWGD may be slower than the HNGD.

In general, the HWGD is faster than the HNGD in a sequential computer if Tis

large and the processor to be used has a capability of fast arithmetic

computation for the gradient angle computation. If a computer is not equipped

with a arithmetic processor, which is the case for many microprocessor based

systems, the time required to compute indices will be a dominating factor in the

total computation time for the HWGD. High precision arithmetic computations

are necessary to compute the r values. The number of index value

computations for the HNGD is proportional to T.

2.3.2 Parallel Implementation. For parallel implementation, an algorithm

should have the following characteristics: 1) the number of operations per image

36

TABLE I

NUMBER OF COMPUTATIONS

Operation HWGD HNGD

Addition CaN2 TN2

Comparison N2+CaN2 0

Index Computation 2CaN2 2T

Total# of Operation 82(1+4Ca) T(N2+2)

TABLE II

NUMBER OF MEMORY ACCESSES

Data HWGD HNGD

R Table 2C(1 +a)N2 2T

Accumulator C(1+a)N2 TN2

Magnitude N2 TN2

Gradient Angle CN2 0

Total (1 +4C+3Ca)N2 2(1 +N2)T

37

pixel must be small, 2) the computation is regular so that different parts of the

image are treated in the same manner, 3) operands for each operation must be

easily accessed. Keeping these in mind, _two algorithms will be studied for

parallel implementation.

In the HWGO, only image elements above a threshold that is edge

elements, influenced the output. Thus, if an entire image is fed to the parallel

machine, most of the processing elements will be idle. One way of increasing.

the utilization of the system is feeding only edge elements in the image. All

edge elements in the image are extracted along with their gradient direction and

fed to the system. Then, the utilization of the system will be increased

significantly. However, extracting only edge elements from the input image and

computing gradient direction for edge elements are also time consuming tasks

and may not be able to take advantage of a parallel architecture. Furthermore,

after the input image is reduced to a string of edge elements, it is difficult to make

use of a priori information (approximate location and orientation of objects) to

reduce the number of computations. Thus, reducing the input image into a set of

edge elements may not be a good idea for the parallel machine unless the

algorithm is used to determine the orientation of an object. To determine the

orientation of an object, a 20 accumulator must be computed for every possible

orientation and the parameter representing the object is searched in the 30

accumulator.

If an input image is directly fed into the parallel machine, the angle and

magnitude of the gradient at each image point must be computed for the HWGO.

Therefore, each Processing Element (PE) must be capable of floating point

computation and table lookup for the gradient angle computation. It means that

complex hardware is necessary for a PE.

The number of operations for an edge element in the HWGO depends on

38

the gradient direction at that pixel. The number of vectors in the entry of the R

table indexed by a gradient direction is determined depending on the shape of

the object, which. means that the number of operations for an edge pixel may

differ from that of other edge pixels. Therefore, the HWGD yields poor hardware

utilization. When a parallel system consists of P processing elements, a set of

data is generally divided into P segments and ~ach segment is assigned to a

separate processor. If all the segments take the same amount of time to

process, the hardware utilization will be close to 100%. Otherwise, the overall

processing time will be dominated by the time spent to process the largest

segment.

Another difficulty in the parallel implementation of the HWGD is that

operands needed for an execution cycle are arbitrarily distributed in the

memory. For example, the locations of accumulator cells to be updated for a

given edge pixel are determined depending on the gradient direction at the

pixel, which means that accessing more than one operand per memory cycle is

difficult. When the number of processing elements P increase, the number of

memory accesses per unit time increase proportional to P. Since every machine

has a fixed memory bandwidth, performance of the parallel machine will be

saturated at a certain number of processing elements. If the number of memory

accesses per data point is large, then the performance improvement by

increasing the number of processing elements will be small.

In summary, the HWGD is not a good choice for the SIMD structures which

leads to a simple and inexpensive parallel implementation. It can be

implemented in a multiple instruction and multiple data (MIMD) structure where

each PE has a large local memory and is capable of executing its own

programs. But, even in the MIMD structure, the HWGD will suffer from the same

problems. Furthermore, the complexity of the control and hardware increase

39

drastically while the efficiency of the system decreases exponentially, when the

number of processing elements increases.

In the HNGD, all pixels in an image are treated in the same manner.

Operations required for an image element are T one-bit additions and T

accumulator array accesses. Thus, the time required to process a given image

is predictable. Other advantages over the HWGD are: 1) the HNGD only

performs one bit addition (or increment) and 2) the location of operands are

known. In other words, the processing element for the HNGD is extremely

simple and the number of 110 accesses can be reduced by accessing a large

segment of operands per memory cycle. It also can take advantage of multibus

systems to increase memory bandwidth. Thus, the HNGD can be implemented

efficiently in the SIMD consisting of a large number of processing elements with

a local memory. But, the HNGD in the form of Algorithm 2.2 is not much better

than the HWGD for the SIMD structure. Algorithm 2.2 will also suffer from the 1/0

bound problem. A processing elernent must update T accumulator cells in the

main memory (or the local memory in other processing elements) for an edge

element. To be implemented efficiently in this structure, the algorithm in

Algorithm 2.2 must be modified. In the next chapter, we will discuss

modifications of the algorithm for parallel implementation.

2.4 Performance Analysis of Arbitrary Shape

Detection Algorithms

In the previous section, it is shown that the HNGD by Merlin is a better

candidate for VLSI implementation. However, this algorithm requires a

significantly greater number of computations in a sequential computer than the

HWGD by Ballard. It has been also thought to be inferior to the HWGD in

performance. Consequently, the HNGD has been almost neglected by

40

computer vision researchers. No one has seriously studied this algorithm as a

candidate for practical computer vision.

Now, it is time to reconsider the HNGD for industrial applications. With the

advanced VLSI technology, it is possible to implement a special purpose

functional unit for a computationally intensive algorithm, like the HNGD at low

cost and with compact size. As discussed in the previous section, the HNGD

has an excellent structure for VLSI implementation. Thus, the computational

requirement of this algorithm should no longer a serious problem for industrial

applications.

Articles concerning the performance analysis of the HNGD for industrial

applications have rarely been published. On other hand, the HWGD has been

studied by some researchers. But, no one has compared these two algorithms

for industrial applications. In industrial applications, we have control over the

work environment so that the quality of the input image for the system is

somewhat adjustable and predictable. This may enhance the performance of

the HNGD for industrial applications. In this section, we will analyze the

performance of the HNGD and HWGD for industrial applications based on

experimental results and work by Ballard [8], Shapiro [10]-[13], and Laws [39].

For this analysis, both algorithms are implemented in C on the IRI 0256

computer vision system, and a set of selected images taken in a controlled

environment is processed by using these algorithms. The obtained results are

analyzed to give some ideas about the performance of the HNGD compared

with the HWGD. Here, we are not trying to prove that the HNGD is superior to

the HWGD. We want to simply show that the output of the HNGD is as good as

that of the HWGD in locating industrial parts in a controlled environment.

Ballard points out that the HNGD generates many false instances of the

desired shape in an image with a multitude of edge pixels due to coincidental

41

pixel arrangements. Figure 12 shows one example. If the width of the detected

boundary is 3 pixels wide, nine accumulator cells around the actual parameter

· for the given shape have the same values. This problem can be solved by

applying an average operator on the accumulator array. For the given example,

the peak can be detected by applying a 3 by 3 average operator. In practice, the

thickness of the edge is decided by the threshold value used to detect edge

elements from the input image. Figure 14 shows two edge pictures of a pair of

pliers obtained by thresholding the Sobel image of figure 13 at a gray level of

11 O and 51, respectively. Figure 14a consists of 1796 edge elements and

Figure 14b consists of 3506 edge elements. These two edge pictures are

processed by both HNGD and HWGD and the results are shown in Figures 15

and 16. Figure 15 shows the contents of accumulator arrays obtained from the

edge picture in Figure 14a. In Figures 15 and16, part a and c show the contents

of an accumulator and part b and d show the contents of a row passing through

a peak in accumulator, which is called "x-profile". As we can see from Figure15

and16, decreasing the threshold value (or increasing the thickness of the edge)

does not affect the performance of the HWGD, but it affects that of the HNGD.

The near peak sidelobes in Figure 16 is much larger than that in Figure 15.

The peak value is also affected by the threshold value in the HNGD while it

is almost independent from the threshold value in the HWGD. In the x-profiles in

both figures, the peak has been found at the same location, but differences in

the near peak sidelobes may play an important role in detecting parts partially

occluded by other objects. The noise from other objects may shift the location of

the peak in the accumulator. This indicates that the HNGD is more sensitive to

the threshold value than the HWGD. Fortunately, the effect of the threshold

value can be minimized in the industrial applications by carefully constructing

the lighting system.

+ .. _,_,_,_ .. + .. _,_,_
I I I I I

.L .I -.-1-("" L .L .I-.-.-
-·- ._ - - .. .J -·- ._ - -

a) Thick Edge in th~ Picture Space

,,_ .. + .. _,
I I I

-,-,- L .L .I ""I
T, .J_l_i_ I

+-1-'-'-'-1 I I I
.L .I-.-.-("" I

_1_i_ I" T, .J

-'-'-t-+-c-' I I I
-,-; L .L .I ""I
T, .J_l_i_ I

+-c-'-'-'-• I I I

Actual parameter point

b) Maxima in the Parameter Space.

Figure 12. Effect of Multitude Edge Pixels on
the Hough Transform

42

43

Figure 13. Digitized Picture

Figure 14 . Edge Pictures

Figure 15. Contents of Accumulator Array for the Edge
Picture Thresho lded at 110

Figure 16 . Contents of Accumulator Array for the Edge
Picture Thresholded at 51

44

45

The HWGD reduces the chance of detecting false instances in an image

with a multitude of edge pixels by using the gradient direction information at

each edge pixel. It eliminates the edge pixels with gradient directions not

belonging to any of the model boundary points. By using the gradient direction

at an edge pixel, the number of possible parameter points for the edge pixel is,

in general, much smaller than T, where T is the number of model boundary

points. Thus, the peak in the accumulator array computed by the HWGD is

generally sharper than the peak in the accumulator generated by the HNGD.

Figures 15 and16 support this argument. Figure 16b has a much sharper peak

than Figure 16d.

Theoretically, the HWGD appears to be much faster and more reliable for

arbitrary shape detection than the HNGD. However, as we discussed earlier,

the number of operations for the HWGD depends on the shape of the object to

be detected. The HWGD is greatly affected by the error in the gradient angle.

The gradient direction may contain two types of errors. One is due to the

uncertainty in the gradient angle computed from the input image. The gradient

angle of an edge element on an input object is not always equal to the gradient

angle of the corresponding point on the model even if the orientation of the

object is fixed. Specifically, if an object has gradual, uncertain boundaries or

strong internal gradients, there exists a large uncertainties in the gradient angle.

The amount of error in the gradient angle also depends on the edge operator

used to compute it. Thus, the HWGD does not produce good results in locating

such objects.

Another error in the gradient angle is due to quantization. In nonanalytic

shape detection, a model is described by an R table. Since the R table can not

have an infinite number of entries, the gradient angle must be quantized with a

certain number of steps. If the gradient angle is equally divided into 360 steps,

46

. the quantization error will be +0.5 degrees. If the Hough transform is used to

determine the orientation of an object, an object is represented by three

parameters (two for location and one for orientation). Thus, the orientation is

quantized with a certain number of steps, and then a 30 accumulator array is

constructed by computing a 20 accumulator for every possible orientation. The

location and orientation of an object is determined by searching a maximum

value in the 30 accumulator. Thus, the number of computations necessary for

orientation determination depends on the number of steps used to quantize the

orientation. If the number of steps is decreased to reduce the number of

computations, the quantization error in the orientation will be increased. The

quantization errors in the gradient angle and orientation are added to other

errors in the gradient angle.

Let us reconsider Figure 11. This figure illustrates how the error in the

gradient angle affects the circle detection algorithm. The parameter for the edge

pixel with gradient direction q may fall anywhere in the shaded band when

uncertainties in the gradient direction and the radius are given by L\.q and L\r. In

the circle detection problem, the errors in the parameter space can be reduced

by increasing all accumulator cells in the shaded band [12] or smoothing out the

uncompensated accumulator array [8]. But, compensating errors in the nonan

alytic shape detection is much more complicated than that in the analytic shape

detection. In the HWGO, a shape S is represented by an R table which is

generally denoted by R(q). R(q) is a set of vectors r pointing to possible

parameter points for the edge pixel with the gradient direction q. If the object is

rotated by j and this transform is denoted by Tj, then

Tj[R(q)] = Rot{R[(q-j)mode2n],j},

where Rot{a,d} rotates the vector a by angle d. For instance, if the gradient

angle of an edge pixel is q, the set of vectors at the table entries (or set of vectors

47

r) for this pixel will be indexed by the heading (q-j)mod27t. The entries will be

rotated by j and used to determine possible parameter points for the edge pixel.

Thus, a table index (q-j)mod27t is a function of the following three components:

the gradient angle at the pixel, the current orientation, and the sum of all the

errors. When an error occurs, the table entries shown for the index value

computed for a specific edge pixel may contain vectors that do not point to the

correct parameter space location corresponding to that pixel. Unfortunately ,

there is no easy way of compensating for the error in nonanalytic shape

detection.

In circle detection, the distance between a reference point and a model

boundary point is fixed, and the error in the gradient direction directly affects the

process of selecting a possible parameter point. Therefore, the error can be

compensated by increasing all accumulator cells in the square in Figure 11 or

by convolving the uncompensated accumulator with a template. The size of the

template will be the size of the square in Figure 11, and the contents of the

template will be generated to give the best result for a given task.

In nonanalytic shape detection, the distance can be any value and the

error in the gradient angle will affect ,indirectly, the process of selecting a set of

possible parameters· for an edge point. The gradient angle at an edge pixel is

used to find a set of vectors pointing to possible parameters from the edge point.

Thus, the size of the window for the compensation operation must be

determined separately for all the edge points in the image. This means that the

smoothing operation suggested by Ballard for analytic shape detection is less

effective and that increasing all accumulator cells in the shaded band is much

more complicated in nonanalytic shape detection.

The shaded band for nonanalytic shape detection is defined in the same

manner as it is defined for circle detection, but the size of the shaded band is

48

arbitrary because the value of r is arbitrary in nonanalytic shape detection. The

shaded bands defined for two different distances are shown in Figure 17.

Furthermore, the number of accumulator cells in the shaded band will be much

larger than that in the analytic shape detection since the quantization error in the

orientation and the gradient angle is larger. Thus, the error compensation of the

nonanalytic shape detection algorithm is less effective and computationally

expensive compared with that of the analytic shape detection algorithm.

However, if the distance between the object and the camera is fixed, which is

possible in industrial applications, the error in r can be neglected. Thus, the

error compensation is somewhat simplified. If the error in the computed index I

is +e, the performance degradation due to the error will be minimized by

increasing all accumulator cells pointed by vectors in entries in the R table

indexed by heading (1-e) through (l+e).

Figure 17. Effect of the Error in the HWGD

49

To study the effect of the error on the HWGD, an image shown in Figure 13

is processed by both HNGD and HWGD. For every angle in the range between

O and 90, an Hough transform is computed and the peak in the accumulator

array is found. The peak heights are then plotted against orientation in Figure

18. Parts a and bin Figure 18 are obtained, respectively, by the HNGD and the

HWGD. The R table used to obtain the plots in Figure 18 is encoded by using 80

model points. For reliable determination of the orientation of an object, the plot

must have a sharp peak with small sidelobes. Figure 18 indicates that the

HWGD without the error compensation may be less effective than the HNGD for

the orientation determination.

The plot in Figure 18b has a smaller peak and relatively large sidelobes.

Figure 19c proves that the sidelobes in Figure 18b are due to the error in the

gradient direction. Figure 19c shows the same type of plot generated by the

HWGD with the error compensation discussed earlier. The peak in this plot is

much sharper. than the peak in Figure 18b. The model used to generate this plot

consists of 160 boundary points instead of 80. Almost identical results were

obtained by using the model consisting of 80 boundary points. The contents of

accumulator arrays at peak orientation are shown in Figures 15 and 19. From

Figure 15, it is clear that the HWGD produces a much sharper peak than the

HNGD for a given orientation. However, the HWGD produces the peak at the

location a few pixels off from the actual location, while the HNGD produces the

peak at the actual location. The parameters of the object found by HWGD and

HNGD are (95,91) and (96,92), respectively. The boundary of the objects

represented by these parameters is shown in Figure 20. The boundary of the

object detected by the HWGD matches less accurately the original image than

that detected by the HNGD. The HWGD with the error compensation produces a

50

Figure 18. Peak versus Orientation

Figure 19. Results Obtained by the HWGD with Error
Compensation

5 1

Figure 20. Plier Model Superimposed upon a
Gray-scale Picture

52

53

peak at the actual location, (95,92). In addition to the pliers, both algorithms are

used to detect three objects: a piece of puzzle, a wren.ch, and connectors. The

results show that the HWGD produces a sharper peak than the HNGD·but the

parameter obtained by the HNGD produces a closer match than that obtained by

the HWGD.

In the HWGD, the computation time is proportional to the number of model

boundary points. Thus, the number of model points must be reduced as much

as possible. But, reducing the number may affect the performance of the

algorithm. Specifically, if there are many other objects in the image, reducing

the number of model boundary points will increase the chance of finding false

peaks. It is not obvious how reducing the number of model points will affect the

accuracy of this algorithm. To study this problem, the p~rameters of a pair of

pliers has been computed for the model with four different resolutions by using

both HWGD and HNGD. A different number of boundary points is used to

describe the model in each case: 160, 80, 40, and 20. Table Ill shows the result

of this operatior:i. The performance of the HWGD was less affected by the

number of model boundary points than that of the HNGD. In the HNGD, the

peak value was reduced as the same proportion the number of model boundary

points. But, the peak value in the HWGD remained largely unaffected. The peak

location was also affected by this number in the HNGD.

In the above experiments, we learned that the accuracy of the HWGD is

slightly better in some points but not much better than that ·Of the· HNGD for

finding industrial parts in a controlled environment. We also found that the

performance of the HNGD is good enough to be used for industrial applications.

In Figure 21, the model of a connector detected by the HNGD are superimposed

upon the gray scale picture of the connector.

Several other images containing different objects (including puzzles,

TABLE Ill

EFFECT OF THE NUMBER OF MODEL BOUNDARY
POINTS ON PEAK DETECTION

Num. Orientation Position Peak Value

of M.P. HNGD HWGD HNGD HWGD HNGD

160 66° 66° 96,92 95,91 149

80 66° 67" 96,92 96,94 75

40 66° 66° 95,91 96,94 38

20 66° 66° 95,92 96,94 20

Figure 21 . Connector Model Superimposed upon
a Gray-scale Picture

HWGD

36

17

11

9

54

55

wrenchs, and ring nuts) have been processed by using both the HWGD and the

HNGD. The experimental results indicates that the HNGD can be used to detect

partially occluded industrial parts as long as the objects has a small number of

stable positions. The HNGD is particularly suit for flat objects. The performance

of the HWGD was also analyzed by other researchers. Laws [39] tests the

HWGD designed by Ballard [8] and reports some characteristics of the algorithm.

In his report, Laws mentions some interesting characteristics of the algorithm.

First, the algorithm works well for finding large and well defined objects. Objects

with gradual, uncertain boundaries or strong internal gradients are not located

accurately. Second, the quality of object detection is dependent on the reliable

determination of the gradient angle. Law's experiment partially supports our

findings.

CHAPTER Ill

REFORMULATION FOR HARDWARE IMPLEMENATION

In the previous chapter, we discussed two types of Hough transform for

nonanalytic curve detection in terms of performance, computational requiremen

ts, and parallel implementation. The HWGD has less chance of finding false

peaks in the accumulator if the error in the gradient angle is compensated. It

also needs less computations in most cases than the HNGD unless the shape

consists of long straight lines. On the other hand, the HNGD has a regular

structure and requires simple processing elements. Which makes this algorithm

a better choice for a compact, fast, and inexpensive VLSI implementation. As

we showed in the last chapter, the HNGD can detect industrial parts in a

controlled environment fairly reliably although it may be less effective than the

HWGD for pictures containing large amount of noise.

In general, the HNGD requires significantly larger amount of computation

than the HWGD for a given image. But it has some important characteristics for

efficient parallel implementation. First, the number of operations per edge pixel

is small and the same for all edge pixels no matter what the shape of the object

is. Second, operands are distributed in the memory in a way that makes

possible fetching more than one operand per memory cycle. Third, the

operations required are simple so that they can be performed in a PE with little

hardware. As a result, this algorithm can be implemented with good hardware

utilization in a SIMD structure consisting of simple processing elements and

interface circuits. Thus, the HNGD is the best choice for our goal of designing

56

57

inexpensive, compact, and fast specialized functional units for the Hough

transform. From now on, we will only consider the HNGD for the specialized

system design. In the rest of this thesis, the Hough transform simply means the

Hough transform not using the gradient direction for arbitrary shape detection.

In the Hough transform in the form of Algorithm 2.2, the accumulator array

must be defined in the global memory and updated by each processing element.

In such a case, the efficiency of the system will decrease drastically due to

increasing memory contention as the number of processing elements gets

larger. To avoid this problem, the Hough transform must be reformulated for

efficient parallel implementation. In this section we will reformulate ttie Hough

transform to reveal its important properties for parallel implementation. The

reformulated algorithm will be analyzed in terms of-parallel implementation.

The HNGD by Merlin uses the edge picture of the model as a template.

Thus, it can not be used to detect a shape with unknown orientation. The

reformulated algorithm will accommodate shapes with unknown orientation.

Based on the reformulated algorithm, one way of determining the orientation

and position of an arbitrary shape will be suggested. This suggested algorithm

is designed to take advantage of the specialized parallel structures to be

discussed in the next chapter.

3.1 Reformulation

In most Hough-like transformations, each pixel is tested to see if it belongs

to the boundaries of objects in the image by comparing the magnitude of the

gradient of the pixel with a given threshold. If a pixel belongs to a boundary of

an object, it is transformed into the parameter space by incrementing

accumulator cells representing a set of possible parameters for the edge pixel.

The accumu- later cells representing possible parameters are the cells on the

58

trace of the model rotated by 180° with the reference point at the edge pixel

location in the accumulator array. In the new approach, a set of image elements

to be tested for a given accumulator cell is determined according to the location

of the accumulator cell. To compute an accumulator cell M(i,j), the model is

traced on the edge picture P with the reference point at the picture element P(i,j).

Then, the set of picture elements on the trace of the model are tested. The value

of the accumulator cell is the number of edge elements in the set. Thus, in this

approach, an accumulator array can be determined cell by cell. In other words,

an accumulator array can be divided into several subarrays and computed

separately. If some information such as approximate location and orientation of

an object are known, the object can be detected by computing only a portion of

the accumulator array.

This approach has some important characteristics for efficient parallel

implementation. First, a priori information is easily taken into account to reduce

computations. Second, the computation can be easily decomposed into several

subproblems and each subproblem can be solved independently. Since an

accumulator cell is computed independently, the accumulator array can be

divided into subarrays and computed by large numbers of PEs without conten

tions for operands. In Algorithm 2.3 by Ballard and Algorithm 2.2 by Merlin,

location of accumulator cells to be updated for a given edge pixel are not

predictable. A set of accumulator cells for an edge element is determined

depending on the location of the pixel in the image space and an image consists

of an arbitrary number of edge pixels. Thus, the task of computing those

algorithms are not, in general, easily divided into subtasks which can be

computed independently without contention for operands. In other words, these

two algorithms are data dependent. The new approach has two other differen

ces compared with the conventional way of computing the Hough transform

59

which is shown in Algorithms 2.2 and 2.3. In this approach we can quantize the

parameter space with any desired resolution to reduce the number of computa

tions. We can also adapt this algorithm for detection of objects with arbitrary

orientation by representing the model with a R table similar to the one used by

Ballard. In Merlin's algorithm, the size of the accumulator array and input image

are identical and a model is represented by a two dimensional binary template

containing a complete edge description of the object to be detected. Next, we

will discuss this new approach in more detail.

3.1.1 Model Generation. The model generation of the proposed algorithm

is somewhat similar to the the model generation of Ballard's algorithm. For

convenience, we are assuming that a complete edge description of the object to

be detected is given in the image plane I.

The first step of the model generation is marking a reference point in the

image plane I. In general, any point in I can be used as a reference point, but

the center of the object is preferable because the longer the distance between a

reference point and a point on the boundary is the larger the effect of the

quantization error of the orientation is. The second step is tracing each point on

the object boundary with respect to the reference point 0. The relative position of

each boundary point to the reference point is stored in the reference table R.

The i'th point on the boundary of the object is represented by a vector r whose

magnitude and direction is ri and qi, respectively .. If the edge representation of

an object is given by Figure 22, for example, table IV is one of possible R table

for the given object.

Until now, we have considered objects with fixed orientation and scale. To

detect an object of arbitrary orientation o and scale s, these two parameters

must be added to the description of the object and the R table must be adjusted

according to the value of o and s. As suggested by Ballard [8], simple

60

transformation of the R table will allow it to be used to detect scaled or rotated

instances of the same object. If the object is scaled by s and rotated by o, for

example, the R table for the object is

Index

R(i)

R = { (s rj.(qi+o)mod 27t) I i=1 ,T}

Boundary point

D Reference point

Figure 22. A Model with a Reference Point

TABLE IV

POLAR COORDINATE SYSTEM REPRESENTATION OF THE
REFERENCE TABLE FOR THE MODEL IN FIGURE 22

1 2 3 4 5 6

(3. 1)

7

(1,0) ('12,7t/4) (1 ,7t/2) ('12,37t/4) (1 ,7t) ('12,57t/4) (1,6rr/4)

3.1 .2 Mapping. If the image space and parameter space are digitized as

N by N arrays, the model with a reference point at the image element P(i,j) is

61

used to determine the contents of an accumulator c~ll M(i ,j). The points on the

boundary of the model are traced with respect to the reference point in the

image space and the number of votes for the accumulator cell is determined by

counting the number of edge elements on the trace. Algorithm 3.1 shows this

new approach for the problem of computing accumulator cells in the M by M

window starting at (xstart,ystart). T is the number of boundary points used to

describe the model. In this algorithm, R(i, 1) and R(i,2) represent the magnitude

and direction of the vector starting at the i'th model boundary point and ending at

the reference point.

In Algorithm 3.1 , the position of the model boundary point is computed TM2

times for the given orientation o·. To reduce the number of computations,

Algorithm 3.1 is reformulated and shown in Algorithm 3.2. The reformulated

algorithm computes xk and Yk only T times. If the image space and parameter

space are quantized by the same number of steps, Algorithm 3.2 is equivalent to

adding a translated edge picture to the accumulator array for each model point.

For instance, if the relative position of a model point is given by (xk,Yk). then the

input edge picture is translated by (-xk·-Yk) and added to the accumulator array.

The parallel architectures discussed in the next chapter are designed based on

this idea.

The number of operations required to compute the Algorithm 3.2 is

T1(M) = TM2. (3.2)

If an approximate position and orientation of an object is known, it can be

detected by using a small accumulator array. Thus, the computation can be

significantly reduced if the approximate position of an object is known. To take

maximum advantage of this algorithm, a hierarchical search method with

pyramid structure is desirable. At the start, all probable objects and their

approximate positions are determined by using a small number for T and a

Algorithm 3.1

for i = xstart, xstart+M

for j = ystart, ystart+M

fork= 1 to T

begin

xk = R{k, 1)*cos(R(k,2)+o);

Yk = R{k, 1)*sin(R(k,2)+o);

M{i,j) = M(i,j) + P(xk+i,yk+j);

end

Algorithm 3.2

for k=1,T

begin

xk = R{k, 1)*cos(R(k,2)+o);

Yk = R(k,2)*sin(R(k,2)+o);

for i = xstart, xstart+M

for j = ystart, ystart+M

M(i,j) = M(i,j) + M(xk+i,yk+j);

end;

62

63

coarsely quantized parameter space. Finer descriptions and positions of objec~s

found in the previous step are determined by computing Hough transformations

with larger T and higher resolution accumulator windows defined around the

approximate positions found in the previous step. The resolution of the

parameter space can be adjusted either by using a lower resolution input image

or by adding more than one picture element to an accumulator cell for every

model boundary point. When the parameter space and the image space are

quantized by the same number of steps, only one pixel on the trace of a model

boundary point is added to the accumulator array. But, when the parameter

space is quantized more coarsely than the image space, more than one pixel

around the trace of each model point are added. For example, when the

resolution of the parameter space is nine times less than the image space, all

nine points in the 3 by 3 window with the center at the trace of a model point are

added to accumulator.

The algorithm using the coarsely quantized parameter space is less

sensitive to the orientation of the object and uses a smaller accumulator array

than the algorithm using the finely quantized parameter space. Thus, it is much

faster in finding the approximate position and orientation of an object.

3.1.3 Special Property for Parallel Implementation. Algorithm 3.1 and

Algorithm 3.2 are computationally equivalent to the Hough transform by Merlin if

they are computed in a serial computer. However, the new approach will be a

significant improvement over Merlin's algorithm for parallel implementation. In

the next chapter, we will explore three parallel structures for the new approach

using an accumulator array whose size is equal to that of the input image.

Before we discuss those structures, let us study a special property of the

reformulated algorithm that will allow us to use such structures.

In the reformulated algorithm, a point in the parameter space (a cell in the

64

accumulator array) is used as a reference point in the image space (or edge

picture). The boundary of the object is traced with respect to the reference point

in the image space. (Note that the algorithms described in the chapter II trace

the boundary of the 180 degree rotated object by using an edge point as the

reference point of the object and all parameter points on the trace are increased

by one.) The value of pixels encountered while tracing the boundary ·is added to

the accumulator cell representing the parameter of the object traced. For

example, if we consider four consecutive points starting at (i,j) in the accumulator

array shown in Figure 23b and the object given in Figure 23a, the trace of the

boundary point A of the objects represented by these four parameters are shown

in Figure 23c. In Figure 23c, the four black rectangular boxes indicate reference

points and four circular dots represent the trace of the boundary point A for the

four reference points. Note that the traces of the boundary point A for these four

parameters are four consecutive points starting at (rx1 +i,ry1 +j) in the same

column, where (-rx1 ,-ry1} is the relative position of the model boundary point A

to the reference point. In general, if we trace a boundary point (rx1 ,ry1) for p

consecutive parameter points starting at (i,j), then the data required for the

operation is p consecutive edge points from (i+rx1 ,j+ry1) to (i+p+rx1 ,j+ry1) in the

edge picture. Since the value of the picture element is either 1 or 0, we can

update the p accumulator cells for the boundary point by adding p consecutive

edge points starting at (i+r x1 ,j+r y1) to the p accumulator cells. Thus, the number

of memory accesses can be reduced by accessing more than one data point in a

single clock cycle when a small portion of the accumulator array is computed by

using existing SIMD structures like llliac-IV. If an N by N accumulator array for

an N by N input image is computed by using Algorithm 3.2, the accumulator can

be obtained by adding the translated edge picture to the accumulator array for

each model point. For example, to update accumulator array for the model point

A

. - -(i,j)

a) A Model point
to be Traced. b) Four Parameter Points to

be computed.

c) Locus of the Model Point A for Four
Consecutive Parameter Points.

Figure 23. Trace of a Model Point in the Image Space

65

. .

66

(-rxi·-ryi), the edge picture is translated rxi pixels in the x direction and ryi pixels

in the y direction and each pixel in the translated picture is added to a

corresponding accumulator cell. During the translation, the portion of the picture

shifted out and shifted into the frame boundary is set to zero.

In the next chapter, we will discuss three parallel structures specifically

~esigned for the reformulated Hough transform in terms of ease of parallel

implementation, size of the system, and speed. Like any other parallel structure

with a large number of PEs, the performance of the structures to be discussed is

limited by the 1/0 bandwidth of the system. The time spent to load and unload

the data from the system will be a major portion of the total time spent to

evaluate the Hough transform in those structures. Thus, we can increase the

efficiency of the system by reducing the 1/0 requirements for a given algorithm.

In the Hough transform, a 2D accumulator array must be computed for all

possible orientations if the orientation of the object to be detected is not known.

For example, if the orientation is divided into 360 steps, a 2D accumulator array

will be computed for for every 1 degree. Thus, the number of 1/0 operations will

be 360 times more than that of the HNGD with fixed orientation. One way of

reducing these 1/0 operations will be discussed in the next section. This method

is specifically advantageous for the parallel structures to be discussed in the

next chapter.

3.2 Orientation Determination by the Hough Transform

In most industrial applications, the orientation of the object being sought is

not known beforehand. To determine the location and orientation of an object,

the object must be described by three parameters: two for the location and one

for the orientation. In the previous discussion we used an N by N accumulator

array to find the location of an object with a fixed orientation. If the orientation is

67

equally divided into 360 steps, the parameter space for the object with an

arbitrary orientation is represented by an N x N x 360 accumulator array. Then,

the number of computations required to detect the object is proportional to

360N2. A 20 accumulator is computed for every 1 degree and maxima are

searched in the 30 accumulator. For the orientation o, the model is rotated o

degree with respected to the reference point, and a 20 accumulator array for the

orientation is computed for the rotated model. Since the model is rotated with

respected to the reference point, the position of the reference point in the model

is not changed. If we add all 20 accumulators computed for different

orientations and generate a 20 accumulator, then maxima in the 20

accumulator will represent locations of the objects being sought. Maxima in the

20 accumulator do not give any information about the orientation of the object,

but the orientation can be determined by dividing the model into two or more

segments and finding the location of each segment. After the positions of all

segments are found, the orientation of an object can be determined by

comparing computed positions with known relationship among segments in the

model. We will call this algorithm "Hough transform detecting arbitrary shape

with arbitrary orientation (HASAO)" for convenience.

Algorithm 3.2 may be the best choice for the HASAO. Since the number of

computations in the modified algorithm is proportional to the number of model

points, dividing the boundary of a model into several segments does not

increase the number of computations. Thus, we will discuss the HASAO using

the modified algorithm in this section.

The HASAO is an excellent algorithm for the special purpose systems to

be discussed in the next section. Specifically, the linearly connected parallel

structure in the section 4.3 will be a perfect match for this algorithm. The number

of computations of the algorithm in the linearly connected structure is not much

68

greater than the number of computations needed to detect an object with known

orientation. The HASAO has been implemented based on Algorithm 3.2 and

tested with some industrial objects including pliers and wrenches.

The first step in the HASAO is selecting a set of boundary segments

describing a model. The boundary of the model is divided into several

segments and a set of segments which corresponds to a unique shape for a

given model are -selected. The best set of segments for a model will be

represent a shape which is hard to find in boundaries of other objects to appear

in a scene. After a set of boundary segments for an object is determined, a

reference table is generated for each segment and the location of the reference

point chosen for the segment is stored with the table.

The transformation is performed by adding the contributions from ~II model

points generated by equation (3.1) for all possible orientations. If the number of

entries in the reference table is T and the number of steps used to quantize the

orientation is Q, then the number of pixels added to an accumulator cell will be

QT. Thus, the HASAO requi~es QTN2 operations to compute a 20 accumulator

array for a segment consisting of T boundary points. As we can see from this

number, there is no savings in computation by using this algorithm over the

Hough transform using a 30 accumulator. The only saving is achieved in the

maxima search. In the HASAO, maxima are found in a 20 accumulator array

instead of a 30 accumulator. However, in the parallel machines like those

discussed in the chapter IV, the HASAO and the Hough transform with fixed

orientation will take almost the same amount of time to compute a 20

accumulator array. Furthermore, the HASAO drastically reduces the 1/0 time

compared to the Hough transform using a 30 parameter space. The Hough

transform using a 30 accumulator needs to compute a 20 accumulator array for

all possible orientations. Therefore, the contents of the accumulator array in a

69

special purpose system must be unloaded S times to the main memory in the

host computer, where S is the number of steps used to digitize the orientation.

The number of unloading operations can be reduced significantly by using the

HASAO. The HASAO will be described in detail. Some experimental results

will be presented.

After a 20 accumulator array is computed for a model segment, the

location of the segment is determined by searching maxima in the accumulator.

If there rs more than one candidate for the location, all candidates will be

registered. The orientation of the object being sought can be determined by

comparing the relative positions of candidates in the input image with known

relationships between model segments. The false locations of a segment are

eliminated during the orientation computation process by making use of the

known relationship among boundary segments such as relative position of a

segment with others.

The HASAO has been implemented in C on the IRI 0256 computer vision

systems based on Algorithm 3.2. It was applied to actual data consisting of

some industrial parts including a pair of pliers and wrench to demonstrate the

performance of this algorithm. However, it should be mentioned here that the

program used to produce the following results is designed only to show the

basic concept of the HASAO. More work will be necessary for practical use.

Figure 24 show a pair of pliers and a wrench. The white dots on the

boundary of the pair of pliers are points used to encode R tables. As shown in

the figure, two segments of the pliers are selected to determine the orientation.

An R table is generated for each segment and used to compute the accumulator

array for the segment. Figures 25a and 25b show the accumulator for segment

1 and segment 2 for the image in Figure 13. The accumulators in Figure 25 are

Figure 24. Boundary Points used to Encode
R Table

70

a)

b)

Figure 25 . Accumulators Computed for Selected
Segments

71

72

obtained by adding all accumulators computed for every angle in the range

between 43° and 88°. The number of boundary points used to describe

segment 1 and segment 2 is 45 and 53, respectively. For the computation of the

HASAO, thinning operation is applied to the edge picture obtained by

thresholding a Sobel image. In practice, a 20 accumulator computed for all

possible orientation may have peaks other than the peak representing the

parameters of a given segment due to the edge pixels from other objects in the

image. If the number of points used to describe a segment is increased, then the

possibility of having false peaks will be reduced. Another way of avoiding this

problem is computing more than one accumulator array for a given segment. To

find the orientation of pliers, an accumulator array is computed for every 45° and

possible parameters are extracted from each accumulator array. After all

possible parameters extracted from four accumulator arrays, the best candidate

for the parameter representing the segment is determined among those

parameters. The orientation of the pliers is then determined by comparing

computed locations of these two segments with known relationship between

them. Figure 26a shows the parameters found from Figure 25 and detected

segments on the object. The point p1 and p2 are the parameter representing

the segment1 and 2, respectively. These parameters are found by thresholding

the accumulators in Figure 25 at the gray level (peak value-1). The peak value

in an accumulator array is obtained from the histogram of the array. The

orientation of pliers determined by this algorithm is 66° which is the actual

orientation of the pliers. The same algorithm has been used to determine the

orientation of a wrench in Figure 13. Figure 26b shows detected segments of

the wrench. For wrench detection, a 20 accumulator array is generated by

adding all accumulator arrays computed for every angle in the range between

67.5° and 112.s·. The number of boundary points used to describe model

Figure 26. Detected Edge Segments Superi mposed
upon a Gray- scale Picture

73

74

segments 1 and 2 are 61 and 68, respectively. The orientation of the wrench

computed by the HASAO is 93°. Observed orientation of the wrench is 90.

As we can see from the above experiments, the HASAO can determine the

position and orientation of an object very accurately. This algorithm may not be

practical in the existing computer systems, but it has a great potential for the

special computer structures discussed in the next chapter. Here, we only show

the basic idea of the HASAO. To be used for actual industrial applications, more

work is necessary. First, a systematic way of selecting a set of boundary

segments of the object should be investigated to provide unique identification of

the object of interest. Second, more elaborated ways of deciding the orientation

must be found to overcome false peaks or missing peaks.

CHAPTER IV

HARDWARE IMPLEMENTATION

In this chapter we will examine three parallel structures for algorithms

derived in the previous chapter. One of these structures is the SIMD structure

which is similar to llliac IV, and the other two are structures specifically designed

for Algorithm 3.2. The existing SIMD structure is discussed in section 4.1 to give

an idea of how the modified algorithm can be implemented in this structure. The

main objective of this research is designing specialized VLSI structures for the

Hough transform which leads to inexpensive and compact functional units for

industrial applications. The SIMD machine is flexible in the sense that it can be

used not only for the Hough transform but also for a variety of image processing

algorithms. However, its high cost limits the use of this system for industrial

applications, such as bin picking, part verification and location, and robotics

control. To be feasible for simple industrial computer vision applications, the

Hough transform must be implemented in a simple and inexpensive device. In

section 4.2 and 4.3, we will discuss two architectures which are specifically

designed for VLSI implementation of Algorithm 3.2. One structure is a mesh

connected structure where each PE is connected to its nearest four neighbors,

and the other is a linearly connected structure where a PE is connected to its

right and left neighbors. These two structures will be discussed in terms of their

performance and VLSI implementation.

4.1 Existing Parallel Structure

75

76

Two important issues in the parallel implementation of any given algorithm

are optimal distribution of workload among PEs to get the maximum hardware

utilization and the minimum memory contention for the same operands. As

mentioned, each accumulator cell is computed independently in Algorithm 3.2.

Thus, the accumulator array can be divided into several subarrays, and each

subarray can be assigned to a PE. If the new approach is implemented in a

SIMD structure, like llliac IV [33], a copy of the binary edge picture P will be

stored in the local memory of each PE to avoid memory contentions for the ~ame

operands. llliac-IV consists of a control unit, 64 processing elements each of

which has its own local memory, and an interconnection network. The capacity

of the local memory in the llliac-IV is 2048 words. The network scheme used to

interconnect PEs is a near neighbor mesh. We will investigate the

implementation of Algorithm 3.2 in a parallel system similar to llliac-IV but with a

larger local memory.

4.1 .1 Computation. If the capacity of the local memory is large enough to

hold a whole input picture, contention for the same operands can be eliminated.

By storing a copy of the input edge picture P in its local memory, a PE no longer

requires operand accesses in the main memory. Since each pixel in the input

image is represented by one bit, the amount of memory required to store an

edge picture is N2 bits which is within affordable range for a reasonable size

image for industrial applications. Once P is copied to the loca.1 memory of a PE

and an evenly divided segment of an accumulator array is assigned to a PE,

there will be no contentions for the same operands. Furthermore, this algorithm

is ideally regular for parallel implementation. Thus, it is expected that the speed

of this algorithm will be increased almost linearly proportional to E, where E is

the number of PEs. In such a system, Algorithm 3.2 can be computed as follows.

77

Step 1: Divide the accumulator M into E windows each of which consists of

m2 accumulator cells and send the coordinate of the upper left

hand corner point of each window to the designated PE. (If the

local memory of a PE is not big enough to hold all m2 accumulator

cells, M can be divided into more than E segments)

Step 2: Send the i'th model point to each PE.

Step 3: Update the accumulator segment in a PE for a given model point.

Step 4: Repeat Step 2 and 3 until all model points are traced.

Step 5: Read in the contents of the sub-accumulator-array in each PE

and store them in the main memory.

Step 6: Update the model for different other possible orientation and

repeat Step 2 through Step 5~

Step 7: Find maxima in the 30 accumulator array (or 2q accumulator for

the fixed orientation).

* For an object of fixed orientation and size, Step 6 is not necessary.
\

All steps except Step 3 are executed in the control unit. Step 3 is executed

in PEs. In Step 1, each PE receives the coordinate of the upper left hand corner

point of the accumulator segment assigned to the PE and stores the coordinate

in the registers "xoffset" and "yoffset". In Step 2 each PE receives the relative

coordinates of the model point to be traced and stores them in registers Z1 and

Z2. The starting position of the edge picture segment to be used as operands for

the current operation is computed by adding xoffset and yoffset to Z1 and Z2,

respectively. Then, the set of operations listed in Algorithm 4.1 is performed in

Step 3. When all model points for the current orientation are processed, a

subarray of the 20 accumulator in each PE is moved to the main memory. After

the contents of all subarrays are moved to the main memory, the subarray in a

Algorithm 4.1

/" Receive the relative position of the current model point (Z1 ,Z2)

from the control unit and add offset values to the relative position. *I

R1 = Z1 + xoffset;

R2 = Z2 + yoffset;

/"Add an m by m edge picture window starting at (R1,R2) to an m by m

accumulator window assigned to the PE */

for i = 1 tom

begin

R3=R2;

for j = 1 tom

begin

A(i,j) = A(i,j) + P(R1 ,R3);

R3= R3+1;

end;

R1 = R1+1;

end;

78

79

PE is set to 0 and a new subarray is computed for other possible orientations. If

a PE has enough memory to hold subarrays computed for all

possible orientations, it is not necessary to move the contents of the subarray for

each orientation to the main memory. Maxima in the 30 accumulator can be

found directly in 30 subarrays in local memories by using E PEs.

4.1.2 Performance. The time spent performing computations in a SIMD

structure consisting of E PEs is

PE(M) =so TM2/E (4.1)

(or Tm2 if m2 = M2/E)

where T is the number of points used to represent the model and s0 is the time

spent to update one accumulator cell in Algorithm 4.1. The overhead required to

manage the parallelism OE(M) is sum of the time spent to broadcast the relative

position of boundary points of a model to all PEs, Ob, and the time spent to set

up operand windows for each of the PEs, Os·

(4.2)

where s1 = Ob + Os . In general, s0 will be much larger than s1. The execution

time of the algorithm 4.1 on a system with E PEs is the sum of the overhead and

the time spent performing actual computations.

T E(M) = PE(M) + OE(M) = T(soM2/E + s1). (4.3)

Other performance measures defined in chapter I are given by the equation (4.4)

through (4.8):

SE(M) = T 1 (M)/T E(M) = CoEM2/(soM2 + s1 E) (4.4)

where c0 is the time spent to complete one operation in a sequential computer;

VE(M) =MIT E(M) = ME/(so ™2 + Ts1). (4.5)

When the number of parameters assigned to a PE is large, the effect of the

overhead on the total execution time is minimal. For a large m, the speed up SE

and the efficiency EE are close to E and 1, respectively. If the number of PEs

80

increases, m should be decreased. Thus, the performance of the system

reaches a point of diminishing returns when the number of PEs increases.

However, the reformulated algorithm can be implemented very efficiently in the

SIMD structure with a large local memory without contentions for the same

operands.

Another important performance measurement for the parallel architecture

is the cost effectiveness CE(M) = VE(M)/cE, where cE is the cost of the system.

The cost of the system is approximately the cost of the control unit(CU), E times

the cost of a PE, the design cost, and the cost of the interface network among

PEs and CU. For a large E, the cost of PEs will be a dominating factor.

Specifically, in the SIMD structure with large local memory the cost of PEs will

be significantly greater than that in the structure with small local memory. Since

our goal is computing the Hough transform detecting arbitrary shape in real time

by using a large number of PEs, the cost of a PE must be small. Furthermore,

the structure of each PE must be simple so that a large number of PEs can be

implemented in a single chip by taking advantage of VLSI technology.

However, the SIMD structure discussed is very flexible. PEs in this structure can

be used not only to compute a parameter array but also to find maxima in the

parameter array.

4.2 Mesh Connected Structure (MCS)

As mentioned in chapter III, Algorithm 3.2 is equivalent to adding a

translated edge picture to an accumulator array for each model point in the

table. For a model point (xi.Yi), the edge picture P is translated -xi in the x

direction and -Yi in they direction and added to the accumulator. Thus, if there is

an N by N shift register array where the data in a cell can be passed on to one of

its four neighbors, the translation of the edge picture in this array will be simple

81

and fast. This is the idea behind the MCS. In the MCS, processing elements

are interconnected with the near-neighbor network so that edge data in a PE

can be sent or received from one of its four neighbors. The PE at (i,j) in the 20

network is assigned to the accumulator cell M(i,j). After an edge picture in the

processor array is translated to the desirable position for a given model point,

the contents of a data register in each PE is added to the accumulator cell

assigned to the PE.

The MCS designed for an N by N image consists of N2 PEs. The system

for a 3 by 3 image is il.lustrated in Figure 27. Figure 28 shows the definitions of

symbols used in Figure 27. In the MCS, one bit of data representing an edge

pixel can be shifted to one of its four neighbors. When the data are shifted, the

data shifted out from the PEs on one end are wrapped around to the PEs on the

other end. A portion of the PEs which are not used for a certain operation are

disabled by the row enable and column enable signals from the row mask bit

shift register (RMBSR) and the column mask bit shift register (CMBSR). The

RMBSR and CMBSR are bi-directional shift registers which consist of linearly

connected N shift cells. We are assuming that the image frame is N by N

square. Data in the CMBSR can be shifted right or left depending on the

direction signals from the control unit (CU). Both registers are set to high when

the signal Reset from the CU is high.

An edge picture shifts into the system through 2-to-1-multiplexers. The

input load (IL) signal from the CU connects N input bus lines to N south input

(SI) lines of PEs on the bottom row of the 20 array processors. The following N

shift operations in the north direction will move an N by N edge picture into the

system. After all data are shifted into the system, the contents of both mask

registers are set to high. Whenever the data are shifted, the contents of the

CMBSR and RMBSR are shifted to the same direction that the data are being

RMBSR
1

Reset Clock

,__ _ _.. CMBSR t--1 CMBSR
2. 3.

CE
IL

Figure 27. Overall Structure of the MCS

82

DO

01

OL

Reset

Output

NI NO CE

SO SI CE Direction

Processing Element

Q(N-1)

Clock
Direct.

Reset 3

Q(N)

Mask Bit Shift Register Cell

RE : Row Enable
CE : Column Enable
OB : Output Bus
OL : Output Load
IL : Input Load
WI : West In
WO : West Out

Signals

El : East In
EO : East Out
NI : North In
NO : North Out
SI : South In
SO : South Out

Figure 28. Symbol Definition for the MCS

83

84

shifted. If the data are shifted east or west, the CMBSR is also shifted east or

west, while the RMBSR is unchanged. In the same manner, the RMBSR is

shifted north or south when the data is shifted north or south. A mask bit shifted

out from one end is inverted and fed back to the other end. Thus, if a column of

the PE array contains wrapped around portion of an edge picture, the contents

of the mask bit representing the column will be 0. If the output of the i'th RMBSR

cell is low, then the i'th row will be disabled. In the same manner, if the output of

the i;th CMBSR cell is low, the i'th column will be disabled. In this way, the

image data is preserved during shifts but only the appropriate part contributes to

. the accumulator array.

Figure 29 shows a PE, a RMBSR cell, and a CMBSR cell for the MCS. The

CMBSR and RMBSR are not a part of the PE in the MCS. Only one RMBSR cell

or CMBSR cell is necessary for a row or a column. A PE, shown in Figure 29 •.

consists of one c-bit counter, a c-bit output shift register (OSR), a one-bit data

register, a count up generation logic (CGL), and a routing network. Since an

element in the edge picture is represented by one bit, the data register can hold

one edge pixel. The register can receive one bit of data from and send to any of

its four neighbors through the routing network. The routing network is a

4-to-1-multiplexer which connects one of its four input lines to an output line

depending on two bit direction signals from the CU. The CGL is a three input

AND gate. Its three inputs are the data bit from the data register, the row enable

from the RMBSR cell, and the column enable from the CMBSR cell. When the

count up signal from the CGL is high, one is added to the counter.

The counter is a c-bit ripple counter with a reset option. The gate level

description of a one-bit counter cell and the block diagram of an 8-bit counter

are shown in Figure 30. A counter represents an accumulator cell assigned to

the PE. The size of the counter will limit the maximum number of boundary

85

CMBSRCell

?~i> •... ···· .. ·.·.·.·.·.

CE

jone Bit Data Regieter

Cl

WI

CE

Figure 29. A Processing Element with Mask Bit Registers

Reset L

a) One Bit Asynchronous Counter with an One Bit Output Shift Register.

set Re

Co unt

Co YDL

IL,,

-
r

-

D

-

Cii,,

,, ,,
a : .

p .
I I I T I I

,__ -

I 2
..._ -

°i ,, ~.,

" ' ,, ,
- a : -. . .

- p p - r T

l I I T I I T I I T I I

,_ - ,__ -

3 .4 5 6
, - - ..._ -

I

03 04
I

06 05~ ,, , '

"
-

i T

7

0 7,.

b) The Block Diagram of an 8 Bit Counter with Output Shift Registers.

Figure 30. An Eight Bit Asyncronous Ripple Counter

86

87

points which can be used to describe a model. Because the number of

transistors required for a PE is mainly .determined by the size of the counter, the

counter also determines the number of PEs per chip. For example, if c = 8, the

maximum number of model points is 256. If the orientation of an object is fixed

so that it can be detected by computing a 20 accumulator, an 8 bit counter will

be large enough for most applications. However, If we use the MCS to compute

the HASAO discussed in section 3.2, it may be necessary to have a counter with

more than 8 bits. The ripple carry propagation time of the counter is not critical

in this structure because the output is accessed only after all computation is

done.

After all model points are processed, the contents of each accumulator cell

is loaded into the OSR. The information .in the OSR is shifted out while new

input is shifted into the system. All shift operations including the mask bit, data

bit, and output are controlled by the clock signal from the CU. The shift

operation can be disabled by disabling the clock signal.

The mask bit shift register in Figure 29 is a one-bit shift register with a

3-to-1-multiplexer for the input. This register is set to 1 when the reset signal

from the CU is high. It receives one bit data from three sources. For the column

mask bit shift register, it can receive the data from its left or right neighbor when

the data are shifted west or east. When the data are shifted north or south, the

column mask bit shift register will hold its current status by feeding its output

back to its input.

4.2.1 Computation. After an image is loaded into the system, the RMBSR

and CMBSR are set to 1 and all counters are cleared. To update all

accumulator cells for the first model point (-x1 ,-y1), the image is translated by x1

pixels in the x direction and by y1 pixels in they direction. Then the CU issues

the count enable command. For the subsequent model point (-x2.-Y2). the

88

image is translated by lx1_x2I in the x direction and by IY1-Y2I in they direction.

When the image is shifted horizontally, contents of the RMBSR are also shifted

in the same manner with the exception that the signal shifted out from one end is

inverted and fed back to the other end. The contents of the RMBSR are shifted

likewise when the image is shifted vertically. The signals from the RMBSR and

CMBSR disable the PEs having picture elements wrapped around. Figure 31

shows the arrangement of edge data in the 256 by 256 PE array when a count

up command is issued for the model point (-100,-128). The PEs with data points

in the hi'ghlighted area will be enabled for the count up operation.

A functional simulation of the MCS has been implemented in the IRI 0256

Computer Vision Systems in C. The IRI 0256 system has a translation function

built into its coprocessor. This function translates an image in four directions:

north, south, east, and west. The portion of the image shifted out from one end

can be shifted into the other end. By using this routine, the edge picture is

translated for each model point. The wrapped around portion of the image is

disabled by setting pixels in this portion to zero. Since only edge elements in

the picture have a value of 1, adding this translated image to the accumulator is

equivalent to the count up operation in ·the MCS. In fact, the same procedure

has been used to compute the HNGO in the section 2.3. In other words, the

results for the HNGO given in section 2.3 were obtained by the simulation of the

MCS.

4.2.2 Hardware Implementation. When we consider the actual implemen

tation of this MCS, the most important factor affecting the performance of the

system is the number of 1/0 pins available in a chip. The number of transistors

required for a PE with an 8 bit counter is about 250, which is small enough to

integrate a large number of PEs in a single chip. However, the MCS may not be

able to take advantage of the simplicity of a PE if the size of the desirable system

Figure 31 . Arrangement of the Edge Picture in
the Model Point (- 104 ,- 128)

89

90

is too large to implement in a single VLSI chip. In such a case, the system must

be built by connecting several chips each of which contains a block of PEs.

Thus, a chip must have enough 1/0 pins to connect a PE in a chip with its four

neighbors. For example, if a chip contains m2 PEs, the number of 1/0 lines

required to form a proper communications network among PEs in other chips

will be at least am lines. It means that the number of PEs per chip is limited by

the number of 1/0 pins available in a chip. If the size of the system for a given

application is small enough so that it can be implemented in a single chip, the

number of interconnections among PEs is no longer the major limiting factor.

The size of the system which can fit in a VLSI chip is only limited by VLSI

technology. We will discuss these two systems: a single chip mesh connected

structure (SCMCS) and multiple chip mesh connected structure (MCMCS),

separately.

The block diagram of the SCMCS and MCMCS are shown in Figure 27

and 32, respectively. In the MCMCS consisting of multiple building blocks, the

number of 1/0 pins per chip required to interconnect the blocks is am. For

example, the number of 1/0 lines per chip required to interconnect 16 by 16 PE

blocks without cc;msidering control lines is 12a. If the row mask bits and column

mask bits are added, the number will be 160. To reduce the number of pins

required for mask bits, each PE block contains its own RMBSR and CMBSR. In

this structure, the number of pins required to connect mask bit shift registers in a

PE block to mask bit shift registers in other PE blocks is reduced to 4. To

construct the data path among PEs with the minimum number of 1/0 pins, PEs on

the boundary of a PE block interchange the data with PEs in other blocks

through bi-directional switches. The direction of the switches is controlled by the

direction signal from the CU. Now, the number of 1/0 pins required for data and

mask bits is reduced to 4(m+ 1) for an m by m PE block.

1/2
DMUX

Reset Clock

1/2
DMUX

Figure 32. A Building Block of the MCMCS

91

DO

01

Out

92

The performance _of the MCMCS and SCMCS depend on the number of

lines designated for output and input. Both systems can compute the Hough

transform in time proportional to T, where T is the number of model points.

However, the time spent to load and unload data from the system may be a

more significant f~ctor than the computation time in the MCS. This problem is

more significant in the SCMCS than the MCMCS. In the SCMCS, the data must

be loaded and retrieved from the system through the small number of 1/0 pins

available in a single chip. In the MCMCS, each PE block can have its own input

and output data bus. However, a large price must be paid for the large 1/0

bandwidth.

In the SCMCS the total number of control lines from the CU is eight

including Reset, Direction(2), input load (IL), count enable (CE), output load

(OL), input/ouput (10), and Clock(2). If the number of pins available per chip is P,

(P-8) pins can be used to load and retrieve the data from the system. All (P-8)

pins will be used as either an input or output bus depending on the 10 signal.

(However, the circuit necessary for the bus sharing is omitted in Figure 27 and

32.). Thus, the time required to load the edge picture to the system is

proportional to N2/(p-8) and the time required to unload the accumulator is

proportional to cN2/(P-8), where N is the size of the edge picture and c is the

size of the counter.

In the MCMCS, control signals from the CU are the same as those in the

SCMCS. However, a part of the pins used to send data among chips are also

used as the output data bus to unload counters. The input data and output data

can be loaded or unloaded from each PE block through its own 1/0 bus. If the

size of the PE block in a chip is m by m, the time required to load the edge

picture to the system and the time required to unload counters will be as small

as m2/(P-8) and cm2/(P-8), respectively. However, it requires more complex

93

circuitry to accommodate the high data rate from each PE block. The number of

1/0 lines must be determined by considering the system requirements such as

cost and speed.

The estimated number of transistors for a PE with an 8 bit counter is about

250. Since the current VLSI technology makes it possible to implement 106

transistors per chip, it is possible to implement 542 PEs in a sing!e chip. The

number of PEs in a single chip is expected to be increased by a factor of four by

the end of this decade. Thus, a practical size of the SCMCS will be possible

within the next few years. Though the size of the SCMCS is expected to

increase greatly, the number of pins available for a VLSI chip will not be

improved as much as the size of the PE array. It means that the time required

for loading and unloading data will be the major limiting factor in the SCMCS.

This problem can be alleviated by adapting the approach discussed in the

section 3.2. On the other hand, the MCMCS can not take advantage of the

advanced VLSI technology as much as the SCMCS can. The number of PEs in

the MCMCS chip is limited by the number of pins on a chip. For the VLSI chip

with P pins, the maximum number of MCMCS PE blocks that can be fit into the

chip is (P-12)/4. If a chip has 78 pins, the number of the PE blocks that fit in the

chip is 162. However, the size of the system can be made arbitrarily large by

connecting as many MCMCS chips as are needed. Since each MCMCS chip

can have its own 1/0 bus, the time required to load and unload data is no longer

problem in the MCMCS although a larger system must pay a bigger price for the

1/0 circuits.

4.2.3 Performance. The time spent performing computations which are

actually a part of the task depends on the boundary length of the model in the

MCS. If the model is described by a set of points: { (xi.Yi) I i=1,T}, it can be

expressed by the following equation.

94

(4.6)

where s0 is the time taken for one shift operation. E represents the number of

PEs. In the MCS, the number of PEs is N2. If we define a new variable B to

denote the boundary length of the model, then the equation (4.6) can be

rewritten by

(4.7)

The overhead· required to manage the parallelism is the time required to

broadcast the control signals to all the PEs and it can be represented by

(4.8)

where s1 is the time required to broadcast the relative position of a model point

and control signals. However, broadcasting control signals and data and

shifting operation are done in a single clock cycle. The clock period will be

determined depending on the constant s0 and s1. If the clock period is

represented by Sc, the execution time of the algorithm in the MCS is

(4.9)

Other performance measures including speed (VE), speed up (SE), efficiency

(EE), utilization (UE), and cost effectiveness (CE) are given by following four

· equations.

VE(N) = N2/scB

SE(N) = Ss TN2/ scB

CE(N) = VN(N)/cE

(4.10)

(4.11)

(4.12)

ss in the equation (4.11) is the time required to process one data point in a

sequential computer and cE in the equation (4.12) is the cost of the system.

The length of the boundary B is proportional to T. If the model points are

continuous, the maximum distance between two points is .../2. In this case, the

speed up is SE = ssN2/...J2sc. Since shifting and counting are done in a single

clock cycle in the MCS, s2 will be much bigger than Sc· It means that the speed

95

up will be much bigger than N2. Another important performance measure of the

special purpose system is the cost effectiveness. As mentioned in chapter I, the

major portion of the cost of special purpose systems is the design cost. In the

MCS as well as the LCS to be discussed in the next section, a whole system can

be build by connecting copies of a PE. Thus, the design cost can be minimized.

Since a PE consists of a small number of transistors, a large number of PEs can

be implemented in a chip. All these factors will contribute to reducing the system

cost. The cost of the SCMCS is much smaller than that of the MCMCS since it

does not require any interconnection circuits.

If an L-bit common bus is used for the input and output, the 1/0 time can be

expressed by

(4.13)

where sb is the clock period running the bus and c is the number of bits used to

represent an accumulator cell. In the SCMCS, the number of 1/0 lines L is

limited by the number of pins available on a single chip. But, in the MCMCS, it

can be increased by adding 1/0 circuits to every building block. However,

increasing the number of 1/0 lines will also increase the cost and complexities of

the system. As a matter of fact, a special purpose system with a multibus

structure is not practical for current industrial computer vision systems. Without

expensive supporting devices, current computer vision systems can not take

advantage of such a system. Even if the supporting devices are available, using

such a special purpose system for industrial computer vision systems will not be

economically feasible.

More practical choice for industrial computer vision systems will be the

special purpose systems with a single bus structure which does not require extra

hardware for 1/0 operations. If we use a one-bit input data bus and a c-bit output

data bus, the 1/0 time will be proportional to sbN2 , which is a dominating factor

96

in the total computation time. In this case, the speed of the SCMCS will be

almost equal to that of the MCMCS.

4.2 Linearly Connected Structure

The mesh connected structure discussed in the previous section can

compute the Hough transform in a time proportional to T. But it requires complex

110 circuitry to supply data to and retrieve data from the system. It also requires a

large number of 110 pins which is the major limiting factor in the VLSI

implementation. Specifically, in the MCMCS, the number of 110 pins available

on a chip determines the number of PE blocks per chip. Thus, the MCMCS can

not take advantage of advanced VLSI technology. In general large a number of

pins i_n a package means high packaging cost and large system size.

The linearly connected structure (LCS) is not as fast as the MCS, but it has

other important advantages over the MCS for simple VLSI implementation.

Since it has only one data path, a PE block can be connected to other PE blocks

with a small number of 110 pins. The number of PE blocks in a chip is

determined only by the maximum number of transistors which fit in a chip and

the packaging and interconnection cost of an LCS chip containing a PE block

will be small compared to that of the MCS.

The block diagram of this structure and the description of a PE are given in

Figure 33 and Figure 34, respectively. In the LCS, PEs are connected as a

linear array and one bit of data in a PE can be passed only to its right neighbors.

The picture data is loaded into the system one pixel at a time through the first PE

in the first row. Thus, the time required to compute the Hough transform in the

LCS is proportional to N2.

A PE consists of a one-bit data register, a one-bit row mask bit shift register

(RMBSR), a c-bit ripple counter, cone-bit output shift registers (OSR), and a

Rv1R
1

. Rv1R
3

Reset

4

Clock
(C1 ,CT,C2,G2f

Result
out

Figure 33. Block Diagram of the LCS

2
a..&OC

97

I Ole CMBSR een I

Ov1

C1

,Cou~t Enable(CE) c
1 C2

~ ---;::=============-~---' · 11 bit data register I

18 bit counter block

7 6 5 4 2

Figure 34. A Processing Element for the LCS

0

()
0
c
;:?.

98

~I

Res t

99

count up generation logic (CGL). The block diagram of a PE is shown in Figure

34. The counter used in the LCS is identical to the counter shown in Figure 30.

The size of the PE is also determined by the size of the couf'!ter. The number of

transistors required for a PE with an 8 bit counter is approximately 254. A PE in

the LCS is basically the same as that in the MCS. One difference is that the

LCS has its own CMBSR representing the status of the current data element in

the data register. The content of the CMBSR is shifted whenever the data bit is

shifted.

Figure 33 illustrates the overall structure of the LCS for a 3 by 3 image. In

this structure, data bits and column mask bits are shifted one step per clock cycle

in the same direction. A data bit shifted out from the last column of a row is fed to

the first column of the next row, and a column mask bit shifted out from the last

column of a row is fed to the first column of the next row. The column mask bit

shifted out from the first row is also fed to the column flag register (CFR). The

signal fed to the first column mask register of the next row is the inverse of the

signal shifted out from the last column mask bit register of the current row.

Two phase clock signals from the controller are used to shift the CMBSR

and data bit registers. When the shift enable (SE) from the CU is low, the shift

operation can be disabled by disabling the clock signals. The clock disable

circuit can be implemented either as a part of the building block or as a separate

device. If it is implemented as a separate device, an 1/0 pin for the SE signal will

not be necessary in each building block. The row mask bit registers are shifted

when the first column of a new row of edge picture is shifted in. To generate the

row change (RC) signal automatically, the column flag register (CFR) is used.

This register receives the data from the last column of the first row, which means

that it holds the column mask bit shifted out from the first column for one clock

cycle. One difference between the CFR and other CMBSRs is that the CFR is set

100

high while others are set low when the reset from the CU is high. Thus,

whenever a new row of an edge picture is fed into the system, the contents of the

last CMBSR in the first row and the contents of the CFR are not the same. Thus,

the RC can be generated By passing these two signals through an EXCLUSIVE

OR circuit. This circuit is shown in the upper right hand corner of Figure 33. The

RC enables the clock signals from the CU for one clock period to shift the

RMBSRs. The row mask bit shifted out from the last row is inverted and fed back

to the RMBSR in the first row. It is also fed to the row flag register (RFR).

Like the MCS, counters in a certain portion of the PE array are disabled for

a given count up operation. The PEs to be disabled are determined by the data

arrangement among PEs at the time of the count-up operation and the relative

position of the model point being updated with respect to the reference point.

The CU issues the mask select (MS) signal along with the CE signal for the

count up operation. The MS signal and the row and column mask bits are used

to determine the portion of PEs to be disabled. A detailed description of the MS

signal will be given in the next section.

Unlike the MCS, the i'th row mask bit is not necessarily used to enable the

i'th row of the PE array in the LCS. Depending on the MS from the CU, the

enable signal for the i'th row is selected between the i'th and (i+ 1)'th row mask

bit. The RFR is necessary for this operation. If MS=1, the (i+ 1)'th mask bit will

selected. Otherwise, the i'th mask bit will be selected. If the selected signal and

the count enable (CE) signal from the CU are both high, then the i'th row will be

enabled for the count up operation. This row enable signal is denoted as RE in

Figure 33.

The enable signal for the i'th column is selected between the mask bit from

the i'th CMBSR and the inverse of the mask bit depending on the column mask

selection signal (CMS). The CMS is generate by using the MS and the signal

101

from the CFR. If MS = 1, the flag bit in the CFR is selected as a CMS; otherwise,

the inverse of the flag is selected as a CMS. The circuit generating the CMS is

located under the EX-OR circuit in Figure 33. If CMS = 1, the mask bit in the i'th

CMBSR will be used directly to enable the i'th column. Otherwise, the inverse

signal of the i'th CMBSR is used.

Through the OSR, the parameters in the counters are unloaded. The

output load (OL) from the CU will copy the content of -a counter in a PE onto the

OSR in the PE. When the OL is high, the shift operation is disabled for one clock

cycle. Each subsequent shift operation will shift out one parameter from each

PE block.

4.3.1 Computation. The idea behind the LCS is basically the same as

that behind the MCS. As we discussed in the previous chapter, the Hough

transform for a given edge picture can be computed by adding a translated edge

picture for each model point to an accumulator. For example, for a model point

(xi.Yi), the edge picture is translated -xi in the x direction and -Yi in they direction,

and a portion of the translated picture is added to the accumulator. During the

translation operation, the picture elements shifted out from the image frame are

discarded and the elements shifted into the image frame are set to zero. For the

model point (xi.Yi), column (N-yi) through N and row (N-xi) through N of the

translated picture are set to zero by this procedure. In the MCS, data are shifted

in four different directions to reach the right translation for a given model point.

In the LCS, data are shifted in only one direction. That is the reason why the

LCS is slower than the MCS.

To illustrate how Algorithm 3.2 is processed in the LCS, let us consider a 4

by 4 image given in Figure 35a. The picture contains a square consisting of

eight boundary points. The model is shown in Figure 35b and the relative

position of each boundary point with respect to the reference point R is given in

Table V.

, ,
x

a) Edge Picture

.._ y

x

Figure 35. An Example for the LCS

TABLE V

y

b) Model

RECTANGULAR COORDINATE SYSTEM REPRESENTATION OF
THE REFERENCE TABLE FOR THE MODEL IN FIGURE 22

Model Pntr. 1 2 3 4 5 6 7 8

Position (1,1) (1,0} (1,-1) (0,1) (0,-1) (-1,1) (-1,0) (-1,1)

102

The LCS consists of 16 PEs arranged for a 4 by 4 image. PEs in the

LCS are connected linearly but they are arranged as an N by N array for more

clear illustration of row and column mask bits. Each row of the PE array is

assigned to a corresponding row in the accumulator array.

The 4 by 4 input image is shifted into the system one pixel in a time

103

starting from the pixel at the last column of the last row. While the input image is

shifted into the system, all the counters in the PE array are disabled until the

portion of the data shifted in is aligned to appropriate PEs for a count up

operation. When the data is aligned, the CU issues the count enable signal and

the MS to each PE. Figure 36 show the arrangement of pixels in the system and

control signals at the moment a count up is issued for each model point. Bits in

the column heading of each table represent the column mask bits and bits in the

row heading represent row mask bits at the moment when the counter-up

command is issued for a given model point. An entry of the table represents the

content of the data register of a PE. X represents "don't care". N and MS shown

above each table is the number of shift operations required to reach the data

arrangement for the model point and the mask bit selection signal which

determines the portion of the PE block to be enabled, respectivly.

To generate control signals, the CU must know when all data points are

aligned to appropriate PEs for a given model point and which part of the data

will be disabled. The number of shift operations required to reach the right

translation for the i'th model point (xi.Yi) can be computed by using the following

equation.

Ni= N(N-xi+1) - Yi (4.14)

where N2 is the size of the system. Thus, the CU issues a CE signal at the Ni'th

shift operation for the i'th model point. Generation of the MS is simpler than that

of the CE, but it is not easy to show how the MS is used to select the right portion

of data for a given count up operation. Since the data point shifted out from the

last column of a row is fed to the first column of the next row, a row of PEs may

hold data elements belonging to more than one row of the input picture. If the

first column of the (N-r)'th row is fed to the system, row O through r of the PE

array will hold row N through N-r of the input image. If the c'th column of the r'th

104

row is fed to the system, row O through r of the PE array will hold picture

elements belonging to two rows of the input picture. Figure 36 illustrates this for

the given input picture. For example, Figure 36a shows the data arrangement

when the second column of the input picture is fed to the system. In the first row

in the table, the first three elements belong to the third row of the input picture

and the last element belongs to the fourth row of the input picture. Figure 36a

actually shows the moment that the CE signal is to be issued for model point 1.

For model point 1, the PEs in the shaded area will be enabled for the count up

operation. The MS signal determining the portion of data to be enabled is

generated according to the following rule:

MS

0

1

MS = 0, if Yi .2: 0

MS = 1 , otherwise

TABLE VI

Column

CFB=O

CMB(i)

CMB(i)

USE OF THE MASK SELECTION SIGNAL

Row

CF8=1

CMB(i) RMB(i)

CMB(i) RMB(i+1)

* CFB : Column Flag Bit
CMB(i): Ouput of the i'th Column

Mask Bit Register
RMB(i): Output of the i'th

Row Mask Bit Register

As we can see in Figure 36, data pixels in a row of the LCS are divided

N(1)=4X(4-1)-1=11 I
MS=O .

1 1 1 0 []
:::.;::::::::::::::::::::::;::::;:;:;:;.;:;:;:;:::;:;:·:·:·:

~ .,~
1 .. ,.,.,.,0,.,.,.,.,.,.,0.,.,.,.,.,.,0,· x

IQ]X XX X
a) Model point (1, 1)

N{2) = 4x(4-1)+1=13 I
M8=1 _. .

1
1
1
1

1 1 1 1 (!]

0
0
0
0 x x x

[] c) Model point (1,-1)

N(S) = 4x(4-0)+ 1 =17
MS=1

1 0 0 0 [£]

0 x
1 0
1 0
1 0

l!J e) Model point (0,-1)

N(2) = 4x(4-1)=12
MS=O

1
1
1
0

1 1 1 1 []

x x x x

[]
b) Model point (1,0)

N(4) = 4x(4-0)-1 =15 I
MS--0 .

0 0 0 1 [!]

1 1
1 1
1 0
1 x
[]

d) Model point (0, 1)

N(6) = 4x{4+ 1)-1 =19
MS=O .

1 1 1 0 [QJ

r '~iliJ !~J; ~
1 { ,l' :j : ;:g;;:: 6
[] f) Model point (-1, 1)

Figure 36. Arrangement of the Edge Picture and Control
Signals Necessary for Each Model Point.

105

106

into two segments. Column mask bits on the table are used to separate these

two groups. If MS=O, the first group in each row is enabled. Otherwise, the

second group is enabled. Table VI shows how the MS is used to determine the

portion of PEs to be enabled. To reduce the propagation delay in the selection

circuit and the transmission delay, the MS is issued a half clock cycle earlier

than the CE signal.

After a whole image is shifted into the system, the CU starts feeding Os into

the system until the pixel at the first column of the first row is shifted out from the

system. The content of each counter is shifted out through output shift registers

after all model points have been processed. To load parameters from the

counters into output shift registers, the CU issues the output load (OL) signal to

the LCS. When the OL is high, the shift operation is disabled for one clock cycle

time. After parameters are loaded to output shift registers, a new input can be

shifted into the system while parameters are shifted out from the system.

A functional simulation of the LCS has been implemented on the IRI 0256

system and tested with both the machine generated image and the real image

containing industrial parts. Unlike the MCS, the functional simulation of the LCS

does not use any short cut. All the logic circuits except counters and register

cells in -the LCS are represented by independent subroutines. Counter and

register cells are represented by 2 byte memory elements. Figure 37 shows the

procedure of computing the Hough transform for the problem defined by Figure

35 and Table V. It shows the arrangement of the edge data and control signals

right before the count up operation is performed for each model point. It also

shows the contents of the accumulator array after the count up operation. The

result shown in Figure 37 is an actual output of the simulation program for the

shape given by Figure 35. An actual image containing nuts has been processed

by using this simulation program. Figure 38a shows the original image and

1 1 1 0
1 0 1 0 1
1 1 1 0 0
1 0 0 0 0
0 0 0 0 0

0 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

Data and Mask Accumulator

Model Point 1 (Clock=11. MS=O)

0 1 1 1
1 0 1 0 1
1 0 1 1 1
1 0 0 0 0
0 0 0 0 0

1 2 1 1
2 3 2 1
0 0 0 0
0 0 0 0

Data and Mask Accumulator

Model Point 3(Clock=13. MS=1)

0 1 1 1
1 1 1 1 1
1 0 1 0 1
1 0 1 1 1
1 0 0 0 0

2 4 2 2
2 5 2 2
1 2 1 1
0 0 0 0

Data and Mask Accumulator

Model Point 5(Clock=17. MS=1)

1 1 1 1
0 1 1 1 1 2 4 2 2
1 1 1 1 0 4 7 3 2
1 1 0 1 0 2 3 2 1
1 1 1 1 0 2 2 1 ·o
Data and Mask Accumulator

MQd~I PQint 7(Q1Qck=2Q, MS=O)

1 1 1 1
1 1 0 1 0
1 1 1 1 0
1 0 0 0 0
0 0 0 0 0
Data and Mask

1 1 1 0
2 2 1 0
0 0 0 0
0 0 0 0

Accumulator

Model Point 2(Clock=12. MS=O)

1 1 1 0
1 1 1 0 1
1 0 1 0 1
1 1 1 0 0
1 0 0 0 0

2 3 1 1
2 4 2 1
1 1 0 0
0 0 0 0

Data and Mask Accumulator

Model Point 4(Clock=15. MS=Ol

1 1 1 0
0 1 1 1 1
1 1 1 0 1
1 0 1 0 1
1 1 1 0 0

2 4 2 2
3 6 2 2
1 3 1 1
1 1 0 0

Data and Mask Accumulator

Model Point 6(Clock=19. MS=Ol

0 1 1 1
0 1 1 1 1
1 1 1 1 1
1 0 1 0 1
1 0 1 1 1

2 4 2 2
4 8 4 3
2 4 2 2
2 3 2 1

107

Data and Mask Accumulator

MQdel Point 8(Clock=21, MS=1)

Figure 37. Arrangement of the Data and the Contents of Accumulator
after Each Count-up Operation

Figure 38. Results Obtained by the Computer Simulation
of the LCS

10 8

109

Figure 38b shows the edge picture detected from the original. The contents of

the accumulator array computed by the simulation prograrn is shown in Figure

38d. The accumulator array computed by the LCS is identical to the

accumulator array by the MCS which is shown in Figure 38e. The parameter

detected from the accumulator in Figure 38d is displayed in Figure 38c. This

experiment proves that the results from the LCS and the MCS are identical.

Thus, the Hough transform computed by the LCS will have the same properties

discussed in section 2.3.

4.3.2 Hardware Implementation. The LCS has two important advantages

over the MCS. First, it can be easily adjusted for any size of image by adding

simple building blocks. Second, the number of 110 pins required for each

building block is small compared to the MCS. Thus, the number of building

blocks in a chip is only limited by the density of the fabrication technology. In

other words, the linearly connected structure will enable us to build more

compact and less expensive systems for industrial computer vision systems than

the mesh connected structure.

The gate level description of a PE is given in Figure 34. The number of

transistors required for a PE with c bit counter is about 28c+24. With the

currently available semiconductor fabrication technology (106 transistors per

chip), the number of PE blocks in a chip is 2642 for the PE with an 8 bit counter.

Thus, we can construct the LCS consisting of 2562 PEs with 16 chips.

The number of pins required for an m by n building block varies with the

packaging scheme. If the building block is packaged for the system with a fixed

number of columns, then the building block needs (c + 10) pins, where c is the

size of a counter. Ten pins are used for Reset, Clock, CE, OL, MS, Data In (DI),

Data Out (DO), Row Mask In (RMI), aAd Row Mask Out (RMO). The RMI is the

row mask bit shifted out from the upper block and the RMO is the row mask bit

110

shifted out from the current block. DO and DI connect the data path among three

building blocks. If the building block is packaged for the system with an arbitrary

number of columns, the building block requires (c + 12 + 2n), where n is the

number of rows in the building block. In addition to those required for the

building block with the fixed column size, it needs (2n+2) lines for DI, DO,

Column Mask In (CMI), Column Mask Out (CMO), Row Change(RC), and

Column Mask Selection. CMI and CMO are used to connect the last row mask

bit register cell in the upper block and the first row mask bit register cell in the

lower block. For a 256 by 16 building block consisting of PEs with an 8 bit

counter, 52 pins are nece~sary. However, the second packaging scheme is not

necessary for most industrial computer vision systems. The size of the image

used in industrial vision systems is pretty much fixed. They usually hav·e· either

256 by 256 or 512 by 512 frame buffers.

4.3.3 Performance. In the LCS, the time needed to compute the Hough

transform for an N by N image is proportional to N2. The number of shift

operations required to compute the Hough transform in the LCS may vary

depending on the size and shape of the model, but it will not be larger than 2N2.

If we do not consider the 1/0 time, the LCS is slower than the MCS where the

same operation can be done in time proportional to B, where B is the length of

the model boundary. However, the LCS has very important characteristics for

the simple and inexpensive systems.

First, no extra time and circuits are necessary to load the edge picture into

the system. In the LCS, an edge picture is loaded to the system one bit at a time.

Thus, no extra hardware is necessary to feed the data into the system. The input

time for the LCS is included in the computation time because the computation is

performed while the input data are being shifted into the system. The contents of

the accumulator array are shifted out from the system while a new edge picture

1 1 1

is being loaded. Thus, the LCS does not require any extra time to unload the

accumulator array although the output is delayed one frame time (N2).

Second the building block for the LCS needs a sma~I number of pins so

that the size and cost of the system will be small compared with the MCS. As

mentioned in the previous section, the LCS for a 256 by 256 image can be built

by connecting 16 chips with 18 pins.

Third, almost any size system can be built in this structure by connecting as

many building blocks as are needed.

Fourth, since the execution speed is proportional to N2, the LCS can

compute the HASAO discussed in the section 3.2 with small additional cost.

Let's assume that the orientation of an object is known with a possible error ±E°

and the model of the object is described with T boundary points. If we compute

·the HASAO to find this object in a N by N image, the number of computation is

proportional to ET in the MCS and N2 in the LCS. To compute the HASAO in

these structures, a new reference table is generated by rotating the model for all

possible orientations. For every possible orientation, the model is rotated and

all boundary points of the rotated model are added to the table. In the LCS, if

there is a model point duplicated d times, only the count-up operation is

performed d times without shifting any operation to update the accumulator for

the model point. The speed difference between these two structures will be

smaller when T and E are getting bigger. This is very advantageous for a

locating industrial part with arbitrary orientation. The constant execution time of

the LCS is also important when a vision system is used as a feedback sensor for

robotics.

Although the LCS executes the Hough transform in time proportional to

N2, it is fast enough for many industrial applications. Most systems in the current

computer vision system market deal with 256 by 256 images. The LCS running

112

at 1 O MHZ can compute the Hough transform for an 256 by 256 image in less

than 14 milisecond. 1 O MHZ is not an unrealistic value. Since most critical

paths have eight gate delays, a higher clock rate should be possible.

If we compute performance measures for the LCS, the performance of the

LCS may look very poor compared to the MCS. The execution time in the LCS

is proportional to N2 while the execution time in the MCS is proportional to B.

However, the execution time in the MCS does not include the time required to

load the data into the system, which will be the dominating factors in determining

the total computation time and the cost of the system. The loading time can be

reduced by increasing the number of input lines, but it increases the complexity

and cost of the system. On the other hand, the LCS does not require extra time

to load the data into the system.

In summary, by the figures representing the performance of the system, the

MCS is superior to the LCS. But, for a small, inexpensive, and reasonably fast

Hough transformer for an industrial computer vision system, the LCS is a better

choice.

CHAPTERV

CONCLUSION AND SUGGESTIONS

5.1 Summary

In this thesis, two multiple specialized parallel structures are designed for

efficient VLSI implementation of the Hough transform for arbitrary shape

detection. The two structures-the mesh connected structure(MCS) and the

linearly connected structure(LCS) promise compact and fast Hough transfor

mers. These special purpose functional uints will boost the performance of the

current computer vision systems for many industrial applications, such as bin

picking and partially occluded parts location. The computer simulations show

that these structures can compute the Hough transform as accurately as any

sequential computer. To select the correct algorithm for these specialized

structures, two types of the Hough transforms are studied in terms of efficiency

and accuracy in detecting industrial parts and ease of parallel implementation:

the Hough transform with gradient direction information (HWGD) and the Hough

transform with no gradient direction information (HNGD).

The study shows that the HNGD is better suited for parallel implementation

than the HWGD although its performance in detecting industrial parts is slightly

inferior to that of the HWGD. The HNGD consists of a few simple operations for

each data point, but the performance of this algorithm in a parallel machine is

still limited by the 110 bandwidth of the system. To solve this problem, the HNGD

is reformulated. Based on the reformulated algorithm, the two special purpose

113

114

functional units are developed for inexpensive and compact VLSI

implementation.

The MCS can compute the Hough transform for an N by N image in time

proportional to T, where T is the number of boundary points used to describe a

model. With the advent of VLSI technology, this structure promises a compact

single chip Hough transformer for a practical size image within a few years. By

using many Hough transformer chips assigned for different tasks, we can

construct a powerful and flexible system.

The LCS can compute the Hough transform for an N by N image in time

proportional to N2. Although the LCS is slower than the MCS, it can compute

the Hough transform for a 256 by 256 image in real time and has very important

characteristics for inexpensive parallel implementation. First, the LCS is not

bound by the number of pins available in a chip. Thus, it can be implemented

inexpensively and compactly by using existing VLSI technology. This system

will add great power to current industral computer vision systems which suffer

from lack of computation power for high-level and mid-level vision algorithms.

To take advantage of these specialized architectures (specifically for the

LCS), we also developed an algorithm detecting objects with arbitrary

orientations. Experimental results of this algorithm on industrial scenes are ·

presented. The results show that it can be used to find an industiral part with

unknown orientation in the image with little noise. This algorithm can be

computed very efficiently in the LCS.

5.2 Suggestions for Further Research

5.2.1 Necessary Work for Actual VLSI Implementation. In this research,

we prove that both the LCS and MCS will compute the Hough transform

accurately; we also give system level descriptions of these structures for VLSI

115

implementation. But, much work ·remains to be done for actual VLSI

implementaion.

First, the system must be defined more specifically. For example, the

number of 1/0 lines must be determined by considering the speed and cost

required for given tasks.

Second, although the way of generating control signals necessary for each

structure is discussed, the description of the hardware generating these control

signals are not given in this thesis. More work will be necessary to design an

efficient control unit for each structure.

Third, to take advantage of the proposed functional units, ways of finding

maxima in the computed accumulator array must be studied.

5.2.2 Suggestions. This thesis discusses two parallel structures

computing the Hough transformation along with an algorithm taking advantage

of these structures. Some extentions to the present effort are suggested.

1. The LCS can be extended for general 20 convolution by replacing the

counter with an adder. Of course, the data register must be expaned to

accommodate a multibit grayscale pixel. This structure may be significantly

simpler than existing 20 convolver architectures if the size of templates are

arbitrary large.

2. A hardware histogram generator attatched to the special purpose

functional units discussed in this thesis will speed up the process of finding

maxima in the accumulator array. The histogram generator can generate the

histogram for the accumulator while the contents of the accumulator are shifting

out from the functional uint. The histogram will give informations about the peak

value and the number of possible peaks. The histogram information is useful

when the special purpose functional unit is used to detect the object with

arbitrary orientation. By comparing the peak values in histograms generate_d for

116

all possible orientations, the right orientation of the object can be determined

without searching a 30 accumulator. The location of the object is then

determined by searching the largest peak value in the 20 accumulator array

computed for the correct orientation.

3. The histogram generator described above may give global information

about the contents of accumulator arrays necessary for peak detection. If we are

looking for only one object that matches best with the given model in the image,

which is the case for bin picking problems, a specialized hardware can be built

to find the peak in the accumulator array. A peak detection system can be

designed by using a comparator and two registers: one for the maximum value

and the other for the location of the maximun value. The comparator compares

each parameter shifting out from the system with the current maximun value in

the peak register. If a parameter from the system is larger than the current

maximum value, the peak value and location in· registers will be replaced by

new values.

4. The 20 bit serial convolver which has the structure similar to the 20

convolver discussed in the section 1.6 may be used to compute the Hough

transform. Such a system will be much slower and require a significantly larger

amount of hardware than the LCS, but it can be also used to compute the

grayscale convolution for large templates. If one needs a system capable of

computing both the Hough transform and the grayscale convolution for a large

template, this system may be a good choice.

5. The HASAO discussed in section 2.3 must be polished for practical use.

Fisrt, a systematic way of determining an optimal set of model segments must be

developed to minimize the performance degradation due to the noise from other

objects. Second, more a sophisticated orientation determination algorithm

using known information is necessary to minimize the effect of false peaks found

117

in 20 accumulators.

SELECTED BIBLIOGRAPHY

1. W. A. Perkins, "A Model-Based Vision System for Industrial Parts," IEEE
Trans. on Computers, Vol. c-27, (February, 1978), pp. 1 ?6-143.

2. W. A. Perkins, "Simplified Model-Based Part Locator," IEEE Conference
on Pattern Recognition and Image Processing, Vol. 1, (1978),
pp. 260-263.

3. Mark W. Koch and R. L. Kashyap, "A Vision System to identify Occluded
Industrial Parts," IEEE International Conf. on Robotics and
Automation, (March, 1985), pp. 55-60.

4. P. V. C~ Hough, "Method and Means for Recognizing Complex Patterns,"
U. S. Pattent 3,069,654, (Dec. 18, 1962). .

5. R. 0. Dudda and P. E. Hart, "Use of the Hough Transformation to Detect
Lines and Curves in Pictures," Communications of the ACM. Vol. 15,
No. 1, (1972), pp. 11-15.

6. Frank 0. O'Gorman and M. B. Clowes, "Finding Picture Edges Through
Collinearity of Feature Points," IEEE Trans. on Computers, Vol. c-25,
No. 4, (April, 1972), pp. 449-456.

7. Carolyn Kimme, Dana Ballard, and Jack Sklansky, "Finding Circles by an
Array of Accumulators," Communication of the ACM, Vol. 18, No. 2,
(Feb., 1975), pp. 120-122.

8. D. H. Ballard, "Generalizing the Hough Transform to Detect Arbitrary
Shapes," Pattern Recognition, Vol. 13, No. 2, (1981), pp. 111-122.

9. Stephen D. Shapiro, "Feature Space Transforms for Curve Detection,"
Pattern Recognition, Vol. 10, (1978), pp. 129-143.

1 O. Stephen D. Shapiro, "Properties of Transforms for the Detection of Curves
in Noisy Pictures," Computer Graphics and Image Processing, Vol. 8,
No. 2, (Oct., 1978), pp. 219-236.

11. Stephen D. Shapiro, "Geometric Constructions for Predicting Hough
Transform Performance," IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. PAMl-1, No.3, (July, 1979), pp. 310-317.

12. Stephen D. Shapiro, "Generalization of the Hough Transform for Curve
Detection in Noisy Digital Image," Proc. 4'th Int. Joint Conf. Pattern
Recognition, Kyoto, Japan, (1978), pp. 710-714.

118

119

13. Christopher M. Brown, "Inherent Bias and Noise in the Hough Transform,"
IEEE Trans. on Pattern Analysis and Machine lntellengence,
Vol. PAMl-5, No. 5, {Sep., 1983), pp. 493-505.

14. C. M. Brown, "Modelling the Sequential Behavior of Hough Transform
Schemes," Proc. DRAPA Image Understanding Workshop, Palo Alto,
CA, {Sep., 1981), pp.737-739.

15. Philip R. Thrift and Stanley M. Dunn, "Approximating Point Set Image by
Line Se ments using a Variation of the Hough Transform," Computer
Vi i n r hi n Ima e Proce in , Vol. 21, (1983), pp. 383-394.

16. G. C. Stockman, "Equivalence of Hough Curve Detection to Template
Matching," Communication of the ACM, Vol. 20, No. 11, (Nov., 1977),
pp. 820-822.

17. C. M. Brown, "Advanced Hough Transform lmplementaions," Proc. 8'th Int.
Joint Conf. on Artificial lntellegence, West Germany, (1983),
pp. 1081-1085.

18. W. A. Perkins and T. 0. Binford, "A Corner Finder for Visual Feedback,"
Computer Graphics and Image Processing, Vol. 2, (Dec., 1973),
pp. 355-376.

19. A. E. Cowart, W. E. Snyder, and W. H. Ruedger, "The Detection of Unsolved
Targets using the Hough Transform," Computer Vision. Graphics.
and Image Processing 21, (1983), pp. 222-238.

20. D. G. Falconer, "Target Tracking with the Hough Transform," Algorithms
for Image Processing, Percific Grove, (Feb., 1978).

21. Charles R. Dyer, "Gauge Inspection using Hough Transform,'' IEEE Trans.
on Pattern Analysis and Machine lntellegence, Vol. PAMl-5, No. 6,
(Nov., 1983), pp. 621-623.

22. H. Wechsler and J. Sklansky, "Automatic Detection of Ribs in Chest
Radiographs," Pattern Recognition 9, (1977), pp. 21-30.

23. P. Bastian and L. Dunn, "Global Transformations in Pattern Recognition
of Bubble Chamber Photographs," IEEE Trans. on Computer, c-20,
(Sep., 1971), pp. 995-1001.

24. P. M. Merlin and D. J. Farber, "A Parallel Mechanism for Detecting Curves
in Pictures," IEEE Trans. on Computers, c-24, (Jan., 1975), pp.96-98.

25. V. Cantoni, M. Caviglione, G. Musso, and G. Pnnunzio, "Location and
Orientation Detection of Mechanical Parts using Hough Transform,"
Applications of Digital Image Processing. SPIE 397 ... (April, 1983),
pp. 229-233.

26. J. L. Turney, T. N. Mudge, and R. A. Voltz, "Recognizing Partially Hidden
Objects," IEEE International Conf. on Robotics and Automation,
(March, 1985), pp. 55-60.

120

27. Bjo"rn Kruse, "A Parallel Picture Processing Machine," IEEE Trans. on
Computers, Vol. c-22, No. 12, (Dec. 1973), pp. 1075-1073.

28. S. D. Shapiro, "Aspects of Transform Method for Curve Detection," Proc.
of the J. Workshop on Pattern Recognition and Artificial Intelligence,
Hyannis, (Jun, _1976), pp. 90-97.

29. Thomas Gross, H. T. Kung, Monica Lam, and J. Webb, "Warp as a Machine
for Low-Level Vision," IEEE International Conf. on Robotics and
Automation, (March, 1985), pp. 790-799.

30. H. T. Kung and C. E. Leisurson, "Systolic Array {for VLSI)," in Sparse Matrix
Preceedings, (1978), ed. by I. S. Duff and G. W. Stewart, pp. 256-282.

31. H. T. Kung, "Why Systolic architectures," Computer, (Jan., 1982),
pp. 37-46.

32. G. Bongiovanni, "Two VLSI Structures for the Discrete Fourier Transfrom,"
IEEE Trans. on Computers, Vol. c-32, No. 8, (August, 1983),
pp. 750-753.

33. Kai Hwang and Faye A. Griggs, Computer Architecture and Parallel
Processing, McGraw-Hill, Inc., 1984.

34. L. S. Haynes, R. L. Lau, D. P. Siewiorek, and D. W. Mizell, "A Survey of
Highly Parallel Computing," Computer, (Jan., 1982), pp. 9-26.

35. Leah J. Siegel, Philip H. Swain, "Parallel Algorithm Performance
Measures," in Multicomputers and Image Processing Algorithms and
Programs. ed. by Preston, Jr. and L. Uhr, Academic Press, Inc., (1982),
pp. 241-252.

36. Dennis Parkinson and Heather M. Liddell, "The Measurement of Perfor
mance on a Highly Parallel System," IEEE Trans. on Computers, Vol.
c-23, No. 1, (1983), pp. 32-37.

37. H. T. Kung and S. W. Song, "A Systolic 2-D convolution Chip," in
Multicomputer and Image Processing Algorithms and Programs, ed.
by Preston, Jr. and L. Uhr, Academic Press, Inc., (1982), pp. 373-384.

38. K. R. Sloan, Jr. and D. H. Ballard, "Experience with the Generalized Hough
Transform," Proc. 5'th Int. Conf. on Pattern Recognition and Image
Processing, (1980), pp. 174-179.

39. Kenneth I. Laws, The GHOUGH Generalized Hough Transform Package:
Description and Evaluation. Technical Note No. 288. Al Center, SRI
Int., (Dec. 1982).

(\"
l

VITA~

Ok Sam Chae

Candidate for the Degree of

Doctor of Philosophy

Thesis: SPECIALIZED PARALLEL STRUCTURES FOR VLSI IMPLEMENTATION
OF THE HOUGH TRANSFORM FOR ARBITRARY SHAPE DETECTION

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Junnam, Korea, May 17, 1954, the son of Jang B.
and Jum D. Chae. Married to Bok Y. Jung on July 19, 1981.

Education: Graduated from Mokpo High School, Mokpo City, Korea, in
February, 1973; received Bachelor of Science degree in Electronic
Engineering from lnha University in February, 1977; received Master
of Science degree from Oklahoma State University in July 1982;
completed requirements for the Doctor of Philosophy degree at
Oklahoma State University in July, 1986.

Professional Experience: Research Assistant, Fluid Power Research
Center, Oklahoma State University, January, 1982, to May, 1982;
Teaching Assistant, School of Electrical and Computer Engineering,
Oklahoma State University, August, 1982, to December, 1982;
Research Associate, School of Electrical and Computer Engineering,
Oklahoma State University, January, 1983, to May, 1986.

