
NEUROCONTROL USING DYNAMIC LEARNING

BY

WEI-CHUNG YANG

Undergraduate Degree
National Taipei Institute of Technology

Taipei, Taiwan
1975

Master of Engineering
The University of Tulsa

Tulsa, Oklahoma
1982

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

May, 1994

COPYRIGHT

by

Wei-:-Chung Yang

May, 1994

OKLAH011A STATE UNIVERSITY

NEUROCONTROL USING DYNAMIC LEARNING

Thesis Approved:

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I could not reached at this point of my education without the

guidance and help of my adviser and friend Dr. Marty Hagan. I am

deeply indebted to him. Thank you Dr. Hagan, my forever teacher.

Thank you Marty, my forever friend. My appreciation is also

extended to Dr. R. Rhoten, Dr. C. Latino and Dr. G. Young for serving

on my committee.

My deepest love and appreciation goes with no doubt to my

family, especially my mother who, like every mother in the world,

loves her son without conditions. I am also grateful to my wife I-Mei

for caring our children, Lon-Lon and Phon-Phon, during my study

years.

I dedicate this dissertation to all the people who love, support and

help me in the course of my life.

iii

TABLE OF CONTENTS

Chapter Page

I. WfRODUCfION~ . 1

II. NEURAL NEIWORKAND FUNCTION APPROXIMATION.... 5

Biological Neuron Description 5
Artificial Neuron . 7
Multilayer Neural Networks 9
Function Approximation . 12
Network Performance and Network Architecture . 13

Test 1 : Function Approximation for the
Single Hidden Layer Network 16

Test 2: The Oversized Networks 1 7
Test 3 : Function Approximation for the

Two Hidden Layer Network • 18
Test 4 : Comparison between Single and

Multilayer Networks 19
Sum.mazy . 21

III. BACKPROPAGATION AND OPTIMIZATION 22

The Supervised Learning Process 22
Backpropagation . 2 4
Optimization Techniques . 27

Steepest Descent Method 28
Marquardt Method . 31
Conjugate Directions Method 34

Implementation 36
Forward Computation 36
Backpropagation . 3 7
Optimization . 3 7

Sum.mazy . 3 8

iv

Chapter Page

IV. SYSTEMIDENTIFICATION AND CONTROL USING
STATIC LEARNING . 40

System Representations . 41
Nonlinear MA Model . 41
Nonlinear AR Model . 43
Nonlinear ARMA Model 44

System Identification . 44
The Swinging Pendulum System 46
Computer Simulations 4 7

Feedback Linearization . 51
Feedback Linearization with Neural

Networks . 5 3
Computer Simulations for Nonlinearity

Neural Network . 54
Computer Simulations for Feedback

Linearization Neural Network 5 7
Direct Inverse Control . 5 9

AMA Method . 61
Computer Simulations 62

Summary- . 65

V. FORWARD PERTURBATION . 66

RecurrentNetworks 66
Dynamic Learning . 69

Calculations of True Derivative 71
Forward Perturbation . 72

Previous Work on FP 73
Recurrent and Non-recurrent Variables . . . 73
Basic Dynamic Learning Models and

True Derivative Calculation 7 5
An Illustrative Example 77
Complex Examples in Dynamic Learning . . . 81
Marquardt Optimization Using FP 83

Summacy . 85

VI. BACKPROPAGATION-THROUGH-TIME. 86

Derivative Calculation . 86
The BIT Derivative Calculation Equations........ 87
Calculation of SIT . 88
An Illustrative Example . 89

V

Chapter Page
Complex Examples in Dynamic Learning 93
Marquardt Optimization . 96

Using BTT in the Marquardt Method....... 96
Converting SIT to P'fT 97

A Comparison of FP and BTT 99

VII. NEUROCONTROL USING DYNAMIC LEARNING. 103

MRAC in Linear Dynamic Systems 104
Indirect MRAC Using Neural·Networks 107

Indirect MRAC Using FP 108
Computer Simulations . 11 O

Simulation 1 : First Order Linear Plant with
Linear Con trailer . 112

Simulation 2: First Order Linear Plant with
Nonlinear Controller 115

Simulation 3 : Second Order Linear Plant with
Linear Con trailer . 118

Simulation 4 : Second Order Linear Plant with
NonlinearController 121

Simulation S : Second Order Nonlinear Plant
with Nonlinear Controller 124

Sum.mazy . 130

VI I I REAL-TIME EXPERIMENT AL RESULTS 13 2

The Real Physical System Description 13 2
Real-Time Control using Static Learning 13 5

· Feedback Linearization 135
Procedure for Training and Real-Time

Control 136
The Training and Real-Time Control

Results · 13 7
Real Physical System Identification 142

Forward Modeling and Evaluation
Method.s . 142

Procedure for Training and Real-Time
Evaluation. 145

The Training and Real-Time Evaluation
Results . 145

Real-Time Control using Dynamic Leaming 152
MRAC and Plant Model 152
Procedure for Training and Real-Time

vi

Chapter Page
Control . 15 4

The Training and Real-Time Control
Results . 15 5

IX. SECONDARYTRAINING METHODS . 160

The ATS Method 161
The ATS Method vs the General Approach. . 161
Computer Simulation I. 162
The ATS Method vs Single Set Training 170
Computer Simulation II 1 70
Comments 174

The TCT /TLI Method . 176
Computer Simulation III 177
Comments . 186

X. SUMMARY AND CONCLUSIONS . 187

REFERENCES . 1 91

vii

LIST OF TABLES

Table Page

2.1. Results of Test 1 16

2.2. Results of Test 2 , . 1 7

2.3. Results of Test 3 . 19

2.4. Results of Test 4 . 20

6.1. Comparisons of Computation Time (in CPU Time)

between the FP and BTT Algorithms 100

6.2. Comparisons of Computation Time (in Flops)

between the FP and BTT Algorithms 102

7.1. The Weights Converging Process for

Simulation 1. 115

7 .2. The Weights Converging Process for

Simulation 3 . 121

viii

LIST OF FIGURES

Figure Page

2.1. A Simplified Biological Neuron . 7

2.2. Artificial Neuron Model and Its Symbolic

Representation . 8

2.3. Typical Activation Functions . 9

2.4. A MIMO Two Hidden Layer Network 10

2.5. Recurrent Multilayer Network . 11

2.6. The Sample Functions . 14

3.1. A MIMO Two Hidden Layer Network 24

3.2. An Illustration of Fixed Step Size Learning 29

3.3. An Illustration of the Adaptive Leaming Rate

Algorithm . 30

4.1. The Tapped Delay Line . 42

4.2. A SISO Nonlinear MA Model . . • . 42

4.3. A SISO Nonlinear AR Model . 43

4.4. A SISO Nonlinear ARMA Model . 44

4.5. A Nonlinear SISO System Identification Using a

Neural Netw"ork . 45

4.6. A Swinging Pendulum System . 46

4. 7. The Learning Curve of the Netw'ork NNP . . • . . • • • . . • . • • • 49

4.8. The Series-Parallel Test Method. 50

ix

Figure Page

4.9. The Evaluation of the Network NNr . S 1

4.10. The learning curve of the trained Network NNr 55

4.11. The Evaluation of the Network NNr . 56

4.12. Feedback Linearizatibn Vs Linear Controller (#1) 58

4.13. Feedback Linearization Vs Linear Controller (#2) 59

4.14. The Inverse Modeling . 60

4.15. Direct Inverse Control . 60

4.16. Modeling Inverse Plant with a Neural Network 62

4.17. The Learning Curve of the Network NNp-1 63

4.18. The Evaluation Tests of the Network NNp-1 64

5.1. A MIMO Two Hidden layer Network 6 7

5.2. A Recurrent Connection . 68

5.3. Recurrent Multilayer Network . 69

5.4. Example of a Recurrent Network Application. 70

S.S. Recurrent and Non-recurrent Variables 7 4

5.6. Dynamic Learning Model I . 7 5

5. 7. Dynamic Learning Model II . 77

5.8. A Simple Recurrent Network . 77

5.9. First Complex Example for Dynamic Learning 82

5.10. Second Complex Example for Dynamic Learning 83

6.1. Dynamic Learning Model I . 88

6.2. Dynamic Learning Model II . 89

6.3. A Simple Recurrent Network . 90

6.4. First Complex Example for Dynamic Learning 94

6.5. Second Complex Example for Dynamic Learning 95

7 .1. Direct Adaptive Control . 10 5

X

Figure Page

7.2. Indirect Adaptive Control . 105

7.3. The Illustration of Adaptive Control 106

7.4. Indirect MRAC Using Neural Networks 108

7.5. The Leaming Curve of Case 1 . 114

7 .6. The Leaming Curve of Case 2 . 116

7.7. The Evaluation Tests of Case 2 (#1) 117

7.8. The Evaluation Tests of Case 2 (#2) 118

7.9. The Leaming Curve of Case 3 . 120

7 .10. The Leaming Curve of Case 4 . 12 2

7.11. The Evaluation Tests of Case 4 (#1) 123

7.12. The Evaluation Tests of Case 4 (#2) 124

7.13. The Comparison of Non-training and Training

responses . 12 6

7.14. The Evaluation Test after Two Epochs Training 127

7.15. TheLeamingCurveofCaseS 128

7.16. The Last Epoch Training Result and the Evaluation 129

7.17. Four More Evaluation Tests . 130

8.1. The Function Diagram of the Pendulum System 134

8.2. The Network Configuration to Train the NNr and

ControllnputConstantC . 137

8.3. The Learning Curve of Network NNr 138

8.4. The tests of the Nonlinearity and Friction of the

Physical Pendulum System. 139

8.5. The Tests of Moving Pendulum Up in Real-Time 140

8.6. The Tests of Moving Pendulum Down in Real-Time...... 141

8. 7. System Identification of a Real Physical Plant 143

xi

Figure Page

8.8. The Series-Parallel Test Method....................... 143

8. 9. The Parallel Test Method . 144

8.10. The Learning Curve of the Network NNp 146

8.11. The Network Identifier Moving-Up Series-Parallel

Tests . 148

8.12. The Network Identifier Moving-Down Series-

Parallel Tests . 149

8.13. The Network Identifier Moving-Up Parallel Tests 150

8.14. The Network Identifier Moving-Down Parallel Tests..... 151

8.15. Indirect MRAC using Neural Network.................. 153

8.16. Modified Indirect MRAC using Neural Network.......... 154

8.17. The Moving-Down Test I for MRAC Controller........... 156

8.18. The Moving-Down Test II for MRAC Controller.. 156

8.19. The Moving-Down Test III for MRAC Controller 157

8.20. The Moving-Up Test I for MRAC Controller 15 8

8.21. The Moving-Up Test II for MRAC Controller 158

8.22. The Moving-Up Test III for MRAC Controller 159

9.1. The Learning Curves for the General Approach

vs. the ATS Method for Case 1 ". 163

9.2. The Learning Curves for the General Approach

vs. the A TS Method for Case 2 . 164

9.3. The Learning Curves for the General Approach

vs. the ATS Method for Case 3 . 165

9.4. Results of the Parallel Tests for Both Approaches

For Case 1 . 16 7

9.5. Results of the Parallel Tests for Both Approaches

xii

Figure Page

For Case 2 .. 168

9.6. Results of the Parallel Tests for Both Approaches

For Case 3 .. 169

9.7. The Learning Curves for the Single set Training

Method vs. the A TS Method for Case 1 171

9.8. The Learning Curves for the Single set Training

Method vs. the ATS Method for Case 2 172

9.9. The Learning Curves for the Single set Training

Method vs. the ATS Method for Case 3 173

9.10. General Results of the Parallel Tests for Both

Approaches for All Three Cases 175

9.11. Learning Curves of One Trajectory Training vs

the TCT Method for Case 1 179

9.12. Enlargement of the Learning Curves for Epochs 1901

to 2000 from Figure 9.11. 180

9.13. The Parallel Test Results for the Trained Controllers

for Case 1 .. 182

9.14. Learning Curves of One Trajectory Training vs

the TCT Method for Case 2 183

9.15. Enlargement of the Learning Curves for Epochs 1901

to 2000 from Figure 9.14 184

9.16. The Parallel Test Results for the Trained Controllers

for Case 2 .. 185

xiii

CHAPTER I

INTRODUCTION

This research studies the promise of neural networks in the realm

of system identification and control of nonlinear dynamic systems.

Two types of supervised learning algorithms for neural networks are

described. The first is the static learning algorithm, which can be

used for system identification, and also for the control of dynamic

systems as well. This research focuses on the second supervised

learning algorithm -- dynamic learning. The dynamic learning

algorithm can be executed on-line in the training of nonlinear

dynamic neurocontrollers. Three control schemes are involved in

this research -- feedback linearization, direct inverse control and

model reference adaptive control. Feedback linearization and direct

inverse control are implemented using static learning. The on-line

adaptation, which is the common characteristic shared by both the

dynamic learning method and the adaptive control method, makes it

natural to combine both the methods together in real-time adaptive

neurocontrol applications.

This document contains ten chapters. Starting from the neural

network building block, an artificial neuron model, the feedforward

multilayer network and the recurrent multilayer network are

derived and described in the first part of Chapter 2. The second part

1

of Chapter 2 describes the performance of the neural network as a

function approximator. Simulations have been executed to

investigate the effects of varying the number of neurons and the

number of layers in the network on the performance of the function

approximation task.

2

Chapter 3 describes the learning process that is used for training

neural networks to perform function approximation. The basic

backpropagation method is discussed first because itis an essential

tool in gradient optimization. Then, three optimization techniques -

steepest descent, the Marquardt method and the conjugate direction

method -- are presented and discussed. 1he conclusion of Chapter 3

focuses on implementing the neural network learning process from a

programming point of view.

The static learning algorithm is described in the beginning of

Chapter 4. Then, it is demonstrated in the system identification of a

second order nonlinear dynamic pendulum system. To illustrate that

static learning can also be used to train dynamic system controllers,

two control schemes -- feedback linearization and direct inverse

control -- are used with the static learning algorithm to train the

neurocon troller off-line.

For on-line adaptive identification and control applications using

neural networks, dynamic learning is described in Chapter 5. For

implementing the dynamic learning algorithm, the recurrent

multilayer networks are presented first. Then, two known, but not

well reported, dynamic learning algorithms -- forward perturbation

and backpropagation-through-time -- are introduced. We will

describe the backpropagation-through-time algorithm in the next

3

chapter. The forward perturbation algorithm is studied in the second

half of Chapter 5. First, the derivative calculation equation for the

forward perturbation algorithm is derived. Then a simple

illustrative example of the forward perturbation algorithm is given

before we implement the algorithm on more complex examples.

As in our discussion of the forward perturbation algorithm in

Chapter 5, the backpropagation-through-time discussion will begin

with the derivation of the backpropagation-through-time derivative

calculation equation. This will be followed by implementation

examples and a description of the Marquardt optimization method

using backpropagation-through-time. Based on computer

simulations, the comparison between forward perturbation and

backpropagation-through-time will be given.

In the beginning of Chapter 7 the model reference adaptive

control method is presented. Then, it is reconfigured with the neural

network models of plant and controller. The neural network

controller is trained in a real time adaptive fashion. This is all

described as the main subject of the first part of Chapter 6. In the

second part of Chapter 7, five computer simulations of model

reference adaptive neurocontrol are performed using forward

perturbation. All the simulation results were successful, which

provides us with a promising tool for dealing with more complex real

time nonlinear dynamic systems.

In Chapter 8, after the successes in the computer simulations in

Chapter 7, we will attempt to implement the trained neurocontrollers

from both static learning and dynamic learning to control a real

physical pendulum system in real-time. First, a real-time feedback

4

linearization controller is trained off-line using static learning and

training data is collected from the physical system in real-time. The

same training data is also used to model the physical pendulum

system with a.neural network. Then a real-time model reference

adaptive controller is trained off-line using dynamic learning and the

neural network plant model. The real-time experimental results are

given for the controllers and the system model.

Our proposed secondary training methods are described in

Chapter 9. In static learning, we will compare a secondary training

method to a standard approach. For dynamic learning, since there is

no standard approach, we will discuss how the proposed secondary

training method works and its sensitivity to parameter variations.

Finally, Chapter 10 summarizes the original contributions and the

important results presented and described in this document as the

conclusions of this research ..

CHAPTER II

NEURAL NETWORK AND FUNCTION APPROXIMATION

The first part of this chapter will introduce neural network

architecture, starting with the basic building block-- the neuron. A

simplified biological neuron is then presented to lay the biological

background for the following description and structure of an artificial

neuron model. With the artificial neuron defined, a basic multilayer

neural network, called the feedforward network is built up. A

variation of the basic multilayer network, called the recurrent

network, is introduced but will be discussed in Chapter 5. The

subject of the second part of this chapter is the performance of the

neural network as a function approximator. An effort has been made

to investigate the effects of the number of neurons and the number

of layers in the network on performing the function approximation

task.

.Biological Neuron Description

The human brain's mechanism of information processing and

decision making has been analyzed not only from the point of view

of biology but also of mathematics and engineering. It is recognized

to be an associative memory or a learning machine [1][2].

5

6

To understand the mechanisms of the human brain we first have

to understand the basic unit of the brain. Then we must know how

it works in processing the information. It is known that the basic

nerve cell or computing unit for biological information processing in

the human brain is the neuron. It has been discovered that following

the application of a stimulus greater than a threshold value, a pulse

of electric potential is generated across the membrane of a neuron.

This is called an action potential. An excited neuron transmits.an

action potential and has a positive or excitatory influence on the

recipient nerve cells.

A simplified biological neuron is shown in Figure 2.1. The ,

junction point between axon and dendrite is called the synapse [3].

The inputs, which are the action potentials, transmit through

synaptic junctions from the axons of adjacent neurons to the neuron

dendrites. They are modulated (or weighted) and carried by the

dendrites of the neuron to its cell body. The cell body of the neuron,

called the soma, sums the modulated input action potentials and

compares with its threshold. An activation is performed if sum of

the action potentials is beyond that threshold. Accordingly, the

active (or excited) neuron fires an action potential through its axon to

the dendrites of other neurons.

7

dendrites

i
axon

Figure 2.1 A Simplified Biological Neuron

Artificial Neuron

To imitate the biological counterparts an artificial neuron model

has been developed (see Figure 2.2). It is also called a single layer

perceptron or a network building block. It has inputs (dendrites) ,

connection weights (synapses), a weighted summer that performs the

activation function (soma) , and output (axon). Also shown in Figure

2.2 is the symbolic representation of the artificial neuron that will be

used throughout this paper.

Q

input
vector

Q.

input

...
vector

Pn

activation

offset

f

> '!!.

' a

weight vector 0-----
4 1~, b > output

summer

offset

activation

Figure 2.2 Artificial Neuron Model and Its Symbolic Representation

8

Equation 2.1 is the mathematical operation performed by the

artificial neuron. The inner product of the input vector Q and the

weight vector w is summed with the offset or threshold b (which has

an identity input) and the result is called the net input n. Through

the activation function f, the net input n is mapped to the output a.

Il=WT_E+b

a= f(n)
(2.1)

Typical activation functions are sigmoid, threshold or linear in

shape as shown in Figure 2.3.

1
a= +c

1 + e-n
a= sign(n) a=n

Figure 2.3 Typical Activation Functions

Multilayer Neural Networks

9

Based on the neuron model just described, the next step is the

development of multilayer neural networks. The most commonly

used architecture is called the feedforward multilayer network. This

network has three components, as shown in Figure 2.4, which is a

multi-input multi-output (MIMO) two hidden layer network. The

first component is a group of input nodes. The input nodes are not

neurons, and thus do not perform any mathematical operation. The

10

one and only function of each input node is to distribute the input to

the neurons of the first hidden layer. The second component of the

network is the hidden layer(s). A network can have as many hidden

layers as the design requires. In multi-hidden layer networks, the

output of one hidden layer is the input of the following hidden layer.

The last component of the feedforward multilayer network is the

output layer which, like the hidden layer, is composed of neurons.

The activation function of each neuron can be the same throughout

the network or it can be varied by each layer. For all of the

networks that are described in this paper, we always use a sigmoid

activation function for hidden layers and a linear function for the

output layer.

.I!

irpil
vect>r

1st hidden layer

aclvatlm
veCDr

2nd hidden layer

activation
vector

output layer

Figure 2.4 A MIMO Two Hidden Layer Network

The mathematical operation of a multilayer network, which is

basically derived from the mathematical operation of the artificial

neuron, is governed by the following equation (a MIMO two hidden

layer network example)

~3 = :[3 (W3[f.2 (W2 [;[1(W1 E + h1)] + !/)] + !l)' (2.2)

11

where 12 is the input vector, W1, w2, and W3 are the weight matrices,

b1• b2 , and b3 are the offset vectors, f1 , f2. and f3 are the activation

function vectors for each layer, and the output vector is ,e,3. The

general expression for Equation 2.2 is written

aM = fM (WM[fM-l(wM-1 ... - - -
[t(Wj ···[f1 (Wl p + Ql)]+···Qi)]+···QM)'

(2.3)

where .e:M is the output vector and M is the total number of layers in

the network (including all the hidden layers and the output layer).

Another type of multilayer network commonly used in this paper

is called a recurrent network, which is derived from the feedforward

network. Its layout is shown in Figure 2.5. The most significant

component added is called the tapped delay line. This component

feedbacks the time-lagged output to the network input. This

network will be discussed in more detail in Chapter 5.

,1

aclivalion
vector

actlvalon
vector

Figure 2.5 Recurrent Multilayer Network

,a

12

Function Approximation

Several methods, like polynomials, trigonometric series,

orthogonal functions, and splines have all been used for function

approximation. Evolving in recent years, neural networks have been

demonstrated as an additional tool for function approximation. In

fact, one of the reasons neural networks have been found to have so

many successes in a wide range of applications, such as pattern

recognition, signal processing and, of course, control systems, is due

to the capability of the network to perform function approximation.

Under classic approximation theory, the Weierstrass theorem [4]

provided a rigorous proof that any arbitrary continuous function on a

compact set can be approximated to any degree of accuracy by

polynomials as well as other approximation schemes. Based on this

Weierstrass theorem, Hornik et al. [S] proved that a layered neural

network is a nonlinear parametric model and can approximate any

continuous input-output relation.

Even with the proof, still a major concern remains. Does a

systematic method exist for determining the number of

layers/neurons necessary to achieve a desired degree of accuracy for

the function being approximated? So far, the answer is no. In the

absence of this systematic method, several tests have been

performed in the next section which compare the capabilities of

different network architectures. These tests provide an attempt to

account for some practical considerations in choosing the number of

layers and the number of neurons during the design of neural

network architectures.

Network Performance and Network Architecture

13

To compare the performances among different network

architectures, we start by examining a single hidden layer network.

The limitation of the network function approximating ability is tested

as the complexity of the function to be approximated (the sample

function) increases. Then, still using a single hidden layer network, a

second test is performed by increasing the number of neurons in the

hidden layer. In this test, the complexity of the sample function is

fixed. The third test, based on having the same number of adjustable

parameters (weights and offsets) in each network, compared the

single hidden layer network (as in test 1) with a two hidden layer

network. In the last test, several pairs of networks that have

different numbers of hidden layers, but the same total number of

adjustable parameters, were compared.

A single-input single-output (SISO) feedforward multilayer

network is the common architecture used for all of the tests. The

general expression for the architecture is 1-n1-nr ... -nc ... -nM_1-l_N,

where ni is the number of neurons in i-th hidden layer, Mis the

number of layers (thus we have M-1 hidden layers), and N is the

total number of adjustable parameters in each network.

The sample function to be approximated in each test is described

by

. 3t
t = sin(-mp),

·2

14

(2.4)

where m is degree of complexity (which can be any positive integer),

and the desired (or target) output tis obtained as a sinusoidal

function of the input p. Throughout this document, the way to

present training data to the neural network is always in a batch

mode. So, an input vector 12 is formed with 401 data points from -1

to 1 with a increasing interval of 0.005. By Equation 2.4, a

corresponding target output vector .t is thereby obtained. The

sample functions for m=l and m=8 are shown in Figure 2.6.

1 m=l 1 m=8
fl 11 . (1 n

- 0.5
a' - 0.5

a'
.

- -N N
:;=i 0 Po

:;=i 0 Po - -s s
Vol Vol

J!. -0.5 J!. -0.5

-1 -1 u ll

-1 0 1 -1 0 1

p=(-1:1/200:1] p=[-1: 1/200: 1]

Figure 2.6 The Sample Functions

The learning algorithm is Marquardt optimization with

backpropagation. It will be discussed in detail in Chapter 3. The

learning process has four steps;

(1) present the input data set 12 to the neural network in a

single batch.

(2) calculate the network output .e:M by using Equation 2.3.

15

(3) take the sum of squared error between .e,M and target data

1 to obtain the performance index.

(4) stop the learning process if the performance index reaches

the desired value, otherwise adjust the weights of the

network with the learning algorithm before repeating the

same learning process again.

Steps (1) to (4) defines one learning epoch.

Another unanswered problem in network performance is how to

choose the initial weights at the start of training a network. For all of

the network trainings described in this document, the initial weights

were chosen as random numbers that are uniformly distributed

between -1 and 1. It was discovered that, from our empirical

experience, differentrandom initial weights sets usually result in

different learning outcomes. These outcomes, such as the learning

speed and even convergence (whether or not a satisfactory

approximation is reached) vary greatly. In order to smooth out those

outcomes, each test case is trained with ten trials (which means ten

different initial weight sets) in the following tests. Therefore, all of

the learning results are obtained as the average of those ten trials.

16

Test 1 : Function Approximation for the Single Hidden layer Network

Case#

1
2
3
4
5
6
7
8

Network: 1-4-1_13

Desired performance index: 0.0401 (401 points)

Maximum learning epochs : 800

Function complexity: m = 1,2, .. ,8

TABLE 2.1 Results of Test 1

Average Function
Complexity

m
Successes CPU Time on Average #

in Ten Trials Centris 650 of Epochs

1 10/10 9.14 6.7
2 10/10 29.00 20.3
3 10/10 77.57 54.4
4 10/10 109.60 74.5
5 10/10 1158.16 800.0
6 2/10 982.51 668.7
7 6/10 1132.84 800.0
8 0/10 1183.37 800.0

The results from case 1 to case 5 in Table 2.1 were as expected.

That is, as the complexity of the sample function increased, longer

learning CPU time was required. However, in case 6, the network

17

performance is reaching its limit with only two satisfactory

approximations obtained out of total of ten trials. It is not clear, at

this point, why the success rate of case 7 is higher than case 6. The

last case, with no successful approximation, has a function complexity

which is beyond the performance capability of the network.

Test 2 : The Oversized Networks

Case#

1
2
3
4
5
6
7
8

Network: 1-n-l_N where n=5,6, .. ,12

Desired performance index: 0.0401

Maximum learning epochs : 800

Function complexity : m = 8

TABLE 2.2 Results of test 2

Average·
Network # Successes CPU Time on Average #
Structure in Ten Trials Centris 650 of Epochs

1-5-1_16 2/10 1378.86 800.0
1-6-1 19 9/10 709.87 355.3
1-7-1_22 10/10 501.38 221.7
1-8-1_25 10/10 566.68 219.9
1-9-1 28 10/10 441.98 151.0

1-10-1_31 10/10 531.00 164.8
1-11-1_34 10/10 562.18 158.9
1-12-1 37 10/10 582.50 148.9

18

The most difficult approximation task performed in test 1 is in

the last case, which has function complexity of eight. For all of the

cases in test 2, the function complexity is fixed at eight, but the

number of neurons in the hidden layer is increased from one case to

the next. The first fully successful rate of approximation is reached

when n is 7, in case 3. In terms of the lowest learning CPU time,

network 1-9-1_28 is the best. Comparing case 3 to case 4 to 8, we

observed that oversized networks may take fewer epochs to

converge, but they take more CPU time to learn and require more

memory.

Test 3 : Function Approximation for the Two Hidden Layer Network

Network: 1-2-2-1_13

Desired performance index : 0.0401

Maximum learning epochs : 800

Function complexity :m = 1,2, .. ,8

Case#

1
2
3
4
5
6
7
8

TABLE 2.3 Results of Test 3

Function
Complexity

m

1
2
3
4
5
6
7
8

Average
Successes CPU Time on Average #

in Ten Trials Centris 650 of Epochs

10/10 25.06 15~8
9/10 191.30 116.9

10/10 439.21 267.1
3/10 991.73 603.7
2/10 1302.40 800.0
0/10 1294.27 800.0
0/10 1298.31 800.0
0/10 1301.20 800.0

19

The two hidden layer network tested here and the single hidden

layer network used in Test 1 have the same total number of

adjustable parameters. After comparing the results of this test and

Test 1, it can be concluded that the single hidden layer network

performed better than the two hidden layer network, not only in

terms of learning speed, but also the rate of successful

approximations.

Test 4 : Comparisons between Single Hidden Layer Network and

Multi-hidden Layer Network

Network pairs: [1-7-1_22 and 1-3-3-1_22]

Case#

1
2
3
4
5
6

[1-8-1_25 and 1-2-2-2-2-1_25]

[1-11-1_34 and 1-3-3-3-1_34]

Desired performance index: 0.0401

Maximum learning epochs : 800

Function complexity : m = 2

TABLE 2.4 Results of Test 4

Average
Network # Successes CPU Time on Average #
Structure in Ten Trials Centris 650 of Epochs

1-7-1_22 10/10 32.48 14.7
1-3-3-1_22 10/10 46.10 20.3

1-8-1_25 10/10 38.13 15.5
1-2-2-2-2-1_25 9/10 429.13 131.1

1-11-1_34 10/10 41.31 12.5
1-3-3-3-1_34 10/10 85.76 23.1

20

The immediate conclusion one makes from Test 4 is that single

hidden layer networks often perform better in terms of learning

speed. With increasing number of adjustable parameters, more

training time is needed. In case 4, the four hidden layer network not

only took the n1ost CPU tin1e, but also failed to converge (reach

satisfactory approximation) once in ten trials.

Summary

21

In this chapter, the basic concepts of neural networks were

described, and the function approximation capability of the networks

was demonstrated through a series of tests. The neural network

learning process, which has been introduced in this chapter, is very

important and essential in neurocontrol. That is why we will

dedicate the next chapter to its discussion.

CHAPTER III

BACKPROPAGATION AND OPTIMIZATION

After describing neural networks in Chapter 2, in this chapter we

will present the process of training neural networks to perform

function approximation. The chapter begins with a description of the

supervised learning process. Then, the backpropagation method is

described, followed by discussions of three optimization techniques.

The conclusion of this chapter focuses on implementing the neural

network learning process.

The Supervised Learning Process

The type of learning process discussed in this chapter and

throughout the document is called supervised learning. Other known

learning types, like unsupervised learning and reinforcement

learning, are outside the scope of this discussion. Supervised

learning applies to a situation in which a neural network functions as

a replacement for an input-output mapping relation. To achieve that,

a set of desired input-output pairs (P1,ti>, (P2,t2), ... (pj,tj), ... , which is

derived from the mapping relation, is supplied for training a neural

network.

22

23

The learning process is made up of a sequence of learning

iterations called epochs or sweeps. Each learning epoch starts by

presenting an input vector 11 from the desired input-output pair (11,
\

1), to the neural network. Then, a forward computation is perform~d

resulting in the network output gj. (where subscript i corresponds to

the i-th learning epoch). The error vector

e- = t- - a-_1 -1 -1 (3.1)

is obtained after comparing the network output ~ with the desired

output 1. The objective function F(~), which is commonly defined as

the sum of squared error,

F(x)=(t· -a-)T(t· -a·) - -1 -1 -1 -1 , (3.2)

is set up as a performance criterion. It will be used to adjust the

current parameters of the network in order to produce a better

approximation.

There are two main tasks in each learning epoch, after the

objective function is obtained: 1) By backpropagation, calculate the

partial derivatives of the objective function with respect to the

parameter vector. 2) By some optimization technique, determine the

search direction towards the global minimum of the error surface in

the parameter hyperspace. At the end of each learning epoch, the

parameter vector ~ is moved along the search direction. The newly

updated parameter vector will be used at the start of the next

learning epoch. As for the very first learning epoch, the process

starts with a predetermined initial parameter vector. The learning

iterations stop when the objective function, which is a index of the

degree of accuracy, reaches some desired level. This defines the

supervised learning process.

Backpropagation

24

The backpropagation method was originally introduced by Paul

Werbos [6], but it was not established as a mainstay in

neurocomputing until the work done by David Rumelhart et al [7].

Backpropagation has since become an essential tool in supervised

learning. It is essential because the most efficient way to calculate

the first derivatives of the objective function with respect to the

adjustable parameters of the network is through backpropagation.

With these derivatives, we can use the optimization techniques

which will be described in the next section to minimize the objective

function in training the neural network.

1st hidden layer 2nd hidden layer output layer
,1 ,2 ,a

I!

irpit
vecbr

atset vector CflSet vector

actvation activation
vecbr vector

Figure 3.1 A MIMO Two Hidden Layer Network

25

In a multilayer neural network, as shown in Figure 3 .1, the

general mathematical operation performed by the k-th layer neurons

is

k wk k-1 bk n = £! +_

gk = f\nk) (3.3)

where k= 1,2, ... M

where Wk is the weight matrix, bk is the offset vector, fk is the

activation function, nk is the net input and ilk is the output (or the

activation) of the k-th layer of the network. The activations for k=O

(the input nodes) and k=M (the output layer) are, respectively,

0
g =£
and

M a=a - - '

(3.4)

where .Q is the input vector and i! is the output vector. The

parameter vector~ contains all the elements of the weight matrices

and the offset vectors. The objective function F(~), which is defined

in Equation 3.2, cannot be obtained until the network output is

computed. That means that a forward computation from the first

layer to the output layer must be performed first. For the same

reason, the derivatives with respect to the network parameters

cannot be calculated until the objective function of the learning

epoch is available. Once the objective function is obtained, it is

logical, as we will explain later in this section, to calculate the

de1ivatives from the output layer backward to the first layer. This

method is thus called backpropagation.

26

The partial derivative of the objective function Ft~) with respect to

the assemble of weights and offsets of the k-th layer wk is

aF(x) = (aF(x))r arl
awk a.nk awk

The sensitivity of the k-th layer is defined

<>k = aF(~)
- arl

Suppose we want to compute this sensitivity, then

<>k = aF(~)
- ank

aF(~) r a.nk+l
= (a.nk+l) a.nk

= (aF(~)f (a.nM)r ... a.nk+l
a11M a.nM-l a,l

(3.5)

(3.6)

(3.7)

We cannot make this computation until we have the sensitivity for

the last (output) layer ~M

<>M = aF(~)
- a.nM

} T
= a[z O - ~) (! - ~) 1

anM (3.8)
aa

= -(!-~)an~

= -(! - ~)(f~)'

where the term (:[~)' in the above equation stands for the first

derivative of the output layer activation function fM while the net

input is nM. By investigating Equations 3. 7 and 3.8 further, we find

that there is a recurrent relation between ~k and ~k+1 such that

0k = aF(~)

- arl
a!!k+l r aF(~)

= (ank) ank+i
- -

a k+l
= (n)r 0k+1

ank -

= [(f!k)' (Wk+1 yr]Qk+1

where k = 1 2 · · · M - 1 ' '

27

(3.9)

From Equations 3. 7 through 3. 9 , we can now understand now why it

is logical to calculate derivatives from the last layer backwards to the

first layer.

Optimization Techniques [8]

In order to train a.neural network to be a function approximator,

we need to optimize (or minimize) the objective function F(x), which

is usually defined as the sum of squared error. This explains why we

need optimization techniques for training networks. The standard

optimization algorithm has the form

~i+I = ~i + ai~i, (3.10)

where & is the parameter vector at epoch i, fu is the search direction,

and ai is a scalar called the learning rate or step size. The search

direction vector fu is obtained from the backpropagation method and

the optimization technique. There are many optimization techniques.

It is the computation of fil that distinguishes one optimization method

from another. In this section we will discuss three methods: the

steepest descent method, the Marquardt method and the conjugate

28

directions method. These methods all use only the first derivatives

of the objective function to determine the search direction vector fil.

Steepest Descent Method

The function of the search direction vector is to decrease the

objective function at each learning iteration

F(li+1) < F(~i) (3.11)

To achieve that decrease, consider the following Taylor series

expansion

F(x. 1)= F(x. +a-s.) -1+ -1 1-1

= F(~) +aiVF(~i)~i'
(3.12)

where VF(~) is the gradient of the objective function at epoch i. For

a positive learning rate ai, we must have

(3.13)

This is called a descent direction. Equation 3.12 can be rewritten as

(3.14)

Where 11· II represents norm, and e is the angle between VF(&) and fu.

If IIVF(&) II and II.full are fixed, then with a variable e, the greatest

reduction in Equation 3.14 is obtained when e = :1t. Thereby the

steepest descent is defined

S· = -VF(X·)
-1 -·

(3.15)

and we have the steepest descent method

(3.16)

If the learning rate ai is fixed, then it has to be very small to

ensure that convergence occurs in the learning process. This is

29

explained in Figure 3.2 where an abstract error surface is presented.

Several contour lines are drawn on the abstract error surface. Each

contour line represents the points that have the same value for the

objective function F. The real minimum ~ is located between the

two innermost contour lines, which have the two lowest values of F

among the other contour lines. We assume that after some iterations,

the estimated minimum & is closing toward the true minimum x.. If

the step size is too large then an oscillation occurs between the two

innermost contour lines. The estimated minimum tries to settle

down at the true minimum, however, with the large step size the

estimated minimum tends to oscillate. On the other hand, if the

learning rate is very small, the oscillation may not occur, but more

steps (longer learning time) are required to reach the true minimum.

The [innermost
contour
lines

steps

' I

' I

'I

••

. - . -
, , r

time

• • • true
minimum

Figure 3.2 An Illustration of Fixed Step Size Leaming

30

An improvement can be made if some ad hoc techniques are used

to vary (or to adapt) the step size in each learning epoch. As shown

in Figure 3.3, the main idea is simple. We would like the step size to

be large at the start of the learning process and to decrease during

the process. With the larger step size at the beginning, the estimate

can move faster towards the minimum from a distant starting point.

Then, with decreasing step size, the oscillation caused by a too large

step size can be prevented. Therefore, with the variation in step size,

convergence is ensured. This is called a variable (or adaptive)

learning rate algorithm.

'f!:rmost [------------- true contour .I. IIllmmum
lines i

'
steps

• I

...
time

Figure 3.3 An Illustration of the Adaptive Learning Rate Algorithm

31

Marguardt Method

The Marquardt method was derived from the Newton method.

An objective function can be approximated by a quadratic function

with positive definite Hessian matrix in the immediate neighborhood

of a strong minimum. The Newton method was developed using this

property. Consider the following second order Taylor series

expansion of the objective function about the estimated minimum

point~

F(~i+1) = F(~i + A~i)

s= F(~J + VF(-3.JT A~ + ! A.3.iTV2F(~)A~
(3.17)

As we know, for a second order equation, the minimum (or

maximum) is located at the point with zero first derivative. So we

take the gradient of Equation 3.17 with respect to A& and set it to

zero

(3.18)

The minimum x. can then be reached with one weight update

Ax- = -V2F(x·)-1 VF(x·) -1 -1 -1 (3.19)

To state the Newton method

(3.20)

The advantage of the Newton method is that it generally converges

in fewer learning epochs than steepest descent. However, the

disadvantage of the Newton method is its need for second

derivatives, which requires a lot of computations. The following

modification, called the Gauss-Newton algorithm, avoids this

32

calculation requirement by approximating the second derivatives

with first derivatives. Consider the objective function that is defined

as the sum of squares of other functions

F(K) = ff (3) +f;(3)+· · · +f~(.K)

== [f(3){ [f (.K)J (3.21)

where f(x)== [f1(x) f2(x)···fN(x)t

We then take the gradient of Equation 3.21 with respect to x (The

size of x is n)

VF(.K) == 2[J(3)]r [f(x)]

af1(x) af1 (2S;) af 1 (.K)

awl aw2 awn
af z(3) af 2CK) af z(.K)

(3.22) where J(K) = a~1 aw2 a~n
af N(3) afN(K) afN(.K)

awl aw2 awn

The second derivative of Equation 3.21 is

N

V2F(~) = 2[J(3)]1[J(~)] +2I((K)V2((3) (3.23)
i=l

By ignoring the second term in the above equation, we have

(3.24)

After replacing the terms of v2f and VF in Equation 3.20 (the Newton

method) with Equation 3.22 and 3.24 respectively, we have the

Gauss-Newton algorithm

· T 1 T
Ki+l == 3i - [J(K) J(3)r [J(x) fC~)l (3.25)

If the term J(x)r J(K) in Equations 3.25 is not positive definite,

and the inverse term does not exist, then we have a problem in

implementing the Gauss-Newton algorithm. To overcome this

problem, Levenberg added an additional term, an identity matrix I

times a positiveµ, to the term J(~)T J(~) of the Gauss-Newton

algorithm

33

(3.26)

Assume that the eigenvalues and eigenvectors of the Hessian matrix

v2F(~) in the above equation are (i..1, Az, · · ·, AN) and (A1, fu, · · ·, AN)

respectively, then

[V2F(~) + µl]Aj = V2F(~)Aj + µIAj

=A-A-+ µA-J-J J (3.27)

= (l,.j + µ)Aj

Thus the new eigenvalues and eigenvectors of the modified Hessian

matrix in Equation 3.27 are (A1-f1l, Az-fµ, · · ·, i..N-1-µ) and (Ai, fu, · · ·, &)

respectively. To obtain a positive definite Hessian matrix, one can

always increase the value ofµ until each new eigenvalue is positive.

The Levenberg algorithm is a complimentary method between the

Gauss-Newton method, when µi is small, and the steepest descent

algorithm, when µi is large. It is.complimentary because the

Levenberg algorithm takes the advantages of fast learning speed

from the Gauss-Newton method and exact direction learning from the

steepest descent algorithm. Based on this observation, Marquardt

suggested that one can start with a small number for µi at the

beginning of the training. Then we increase µi by a factor ~ until the

objective function is decreased, as described in Equation 3.11. This is

assured because increasing µi eventually is equivalent to taking a

small step in the steepest descent direction. To avoid the problem of

having the value of µi get big, the same factor, {3, can be used to

decrease µi at the end of each learning epoch.

Conjugate Directions Method

34

Like the Marquardt algorithm, the conjugate directions method is

another way to perform optimization without the need for second

derivatives. Consider a quadratic function which is in the form of

T } T
F(x) == c + g x +-x Hx. - - - 2- - (3.28)

Its gradient and Hessian matrix are, respectively,

VF(x) = Hx+ ~

and (3.29)

V2F(x) = H.

Then, a set of vectors fil is said to be mutually conjugate with respect

to the Hessian matrix H if and only if

s_THs- = 0
-1 -J 1 ;a! J (3.30)

As we know, if the Hessian matrix is symmetric then its eigenvectors

are orthogonal. In this case, the set of the eigenvectors is a set of

mutually conjugate vectors

A-THA- == A_T()....A.)
-1 -J -1 1-J

== A . (A.TA .)
J -1 -J (3.31)

=0

Let /1;. be the search direction vector fu. If the Hessian matrix in

Equation 3.31 is positive definite, then it can be shown that the exact

35

minimum of a quadratic function will be reached in a maximum of n

steps, using

(3.32)

where n is the dimension of Kand ai is the exact single step needed

to reach the minimum along fu. To eliminate the need for a Hessian

matrix (second derivatives) in Equation 3.31, we then combine

Equations 3.28 and 3.29

A[VF(3.i)] = VFCii+1) -VF(~.J

= H(~+1 - 3-J

= H[A3.d

(3.33)

The conjugate condition from thei-th learning epoch to the (i+l)-th

learning epoch can be found in Equation 3.30. If we multiply both

sides of the equation by ai, and then combine it with Equations 3.32

and 3.33 we obtain

[ai si]T H§i+l = A wi TH§i+1

= A[VF(:~i)t §i+1

== 0.

(3.34)

Thus the ground for computing the next search direction vector fu+i is

established. Numerous solutions can be found to satisfy Equation

3.34. One set of directions which satisfy Equation 3.34.are

§1 == VF(~1)

§i+1 = VF(~+1) + ~i+i§i i = 1,2,···n -1 (3.35)

~i+1 == [VF(3.i+1)t [VF(3.i+1)] I [VF(3.i)]r [VF(3.i)]

where n is the dimension of the parameter vector K·

36

Implementation

The purpose of this section is to offer a series of equations for

implementing the neural network learning process from a

programming point of view. Those equations, which are organized in

the order of real events, are summarized from the previous sections

about backpropagation and optimization techniques. As discussed

earlier in this chapter, the learning process starts with a forward

computation. The forward computation obtains not only the network

output, but also the net inputs and the outputs (activations) for each

layer in the network. Then, with these net inputs and outputs, a

backpropagation is performed to find the first derivatives of the

objective function with respect to each adjustable parameter of the

network. Those derivatives are used in the last stage of the learning

process: the optimization. The function of the optimization procedure

is to calculate the change to be made in each parameter. Once the

parameters are adjusted accordingly, the process is repeated until

the objective function reaches the goal.

Forward Computation

Input nodes :

(3.36)

The k-th hidden layer :

Ilk= Wkgk-1 + hk

~k = f.k(nk) where k = 1,2,···M -1.
(3.37)

The output layer :

Backpropagation

The output layer :

~M = -(! - i!)(f!k)',

VF(WM) = QMi!M-1.

VF(hM)=~M.

The k-th hidden layer:

~ k = (f~k)' [wk+l t fl.k+l.

VF(Wk) = ~\{-1,

VF(hk) = Qk where k = M-1,M- 2,···3,2.

The first hidden layer :

~l = (~1)'[W2]T Q2'

VF(W1)= ~1 - E·
VF(h1) = .§_1.

Optimization

37

(3.38)

(3.39)

(3.40)

(3.41)

For simplicity, all of the weights and offsets of the network in the

i-th learning epoch are lumped into the following single parameter

vector

38

l)T(2)T (k)T MTT xi = [(w w ·· · w · ··(w)] (3.42)

where wk is the ensemble of the weights and offsets of the k-th

layer. To update the parameter vector for each new learning epoch,

one can use the general equation

~i+1 = ~.j + A!.i (3.43)

Three optimization techniques discussed in this chapter are

-- The steepest descent method

-- The Marquardt method

-- The Conjugate directions method

(1) The first search direction

~1 = -VF(~1)

AA1 = U1~1

(2) The hereafter search directions

f3i = ([VF(Ki)f [VF(3.i)]) I ([VF(~i-1){ [VF(~i-i)])

~i = -VF(!.i) + f3i~i-1

A3.i = ai ~i where i = 2,3, · ·, n -1

Summary

(3.44)

(3.45)

(3.46)

(3.47)

The supervised learning process is thoroughly discussed in this

chapter. The essence of the learning process is optimization and

39

backpropagation is a necessary tool in optimization. This necessity of

the backpropagation in the learning process is stressed. Three

optimization techniques are examined. A comparison of those

techniques are contained in the work of M. T. Hagan and M. Menhaj

[9], which concludes that the Marquardt method is the best choice in

most occasions. In next chapter, we will find out how the learning

process discussed here can apply to practical applications, such as

system identification and control.

CHAPTER IV

SYSTEM IDENTIFICATION AND CONTROL USING STATIC LEARNING

There are two kinds of the learning algorithms -- static and

dynamic. The main theme in this chapter is the static learning

process introduced in Chapter 2. The discussion of dynamic learning

will be left to Chapters 5 and 6. Compared to static learning,

dynamic learning uses a more complicated process to calculate the

derivatives of the target function. Basically, the static learning

algorithm only applies to situations in which an off-line static

function approximation can be performed. One such situation is

system identification (or system modeling). This situation will be

discussed in the first half of this chapter.

Static learning can also be used to control dynamic systems. This

process will be described in the second half of this chapter. We will

present two control schemes, feedback linearization and the direct

inverse controller, to demonstrate that neural networkcontrollers

can be trained off-line with static learning. A pendulum system,

where the pendulum swings between two equilibrium points, will be

the common computer simulation example used throughout this

chapter and the rest of this document.

40

41

System Representations

For their generality and ability to use neural networks for

identification, three nonlinear models, which are the system

representations for a single-input/single-output (SISO) nonlinear

plant, are presented. These models are generalized from their linear

counterparts, which have been used in adaptive control applications

for the modeling of linear systems. The three models are: (1) the

nonlinear moving-average (MA) model, (2) the nonlinear

autoregressive (AR) model and (3) the .nonlinear autoregressive

moving-average (ARMA) model.

Before the descriptions of the three models, first we define the

tapped delay line (TDL) introduced in Chapter 2. The TDL is a

component which produces outputs that are delayed values of the

input. It is shown in Figure 4.1.

Nonlinear MA Model

In the linear moving average model the output is a moving

average of the current and previous inputs, as in

n
y(k +1) - ~ aiu(k- i), (4.1)

i=O

where ai represents the impulse response of the system. The

nonlinear extension to the moving average model is

y(k + 1) - f[u(k), u(k- 1), ... u(k- n)] (4.2)

and the nonlinear model is shown in Figure 4.2.

TDL

u(k) u(k-1)

u(k-2)

•

•

Figure 4.1 The Tapped Delay Line

TDL.

Nonlinear

MA
model

Figure 4.2 A SISO Nonlinear MA Model

42

y(k+l)

Nonlinear AR Model

Another well-known model used in the representation of linear

systems is the autoregressive model. The output of the linear AR

model, at time stage k+l, is related linearly to its own past values

rn

y(k + 1) = ~ as(k- i) + u(k)
i=O

The nonlinear version of Equation 4.3 is

y(k + 1) = f[y(k),y(k-1), ... y(k - m)] + u(k)

and the nonlinear model is shown in Figure 4.3.

u(k)

--·TDL

Nonlinear
AR

model

Figure 4.3 A SISO Nonlinear AR Model

(4.3)

(4.4)

y(k+l)

43

44

Nonlinear ARMA Model

The most extensively used model in control systems is the ARMA

model. This model combines the moving-average part (Equation 4.2)

and the autoregressive part (Equation 4.4) from the previously

discussed models and is expressed as

y(k+l)= h[u(k),u(k-1), ... u(k-n),

y(k), y(k - 1), ... y(k - m)]

A nonlinear SISO ARMA model is shown in Figure 4.4.

u (k)

qTDLI
...
: Nonlinear

y(k+
ARMA --

rlTnLI : model

Figure 4.4 A SISO Nonlinear ARMA Model

System Identification

(4.5)

1)

The three models discussed in the last section actually can be

represented by just one model -- the ARMA model. Both the MA

model and the AR model then become special cases of the ARMA

model. Therefore, we will only need to describe the system

identification for the nonlinear ARMA model in this section.

The architecture to train a neural network to model a nonlinear

SISO ARMA plant is shown in Figure 4.5. The inputs to the neural

network NNP are the current plant input u(k) and the past values

from both the plant input u(k) and the plant output y(k+ 1). The

error e(k+l), which is the difference between the plant output

Y1(k+l) and the network output Ynn(k+l), will be used in the static

learning algorithm for adjusting the parameters of the network.

PIANT y1(k+l)
u(k)~,---~~~---1 ... ,

i...-,.... TDL t--.....,.,

.---..... TDL 1--...-..1
Ynn(k+l)

45

Figure 4.5 A Nonlinear SISO System Identification Using a Neural

Network

The Swinging Pendulum System

A pendulum system, as shown in Figure 4.6, will be used as an

example of a nonlinear SISO system for the computer simulation.

de
motor

Figure 4.6 A Swinging Pendulum System

46

The pendulum has a full range of swing angle e from the straight

downward position (0=0) to the straight upward position (e~) and is

driven by a de motor with one of its ends attached to the motor

shaft. The mathematical model for the pendulum system is assumed

:t [::] = l-lOsin(x~ -2x2 + u l (4.6)

·. d0
where x1 =0, x2= - and u is the current applied to the motor. The

dt

approximate discrete time system would be described by

[x/k) l
~(k+ l)= ~(k)+ At -10sin(x1(k))-2x/k) + u(k) (4.7)

The above equation can be expressed as

x1 (k + 1) = f[x1(k), u(k),~ (k)],

x 2(k) = g[x1 (k-1), u(k- l),x2 (k-1)]
(4.8)

47

Furthermore, with the recurrent relationship shown in Equation 4.8,

the pendulum system can be expressed as a nonlinear SISO ARMA

model

x1 (k + 1) = f[x1 (k),x1 (k -1), ... u(k), u(k -1), ...] (4. 9)

For the purpose of modeling the pendulum system with neural

networks, we have truncated Equation 4. 9 to

X1 (k + 1) = f (X1 (k),X1 (k - 1), u(k), u(k - 1)) (4.10)

Computer Simulations

To produce the training data, a sinusoidal baseline current u is

applied to the motor

u(k) = sin [(At)(k)], (4.11)

where At (0.05 second) is the sampling time and k is the time stage

index number. The pendulum begins at a randomly chosen initial

position between O and :n:. If the controlled pendulum approaches

48

the boundaries (8=0 or S=n:), the baseline current is changed to a

constant threshold current to prevent crossing the boundary. Once

the pendulum is brought back to its normal swinging range by the

constant threshold current, the baseline current will resume. A total

of 400 input-output pairs [u(k), y(k+ 1)] were collected.

The alternating training data sets (ATS) method, proposed by the

author, is employed in all the static learning applications in this

research and will be discussed further in Chapter 9. The learning

curve shown in Figure 4.7 was obtained after 10,000 learning epochs.

Note that the learning curve approaches a constant value after

approximately the 7 50-th learning epoch. This could mean that a

global minimum is reached.

A series-parallel test method is adopted to evaluate the trained

neural network NNP. In this test the feedback to the network is not

from the network itself but from the plant output. The series

parallel test is illustrated in Figure 4.8.

49

104

103

- 102

.ffl
0
i::a, 101
0
0
V -i... 100
§
G)

'Cl
10-1 I

o'
Vol

10-2
0

§
t,'l 10-3

10-4

10-5
100 101 102 103 104

Leaming epochs

Figure 4. 7 The Learning Curve of the Network NNP

u(k) PLANT
p

Yt(k+l)

NEURAL
1--_..~NETWORK1--~---

TDL NNp

Figure 4.8 The Series-Parallel Test Method

so

Several tests were executed to make the evaluation and the

results are shown in Figure 4.9. In each test, the initial position y(O)

and the constant input current u, were different. Note that, in the

graphs, a solid line would represent the plant output and a dashed

line, the network output. However, due to the successful neural

network modeling, only one data line appears in the each graph of

Figure 4.9.

A higher precision evaluation called the parallel test, which will

be described in Chapter 7, was also performed. The results obtained

from the parallet test were approximately the same as the results

from the series-parallel test.

51

80 (0)=1.1307, u=0.8618 150 y(0)=2.3663, u=4.4171

- 60 -,:J) ,:J)

e e
100 M M

,:J) 40 ,:J)

"C "C
:a 20

:a
.g .g 50
I)') I)')

0 0 0
p.. p..

-20
0 5 10 5 10

Time(sec) Time(sec)

100 y(0)=0.7695, u=lO 80 y(0)=0.2451, u=8

- -,:J) ,:J)

60 e e
M 80 M
11) ,:J)

"C "C_...
40 :a :a

.g 60 .g
I)') I)') 20 0 0
p.. p..

40 0
0 5 10 0 5 10

Time(sec) Time(sec)

Figure 4. 9 The Evaluation of the Network NNr

Feedback Linearization [8]

Some neural network controllers can be trained using static

learning; two such controllers will be discussed in this document. In

this section we present the first of these two methods, feedback

linearization. Consider a nonlinear SISO system which has the

dynamics

52

dnx
dtn = f (i) + b(K)U (4.12)

where f(x) is the nonlinearity, bis the constant, u is the control input,

xis the output and xis the state vector which can be expressed as

dx dn-lX T

~ = [x dt • .. dtn-l] (4.13)

By combining Equations 4.12 and 4.13, a state space representation is

obtained

X1 X2

X2 'S
d

(4.14) =
dt

~-1 xn

X n f(K) + b(K)U

Thus the system is in controllability canonical form. When a control

input

1 T
u =-[-k x-f(x)]

b(~) - - -
(4.15)

is applied to this system, the nonlinearity f(x) is canceled and the

closed loop dynamics become

X1 X2

X2 X3
d

(4.16) =
dt

Xn-1 ~

xn - k X - k X -· · · - k X 1 1 2 2 n n

In other words, by choosing k appropriately, the nonlinear system

responds just like any desired n-th order linear system. This defines

the feedback linearization.

53

Feedback Linearization with Neural Networks

The role that a neural network plays in feedback linearization is

to replace the nonlinearity f(x)

NNr e f(x) (4.17)

where NNr is the neural network model of f(x). For the case of

pendulum system, which is described by Equation 4.6, f(x)=

-10sin(xi)-2x2 • To find the discrete representation for this

nonlinearity, Equation 4.7 is rewritten as

[
X2 (k) l x(k+ 1)= x(k)+ At

- - -lOsin(x1(k))-2x2 (k)+u(k) .(4.18)

= fd(x(k)) + gd(u(k))

The neural network needs to learn the second element of the

function fd in order to cancel the nonlinearity. This discrete form of

the nonlinearity f(x) would be .

fd 2 (~) = x 2 (k) + At[-10sin(x1 (k)) - x2 (k)] (4.19)

Suppose that we would like the pendulum closed loop system to

respond with the dynamics given by

(4.20)

Then, from Equation 4.15, the continuous feedback linearization

controller would be

uFL = 9r - [9 6]A - f(x)

and the control input in a discrete form is

uFL (k) = x2 (k) + At(9r(k)-[9 6]A(k))- NNr
At

(4.21)

(4.22)

Computer Simulations for Nonlinearity Neural Network

The first step in feedback linearization control is to train the

nonlinearity neural network NNr. By empirical experience, a 2-8-

1_33 multilayer feedforward network is chosen for this purpose.

Assume that x(l) and x(2) fall into the intervals [O,n:] and [-2n:,2n:]

respectively.

54

The process for obtaining the training data set is the same as that

described in the section on system identification. However, in this

case Equation 4.19 is used for the process. In the simulation, the

sampling time is 0.05 second, and the total number of data points in

the training data set is 400. The ATS method is used in the training.

The resulting learning curve is shown in Figure 4.10. Like the

learning curve in system identification, the learning curve in this

simulation also approaches a constant value which suggests that a

global minimum has been reached.

55

1()3

-.! 102
0
p,

0
0
V 101 1-1

g
oil)

1 100
c'
IT.I
0

10-1 §
t/2

10-2

10-3.__~...._....__~...__-----.................. ...__~..i;;.;

100 101 102 103

Learning epochs

Figure 4.10 The learning curve of the trained Network NNr

Two tests were performed to evaluate the trained network NNr.

The first test was executed under the following conditions -- x(1)

was varied while x(2) was set to zero. Then, in the second test the

conditions were reversed and x(2) was varied while x(1) was set to

zero. The results of the tests are shown in Figure 4.11. Although, in

the graphics, the network output is represented by the dashed line

while the true linearity is represented by the solid line, one can not

56

really distinguish between them. Once again, this is a result of very

accurate approximation by the network NNr.

~
:z :z

........
~
;;:;'

~
:z :z

-o.s ~~ ~~ ~~ ~~....._~~....._~~.___~___.
0 0.5 1 1.5 2 2.5 3 3.5

x(l) while x(2)=0

10

5

0

-5

-10
-8 -6 -4 -2 0 2 4 6 8

x(2) while x(1)=O

Figure 4.11 The Evaluation of the Network NNr

Computer Simulations for Feedback Linearization with Neural

Network

57

Next, we will evaluate the performance of the feedback

linearization controller where the trained network NNr is embedded

in it. For comparison, the performance of a linear controller is also

given. The linear controller was designed for the case where the

pendulum model is linearized about the state x=[lt/2, O]

(4.23)

The linear controller which would cause the linearized pendulum

system to respond as the reference model (Equation 4.20), is

lluN -10 + 9r-[9 4]~ (4.24)

Given a common reference position of 31:/2 and two initial

positions, O and lt, both the feedback linearization controller and the

linear controller were tested against the reference model. The

results are shown in Figure 4.12. Since the linear model is linearized

about the point x=[lt/2, O], the corresponding linear controller can be

expected to perform well around the position 31:/2. However, it is

observed from Figure 4.12, that the linear controller performs well

as a regulator, but poorly in the tracking situation. In comparison,

the feedback linearization controller shows a strong capability for

tracking but fails to maintain the same position as the reference

model in the final steady state.

58

2 Feedback linearizati on 2 Linear controller

1.5 - 1.5 - ,..r----- - -
~ ~ -- --a 1 a 1 .g .g
M M
0 0.5 0 0.5 i:i.. i:i..

0 0
0 5 10 0 5 10

Time(sec) Time(sec)

3.5 Feedback linearization 3.5 Linear controller

- 3 - 3
~ ~ \ -- -- \ a 2.5 a 2.5 \

.g .g \

..... \
M M l
0 2 0 2 \ i:i.. i:i..

\

' ... 1.5 ,.; 1.5
0 5 10 0 5 10

Time(sec) Time(sec)

Figure 4.12 Feedback Linearization Vs Linear Controller (#1)

Two more similar tests were performed and the results are shown

in Figure 4.13. In these two tests, instead of using some pre-selected

values, the initial positions and the reference positions are randomly

chosen between O and :n:. It seems, from the results shown in Figure

4.13, the feedback linearization controller has better performance

than the linear controller in both tracking and regulating.

59

3
Feedback linearization 3 Linear controller

,.-.. ,.-..

-g 2 -g 2 - -
~ ~
·B ·B

1
..... 1 I',') I',')

0 0
p.. p..

0 0
0 5 10 0 5 10

Time(sec) Time(sec)

3 Feedback linearization 5 Linear controller
J- --------, , - ,.-.. I

-g 2 -g I
I - - ,

~ ~ l

·B ·B
1

.....
I',') I',')

0 0
p.. p..

0 0
0 5 10 0 5 10

Time(sec) Time(sec)

Figure 4.13 Feedback Linearization Vs Linear Controller (#2)

Direct Inverse Control

Another type of neural network control is called direct inverse

control. The key step in direct inverse control is to model the

inverse dynamics of a plant, in which the order of the input and the

output of the plant are reversed, as shown in Figure 4.14.

60

u ·I y
PLANT ...

p

y ·I INVERSE u

MODEL ...
p-1

Figure 4.14 The Inverse Modeling

Once the inverse model has been identified, it can be used as a

controller to manipulate the plant under conditions in which the

desired output of the plant is the input of the controller. This is

called the direct inverse control method and is shown in Figure 4.15 .

.. I CON~fILER I u ·I __ P_IA_P_N_T __ i--Y-ata.~

desired
output

control
input

Figure 4.15 Direct Inverse Control

plant
output

AMA Method

For consistency, the pendulum system, which was used in the

system identification and the feedback linearization sections, again

will be used in the computer simulation for the direct inverse

control. Equation 4.10, which is the ARMA model of the pendulum

system, is rearranged as follows

u(k) = g[u(k -1), y(k - l),y(k),y(k + l)], (4.25)

61

This is now the ARMA model for the inverse pendulum system. We

have attempted to model Equation 4.25 using neural networks but

have had no success so far. However, an approximate MA model

(AMA) method, proposed by the author, has been successfully

employed to model the inverse pendulum system using neural

networks. It is known that an ARMA model can be represented by

an infinite MA model. In this case, Equation 4.25 would then change

to

u(k) = g[y(O),y(l), ... y(k-1),y(k),y(k+l)] (4.26)

For modeling with neural networks, Equation 4.26 is truncated as

u(k) = h[y(k- n),y(k- n + 1), ... y(k -1),y(k),y(k + l)],(4.27)

where n is chosen by trial-and-error, in the absence of a more

systematic method (a future research subject).

A 10-10-1_121 feedforward multilayer network was picked for

this experiment. The parameter n in Equation 4.26 is chosen to be 8.

The architecture to train the neural network model NNp-1 for the

inverse pendulum plant is shown in Figure 4.16.

62

u(_k)-r-----------1~ PI.ANT
y(k+l)

e(k+l)

-~TDL

Figure 4.16 Modeling Inverse Plant with a Neural Network

Computer Simulations

The training data set was obtained by stacking the data points

that resulted from several runs, up a total number of 1000. In each

run, the pendulum started from a randomly chosen initial position

between 'Jf,/ 4 and 3:nJ 4. Then, a constant current, whose value was

randomly chosen between -20 and 20, was applied to the motor. A

run stopped when the pendulum hit the boundaries .(6=0 and e='Jf,), or

a maximum of SO data points were collected. The ATS method was

used with the static training algorithm. The learning curve of the

network NNp- 1 was obtained after 10,000 learning epochs and is

shown in Figure 4.1 7.

104

-.I 103 0
Pt

0
0
0

102 -!-I

g
'1)

'C
101 i

O'
in ._
0 100
§
t<2

10-1

Learning epochs

Figure 4.17 The Learning Curve of the Network NNP- 1

The reference model described in Equation 4.20 supplies the

desired position as the input for the direct inverse controller. The

trained network NNP- 1 is evaluated through several tests. A

63

randomly chosen initial position y(O) and a steady state reference

position r were given for each test. The results were collected and

are shown in Figure 4.18. The solid line represents the reference

model output and the dashed line is the network plant output.

1.2 y(O)=l.1293, r=0.8593 0.87 (0)=0.8397, r=0.8694

- 1.1 i 0.86 e - -~ 1 ~ 0.85 .g .g
in ,;v:,
0 0.9 0 0.84 p., p.,

0.8 0.83
0 5 10 0 5 10

Time(sec) Time(sec)

1.9 y(O)=l.8642, r=l.7106 1.4 y(0)=0.7975, r=l.3877

j 1.85 - 1.2
I e - I -~

I a 1.8 I 1 .g (.g
/

,;v:, ,;v:,
0 1.75

,I 0 0.8 p., ,, p.,

"' ___ , _
1.7 0.6

0 5 10 0 5 10

Time(se.c) Time(sec)

Figure 4.18 The Evaluation Tests of the Network NNP-1

64

65

The conclusion from the evaluation tests is that the trained network

NNP-1 performed well in most cases, but some fine tuning of the

network parameters is still needed. The key to performance may be

in whether or not the training data set completely represents all of

the input and output spaces. This question will be discussed further

in the dissertation as one of the subjects in the sensitivity analysis of

the training parameters. Nevertheless, during the tests the ability of

the direct inverse controller NNP-1 to follow a reference model, which

was never included in the learning process, was suprising.

Summary

The main point we have attempted to establish in this chapter is

that the static learning process, besides its most common application

-- system identification -- can also be used to train neural network

controllers. This is demonstrated with feedback linearization and

direct inverse control. The direct inverse control was suprisingly

successful, nevertheless, the fact that the static learning process can

only be performed under the assumption that no recurrent

connections exist in the network limits its application. To deal with

this disadvantage, a dynamic learning algorithm, which can be

implemented with the existence of the recurrent connections, will be

introduced and discussed in the next chapter.

CHAPTER V

FORWARD PERTURBATION

For real time adaptive identification and control applications that

use neural networks, it is inevitable that some applications will need

a supervised learning algorithm other than the static learning

algorithm described previously in Chapter 4. Since the time

dimension is added in this new learning process, it is called

supervised dynamic learning. Just as static learning was used to

train multilayer feedforward networks, dynamic learning is used to

train recurrent networks. These recurrent networks will be

described in the first section of this chapter. The concept of the

recurrent connection between the neurons of the network is also

defined in the same section. Following that, a description of the

dynamic learning process is given, in which two important derivative

calculation equations are derived. The derivation of these equations

leads to two known dynamic learning algorithms -- forward

perturbation (FP) and backpropagation-through-time (BIT).

Recurrent Networks

There are many different types of neural network architectures.

The multilayer feedforward network, which was described in

66

Chapter 2 and is shown again in Figure 5.1, is one of the most

commonly used architectures. In Chapter 4, we discussed and

demonstrated this network and trained it with the static learning

algorithm.

1st hidden layer 2nd hidden layer output layer ,1 ,2 13

11

irpJt
vectlr

olsel veci>r alset vector alset vector

acivatm activation
veck>r vector

Figure 5.1 A MIMO Two Hidden Layer Network

67

Another commonly used network architecture is called the

recurrent network. A recurrent network exists if at least one of the

neurons of the network has feedback. Feedback means that, in the

network, there are recurrent connections, either direct or indirect,

between one neuron and the neurons from the same or other

networks. This recurrent connection is illustrated in Figure 5.2. In

the figure, the block which takes the output from the neuron can be

constructed by any type of network structure. It can be made up of

a neuron, a layer of neurons, a part of the network, a whole network,

two connected networks, or simply a void.

Recurrent
Neuron

Any
Network
Structure

Figure 5.2 A Recurrent Connection

68

The multilayer feedforward network with a TDL component,

which was described in Chapter 2, is shown again in Figure 5.3. Since

the TDL connects the network's output to its input, the network has a

recurrent connection. Thus, this network is a recurrent network. We

will use this type of recurrent network throughout this document in

our discussion of supervised dynamic learning.

The fact that the output of a recurrent network depends not only

on its present input, but also on its past output, gives it an edge in

performance over the feedforward network. However, this

additional time dimension is also the reason that the learning process

in a recurrent network is much more complex than the learning

process in a feedforward network. We will explain this complexity in

the following section.

activalion
vector

actlvaim
vector

Figure 5.3 Recurrent Multilayer Network

Dynamic Leaming

69

In static learning, the training data is collected before the learning

epoch begins and is never changed during the learning process. In

Chapter 4 we used this method to train the pendulum identifier and

the feedback linearization and direct inverse controllers. The

disadvantage of the static learning process is obvious. If the

parameters of a system are changed, or if more noise is added to the

application environment, the static identifiers and controllers will no

longer perform the job well. In this situation, there is a need to

collect a new set of training data from the application and to retrain

the identifiers and controllers.

To counteract this disadvantage, we present an on-line adaptive

learning process called supervised dynamic learning. In supervised

70

dynamic learning, the recurrent network is placed on-line with its

application. This is illustrated in Figure 5.4, where an example of a

dynamic forward identification training configuration is given.

R

- PLANT·
+ +

-- ~ ,
- / -

(:;;\ error

~-1
I

-
NNP ynn ' l

·I I
/

TDL /

I
/ ,

/ •
I

/

L_ __________ _I

Figure 5.4 Example of A Recurrent Network Application

In comparison, the plant is not needed in the static learning

process once the training data set has been collected. Also, the static

learning and dynamic learning processes obtain the training data set

differently. In general, the training data for static learning is never

changed during the training and the training data for dynamic

learning will change as learning epoch proceeds. We will discuss this

in further detail in Chapter 7.

71

Calculation of the True Derivative

A key procedure in the supervised learning process is to compute

the derivative of the objective function with respect to the network

parameters. Suppose we want to find the complete derivative of the

objective function, F(f!k(X),x), with respect to the variable x through

time, where k is the discrete time stage index. This complete

derivative is called the true derivative in this document. Then,

applying the chain rule to the objective function with respect to the

variables f!k and x, the true derivative of the objective function can

be obtained either from

a F = I a ilk T a ep

a! k a! a~k

or from

e T
aF =Ia !!k aF
a! k a?S a~k

(5.1)

(5.2)

where the superscript e stands for the explicit derivative. The

explicit derivative terms in both Equations 5.1 and 5.2 can be

obtained using the basic backpropagation method we already

described and demonstrated in the static learning discussion in

Chapters 3 and 4. The implicit derivative term in Equation 5.1, a~k,
ai

is the perturbation-through-time (PTT) at the k-th time stage. The

implicit derivative term in Equation 5.2, aF , is the sensitivity-
a~k

through-time (SIT) at the k-th time stage. To obtain the PTT and

SIT, we apply the chain rule again through time. This results in:

72

agk aea.k aegk aa.k-1 -=--+----
a~ a3 aih-1 a~

(5.3)

and

e e T aF a F a gk+1 aF -=-+ --
a~k a~k a~k a!!k+l

(5.4)

Equations 5.1 and 5.3 make up the FP algorithm and Equations 5.2

and 5.4 make up the BIT algorithm. Note that in Equation 5.3 a~k is
ax

computed from a~k-i, which explains why this is called the forward ax
perturbation method. We see that in Equation 5.4 aF is computed

a~k

from ~, which is why this method is called backpropagation
a~k+l

through time. The FP algorithm will be further discussed in the

following section and a discussion of the BIT algorithm can be found

in the next chapter.

Forward Perturbation

We start this section with a discussion of previous research and

an introduction to recurrent and non-recurrent variables in dynamic

learning. Then, two basic dynamic learning models are discussed and

their corresponding equations are derived. The equations calculate

the true derivatives of the objective function with respect to the

network parameters through time. This discussion is followed by an

illustrative example, which demonstrates the derivative calculations

using one of the basic FP equations. In the example, the actual

73

derivatives are also calculated by hand to verify the results from the

FP calculation. Then, a couple of more complex examples of FP

calculations are discussed. Finally, to illustrate the use of Marquardt

optimization in dynamic learning, the computations and the

requirements for both the Jacobian matrix of the error function and

the derivative vector of the objective function are explained.

Previous Work on FP

As we mentioned in the first section of this chapter, although the

added time dimension in the recurrent network strengthens its

performance, it also complicates the calculation of the derivative.

This is the reason that forward perturbation, which in Narendra's

work [1 O] is also called dynamic backpropagation, has not yet been

widely understood and used. The term "forward perturbation" is

excerpted from a paper by Werbos [6], which describes its basic

concept. A full description of the FP algorithm can be found in the

Narendra paper [11]. Several neural network representations, which

are the building blocks for recurrent network applications in

dynamic learning, are also discussed in another Narendra paper [12].

Recurrent and Non-recurrent Variables

In a recurrent network, the recurrent variable is defined as a

function of the network parameters and the previous values of some

of the network variables. For example, the outputs of the recurrent

network are recurrent variables. The other variables in a recurrent

74

network, which have not met the definition of a recurrent variable,

are called non-recurrent variables. The external inputs of a

recurrent network are examples of non-recurrent variables. From

the viewpoint of one learning epoch, recurrent variables and non

recurrent variables are illustrated in Figure 5.5 .

Time Stage 1

(1)
I

NN
(2) ---

Time Stage 2
(1)

NN (1)
(2) --- One

Learning

(1)
Epoch

•
•
•

(1) I Time Stage n

I
(1)

(2) ---=::I NN ...

(1) Recurrent variables
(2) Non-recurrent variables

Figure 5.5 Recurrent and Non-recurrent Variables

75

The introduction of recurrent and non-recurrent variables are

essential to our description of the true derivative and its calculation

using the FP algorithm described in the following section.

Basic Dynamic Leaming Models and True Derivative Calculation

Two basic dynamic learning models are proposed in this section.

We will use the FP algorithm to derive the true derivative calculation

equations for each of the models. The basic dynamic learning Model

I is a MISO (multi-input single-output) recurrent network as shown

in Figure 5.6. The output of the model y(k) is a recurrent variable.

If the elements of the proceeding input vector K(k) are all non

recurrent variables, then the derivative of the output with respect to

the network parameter vector w, a~~) , can be obtained with the

basic backpropagation method described and demonstrated in

Chapters 3 and 4.

... Recurrent
Network

NN(~

y(k) -
Figure 5.6 Dynamic Learning Model I

76

If the input vector ~(k) in Figure 5.6 can be decomposed into :&ir

and &, which stand for the non-recurrent and recurrent variables

respectively, then, from Equation 5.3, the PTT is calculated as

ay(k) aey(k) aey(k) T a& (k)
--= + (5.5)

d}Y aw a~r(k) dl'.Y

where the explicit derivative aey(k) deals with both the recurrent aw ·

and non-recurrent variables. As for the implicit derivative, a~r(k)
aw

in Equation 5.5, it represents the PTT from the previous time stages

and can be calculated using Equation 5.3.

The basic dynamic learning Model II is shown in Figure 5. 7. In

this model a multi-output TDL component, which has the following

output

y(k) = [u(k-1) u(k -2) ... u(k- m)f, (5.6)

is connected to a network NN(w). We assume that the input of the

TDL is a recurrent variable. Thus, by combining Equations 5.5 and

5.6, the PTT in this case is

ay (k) = at (k) + aey(k / a y (k)
aw aw ay(k) aw

aye(k) m aey(k) au(k - j) = ... -+~ ---··-···-·-· --
aw fi au(k - j) aw

(5.7)

u(k) ~1 TDL I y(~1 NN(:!Y)
y(k) ...

y(k) = [u(k-1) u(k-2) ... u(k-m)]T

Figure 5.7 Dynamic Learning Model II

An Illustrative Example

77

The simple recurrent network, shown in Figure 5.8, will be used

to demonstrate the calculation of the true derivative using the FP

dynamic learning algorithm.

x(k)=y(k-1)

t(k)

...----. n(k) ...----. y(k) ~

....._l:~--..1 % t---,-..... _ 0---- e(k)

--D

Figure 5.8 A Simple Recurrent Network

78

In Figure 5.8, the recurrent network is connected to the external

input p(k) and the recurrent input x(k) through the connecting

weights W1 and W2 (w=[W1 w2]T) respectively. The offset is set to zero

and the activation function of the network is linear. Three forward

time stages (from k=l to k=3) for the recurrent network are

performed and the results are

y(l) = W1PO) + W2X(l)

= w1p(l)

y(2) = W1p(2) + W2X(2)

= w 1p(2) + w2y(l)

= W1P(2) + W2W1PO)

y(3) = w1p(3)+ w2x(3)

= W1p(3)+ Wzy(2)

= w1p(3) + w2w1p(2) +w2
2w1p(l)

The objective function is defined as

1 3

F = - ~ (t(k) - y(k))2

2 k=l

(5.8)

(5.9)

To calculate the true derivatives of the objective function with

respect to the network parameter vector w we use Equation 5.1:

(5.10)

We start with the calculation of the PTT ay(k) using Equation 5. 7. In
aw

this case, the number of the TDL outputs, m, is one. Thus, the PTT at

time stage k for this example is

ay(k) = aey(k) + ax(k) ify(k)

aw aw aw ax(k)

aey(k) ay(k -1) aey(k)
= +------

(5.11)

aw aw ay(k - 1)

Using Equation 5.11, the three forward time stages are also

calculated in the following set of equations;

k=l,

k=2,

k=3,

ay(l) = aey(l) + ay(O) aey(l)

aw aw aw ay(O)

= aey(l) = [p(l) 0 r;
a~ .

ay(2) aey(2) ay(l) ify(2)
= + aw a~ a~ ay(l)

= aey(2) + cJy(l) aey(2)

aw a~ cJy(l)

=[p(2) x(2)f +wz[p(l) or
= [p(2) + Wzp(l) Wlp(l) r;

ay(3) aey(3) ay(2) aey(3)
--= +-----
a~ aw aw ~0)

ify(3) ay(2) aey(3)
= +-----

a~ a~ ay(2)

(5.11)

(5.12)

= [p(3) x(3) f + w2[P(2) + w zP(l) w1p(l) r (5.13)

= [p(3) + W2p(2) + w/p(l)l;
W1P(2)+ 2W2W1p(l)

79

80

Once the PTfs are obtained we can substitute them into Equation

5.10 to obtain the true derivative of the objective function w.r.t. the

parameter vector w

aF i)y(l) aeF ay(2) aeF ay(3) aeF
~= + . +~--~
aw a~ ay(l) aw ay(2) a~ ay(3)

= -[p(l)(t(lt y(l))]-

[
(p(2) + w 2p(l))(t(2) -y(2))]

w1p(l)(t(2)- y(2))

[
(p(3) + w2p(2) + w/p(l))(t(3)- y(3))]

(w1p(2) +2WzW1p(l))(t(3)-y(3))

(5.14)

For comparison, we can simply calculate the actual derivatives by

hand using Equation 5.8. The results are

aF - = -[p(l)(t(l)- y(l)) +
awl

(p(2) + w 2p(l))(t(2)-y(2)) +

(p(3) +w2p(2) +w/p(l))(t(3)-y(3))],

aF - = -[w1p(l)(t(2)-y(2))+
aw2

(w 1p(2) + 2w2 w1p(l))(t(3) -y(3))].

(5.15)

which agrees with Equation 5.14. We can observe from Equation

5.14 that the FP algorithm not only produces the true derivative over

one learning epoch but also generates the true derivative for each

time stage in a learning epoch. This unique characteristic of the FP

algorithm is very important in Chapter 6 where the FP and the BTT

algorithms are compared.

81

Complex Examples in Dynamic Learning

In order to demonstrate the applicability of the two basic

dynamic learning models to any recurrent network configuration,

two more complex examples are given in the following. In addition

to the training network, a non-training neural network (where the

parameters are held constant) is also involved in both cases.

In Figure 5.9, the network to be trained is NN(w) and the non

training network is NN'. Since the configuration is a combination of

the two previously described basic dynamic learning models, both

Equation 5.5 and 5.6 are used to calculate the network perturbations.

For simplicity, we will only calculate the key term in the FP

algorithm -- PTT-- from here on. We start with calculating the PTT

of the non-training network at time stage k,

i)y(k) dt (k) i)ey(k) T dV(k)
--= +--aw aw av(k) aw

(5.16)
= Q + i)ey (k) T av (k)

av(k) iJw

where aye(k) is zero because y(k) is not explicitly a function of the
iJw

training network parameter vector w. Then, the PTT of the training

network at time stage k is

iJv(k) aev(k) au(k) aev(k)
--= +----

i)w iJw i)~ iJu(k)

aev(k) iJy(k - 1) aev(k)
= +------

(5.17)

aw aw iJy(k -1)

u(k) ~1

Training
Network

NNfu:l I
v(k) ...

TDL

Non-training
Network

' -NN

......
-

y(k) --

Figure 5.9 -First Complex Example for Dynamic Leaming

82

By comparing Equations 5.16 and 5.17, one can see that there is a

recursive relation between these equations as the time stage moves

forward in one learning epoch.

The configuration in the second example is similar to the first one.

A TDL component is added between the two networks as shown in

Figure 5.10. For simplicity, the TDL has only one delay output x(k).

This example is still a combination of the two basic dynamic learning

models. Thus, the calculation of the PTf of the non-training network

at time stage k is

ay(k) at (k) aey(k) ax(k) ----= +~~~--
aw aw ax(k) aw

= 0 + ify(k) av(k -1)
av(k -1) aw

(5.18)

u(k)

Training
Network

v(k)

NN(fil I TDL I•

Non-training
Network

I

NN
x(k) ___ ~~

y(k)

'--------! TDL ji -.:1---------'

-

Figure 5.1 O Second Complex Example for Dynamic Leaming

83

To find out the PTT of the training.network av(k - l) at time stage · aw

k-1 in the Equation 5.18, we start with computing the PTT of the

training network at time stage k

av(k) aev(k) cJu(k) ifv(k)
----= +--------
a~ aw aw au(k)

ifv(k) ay(k -1} aev(k)
= + ' aw aw ay(k -1)

(5.19)

Marquardt Optimization Using FP

In Chapter 3 we stated that, throughout this document, the

Marquardt method will be used in the optimization stage of each

supervised learning process. This claim not only applies to the static

learning process, but also to the dynamic learning process. The

optimization equation for the Marquardt method, which is restated in

Equation 5.20~ can only be executed after a Jacobian matrix J (w) is

obtained

(5.20)

84

The following Jacobian matrix is the derivative of the error function f

with respect to the network parameter vector w

af1 (!Y.) af1 (w) afl (w)

awl dW 2 cJwn
afz(~) afz(w) cJf2(w)

J(:!Y.) = awl aw2 awn (5.21)
.

cJfN(~) afN(W) cJfN(W)

awl aw2 awn

The error function, for a single-output network in one learning

epoch, is defined as

(5.22)

where 1 and y are the desired output and the actual output

respectively. Therefore, the derivative off with respect to the

parameter vector w can be expressed as

af a(1- y) ax.
-- =--aw aw aw (5.23)

It is clear from this equation that, with only a sign difference, af is aw
the PTf discussed previously . Note that the true derivative of the

objective function is never needed in the Marquardt optimization

method. Thus, it is a perfect match to use the FP algorithm and the

Marquardt optimization in dynamic learning.

85

Summary

As the chapter title suggests, the main subject that has been

discussed in this chapter is the FP algorithm for supervised dynamic

learning. Although the basic concept and a full treatment of the

algorithm can be found in the works of Werbos and Narendra, a

somewhat simpler explanation of the FP algorithm is proposed here.

The explanation starts with the definitions of recurrent and non

recurrent variables. Then, two basic dynamic learning models were

proposed, which actually were derived from the definition of the

recurrent variable. The corresponding equations for calculating the

PTTs of both the basic models are described. Through an illustrative

example and two complex examples, the applicability of the two

basic dynamic models to complex recurrent network configurations is

demonstrated. This demonstration continues in Chapter 7 where the

FP algorithm is implemented in the model reference adaptive control

(MRAC) method, which serves as an example of control using

dynamic learning.

CHAPTER VI

BACKPROPAGATION-THROUGH-TIME

Another dynamic learning algorithm is backpropagation-through

time (BTT). As explained in Chapter 5, both the BTT and FP

algorithms originate from the same principle. It is the manner in

which the chain rule is implemented which distinguished the two

algotithms. We will present the BTT algorithm in the same sequence

as we laid out for our discussion of the FP algorithm. It begins with a

reiteration of the derivation of the BTT derivative equation and STI

calculation equations, which were previously presented in Chapter 5.

This is followed by application of BTT to the same illustrative

example and complex examples we used in the FP algorithm

discussion. The implementation of the Marquardt optimization using

BTT, which is not as natural in this applications as it was in FP, is

then discussed. Finally, based on computer simulations, comparisons

between the FP and BTT algorlthms are given to show the highlights

of the two dynamic learning algorithms.

Derivative Calculation

As we commented at the end of the illustrative example in the FP

algorithm discussions, the true derivative of the objective function

86

87

can be obtained not only over one learning epoch, but also at each

time stage of the learning epoch. This advantage comes from the fact

that the PTT at each time stage of a learning epoch, which is

accumulated from both past and present time stages, reflects the

complete derivative of the network error at that point in time.

In the BTT process, we have a different situation. First, the true

derivative is obtained only over each learning epoch and not at each

time stage. Second, it is the sensitivity, instead of the perturbation,

which carries the information that is needed in the true derivative

calculation process. Finally, the sensitivities are backpropagated not

just through time (from future time stages to the present time stage),

but also through each layer of the network for the present time

stage. We will explain all of the above differences in the following

section.

The BIT Derivative Calculation Equations

Recall from Chapter 5 that Equations 5.2 and 5.4 define the BTT

algorithm .. These equations are rewritten here,

(6.1)

and

(6.2)

88

~F aF
where the terms .!!._ and -- are the STTs at time stages k and

a~k a~k+1

k+ 1 respectively. This means that the SIT is an accumulation of the

sensitivities from both the future and the present time stages.

Calculation of STT

The two basic dynamic learning models described in Chapter 5,

are shown here again in Figures 6.1 and 6.2. They are used here to

demonstrate how the STT is calculated. After the STT is obtained,

the true derivative is then computed using Equation 6.1.

Using Equation 6.2, the STT equation for use in Ivlodel I (IvIISO) of

the dynamic learning process can be easily obtained as,

aF aeF aey(k + 1) aF
--= +----------
<Jy(k) ay(k) ay(k) ay(k + 1)

~(k) .. Recurrent
Network

NN(ID

y(k)

Figure 6.1 Dynamic Learning Model I

(6.3)

The STT equation for use in Model II of the dynamic learning process

is obtained as

89

aF aeF aey(k) aF
--= +------
ay(k) ay(k) ay(k) ay(k)

aeF m ifu(k + m) aF
= ay(k) + ~ ay(k) au(k

(6.4)

where m is an index from the last time stage to the current time

stage in the learning epoch. Note that both of the above equations

only apply to the network output layer. After the output layer STT

aF is obtained, the STTs for each hidden layer of the network, at
<3.i!k

time stage k, are computed using the basic backpropagation method.

u(k) ... , __ T_DL __ I y~, NN(fil
y(k) ...

y(k) = [u(k-1) u(k-2) ... u(k-m)]T

Figure 6.2 Dynamic Learning Model II

An Illustrative Example

The simple recurrent network used in Chapter 5, and shown again

here in Figure 6.3, will be used to demonstrate the calculation of the

true derivative using the BTI dynamic learning algorithm.

t(k)

··. w1- n(k) -· y(k) @--++

-
~_:-------1 % ~ ~ e(k)

x(k)=y(k-1)

D

Figure 6.3 A Simple Recurrent Network

The three forward time stage operations and the objective

function are rewritten here as

and

y(l) = W1PO) + W2X(l)

= w1p(l)

y(2) = W 1p(2) + W2X(2)

= w1p(2) + w2y(l)

= W1p(2) + W2W1PO)

y(3) = w 1p(3) + w2x(3)

= W1p(3) + W2Y(2)

= w1p(3) + w2w1p(2) +w22w1p(l)

1 3

f = - I (t(k) - y(k))2

2 k=l

(6.5)

(6.6)

90

91

To calculate the true derivatives of the objective function with

respect to the network parameter vector w, using the BTf algorithm,

aF = ± aye(k) aF- ' (6_7)
aw k=l aw ay(k)

we must first start with the calculation of the STT ay(k) using
aw

Equation 6.3. Since Fis not a function ofy(4), the STTs from k=3

backward to k= 1 are

k=3,

aF aeF ify(4) aF
= +

ay(3) ay(3) ay(3) ay(4)

= -l·(t(3)-y(3))+0 (6.8)

= -(t(.3)- y(3));

k=2 '
aF aeF aey(3) aF

= +
ay(2) ay(2) ay(2) <Jy(3)

= -(l)(t(2)-y(2))-(w2)(t(3)-y(3)) (6.9)

= -(t(2)-y(2))-wi{t(3)-y(3));

k=l,

aF aef(l) ify(2) aF.
--= +
ay(l) ay(l) ay(l) ay(2)

= -(l)(t(l)- y(l)) -

(w2)(t(2)-y(2)+ wi{t(3)-y(3))) (6.10)

= -(t(l)-y(l))-

[wi(t(2)-y(2)) + w/(t(3)-y(3))];

Then, from Equation 6.1, the true derivative of the objective function

w.r.t. the weight vector over the three time stages is calculated using

aF = f aey(k) aF

aw - k=l a~" ay(k)

aey(l) aF aey(2) aF aey(3) aF
= + +----

aw ay(l) aw ay(2) alY ay(3)

= [p~l)][-(t(l) -y(l)) - W2 (t(2)- y(2))

- w/(t(3) - y(3))] +

[~~:J)c-c1c2 >- yc2n -w ,c1C3)- y(3)J +

[:~!~][-(t(3) - y(3))].

(6.11)

By comparing the results from Equation 6.11 with the results from

Equation 5.15, the true derivative, it is found that they agree, as

expected.

92

An important point we would like to stress here, is that, after

comparing Equation 6.11 with Equation 5.14, we note that the STTs

at each time stage are different with the corresponding PTTs at each

time stage. As we observed in Equation 6.11, this difference results

from the fact that the STT contains the error information from the

future time stages. The calculation of the PTT at each time stage in

the FP algorithm is consistent with the fact that the error that

occurred in the network output at each time stage results from both

the past and the present inputs. In contrast, the calculation of the

STT in the BTT algorithm only looks at the impact in the present and

future from present point of view. This explains why only the PTT

and not the STT can be converted directly into the true derivative at

each time stage. As for the STI, a more complex calculation has to be

performed before the true derivative can be obtained. We will

93

discuss more of this calculation in the following Marquardt algorithm

section.

Complex Examples in Dynamic Learning

As we did in Chapter 5 for the FP algorithm, in order to

demonstrate the applicability of the two basic dynamic learning

models to any recurrent network configuration using the BTI

algorithm, we give the following two more complex examples. These

examples are the same as those described in Chapter 5. In both

examples, the complexity of the problem comes from the addition of

a fixed neural network that is involved in the training of the neural

network controller.

In the first complex example, shown in Figure 6.4, the network to

be trained is NN(w) and the fixed network is NN'. The configuration

is a combination of the previously described basic dynamic learning

Models I and II. Thus, both Equations 6.3 and 6.4 are used to

calculate the STI. We start by calculating the STI of the output layer

of the fixed network at time stage k,

aF = aeF + aey(k + 1) cJF (6.lZ)
ay(k) ay(k) ay(k) ay(k + 1)

where aeF can be obtained using the basic backpropagation
iJy(k)

method. Then, the STI in the output layer of the training network at

time stage k is calculated as

aF aey(k) aF
=

av(k) av(k) ay(k)
(6.13)

Because the derivative information from the future is already

contained in aF we then only need to apply the chain rule to
ay(k)

aF once. This is the same step as our calculation of the STT for
av(k)

each hidden layer of the training network.

94

The configuration for the second complex example is similar to

the first one. However, a TDL component has been added between

the two networks as shown in Figure 6.5. Even with this addition,

this example is still a combination of the basic dynamic learning

Models I and II. Thus, the STT in the output layer of the fixed

network at time stage k is same as in the first complex example and

is calculated as

aF aeF aey(k + 1) aF = +_.a;. ____ ..;..----
ay(k) ay(k) ay(k) ay(k + 1)

u(k) --

Training
Network

NN(_ru_
v(k)

TDL

--

Fixed
Network

I

NN

~ -

(6.14)

y(k) --

Figure 6.4 First Complex Example for Dynamic Learning

95

However, in this example, the following calculation of the STT in the

output layer of the training network at time stage k is a little more

complex than in the first example

aF aeF aev(k + 1) cJF
--= +-....;__-~----
av(k) av(k) av(k) av(k + 1)

(6.15)

The term a:~) in Equation 6.15 ls no longer treated as the

equivalent to a derivative in a hidden layer in the network. It has a

direct feed-in from the future time stage. This results in the

double usage of the chain rules as shown in Equations 6.1 and 6.2.

Training Fixed
Network Network

u(k)
v(k)

y(k)
NN(Jtl

I

TDL NN
x(k)

TDL~--------J

Figure 6.5 Second Complex Example for Dynamic Leaming

96

Marquardt Optimization

We start this section by reviewing the optimization equation for

the Marquardt method as described in Equation 5.21. It is rewritten

as Equation 6.15

(6.15)

In order to compute the change in the network parameters, Aw in

Equation 6.15, a Jacobian matrix J(w) must first be obtained. The

following Jacobian matrix is the derivative of the error function f

with respect to the network parameter vector w

af1 (~) af1 (~) afl (w)

awl aw2 . aw n
af2(~) iJf/~) af2(w)

J (w) == awl aw2 awn (6.16) . . .
afN(w) afN(w) afN(w)

awl aw2 awn

Using BTT in the Marguardt Method

As we stated in Chapter 5 the FP algorithm and Marquardt

optimization are a perfect combination for use in dynamic learning.

This will be better understood after we have finished deriving the

following tedious calculation process for implementing the BIT

algorithm in the Marquardt method.

First note that it is the derivative of the error function, not the

derivative of the objective function, that is the key term in the

Jacobian matrix described in Equation 6.16. To coordinate this

97

particular requirement in the Marquardt optimization method using

BTf, we must rewrite Equations 6.1 and 6.2, replacing the objective

function E with the error function f, as follows

(6.17)

and

af aef aeak+l il[
-=-+
aak aak aak aak+l

(6.18)

For illustration and simplicity, only a single recurrent output is

assumed in Equations 6.17 and 6.18. The error function, for a single

output network in one learning epoch, is defined as

f=1-x (6.19)

where 1 and y are the desired output and the plant output

respectively. Therefore, the derivative off with respect to the

parameter vector w can be expressed as

af a(1-y) ax
-= =--aw aw aw (6.20)

It is clear now that we need to use the STT from the BTT algorithm to

find the PTT at each time stage.

Converting STT to PTT

To compute the PTT at each time stage using the STT, we first

must consider the fact that the present network output error is a

result of both the present network inputs and past network outputs.

In addition, the STT is a accumulation of the effects (to the output

98

error) from present network inputs and future network outputs. So,

for any time stage k in a learning epoch we must consider the

following:

1.) At the last stage, afk is computed from Equation 6.18 with the
aak

fact that future network outputs have no effect on the current error

(afk = O):
aak+l

af k aefk aeak+l afk -=--+-..........
aak aak aak aak+l

=-1+0

=-1.

(6.21)

2.) The effect from the past network outputs on the present output

error f k, in terms of STT is calculated as

af k aef k aeak af k
--=--+----
aak-1 aak-1 aak-1 aak

aea
=0+--k (-1)

aak-1

aeak
=---

aak-1

af k iff k aeak-1 af k
~~= + --
aak-2 aak-2 aak-2 aak-1

= 0 + aeak-1(- aeak)

aak-2 aak-1

=-
aeak-1 aeak

aak-2 aak-1 '

afk aef k aea2 af k
-=--+----
aal aal aal aa2

= 0 + aea2 (- aea3 ... aeak)

aal aa2 aak-1

aea2 aea3 aeak =-----···--
aal cJa2 aak-1

99

(6.22)

By combining Equations 6.21 and 6.22 we have Equation 6.23. Thus,

we have converted the STis into the P1T at k-th time stage for the

Marquardt optimization.

(6.23)

A Comparison of FP and BTI

Since the computation results of calculating the true derivative

are the same whether using either the FP or BTT algorithms, we will

100

compare instead the computation time (measured in CPU time) and

the number of floating point operation (measured in flops) of both

the FP and BTI algorithms. The same computer simulation, which

will be described as Case 5 in Chapter 7, was performed for both the

algorithms. Table 6.1 lists the computation times of the FP and BIT

algorithms for the first ten learning epochs of the simulation.

TABLE 6.1 Comparisons of Computation Time (in CPU Time) between

the FP and BTI Algorithms

Learning

Epoch

1

2

3

4

5

6

7

8

9

10

CPU Time

of

FP

3.8964

3.9297

4.9108

4.5164

4.7820

4.9714

4.6630

4.8822

4.7837

4.8083

CPU Time

of

BTT

3.0736

7.2542

8.0886

7.7872

8.0839

7.9106

7.9936

8.0602

8.0717

8.0781

Ratio of

CPU Time

(FP/BTI)

1.2677

0.5417

0.6071

0.5800

0.5915

0.6284

0.5878

0.6057

0.5927

0.5952

101

The CPU time unit in the table is minutes and both the FP and the

BTT simulations were performed on a Macintosh Centris 650

computer using MATLAB. Because random initial weights are used

in this simulation, the first learning epoch was composed of 50

trajectories. For the second learning epoch and all epochs thereafter,

the designed number of 10 trajectories were used. Therefore, the

first learning epoch is excluded when averaging the FP /BTT ratio of

CPU time (column 4 of Table 6.1). The average FP/BTT ratio is

0.5922 which means the FP algorithm only took about half of the CPU

time that the BTT algorithm consumed.

Table 6.2 lists the number of floating point operations (in flops)

for the calculation of the FP and BTT algorithms for the first ten

learning epochs of the simulation. From the point of view of the

floating point operation, by excluding the first learning epoch as

explained above, the BTT algorithm performs a little better than the

FP algorithm.

The results shown in Tables 6.1 and 6.2 are not consistent. This is

due to the numbers of matrix operations executed in both the

algorithms. In the FP algorithm, most of the computations are matrix

operations. In contrast, for the BTT algorithm most of the

calculations are scalar loop oriented. Since MATLAB is a software

dedicated to matrix operation, it is no surprise that in this particular

environment the FP algorithm used less CPU time than the BTT

algorithm. When a general software environment is used, the BTT

algorithm would have a little edge over the FP algorithm in

computation time.

102

TABLE 6.2 Comparisons of Computation Time (in Flops) between the

FP and BTT Algorithms

Learning

Epoch

1

2

3

4

5

6

7

8

9

10

FP

12094210

12091280

12091280

12091280

12091280

2091354

12091280

12091280

12091280

12091280

BTT

2700520

11665910

11665910

11665910

11665910

11090893

11665910

11665910

11665910

11665910

CHAPTER VII

NEUROCONTROL USING DYNAMIC LEARNING

The purpose of this chapter is to demonstrate the training of a

neural network controller using forward perturbations, the dynamic

learning algorithm described in Chapter 5, in an on-line adaptive

fashion. Several papers [4][10][11][12] have described the theory of

FP, but we have found no successful implementation of the algorithm

for model reference adaptive control reported in the literature.

Therefore, it is very significant and the most important result of this

research that a satisfactory implementation of forward perturbation

has been reached through the computer simulations performed in

this chapter.

We start with a description of the model reference adaptive

control (MRAC) method, which is a commonly used architecture in

adaptive control. Then, to integrate it with a neural network plant

identifier, the MRAC method is reconfigured. This allows the neural

network controller to be trained with the FP dynamic learning

algorithm. To illustrate the gradient calculation in the dynamic

learning process, a scalar version is given first. Then, a general

vector version is described. Finally, to investigate the performance

of the indirect MRAC using FP, extensive computer simulations

ranging from simple to complicated cases were performed.

103

104

The simulations begin with a case of a linear first-order dynamic

plant using a linear neural network controller. After three

successively more complex cases, the simulations end with the case

of a nonlinear second-order dynamic plant using a nonlinear neural

network controller. As described in the last section of this chapter,

the results of all the simulations were successful. Thus, this research

provides us with a potential tool to deal with the more complex

nonlinear dynamic applications found in the real world.

lviRAC in Linear Dynamic Systems

There are two different approaches, direct and indirect, to the

adaptive control of linear dynamic systems. The key difference

between these two methods is the source of the information which is

used to adjust the parameters of the controller. In direct adaptive

control, as shown in Figure 7.1, the parameters of the controller are

directly adjusted by the plant output error. In comparison, the

indirect adaptive control, shown in Figure 7.2, has a plant identifier

placed between the controller and the plant output error. The

parameters of the controller are chosen so that the parameters of the

plant identifier can represent the parameters of the true plant.

In linear adaptive control systems, such as the one shown in

Figure 7.3, the input u(k) and the output yp(k+l) of the plant are

connected to the TDLs so that the delayed values -- u(k-1), u(k-2), ...

, u(k-n) and yp(k), yp(k-1), ... , yp(k-n+l) -- are the outputs of the

TDLs. A linear combination from the controller reference input r(k)

and the delayed values from both the plant input u(k) and the plant

r

r

Reference
Model

Ym

I
u T I

1------1~ Controller Plant Yp I
I
I
I L ____________________ J

Figure 7 .1 Direct Adaptive Control

Reference
Model

Controller
u

Plant

-------1

Plant
Identifier

Ym

Ypi

I
I
I
I
I

--------·

Figure 7.2 Indirect Adaptive Control

105

output yp(k+l) is used to produce the controller output

u(k) = XT (k)f(k),

where the controller parameter vector ~(k) is

~(k) = [X1 (k) X2 (k) ... Xzn+l (k)f

r

Reference
Model

Ym

--• TDL ,..,._ __ _

Controller
u

Plant

L------.----------

---i TDL 1 ------------1

Figure 7.3 The Illustration of Adaptive Control

and the controller input vector 12 is

p(k) = [r(k) u(k -1) u(k- 2) ... u(k - n)

yp(k) yp(k-1) ... yp(k- n + l)f

(7.1)

(7.2)

I
I

Yp I
I
I
I
I
I

(7.3)

106

For a given reference model, it can be shown that a constant

parameter vector X* exists such that the controlled plant responds

exactly like the reference model when the designated plant input

u*(k) == ~} (k)£(k), (7.4)

is applied [4]. With this reference model the constant parameter

vector X* is obtained in an adaptive fashion from the plant input

output measurements. The MRAC method has been thoroughly

studied and complete descriptions can be found in the book by

Narendra and Annaswamy [13).

107

However, very little research has been reported on the use of

adaptive controllers for plants described by nonlinear difference or

differential equations. It is the control of such systems using the

neural networks that is the primary focus of this document.

Indirect MRAC Using Neural Networks

The gradient method is used in the training of neural network

controllers, and with a neural network plant identifier NNP providing

a medium for passing through the output error to the controller, it is

feasible to use the backpropagation algorithm for the training of

neural network controllers. The architecture of the indirect MRAC

using neural networks is shown in Figure 7.4. Using this new

configuration, the gradient calculations for adjusting the parameters

of the neural network controller are derived in the following section.

r

IDL

IDL

Reference
Model

u

(IDL i--v~

L-----------
X

Plant
I
I
I
I
I _____ J

YNNp

Figure 7 .4 Indirect MRAC Using Neural Networks

Indirect MRAC Using Forward Perturbation

108

For simplicity, it is assumed that each TDL in Figure 7 .4 has a

single output. Since the output of the neural network identifier

YNN(k+l) is only an estimate of the plant output yp(k+l), the plant

output is chosen as the target function forthe gradient calculations.

From the discussions of the gradient calculations for the two complex

examples in Chapter 5, it is shown that the true gradient of the plant

output w.r.t. the parameter vector w of the neural network controller

NNc through time is obtained as

109

ay(k + 1) = aye(k + 1) + (av(k) aey(k + 1) +
aw aw aw av(k) - - -

au(k) aey(k + 1) ax(k) aey(k + 1),
------+ J

aw au(k) aw ax(k)

= O + (au(k - 1) aey(k + 1) + (7.5)
aw au(k-1)

au(k) aey(k + 1) ay(k -1) aey(k + 1) \ ------+ _" ___ , J

aw au(k) aw ay(k -1)

where all the explicit derivative terms can be obtained by basic

backpropagation. The true gradients ay(k) and au(k - l) in Equation
aw aw

7 .5 are the perturbations propagated forward from the past time

stage to the present time stage. The present true gradient au(k) in
aw

Equation 7 .5 can be obtained as

au(k) = aue (k) + (aeu(k) as(k) + aeu(k) az(k))
aw aw as(k) aw az(k) aw

= aue (k) + (aeu(k) au(k -1) + (7.6)
aw au(k -1) a~

aeu(k) ay(k-1))

ay(k -1) aw
where all the explicit derivative terms can also be obtained by basic

backpropagation. This concludes the gradient calculations for the

indirect adaptive neural network MRAC method using the FP

dynamic learning algorithm.

The generalized vector versions of Equations 7 .5 and 7 .6 are given

in Equations 7.7 and 7.8.

ay(k + 1) ay\k + 1) ay(k/ aey(k + 1) ---= + + aw aw aw ay(k)

au(k) aey(k + 1) ax(k) T aey(k + 1)
------ + --'-'--

aw au(k) aw al(k)

. (\ . ~ au(~ :-:i) fy(k + 1) +
= V "1'" f dW dU(k - 1)

au(k) aey(k + 1) ·
------+

aw . au(k)

~ ay(k - j + 1) aey(k + 1)
f ·-·· ·· a; - ·· ay (k - j + 1)'

au(k) = aue(k) + a~(k)T aeu(k) + a~(k)T aeu(k)

aw aw aw a§(k) aw az;(k)

~ aue (k) . ~ au(k - i) aeu(k) +
- aw .,.. f aw au(k - 1)

I ay(k -j + 1) ctu(~) ,
j aw ay (k - J + 1)

Computer Simulations

110

(7.7)

(7.8)

The computer simulations performed for implementation of the

indirect MRAC using the FP dynamic learning algorithm were

categorized into the following five cases,

(1) First-order linear plant with linear controller

(2) First-order linear plant with nonlinear controller

(3) Second-order linear plant with linear controller

(4) Second-order linear plant with nonlinear controller

111

(5) Second-order nonlinear plant with nonlinear con troll er

The general learning steps in the training procedure, which apply to

all the above cases, are,

Step 1: The training data sets were· obtained on-line by stacking the

data points that resulted from several runs, up to a preset total

number. A run started with a randomly chosen initial condition and

was given a random constant reference. It stopped when either the

output was out of the output space, or a preset maximum number of

data points was reached. Thus, a run is equivalent to a plant -

trajectory.

Step 2: The true gradients of the plant output w.r.t. the network

parameters at each time stage of a learning epoch were also

computed when the training data was collected.

Step 3: Unlike the on-line executed training data collected in Step 1

and the on-line gradients calculations performed in Step 2, the

optimization process in this step, using the Marquardt method, was

performed off-line. The reason is, as described in Chapter 2, that

some number of iterations have to be performed in order to find the

appropriate value ofµ in the Marquardt optimization. Thus, instead

of the real physical plant, the neural network plant identifier is used

in this step.

112

Step 4: The training was stopped when either a maximum learning

epoch number or a least mean squared error goal was reached.

In the discussion of each computer simulation, presented first is a

learning curve of the neural network controller that was obtained

after the training. Then, for the linear controllers, the network

parameters are compared to the true coefficients of the

corresponding linear transfer functions to check if they match. To

evaluate the trained nonlinear controllers, several tests were

performed to compare the network controlled plant output with the

desired output of the reference model. A parallel test method, in

which the reference model and the controlled plant ran

independently of each other, was used in all the evaluation tests.

Compared to the series-parallel test method used in static learning in

Chapter 4, the parallel test method is a higher standard evaluation.

To ensure that the trained nonlinear neural network controller can

be operated from anywhere in the input and output spaces, the

initial conditions of the tests were randomly chosen from the

corresponding input spaces.

Simulation 1: First-order Linear Plant with Linear Controller

The linear neural network controller in this simulation is a multi

input, no offset, perceptron with a linear activation output. The

transfer function of the reference model is given as

Yct 1- o.2z-1

-=
r Z-0.4

(7.9)

where r is the reference input and Yct is the desired output. The

transfer function of the first-order plant was chosen as

~ = 1-o.3z-1

u Z-0.5
(7.10)

113

where u is the control input to the plant and YP is the plant output.

The goal of the control is to match the plant output with the desired

. output from the reference model. Thus, the following control input

was obtained from Equations 7.9 and 7.10

u(k) = y /k + 1) """0.5yP (k) + 0.3u(k -1)

= (0.4y P(k) + r(k)- 0.2r(k -1))

-0.Syp(k)+ 0.3u(k-1)
(7.11)

= 0.3u(k -1) + r(k)- 0.2r(k-1) -0.lyp(k)
'

From Equation 7 .11, one can see that the perceptron has to be a

4-input neuron. The learning curve, shown in Figure 7 .5, is obtained

after 45 learning epochs. The final trained neuron weights exactly

matched with the coefficients from Equation 7.11. The converging

process of the weigh ts is recorded in Table 7 .1.

102

10-5

...
~ 10-12
"d
12

i
:; 10-19
!

10-26

10-33__ ____ ______ ___________-........

100 101 102

Epochs

Figure 7 .5 The Leaming Curve from Simulation 1

114

TABLE 7.1 The Weights Converging Process for Simulation 1

Learning
Epoch

1

11

21

31

41

45

True
Coefficients

Weights

0.6009 0.9949 0.2533 -0.1236

0.2978 0.9999 -0.1976 -0.1002

0.2999 1.0000 -0.1999 -0.1000

0.2999 0.9999 -0.1999 -0.1000

0.2999 1.0000 -0.1999 -0.1000

0.3000 1.0000 -0.2000 -0.1000

0.3000 1.0000 -0.2000 -0.1000

Simulation 2: First-order Linear Plant with Nonlinear Controller

115

From empirical experience, a 4-2-1 multilayer neural network

was chosen for the nonlinear controller in this simulation. The

learning curve, shown in Figure 7.6, was obtained after a given

number of maximum learning epochs was reached. Because of the

nonlinearity of the controller, we cannot verify the trained weights

by comparing them directly to the coefficients in Equation 7.11 as we

116

did in Simulation 1. Instead, four evaluation tests, shown in Figures

7.7 and 7.8, were performed for the trained network parameters. In

all of the evaluation test figures in this chapter, the dashed line

represents the plant and the solid line represents the reference

model. As observed from Figures 7.7 and 7.8, the tracking and the

regulating abilities of the trained neurocontroller, shown during the

transient and the steady states respectively, are excellent in

matching to the reference model.

100

10-1
....
g
G)

10-2 't:I
I!::

i 10-3 s:;
ltl

:2
104

10-5

10-6 _____. __ __________ __________ ...__........_.

100 101 102 103

Epochs

Figure 7 .6 The Leaming Curve from Simulation 2

G)

f -0.8

.r
N
G) -1
lCL,

0

Evaluation Test 1

-1.2 ______________________ __.. _______ ...__ _ ____.

G)

f -0.1

.r
N
G) -0.2
~

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
lime (second)

-0.3 _____________________ __,_ _______ ...__ _ ____.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
lime (second)

Figure 7.7 The Evaluation Tests for Simulation 2 (#1)

117

118

t 1 ig

f
ig

0.9 (I)

o'

0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (second)

0 Evaluation Test 4

t-0.2
ig

f-0.4
ig
(I)

o' -0.6

-0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (second)

Figure 7.8 The Evaluation Tests for Simulation 2 (#2)

Simulation 3: Second-order Linear Plant with Linear Controller

The second-order reference model and the second-order plant in

this simulation are described by Equations 7.12 and 7.13

respectively

(7.12)

d [x1 l [x2 ·i [0 l dt x2 = -4x1 - 4x2 + 4u
(7.13)

The corresponding discrete transfer functions are, respectively,

· [r(k) l 1· yd(k) l
yd (k +. 1) = ~d r (k - 1) + !1i yd (k - 1)

where~= [.0102 .0092], Qd = [1.1721 -. 7408]

and

Y,(k + l) = !!, [u;i~\) l + !!,[y:ci:l) l
where ~P =[.0047 10044], hp= (1.8097 -.8187]

(7.14)

To find the control input u(k), we apply the same manipulation

performed in Simulation 1 to Equation 7.14 to get

[r(k) l = -.9355u(k -1)+ [2.1770 1. 9698] +
r(k -1)

(7.15)

[18.8634 -16.6521][yd(k) l·
yd(k-1)

119

A five-input, no offset perceptron with a linear activation output

was the linear neural network controller chosen for this simulation.

This is a similar situation to the one in Simulation 11 but the basic

training method used in Simulation 1 would not produce successful

training results here< Instead the author proposed the trajectory

crossing training (TCT) method and t.he trajectory length increasing

(TLI) method that will be discussed in Chapter 9= The learning curve

120

for this simulation is shown in Figure 7. 9. The convergence process

of the network parameters and the increasing trajectory length

(numbers of data points or time stages ahead in one trajectory) as

the learning epoch went forward were both recorded in Table 7 .2.

As one can see from Table 7.2, the fmal trained weights in Simulation

3 exactly match the true coefficients calculated from Equation 7.15.

107

104

101

....
§ 10-2
oil)

,c,
I!::
~ 10-5
Q'4
~

i 1~

10-11

10-14

10-17 ____ _____________ _______......__.___._._,

100 101 102

Epochs

Figure 7. 9 The Leaming Curve for Simulation 3

121

TABLE 7.2 The Weights Converging Process for Simulation 3

Data
Epoch Points

1 100

11 100

21 200

31 400

41 600

51 800

101 800

True
Coefficients

Weights

0.7045 -0.1392 0.8803 -0.6494 0.3537

-0.8931 1.9437 1.3877 19.2375 -17.5878

-0.9058 2.0407 1.6177 19.1188 -17.2922

-0.9221 L1239 1.8289 18.9832 -16.9580

-0.9307 2.1639 1.9312 18.9050 -16.7567

-0.9344 2.1746 1.9621 18.8733 -16.6769

-0.9355 2.1770 1.9698 18.8634 -16.6521

-0.9355 2.1770 1.9698 18.8634 -16.6521

Simulation 4: Second-order Linear Plant with Nonlinear Controller

From empirical experience, a 5-4-1 multilayer neural network

was chosen for the nonlinear controller in this simulation. The

learning curve, as shown in Figure 7.10, has about the same final

mean square error as in Figure 7 .6 from Simulation 2. This is due to

the nonlinear neurocontroller that was used in both simulations.

Another similar phenomenon shared between Figures 7.6 and 7.10 is

122

the presence of vibrations exhibited during the declining of the

learning curve. The results of the trained network controller

evaluation tests are shown in Figures 7.11 and 7.12. Aided by the

TCT and TLI methods, the performance of the trained controller for

the second-order plant is as good as the one trained in Simulation 2

for a first-order plant.

101

100

10-1

...
§ 10-2
oil)

'C
~

i 10-3

~
pj

104 !

10-5

1()-6

10-7
100 101 102

Epochs

Figure· 7 .10 The Leaming Curve for Simulation 4

123

0 Evaiuation Test 1

G.) r -0.2 J
-~
1§
8. -0.4
0

-0.6
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (second)

-0.25
Evaluation Test 2

t-0.3

-~-0.35
"E?
G.) o -0.4

-0.45
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (second)

Figure 7.11 The Evaluation Tests of Simulation 4 (#1)

124

Evaluation Test 3
1

t 0.5

.t
E: 0 (1)
p.,

0

-0.5
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (second)

Evaluation Test4
£\
V

t
.:
E:
(1)
p.,

0

-0.5
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (second)

Figure 7.12 The Evaluation Tests of Simulation 4 (#2)

Simulation 5: Second-order Nonlinear Plant with Nonlinear Controller

Because this simulation contains a second-order nonlinear plant, it

is the most difficult one to train compared to all the previous

simulations. The swinging pendulum system described in Chapter 5

is the choice for the second-order nonlinear plant. In the previous

simulations, because of the linearity of the plant, all the plant

125

identifiers used were simply the plant model equations. However,

due to the nonlinear character in the pendulum system, we will

instead use the neural network pendulum identifier trained in

Chapter 4.

Following the steps of the general learning procedure described in

the beginning of this section, a training data set, composed of 10

trajectories with 66 data points in each trajectory, was obtained on

line for each learning epoch. Again, by empirical experience, a 5-13-

1 multilayer recurrent neural network was chosen for the controller.

To demonstrate the powerful training ability of the dynamic learning

method using the Marquardt optimization technique, a comparison of

the neural network controller responses before and after two

learning epochs, is shown in Figure 7.13. It seems that, after only

two learning epochs, the network controller already possesses most

of the desired characteristics. This is illustrated in Figure 7 .14 by the

closely matching tracking effort made before 0.5 seconds and the

tendency towards steady state that is exhibited toward the end of

the response session.

The learning curve for the nonlinear controller, shown in Figure

7.15, was obtained after the simulation reached a preset number of

maximum learning epochs. The result of the final learning epoch and

the first evaluation test are presented in Figure 7.16. To verify the

generalization of the trained neural network controller over the

entire system operating range (or the input-output space), four more

evaluation tests were also performed. The results of these tests are

shown in Figure 7 .1 7. It can be observed, from Figures 7 .16 and

7 .17, that the training outcome in this simulation may not be quite as

126

accurate as the outcomes in Simulations 1 to 4. However, considering

the fact that this is the first known successful simulation using

dynamic learning on a second-order nonlinear plant, it is still the

most significant and important result in this research.

50.... __ ___, ___ ___ _._ ___ ..__ __ ____....__ __ ___ __,
0 5 10 15 20 25 30 35

Time (second)

0 ,__ __ ___, ___ ___ _._ ____ __ ____....__ __ ___,

0 5 10 15 20 25 30 35

Time (second)

Figure 7.13 The Comparison of the Non-trained and Trained

Responses of the NNc (5-13-1)

1.6

1.4

1.2

- 1 '1)

~
:g.

0.8
~

:8
·v.i
0 0.6 i:a..

0.4

0.2

0
0

/
I

I
I

I
I
I
I
I
I

' \
\

1

\

'

127

Reference = rr,/2

\

' \ -----
\

.,.. --
/ ---------

' ---

2

/ ,,,,.

3

Time (second)

4 5

Figure 7.14 The Evaluation Test of NNc after Two Learning Epochs

128

10-1

....
El
(I)

,:I

i 10-2
17.1

......
0

fa
(I)

~

10-3

1041 _______ ___.__...__,,...._._, , , '"---_ _....__...____ __.....,._._.,j
100 101 102

Learning epochs

Figure 7 .15 The Learning Curve for Simulation 5

129

Result of Final Learning Epoch
I.SO

.......
,(I)

~ 100 :g,
;;:;
~ 50 -~
0
ii.

0
0 5 10 15 20 25 30 35

Time (second)

Evaluation Test 1
100

.......
,(I)

~
:g,

50 ;;:;
~ -~
0
ii.

TI me (second)

Figure 7 .16 The Final Learning Epoch Result and the First Evaluation

Test for Simulation 5

130

120
Test 2 (ref=3*rr/4-rr/8)

140
Test 3 (ref=rr/4+n/8) __ ..,,. ____ --

-. -.
<ll'

100
(I)

120 ~ ~ :g.
80

:g.
100 - ;:::

:8 _g
·t::i ~

60 v.. 80 0 .£ p..
... _

40 60 ~--------
0 5 0 5

Time (second) Time (second)

150
Test 4 (ref=3*rr/4+Jt/32)

200
Test 5 (ref=rr/4-m.32)

- ... - -
-. -.
(I) (I) 150
~ 100 ~
:g. :g.

100
~ ~

:8 50
_g -·t::i
v.. 50 0 .£ ---p..

0
5 0 5

Time (second) Time (second)

Figure 7 .1 7 Four More Evaluation Tests for Simulation 5

Summary

Chapters 5, 6 and this chapter represent the main focus of this

document. The proposed theory of dynamic learning and the

forward perturbation algorithm and the backpropagation-through

time algorithm associated with it were described in Chapter 5. This

chapter presented the implementation of the indirect MRAC method

131

using the forward perturbation algorithm in five extensive computer

simulations. It begins with the derivation of the gradient calculation

equations for the on-line operation of the indirect MRAC using neural

networks. Then, starting with the simplest case of a linear plant and

a linear controller, the five dynamic learning simulations are

presented, ending with the most complex case of a nonlinear plant

and a nonlinear controller. All the trained controllers were

evaluated using the parallel test method, which is a more precise

measure than the series-parallel test method used in static learning.

The outcomes of all the five simulations were satisfactory. This

success was due not only to the correctness of the FP algorithm, but

also to the perfectly matched Marquardt optimization method and

aid from the secondary training methods.

CHAPTER VIII

REAL-TIME EXPERIMENT AL RESULTS

We reported the first successful MRAC dynamic learning

computer simulation in Chapter 7. In this chapter, we will advance

to implement the trained networks that use both static learning and

dynamic learning on real physical systems in real-time. We start

with a description of the real-time application -- the physical

swinging pendulum system. Then, feedback linearization, which is

described in Chapter 4, is used to illustrate the real-time control

using static learning. The forward modeling of the physical

pendulum system using static learning is also discussed. The

forward model of the plant will be used in real-time control. Just as

in computer simulation, we use a MRAC control scheme and dynamic

learning to train the neurocontroller off-line. Then, we implement

the trained controller in a real physical system to demonstrate real

time control using dynamic learning.

The Real Physical System Description

The real physical swinging pendulum system has three

components;

(1) The physical system,

132

(2) The VME backplane computer system,

(3) The work station.

The functional diagram of this system is shown in Figure 8.1.

133

The physical system has a motor and a pendulum attached to its

shaft. The sensor device for measuring motor shaft position is

composed of a shaft encoder which attaches to the motor and a

counter which resides on the interface board of the VME backplane

computer system, as explained in the following.

There are three boards in the VME backplane computer. The first

one is the interface board which contains a counter, a D/ A converter

and an address decoder. The counter decodes the signals from the

shaft encoder. The D/ A converter converts digital signals to analog

signals which are sent to the motor amplifier to drive the motor. The

address decoder receives read or write commands from the real-time

control program. It reads the motor shaft counter as motor position

input. It writes the digitized motor voltage to the DI A converter.

Each of the other two boards has a Motorola 68040 CPU. The first

68040 board is the master. It has an ethernet port and a real-time

operating system called Vx Works. The master serves as a

communication bridge between the work station and the real-time

software. The second 68040 board is the slave. It executes the real

time software, which is composed of a real-time executive and a

real-time control program, to control the pendulum system.

Finally, the work station is an environment for development of

real-time software, control of real-time software and graphic display

of real-time test results.

,-
1

I

L

r

I

L

r

I

connector

shaft
encoder

amp

motor

connector ~-----.

counter

R/TExec

VxWorks

addrdeco.

WORK
STATION

D/A

R/TControl

E-net

E-net

134

- - - --,

pendulum

interface

slave(68040)

master(68040)

- - - - -

I
_I

--,

I

I

:.J

--,

I
L ________ _

------------'

Figure 8.1 The Functional Diagram of the Pendulum System

135

Real-Time Control using Static Leaming

We start with a review of feedback linearization, which was

described in Chapter 4. Then, the procedure for training the neural

network in a real-time environment is presented. The trained

results include the learning curve and off-line tests of the trained

network. FinallY'., the results from real-time control using the trained

neural network in a real physical system are described.

Feedback Linearization

Since the dynamics of the physical pendulum system are not

known a priore, we can only describe the plant with the following

state variable equation

[X2(k) l
~(k+l)=l(k)+At f(l(k))+(c)(u(k)) (8.1)

where f is the unknown nonlinearity and c is the unknown constant

of the control input. We need, not only to train a neural network NNr

which can identify the nonlinearity f, but also to find out the value of

the constant c. A different reference model from the one described

in Equation 4.20 is selected. The discrete representation of the

reference model for the real-time application is

[x/k) l
~(k+ l)= l(k)+ At -64x1(k)-16x2 (k) + 64r(k) (8.2)

Thus, to control the pendulum system in such way that it responds to

the desired dynamics in real-time, the input will be

136

u (k) = x2 (k) + At(-64x1 (k) -16x2 (k) + 64r(k))- NNr (8_3)
H, (C)(At)

Procedure for Training and Real-Time Control

(1) Collect the pendulum position X1 and velocity x2 in real-time by

applying motor voltage u as described in the computer simulation in

Chapter 4, a base voltage is established first, then the threshold

voltage will apply to the motor when the pendulum is going out of

bounds.

(2) After a total of 1,000 data points were collected, we made two

training data sets with 400 points in each (no data overlapping). The

static learning process with the ATS method was performed. As

shown in Figure 8.2, a 2-8-1_33 neural network was selected to

identify the system nonlinearity, and a neuron with only one weight

(no offset) is to be trained to find the constant of the control input.

(3) Before we install the trained network in a real-time control

program, we can check the network in the same way we did in the

computer simulation in Chapter 4. We alternately set one of the two

inputs to zero and varying the other one to get the network outputs.

A half cycle sinusoidal wave and a straight line are expected in the

test results.

NNt
(2-8-1_33)

137

Figure 8.2 The Network Configuration to Train the NNr and Control

Input Constant C

(4) If the test results from the last step are satisfactory, we can then

implement the trained network in real-time software. The control

equation is based on Equation 8.3. In order to examine the

performance, the desired output from the reference model is also

generated in real-time.

(5) To verify the generality of the trained network NNr and control

input constant c, we perform two pendulum moving-up motions and

two moving-down motions.

The Training and Real-Time Control Results

The learning curve of the NNr and constant c is shown in Figure

8.3. After 100 epochs, the curve has already reached a minimum. In

Figure 8.4, we compared the gravity nonlinearity and motor shaft

friction of the physical pendulum system to the expected sinusoidal

138

wave and straight line respectively. In the figure, the expected

results and the trained network outputs are represented by solid

lines and dashed lines respectively. We observed in Figure 8.4 that

our trained network is quite accurate.

Feedback Linearization Leaming Curve

101

100

10-1...._~~---~---------................... ~~~----~.....__.....__ _______ ~
100 101 102

Epochs

Figure 8.3 The Learning Curve of Network NNr

0.4

0.2

0

-0.2

-0.4
-0.5 0

The Evaluation of NNf while x(2)=0

0.5 1 1.5

x(l)

2 2.5 3 3.5

40 The Evaluation ofNNf while x(l)=O .----~------T"""---~----.~----,..---......
20

0

-20

-40 ...__ __ __._ ___ __._ ____ __ ___. ____ _._ ___ _.

-30 -20 -10 0

x(2)

10 20 30

139

Figure 8.4 The tests of the Nonlinearity and Friction of the Physical

Pendulum System

As described in the procedure, we then implement the network

NNr and control input constant c in the control equation (Equation

8.3) of the real-time software. We start the pendulum initially at a

straight down position (e = QO) and set the final reference positions

140

at horizontal (e = 900) and straight up (e = 1800). The results are

shown in Figure 8.5. Then, two more moving-down motions (from e

= 1800 toe== 900 and e = OO) were performed as shown in Figure 8.6.

In both figures, the controlled plant outputs are compared to the

desired outputs from the reference model.

-'lr.11
11)

!2
bO
11)

'C -!=:
-8

'lr.11
0
ti.

-11)

!2
bO
11)

'C -!=:

·8
'lr.11
0
ti.

100

80

60

40 ' ~

20

0
0

200

150

100

50

' t

I

,,,. ,

FeedbackLinearizationReal-TimeMoving U Test I

-----~--~ ~ .,.- ... ---_ ... -

1 2 3 4

Time (seconds)

Feedback Linearization Real-Time Moving U Test II

-----~-------------------------~----

1 2 3 4

The Desired Output (solid line) vs the Plant Output (dashed line)

5

5

Figure 8.5 The Tests of Moving Pendulum Up in Real-Time

141

200 Feedback Linearization Real-Time Movin Down Test I

-00
oil)

12 150 bb
oil)

'O
s:l

·B 100 -------------------------------------00
0
p,,

50-------------------------------'
0 1 2 3 4 5

Time (seconds)

200 Feedback Linearization Real-Time Movino Down Test II

- 150 oil)

12
bb
oil)

'O 100 s:l

·B
00

50 0
p,,

0.5 1 1.5 2 2.5 3 3.5 4 4.5

The Desired Output (solid line) vs the Plant Output (dashed line)

Figure 8.6 The Tests of Moving Pendulum Down in Real-Time

From Figures 8.5 and 8.6, we observed that the regulating ability

of the neurocontroller is less accurate than the tracking ability. In

general, we conclude that the neural network controller using the

feedback linearization technique on the physical pendulum system in

real-time is successful.

142

Real Physical System Identification

The main reason to perform forward modeling (system

identification) of the physical pendulum system is because of its use

in training the MRAC controller. We will describe the use of MRAC in

real-time control in the next section. In this section, we start by

reviewing the plant modeling process and the methods used to

evaluate the trained neural network. Then, the procedures for

training and real-time evaluation of the forward model of the real

physical system are described. Finally, comparisons of the real

physical plant and the neural network model are given.

Forward Modeling and Evaluation Methods

As shown in Figure 8. 7, a feedforward neural network is selected

for identifying the physical pendulum system. The inputs of the

network consist of the current and previous motor control voltages

u(k) and u(k-1) and the current and previous pendulum positions

y(k) and y(k-1). The output of the network is the next pendulum

position y(k+ 1).

Both the series-parallel and parallel methods are used in

evaluating the plant model in real-time. The series-parallel test

method, as shown in Figure 8.8, has delayed actual plant outputs as

network inputs. In contrast, as shown in Figure 8.9, the network

output feeds back to its input through a TDL for the parallel test

method.

PLANT

,____......i TDL 1---....... ,
+

....--...-.. TDL 1---...-..., Ynn(k+l)

Figure 8. 7 System Identification of a Real Physical Plant

u(k)

TDL

PLANT
p

Yt(k+l)

Ynn(k+l) NEURAL
~---~NETWORK~~--~

TDL NNp

Figure 8.8 The Series-Parallel Test Method

143

144

It is obvious that the parallel test method is more difficult. If the

plant model does not exactly match the real plant, then small errors

in each time stage will accumulate to become a large error in the end.

Contrary to this, in the series-parallel test, the true pendulum

position always feeds into the plant model at each time stage. Thus

there is no accumulation of error. That is why we usually have

almost perfect series-parallel test results but only have approximate

parallel test results.

u(k) PLANT Yt(k+l)

-- -p

L.TDL --- NEURAL Ynn (k+l)

- NETWORK --- TDL NNp ----
Figure 8.9 The Parallel Test Method

145

Procedure for Training and Real-Time Evaluation

(1) The same data collected for training in the feedback linearization

can be used to train the neural network model. Only the pendulum

position and the motor voltage are used in the training.

(2) A 4-5-1_31 network is selected for the plant model. Two data

sets are produced for training the network with the ATS method.

(3) After the training, we implement the network model in the real

time program. Then we performed series-parallel and parallel tests

to evaluate the network model.

The Training and Real-Time Evaluation Results

The learning curve of the plant model NNp is shown in Figure

8.10. After 100 epochs, the curve has already reached a minimum.

As described in the procedure, we then implement the network NNP

in the real-time software running along with the real physical

system.

5,-t

~
i:i::i
'C

I
ct
ro

la
G)

~

100

10-1

10-2

10-3

10-4

Forward Modeling Learning Curve

101

Epochs

Figure 8.10 The Learning Curve of the Network NNP

146

102

First, we performed the series-parallel tests. The pendulum is

initially set to a straight down position (e = OO), then constant

voltages of 3.5 and 3.0 volts are applied to the motor to provide two

pendulum moving-up motions. The final (steady state) pendulum

positions, as shown in Figure 8.11, were about 1150 and 600

respectively. Two more pendulum moving-down motions from the

straight up initial position (e = 1800), as shown in Figure 8.12, were

performed. The constant voltages applied to the motor were -2.0

and -1.5 volts. One downward motion stopped at -200 and the other

147

one diverged. In both figures, the real pendulum position (dashed

line) is compared to the plant model output (solid line). We observed

in both figures, as long as the pendulum motion is within the training

range (from oO to 1800), the network model acted perfectly as the

real plant. As shown in the second graph of Figure 8.12, it is

surprising that the network model is so accurate, even when the

pendulum swings far away from the training range.

Then the more difficult parallel tests were performed. We used

the same set-up and procedure as for the series-parallel tests. The

results of the parallel tests are shown in Figures 8.13 and 8.14.

When compared with Figures 8.11 and 8.12, the parallel test results

are certainly not as accurate as the series-parallel test results.

Particularly in the parallel tests, the steady state performance is

much less accurate than the tracking performance of the network

model. We will discuss how the results of the series-parallel and

parallel tests of the network model may affect the training and the

real-time control of MRAC using dynamic learning in the next section.

148

120 Forward Modelin Real-Time Moving U Series Test I

100
........
(I)

80 e
l).O
(I)

'Cl - 60 ~ .,g
40 0-:l

0
11,

20

1 2 3 4 5

Time (second)

Forward Modelin Real-Time Moving Up Series Test II 80.....-~~.--~~.--~__....--~___,,--~---,.....-~___,.--~---,.--~---,

........ 60
(I)

e
l:).O
(I)

'Cl - 40
~

:8
0-:l
0

11, 20

1 1.5 2 2.5 3 3.5 4

The NNp Output (solid line) vs the Plant Output (dashed line)

Figure 8.11 The Network Model Moving-Up Series-Parallel Tests

200 Forward Modeling Real-Time Movin Down Series Test I

- 100~ d)

~ I M
d)

0~
'i::! -i:::;
.g

-IOOl
....
00
0
i:t.

I

-200
0 1 2 3 4 5

Time (second)

Forward Modelin Real-Time Movin Down Series Test II 200....----r----,..._----,,---_.....__,,------,,--------,

-d)

100

~ 0
bJ)
d)

"O
._.. -100 ,::;
.g
~ -200
i:t.

-300
....

-400_ ____ ____ __ ___..._ __ ___.,__ __ ___..._ __ __.
0 0.2 0.4 0.6 0.8 1 1.2

The NNp Output (solid line) vs the Plant Output (dashed line)

149

Figure 8.12 The Network Model Moving-Down Series-Parallel Tests

-Q)

2:!
b.(I
Q)

"C -s:;
·.8
Ill
0

jl.,

Forward Modelin Real-Time Movin U Parallel Test I 200.--....--.-------......... -------------. --.---------.

150

100 ~-----------------------------------·

50

o-_ __._ ______ .__ _ __._ ___ ___ _ __._ ___ _ ___,
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (second)

Real-Time Movin U Parallel Test II 200...---.----.------.----.-------1-----.----.------.

I
I

' ,

,-~-----------------------------------,

o---....._ ___ ___ ___ ___ ___ ___ _ ___,
0 0.5 1 1.5 2 2.5 3 3.5 4

The NNp Output (solid line) vs the Plant Output (dashed line)

Figure 8.13 The Network Model Moving-Up Parallel Tests

150

Forward Modelin Real-Time Movin Down Parallel Test I 200--------~---.-=--.....-----,--=---------------.

100
........ e o

;::11(1
G)

'C
..._,, -100
~

:~
in -200 0
l'.l.

-300

-4000 0.2

9"

-,11111,,--

0.4 0.6 0.8 1

Time (second)

-.....
'I

'\

' '\
1.2 1.4

Forward Modelin Real-Time Movin Down Parallel Test II 200....---....-----..----'--..----.---.......-----..------..------.

..,...,, 100
G)

~
;::11(1
G)
'C -~
·B
in

8.

0

-100

,-...
t ...

' ~-----------------------

-200 ,___--',....._---',....._ _ ___.,__ __ ,___--',__ _ ___.,....._ _ ___..__ _ ___.
0 0.5 I 1.5 2 2.5 3 3.5 4

The NNp Output (solid line) vs the Plant Output (dashed line)

Figure 8.14 The Network Model Moving-Down Parallel Tests

151

152

Real-Time Control using Dynamic Learning

We start with a review of MRAC which is described in Chapter 7.

Then, the procedure for training the neural network controller for

the real physical system is presented. The trained results include

the learning curve and off-line tests of the trained network. Finally,

the results from real-time control using the trained neural network

controller in a real physical system are described.

MRAC and Plant Model

In the original indirect MRAC, as shown in Figure 8.15, the plant

supplies the actual plant output to the plant model and the plant

model serves as a means to compute the derivatives of the objection

function w.r.t. the trained network parameters. However,

constrained by the real-time operating environment, we will train

the controller off-line. In this situation, a modified indirect MRAC, as

shown in Figure 8.16, is used to train the neural network controller

for a real physical system.

In order to perform off-line training, the plant model also has to

play the role of the real plant. If the plant model only functions as a

means for computing the derivative, the series-parallel test,

described in the last section, is an accurate enough evaluation

method. But in order to act as a real plant, the plant model has to

pass the parallel test completely. That is why we commented at the

end of the last section that the unsatisfactory outcome of the parallel

153

test of the plant model may affect the training in this section. It

suggests that the plant model trained in the last section is not

accurate enough to replace the real plant in MRAC dynamic learning.

We trained several more plant models, started with different initial

network parameters, but the results·of parallel tests of these plant

models were about the same as the initial one we had. We have no

alternative, but to go ahead to train the MRAC controller with the

plant model from the last section.

r

TDL

TDL

Reference
Model

u

(TDL 1-v---a~

L-----------
X

Plant

NNP

I
I
I
I
I _____ J

YNNp

Figure 8.15 Indirect MRAC using Neural Network

154

Reference
Model

r
TDL

u

TDL
NNC II

V

II TDL NNP
YNNp I

I L __ -----'
X

TDL

TDL 1
Figure 8.16 Modified Indirect MRAC using Neural Network

Procedure for Training and Real-Time Control

(1) Select a reference model and a neural network for the controller

in MRAC. The plant model is from the last section.

(2) Use the same reference input r as in the computer simulation in

Chapter 7. Train the network controller using dynamic learning and

the TCT method.

155

(3) Evaluate the trained controller off-line first. If a satisfactory

result is obtained, then we will implement the controller in real-time

control program.

(4). To evaluate the performance of the off-line trained controller in

real-time, we will execute several pendulum up and down motions.

We then compare the real plant output to the desired output from

the reference model.

The Training and Real-Time Control Results

In the last section, from the parallel tests of the pendulum model,

we observed that the pendulum model is almost identical to the real

pendulum system in the moving-down tests. Contrary to this, the

pendulum model did not act the same as the real pendulum system

in the moving-up tests. As we explained previously, in order to

perform off-line MRAC training, the plant model has to act exactly

like the real plant. Therefore, we came to the conclusion that the

controller should be trained by only the moving-down trajectories.

We trained a network pendulum model with 0.05 seconds

sampling time. Then, we selected a 5-13-1_92 network to be trained

as the controller NNc in MRAC. The reference model is the same as

described in Equation 8.2. After training, we implemented the

trained controller in the real-time control program and performed

three moving-down tests as shown in Figures 8.17 to 8.19. We

observed that the tracking performance of the MRAC neurocontroller

is not as good as the regulating performance for all three tests.

156

The Desired Out ut (solid line) vs the Plant Out ut(dashed line) 180 .----r---....----...-----r-------.---..----:...----.--'----,

160

-Q) 140 12
!),(I
Q)

'Cl - 120 ~ .,g
v.a 100 , ...
0
A. I \

\.

80
\ I
\ I

'-------------------------------
\ I

60 ' I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (second)

Figure 8.17 The Moving-Down Test I for MRAC Controller

The Desired Ou ut (solid line) vs the Plant Out ut(dashed line) 200.----,----,..------,.-----r----+--------.------,

150

-Q)

12
!),(I 100 Q)

'Cl -s::; .,g 50 \ ,------------------------------,..,
v.a I 0

' A. \

0 \ I
~

-50
0 I 2 3 4 5 6 7

Time (second)

Figure 8.18 The Moving-Down Test II for MRAC Controller

The Desired Ou ut (solid line) vs the Plant Ou ut(dashed line) 180.--~~--~~---,.......~~......-~~~.--------.-~------,

' \
\

' \
\

' \
\
\

100--~~--~~~--~~--~~~--~~--~~__,
0 1 2 3 4 5 6

Time (second)

Figure 8.19 The Moving-Down Test III for MRAC Controller

157

There are offsets when comparing the controlled plant trajectories

to the desired trajectories from the reference model, but in general,

the off-line trained MRAC controller performs well.

Since the neurocontroller was trained by only the moving-down

trajectories, it seems that we should not expect the controller to

accurately perform any moving-up movements. It is amazing that,

after three moving-up tests (as shown in Figures 8.20 to 22) were

performed , we observed that the controller performed as well as in

the moving-down tests. This unexpected finding suggests that the

neural networks may have been able to generalize from the training

data. It is a good subject to be studied in the future.

The Desired Output (solid line) vs the Plant Output(dashed line)
140.-------......... ------------------.-----------------------.

120 ... ',
I \

~ 100'" I \

~ I A'---------------------
b.O I ' ------------------------------------
Q) 801-I ,, ·

't:11 .,

-;; I
·.8 60,.
v.,

8. 40

20 .

0-----....__ _______ . _____________ __

-.
Q)

~
b.O
Q)

't:11 -~
·.8
v.,
0
p..

0 1 2 3 4 5 6 7 8 9

Time (second)

Figure 8.20 The Moving-Up Test I for MRAC Controller

The Desired Ou ut (solid line) vs the Plant Out ut(dashed line)
200.---------------.----------------.---------.

150

100

50

,,
' \ ' '--------------------------------

o ____ ..._ ___ ___._ __ __...._ _____ __ __._ __ ___. __ ____.
0 1 2 3 4 5 6 7

Time (second)

Figure 8.21 The Moving-Up Test II for MRAC Controller

158

........
G)

12
bl)
'1)

,,;:,t -~
·B
l)':l

0
~

100

80

60

40

20

The Desired Out ut (solid line) vs the Plant Out ut(dashed line)

,,
I

\
\
\ r-------------------------------
\ I
\ I'

1 2 3 4 5

Time (second)

Figure 8.22 The Moving-Up Test III for MRAC Controller

159

6

CHAPTER IX

SECONDARY TRAINING METHODS

In Chapters 4, S and 6, we described the underlying algorithms

for the static and dynamic learning methods. They are the

Marquardt optimization technique using basic backpropagation and

the Marquardt optimization technique using FP/BTT algorithms. We

call these the primary training methods. Unfortunately, based from

our empirical experience, these primary training methods did not

always guarantee a satisfactory training result. Therefore, so-called

"secondary" training methods were proposed to aid the primary

methods in training the neural networks.

In this chapter, two secondary training methods -- the ATS

method for static learning and the TCT /TLI method for dynamic

learning -- will be presented. Computer simulations will be

performed for the ATS method. Using the same initial conditions, the

simulations will compare training results using the ATS method to

training results using a common general approach. Since there is no

known general approach in dynamic learning, only the description of

the TCT /TLI method is given in this chapter. Computer simulations

and a real-time application using the TCT /TLl method can be

reviewed in Chapters 7 and 8 respectively.

160

161

The ATS Method

Two training data sets are required for the alternating training

data set (ATS) method. They can be obtained by the same data

collection process. However, each has a different set of initial

conditions. If only one data set is available then it can be broken

into two data sets for the training. We then alternate the

presentation of these two data sets to the network at each learning

epoch. The adjusted parameters of the network from one data set in

one learning epoch, therefore, become the starting parameters for

the other data set at the next learning epoch.

The ATS Method vs the General Approach

The A TS method is first compared to a general approach in static

learning. Then, we will test whether the ATS method can prevent

the problem of data overfitting or overtraining. Data overfitting or

overtraining is the tendency of trained networks to learn specific

details in the training data instead of the general properties of the

underlying function.

To avoid the overtraining problem, the commonly used general

approach also requires two data sets. In the general approach single

set is used for training and the other set for evaluating the trained

network weights after each learning epoch. The evaluation set

monitors the learning process, which only utilizes the training data

set. We will find from our later simulations that there are two

typical patterns for the evaluation curve (the plot of the mean

162

squared error versus epoch number for the evaluation data set)

when the learning curve is falling. The evaluation curve either

levers off or arrives at a minimum point begins to increase. This

minimum point is where overtraining starts and the learning process

should be stopped.

Computer Simulation I

We will use the swinging pendulum system identification problem

described in Chapter 5 for the computer simulations of the ATS

method and the general approach. A 4-5-1_3 l neural network is

selected and trained as the plant identifier. We will first try to

establish a general pattern for the learning curves exhibited by the

ATS method and the general approach. Then, in order to compare

the performance of the two approaches, the parallel test method is

used to evaluate the trained results.

In order to observe any general patterns, three different initial

conditions (in terms of the initial network weight set) are given. The

resulting learning curves after 1000 epochs for each of the three

cases are shown in Figures 9.1 through 9.3.

163

102

,._.
§

10-1 i::r.:i
'C

i
O' ~--.., ... &l ~~ -- .. -..
~ 10-4

.. _ .. ___ _
(I)

~

10-7
100 101 102 103

Epochs

102 The ATS Method

M

§
10-1 i::r.:i

'C

i
O'
&l

:1 10-4

~

10-7
100 101 102 103

Epochs

Figure 9.1 The Learning Curves for the General Approach vs. the

ATS Method for Case 1

164

101

M
100 §

i:x:i
'cl \A,,,._,.,, .. - ... - -- - •- _ _. .. _ - -

I 10-1
Cl'
l:tl

~
Q) 10-2 ~

10-3
100 101 102 103

Epochs

101 The ATS Method

100
M

§
10-1 i:x:i

'cl

I 10-2
Cl'
l:tl

~ 10-3
Q)

~
10-4

10-5
100 101 102 103

Epochs

Figure 9.2 The Learning Curves for the General Approach vs. the

ATS Method for Case 2

165

102

,_,
B 10-1 J:a

't::I

i ' ,
ct

il:t.l:
{;j 10-4 __ ..
(I) ... ~ .. _ ...

:E:

10-7
100 101 102 103

Epochs

102 The ATS Method

,_,
B 10-1 J:a

't::I

i
ct

il:t.l:

{;j 10-4
(I)

:E:

10-7
100 101 102 103

Epochs

Figure 9.3 The Learning Curves for the General Approach vs. the

ATS Method for Case 3

166

From these three figures, we observed that the ATS learning

curve may have some unusual "spikes" (particularly in Case 2).

However, in each of the cases the learning curve is still going down at

end of training. For the general approach, the evaluation curve

(dashed line) is pulling away from the learning curve (solid line) in

first two cases and in Case 3 the evaluation curve reaches a

minimum point and then starts to·climb. These observations indicate

that the problem of overtraining exists in the general approach. To

solidify these observations, we need to test all of the trained results

from both the approaches by the higher standard parallel test

method.

The results of the parallel tests performed on the trained results

from both the ATS method and the general approach are shown in

Figures 9.4 through 9.6. The test results follow the order of

presentation of the cases in Figures 9.1 to 9.3 respectively. For each

of the three cases, two initial conditions (in terms of position and

constant motor voltage) are given and tested. The solid line stands

for the output of the reference model (the desired plant output). The

dashed and dotted lines represent the outputs of the neural network

models of the pendulum trained by the ATS method and the general

approach respectively. The solid line and the dashed line are almost

indistinguishable in all of the tests. This means that the ATS method

has good trained results for all three cases. In contrast to the general

approach, the dotted and solid lines are defmitely distinguishable in

the first test of Case 1. In addition, the tests performed in Case 2 are

complete failures. From the above simulations and tests, we can

conclude that the ATS method not only never fails, but it also is

always more accurate than the general approach.

80 (0)=64.78, u=0.8618

60 -oil)

!!::
~ 40 oil)

'O -a
-.8 20
Voll
0

Ci..
0

-20
0 0.5 1 1.5 2 2.5 3 3.5

Time(sec)

150 (0)=135.58, u=4.4171

-oil)

!!:: 100
~
oil)

'O -a
·B 50 Voll
0

Ci..

4

Q..____,...__._ __ __._ ____ ___ _ __._ __ __.__ ____ _ __,

0 0.5 1 1.5 2

Time(sec)

2.5 3 3.5 4

167

Figure 9.4 Results of the Parallel Tests for Both Approaches For Case

1

...-...
ii)

12
bi)
ii)

...:::, -a
·B
l)'l

&:

80

60

40

20

0

-20

-40
0 0.5

(0)=64.78, u=0.8618

..
...............

1 1.5 2

Time(sec)

2.5 3 3.5 4

150 (0)=135.58, u=4.4171 .-----,.----,--__,..,.._ __ ..-----.----.---........-----.

..

_50.__ ____________ __ .__ _______ _._ ___ _ __.
0 0.5 1 1.5 2

Time(sec)

2.5 3 3.5 4

168

Figure 9.5 Results of the Parallel Tests for Both Approaches For Case

2

-,ii:,
~
~
,ii:,

,,;:t -a .g
I)')

0 p.,

-,ii:,
~
~
,ii:,

,,;:t -a .g
I)')

0 p.,

80 (0)=64.78, u=0.8618

60

40

20

0

-20
0 0.5 1 1.5 2 2.5 3 3.5 4

Time(sec)

150 (0)=135.58, u=4.4171

100

50

Q.__ _ ___._ __ __._ __ _.__ __ .,__ _ ___._ __ _..... __ _.__ _ ____,

0 0.5 1 1.5 2

Time(sec)

2.5 3 3.5 4

169

Figure 9.6 Results of the Parallel Tests for Both Approaches For Case

3

170

The ATS Method vs Single Set Training

Since all of the available training data are utilized in the ATS

method, it is not fair to compare it to the general approach in which

only part (the training data set) of the available data are used. So we

will now use all of the available data as one complete data set to

train the networks and compare these results to the ATS method. It

is obvious that using a single complete data set training is not

practical because we then have no evaluation data set to detect the

presence of overtraining. However, we want to examine whether the

ATS method not only can prevent overtraining, but also can obtain a

training outcome as good as the outcome obtained from single set

training. To do this, we will compare the ATS method to the

impractical single set training method. In order to detect

overtraining in single set training, a "third" data set is generated for

use in evaluating the training results.

Computer Simulation II

To compare the ATS method to the single set training method, the

same computer simulation set up as in Simulation I is used. We will

first try to establish the general pattern of the learning curves

exhibited by these two different approaches. Trainings for three

different initial network weight sets were performed for both

methods. The results for the three cases are shown in Figures 9.7 to

9.9 respectively.· In these figures, the solid and dashed lines are

stand for the learning and evaluation curves respectively.

171

103

1,..4

§
100

- ___
i:r.-1
"O

i
o'

tt2

~ 10-3
Q) --i: ---..

"'·- •-.- ~·-~ - r"

10-6
100 101 102 103

Epochs

103 The ATS Method

1,..4

§
100 i:r.-1

"O

i
o'

ti:i!

~ 10-3
Q)

i:

10-6
100 101 102 103

Epochs

Figure 9.7 The Learning Curves for the Single set Training Method

vs. the ATS Method for Case 1

172

102

,_,
g

10-1 12::i
'O

!
er' ro ...
la 10-4
G) '\

~ """--- ,

10-7
100 101 102 103

Epochs

103
The ATS Method

,_,
g

100 12::i
'O

!
er' ro
la 10-3
G)

~

10-6
100 101 102 103

Epochs

Figure 9.8 The Learning Curves for the Single set Training Method

vs. the ATS Method for Case 2

173

103

1-1
100 § ------.....

rx:i
'O

i 10-3
c,I r•----.-,

f.i:I! r t

~ ' I
oil) 10-6

\

:s

10-9
100 101 102 103

Epochs

102 The ATS Method

1-1

§
10-1 rx:i

'O

i
c,I

f.i:I!

~ 10-4
oil)

:E:

10-7
100 101 102 103

Epochs

Figure 9.9 The Learning Curves for the Single set Training Method

vs.· the ATS Method for Case 3

174

Next, the parallel tests were performed for both approaches in

each case. The test results all look alike for all three cases with one

example for Case 1 shown in Figure 9.10. In that figure, the desired

output (solid line), the ATS output (dashed line) and the single set

training output (dotted line) all become one indistinguishable line.

This means that both the ATS method and single set training method

generate satisfactory training results at the end of 1000 epochs. This

also answers the question that was raised at the beginning of this

section -- the ATS method is as accurate as the single set training

method, and eliminates overfitting.

Comments

From the simulations for this pendulum identification problem,

we conclude that the ATS method has no overtraining problem and

uses all available data for training. The training curves of the

general approach and the single set training methods both tend to

overtrain as the learning process goes forward. This problem is

solved by the compliment training between two alternating data sets

that occurs in the ATS method. However, further research is needed.

For example, such work might try increasing the number of the

alternating data sets (more than two) and testing the applicability of

this ATS method to other static learning problems.

175

80 (0)=64.78, u=0.8618

60 -G)

12
ib.O 40 G)

"O
!
·B 20
v.a
0

Cl.,
0

-20
0 0.5 1 1.5 2 2.5 3 3.5 4

Time(sec)

150 (0)=135.58, u=4.4171

-G)

12 100
ib.O
G)

"O
!
B

50
v.a
0

Cl.,

0
0 0.5 1 1.5 2 2.5 3 3.5 4

Time(sec)

Figure 9.10 General Results of the Parallel Tests for Both Approaches

for All Three Cases

176

The TCT /TLI Method

The TCT (trajectory cross training)/TLI (trajectory length

increasing) method is used as a secondary training method in

dynamic learning. We will explain the reason that we connect the

TCT and the TLI methods as a single method after we first describe

the TCT method.

The idea of the TCT method is derived from the ATS method for

static learning. The basic idea behind both methods is

complimentary training based on two (or more) training data sets.

In terms of system trajectory, each training data set contains two

characters -- the underlying function and the specific details of the

training data set itself. The specific details of each trajectory may

vary, but they all possess a common characteristic -- the underlying

function. In using the ATS method for static learning, we alternate

the training data set one at a time. In the TCT /TLI method, we stack

up a number of trajectories to create one big data set for training. By

doing so, we expect that the common character, the underlying

function, will be more dominate in the learning process than the

distinctive character of each trajectory. We expect that the wanted

common character, instead of the unwanted distinctive

characteristics, of each trajectory will be extracted by the learning

process.

One of the most common problems in dynamic learning is the

huge error between the desired output and the neurocontrolled plant

output at the beginning of the learning process. This is caused by the

177

random selection of the initial weights of the neurocontroller. Thus

the output of the controller, which is the control input of the plant, is

unpredictable. The range of the control input can be unreasonably

high or low from the controller. Therefore the behavior of the

controlled plant is unpredictable too. In most of experiments we

conducted, the output error was always big at the beginning of the

learning process. To deal with this problem, we came up with the

TLI method. The idea of the TLI method is to keep the data points

(the length of the system trajectory) as low as possible at the

beginning stage so that the sum of the squared error is also kept low.

At this stage, the network parameters can be adjusted based on the

small amount of training data, then the network output is moving

down toward a reasonable range. After the initial stage, we can

increase the number of data points stage by stage as the network

parameters converge toward the solution. So, strictly speaking, the

TLI method is more of an idea than a method. Besides, in most cases

the TLI method is a necessary approach in dynamic learning.

Therefore, we have connected the TCT and the TLI methods into a

single method.

We have already demonstrated the implementation of the

TCT /TU method in Simulation 3 of Chapter 7. In the following

computer simulations, we will emphasis just the TCT method.

Computer Simulation III

Using the TCT method in dynamic learning, we first designed a

number of runs (each run generates a single trajectory) in each

178

learning epoch. The number of the runs is determined by trial-and

error in different applications. Then, we stacked these trajectories

up to use as a single set for training. The neural network training

problem used in this subsection is the same as Simulation 4 of

Chapter 7. In this problem a neural network controller (4-5-1_3 l) is

trained to control a second-order linear plant (a linearized pendulum

system) while responding to a given reference model.

In most linear plant applications, no over-range error problem

happens at the beginning of training. Therefore, the TLI method is

not needed. In this situation, we are only concerned with the

selection of data points for one training data set. Two cases have

been studied for the effect of varying the number of data points in

the training set. The total number of training data points in one

learning epoch is 20 and 100, for Cases 1 and 2 respectively. For

both cases, we compared the one trajectory training method to the

TCT method (two trajectories per learning epoch). The two

trajectories in the TCT method are divided from the trajectory used

in the one trajectory training method. In Case 1, we trained the

controller for 2,000 epochs. The resulting learning curves are shown

in Figure 9.11 and an enlargement of Epochs 1,901 to 2,000 is shown

in Figure 9.12. From the enlargement picture, we observe that the

learning curve for the one trajectory training method has larger

amplitude oscillations as compared to the amplitude of the

oscillations for the TCT learning curve. This result suggests that the

TCT method generates a more accurate trained controller than the

one trajectory training method.

179

To back up this observation, we use the parallel test method to

evaluate the trained controllers from both of the training methods.

100

10-1
~

g
10-2 G)

'O

i 10-3
o'
11)

~ 10-4
G)

:a::
10-5

10-6
100 101 102 103 104

Epochs

100 The TCT Method

~
10-1

g
G)

'O 10-2

i
o' 10-3 11)

~
G)

:a:: 10-4

10-5
100 101 102 103 104

Epochs

Figure 9.11 Learning Curves of One Trajectory Training vs the TCT

Method for Case 1

101

Epochs

102

The TCT Method 1()-3 ~~~-,-.~-,------r---,.--,---,--.,....,..~---,.~--.-~--,-----,---,..--,--,-...,.........,

101

Epochs

102

180

Figure 9.12 Enlargement of the Learning Curves for Epochs 1901 to

2000 from Figure 9.11

181

The parallel test results are shown in Figure 9.13. In the figures, the

solid line stands for the desired output and the dashed line

represents the controlled plant output. We found that the test result

from the TCT method is more accurate than the test result from the

one trajectory training method. This is consistent with our

observation on the amplitude of the oscillations from both of the

learning curves.

In Case 2, the total number of data points is extended to 100.

After 2,000 epochs learning, as shown in Figures 9.14 (the learning

curves) and 9.15 (the enlargements), we found that the one

trajectory training method has smaller amplitude oscillations than

the TCT method. In addition, the learning curve of the one trajectory

training method reaches a lower mean squared error than the TCT

learning curve at end of 2,000 epochs. Given randomly chosen initial

conditions, the parallel tests of the trained controllers from both the

training methods were performed and the results are shown in

Figure 9.16. The test results confirmed the observations made in the

learning curves that the one trajectory training method is more

accurate than the TCT method in this case.

182

0.2

0

j -0.2

~,,
-0.4 i:::

.g
00 -0.6 0
At

-0.8 ___
-------------------------1

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (second)

0.2 The TCT Method

0

j -0.2
~,,

-0.4 i:::
.g
00 -0.6 0
At

-0.8 -----------
-1

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (second)

Figure 9.13 The Parallel Test Results for the Trained Controllers for

Case 1

183

1-4

~ 10-2 «)

'O

i
Cl'
O')

~ 10-5
«)

:E:

10-8
100 101 102 103 104

Epochs

103 The TCT Method

1-4

§
100 «)

'O

i
Cl'
O')

~ 10-3
«)

~

10-6
100 101 102 103 104

Epochs

Figure 9.14 Learning Curves of One Trajectory Training vs the TCT

Method for Case 2

""'
~ 10-6

1
c'
lllo'll

fa 10-7
G)

!2::

10-s ~~.....__~....____.___._ ~~...___~.....__........_.....a...........__.
100 101

Epochs

102

The TCT Method
10-3--~~-r-~-r---r--r~"'T"""T-T""'!r---~~.....-~.....--..--.--..-T"""!"""T"2

""'
~ 10-4

1
c'
lllo'll

fa 10-5
G)

!2::

101

Epochs

102

184

Figure 9.15 Enlargement of the Learning Curves for Epochs 1901 to

2000 from Figure 9.14

185

0.2

0

]' -0.2

~ - -0.4 i:::;
.,g
~ -0.6 0

11,

-0.8

-1
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (second)

0.2 The TCT Method

0

]' -0.2
~ - -0.4 ~

·B
~ -0.6 0

11,

-0.8

-1
0 0.5 I 1.5 2 2.5 3 3.5 4

Time (second)

Figure 9.16 The Parallel Test Results for the Trained Controllers for

Case2

186

Comments

From the above simulations, it seems that the TCT method in

dynamic learning only works well if the total number of training

data points is small (20 points in our Case 1). Thus, this method is

suited to the situation where one cannot collect a larger amount of

training data. An example of this situation is Simulation 5 in Chapter

7. Since the plant in that simulation problem is a nonlinear second

order pendulum system and the initial weights that were assigned to

the network controller were random, the first epoch of the learning

process is composed of out of boundary (0 and 31:) runs. Constrained

by the boundaries, each of those runs are only a few data points in

length.

CHAPTERX

SUMMARY AND CONCLUSIONS

In this chapter, we will summarize the original ideas proposed by

this research that appear in the discussions of the static and dynamic

learning methods. We will also discuss the important results found

throughout this document.

The original ideas proposed in this document can be classified into

two types. The first type concerns the dynamic learning derivative

method. It is discovered that the proposed true derivative equations

for both the FP and BTT dynamic learning algorithms can be derived

with backpropagation and the chain rule. Only the choice of the term

for taking the explicit derivative in the chain rule distinguishes the

two dynamic learning algorithms.· More important, with the

proposed derivative methods, the analysis and implementation of

complex structural applications (such as the indirect MRAC

architecture) can be easily achieved compared to other known

approaches (like the Werbos BTT method and the Narendra dynamic

backpropagation method).

The second original contribution relates to the secondary training

methods used in supervised learning. In this document, the

underlying algorithms for the static and dynamic learning methods

are the Marquardt optimization technique using basic

187

188

backpropagation and the Marquardt optimization technique using

FP /BTT algorithms. We call them the primary training methods.

Unfortunately, from our empirical experience, these primary training

methods do not always guarantee a satisfactory training result.

Therefore, so-called "secondary" training methods were proposed to

aid the primary methods in training the neural networks. We have

presented and implemented a static secondary learning method -

the ATS (Alternating Training data Set) method and one combined

dynamic secondary learning method -- the TCT (Trajectory Cross

Training) /TU (Trajectory Length Increasing) method. Due to these

proposed secondary training methods, all the computer simulations

performed in Chapters 4 and 6 achieved satisfactory results. In

Chapter 9, we further investigated the proposed secondary methods.

We concluded that the ATS method does have better performance

than the commonly used general approach. The TCT /TU method

does aid the primary method in achieving convergence.

In Chapter 2 several computer simulations were executed to

investigate the effects of varying the number of neurons and the

number of layers in the network when performing the function

approximation task. The results suggested that a single hidden layer

network is sufficient for nonlinear function approximation. The fact ·

that all the neural networks, either feedforward or recurrent, that

were successfully trained throughout this document have only a

single hidden layer gives further support to this assertion.

An unexpected success, discussed in Chapter 4, came in modeling

the inverse dynamics of the pendulum system. The impressive

generalization ability of the trained direct inverse neurocontroller

189

was validated during our evaluation. The controlled plant closely

followed a reference model, which had never been included in the

learning process. This event has revealed the potential ability of the

direct inverse method in neurocontrol.

To the author's knowledge no researcher has reported successful

implementation of the dynamic learning algorithm on the model

reference adaptive controller. The fact that we did this makes the

computer simulations performed in Chapter 6 very significant. They

are the most important result of this research. In our analysis of this

success, two factors contributed to this success. The first is the aid of

the -secondary training method, TCT /TLI, to the primary training

method. The second is the Marquardt optimization method, whose

fast convergence enables us to shorten the network training time and

thus cut down the·timeconsumed by the trial-and-error process.

This speed is significant when compared to other optimization

techniques such as were described in Chapter 3.

The final important result is described in Chapter 8. From the

successes in the computer simulations, we advanced to implement

the trained networks that use both static learning and dynamic

learning on real physical systems in real-time. We succeeded in

controlling the physical pendulum system 'in real-time using

feedback linearization neurocontroller. We also identified the

physical system using neural network modeling. Constrained by the

real-time operating environment, we can only train the MRAC

controller off-line in this research. Since the plant model we trained

only approximates to the real plant in the pendulum moving-down

movements, we thus train the MRAC neurocontroller with only the

190

moving-down trajectories. The most important result in this

research is that we trained an MRAC controller which can adequately

control the real physical pendulum system in real-time. Although

the off-line trained controller may be promising, however, the better

way to train the MRAC controller should be on-line with the real .

plant. Constrained by the time frame of this research, we can only

attempt to do this in the future.

REFERENCF.S

[1] McCulloch, W. S. & Pitts, W. (1943). "A logical calculus of
the ideasimminent in nervous activity". Bulletin of
Mathematical Biophysics, 5, pp 115-133.

[2] Rosenblatt, F. (1958). "The perceptron: a probabilistic model
for information storage and organization in the brain".
Psychological Review, 65(6), pp 386-408.

[3] Gupta, M. M. & Rao, D. H. (1993). "Dynamic Neural Units
with Applications to the Control of Unknown Nonlinear
Systems". Journal of Intelligent and Fuzzy Systems, 1,
pp 73-92.

[4] Narendra, K. S. (1992). "Adaptive Control of Dynamical
Systems Using Neural Networks". In D. A. White & D. A. Sofge
(Ed.}, Handbook of Intelligent Control- Neural, Fuzzy, and
Adaptive Approaches (pp 141-183). New York: Van Nostrand
Reinhold.

[5] Hornik, K., Stinchcombe, M. & White, H. (1989). "Multilayer
Feedforward Networks are Universal Approximators".
Neural Networks, 2, pp 183-192.

[6] Werbos, P. J. (1982). "Applications of Advances in Nonlinear
Sensitivity Analysis". In R. Drenick & F. Fozin (Ed.), Systems
Modeling and Optimization: Proceeding of 10th IFIP
Conference (pp 762-770). New York: Springer-Verlag.

[7] Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986).
"Learning Representations by Back-propagating Errors".
Nature, 323, pp 533-536.

[8] Hagan, M. H. (1992). Tutorials from Neural Networks course.

191

192

[9] Hagan, M. H. & Menhaj, M. (1993). "Training Feedfonvard
Networks with the Marquardt Algorithm". To be published
in IEEE Transactions on Neural Networks.

[10] Narendra, K. S. & Parthasarthy, K. (1990). "Identification and
Control of Dynamical Systems Using Neural Networks". IEEE
Transactions on Neural Networks, 1, pp 4-2 7.

[11] Narendra, K. S. & Parthasarthy, K. (1991). "Gradient Methods
for the Optimization of Dynamical Systems Containing Neural
Networks". IEEE Transactions on Neural Networks, 2,
pp 252-262.

[12] Narendra, K. S. & Parthasarthy, K. (1989). "Back Propagation
in Dynamical Systems Containing Neural Networks". Technical
report, Center for System Science, Yale University. New
Haven,CT

[13] Narendra, K. S. & Annaswamy, AM. (1989). Stable Adaptive
Systems. Englewood Cliffs, NJ: Prentice Hall.

VITA 2...

Wei-Chung Yang

Candidate for the Degree of

Doctor of Philosophy

Thesis: NEUROCO~ROL USING DYNAMIC LEARNING

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Hong Kong, September 25th,1951, the
son of Zi Yang and Wha-Sun King.

Education: Graduated from National Taipei Institute of
Technology in May of 1975; Received Master of
Engineering from the University of Tulsa in
December 1982; Completed the requirements for
the Doctor of Philosophy degree at Oklahoma State
University in May 1994.

Professional Experience: Graduate Teaching Assistant, The
University of Tulsa, 1981; Engineer, Burtek Inc.,
1982 to 1985; Engineer, Syntech Co., 1985 to 1986;
System Analyst, Taiwan Tax Bureau, 1986 to 1989;
Graduate Teaching/Research Assistant, Oklahoma
State University, 1990 to 1993; Post-Doctor
Researcher, Oklahoma State University, 1994.

Membership in Professional Societies: Institute of Electrical
and Electronics Engineers in Neural Networks, SMC,
and Control Systems Societies; International Fuzzy
Systems Association; International Neural Network
Society.

