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CHAPTER I 

INTRODUCTION 

This research studies the promise of neural networks in the realm 

of system identification and control of nonlinear dynamic systems. 

Two types of supervised learning algorithms for neural networks are 

described. The first is the static learning algorithm, which can be 

used for system identification, and also for the control of dynamic 

systems as well. This research focuses on the second supervised 

learning algorithm -- dynamic learning. The dynamic learning 

algorithm can be executed on-line in the training of nonlinear 

dynamic neurocontrollers. Three control schemes are involved in 

this research -- feedback linearization, direct inverse control and 

model reference adaptive control. Feedback linearization and direct 

inverse control are implemented using static learning. The on-line 

adaptation, which is the common characteristic shared by both the 

dynamic learning method and the adaptive control method, makes it 

natural to combine both the methods together in real-time adaptive 

neurocontrol applications. 

This document contains ten chapters. Starting from the neural 

network building block, an artificial neuron model, the feedforward 

multilayer network and the recurrent multilayer network are 

derived and described in the first part of Chapter 2. The second part 

1 



of Chapter 2 describes the performance of the neural network as a 

function approximator. Simulations have been executed to 

investigate the effects of varying the number of neurons and the 

number of layers in the network on the performance of the function 

approximation task. 

2 

Chapter 3 describes the learning process that is used for training 

neural networks to perform function approximation. The basic 

backpropagation method is discussed first because itis an essential 

tool in gradient optimization. Then, three optimization techniques -­

steepest descent, the Marquardt method and the conjugate direction 

method -- are presented and discussed. 1he conclusion of Chapter 3 

focuses on implementing the neural network learning process from a 

programming point of view. 

The static learning algorithm is described in the beginning of 

Chapter 4. Then, it is demonstrated in the system identification of a 

second order nonlinear dynamic pendulum system. To illustrate that 

static learning can also be used to train dynamic system controllers, 

two control schemes -- feedback linearization and direct inverse 

control -- are used with the static learning algorithm to train the 

neurocon troller off-line. 

For on-line adaptive identification and control applications using 

neural networks, dynamic learning is described in Chapter 5. For 

implementing the dynamic learning algorithm, the recurrent 

multilayer networks are presented first. Then, two known, but not 

well reported, dynamic learning algorithms -- forward perturbation 

and backpropagation-through-time -- are introduced. We will 

describe the backpropagation-through-time algorithm in the next 
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chapter. The forward perturbation algorithm is studied in the second 

half of Chapter 5. First, the derivative calculation equation for the 

forward perturbation algorithm is derived. Then a simple 

illustrative example of the forward perturbation algorithm is given 

before we implement the algorithm on more complex examples. 

As in our discussion of the forward perturbation algorithm in 

Chapter 5, the backpropagation-through-time discussion will begin 

with the derivation of the backpropagation-through-time derivative 

calculation equation. This will be followed by implementation 

examples and a description of the Marquardt optimization method 

using backpropagation-through-time. Based on computer 

simulations, the comparison between forward perturbation and 

backpropagation-through-time will be given. 

In the beginning of Chapter 7 the model reference adaptive 

control method is presented. Then, it is reconfigured with the neural 

network models of plant and controller. The neural network 

controller is trained in a real time adaptive fashion. This is all 

described as the main subject of the first part of Chapter 6. In the 

second part of Chapter 7, five computer simulations of model 

reference adaptive neurocontrol are performed using forward 

perturbation. All the simulation results were successful, which 

provides us with a promising tool for dealing with more complex real 

time nonlinear dynamic systems. 

In Chapter 8, after the successes in the computer simulations in 

Chapter 7, we will attempt to implement the trained neurocontrollers 

from both static learning and dynamic learning to control a real 

physical pendulum system in real-time. First, a real-time feedback 
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linearization controller is trained off-line using static learning and 

training data is collected from the physical system in real-time. The 

same training data is also used to model the physical pendulum 

system with a.neural network. Then a real-time model reference 

adaptive controller is trained off-line using dynamic learning and the 

neural network plant model. The real-time experimental results are 

given for the controllers and the system model. 

Our proposed secondary training methods are described in 

Chapter 9. In static learning, we will compare a secondary training 

method to a standard approach. For dynamic learning, since there is 

no standard approach, we will discuss how the proposed secondary 

training method works and its sensitivity to parameter variations. 

Finally, Chapter 10 summarizes the original contributions and the 

important results presented and described in this document as the 

conclusions of this research .. 



CHAPTER II 

NEURAL NETWORK AND FUNCTION APPROXIMATION 

The first part of this chapter will introduce neural network 

architecture, starting with the basic building block-- the neuron. A 

simplified biological neuron is then presented to lay the biological 

background for the following description and structure of an artificial 

neuron model. With the artificial neuron defined, a basic multilayer 

neural network, called the feedforward network is built up. A 

variation of the basic multilayer network, called the recurrent 

network, is introduced but will be discussed in Chapter 5. The 

subject of the second part of this chapter is the performance of the 

neural network as a function approximator. An effort has been made 

to investigate the effects of the number of neurons and the number 

of layers in the network on performing the function approximation 

task. 

.Biological Neuron Description 

The human brain's mechanism of information processing and 

decision making has been analyzed not only from the point of view 

of biology but also of mathematics and engineering. It is recognized 

to be an associative memory or a learning machine [1][2]. 

5 
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To understand the mechanisms of the human brain we first have 

to understand the basic unit of the brain. Then we must know how 

it works in processing the information. It is known that the basic 

nerve cell or computing unit for biological information processing in 

the human brain is the neuron. It has been discovered that following 

the application of a stimulus greater than a threshold value, a pulse 

of electric potential is generated across the membrane of a neuron. 

This is called an action potential. An excited neuron transmits.an 

action potential and has a positive or excitatory influence on the 

recipient nerve cells. 

A simplified biological neuron is shown in Figure 2.1. The , 

junction point between axon and dendrite is called the synapse [3]. 

The inputs, which are the action potentials, transmit through 

synaptic junctions from the axons of adjacent neurons to the neuron 

dendrites. They are modulated ( or weighted) and carried by the 

dendrites of the neuron to its cell body. The cell body of the neuron, 

called the soma, sums the modulated input action potentials and 

compares with its threshold. An activation is performed if sum of 

the action potentials is beyond that threshold. Accordingly, the 

active (or excited) neuron fires an action potential through its axon to 

the dendrites of other neurons. 
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dendrites 

i 
axon 

Figure 2.1 A Simplified Biological Neuron 

Artificial Neuron 

To imitate the biological counterparts an artificial neuron model 

has been developed (see Figure 2.2). It is also called a single layer 

perceptron or a network building block. It has inputs (dendrites) , 

connection weights (synapses), a weighted summer that performs the 

activation function (soma) , and output (axon). Also shown in Figure 

2.2 is the symbolic representation of the artificial neuron that will be 

used throughout this paper. 
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Figure 2.2 Artificial Neuron Model and Its Symbolic Representation 
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Equation 2.1 is the mathematical operation performed by the 

artificial neuron. The inner product of the input vector Q and the 

weight vector w is summed with the offset or threshold b (which has 

an identity input ) and the result is called the net input n. Through 

the activation function f, the net input n is mapped to the output a. 



Il=WT_E+b 

a= f(n) 
(2.1) 

Typical activation functions are sigmoid, threshold or linear in 

shape as shown in Figure 2.3. 

1 
a= +c 

1 + e-n 
a= sign(n) a=n 

Figure 2.3 Typical Activation Functions 

Multilayer Neural Networks 
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Based on the neuron model just described, the next step is the 

development of multilayer neural networks. The most commonly 

used architecture is called the feedforward multilayer network. This 

network has three components, as shown in Figure 2.4, which is a 

multi-input multi-output (MIMO) two hidden layer network. The 

first component is a group of input nodes. The input nodes are not 

neurons, and thus do not perform any mathematical operation. The 



10 

one and only function of each input node is to distribute the input to 

the neurons of the first hidden layer. The second component of the 

network is the hidden layer(s). A network can have as many hidden 

layers as the design requires. In multi-hidden layer networks, the 

output of one hidden layer is the input of the following hidden layer. 

The last component of the feedforward multilayer network is the 

output layer which, like the hidden layer, is composed of neurons. 

The activation function of each neuron can be the same throughout 

the network or it can be varied by each layer. For all of the 

networks that are described in this paper, we always use a sigmoid 

activation function for hidden layers and a linear function for the 

output layer. 

.I! 

irpil 
vect>r 

1st hidden layer 

aclvatlm 
veCDr 

2nd hidden layer 

activation 
vector 

output layer 

Figure 2.4 A MIMO Two Hidden Layer Network 

The mathematical operation of a multilayer network, which is 

basically derived from the mathematical operation of the artificial 



neuron, is governed by the following equation (a MIMO two hidden 

layer network example) 

~3 = :[3 (W3[f.2 (W2 [;[1(W1 E + h1 )] + !/)] + !l)' (2.2) 
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where 12 is the input vector, W1, w2, and W3 are the weight matrices, 

b1• b2 , and b3 are the offset vectors, f1 , f2. and f3 are the activation 

function vectors for each layer, and the output vector is ,e,3. The 

general expression for Equation 2.2 is written 

aM = fM (WM[fM-l(wM-1 ... - - -
[t(Wj ···[f1 (Wl p + Ql )]+···Qi )]+···QM)' 

(2.3) 

where .e:M is the output vector and M is the total number of layers in 

the network (including all the hidden layers and the output layer). 

Another type of multilayer network commonly used in this paper 

is called a recurrent network, which is derived from the feedforward 

network. Its layout is shown in Figure 2.5. The most significant 

component added is called the tapped delay line. This component 

feedbacks the time-lagged output to the network input. This 

network will be discussed in more detail in Chapter 5. 

,1 

aclivalion 
vector 

actlvalon 
vector 

Figure 2.5 Recurrent Multilayer Network 

,a 
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Function Approximation 

Several methods, like polynomials, trigonometric series, 

orthogonal functions, and splines have all been used for function 

approximation. Evolving in recent years, neural networks have been 

demonstrated as an additional tool for function approximation. In 

fact, one of the reasons neural networks have been found to have so 

many successes in a wide range of applications, such as pattern 

recognition, signal processing and, of course, control systems, is due 

to the capability of the network to perform function approximation. 

Under classic approximation theory, the Weierstrass theorem [4] 

provided a rigorous proof that any arbitrary continuous function on a 

compact set can be approximated to any degree of accuracy by 

polynomials as well as other approximation schemes. Based on this 

Weierstrass theorem, Hornik et al. [S] proved that a layered neural 

network is a nonlinear parametric model and can approximate any 

continuous input-output relation. 

Even with the proof, still a major concern remains. Does a 

systematic method exist for determining the number of 

layers/neurons necessary to achieve a desired degree of accuracy for 

the function being approximated? So far, the answer is no. In the 

absence of this systematic method, several tests have been 

performed in the next section which compare the capabilities of 

different network architectures. These tests provide an attempt to 

account for some practical considerations in choosing the number of 



layers and the number of neurons during the design of neural 

network architectures. 

Network Performance and Network Architecture 
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To compare the performances among different network 

architectures, we start by examining a single hidden layer network. 

The limitation of the network function approximating ability is tested 

as the complexity of the function to be approximated ( the sample 

function) increases. Then, still using a single hidden layer network, a 

second test is performed by increasing the number of neurons in the 

hidden layer. In this test, the complexity of the sample function is 

fixed. The third test, based on having the same number of adjustable 

parameters (weights and offsets) in each network, compared the 

single hidden layer network (as in test 1) with a two hidden layer 

network. In the last test, several pairs of networks that have 

different numbers of hidden layers, but the same total number of 

adjustable parameters, were compared. 

A single-input single-output (SISO) feedforward multilayer 

network is the common architecture used for all of the tests. The 

general expression for the architecture is 1-n1-nr ... -nc ... -nM_1-l_N, 

where ni is the number of neurons in i-th hidden layer, Mis the 

number of layers (thus we have M-1 hidden layers), and N is the 

total number of adjustable parameters in each network. 

The sample function to be approximated in each test is described 

by 



. 3t 
t = sin(-mp), 

·2 
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(2.4) 

where m is degree of complexity (which can be any positive integer), 

and the desired (or target) output tis obtained as a sinusoidal 

function of the input p. Throughout this document, the way to 

present training data to the neural network is always in a batch 

mode. So, an input vector 12 is formed with 401 data points from -1 

to 1 with a increasing interval of 0.005. By Equation 2.4, a 

corresponding target output vector .t is thereby obtained. The 

sample functions for m=l and m=8 are shown in Figure 2.6. 

1 m=l 1 m=8 
fl 11 . (1 n 

- 0.5 
a' - 0.5 

a' 
. 

- -N N 
:;=i 0 Po 

:;=i 0 Po - -s s 
Vol Vol 

J!. -0.5 J!. -0.5 

-1 -1 u ll 

-1 0 1 -1 0 1 

p=(-1:1/200:1] p=[ -1: 1/200: 1] 

Figure 2.6 The Sample Functions 

The learning algorithm is Marquardt optimization with 

backpropagation. It will be discussed in detail in Chapter 3. The 

learning process has four steps; 



( 1) present the input data set 12 to the neural network in a 

single batch. 

(2) calculate the network output .e:M by using Equation 2.3. 
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(3) take the sum of squared error between .e,M and target data 

1 to obtain the performance index. 

( 4) stop the learning process if the performance index reaches 

the desired value, otherwise adjust the weights of the 

network with the learning algorithm before repeating the 

same learning process again. 

Steps ( 1) to ( 4) defines one learning epoch. 

Another unanswered problem in network performance is how to 

choose the initial weights at the start of training a network. For all of 

the network trainings described in this document, the initial weights 

were chosen as random numbers that are uniformly distributed 

between -1 and 1. It was discovered that, from our empirical 

experience, differentrandom initial weights sets usually result in 

different learning outcomes. These outcomes, such as the learning 

speed and even convergence (whether or not a satisfactory 

approximation is reached) vary greatly. In order to smooth out those 

outcomes, each test case is trained with ten trials (which means ten 

different initial weight sets) in the following tests. Therefore, all of 

the learning results are obtained as the average of those ten trials. 
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Test 1 : Function Approximation for the Single Hidden layer Network 

Case# 

1 
2 
3 
4 
5 
6 
7 
8 

Network: 1-4-1_13 

Desired performance index: 0.0401 (401 points) 

Maximum learning epochs : 800 

Function complexity: m = 1,2, .. ,8 

TABLE 2.1 Results of Test 1 

Average Function 
Complexity 

m 
# Successes CPU Time on Average # 

in Ten Trials Centris 650 of Epochs 

1 10/10 9.14 6.7 
2 10/10 29.00 20.3 
3 10/10 77.57 54.4 
4 10/10 109.60 74.5 
5 10/10 1158.16 800.0 
6 2/10 982.51 668.7 
7 6/10 1132.84 800.0 
8 0/10 1183.37 800.0 

The results from case 1 to case 5 in Table 2.1 were as expected. 

That is, as the complexity of the sample function increased, longer 

learning CPU time was required. However, in case 6, the network 
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performance is reaching its limit with only two satisfactory 

approximations obtained out of total of ten trials. It is not clear, at 

this point, why the success rate of case 7 is higher than case 6. The 

last case, with no successful approximation, has a function complexity 

which is beyond the performance capability of the network. 

Test 2 : The Oversized Networks 

Case# 

1 
2 
3 
4 
5 
6 
7 
8 

Network: 1-n-l_N where n=5,6, .. ,12 

Desired performance index: 0.0401 

Maximum learning epochs : 800 

Function complexity : m = 8 

TABLE 2.2 Results of test 2 

Average· 
Network # Successes CPU Time on Average # 
Structure in Ten Trials Centris 650 of Epochs 

1-5-1_16 2/10 1378.86 800.0 
1-6-1 19 9/10 709.87 355.3 
1-7-1_22 10/10 501.38 221.7 
1-8-1_25 10/10 566.68 219.9 
1-9-1 28 10/10 441.98 151.0 

1-10-1_31 10/10 531.00 164.8 
1-11-1_34 10/10 562.18 158.9 
1-12-1 37 10/10 582.50 148.9 
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The most difficult approximation task performed in test 1 is in 

the last case, which has function complexity of eight. For all of the 

cases in test 2, the function complexity is fixed at eight, but the 

number of neurons in the hidden layer is increased from one case to 

the next. The first fully successful rate of approximation is reached 

when n is 7, in case 3. In terms of the lowest learning CPU time, 

network 1-9-1_28 is the best. Comparing case 3 to case 4 to 8, we 

observed that oversized networks may take fewer epochs to 

converge, but they take more CPU time to learn and require more 

memory. 

Test 3 : Function Approximation for the Two Hidden Layer Network 

Network: 1-2-2-1_13 

Desired performance index : 0.0401 

Maximum learning epochs : 800 

Function complexity :m = 1,2, .. ,8 



Case# 

1 
2 
3 
4 
5 
6 
7 
8 

TABLE 2.3 Results of Test 3 

Function 
Complexity 

m 

1 
2 
3 
4 
5 
6 
7 
8 

Average 
# Successes CPU Time on Average # 

in Ten Trials Centris 650 of Epochs 

10/10 25.06 15~8 
9/10 191.30 116.9 

10/10 439.21 267.1 
3/10 991.73 603.7 
2/10 1302.40 800.0 
0/10 1294.27 800.0 
0/10 1298.31 800.0 
0/10 1301.20 800.0 
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The two hidden layer network tested here and the single hidden 

layer network used in Test 1 have the same total number of 

adjustable parameters. After comparing the results of this test and 

Test 1, it can be concluded that the single hidden layer network 

performed better than the two hidden layer network, not only in 

terms of learning speed, but also the rate of successful 

approximations. 

Test 4 : Comparisons between Single Hidden Layer Network and 

Multi-hidden Layer Network 

Network pairs: [1-7-1_22 and 1-3-3-1_22] 



Case# 

1 
2 
3 
4 
5 
6 

[1-8-1_25 and 1-2-2-2-2-1_25] 

[1-11-1_34 and 1-3-3-3-1_34] 

Desired performance index: 0.0401 

Maximum learning epochs : 800 

Function complexity : m = 2 

TABLE 2.4 Results of Test 4 

Average 
Network # Successes CPU Time on Average # 
Structure in Ten Trials Centris 650 of Epochs 

1-7-1_22 10/10 32.48 14.7 
1-3-3-1_22 10/10 46.10 20.3 

1-8-1_25 10/10 38.13 15.5 
1-2-2-2-2-1_25 9/10 429.13 131.1 

1-11-1_34 10/10 41.31 12.5 
1-3-3-3-1_34 10/10 85.76 23.1 
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The immediate conclusion one makes from Test 4 is that single 

hidden layer networks often perform better in terms of learning 

speed. With increasing number of adjustable parameters, more 

training time is needed. In case 4, the four hidden layer network not 



only took the n1ost CPU tin1e, but also failed to converge (reach 

satisfactory approximation) once in ten trials. 

Summary 
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In this chapter, the basic concepts of neural networks were 

described, and the function approximation capability of the networks 

was demonstrated through a series of tests. The neural network 

learning process, which has been introduced in this chapter, is very 

important and essential in neurocontrol. That is why we will 

dedicate the next chapter to its discussion. 



CHAPTER III 

BACKPROPAGATION AND OPTIMIZATION 

After describing neural networks in Chapter 2, in this chapter we 

will present the process of training neural networks to perform 

function approximation. The chapter begins with a description of the 

supervised learning process. Then, the backpropagation method is 

described, followed by discussions of three optimization techniques. 

The conclusion of this chapter focuses on implementing the neural 

network learning process. 

The Supervised Learning Process 

The type of learning process discussed in this chapter and 

throughout the document is called supervised learning. Other known 

learning types, like unsupervised learning and reinforcement 

learning, are outside the scope of this discussion. Supervised 

learning applies to a situation in which a neural network functions as 

a replacement for an input-output mapping relation. To achieve that, 

a set of desired input-output pairs (P1,ti>, (P2,t2), ... (pj,tj), ... , which is 

derived from the mapping relation, is supplied for training a neural 

network. 

22 
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The learning process is made up of a sequence of learning 

iterations called epochs or sweeps. Each learning epoch starts by 

presenting an input vector 11 from the desired input-output pair (11, 
\ 

1), to the neural network. Then, a forward computation is perform~d 

resulting in the network output gj. (where subscript i corresponds to 

the i-th learning epoch). The error vector 

e- = t- - a-_1 -1 -1 (3.1) 

is obtained after comparing the network output ~ with the desired 

output 1. The objective function F(~), which is commonly defined as 

the sum of squared error, 

F(x)=(t· -a-)T(t· -a·) - -1 -1 -1 -1 , (3.2) 

is set up as a performance criterion. It will be used to adjust the 

current parameters of the network in order to produce a better 

approximation. 

There are two main tasks in each learning epoch, after the 

objective function is obtained: 1) By backpropagation, calculate the 

partial derivatives of the objective function with respect to the 

parameter vector. 2) By some optimization technique, determine the 

search direction towards the global minimum of the error surface in 

the parameter hyperspace. At the end of each learning epoch, the 

parameter vector ~ is moved along the search direction. The newly 

updated parameter vector will be used at the start of the next 

learning epoch. As for the very first learning epoch, the process 

starts with a predetermined initial parameter vector. The learning 

iterations stop when the objective function, which is a index of the 



degree of accuracy, reaches some desired level. This defines the 

supervised learning process. 

Backpropagation 
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The backpropagation method was originally introduced by Paul 

Werbos [6], but it was not established as a mainstay in 

neurocomputing until the work done by David Rumelhart et al [7]. 

Backpropagation has since become an essential tool in supervised 

learning. It is essential because the most efficient way to calculate 

the first derivatives of the objective function with respect to the 

adjustable parameters of the network is through backpropagation. 

With these derivatives, we can use the optimization techniques 

which will be described in the next section to minimize the objective 

function in training the neural network. 

1st hidden layer 2nd hidden layer output layer 
,1 ,2 ,a 
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actvation activation 
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Figure 3.1 A MIMO Two Hidden Layer Network 
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In a multilayer neural network, as shown in Figure 3 .1, the 

general mathematical operation performed by the k-th layer neurons 

is 

k wk k-1 bk n = £! +_ 

gk = f\nk) (3.3) 

where k= 1,2, ... M 

where Wk is the weight matrix, bk is the offset vector, fk is the 

activation function, nk is the net input and ilk is the output (or the 

activation) of the k-th layer of the network. The activations for k=O 

(the input nodes) and k=M (the output layer) are, respectively, 

0 
g =£ 
and 

M a=a - - ' 

(3.4) 

where .Q is the input vector and i! is the output vector. The 

parameter vector~ contains all the elements of the weight matrices 

and the offset vectors. The objective function F(~), which is defined 

in Equation 3.2, cannot be obtained until the network output is 

computed. That means that a forward computation from the first 

layer to the output layer must be performed first. For the same 

reason, the derivatives with respect to the network parameters 

cannot be calculated until the objective function of the learning 

epoch is available. Once the objective function is obtained, it is 

logical, as we will explain later in this section, to calculate the 

de1ivatives from the output layer backward to the first layer. This 

method is thus called backpropagation. 
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The partial derivative of the objective function Ft~) with respect to 

the assemble of weights and offsets of the k-th layer wk is 

aF(x) = (aF(x))r arl 
awk a.nk awk 

The sensitivity of the k-th layer is defined 

<>k = aF(~) 
- arl 

Suppose we want to compute this sensitivity, then 

<>k = aF(~) 
- ank 

aF(~) r a.nk+l 
= ( a.nk+l ) a.nk 

= ( aF(~)f ( a.nM )r ... a.nk+l 
a11M a.nM-l a,l 

(3.5) 

(3.6) 

(3.7) 

We cannot make this computation until we have the sensitivity for 

the last (output) layer ~M 

<>M = aF(~) 
- a.nM 

} T 
= a[ z O - ~) ( ! - ~) 1 

anM (3.8) 
aa 

= -(!-~)an~ 

= -(! - ~)(f~ )' 

where the term (:[~ )' in the above equation stands for the first 

derivative of the output layer activation function fM while the net 

input is nM. By investigating Equations 3. 7 and 3.8 further, we find 

that there is a recurrent relation between ~k and ~k+1 such that 



0k = aF(~) 

- arl 
a!!k+l r aF( ~) 

= ( ank ) ank+i 
- -

a k+l 
= ( n )r 0k+1 

ank -

= [(f!k )' (Wk+1 yr ]Qk+1 

where k = 1 2 · · · M - 1 ' ' 
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(3.9) 

From Equations 3. 7 through 3. 9 , we can now understand now why it 

is logical to calculate derivatives from the last layer backwards to the 

first layer. 

Optimization Techniques [8] 

In order to train a.neural network to be a function approximator, 

we need to optimize (or minimize) the objective function F(x), which 

is usually defined as the sum of squared error. This explains why we 

need optimization techniques for training networks. The standard 

optimization algorithm has the form 

~i+I = ~i + ai~i, (3.10) 

where & is the parameter vector at epoch i, fu is the search direction, 

and ai is a scalar called the learning rate or step size. The search 

direction vector fu is obtained from the backpropagation method and 

the optimization technique. There are many optimization techniques. 

It is the computation of fil that distinguishes one optimization method 

from another. In this section we will discuss three methods: the 

steepest descent method, the Marquardt method and the conjugate 
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directions method. These methods all use only the first derivatives 

of the objective function to determine the search direction vector fil. 

Steepest Descent Method 

The function of the search direction vector is to decrease the 

objective function at each learning iteration 

F(li+1) < F(~i) (3.11) 

To achieve that decrease, consider the following Taylor series 

expansion 

F(x. 1 )= F(x. +a-s.) -1+ -1 1-1 

= F(~) +aiVF(~i)~i' 
(3.12) 

where VF(~) is the gradient of the objective function at epoch i. For 

a positive learning rate ai, we must have 

(3.13) 

This is called a descent direction. Equation 3.12 can be rewritten as 

(3.14) 

Where 11· II represents norm, and e is the angle between VF(&) and fu. 

If IIVF(&) II and II.full are fixed, then with a variable e, the greatest 

reduction in Equation 3.14 is obtained when e = :1t. Thereby the 

steepest descent is defined 

S· = -VF(X·) 
-1 -· 

(3.15) 

and we have the steepest descent method 

(3.16) 

If the learning rate ai is fixed, then it has to be very small to 

ensure that convergence occurs in the learning process. This is 
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explained in Figure 3.2 where an abstract error surface is presented. 

Several contour lines are drawn on the abstract error surface. Each 

contour line represents the points that have the same value for the 

objective function F. The real minimum ~ is located between the 

two innermost contour lines, which have the two lowest values of F 

among the other contour lines. We assume that after some iterations, 

the estimated minimum & is closing toward the true minimum x.. If 

the step size is too large then an oscillation occurs between the two 

innermost contour lines. The estimated minimum tries to settle 

down at the true minimum, however, with the large step size the 

estimated minimum tends to oscillate. On the other hand, if the 

learning rate is very small, the oscillation may not occur, but more 

steps (longer learning time) are required to reach the true minimum. 

The [ innermost 
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Figure 3.2 An Illustration of Fixed Step Size Leaming 
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An improvement can be made if some ad hoc techniques are used 

to vary ( or to adapt) the step size in each learning epoch. As shown 

in Figure 3.3, the main idea is simple. We would like the step size to 

be large at the start of the learning process and to decrease during 

the process. With the larger step size at the beginning, the estimate 

can move faster towards the minimum from a distant starting point. 

Then, with decreasing step size, the oscillation caused by a too large 

step size can be prevented. Therefore, with the variation in step size, 

convergence is ensured. This is called a variable ( or adaptive) 

learning rate algorithm. 

'f!:rmost [------------- true contour .I. IIllmmum 
lines i 

' 
steps 

• I 

... 
time 

Figure 3.3 An Illustration of the Adaptive Learning Rate Algorithm 
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Marguardt Method 

The Marquardt method was derived from the Newton method. 

An objective function can be approximated by a quadratic function 

with positive definite Hessian matrix in the immediate neighborhood 

of a strong minimum. The Newton method was developed using this 

property. Consider the following second order Taylor series 

expansion of the objective function about the estimated minimum 

point~ 

F(~i+1) = F(~i + A~i) 

s= F(~J + VF(-3.JT A~ + ! A.3.iTV2F(~ )A~ 
(3.17) 

As we know, for a second order equation, the minimum (or 

maximum) is located at the point with zero first derivative. So we 

take the gradient of Equation 3.17 with respect to A& and set it to 

zero 

(3.18) 

The minimum x. can then be reached with one weight update 

Ax- = -V2F(x· )-1 VF(x·) -1 -1 -1 (3.19) 

To state the Newton method 

(3.20) 

The advantage of the Newton method is that it generally converges 

in fewer learning epochs than steepest descent. However, the 

disadvantage of the Newton method is its need for second 

derivatives, which requires a lot of computations. The following 

modification, called the Gauss-Newton algorithm, avoids this 
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calculation requirement by approximating the second derivatives 

with first derivatives. Consider the objective function that is defined 

as the sum of squares of other functions 

F(K) = ff (3) +f;(3)+· · · +f~(.K) 

== [f(3){ [f (.K)J (3.21) 

where f(x)== [f1(x) f2(x)···fN(x)t 

We then take the gradient of Equation 3.21 with respect to x (The 

size of x is n) 

VF(.K) == 2[J(3)]r [f(x)] 

af1(x) af1 (2S;) af 1 (.K) 

awl aw2 awn 
af z(3) af 2CK) af z(.K) 

(3.22) where J(K) = a~1 aw2 a~n . . . . . . 
af N(3) afN(K) afN(.K) 

awl aw2 awn 

The second derivative of Equation 3.21 is 

N 

V2F(~) = 2[J(3)]1[J(~)] +2I((K)V2((3) (3.23) 
i=l 

By ignoring the second term in the above equation, we have 

(3.24) 

After replacing the terms of v2f and VF in Equation 3.20 (the Newton 

method) with Equation 3.22 and 3.24 respectively, we have the 

Gauss-Newton algorithm 

· T 1 T 
Ki+l == 3i - [J(K) J(3)r [J(x) fC~)l (3.25) 

If the term J(x)r J(K) in Equations 3.25 is not positive definite, 

and the inverse term does not exist, then we have a problem in 

implementing the Gauss-Newton algorithm. To overcome this 



problem, Levenberg added an additional term, an identity matrix I 

times a positiveµ, to the term J(~)T J(~) of the Gauss-Newton 

algorithm 
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(3.26) 

Assume that the eigenvalues and eigenvectors of the Hessian matrix 

v2F(~) in the above equation are (i..1, Az, · · ·, AN) and (A1, fu, · · ·, AN) 

respectively, then 

[V2F(~) + µl]Aj = V2F(~)Aj + µIAj 

=A-A-+ µA-J-J ....... J (3.27) 

= (l,.j + µ)Aj 

Thus the new eigenvalues and eigenvectors of the modified Hessian 

matrix in Equation 3.27 are (A1-f1l, Az-fµ, · · ·, i..N-1-µ) and (Ai, fu, · · ·, &) 

respectively. To obtain a positive definite Hessian matrix, one can 

always increase the value ofµ until each new eigenvalue is positive. 

The Levenberg algorithm is a complimentary method between the 

Gauss-Newton method, when µi is small, and the steepest descent 

algorithm, when µi is large. It is.complimentary because the 

Levenberg algorithm takes the advantages of fast learning speed 

from the Gauss-Newton method and exact direction learning from the 

steepest descent algorithm. Based on this observation, Marquardt 

suggested that one can start with a small number for µi at the 

beginning of the training. Then we increase µi by a factor ~ until the 

objective function is decreased, as described in Equation 3.11. This is 

assured because increasing µi eventually is equivalent to taking a 

small step in the steepest descent direction. To avoid the problem of 



having the value of µi get big, the same factor, {3, can be used to 

decrease µi at the end of each learning epoch. 

Conjugate Directions Method 
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Like the Marquardt algorithm, the conjugate directions method is 

another way to perform optimization without the need for second 

derivatives. Consider a quadratic function which is in the form of 

T } T 
F(x) == c + g x +-x Hx. - - - 2- - (3.28) 

Its gradient and Hessian matrix are, respectively, 

VF(x) = Hx+ ~ 

and (3.29) 

V2F(x) = H. 

Then, a set of vectors fil is said to be mutually conjugate with respect 

to the Hessian matrix H if and only if 

s_THs- = 0 
-1 -J 1 ;a! J (3.30) 

As we know, if the Hessian matrix is symmetric then its eigenvectors 

are orthogonal. In this case, the set of the eigenvectors is a set of 

mutually conjugate vectors 

A-THA- == A_T()....A.) 
-1 -J -1 1-J 

== A . (A.TA . ) 
J -1 -J (3.31) 

=0 

Let /1;. be the search direction vector fu. If the Hessian matrix in 

Equation 3.31 is positive definite, then it can be shown that the exact 
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minimum of a quadratic function will be reached in a maximum of n 

steps, using 

(3.32) 

where n is the dimension of Kand ai is the exact single step needed 

to reach the minimum along fu. To eliminate the need for a Hessian 

matrix (second derivatives) in Equation 3.31, we then combine 

Equations 3.28 and 3.29 

A[VF(3.i)] = VFCii+1) -VF(~.J 

= H(~+1 - 3-J 

= H[A3.d 

(3.33) 

The conjugate condition from thei-th learning epoch to the (i+l)-th 

learning epoch can be found in Equation 3.30. If we multiply both 

sides of the equation by ai, and then combine it with Equations 3.32 

and 3.33 we obtain 

[ ai si ]T H§i+l = A wi TH§i+1 

= A[VF(:~i )t §i+1 

== 0. 

(3.34) 

Thus the ground for computing the next search direction vector fu+i is 

established. Numerous solutions can be found to satisfy Equation 

3.34. One set of directions which satisfy Equation 3.34.are 

§1 == VF(~1) 

§i+1 = VF(~+1) + ~i+i§i i = 1,2,···n -1 (3.35) 

~i+1 == [VF(3.i+1 )t [VF(3.i+1)] I [VF(3.i )]r [VF(3.i )] 

where n is the dimension of the parameter vector K· 
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Implementation 

The purpose of this section is to offer a series of equations for 

implementing the neural network learning process from a 

programming point of view. Those equations, which are organized in 

the order of real events, are summarized from the previous sections 

about backpropagation and optimization techniques. As discussed 

earlier in this chapter, the learning process starts with a forward 

computation. The forward computation obtains not only the network 

output, but also the net inputs and the outputs (activations) for each 

layer in the network. Then, with these net inputs and outputs, a 

backpropagation is performed to find the first derivatives of the 

objective function with respect to each adjustable parameter of the 

network. Those derivatives are used in the last stage of the learning 

process: the optimization. The function of the optimization procedure 

is to calculate the change to be made in each parameter. Once the 

parameters are adjusted accordingly, the process is repeated until 

the objective function reaches the goal. 

Forward Computation 

Input nodes : 

(3.36) 

The k-th hidden layer : 

Ilk= Wkgk-1 + hk 

~k = f.k(nk) where k = 1,2,···M -1. 
(3.37) 



The output layer : 

Backpropagation 

The output layer : 

~M = -(! - i!)(f!k )', 

VF(WM) = QMi!M-1. 

VF(hM)=~M. 

The k-th hidden layer: 

~ k = (f~k )' [ wk+l t fl.k+l. 

VF(Wk) = ~\{-1, 

VF(hk) = Qk where k = M-1,M- 2,···3,2. 

The first hidden layer : 

~l = (~1 )'[W2]T Q2' 

VF(W1 )= ~1 - E· 
VF(h1) = .§_1. 

Optimization 
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(3.38) 

(3.39) 

(3.40) 

(3.41) 

For simplicity, all of the weights and offsets of the network in the 

i-th learning epoch are lumped into the following single parameter 

vector 
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l)T( 2)T ( k)T MTT xi = [(w w ·· · w · ··(w ) ] (3.42) 

where wk is the ensemble of the weights and offsets of the k-th 

layer. To update the parameter vector for each new learning epoch, 

one can use the general equation 

~i+1 = ~.j + A!.i (3.43) 

Three optimization techniques discussed in this chapter are 

-- The steepest descent method 

-- The Marquardt method 

-- The Conjugate directions method 

( 1) The first search direction 

~1 = -VF(~1) 

AA1 = U1~1 

( 2) The hereafter search directions 

f3i = ([VF(Ki )f [VF(3.i )]) I ([VF(~i-1){ [VF(~i-i )]) 

~i = -VF(!.i) + f3i~i-1 

A3.i = ai ~i where i = 2,3, · ·, n -1 

Summary 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

The supervised learning process is thoroughly discussed in this 

chapter. The essence of the learning process is optimization and 
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backpropagation is a necessary tool in optimization. This necessity of 

the backpropagation in the learning process is stressed. Three 

optimization techniques are examined. A comparison of those 

techniques are contained in the work of M. T. Hagan and M. Menhaj 

[9], which concludes that the Marquardt method is the best choice in 

most occasions. In next chapter, we will find out how the learning 

process discussed here can apply to practical applications, such as 

system identification and control. 



CHAPTER IV 

SYSTEM IDENTIFICATION AND CONTROL USING STATIC LEARNING 

There are two kinds of the learning algorithms -- static and 

dynamic. The main theme in this chapter is the static learning 

process introduced in Chapter 2. The discussion of dynamic learning 

will be left to Chapters 5 and 6. Compared to static learning, 

dynamic learning uses a more complicated process to calculate the 

derivatives of the target function. Basically, the static learning 

algorithm only applies to situations in which an off-line static 

function approximation can be performed. One such situation is 

system identification (or system modeling). This situation will be 

discussed in the first half of this chapter. 

Static learning can also be used to control dynamic systems. This 

process will be described in the second half of this chapter. We will 

present two control schemes, feedback linearization and the direct 

inverse controller, to demonstrate that neural networkcontrollers 

can be trained off-line with static learning. A pendulum system, 

where the pendulum swings between two equilibrium points, will be 

the common computer simulation example used throughout this 

chapter and the rest of this document. 
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System Representations 

For their generality and ability to use neural networks for 

identification, three nonlinear models, which are the system 

representations for a single-input/single-output (SISO) nonlinear 

plant, are presented. These models are generalized from their linear 

counterparts, which have been used in adaptive control applications 

for the modeling of linear systems. The three models are: ( 1) the 

nonlinear moving-average (MA) model, (2) the nonlinear 

autoregressive (AR) model and ( 3) the .nonlinear autoregressive 

moving-average (ARMA) model. 

Before the descriptions of the three models, first we define the 

tapped delay line (TDL) introduced in Chapter 2. The TDL is a 

component which produces outputs that are delayed values of the 

input. It is shown in Figure 4.1. 

Nonlinear MA Model 

In the linear moving average model the output is a moving 

average of the current and previous inputs, as in 

n 
y(k +1) - ~ aiu(k- i), (4.1) 

i=O 

where ai represents the impulse response of the system. The 

nonlinear extension to the moving average model is 

y(k + 1) - f[u(k), u(k- 1), ... u(k- n)] (4.2) 

and the nonlinear model is shown in Figure 4.2. 



TDL 

u(k) u(k-1) 

u(k-2) 

• 

• 

Figure 4.1 The Tapped Delay Line 

TDL. 

Nonlinear 

MA 
model 

Figure 4.2 A SISO Nonlinear MA Model 
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y(k+l) 



Nonlinear AR Model 

Another well-known model used in the representation of linear 

systems is the autoregressive model. The output of the linear AR 

model, at time stage k+l, is related linearly to its own past values 

rn 

y(k + 1) = ~ as(k- i) + u(k) 
i=O 

The nonlinear version of Equation 4.3 is 

y(k + 1) = f[y(k),y(k-1), ... y(k - m)] + u(k) 

and the nonlinear model is shown in Figure 4.3. 

u(k) 

--·TDL 

Nonlinear 
AR 

model 

Figure 4.3 A SISO Nonlinear AR Model 

(4.3) 

(4.4) 

y(k+l) 
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Nonlinear ARMA Model 

The most extensively used model in control systems is the ARMA 

model. This model combines the moving-average part (Equation 4.2) 

and the autoregressive part (Equation 4.4) from the previously 

discussed models and is expressed as 

y(k+l)= h[u(k),u(k-1), ... u(k-n), 

y(k), y(k - 1), ... y(k - m)] 

A nonlinear SISO ARMA model is shown in Figure 4.4. 

u (k) 

qTDLI 
... 
: Nonlinear 

y(k+ 
ARMA --

rlTnLI : model 

Figure 4.4 A SISO Nonlinear ARMA Model 

System Identification 

(4.5) 

1) 

The three models discussed in the last section actually can be 

represented by just one model -- the ARMA model. Both the MA 

model and the AR model then become special cases of the ARMA 



model. Therefore, we will only need to describe the system 

identification for the nonlinear ARMA model in this section. 

The architecture to train a neural network to model a nonlinear 

SISO ARMA plant is shown in Figure 4.5. The inputs to the neural 

network NNP are the current plant input u(k) and the past values 

from both the plant input u(k) and the plant output y(k+ 1 ). The 

error e(k+l), which is the difference between the plant output 

Y1(k+l) and the network output Ynn(k+l), will be used in the static 

learning algorithm for adjusting the parameters of the network. 

PIANT y1(k+l) 
u(k)~,---~~~---1 ... , 

i...-,.... TDL t--.....,., 

.---..... TDL 1--...-..1 
Ynn(k+l) 

45 

Figure 4.5 A Nonlinear SISO System Identification Using a Neural 

Network 



The Swinging Pendulum System 

A pendulum system, as shown in Figure 4.6, will be used as an 

example of a nonlinear SISO system for the computer simulation. 

de 
motor 

Figure 4.6 A Swinging Pendulum System 
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The pendulum has a full range of swing angle e from the straight 

downward position (0=0) to the straight upward position (e~) and is 

driven by a de motor with one of its ends attached to the motor 

shaft. The mathematical model for the pendulum system is assumed 



:t [::] = l-lOsin(x~ -2x2 + u l (4.6) 

·. d0 
where x1 =0, x2= - and u is the current applied to the motor. The 

dt 

approximate discrete time system would be described by 

[ x/k) l 
~(k+ l)= ~(k)+ At -10sin(x1(k))-2x/k) + u(k) (4.7) 

The above equation can be expressed as 

x1 (k + 1) = f[x1(k), u(k),~ (k)], 

x 2(k) = g[x1 (k-1), u(k- l),x2 (k-1)] 
(4.8) 
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Furthermore, with the recurrent relationship shown in Equation 4.8, 

the pendulum system can be expressed as a nonlinear SISO ARMA 

model 

x1 (k + 1) = f[x1 (k),x1 (k -1), ... u(k), u(k -1), ... ] ( 4. 9) 

For the purpose of modeling the pendulum system with neural 

networks, we have truncated Equation 4. 9 to 

X1 (k + 1) = f (X1 (k),X1 (k - 1), u(k), u(k - 1)) (4.10) 

Computer Simulations 

To produce the training data, a sinusoidal baseline current u is 

applied to the motor 

u(k) = sin [(At)(k)], (4.11) 

where At (0.05 second) is the sampling time and k is the time stage 

index number. The pendulum begins at a randomly chosen initial 

position between O and :n:. If the controlled pendulum approaches 
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the boundaries ( 8=0 or S=n:), the baseline current is changed to a 

constant threshold current to prevent crossing the boundary. Once 

the pendulum is brought back to its normal swinging range by the 

constant threshold current, the baseline current will resume. A total 

of 400 input-output pairs [u(k), y(k+ 1)] were collected. 

The alternating training data sets (ATS) method, proposed by the 

author, is employed in all the static learning applications in this 

research and will be discussed further in Chapter 9. The learning 

curve shown in Figure 4.7 was obtained after 10,000 learning epochs. 

Note that the learning curve approaches a constant value after 

approximately the 7 50-th learning epoch. This could mean that a 

global minimum is reached. 

A series-parallel test method is adopted to evaluate the trained 

neural network NNP. In this test the feedback to the network is not 

from the network itself but from the plant output. The series­

parallel test is illustrated in Figure 4.8. 



49 

104 

103 

- 102 

.ffl 
0 
i::a, 101 
0 
0 
V -i... 100 
§ 
G) 

'Cl 
10-1 I 

o' 
Vol 

10-2 ..... 
0 

§ 
t,'l 10-3 

10-4 

10-5 
100 101 102 103 104 

Leaming epochs 

Figure 4. 7 The Learning Curve of the Network NNP 



u(k) PLANT 
p 

Yt(k+l) 

NEURAL 
1--_..~NETWORK1--~---

TDL NNp 

Figure 4.8 The Series-Parallel Test Method 

so 

Several tests were executed to make the evaluation and the 

results are shown in Figure 4.9. In each test, the initial position y(O) 

and the constant input current u, were different. Note that, in the 

graphs, a solid line would represent the plant output and a dashed 

line, the network output. However, due to the successful neural 

network modeling, only one data line appears in the each graph of 

Figure 4.9. 

A higher precision evaluation called the parallel test, which will 

be described in Chapter 7, was also performed. The results obtained 

from the parallet test were approximately the same as the results 

from the series-parallel test. 
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Figure 4. 9 The Evaluation of the Network NNr 

Feedback Linearization [8] 

Some neural network controllers can be trained using static 

learning; two such controllers will be discussed in this document. In 

this section we present the first of these two methods, feedback 

linearization. Consider a nonlinear SISO system which has the 

dynamics 
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dnx 
dtn = f (i) + b(K)U ( 4.12) 

where f(x) is the nonlinearity, bis the constant, u is the control input, 

xis the output and xis the state vector which can be expressed as 

dx dn-lX T 

~ = [x dt • .. dtn-l] ( 4.13) 

By combining Equations 4.12 and 4.13, a state space representation is 

obtained 

X1 X2 

X2 'S 
d 

(4.14) = 
dt 

~-1 xn 

X n f(K) + b(K)U 

Thus the system is in controllability canonical form. When a control 

input 

1 T 
u =-[-k x-f(x)] 

b(~) - - -
( 4.15) 

is applied to this system, the nonlinearity f(x) is canceled and the 

closed loop dynamics become 

X1 X2 

X2 X3 
d 

(4.16) = 
dt 

Xn-1 ~ 

xn - k X - k X -· · · - k X 1 1 2 2 n n 

In other words, by choosing k appropriately, the nonlinear system 

responds just like any desired n-th order linear system. This defines 

the feedback linearization. 
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Feedback Linearization with Neural Networks 

The role that a neural network plays in feedback linearization is 

to replace the nonlinearity f(x) 

NNr e f(x) ( 4.17) 

where NNr is the neural network model of f(x). For the case of 

pendulum system, which is described by Equation 4.6, f(x)= 

-10sin(xi)-2x2 • To find the discrete representation for this 

nonlinearity, Equation 4.7 is rewritten as 

[ 
X2 (k) l x(k+ 1)= x(k)+ At 

- - -lOsin(x1(k))-2x2 (k)+u(k) .(4.18) 

= fd(x(k)) + gd(u(k)) 

The neural network needs to learn the second element of the 

function fd in order to cancel the nonlinearity. This discrete form of 

the nonlinearity f(x) would be . 

fd 2 (~) = x 2 (k) + At[ -10sin(x1 (k)) - x2 (k)] ( 4.19) 

Suppose that we would like the pendulum closed loop system to 

respond with the dynamics given by 

( 4.20) 

Then, from Equation 4.15, the continuous feedback linearization 

controller would be 

uFL = 9r - [9 6]A - f(x) 

and the control input in a discrete form is 

uFL (k) = x2 (k) + At(9r(k)-[9 6]A(k))- NNr 
At 

(4.21) 

(4.22) 



Computer Simulations for Nonlinearity Neural Network 

The first step in feedback linearization control is to train the 

nonlinearity neural network NNr. By empirical experience, a 2-8-

1_33 multilayer feedforward network is chosen for this purpose. 

Assume that x(l) and x(2) fall into the intervals [O,n:] and [-2n:,2n:] 

respectively. 
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The process for obtaining the training data set is the same as that 

described in the section on system identification. However, in this 

case Equation 4.19 is used for the process. In the simulation, the 

sampling time is 0.05 second, and the total number of data points in 

the training data set is 400. The ATS method is used in the training. 

The resulting learning curve is shown in Figure 4.10. Like the 

learning curve in system identification, the learning curve in this 

simulation also approaches a constant value which suggests that a 

global minimum has been reached. 
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Figure 4.10 The learning curve of the trained Network NNr 

Two tests were performed to evaluate the trained network NNr. 

The first test was executed under the following conditions -- x( 1) 

was varied while x( 2) was set to zero. Then, in the second test the 

conditions were reversed and x( 2) was varied while x( 1) was set to 

zero. The results of the tests are shown in Figure 4.11. Although, in 

the graphics, the network output is represented by the dashed line 

while the true linearity is represented by the solid line, one can not 
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really distinguish between them. Once again, this is a result of very 

accurate approximation by the network NNr. 

~ 
:z :z 
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x(2) while x( 1 )=O 

Figure 4.11 The Evaluation of the Network NNr 



Computer Simulations for Feedback Linearization with Neural 

Network 
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Next, we will evaluate the performance of the feedback 

linearization controller where the trained network NNr is embedded 

in it. For comparison, the performance of a linear controller is also 

given. The linear controller was designed for the case where the 

pendulum model is linearized about the state x=[lt/2, O] 

(4.23) 

The linear controller which would cause the linearized pendulum 

system to respond as the reference model (Equation 4.20), is 

lluN -10 + 9r-[9 4]~ (4.24) 

Given a common reference position of 31:/2 and two initial 

positions, O and lt, both the feedback linearization controller and the 

linear controller were tested against the reference model. The 

results are shown in Figure 4.12. Since the linear model is linearized 

about the point x=[lt/2, O], the corresponding linear controller can be 

expected to perform well around the position 31:/2. However, it is 

observed from Figure 4.12, that the linear controller performs well 

as a regulator, but poorly in the tracking situation. In comparison, 

the feedback linearization controller shows a strong capability for 

tracking but fails to maintain the same position as the reference 

model in the final steady state. 
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Figure 4.12 Feedback Linearization Vs Linear Controller (#1) 

Two more similar tests were performed and the results are shown 

in Figure 4.13. In these two tests, instead of using some pre-selected 

values, the initial positions and the reference positions are randomly 

chosen between O and :n:. It seems, from the results shown in Figure 

4.13, the feedback linearization controller has better performance 

than the linear controller in both tracking and regulating. 
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Figure 4.13 Feedback Linearization Vs Linear Controller (#2) 

Direct Inverse Control 

Another type of neural network control is called direct inverse 

control. The key step in direct inverse control is to model the 

inverse dynamics of a plant, in which the order of the input and the 

output of the plant are reversed, as shown in Figure 4.14. 
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Figure 4.14 The Inverse Modeling 

Once the inverse model has been identified, it can be used as a 

controller to manipulate the plant under conditions in which the 

desired output of the plant is the input of the controller. This is 

called the direct inverse control method and is shown in Figure 4.15 . 

.. I CON~fILER I u ·I __ P_IA_P_N_T __ i--Y-ata.~ 

desired 
output 

control 
input 

Figure 4.15 Direct Inverse Control 

plant 
output 



AMA Method 

For consistency, the pendulum system, which was used in the 

system identification and the feedback linearization sections, again 

will be used in the computer simulation for the direct inverse 

control. Equation 4.10, which is the ARMA model of the pendulum 

system, is rearranged as follows 

u(k) = g[u(k -1), y(k - l),y(k),y(k + l)], (4.25) 
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This is now the ARMA model for the inverse pendulum system. We 

have attempted to model Equation 4.25 using neural networks but 

have had no success so far. However, an approximate MA model 

(AMA) method, proposed by the author, has been successfully 

employed to model the inverse pendulum system using neural 

networks. It is known that an ARMA model can be represented by 

an infinite MA model. In this case, Equation 4.25 would then change 

to 

u(k) = g[y(O),y(l), ... y(k-1),y(k),y(k+l)] (4.26) 

For modeling with neural networks, Equation 4.26 is truncated as 

u(k) = h[y(k- n),y(k- n + 1), ... y(k -1),y(k),y(k + l)],(4.27) 

where n is chosen by trial-and-error, in the absence of a more 

systematic method (a future research subject). 

A 10-10-1_121 feedforward multilayer network was picked for 

this experiment. The parameter n in Equation 4.26 is chosen to be 8. 

The architecture to train the neural network model NNp-1 for the 

inverse pendulum plant is shown in Figure 4.16. 
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Figure 4.16 Modeling Inverse Plant with a Neural Network 

Computer Simulations 

The training data set was obtained by stacking the data points 

that resulted from several runs, up a total number of 1000. In each 

run, the pendulum started from a randomly chosen initial position 

between 'Jf,/ 4 and 3:nJ 4. Then, a constant current, whose value was 

randomly chosen between -20 and 20, was applied to the motor. A 

run stopped when the pendulum hit the boundaries .(6=0 and e='Jf,), or 

a maximum of SO data points were collected. The ATS method was 

used with the static training algorithm. The learning curve of the 



network NNp- 1 was obtained after 10,000 learning epochs and is 

shown in Figure 4.1 7. 
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Figure 4.17 The Learning Curve of the Network NNP- 1 

The reference model described in Equation 4.20 supplies the 

desired position as the input for the direct inverse controller. The 

trained network NNP- 1 is evaluated through several tests. A 
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randomly chosen initial position y(O) and a steady state reference 

position r were given for each test. The results were collected and 

are shown in Figure 4.18. The solid line represents the reference 

model output and the dashed line is the network plant output. 
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Figure 4.18 The Evaluation Tests of the Network NNP-1 
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The conclusion from the evaluation tests is that the trained network 

NNP-1 performed well in most cases, but some fine tuning of the 

network parameters is still needed. The key to performance may be 

in whether or not the training data set completely represents all of 

the input and output spaces. This question will be discussed further 

in the dissertation as one of the subjects in the sensitivity analysis of 

the training parameters. Nevertheless, during the tests the ability of 

the direct inverse controller NNP-1 to follow a reference model, which 

was never included in the learning process, was suprising. 

Summary 

The main point we have attempted to establish in this chapter is 

that the static learning process, besides its most common application 

-- system identification -- can also be used to train neural network 

controllers. This is demonstrated with feedback linearization and 

direct inverse control. The direct inverse control was suprisingly 

successful, nevertheless, the fact that the static learning process can 

only be performed under the assumption that no recurrent 

connections exist in the network limits its application. To deal with 

this disadvantage, a dynamic learning algorithm, which can be 

implemented with the existence of the recurrent connections, will be 

introduced and discussed in the next chapter. 



CHAPTER V 

FORWARD PERTURBATION 

For real time adaptive identification and control applications that 

use neural networks, it is inevitable that some applications will need 

a supervised learning algorithm other than the static learning 

algorithm described previously in Chapter 4. Since the time 

dimension is added in this new learning process, it is called 

supervised dynamic learning. Just as static learning was used to 

train multilayer feedforward networks, dynamic learning is used to 

train recurrent networks. These recurrent networks will be 

described in the first section of this chapter. The concept of the 

recurrent connection between the neurons of the network is also 

defined in the same section. Following that, a description of the 

dynamic learning process is given, in which two important derivative 

calculation equations are derived. The derivation of these equations 

leads to two known dynamic learning algorithms -- forward 

perturbation (FP) and backpropagation-through-time (BIT). 

Recurrent Networks 

There are many different types of neural network architectures. 

The multilayer feedforward network, which was described in 
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Chapter 2 and is shown again in Figure 5.1, is one of the most 

commonly used architectures. In Chapter 4, we discussed and 

demonstrated this network and trained it with the static learning 

algorithm. 

1st hidden layer 2nd hidden layer output layer ,1 ,2 13 

11 

irpJt 
vectlr 

olsel veci>r alset vector alset vector 

acivatm activation 
veck>r vector 

Figure 5.1 A MIMO Two Hidden Layer Network 
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Another commonly used network architecture is called the 

recurrent network. A recurrent network exists if at least one of the 

neurons of the network has feedback. Feedback means that, in the 

network, there are recurrent connections, either direct or indirect, 

between one neuron and the neurons from the same or other 

networks. This recurrent connection is illustrated in Figure 5.2. In 

the figure, the block which takes the output from the neuron can be 

constructed by any type of network structure. It can be made up of 

a neuron, a layer of neurons, a part of the network, a whole network, 

two connected networks, or simply a void. 
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Figure 5.2 A Recurrent Connection 
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The multilayer feedforward network with a TDL component, 

which was described in Chapter 2, is shown again in Figure 5.3. Since 

the TDL connects the network's output to its input, the network has a 

recurrent connection. Thus, this network is a recurrent network. We 

will use this type of recurrent network throughout this document in 

our discussion of supervised dynamic learning. 

The fact that the output of a recurrent network depends not only 

on its present input, but also on its past output, gives it an edge in 

performance over the feedforward network. However, this 

additional time dimension is also the reason that the learning process 

in a recurrent network is much more complex than the learning 

process in a feedforward network. We will explain this complexity in 

the following section. 
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Figure 5.3 Recurrent Multilayer Network 

Dynamic Leaming 
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In static learning, the training data is collected before the learning 

epoch begins and is never changed during the learning process. In 

Chapter 4 we used this method to train the pendulum identifier and 

the feedback linearization and direct inverse controllers. The 

disadvantage of the static learning process is obvious. If the 

parameters of a system are changed, or if more noise is added to the 

application environment, the static identifiers and controllers will no 

longer perform the job well. In this situation, there is a need to 

collect a new set of training data from the application and to retrain 

the identifiers and controllers. 

To counteract this disadvantage, we present an on-line adaptive 

learning process called supervised dynamic learning. In supervised 
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dynamic learning, the recurrent network is placed on-line with its 

application. This is illustrated in Figure 5.4, where an example of a 

dynamic forward identification training configuration is given. 
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Figure 5.4 Example of A Recurrent Network Application 

In comparison, the plant is not needed in the static learning 

process once the training data set has been collected. Also, the static 

learning and dynamic learning processes obtain the training data set 

differently. In general, the training data for static learning is never 

changed during the training and the training data for dynamic 

learning will change as learning epoch proceeds. We will discuss this 

in further detail in Chapter 7. 



71 

Calculation of the True Derivative 

A key procedure in the supervised learning process is to compute 

the derivative of the objective function with respect to the network 

parameters. Suppose we want to find the complete derivative of the 

objective function, F(f!k(X),x), with respect to the variable x through 

time, where k is the discrete time stage index. This complete 

derivative is called the true derivative in this document. Then, 

applying the chain rule to the objective function with respect to the 

variables f!k and x, the true derivative of the objective function can 

be obtained either from 

a F = I a ilk T a ep 

a! k a! a~k 

or from 

e T 
aF =Ia !!k aF 
a! k a?S a~k 

(5.1) 

(5.2) 

where the superscript e stands for the explicit derivative. The 

explicit derivative terms in both Equations 5.1 and 5.2 can be 

obtained using the basic backpropagation method we already 

described and demonstrated in the static learning discussion in 

Chapters 3 and 4. The implicit derivative term in Equation 5.1, a~k, 
ai 

is the perturbation-through-time (PTT) at the k-th time stage. The 

implicit derivative term in Equation 5.2, aF , is the sensitivity-
a~k 

through-time (SIT) at the k-th time stage. To obtain the PTT and 

SIT, we apply the chain rule again through time. This results in: 
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agk aea.k aegk aa.k-1 -=--+----
a~ a3 aih-1 a~ 

(5.3) 

and 

e e T aF a F a gk+1 aF -=-+ --
a~k a~k a~k a!!k+l 

(5.4) 

Equations 5.1 and 5.3 make up the FP algorithm and Equations 5.2 

and 5.4 make up the BIT algorithm. Note that in Equation 5.3 a~k is 
ax 

computed from a~k-i, which explains why this is called the forward ax 
perturbation method. We see that in Equation 5.4 aF is computed 

a~k 

from ~, which is why this method is called backpropagation 
a~k+l 

through time. The FP algorithm will be further discussed in the 

following section and a discussion of the BIT algorithm can be found 

in the next chapter. 

Forward Perturbation 

We start this section with a discussion of previous research and 

an introduction to recurrent and non-recurrent variables in dynamic 

learning. Then, two basic dynamic learning models are discussed and 

their corresponding equations are derived. The equations calculate 

the true derivatives of the objective function with respect to the 

network parameters through time. This discussion is followed by an 

illustrative example, which demonstrates the derivative calculations 

using one of the basic FP equations. In the example, the actual 



73 

derivatives are also calculated by hand to verify the results from the 

FP calculation. Then, a couple of more complex examples of FP 

calculations are discussed. Finally, to illustrate the use of Marquardt 

optimization in dynamic learning, the computations and the 

requirements for both the Jacobian matrix of the error function and 

the derivative vector of the objective function are explained. 

Previous Work on FP 

As we mentioned in the first section of this chapter, although the 

added time dimension in the recurrent network strengthens its 

performance, it also complicates the calculation of the derivative. 

This is the reason that forward perturbation, which in Narendra's 

work [1 O] is also called dynamic backpropagation, has not yet been 

widely understood and used. The term "forward perturbation" is 

excerpted from a paper by Werbos [6], which describes its basic 

concept. A full description of the FP algorithm can be found in the 

Narendra paper [11]. Several neural network representations, which 

are the building blocks for recurrent network applications in 

dynamic learning, are also discussed in another Narendra paper [12]. 

Recurrent and Non-recurrent Variables 

In a recurrent network, the recurrent variable is defined as a 

function of the network parameters and the previous values of some 

of the network variables. For example, the outputs of the recurrent 

network are recurrent variables. The other variables in a recurrent 
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network, which have not met the definition of a recurrent variable, 

are called non-recurrent variables. The external inputs of a 

recurrent network are examples of non-recurrent variables. From 

the viewpoint of one learning epoch, recurrent variables and non­

recurrent variables are illustrated in Figure 5.5 . 

Time Stage 1 

(1) 
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NN 
(2) ---

Time Stage 2 
(1) 

NN (1) 
(2) --- One 

Learning 

(1) 
Epoch 

• 
• 
• 

(1) I Time Stage n 

I 
(1) 

(2) ---=::I NN ... 

(1) Recurrent variables 
(2) Non-recurrent variables 

Figure 5.5 Recurrent and Non-recurrent Variables 
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The introduction of recurrent and non-recurrent variables are 

essential to our description of the true derivative and its calculation 

using the FP algorithm described in the following section. 

Basic Dynamic Leaming Models and True Derivative Calculation 

Two basic dynamic learning models are proposed in this section. 

We will use the FP algorithm to derive the true derivative calculation 

equations for each of the models. The basic dynamic learning Model 

I is a MISO (multi-input single-output) recurrent network as shown 

in Figure 5.6. The output of the model y(k) is a recurrent variable. 

If the elements of the proceeding input vector K(k) are all non­

recurrent variables, then the derivative of the output with respect to 

the network parameter vector w, a~~) , can be obtained with the 

basic backpropagation method described and demonstrated in 

Chapters 3 and 4. 

... Recurrent 
Network 

NN(~ 

y(k) -
Figure 5.6 Dynamic Learning Model I 
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If the input vector ~(k) in Figure 5.6 can be decomposed into :&ir 

and &, which stand for the non-recurrent and recurrent variables 

respectively, then, from Equation 5.3, the PTT is calculated as 

ay(k) aey(k) aey(k) T a& (k) 
--= + (5.5) 

d}Y aw a~r(k) dl'.Y 

where the explicit derivative aey(k) deals with both the recurrent aw · 

and non-recurrent variables. As for the implicit derivative, a~r(k) 
aw 

in Equation 5.5, it represents the PTT from the previous time stages 

and can be calculated using Equation 5.3. 

The basic dynamic learning Model II is shown in Figure 5. 7. In 

this model a multi-output TDL component, which has the following 

output 

y(k) = [u(k-1) u(k -2) ... u(k- m)f, (5.6) 

is connected to a network NN(w). We assume that the input of the 

TDL is a recurrent variable. Thus, by combining Equations 5.5 and 

5.6, the PTT in this case is 

ay ( k) = at ( k) + aey( k / a y ( k) 
aw aw ay(k) aw 

aye(k) m aey(k) au(k - j) = ... -+~ ---··-···-·-· --
aw fi au(k - j) aw 

(5.7) 



u(k) ~1 TDL I y(~1 NN(:!Y) 
y(k) ... 

y(k) = [u(k-1) u(k-2) ... u(k-m)]T 

Figure 5.7 Dynamic Learning Model II 

An Illustrative Example 
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The simple recurrent network, shown in Figure 5.8, will be used 

to demonstrate the calculation of the true derivative using the FP 

dynamic learning algorithm. 

x(k)=y(k-1) 

t(k) 

...----. n(k) ...----. y(k) ~ 

....._l:~--..1 % t---,-..... _ 0---- e(k) 

--D 

Figure 5.8 A Simple Recurrent Network 
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In Figure 5.8, the recurrent network is connected to the external 

input p(k) and the recurrent input x(k) through the connecting 

weights W1 and W2 (w=[W1 w2]T) respectively. The offset is set to zero 

and the activation function of the network is linear. Three forward 

time stages (from k=l to k=3) for the recurrent network are 

performed and the results are 

y(l) = W1PO) + W2X(l) 

= w1p(l) 

y(2) = W1p(2) + W2X(2) 

= w 1p(2) + w2y(l) 

= W1P(2) + W2W1PO) 

y(3) = w1p(3)+ w2x(3) 

= W1p(3)+ Wzy(2) 

= w1p(3) + w2w1p(2) +w2
2w1p(l) 

The objective function is defined as 

1 3 

F = - ~ (t(k) - y(k))2 

2 k=l 

(5.8) 

(5.9) 

To calculate the true derivatives of the objective function with 

respect to the network parameter vector w we use Equation 5.1: 

(5.10) 

We start with the calculation of the PTT ay(k) using Equation 5. 7. In 
aw 

this case, the number of the TDL outputs, m, is one. Thus, the PTT at 

time stage k for this example is 



ay(k) = aey(k) + ax(k) ify(k) 

aw aw aw ax(k) 

aey( k) ay( k -1) aey(k) 
= +------

(5.11) 

aw aw ay(k - 1) 

Using Equation 5.11, the three forward time stages are also 

calculated in the following set of equations; 

k=l, 

k=2, 

k=3, 

ay(l) = aey(l) + ay(O) aey(l) 

aw aw aw ay(O) 

= aey(l) = [p(l) 0 r; 
a~ . 

ay(2) aey(2) ay(l) ify(2) 
= + aw a~ a~ ay(l) 

= aey(2) + cJy(l) aey(2) 

aw a~ cJy(l) 

=[p(2) x(2)f +wz[p(l) or 
= [p(2) + Wzp(l) Wlp(l) r; 

ay(3) aey(3) ay(2) aey(3) 
--= +-----
a~ aw aw ~0) 

ify(3) ay(2) aey(3) 
= +-----

a~ a~ ay(2) 

(5.11) 

(5.12) 

= [p(3) x(3) f + w2[P(2) + w zP(l) w1p(l) r (5.13) 

= [p(3) + W2p(2) + w/p(l)l; 
W1P(2)+ 2W2W1p(l) 
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Once the PTfs are obtained we can substitute them into Equation 

5.10 to obtain the true derivative of the objective function w.r.t. the 

parameter vector w 

aF i)y(l) aeF ay(2) aeF ay(3) aeF 
~= + . +~--~ 
aw a~ ay(l) aw ay(2) a~ ay(3) 

= -[p(l)(t(lt y(l))]-

[
(p(2) + w 2p(l))(t(2) -y(2))]­

w1p(l)(t(2)- y(2)) 

[
(p(3) + w2p(2) + w/p(l ))(t(3)- y(3))] 

(w1p(2) +2WzW1p(l))(t(3)-y(3)) 

(5.14) 

For comparison, we can simply calculate the actual derivatives by 

hand using Equation 5.8. The results are 

aF - = -[p(l)(t(l)- y(l)) + 
awl 

(p(2) + w 2p(l))(t(2)-y(2)) + 

(p(3) +w2p(2) +w/p(l))(t(3)-y(3))], 

aF - = -[w1p(l)(t(2)-y(2))+ 
aw2 

(w 1p(2) + 2w2 w1p(l))(t(3) -y(3))]. 

(5.15) 

which agrees with Equation 5.14. We can observe from Equation 

5.14 that the FP algorithm not only produces the true derivative over 

one learning epoch but also generates the true derivative for each 

time stage in a learning epoch. This unique characteristic of the FP 

algorithm is very important in Chapter 6 where the FP and the BTT 

algorithms are compared. 
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Complex Examples in Dynamic Learning 

In order to demonstrate the applicability of the two basic 

dynamic learning models to any recurrent network configuration, 

two more complex examples are given in the following. In addition 

to the training network, a non-training neural network (where the 

parameters are held constant) is also involved in both cases. 

In Figure 5.9, the network to be trained is NN(w) and the non­

training network is NN'. Since the configuration is a combination of 

the two previously described basic dynamic learning models, both 

Equation 5.5 and 5.6 are used to calculate the network perturbations. 

For simplicity, we will only calculate the key term in the FP 

algorithm -- PTT-- from here on. We start with calculating the PTT 

of the non-training network at time stage k, 

i)y(k) dt (k) i)ey( k) T dV( k) 
--= +--aw aw av(k) aw 

(5.16) 
= Q + i)ey ( k) T av ( k) 

av(k) iJw 

where aye(k) is zero because y(k) is not explicitly a function of the 
iJw 

training network parameter vector w. Then, the PTT of the training 

network at time stage k is 

iJv(k) aev(k) au(k) aev(k) 
--= +----

i)w iJw i)~ iJu(k) 

aev( k) iJy(k - 1) aev(k) 
= +------

(5.17) 

aw aw iJy(k -1) 
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Figure 5.9 -First Complex Example for Dynamic Leaming 
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By comparing Equations 5.16 and 5.17, one can see that there is a 

recursive relation between these equations as the time stage moves 

forward in one learning epoch. 

The configuration in the second example is similar to the first one. 

A TDL component is added between the two networks as shown in 

Figure 5.10. For simplicity, the TDL has only one delay output x(k). 

This example is still a combination of the two basic dynamic learning 

models. Thus, the calculation of the PTf of the non-training network 

at time stage k is 

ay(k) at (k) aey( k) ax(k) ----= +~~~--
aw aw ax(k) aw 

= 0 + ify(k) av(k -1) 
av(k -1) aw 

(5.18) 
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Figure 5.1 O Second Complex Example for Dynamic Leaming 

83 

To find out the PTT of the training.network av(k - l) at time stage · aw 

k-1 in the Equation 5.18, we start with computing the PTT of the 

training network at time stage k 

av(k) aev(k) cJu(k) ifv(k) 
----= +--------
a~ aw aw au(k) 

ifv(k) ay(k -1} aev(k) 
= + ' aw aw ay(k -1) 

(5.19) 

Marquardt Optimization Using FP 

In Chapter 3 we stated that, throughout this document, the 

Marquardt method will be used in the optimization stage of each 

supervised learning process. This claim not only applies to the static 

learning process, but also to the dynamic learning process. The 

optimization equation for the Marquardt method, which is restated in 



Equation 5.20~ can only be executed after a Jacobian matrix J ( w) is 

obtained 

(5.20) 
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The following Jacobian matrix is the derivative of the error function f 

with respect to the network parameter vector w 

af1 (!Y.) af1 (w) afl (w) 

awl dW 2 cJwn 
afz(~) afz(w) cJf2(w) 

J(:!Y.) = awl aw2 awn (5.21) 
. . . . . . 

cJfN(~) afN(W) cJfN(W) 

awl aw2 awn 

The error function, for a single-output network in one learning 

epoch, is defined as 

(5.22) 

where 1 and y are the desired output and the actual output 

respectively. Therefore, the derivative off with respect to the 

parameter vector w can be expressed as 

af a(1- y) ax. 
-- =--aw aw aw (5.23) 

It is clear from this equation that, with only a sign difference, af is aw 
the PTf discussed previously . Note that the true derivative of the 

objective function is never needed in the Marquardt optimization 

method. Thus, it is a perfect match to use the FP algorithm and the 

Marquardt optimization in dynamic learning. 
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Summary 

As the chapter title suggests, the main subject that has been 

discussed in this chapter is the FP algorithm for supervised dynamic 

learning. Although the basic concept and a full treatment of the 

algorithm can be found in the works of Werbos and Narendra, a 

somewhat simpler explanation of the FP algorithm is proposed here. 

The explanation starts with the definitions of recurrent and non­

recurrent variables. Then, two basic dynamic learning models were 

proposed, which actually were derived from the definition of the 

recurrent variable. The corresponding equations for calculating the 

PTTs of both the basic models are described. Through an illustrative 

example and two complex examples, the applicability of the two 

basic dynamic models to complex recurrent network configurations is 

demonstrated. This demonstration continues in Chapter 7 where the 

FP algorithm is implemented in the model reference adaptive control 

(MRAC) method, which serves as an example of control using 

dynamic learning. 



CHAPTER VI 

BACKPROPAGATION-THROUGH-TIME 

Another dynamic learning algorithm is backpropagation-through­

time (BTT). As explained in Chapter 5, both the BTT and FP 

algorithms originate from the same principle. It is the manner in 

which the chain rule is implemented which distinguished the two 

algotithms. We will present the BTT algorithm in the same sequence 

as we laid out for our discussion of the FP algorithm. It begins with a 

reiteration of the derivation of the BTT derivative equation and STI 

calculation equations, which were previously presented in Chapter 5. 

This is followed by application of BTT to the same illustrative 

example and complex examples we used in the FP algorithm 

discussion. The implementation of the Marquardt optimization using 

BTT, which is not as natural in this applications as it was in FP, is 

then discussed. Finally, based on computer simulations, comparisons 

between the FP and BTT algorlthms are given to show the highlights 

of the two dynamic learning algorithms. 

Derivative Calculation 

As we commented at the end of the illustrative example in the FP 

algorithm discussions, the true derivative of the objective function 

86 
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can be obtained not only over one learning epoch, but also at each 

time stage of the learning epoch. This advantage comes from the fact 

that the PTT at each time stage of a learning epoch, which is 

accumulated from both past and present time stages, reflects the 

complete derivative of the network error at that point in time. 

In the BTT process, we have a different situation. First, the true 

derivative is obtained only over each learning epoch and not at each 

time stage. Second, it is the sensitivity, instead of the perturbation, 

which carries the information that is needed in the true derivative 

calculation process. Finally, the sensitivities are backpropagated not 

just through time (from future time stages to the present time stage), 

but also through each layer of the network for the present time 

stage. We will explain all of the above differences in the following 

section. 

The BIT Derivative Calculation Equations 

Recall from Chapter 5 that Equations 5.2 and 5.4 define the BTT 

algorithm .. These equations are rewritten here, 

(6.1) 

and 

(6.2) 
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~F aF 
where the terms .!!._ and -- are the STTs at time stages k and 

a~k a~k+1 

k+ 1 respectively. This means that the SIT is an accumulation of the 

sensitivities from both the future and the present time stages. 

Calculation of STT 

The two basic dynamic learning models described in Chapter 5, 

are shown here again in Figures 6.1 and 6.2. They are used here to 

demonstrate how the STT is calculated. After the STT is obtained, 

the true derivative is then computed using Equation 6.1. 

Using Equation 6.2, the STT equation for use in Ivlodel I (IvIISO) of 

the dynamic learning process can be easily obtained as, 

aF aeF aey(k + 1) aF 
--= +----------
<Jy(k) ay(k) ay(k) ay(k + 1) 

~(k) .. Recurrent 
Network 

NN(ID 

y(k) ...... 

Figure 6.1 Dynamic Learning Model I 

(6.3) 

The STT equation for use in Model II of the dynamic learning process 

is obtained as 
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aF aeF aey(k) aF 
--= +------
ay(k) ay(k) ay(k) ay(k) 

aeF m ifu(k + m) aF 
= ay(k) + ~ ay(k) au(k 

(6.4) 

where m is an index from the last time stage to the current time 

stage in the learning epoch. Note that both of the above equations 

only apply to the network output layer. After the output layer STT 

aF is obtained, the STTs for each hidden layer of the network, at 
<3.i!k 

time stage k, are computed using the basic backpropagation method. 

u(k) ... , __ T_DL __ I y~, NN(fil 
y(k) ... 

y(k) = [u(k-1) u(k-2) ... u(k-m)]T 

Figure 6.2 Dynamic Learning Model II 

An Illustrative Example 

The simple recurrent network used in Chapter 5, and shown again 

here in Figure 6.3, will be used to demonstrate the calculation of the 

true derivative using the BTI dynamic learning algorithm. 



t(k) 

··. w1- n(k) -· y(k) @--++ 

-
~_:-------1 % ~ ~ e(k) 

x(k)=y(k-1) 

D 

Figure 6.3 A Simple Recurrent Network 

The three forward time stage operations and the objective 

function are rewritten here as 

and 

y(l) = W1PO) + W2X(l) 

= w1p(l) 

y(2) = W 1p(2) + W2X(2) 

= w1p(2) + w2y(l) 

= W1p(2) + W2W1PO) 

y(3) = w 1p(3) + w2x(3) 

= W1p(3) + W2Y(2) 

= w1p(3) + w2w1p(2) +w22w1p(l) 

1 3 

f = - I (t(k) - y(k))2 

2 k=l 

(6.5) 

(6.6) 
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To calculate the true derivatives of the objective function with 

respect to the network parameter vector w, using the BTf algorithm, 

aF = ± aye(k) aF- ' (6_7) 
aw k=l aw ay(k) 

we must first start with the calculation of the STT ay(k) using 
aw 

Equation 6.3. Since Fis not a function ofy(4), the STTs from k=3 

backward to k= 1 are 

k=3, 

aF aeF ify(4) aF 
= + 

ay(3) ay(3) ay(3) ay(4) 

= -l·(t(3)-y(3))+0 (6.8) 

= -(t(.3)- y(3)); 

k=2 ' 
aF aeF aey(3) aF 

= + 
ay(2) ay(2) ay(2) <Jy(3) 

= -(l)(t(2)-y(2))-(w2)(t(3)-y(3)) (6.9) 

= -(t(2)-y(2))-wi{t(3)-y(3)); 

k=l, 

aF aef(l) ify(2) aF. 
--= + 
ay(l) ay(l) ay(l) ay(2) 

= -(l)(t(l)- y(l)) -

(w2 )(t(2)-y(2)+ wi{t(3)-y(3))) (6.10) 

= -(t(l)-y(l))-

[wi(t(2)-y(2)) + w/(t(3)-y(3))]; 

Then, from Equation 6.1, the true derivative of the objective function 

w.r.t. the weight vector over the three time stages is calculated using 



aF = f aey(k) aF 

aw - k=l a~" ay(k) 

aey(l) aF aey(2) aF aey(3) aF 
= + +----

aw ay(l) aw ay(2) alY ay(3) 

= [ p~l) ][-(t(l) -y(l)) - W2 (t(2 )- y(2 )) 

- w/(t(3) - y(3))] + 

[~~:J)c-c1c2 >- yc2n -w ,c1C3)- y(3)J + 

[:~!~][-(t(3) - y(3))]. 

(6.11) 

By comparing the results from Equation 6.11 with the results from 

Equation 5.15, the true derivative, it is found that they agree, as 

expected. 
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An important point we would like to stress here, is that, after 

comparing Equation 6.11 with Equation 5.14, we note that the STTs 

at each time stage are different with the corresponding PTTs at each 

time stage. As we observed in Equation 6.11, this difference results 

from the fact that the STT contains the error information from the 

future time stages. The calculation of the PTT at each time stage in 

the FP algorithm is consistent with the fact that the error that 

occurred in the network output at each time stage results from both 

the past and the present inputs. In contrast, the calculation of the 

STT in the BTT algorithm only looks at the impact in the present and 

future from present point of view. This explains why only the PTT 

and not the STT can be converted directly into the true derivative at 

each time stage. As for the STI, a more complex calculation has to be 

performed before the true derivative can be obtained. We will 
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discuss more of this calculation in the following Marquardt algorithm 

section. 

Complex Examples in Dynamic Learning 

As we did in Chapter 5 for the FP algorithm, in order to 

demonstrate the applicability of the two basic dynamic learning 

models to any recurrent network configuration using the BTI 

algorithm, we give the following two more complex examples. These 

examples are the same as those described in Chapter 5. In both 

examples, the complexity of the problem comes from the addition of 

a fixed neural network that is involved in the training of the neural 

network controller. 

In the first complex example, shown in Figure 6.4, the network to 

be trained is NN(w) and the fixed network is NN'. The configuration 

is a combination of the previously described basic dynamic learning 

Models I and II. Thus, both Equations 6.3 and 6.4 are used to 

calculate the STI. We start by calculating the STI of the output layer 

of the fixed network at time stage k, 

aF = aeF + aey(k + 1) cJF (6.lZ) 
ay(k) ay(k) ay(k) ay(k + 1) 

where aeF can be obtained using the basic backpropagation 
iJy(k) 

method. Then, the STI in the output layer of the training network at 

time stage k is calculated as 

aF aey(k) aF 
= 

av(k) av(k) ay(k) 
(6.13) 



Because the derivative information from the future is already 

contained in aF we then only need to apply the chain rule to 
ay(k) 

aF once. This is the same step as our calculation of the STT for 
av(k) 

each hidden layer of the training network. 
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The configuration for the second complex example is similar to 

the first one. However, a TDL component has been added between 

the two networks as shown in Figure 6.5. Even with this addition, 

this example is still a combination of the basic dynamic learning 

Models I and II. Thus, the STT in the output layer of the fixed 

network at time stage k is same as in the first complex example and 

is calculated as 

aF aeF aey(k + 1) aF = +_.a;. ____ ..;..----
ay(k) ay(k) ay(k) ay(k + 1) 

u(k ) --

Training 
Network 

NN(_ru_ 
v(k) 

TDL 

--

Fixed 
Network 

I 

NN 

~ -

(6.14) 

y(k) --

Figure 6.4 First Complex Example for Dynamic Learning 
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However, in this example, the following calculation of the STT in the 

output layer of the training network at time stage k is a little more 

complex than in the first example 

aF aeF aev(k + 1) cJF 
--= +-....;__-~----
av(k) av(k) av( k) av(k + 1) 

(6.15) 

The term a:~) in Equation 6.15 ls no longer treated as the 

equivalent to a derivative in a hidden layer in the network. It has a 

direct feed-in from the future time stage. This results in the 

double usage of the chain rules as shown in Equations 6.1 and 6.2. 

Training Fixed 
Network Network 

u(k) 
v(k) 

y(k) 
NN(Jtl 

I 

TDL NN 
x(k) 

TDL~--------J 

Figure 6.5 Second Complex Example for Dynamic Leaming 
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Marquardt Optimization 

We start this section by reviewing the optimization equation for 

the Marquardt method as described in Equation 5.21. It is rewritten 

as Equation 6.15 

(6.15) 

In order to compute the change in the network parameters, Aw in 

Equation 6.15, a Jacobian matrix J(w) must first be obtained. The 

following Jacobian matrix is the derivative of the error function f 

with respect to the network parameter vector w 

af1 (~) af1 (~) afl (w) 

awl aw2 . aw n 
af2(~) iJf/~) af2(w) 

J (w) == awl aw2 awn (6.16) . . . 
afN(w) afN(w) afN(w) 

awl aw2 awn 

Using BTT in the Marguardt Method 

As we stated in Chapter 5 the FP algorithm and Marquardt 

optimization are a perfect combination for use in dynamic learning. 

This will be better understood after we have finished deriving the 

following tedious calculation process for implementing the BIT 

algorithm in the Marquardt method. 

First note that it is the derivative of the error function, not the 

derivative of the objective function, that is the key term in the 

Jacobian matrix described in Equation 6.16. To coordinate this 
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particular requirement in the Marquardt optimization method using 

BTf, we must rewrite Equations 6.1 and 6.2, replacing the objective 

function E with the error function f, as follows 

(6.17) 

and 

af aef aeak+l il[ 
-=-+ 
aak aak aak aak+l 

(6.18) 

For illustration and simplicity, only a single recurrent output is 

assumed in Equations 6.17 and 6.18. The error function, for a single 

output network in one learning epoch, is defined as 

f=1-x (6.19) 

where 1 and y are the desired output and the plant output 

respectively. Therefore, the derivative off with respect to the 

parameter vector w can be expressed as 

af a(1-y) ax 
-= =--aw aw aw (6.20) 

It is clear now that we need to use the STT from the BTT algorithm to 

find the PTT at each time stage. 

Converting STT to PTT 

To compute the PTT at each time stage using the STT, we first 

must consider the fact that the present network output error is a 

result of both the present network inputs and past network outputs. 

In addition, the STT is a accumulation of the effects ( to the output 
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error) from present network inputs and future network outputs. So, 

for any time stage k in a learning epoch we must consider the 

following: 

1.) At the last stage, afk is computed from Equation 6.18 with the 
aak 

fact that future network outputs have no effect on the current error 

( afk = O): 
aak+l 

af k aefk aeak+l afk -=--+-.......... 
aak aak aak aak+l 

=-1+0 

=-1. 

(6.21) 

2.) The effect from the past network outputs on the present output 

error f k, in terms of STT is calculated as 



af k aef k aeak af k 
--=--+----
aak-1 aak-1 aak-1 aak 

aea 
=0+--k (-1) 

aak-1 

aeak 
=---

aak-1 

af k iff k aeak-1 af k 
~~= + --
aak-2 aak-2 aak-2 aak-1 

= 0 + aeak-1(- aeak) 

aak-2 aak-1 

=-
aeak-1 aeak 

aak-2 aak-1 ' 

afk aef k aea2 af k 
-=--+----
aal aal aal aa2 

= 0 + aea2 ( - aea3 ... aeak ) 

aal aa2 aak-1 

aea2 aea3 aeak =-----···--
aal cJa2 aak-1 
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(6.22) 

By combining Equations 6.21 and 6.22 we have Equation 6.23. Thus, 

we have converted the STis into the P1T at k-th time stage for the 

Marquardt optimization. 

(6.23) 

A Comparison of FP and BTI 

Since the computation results of calculating the true derivative 

are the same whether using either the FP or BTT algorithms, we will 
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compare instead the computation time (measured in CPU time) and 

the number of floating point operation (measured in flops) of both 

the FP and BTI algorithms. The same computer simulation, which 

will be described as Case 5 in Chapter 7, was performed for both the 

algorithms. Table 6.1 lists the computation times of the FP and BIT 

algorithms for the first ten learning epochs of the simulation. 

TABLE 6.1 Comparisons of Computation Time (in CPU Time) between 

the FP and BTI Algorithms 

Learning 

Epoch 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

CPU Time 

of 

FP 

3.8964 

3.9297 

4.9108 

4.5164 

4.7820 

4.9714 

4.6630 

4.8822 

4.7837 

4.8083 

CPU Time 

of 

BTT 

3.0736 

7.2542 

8.0886 

7.7872 

8.0839 

7.9106 

7.9936 

8.0602 

8.0717 

8.0781 

Ratio of 

CPU Time 

(FP/BTI) 

1.2677 

0.5417 

0.6071 

0.5800 

0.5915 

0.6284 

0.5878 

0.6057 

0.5927 

0.5952 
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The CPU time unit in the table is minutes and both the FP and the 

BTT simulations were performed on a Macintosh Centris 650 

computer using MATLAB. Because random initial weights are used 

in this simulation, the first learning epoch was composed of 50 

trajectories. For the second learning epoch and all epochs thereafter, 

the designed number of 10 trajectories were used. Therefore, the 

first learning epoch is excluded when averaging the FP /BTT ratio of 

CPU time (column 4 of Table 6.1). The average FP/BTT ratio is 

0.5922 which means the FP algorithm only took about half of the CPU 

time that the BTT algorithm consumed. 

Table 6.2 lists the number of floating point operations (in flops) 

for the calculation of the FP and BTT algorithms for the first ten 

learning epochs of the simulation. From the point of view of the 

floating point operation, by excluding the first learning epoch as 

explained above, the BTT algorithm performs a little better than the 

FP algorithm. 

The results shown in Tables 6.1 and 6.2 are not consistent. This is 

due to the numbers of matrix operations executed in both the 

algorithms. In the FP algorithm, most of the computations are matrix 

operations. In contrast, for the BTT algorithm most of the 

calculations are scalar loop oriented. Since MATLAB is a software 

dedicated to matrix operation, it is no surprise that in this particular 

environment the FP algorithm used less CPU time than the BTT 

algorithm. When a general software environment is used, the BTT 

algorithm would have a little edge over the FP algorithm in 

computation time. 
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TABLE 6.2 Comparisons of Computation Time (in Flops) between the 

FP and BTT Algorithms 

Learning 

Epoch 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

FP 

12094210 

12091280 

12091280 

12091280 

12091280 

2091354 

12091280 

12091280 

12091280 

12091280 

BTT 

2700520 

11665910 

11665910 

11665910 

11665910 

11090893 

11665910 

11665910 

11665910 

11665910 



CHAPTER VII 

NEUROCONTROL USING DYNAMIC LEARNING 

The purpose of this chapter is to demonstrate the training of a 

neural network controller using forward perturbations, the dynamic 

learning algorithm described in Chapter 5, in an on-line adaptive 

fashion. Several papers [4][10][11][12] have described the theory of 

FP, but we have found no successful implementation of the algorithm 

for model reference adaptive control reported in the literature. 

Therefore, it is very significant and the most important result of this 

research that a satisfactory implementation of forward perturbation 

has been reached through the computer simulations performed in 

this chapter. 

We start with a description of the model reference adaptive 

control (MRAC) method, which is a commonly used architecture in 

adaptive control. Then, to integrate it with a neural network plant 

identifier, the MRAC method is reconfigured. This allows the neural 

network controller to be trained with the FP dynamic learning 

algorithm. To illustrate the gradient calculation in the dynamic 

learning process, a scalar version is given first. Then, a general 

vector version is described. Finally, to investigate the performance 

of the indirect MRAC using FP, extensive computer simulations 

ranging from simple to complicated cases were performed. 
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The simulations begin with a case of a linear first-order dynamic 

plant using a linear neural network controller. After three 

successively more complex cases, the simulations end with the case 

of a nonlinear second-order dynamic plant using a nonlinear neural 

network controller. As described in the last section of this chapter, 

the results of all the simulations were successful. Thus, this research 

provides us with a potential tool to deal with the more complex 

nonlinear dynamic applications found in the real world. 

lviRAC in Linear Dynamic Systems 

There are two different approaches, direct and indirect, to the 

adaptive control of linear dynamic systems. The key difference 

between these two methods is the source of the information which is 

used to adjust the parameters of the controller. In direct adaptive 

control, as shown in Figure 7.1, the parameters of the controller are 

directly adjusted by the plant output error. In comparison, the 

indirect adaptive control, shown in Figure 7.2, has a plant identifier 

placed between the controller and the plant output error. The 

parameters of the controller are chosen so that the parameters of the 

plant identifier can represent the parameters of the true plant. 

In linear adaptive control systems, such as the one shown in 

Figure 7.3, the input u(k) and the output yp(k+l) of the plant are 

connected to the TDLs so that the delayed values -- u(k-1), u(k-2), ... 

, u(k-n) and yp(k), yp(k-1), ... , yp(k-n+l) -- are the outputs of the 

TDLs. A linear combination from the controller reference input r(k) 

and the delayed values from both the plant input u(k) and the plant 
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Ym 
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I L ____________________ J 

Figure 7 .1 Direct Adaptive Control 

Reference 
Model 

Controller 
u 

Plant 

-------1 

Plant 
Identifier 

Ym 

Ypi 

I 
I 
I 
I 
I 

--------· 

Figure 7.2 Indirect Adaptive Control 
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output yp(k+l) is used to produce the controller output 

u(k) = XT (k)f(k), 

where the controller parameter vector ~(k) is 

~(k) = [X1 (k) X2 (k) ... Xzn+l (k)f 

r 

Reference 
Model 

Ym 

--• TDL ,..,._ __ _ 

Controller 
u 

Plant 

L------.----------

---i TDL 1 ..... ------------1 

Figure 7.3 The Illustration of Adaptive Control 

and the controller input vector 12 is 

p(k) = [r(k) u(k -1) u(k- 2) ... u(k - n) 

yp(k) yp(k-1) ... yp(k- n + l)f 

(7.1) 

(7.2) 

I 
I 

Yp I 
I 
I 
I 
I 
I 

(7.3) 
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For a given reference model, it can be shown that a constant 

parameter vector X* exists such that the controlled plant responds 

exactly like the reference model when the designated plant input 

u*(k) == ~} (k)£(k), (7.4) 

is applied [4]. With this reference model the constant parameter 

vector X* is obtained in an adaptive fashion from the plant input­

output measurements. The MRAC method has been thoroughly 

studied and complete descriptions can be found in the book by 

Narendra and Annaswamy [13). 
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However, very little research has been reported on the use of 

adaptive controllers for plants described by nonlinear difference or 

differential equations. It is the control of such systems using the 

neural networks that is the primary focus of this document. 

Indirect MRAC Using Neural Networks 

The gradient method is used in the training of neural network 

controllers, and with a neural network plant identifier NNP providing 

a medium for passing through the output error to the controller, it is 

feasible to use the backpropagation algorithm for the training of 

neural network controllers. The architecture of the indirect MRAC 

using neural networks is shown in Figure 7.4. Using this new 

configuration, the gradient calculations for adjusting the parameters 

of the neural network controller are derived in the following section. 
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Figure 7 .4 Indirect MRAC Using Neural Networks 

Indirect MRAC Using Forward Perturbation 
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For simplicity, it is assumed that each TDL in Figure 7 .4 has a 

single output. Since the output of the neural network identifier 

YNN(k+l) is only an estimate of the plant output yp(k+l), the plant 

output is chosen as the target function forthe gradient calculations. 

From the discussions of the gradient calculations for the two complex 

examples in Chapter 5, it is shown that the true gradient of the plant 

output w.r.t. the parameter vector w of the neural network controller 

NNc through time is obtained as 



109 

ay(k + 1) = aye( k + 1) + ( av(k) aey(k + 1) + 
aw aw aw av(k) - - -

au(k) aey(k + 1) ax(k) aey(k + 1), 
------+ J 

aw au(k) aw ax(k) 

= O + ( au(k - 1) aey(k + 1) + (7.5) 
aw au(k-1) 

au(k) aey(k + 1) ay(k -1) aey(k + 1) \ ------+ _" ___ , J 

aw au(k) aw ay(k -1) 

where all the explicit derivative terms can be obtained by basic 

backpropagation. The true gradients ay(k) and au(k - l) in Equation 
aw aw 

7 .5 are the perturbations propagated forward from the past time 

stage to the present time stage. The present true gradient au(k) in 
aw 

Equation 7 .5 can be obtained as 

au(k) = aue (k) + ( aeu(k) as(k) + aeu(k) az(k)) 
aw aw as(k) aw az( k) aw 

= aue (k) + ( aeu(k) au(k -1) + (7.6) 
aw au(k -1) a~ 

aeu(k) ay( k-1)) 

ay(k -1) aw 
where all the explicit derivative terms can also be obtained by basic 

backpropagation. This concludes the gradient calculations for the 

indirect adaptive neural network MRAC method using the FP 

dynamic learning algorithm. 

The generalized vector versions of Equations 7 .5 and 7 .6 are given 

in Equations 7.7 and 7.8. 



ay(k + 1) ay\k + 1) ay(k/ aey(k + 1) ---= + + aw aw aw ay(k) 

au(k) aey(k + 1) ax(k) T aey(k + 1) 
------ + --'-'--

aw au(k) aw al(k) 

. (\ . ~ au(~ :-:i) fy(k + 1) + 
= V "1'" f dW dU(k - 1) 

au(k) aey(k + 1) · 
------+ 

aw . au(k) 

~ ay(k - j + 1) aey( k + 1) 
f ·-·· ·· a; - ·· ay ( k - j + 1)' 

au(k) = aue(k) + a~(k)T aeu(k) + a~(k)T aeu(k) 

aw aw aw a§(k) aw az;(k) 

~ aue (k) . ~ au(k - i) aeu(k) + 
- aw .,.. f aw au(k - 1) 

I ay(k -j + 1) ctu(~) , 
j aw ay ( k - J + 1) 

Computer Simulations 
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(7.7) 

(7.8) 

The computer simulations performed for implementation of the 

indirect MRAC using the FP dynamic learning algorithm were 

categorized into the following five cases, 

( 1) First-order linear plant with linear controller 

(2) First-order linear plant with nonlinear controller 

(3) Second-order linear plant with linear controller 

( 4) Second-order linear plant with nonlinear controller 
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( 5) Second-order nonlinear plant with nonlinear con troll er 

The general learning steps in the training procedure, which apply to 

all the above cases, are, 

Step 1: The training data sets were· obtained on-line by stacking the 

data points that resulted from several runs, up to a preset total 

number. A run started with a randomly chosen initial condition and 

was given a random constant reference. It stopped when either the 

output was out of the output space, or a preset maximum number of 

data points was reached. Thus, a run is equivalent to a plant -

trajectory. 

Step 2: The true gradients of the plant output w.r.t. the network 

parameters at each time stage of a learning epoch were also 

computed when the training data was collected. 

Step 3: Unlike the on-line executed training data collected in Step 1 

and the on-line gradients calculations performed in Step 2, the 

optimization process in this step, using the Marquardt method, was 

performed off-line. The reason is, as described in Chapter 2, that 

some number of iterations have to be performed in order to find the 

appropriate value ofµ in the Marquardt optimization. Thus, instead 

of the real physical plant, the neural network plant identifier is used 

in this step. 
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Step 4: The training was stopped when either a maximum learning 

epoch number or a least mean squared error goal was reached. 

In the discussion of each computer simulation, presented first is a 

learning curve of the neural network controller that was obtained 

after the training. Then, for the linear controllers, the network 

parameters are compared to the true coefficients of the 

corresponding linear transfer functions to check if they match. To 

evaluate the trained nonlinear controllers, several tests were 

performed to compare the network controlled plant output with the 

desired output of the reference model. A parallel test method, in 

which the reference model and the controlled plant ran 

independently of each other, was used in all the evaluation tests. 

Compared to the series-parallel test method used in static learning in 

Chapter 4, the parallel test method is a higher standard evaluation. 

To ensure that the trained nonlinear neural network controller can 

be operated from anywhere in the input and output spaces, the 

initial conditions of the tests were randomly chosen from the 

corresponding input spaces. 

Simulation 1: First-order Linear Plant with Linear Controller 

The linear neural network controller in this simulation is a multi­

input, no offset, perceptron with a linear activation output. The 

transfer function of the reference model is given as 

Yct 1- o.2z-1 

-= 
r Z-0.4 

(7.9) 



where r is the reference input and Yct is the desired output. The 

transfer function of the first-order plant was chosen as 

~ = 1-o.3z-1 

u Z-0.5 
(7.10) 
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where u is the control input to the plant and YP is the plant output. 

The goal of the control is to match the plant output with the desired 

. output from the reference model. Thus, the following control input 

was obtained from Equations 7.9 and 7.10 

u(k) = y /k + 1) """0.5yP (k) + 0.3u(k -1) 

= (0.4y P(k) + r(k)- 0.2r(k -1)) 

-0.Syp(k)+ 0.3u(k-1) 
(7.11) 

= 0.3u(k -1) + r(k)- 0.2r(k-1) -0.lyp(k) 
' 

From Equation 7 .11, one can see that the perceptron has to be a 

4-input neuron. The learning curve, shown in Figure 7 .5, is obtained 

after 45 learning epochs. The final trained neuron weights exactly 

matched with the coefficients from Equation 7.11. The converging 

process of the weigh ts is recorded in Table 7 .1. 
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TABLE 7.1 The Weights Converging Process for Simulation 1 

Learning 
Epoch 

1 

11 

21 

31 

41 

45 

True 
Coefficients 

Weights 

0.6009 0.9949 0.2533 -0.1236 

0.2978 0.9999 -0.1976 -0.1002 

0.2999 1.0000 -0.1999 -0.1000 

0.2999 0.9999 -0.1999 -0.1000 

0.2999 1.0000 -0.1999 -0.1000 

0.3000 1.0000 -0.2000 -0.1000 

0.3000 1.0000 -0.2000 -0.1000 

Simulation 2: First-order Linear Plant with Nonlinear Controller 
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From empirical experience, a 4-2-1 multilayer neural network 

was chosen for the nonlinear controller in this simulation. The 

learning curve, shown in Figure 7.6, was obtained after a given 

number of maximum learning epochs was reached. Because of the 

nonlinearity of the controller, we cannot verify the trained weights 

by comparing them directly to the coefficients in Equation 7.11 as we 
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did in Simulation 1. Instead, four evaluation tests, shown in Figures 

7.7 and 7.8, were performed for the trained network parameters. In 

all of the evaluation test figures in this chapter, the dashed line 

represents the plant and the solid line represents the reference 

model. As observed from Figures 7.7 and 7.8, the tracking and the 

regulating abilities of the trained neurocontroller, shown during the 

transient and the steady states respectively, are excellent in 

matching to the reference model. 
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Figure 7 .6 The Leaming Curve from Simulation 2 
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Simulation 3: Second-order Linear Plant with Linear Controller 

The second-order reference model and the second-order plant in 

this simulation are described by Equations 7.12 and 7.13 

respectively 

(7.12) 



d [x1 l [ x2 ·i [ 0 l dt x2 = -4x1 - 4x2 + 4u 
(7.13) 

The corresponding discrete transfer functions are, respectively, 

· [ r(k) l 1· yd(k) l 
yd ( k +. 1) = ~d r ( k - 1) + !1i yd ( k - 1) 

where~= [.0102 .0092], Qd = [1.1721 -. 7408] 

and 

Y,(k + l) = !!, [ u;i~\) l + !!,[y:ci:l) l 
where ~P =[.0047 10044], hp= (1.8097 -.8187] 

(7.14) 

To find the control input u(k), we apply the same manipulation 

performed in Simulation 1 to Equation 7.14 to get 

[ r(k) l = -.9355u(k -1)+ [2.1770 1. 9698] + 
r(k -1) 

(7.15) 

[18.8634 -16.6521][ yd(k) l· 
yd(k-1) 
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A five-input, no offset perceptron with a linear activation output 

was the linear neural network controller chosen for this simulation. 

This is a similar situation to the one in Simulation 11 but the basic 

training method used in Simulation 1 would not produce successful 

training results here< Instead the author proposed the trajectory 

crossing training (TCT) method and t.he trajectory length increasing 

(TLI) method that will be discussed in Chapter 9= The learning curve 
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for this simulation is shown in Figure 7. 9. The convergence process 

of the network parameters and the increasing trajectory length 

(numbers of data points or time stages ahead in one trajectory) as 

the learning epoch went forward were both recorded in Table 7 .2. 

As one can see from Table 7.2, the fmal trained weights in Simulation 

3 exactly match the true coefficients calculated from Equation 7.15. 
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Figure 7. 9 The Leaming Curve for Simulation 3 
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TABLE 7.2 The Weights Converging Process for Simulation 3 

Data 
Epoch Points 

1 100 

11 100 

21 200 

31 400 

41 600 

51 800 

101 800 

True 
Coefficients 

Weights 

0.7045 -0.1392 0.8803 -0.6494 0.3537 

-0.8931 1.9437 1.3877 19.2375 -17.5878 

-0.9058 2.0407 1.6177 19.1188 -17.2922 

-0.9221 L1239 1.8289 18.9832 -16.9580 

-0.9307 2.1639 1.9312 18.9050 -16.7567 

-0.9344 2.1746 1.9621 18.8733 -16.6769 

-0.9355 2.1770 1.9698 18.8634 -16.6521 

-0.9355 2.1770 1.9698 18.8634 -16.6521 

Simulation 4: Second-order Linear Plant with Nonlinear Controller 

From empirical experience, a 5-4-1 multilayer neural network 

was chosen for the nonlinear controller in this simulation. The 

learning curve, as shown in Figure 7.10, has about the same final 

mean square error as in Figure 7 .6 from Simulation 2. This is due to 

the nonlinear neurocontroller that was used in both simulations. 

Another similar phenomenon shared between Figures 7.6 and 7.10 is 



122 

the presence of vibrations exhibited during the declining of the 

learning curve. The results of the trained network controller 

evaluation tests are shown in Figures 7.11 and 7.12. Aided by the 

TCT and TLI methods, the performance of the trained controller for 

the second-order plant is as good as the one trained in Simulation 2 

for a first-order plant. 
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Figure· 7 .10 The Leaming Curve for Simulation 4 
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Simulation 5: Second-order Nonlinear Plant with Nonlinear Controller 

Because this simulation contains a second-order nonlinear plant, it 

is the most difficult one to train compared to all the previous 

simulations. The swinging pendulum system described in Chapter 5 

is the choice for the second-order nonlinear plant. In the previous 

simulations, because of the linearity of the plant, all the plant 
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identifiers used were simply the plant model equations. However, 

due to the nonlinear character in the pendulum system, we will 

instead use the neural network pendulum identifier trained in 

Chapter 4. 

Following the steps of the general learning procedure described in 

the beginning of this section, a training data set, composed of 10 

trajectories with 66 data points in each trajectory, was obtained on­

line for each learning epoch. Again, by empirical experience, a 5-13-

1 multilayer recurrent neural network was chosen for the controller. 

To demonstrate the powerful training ability of the dynamic learning 

method using the Marquardt optimization technique, a comparison of 

the neural network controller responses before and after two 

learning epochs, is shown in Figure 7.13. It seems that, after only 

two learning epochs, the network controller already possesses most 

of the desired characteristics. This is illustrated in Figure 7 .14 by the 

closely matching tracking effort made before 0.5 seconds and the 

tendency towards steady state that is exhibited toward the end of 

the response session. 

The learning curve for the nonlinear controller, shown in Figure 

7.15, was obtained after the simulation reached a preset number of 

maximum learning epochs. The result of the final learning epoch and 

the first evaluation test are presented in Figure 7.16. To verify the 

generalization of the trained neural network controller over the 

entire system operating range (or the input-output space), four more 

evaluation tests were also performed. The results of these tests are 

shown in Figure 7 .1 7. It can be observed, from Figures 7 .16 and 

7 .17, that the training outcome in this simulation may not be quite as 
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accurate as the outcomes in Simulations 1 to 4. However, considering 

the fact that this is the first known successful simulation using 

dynamic learning on a second-order nonlinear plant, it is still the 

most significant and important result in this research. 
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Figure 7.13 The Comparison of the Non-trained and Trained 

Responses of the NNc ( 5-13-1) 
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Summary 

Chapters 5, 6 and this chapter represent the main focus of this 

document. The proposed theory of dynamic learning and the 

forward perturbation algorithm and the backpropagation-through­

time algorithm associated with it were described in Chapter 5. This 

chapter presented the implementation of the indirect MRAC method 
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using the forward perturbation algorithm in five extensive computer 

simulations. It begins with the derivation of the gradient calculation 

equations for the on-line operation of the indirect MRAC using neural 

networks. Then, starting with the simplest case of a linear plant and 

a linear controller, the five dynamic learning simulations are 

presented, ending with the most complex case of a nonlinear plant 

and a nonlinear controller. All the trained controllers were 

evaluated using the parallel test method, which is a more precise 

measure than the series-parallel test method used in static learning. 

The outcomes of all the five simulations were satisfactory. This 

success was due not only to the correctness of the FP algorithm, but 

also to the perfectly matched Marquardt optimization method and 

aid from the secondary training methods. 



CHAPTER VIII 

REAL-TIME EXPERIMENT AL RESULTS 

We reported the first successful MRAC dynamic learning 

computer simulation in Chapter 7. In this chapter, we will advance 

to implement the trained networks that use both static learning and 

dynamic learning on real physical systems in real-time. We start 

with a description of the real-time application -- the physical 

swinging pendulum system. Then, feedback linearization, which is 

described in Chapter 4, is used to illustrate the real-time control 

using static learning. The forward modeling of the physical 

pendulum system using static learning is also discussed. The 

forward model of the plant will be used in real-time control. Just as 

in computer simulation, we use a MRAC control scheme and dynamic 

learning to train the neurocontroller off-line. Then, we implement 

the trained controller in a real physical system to demonstrate real­

time control using dynamic learning. 

The Real Physical System Description 

The real physical swinging pendulum system has three 

components; 

( 1) The physical system, 
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(2) The VME backplane computer system, 

( 3) The work station. 

The functional diagram of this system is shown in Figure 8.1. 
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The physical system has a motor and a pendulum attached to its 

shaft. The sensor device for measuring motor shaft position is 

composed of a shaft encoder which attaches to the motor and a 

counter which resides on the interface board of the VME backplane 

computer system, as explained in the following. 

There are three boards in the VME backplane computer. The first 

one is the interface board which contains a counter, a D/ A converter 

and an address decoder. The counter decodes the signals from the 

shaft encoder. The D/ A converter converts digital signals to analog 

signals which are sent to the motor amplifier to drive the motor. The 

address decoder receives read or write commands from the real-time 

control program. It reads the motor shaft counter as motor position 

input. It writes the digitized motor voltage to the DI A converter. 

Each of the other two boards has a Motorola 68040 CPU. The first 

68040 board is the master. It has an ethernet port and a real-time 

operating system called Vx Works. The master serves as a 

communication bridge between the work station and the real-time 

software. The second 68040 board is the slave. It executes the real­

time software, which is composed of a real-time executive and a 

real-time control program, to control the pendulum system. 

Finally, the work station is an environment for development of 

real-time software, control of real-time software and graphic display 

of real-time test results. 
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Real-Time Control using Static Leaming 

We start with a review of feedback linearization, which was 

described in Chapter 4. Then, the procedure for training the neural 

network in a real-time environment is presented. The trained 

results include the learning curve and off-line tests of the trained 

network. FinallY'., the results from real-time control using the trained 

neural network in a real physical system are described. 

Feedback Linearization 

Since the dynamics of the physical pendulum system are not 

known a priore, we can only describe the plant with the following 

state variable equation 

[ X2(k) l 
~(k+l)=l(k)+At f(l(k))+(c)(u(k)) (8.1) 

where f is the unknown nonlinearity and c is the unknown constant 

of the control input. We need, not only to train a neural network NNr 

which can identify the nonlinearity f, but also to find out the value of 

the constant c. A different reference model from the one described 

in Equation 4.20 is selected. The discrete representation of the 

reference model for the real-time application is 

[ x/k) l 
~(k+ l)= l(k)+ At -64x1(k)-16x2 (k) + 64r(k) (8.2) 

Thus, to control the pendulum system in such way that it responds to 

the desired dynamics in real-time, the input will be 
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u (k) = x2 (k) + At(-64x1 (k) -16x2 (k) + 64r(k))- NNr (8_3) 
H, ( C )(At) 

Procedure for Training and Real-Time Control 

( 1) Collect the pendulum position X1 and velocity x2 in real-time by 

applying motor voltage u as described in the computer simulation in 

Chapter 4, a base voltage is established first, then the threshold 

voltage will apply to the motor when the pendulum is going out of 

bounds. 

(2) After a total of 1,000 data points were collected, we made two 

training data sets with 400 points in each (no data overlapping). The 

static learning process with the ATS method was performed. As 

shown in Figure 8.2, a 2-8-1_33 neural network was selected to 

identify the system nonlinearity, and a neuron with only one weight 

(no offset) is to be trained to find the constant of the control input. 

(3) Before we install the trained network in a real-time control 

program, we can check the network in the same way we did in the 

computer simulation in Chapter 4. We alternately set one of the two 

inputs to zero and varying the other one to get the network outputs. 

A half cycle sinusoidal wave and a straight line are expected in the 

test results. 
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Figure 8.2 The Network Configuration to Train the NNr and Control 

Input Constant C 

(4) If the test results from the last step are satisfactory, we can then 

implement the trained network in real-time software. The control 

equation is based on Equation 8.3. In order to examine the 

performance, the desired output from the reference model is also 

generated in real-time. 

(5) To verify the generality of the trained network NNr and control 

input constant c, we perform two pendulum moving-up motions and 

two moving-down motions. 

The Training and Real-Time Control Results 

The learning curve of the NNr and constant c is shown in Figure 

8.3. After 100 epochs, the curve has already reached a minimum. In 

Figure 8.4, we compared the gravity nonlinearity and motor shaft 

friction of the physical pendulum system to the expected sinusoidal 
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wave and straight line respectively. In the figure, the expected 

results and the trained network outputs are represented by solid 

lines and dashed lines respectively. We observed in Figure 8.4 that 

our trained network is quite accurate. 
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Figure 8.3 The Learning Curve of Network NNr 
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Figure 8.4 The tests of the Nonlinearity and Friction of the Physical 

Pendulum System 

As described in the procedure, we then implement the network 

NNr and control input constant c in the control equation (Equation 

8.3) of the real-time software. We start the pendulum initially at a 

straight down position (e = QO) and set the final reference positions 
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at horizontal (e = 900) and straight up (e = 1800). The results are 

shown in Figure 8.5. Then, two more moving-down motions (from e 

= 1800 toe== 900 and e = OO) were performed as shown in Figure 8.6. 

In both figures, the controlled plant outputs are compared to the 

desired outputs from the reference model. 
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From Figures 8.5 and 8.6, we observed that the regulating ability 

of the neurocontroller is less accurate than the tracking ability. In 

general, we conclude that the neural network controller using the 

feedback linearization technique on the physical pendulum system in 

real-time is successful. 
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Real Physical System Identification 

The main reason to perform forward modeling ( system 

identification) of the physical pendulum system is because of its use 

in training the MRAC controller. We will describe the use of MRAC in 

real-time control in the next section. In this section, we start by 

reviewing the plant modeling process and the methods used to 

evaluate the trained neural network. Then, the procedures for 

training and real-time evaluation of the forward model of the real 

physical system are described. Finally, comparisons of the real 

physical plant and the neural network model are given. 

Forward Modeling and Evaluation Methods 

As shown in Figure 8. 7, a feedforward neural network is selected 

for identifying the physical pendulum system. The inputs of the 

network consist of the current and previous motor control voltages 

u(k) and u(k-1) and the current and previous pendulum positions 

y(k) and y(k-1 ). The output of the network is the next pendulum 

position y(k+ 1 ). 

Both the series-parallel and parallel methods are used in 

evaluating the plant model in real-time. The series-parallel test 

method, as shown in Figure 8.8, has delayed actual plant outputs as 

network inputs. In contrast, as shown in Figure 8.9, the network 

output feeds back to its input through a TDL for the parallel test 

method. 
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It is obvious that the parallel test method is more difficult. If the 

plant model does not exactly match the real plant, then small errors 

in each time stage will accumulate to become a large error in the end. 

Contrary to this, in the series-parallel test, the true pendulum 

position always feeds into the plant model at each time stage. Thus 

there is no accumulation of error. That is why we usually have 

almost perfect series-parallel test results but only have approximate 

parallel test results. 

u(k) PLANT Yt(k+l) 

-- -p 

L.TDL --- NEURAL Ynn (k+l) 

- NETWORK --- TDL NNp ----
Figure 8.9 The Parallel Test Method 
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Procedure for Training and Real-Time Evaluation 

( 1) The same data collected for training in the feedback linearization 

can be used to train the neural network model. Only the pendulum 

position and the motor voltage are used in the training. 

(2) A 4-5-1_31 network is selected for the plant model. Two data 

sets are produced for training the network with the ATS method. 

(3) After the training, we implement the network model in the real­

time program. Then we performed series-parallel and parallel tests 

to evaluate the network model. 

The Training and Real-Time Evaluation Results 

The learning curve of the plant model NNp is shown in Figure 

8.10. After 100 epochs, the curve has already reached a minimum. 

As described in the procedure, we then implement the network NNP 

in the real-time software running along with the real physical 

system. 



5,-t 

~ 
i:i::i 
'C 

I 
ct 
ro 

la 
G) 

~ 

100 

10-1 

10-2 

10-3 

10-4 

Forward Modeling Learning Curve 

101 

Epochs 

Figure 8.10 The Learning Curve of the Network NNP 

146 

102 

First, we performed the series-parallel tests. The pendulum is 

initially set to a straight down position (e = OO), then constant 

voltages of 3.5 and 3.0 volts are applied to the motor to provide two 

pendulum moving-up motions. The final (steady state) pendulum 

positions, as shown in Figure 8.11, were about 1150 and 600 

respectively. Two more pendulum moving-down motions from the 

straight up initial position (e = 1800), as shown in Figure 8.12, were 

performed. The constant voltages applied to the motor were -2.0 

and -1.5 volts. One downward motion stopped at -200 and the other 
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one diverged. In both figures, the real pendulum position (dashed 

line) is compared to the plant model output (solid line). We observed 

in both figures, as long as the pendulum motion is within the training 

range (from oO to 1800), the network model acted perfectly as the 

real plant. As shown in the second graph of Figure 8.12, it is 

surprising that the network model is so accurate, even when the 

pendulum swings far away from the training range. 

Then the more difficult parallel tests were performed. We used 

the same set-up and procedure as for the series-parallel tests. The 

results of the parallel tests are shown in Figures 8.13 and 8.14. 

When compared with Figures 8.11 and 8.12, the parallel test results 

are certainly not as accurate as the series-parallel test results. 

Particularly in the parallel tests, the steady state performance is 

much less accurate than the tracking performance of the network 

model. We will discuss how the results of the series-parallel and 

parallel tests of the network model may affect the training and the 

real-time control of MRAC using dynamic learning in the next section. 
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Figure 8.12 The Network Model Moving-Down Series-Parallel Tests 
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Real-Time Control using Dynamic Learning 

We start with a review of MRAC which is described in Chapter 7. 

Then, the procedure for training the neural network controller for 

the real physical system is presented. The trained results include 

the learning curve and off-line tests of the trained network. Finally, 

the results from real-time control using the trained neural network 

controller in a real physical system are described. 

MRAC and Plant Model 

In the original indirect MRAC, as shown in Figure 8.15, the plant 

supplies the actual plant output to the plant model and the plant 

model serves as a means to compute the derivatives of the objection 

function w.r.t. the trained network parameters. However, 

constrained by the real-time operating environment, we will train 

the controller off-line. In this situation, a modified indirect MRAC, as 

shown in Figure 8.16, is used to train the neural network controller 

for a real physical system. 

In order to perform off-line training, the plant model also has to 

play the role of the real plant. If the plant model only functions as a 

means for computing the derivative, the series-parallel test, 

described in the last section, is an accurate enough evaluation 

method. But in order to act as a real plant, the plant model has to 

pass the parallel test completely. That is why we commented at the 

end of the last section that the unsatisfactory outcome of the parallel 
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test of the plant model may affect the training in this section. It 

suggests that the plant model trained in the last section is not 

accurate enough to replace the real plant in MRAC dynamic learning. 

We trained several more plant models, started with different initial 

network parameters, but the results·of parallel tests of these plant 

models were about the same as the initial one we had. We have no 

alternative, but to go ahead to train the MRAC controller with the 

plant model from the last section. 
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Figure 8.15 Indirect MRAC using Neural Network 
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Procedure for Training and Real-Time Control 

( 1) Select a reference model and a neural network for the controller 

in MRAC. The plant model is from the last section. 

(2) Use the same reference input r as in the computer simulation in 

Chapter 7. Train the network controller using dynamic learning and 

the TCT method. 
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(3) Evaluate the trained controller off-line first. If a satisfactory 

result is obtained, then we will implement the controller in real-time 

control program. 

(4). To evaluate the performance of the off-line trained controller in 

real-time, we will execute several pendulum up and down motions. 

We then compare the real plant output to the desired output from 

the reference model. 

The Training and Real-Time Control Results 

In the last section, from the parallel tests of the pendulum model, 

we observed that the pendulum model is almost identical to the real 

pendulum system in the moving-down tests. Contrary to this, the 

pendulum model did not act the same as the real pendulum system 

in the moving-up tests. As we explained previously, in order to 

perform off-line MRAC training, the plant model has to act exactly 

like the real plant. Therefore, we came to the conclusion that the 

controller should be trained by only the moving-down trajectories. 

We trained a network pendulum model with 0.05 seconds 

sampling time. Then, we selected a 5-13-1_92 network to be trained 

as the controller NNc in MRAC. The reference model is the same as 

described in Equation 8.2. After training, we implemented the 

trained controller in the real-time control program and performed 

three moving-down tests as shown in Figures 8.17 to 8.19. We 

observed that the tracking performance of the MRAC neurocontroller 

is not as good as the regulating performance for all three tests. 
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There are offsets when comparing the controlled plant trajectories 

to the desired trajectories from the reference model, but in general, 

the off-line trained MRAC controller performs well. 

Since the neurocontroller was trained by only the moving-down 

trajectories, it seems that we should not expect the controller to 

accurately perform any moving-up movements. It is amazing that, 

after three moving-up tests (as shown in Figures 8.20 to 22) were 

performed , we observed that the controller performed as well as in 

the moving-down tests. This unexpected finding suggests that the 

neural networks may have been able to generalize from the training 

data. It is a good subject to be studied in the future. 
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CHAPTER IX 

SECONDARY TRAINING METHODS 

In Chapters 4, S and 6, we described the underlying algorithms 

for the static and dynamic learning methods. They are the 

Marquardt optimization technique using basic backpropagation and 

the Marquardt optimization technique using FP/BTT algorithms. We 

call these the primary training methods. Unfortunately, based from 

our empirical experience, these primary training methods did not 

always guarantee a satisfactory training result. Therefore, so-called 

"secondary" training methods were proposed to aid the primary 

methods in training the neural networks. 

In this chapter, two secondary training methods -- the ATS 

method for static learning and the TCT /TLI method for dynamic 

learning -- will be presented. Computer simulations will be 

performed for the ATS method. Using the same initial conditions, the 

simulations will compare training results using the ATS method to 

training results using a common general approach. Since there is no 

known general approach in dynamic learning, only the description of 

the TCT /TLI method is given in this chapter. Computer simulations 

and a real-time application using the TCT /TLl method can be 

reviewed in Chapters 7 and 8 respectively. 
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The ATS Method 

Two training data sets are required for the alternating training 

data set (ATS) method. They can be obtained by the same data 

collection process. However, each has a different set of initial 

conditions. If only one data set is available then it can be broken 

into two data sets for the training. We then alternate the 

presentation of these two data sets to the network at each learning 

epoch. The adjusted parameters of the network from one data set in 

one learning epoch, therefore, become the starting parameters for 

the other data set at the next learning epoch. 

The ATS Method vs the General Approach 

The A TS method is first compared to a general approach in static 

learning. Then, we will test whether the ATS method can prevent 

the problem of data overfitting or overtraining. Data overfitting or 

overtraining is the tendency of trained networks to learn specific 

details in the training data instead of the general properties of the 

underlying function. 

To avoid the overtraining problem, the commonly used general 

approach also requires two data sets. In the general approach single 

set is used for training and the other set for evaluating the trained 

network weights after each learning epoch. The evaluation set 

monitors the learning process, which only utilizes the training data 

set. We will find from our later simulations that there are two 

typical patterns for the evaluation curve ( the plot of the mean 
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squared error versus epoch number for the evaluation data set) 

when the learning curve is falling. The evaluation curve either 

levers off or arrives at a minimum point begins to increase. This 

minimum point is where overtraining starts and the learning process 

should be stopped. 

Computer Simulation I 

We will use the swinging pendulum system identification problem 

described in Chapter 5 for the computer simulations of the ATS 

method and the general approach. A 4-5-1_3 l neural network is 

selected and trained as the plant identifier. We will first try to 

establish a general pattern for the learning curves exhibited by the 

ATS method and the general approach. Then, in order to compare 

the performance of the two approaches, the parallel test method is 

used to evaluate the trained results. 

In order to observe any general patterns, three different initial 

conditions (in terms of the initial network weight set) are given. The 

resulting learning curves after 1000 epochs for each of the three 

cases are shown in Figures 9.1 through 9.3. 
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From these three figures, we observed that the ATS learning 

curve may have some unusual "spikes" (particularly in Case 2). 

However, in each of the cases the learning curve is still going down at 

end of training. For the general approach, the evaluation curve 

(dashed line) is pulling away from the learning curve (solid line) in 

first two cases and in Case 3 the evaluation curve reaches a 

minimum point and then starts to·climb. These observations indicate 

that the problem of overtraining exists in the general approach. To 

solidify these observations, we need to test all of the trained results 

from both the approaches by the higher standard parallel test 

method. 

The results of the parallel tests performed on the trained results 

from both the ATS method and the general approach are shown in 

Figures 9.4 through 9.6. The test results follow the order of 

presentation of the cases in Figures 9.1 to 9.3 respectively. For each 

of the three cases, two initial conditions (in terms of position and 

constant motor voltage) are given and tested. The solid line stands 

for the output of the reference model (the desired plant output). The 

dashed and dotted lines represent the outputs of the neural network 

models of the pendulum trained by the ATS method and the general 

approach respectively. The solid line and the dashed line are almost 

indistinguishable in all of the tests. This means that the ATS method 

has good trained results for all three cases. In contrast to the general 

approach, the dotted and solid lines are defmitely distinguishable in 

the first test of Case 1. In addition, the tests performed in Case 2 are 

complete failures. From the above simulations and tests, we can 



conclude that the ATS method not only never fails, but it also is 

always more accurate than the general approach. 
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The ATS Method vs Single Set Training 

Since all of the available training data are utilized in the ATS 

method, it is not fair to compare it to the general approach in which 

only part (the training data set) of the available data are used. So we 

will now use all of the available data as one complete data set to 

train the networks and compare these results to the ATS method. It 

is obvious that using a single complete data set training is not 

practical because we then have no evaluation data set to detect the 

presence of overtraining. However, we want to examine whether the 

ATS method not only can prevent overtraining, but also can obtain a 

training outcome as good as the outcome obtained from single set 

training. To do this, we will compare the ATS method to the 

impractical single set training method. In order to detect 

overtraining in single set training, a "third" data set is generated for 

use in evaluating the training results. 

Computer Simulation II 

To compare the ATS method to the single set training method, the 

same computer simulation set up as in Simulation I is used. We will 

first try to establish the general pattern of the learning curves 

exhibited by these two different approaches. Trainings for three 

different initial network weight sets were performed for both 

methods. The results for the three cases are shown in Figures 9.7 to 

9.9 respectively.· In these figures, the solid and dashed lines are 

stand for the learning and evaluation curves respectively. 
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Next, the parallel tests were performed for both approaches in 

each case. The test results all look alike for all three cases with one 

example for Case 1 shown in Figure 9.10. In that figure, the desired 

output (solid line), the ATS output (dashed line) and the single set 

training output (dotted line) all become one indistinguishable line. 

This means that both the ATS method and single set training method 

generate satisfactory training results at the end of 1000 epochs. This 

also answers the question that was raised at the beginning of this 

section -- the ATS method is as accurate as the single set training 

method, and eliminates overfitting. 

Comments 

From the simulations for this pendulum identification problem, 

we conclude that the ATS method has no overtraining problem and 

uses all available data for training. The training curves of the 

general approach and the single set training methods both tend to 

overtrain as the learning process goes forward. This problem is 

solved by the compliment training between two alternating data sets 

that occurs in the ATS method. However, further research is needed. 

For example, such work might try increasing the number of the 

alternating data sets (more than two) and testing the applicability of 

this ATS method to other static learning problems. 
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The TCT /TLI Method 

The TCT (trajectory cross training)/TLI (trajectory length 

increasing) method is used as a secondary training method in 

dynamic learning. We will explain the reason that we connect the 

TCT and the TLI methods as a single method after we first describe 

the TCT method. 

The idea of the TCT method is derived from the ATS method for 

static learning. The basic idea behind both methods is 

complimentary training based on two (or more) training data sets. 

In terms of system trajectory, each training data set contains two 

characters -- the underlying function and the specific details of the 

training data set itself. The specific details of each trajectory may 

vary, but they all possess a common characteristic -- the underlying 

function. In using the ATS method for static learning, we alternate 

the training data set one at a time. In the TCT /TLI method, we stack 

up a number of trajectories to create one big data set for training. By 

doing so, we expect that the common character, the underlying 

function, will be more dominate in the learning process than the 

distinctive character of each trajectory. We expect that the wanted 

common character, instead of the unwanted distinctive 

characteristics, of each trajectory will be extracted by the learning 

process. 

One of the most common problems in dynamic learning is the 

huge error between the desired output and the neurocontrolled plant 

output at the beginning of the learning process. This is caused by the 
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random selection of the initial weights of the neurocontroller. Thus 

the output of the controller, which is the control input of the plant, is 

unpredictable. The range of the control input can be unreasonably 

high or low from the controller. Therefore the behavior of the 

controlled plant is unpredictable too. In most of experiments we 

conducted, the output error was always big at the beginning of the 

learning process. To deal with this problem, we came up with the 

TLI method. The idea of the TLI method is to keep the data points 

(the length of the system trajectory) as low as possible at the 

beginning stage so that the sum of the squared error is also kept low. 

At this stage, the network parameters can be adjusted based on the 

small amount of training data, then the network output is moving 

down toward a reasonable range. After the initial stage, we can 

increase the number of data points stage by stage as the network 

parameters converge toward the solution. So, strictly speaking, the 

TLI method is more of an idea than a method. Besides, in most cases 

the TLI method is a necessary approach in dynamic learning. 

Therefore, we have connected the TCT and the TLI methods into a 

single method. 

We have already demonstrated the implementation of the 

TCT /TU method in Simulation 3 of Chapter 7. In the following 

computer simulations, we will emphasis just the TCT method. 

Computer Simulation III 

Using the TCT method in dynamic learning, we first designed a 

number of runs ( each run generates a single trajectory) in each 
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learning epoch. The number of the runs is determined by trial-and­

error in different applications. Then, we stacked these trajectories 

up to use as a single set for training. The neural network training 

problem used in this subsection is the same as Simulation 4 of 

Chapter 7. In this problem a neural network controller ( 4-5-1_3 l) is 

trained to control a second-order linear plant (a linearized pendulum 

system) while responding to a given reference model. 

In most linear plant applications, no over-range error problem 

happens at the beginning of training. Therefore, the TLI method is 

not needed. In this situation, we are only concerned with the 

selection of data points for one training data set. Two cases have 

been studied for the effect of varying the number of data points in 

the training set. The total number of training data points in one 

learning epoch is 20 and 100, for Cases 1 and 2 respectively. For 

both cases, we compared the one trajectory training method to the 

TCT method (two trajectories per learning epoch). The two 

trajectories in the TCT method are divided from the trajectory used 

in the one trajectory training method. In Case 1, we trained the 

controller for 2,000 epochs. The resulting learning curves are shown 

in Figure 9.11 and an enlargement of Epochs 1,901 to 2,000 is shown 

in Figure 9.12. From the enlargement picture, we observe that the 

learning curve for the one trajectory training method has larger 

amplitude oscillations as compared to the amplitude of the 

oscillations for the TCT learning curve. This result suggests that the 

TCT method generates a more accurate trained controller than the 

one trajectory training method. 
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To back up this observation, we use the parallel test method to 

evaluate the trained controllers from both of the training methods. 
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Figure 9.11 Learning Curves of One Trajectory Training vs the TCT 

Method for Case 1 
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The parallel test results are shown in Figure 9.13. In the figures, the 

solid line stands for the desired output and the dashed line 

represents the controlled plant output. We found that the test result 

from the TCT method is more accurate than the test result from the 

one trajectory training method. This is consistent with our 

observation on the amplitude of the oscillations from both of the 

learning curves. 

In Case 2, the total number of data points is extended to 100. 

After 2,000 epochs learning, as shown in Figures 9.14 (the learning 

curves) and 9.15 (the enlargements), we found that the one 

trajectory training method has smaller amplitude oscillations than 

the TCT method. In addition, the learning curve of the one trajectory 

training method reaches a lower mean squared error than the TCT 

learning curve at end of 2,000 epochs. Given randomly chosen initial 

conditions, the parallel tests of the trained controllers from both the 

training methods were performed and the results are shown in 

Figure 9.16. The test results confirmed the observations made in the 

learning curves that the one trajectory training method is more 

accurate than the TCT method in this case. 
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Comments 

From the above simulations, it seems that the TCT method in 

dynamic learning only works well if the total number of training 

data points is small (20 points in our Case 1). Thus, this method is 

suited to the situation where one cannot collect a larger amount of 

training data. An example of this situation is Simulation 5 in Chapter 

7. Since the plant in that simulation problem is a nonlinear second­

order pendulum system and the initial weights that were assigned to 

the network controller were random, the first epoch of the learning 

process is composed of out of boundary (0 and 31:) runs. Constrained 

by the boundaries, each of those runs are only a few data points in 

length. 



CHAPTERX 

SUMMARY AND CONCLUSIONS 

In this chapter, we will summarize the original ideas proposed by 

this research that appear in the discussions of the static and dynamic 

learning methods. We will also discuss the important results found 

throughout this document. 

The original ideas proposed in this document can be classified into 

two types. The first type concerns the dynamic learning derivative 

method. It is discovered that the proposed true derivative equations 

for both the FP and BTT dynamic learning algorithms can be derived 

with backpropagation and the chain rule. Only the choice of the term 

for taking the explicit derivative in the chain rule distinguishes the 

two dynamic learning algorithms.· More important, with the 

proposed derivative methods, the analysis and implementation of 

complex structural applications ( such as the indirect MRAC 

architecture) can be easily achieved compared to other known 

approaches (like the Werbos BTT method and the Narendra dynamic 

backpropagation method). 

The second original contribution relates to the secondary training 

methods used in supervised learning. In this document, the 

underlying algorithms for the static and dynamic learning methods 

are the Marquardt optimization technique using basic 
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backpropagation and the Marquardt optimization technique using 

FP /BTT algorithms. We call them the primary training methods. 

Unfortunately, from our empirical experience, these primary training 

methods do not always guarantee a satisfactory training result. 

Therefore, so-called "secondary" training methods were proposed to 

aid the primary methods in training the neural networks. We have 

presented and implemented a static secondary learning method -­

the ATS (Alternating Training data Set) method and one combined 

dynamic secondary learning method -- the TCT (Trajectory Cross 

Training) /TU (Trajectory Length Increasing) method. Due to these 

proposed secondary training methods, all the computer simulations 

performed in Chapters 4 and 6 achieved satisfactory results. In 

Chapter 9, we further investigated the proposed secondary methods. 

We concluded that the ATS method does have better performance 

than the commonly used general approach. The TCT /TU method 

does aid the primary method in achieving convergence. 

In Chapter 2 several computer simulations were executed to 

investigate the effects of varying the number of neurons and the 

number of layers in the network when performing the function 

approximation task. The results suggested that a single hidden layer 

network is sufficient for nonlinear function approximation. The fact · 

that all the neural networks, either feedforward or recurrent, that 

were successfully trained throughout this document have only a 

single hidden layer gives further support to this assertion. 

An unexpected success, discussed in Chapter 4, came in modeling 

the inverse dynamics of the pendulum system. The impressive 

generalization ability of the trained direct inverse neurocontroller 
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was validated during our evaluation. The controlled plant closely 

followed a reference model, which had never been included in the 

learning process. This event has revealed the potential ability of the 

direct inverse method in neurocontrol. 

To the author's knowledge no researcher has reported successful 

implementation of the dynamic learning algorithm on the model 

reference adaptive controller. The fact that we did this makes the 

computer simulations performed in Chapter 6 very significant. They 

are the most important result of this research. In our analysis of this 

success, two factors contributed to this success. The first is the aid of 

the -secondary training method, TCT /TLI, to the primary training 

method. The second is the Marquardt optimization method, whose 

fast convergence enables us to shorten the network training time and 

thus cut down the·timeconsumed by the trial-and-error process. 

This speed is significant when compared to other optimization 

techniques such as were described in Chapter 3. 

The final important result is described in Chapter 8. From the 

successes in the computer simulations, we advanced to implement 

the trained networks that use both static learning and dynamic 

learning on real physical systems in real-time. We succeeded in 

controlling the physical pendulum system 'in real-time using 

feedback linearization neurocontroller. We also identified the 

physical system using neural network modeling. Constrained by the 

real-time operating environment, we can only train the MRAC 

controller off-line in this research. Since the plant model we trained 

only approximates to the real plant in the pendulum moving-down 

movements, we thus train the MRAC neurocontroller with only the 
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moving-down trajectories. The most important result in this 

research is that we trained an MRAC controller which can adequately 

control the real physical pendulum system in real-time. Although 

the off-line trained controller may be promising, however, the better 

way to train the MRAC controller should be on-line with the real . 

plant. Constrained by the time frame of this research, we can only 

attempt to do this in the future. 
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