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CHAPTER 1

INTRODUCTION

The tool used in full waveform acoustic or sonic logging 1s a long
narrow cylindrical object, with cylindrically symmetric source (tran-
sducer) near the top of the tool, and with 2 or more evenly spaced
receivers offset some distance from the source. The receivers are also
cylindrically symmetric electro-acoustic transducers. As this tool 1s
pulled up a borehole, the source periodically emits an acoustic pulse,
and the borehole response at each of the receivers 1s sampled and re-
corded,

As the acoustic pulse propagates from the source to the receivers,
1t 1s attenuated. This means the wave decays as 1t travels through the
subsurface, but 1n such a manner that the higher frequencies decay more
rapidly than the lower frequencies. Attenuation of acoustic energy 1in
the earth 1s known to occur over a broad range of frequencies, from
earthquake frequencies (about 1 Hz) through the sonic logging range (10-
25 kHz) on up through the ultrasonic (MHz) range. The traveling acous-
tic wave also decays due to other factors, including geometrical spread-
ing losses, scattering and reflections. These other loss factors are
considered to be separate from true 1intrinsic attenuation. However, 1t

may not prove to be possible to measure these losses separately from

intrinsic attenuation,



The most popular attenuation model uses expanential amplitude decay
where the exponent 1s linear 1n frequency. The constant coefficient 1n
the exponent can be written 1n terms of Q'l, where Q 1s the "quality
factor", commonly used to describe any oscillating system. For a gen-

eral oscillating system

0= (1)

where E 1s the peak energy stored in the oscillator and AE 1s the energy
loss per oscillation, If the oscillator 1s "perfect" (no energy loss),
then AE 1s zero and Q 1s Infinite. Alternatively, the more lossy the
medium the lower the quality factor 1s.

For a propagating acoustic wave 1n an elastic medium, there are
actually two quality factors describing two losses. The directly meas-
ureable attenuation 1s the loss per wavelength of propagation (spatial
attenuation). This 1s distinct from the loss per stationary oscillation
(temporal attenuation) which can't be measured directly from a trav-
elling wave. Indeed, Knopoff (1964) has established the following

relationship
u Qtemp = ¢ Q spatial (2)

where u = group velocity, ¢ = phase velocity, Qtemp = temporal Q, and
Qspat1a1 = spatial Q. If the medium 1s dispersive, that 1s 1f the group
velocity and phase velocities differ, then the two Q values should also
differ. However, according to Willis (1983), Qtemp’ sometimes referred
to as intrinsic Q, 1s approximately equivalent to Q spatial (measured
with wave propagation techniques) when attenuation losses are fairly

small (Q > 10). Fortunatety, estimates of Q for rock are nearly always



greater than 10. Typical values of Q are 1in the range 50 to 200.
Hami1ton (1972) concluded that dispersion for the P ., 1S not sig-
nificant 1n marine sediments, so Qtemp and Qspat1a1 are essentially the
same, Hence this thesis shall assume no dispersion.

Many different types of waves propagate down the borehole cor-
responding to different modes of propagation. The one of 1interest here
1s the P-wave (pressure or compressional wave). This wave moves from
the source to the receiver through the fluid as a compressional wave,
then 1s refracted to a P-wave 1n the rock and travels down through thr
rock near the borehole, Some of this energy 1s refracted back into the
fluid as another P-wave. Part of the compressional wave energy 1in the
fluid 1s converted to a refracted shear wave at the borehole wall. This
wave travels down the borehole at the shear velocity, and 1s also con-
verted back 1into the fluid as a P-wave. These two modes, the com-
pressional and shear (also known as "body-waves") are both considered
non-dispersive,

There 1s another set of acoustic modes 1n the borehole. Waves of
this type are known as "tube-waves" and 1include the Stonely and pseudo-
Rayleigh waves. While these tube-waves are very dispersive, meaning
that phase velocity varies with frequency, their velocities asymp-
totically approach the fluid velocity as frequency 1increases. These
waves greatly complicate attempts to analyze shear wave behavior since
the fluid compressional velocity and rock shear velocity are about the
same. In fact, 1f the shear wave velocity 1s less than the fluid veloc-
1ty, then the refracted shear wave can't exist. But 1f the shear veloc-
1ty 1s slightly higher than the fluid velocity, the shear arrival will

roughly coincide with the arrival of the larger amplitude tube-waves,



and the shear wave arrival 1s masked., The Q values for tube waves are a
function of the Q values of the P-wave, shear wave, and fluid P-wave.
So, calculating useful Q values (P-wave or shear wave) 1s difficult
(see, for examp1e Cheng, Toksoz, Willis, 1981),

Therefore, since the P-wave can usually be extracted from the total
received waveform by windowing, only the P-wave w11l be considered. For
the remainder of this thesis, 1t will be assumed that the "data" repre-
sents a windowed version of the P-wave only. In this research, a
Hamming window 1s used and 1t gives good results. However, the
attenuation estimates are not very sensitive to window choice.

Given a monochromatic plane-wave (frequency w) traveling a distance
Z 1n a constant Q medium, the amplitude coefficient of the wave function

1S
A(Z) = Ay exp (~wZ/2Qc) (3)

where 1 = angular frequency (radians/second), A, = 1n1t1al amplitude (at
Z = 0), ¢ = phase velocity, and Z = distance travelled. Assuming Q to
be frequency 1ndependent, then by Equation (3), for every wavelength
travelled, the wave amplitude decreases by the same fraction. This
means that 1f one observes a plane wave with a broad spectrum prop-
agating in the Z direction, then at any one particular point Z,, the
attenuation undergone by the wave 1s an exponential function of fre-
quency. The following section presents a discussion on attenuation by

the earth and reasons for investigating this process.



1.1 Attenuation by the Earth

Many researchers agree that Q 1s not dependent on frequency for dry
rocks, and there 1s a large body of laboratory data to support this.
This 1ncludes Nur and Winkler (1980), and Toksoz et al (1979). How-
ever, most of these attenuation measurements have been conducted 1n the
ultrasonic range (0.1 to 1.0 MHz), and 1t 1s not obvious that these
results can be extrapolated down to sonic log frequencies (10 to 23 kHz)
or further to seismic frequncies (10 to 100 Hz).

There has been a great deal of effort spent to study the effects of
fluid and gas saturation, pressure, and wave amplitude on attenuation.
A1l of the variables can have a significant effect on Q, and there 1s
some evidence to 1ndicate that Q 1s much more dependent upon frequency
when the rock 1s partially or totally fluid saturated. The conclusions
reached by Nur and Winkler (1980), as well by Tittman, Nadler, Clark, et
al (1981) show a strong dependence of Q both on frequency and pressure
for a water-saturated Wingate sandstone. The conclusions to be drawn
from the available laboratory data seems to be that there 1s evidence
both for and against Q being frequency dependent.

Field measurements of the variation of Q with frequency are pri-
marily limited to seismic frequencies and there have been fewer field
experiments than high frequency lab experiments. The classic exper-
iments for seismic frequencies 1nclude those by McDonal et al (1958),
Tullos and Reid (1969), and Hamilton (1972). These experiments were
primarily vertical seismic profile (VSP) experiments consisting of
recording the arrivals, due to seismic energy sources at the surface, at
various geophones located at different depths in a borehole. They all

concluded that Q 1s approximately independent of frequency. However,



differences do exist 1n attenuation coefficients for different sub-
surface layers, as subsurface layers consist of different rock types, at
different pressures, and at different degrees of fluid saturation.

The mechanisms of attenuation are not well understood and the
models used to explain attenuation tend to be physically complex. These
mechanisms are summarized by Johnston and Toksoz (1981). These 1include
frictional dissipation due to movement of grain boundaries (Walsh,
1966), fluid flow (Walsh, 1968), relative motion of frame due to fluid
inclusions (Stoll and Bryan, (1970), "squirting" (Mavko and Nur, 1975),
gas pockets (White, 1975), and geometrical effects (Kuster and Toksoz,
1974). From the point of view of acoustic wave propagation along a
borehole, 1t 1s likely that a combination of many of the above mech-
anisms contribute to attenuation.

The earth can affect a seismic wave 1n an attenuative manner with-
out true 1ntrinsic attenuation., That 1s, the affect of 1intrabed mul-
tiples can appear to be that of a frequency filter with the same general
shape one would expect from a constant Q attenuation model. The works
of Schoenberger and Levin (1974), and 0'Doherty and Ansty (1971) lead to
the conclusion that the "tuning" effect of 1intrabed multiples may ac-
count for 1/3 to 1/2 of the attention 1n seismic data, and that the
frequency filtering done by 1intrabed multiples can be modeled as an
attenuative phenomenon., Scattering and geometrical spreading may also
appear to be attenuative, and the borehole geometry may lead to fre-
quency dependent tuning effects. Therefore, 1t may prove impossible to
completely separate 1ntrinsic attenuation from other "attenuative"
phenomenon, and so attenuation estimates from sonic log data may repre-

sent an effective Q, rather than a true intrinsic Q.



However, many 1nvestigators 1ncluding Willi1s (1983) and Anderson
and Castagna (1984) concluded that geometrical spreading can be assumed
to be frequency 1ndependent. In fact, Anderson and Castagna (1984)
state that the theoretical geometrical spreading formula for a point

source (on the borehole axis) 1s

— L (4)
Z log~(2)

where Z 1s the ratio of source-receiver offset to borehole radius. They
also, state that for small offsets, the spreading formula above approx-
1mately reduces to 1/Z and that their data confirm that this formula 1s
valid for both the Schlumberger long and short tools. Willis (1983)
also states that geometrical spreading loss formula for the P-wave 1s
Zl'l, where Zl 1s the source receiver offset. Therefore, 1n this
thes1s, geometrical spreading Tlosses are assumed to be frequency
1ndependent, and the amplitude decays 1inversely proportional to offset
due to spreading losses.

Attenuation estimates from sonic logs should be useful because such
estimates would provide another physical parameter describing the sub-
surface which 1s 1ndependent of other parameters, such as velocity and
density. Since the variation of Q with frequency seems to be related to
the amount of saturation and pressure on the sample, an accurate esti-
mate of Q as a function of frequency could provide some knowledge of
water saturation (or porosity) and pressure. Knowlkdge of Q obtained
from sonic logs could be used to 1mprove seismic data and also to 1m-
prove the correlation between seismic data and synthetic seismograms

calculated from well Tlogs.



Synthetic seismograms from well logs frequently do not match seis-
mic data very well, Many factors contribute to this problem, one of
which 1s that the reflected wavefield represented by the seismic section
has undergone a significant amount of attenuation. But the synthetic
seismogram calculated from well log data 1s based on velocity, density,
and source estimates with no attenuation taken into account. The cor-
relation could wmprove significantly when an attenuation filter based on
the estimated Q values 1s applied to the synthetic seismogram.

Hale (1982) and Bickel (1982) demonstrated that 1t 1s possible to
design 1inverse-Q filters for seismic data. However, the design of such
filters require some knowledge of the variation of Q with depth, and
this information 1s not generally available. Hence, Q estimates from
sonic logs could provide information useful for the processing of seis-
mic data and increasing the resolution of seismic data. Finally, 1t 1s
possible that a technique developed for estimating attenuation from
sonic logs could form the basis for a method of estimating the amount of

attenuation 1n seismic or VSP data directly from the data 1tself.
1.2 Attenuation Estimation

Attenuation measurements of acoustic waves 1in the earth have been
of interest to scientists for some time., Most of the early efforts were
ammed at estimating attenuation i1n the frequency range generally used 1n
surface seismic esploration (10-100 Hz). When higher frequencies were
used, no special effort was made to estimate attenuation in the acoustic
well log frequency range (10-30 kHz). The classic experiment 1s that by
McDonal et al (1958) while similar experiments have been done by Tullos

and Reid (1969), and Spencer et al (1982). These experiments were of



the vertical seismic profile type. Experiments to estimate the earth's
acoustic attenuation also include those by Taylor and Toksoz (1982) to
estimate Q from earthquake data, and by Jacobson et al (1981) to esti-
mate Q from offshore ocean bottom refraction data. Hale (1982) dis-
cussed estimating and removing attenuation effects from surface seismic
data. Kuc and Schwartz (1979) used an 1interesting method to estimate
the attenuation coefficient for the liver from ultrasonic data.

With the 1introduction of sonic logging tools capable of recording
the entire received waveform, rather than just estimating P-wave veloc-
1ty, attempts were made to make use of the extra data available, If
properly 1nterpreted, 1t 1s possible to acquire knowledge about the
compressional and shear formation velocity, as well as the attenuation
coefficient. The waveform shapes themselves may hold even more infor-
mation about the condition of the hole and about the formations. Recent
efforts to estimate formation parameters such as shear velocity and
attenuation coefficient include Anderson and Castagna (1984), Cheng et
al (1981 and 1982), Willis (1983), Aron et al (1978), Goldberg et al
(1984), and Parks et al (1983).

Since the attenuation estimation problem may involve non-Gaussian
noise, then the least-squares techniques may not work well. So, maximum
11kelthood and robust estimation techniques are 1introduced 1n Chapter
III for use as attenuation estimators.

The spectral ratio method 1s the fundamental method used to esti-
mate the attenuation coefficient, Q. It has served as the basis for
more sophisticated Q estimation techniques, and the calculations are
relatively simple and fast compared to some of the more complex tech-

niques. Unfortunately, modelling has shown that in the presence of a
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noisy signal the variance of the estimate may be large. Further, the
algorithm tends to become unstable when the source spectrum has zeros or
near zeros.

The spectral ratio method, as applied to acoustic logs, 1s based
upon the model of a sonic tool 1n the borehole shown 1i1n Figure 1, and
upon Equation (3). Compressional waves will originate at the source or
transmitter "T" and wi1ll propagate out through the fluid. Some of the
compressional wave will 1impinge upon the wall near "B". The energy
which actually goes into the rock will be converted to P and shear waves
in the rock. The P-waves refracted at or near critical angle will
travel down the walls of the borehole, emitting compressional waves back
into the fluid. When the re-emitted compressional waves reach the
receivers "R1" and "R2", the wavetrain 1s recorded. Since the P-wave
velocity 1n the rock 1s usually much greater than the shear velocity of
the rock and the fluid velocity, then the P-wave which travelled through
the rock arrives first. That 1s, 1t usually arrives before the "tube-
waves" or the converted shear wave, and 1s easy to window out and se-

parate from the rest of the data.

1.2.1 Development of the Spectral Ratio

Method

The amplitude of a plane wave of frequency « which has travelled a
distance Z 1n a medium with attenuation coefficient Q, and phase veloc-

1ty ¢ 1s
YA
A(Zw) = A.e 20c

where A, 1s the 1nitial amplitude at Z = 0. For a plane wave with



Figure 1
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source spectrum S(w), the spectrum of the wave Z units away from the

source can be written as
o wil
R(Z,4) = B S(w) e 20C (5)

where B, 1s a constant. Rewriting Equation (5) and taking the logarithm

of both sides results 1in

- RLa) gL () (6)

From equation (6), 1t 1s obvious that the negative of the logarithm of
the ratio of the spectra from the receiver and source 1s Tinear 1n
frequency w. The slope of that T1ine 1s the same as the derivative of

the right hand side of Equation (6), which 1s

slope = 263

So, 1f the source-receiver offset and the velocity are known, then Q can
be calculated from the slope of the line.

In full waveform acoustic logs, the spectrum of the received P-wave
can be calculated via Fourier transform of the windowed time-domain P-
wave arrival. The spectrum of the source can not be easily measured
down hole. Also, the source spectra 1s affected by source-fluid-bore-
hole acoustic coupling, which 1s usually different every time the source
fires as the tool 1s pulled up the hole

Since the source spectrum must be regarded as unknown, the spectral
ratios used must be those from adjacent receiver pairs.

Using Equation (5), the ratio of the spectrum at Ry to the spectrum at

R2 18
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wX

R, (w) -
2 21 20c
Ry (@] *x¢€ (7)

where X = distance between Ry and Ry, and c and Q are the phase velocity
and attenuation coefficient of the subsurface between receivers R; and
Rp. As previously mentioned the 1/X term approximately represents the
geometric spreading losses for the P-wave. We shall define the Tlog-

spectral ratio, SR(w) to be

R2 (w) (%4
SR(w) = = In RIFET = e + In (X) (8)

where Ry(w) and Ry(w) are the spectra of the P-wave arrivals at re-
celvers "Rl“ and "Rp". For real data, SR(«) will not be a straight

Tine. An estimate of the slope, given by,

1
2qc

1s made by finding the best-fit 1ine through the data, and using the
slope of that best-fit 1ine Since X 1s the known recetver spacing and
the phase velocity ¢ can be calculated from P-wave first breaks, Q
follows easily from the slope

The In(X) term 1n (8) 1s due to the geometrical spreading Tloss,
that loss was assumed to be of the form 1/X But, 1f the geometrical
spreading loss 1s not exactly 1/X, then as long as 1t 1s frequency
1ndependent, the effect of the loss will appear only 1n the intercept of
SR(«) 1n Equation (8) Thus the loss w11l have no affect on the Q
estimate

Since the spectral ratio deals only with ratios of received spec-
tra, the offsets are typically much shorter than the total source-
receilver spacing This has advantages as well as disadvantages The

primary advantage 1s resolution That 1s, the estimated Q 1s that for
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the subsurface layer between receivers "R;" and "R," only. If the
source-receiver spectral ratio were used, the resolution would be much
poorer, since Q would be measured over a much greater distance In
addition, P-wave velocities can be picked accurately by analyzing timing
differences between adjacent receivers The disadvantage of small
offset receiver to receiver spectral ratios 1s that relatively little

attenuation has taken place. For example, assume the following

¢ = 10000 ft/sec , 1 = 2af = 2 10 kHz, X = 2 ft., Q = 100

Then ‘,2%% . %0‘ - .063
_ wX
M _

939, or 6.1% attenuation has taken place between receivers.

In contrast, 1f the source spectrum was known, and assuming a source-

receiver offset of 12 ft., then

X _

m-0-38,
and

_wX

e 20C . g 68

has taken place between source and receiver

1.2 2 Attenuation Estimation from Acoustic

Logs-Previous Work

Cheng, Taksoz, and Wi11l1s (1981 and 1982) discuss estimating atten-
uation from full waveform acoustic logs. They argue that the effective
bandwidth of the source spectrum 1s too narrow for the spectral ratio

method to work well. See Figure 2 for P-wave amplitude spectra from
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Cheng (1981). So, they estimate the attenuation from the decrease 1n
amplitude of the second received spectrum at the peak. This 1s roughly
the same as using the spectral ratio method, but only using the fre-
quency point at the maximum of the spectrum. This method has the advan-
tage of only using the frequency where the signal 1s strongest. Fur-
ther, for reasonable values of receiver offset, Q, and velocity, the
drop 1n peak amplitude 1s significant.

On the other hand, there are several difficulties involved 1n using
th1s technique. For the spectral ratio method, any frequency 1inde-
pendent geometrical spreading losses will appear 1n the 1intercept rather
than the slope of the best-fit 1ine. Thus, spreading effects need not
be taken 1nto account to estimate Q. However, for this method, spread-
ing effects must be accounted for. Theoretically, the spreading loss 1s
proportional to 1/Z, where Z 1s the source-receiver offset, and this 1s
the correction factor used by Cheng. This 1s fine as long as there are
no other frequency 1independent Tlosses (otherwise the Q estimate 1s
affected), so having to account for spreading losses 1s one of the
disadvantages of this technique. Another disadvantage 1s that this
technique only uses one frequency point. So, 1f the entire spectrum 1s
corrupted by noise, then the estimate based upon one frequency point
w11l be less reliable than an estimate based upon many points.

It 1s 1nteresting to note that the shift 1n the spectral peak
predicted by Kuc and Schwartz (1979) (discussed Tlater) 1s only barely
discernable 1n Figure 2, So, 1t appears that the spectral shifts pre-
sent 1n acoustic log data 1s not be enough to allow the use of their

method.
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In his Ph.D. thesis, Willis (1983) uses the maximum 1ikelihood
method (Pisarenco, 1970) to estimate the transfer function (or earth
response) from the 1nput (first receiver data) to the output (second
receiver data). The 1dea of estimating the transfer function 1s the
same as that used by the Wiener filter technique (Taylor and Toksoz,
1982), except that the actual estimation 1s done using a different
algorithm, The maximum 1ikelihood method of Pisarenko (1970) attempts
to achieve an optimum estimate of an unknown transfer function when n
different examples of noise corrupted 1input and output functions are
known. Pisarenko (1970) showed that his estimator 1s asymptotically
unbiased, whereas the simple averaging of spectral ratios results 1in a
significant bias. In addition, Pisarenko's method has a Tower mean
square error,

Goldberg, Kan, and Castagna (1984) estimated Q from synthetic
waveforms and from real data. They modelled the received power spec-

trum, A(Z,w), as
A(Z,0) = T(Z) S(w) e 3 (9)

where T(Z) 1s the frequency 1independent power loss, Z 1s the source-
receiver offset, S(w) 1s the total system response, and the exponential
term, e”3 15 the attenuation operator., The constant, a, 1n the expo-
nent 1s assumed to be linearly dependent on frequency, thus following
the constant-Q assumption.

The system response, S(w) 1includes the source signature, receiver
response, cable transmission, all frequency dependent coupling effects,
and the electronics. S(w) 1s also assumed to be offset-invariant and

thus 1s calculated by averaging over the available offsets for a shot.
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T(Z) represents the geometrical spreading losses (assumed frequency
independent) and the coupling losses which are frequency 1independent,
and 1s calculated from the average power contribution at each re-
ceiver, The "a" 1s calculated 1n the usual way via the spectral ratio
method. The estimated parameters are then adjusted to minimize a power-
weighted measure of the mean square error between the data and the fit
from the estimated model.

Goldber, Kan, and Castagna (1984) concluded that the estimate of Q
1s adversely affected by "deep nulls" 1n the power spectra (what have
been described as zeros 1n this thesis). In addition, they determined
the estimate to be sensitive to window shape and size. They also model~
led the effects of a tilted tool, and demonstrated that the effects were
read1ly apparent 1n the received waveforms. This may explain the "spec-
tral nulls" or zeros 1i1n the spectra.

Anderson and Castagna (1984) presented a paper on the analysis of
amplitudes of compressional waves on sonic logs. They use the "borehole
compensation" (BHC) technique to remove from the log the coupling and
focusing affects which greatly affect amplitudes. The BHC method 1s
based upon ray-path analysis, and adds (or subtracts) signals from
various receivers to approximately cancel effects such as borehole
focusing due to tool position and tilt, attenuation 1in the fluid, and
fluid-borehole coupling.

The authors use the BHC correction technique to produce amplitude,
attenuation, and coupling logs, as well as the usual transit time (slow-
ness) log. They note that the amplitudes did approximately decay as
theoretically predicted, but the corrected amplitude 1s still
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sometimes less than predicted. This was assumed to be caused by imper-

fect compensation by their BHC method.

1.2.3 Attenuation Estimation from Data

Other Than Acoustic Well Log Data

Taylor and Toksoz (1982) used a Wiener filtering approach to esti-
mate attenuation of the earth from earthquake seismograms. The primary
advantage of this technique 1s that 1t yi1elds a more reliable estimate
of Q from data with spectral zeros than does the spectral ratio
method, The method 1s based upon estimating a time-domain filter to
approximate the 1mpulse response of the earth between adjacent re-
ceivers, The Fourier transform of this filter 1s an estimate of the
spectral ratio from which Q can be calculated.

The spectral ratio relation from Equation (6) actually represents
the frequency domain transfer function or Green's function between

receivers R,_; and R;, G(w), and could be rewritten as
SR(w) = =~ In [G(w)],

where

_ Ry(w)
G(w) = ﬁ::;c;y (10)

This could also be written 1n the time~domain as a convolution
ra(t) = g(t) * ryg(t) (11)

where g(t) 1s the wmpulse response, and r,(t) 1s the signal recorded by

the 1th receiver,
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In general, g(t) will be an infinitely long sequence. However, 1t
could be approximated by a finite length sequence f(t) using a criterion
such as minimizing the least squares error

£ = B If(E) vy () - r ()72 (12)

It 1s clear that this 1s the classical discrete-time Wiener filter
problem. To cast this as a least-squares T1inear algebra problem, let
bJ = ri-1 (tJ), dJ =r, (tJ), and fJ = f(tJ). Then minimizing E 1n (12)

1s equivalent to solving (see for example Willis, 1983)

Bf = d + e,
where
by . 0 fo
8= |b, bo s f= .
¢ . fm
0 by
dg, eq
d=| ° , e = error vector = ’
dnen m+n
The solution
£=("8)! 8Tg (13)

minimizes the error energy, E = jgfb The matrix (BTB) 1s the auto-

correlation matrix and has the Toeplitz form

ao al . . . . L] an_l

a; a a,_o
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where a; = T, by by_;. The vector

B'd

T ecee

n-1
1s the <cross correlation between the 1nput and output, where
Z, = % bJ_1 dJ.

A zero 1n R,.; (w) corresponds to a singularity in the matrix
(BTB). Also, 1f zeros were present 1in the spectrum R,_;{w), then the
autocorrelation matrix will again be singular and 1t must be diagonally
loaded to have a stable estimate of Q. This diagonal loading of the
matrix (BTB) 1s roughly equivalent to adding a constant to the spectrum
Ry-1(w)e

Once a solution for f 1s calculated to approximate the original
mmpulse response g¢(t), the Fourier transform of f can be calculated.
Thus, the Fourier transform of f, F(w), 1s an estimate of G(w). So,

equation (10) can be restated as

- In [F0)] = R, () = xfo o, (14)

Now, 0 can be estimated by doing a least-squares linear regression on
-In [F(w)] to find the best-fi1t slope.

Unfortunately, diagonal 1loading of the autocorrelation matrix
results 1n errovs 1n the estimation of Q. Taylor and Toksoz, (1982),
suggested a technique for dealing with the 1naccuracies. Diagonal
loading BTB 15 equivalent to replacing B'B by (BTB + I\) where X\ 1s some
small positive number and I 1s an 1dentity matrix. The frequency domain

analog of Equation (13) 1s
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Fo) = i (15)

w

where C(w) and A(w) are Fourter transforms of z(t,) = z, and a(t,) = a,
respectively.

In the frequency domain, diagonal loading of BTB corresponds to
reg]ac1ng A(w) by A(w) + X\ 1n (15).

Now,

[} C w
F'(0) Z it (16)

where F'(w) = the Fourier transform of f'(t),

From this, we can write

Flo) = F'(0) Alold (17)

w

Hence, multiplying F'(w) by [(A(w)+\)/A(w)] corrects the errors 1intro-
duced by diagonal loading. However, we sti111 have not solved the pro-
blem since A(w) may be zero at certain frequencies. To alleviate this
problem Taylor and Toksoz (1978) suggested smoothing A(w) by windowing
the autocorrelation and applying the correction only 1f A(w) 1s above
some minimum threshold.

To correct the diagonal loading 1induced errors, apply the cor-
rection factor 1n equation (17) whenever A(w) 1s large enough for the
correction to be stable, Thus, a threshold must be set and Equation
(14) only applied when A(w) 1s above that threshold. This threshold 1s
defined as a fraction of the maximum A(w). Similarly, the amount of
diagonal loading applied to the autocorrelation matrix 1s defined as a
fraction of the diagonal value. These two fractions must be 1nput

parameters for the Q-estimation algorithm, and a poor choice for either
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may lead to very poor results. Another approach might be to interpolate
across frequencies 1n the vicinity of the spectral zero.

The classic experiment to estimate in-situ attenuation of the earth
1s that by McDonal, Angona, Mills, et al (1958). They used geophones
clamped to the sidewalls of a borehole through a fairly homogeneous 500
ft. thick layer of shale. The geophones measured the response of the
earth at various depths from the same shot. They used the spectral
ratio method to estimate the attenuation, and made the following con-
clusions (1) The shale attenuation followed the constant Q model very
well (2) No velocity dispersion was measured, meaning the propagation
speeds of various frequencies were the same (over the range 20-450 Hz)
(3) The earth does not behave as a classical visco-elastic medium be-
cause the velocity dispersion which should accompany attenuation was not
present,

McDonal, Angona, Mills, et al (1958) found the lack of dispersion
very surprising, and admitted that 1t may not be valid to extrapolate
the lack of dispersion to higher frequencies (such as those used 1n
sonic logging). For the measured frequency range, evidence continues to
support the conclusions about the constant Q model and that the amount
dispersion 1s negligible. Although some authors maintain that the
dispersion 1s measurable, even from the data of McDonal, Angona, Mills,
et al (1958).

Tullos and Reid (1969) used an experimental layout very similar to
that used by McDonal, Angona, Mills, et al (1958) to estimate atten-
uation of Gulf Coast sediments. They, too used the spectral ratio
method, but averaged as many as 156 spectral samples to reduce the

effects of noise. They also concluded that, within a specific layer, Q
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1s frequency 1independent. Further, Q may vary greatly from layer to
layer. It 1s typically very Tow (high attenuation) near the surface,
and the value of Q usually increases with depth.

Spencer, Sonnad, and Butler (1982) modeled the VSP layout and used
the spectral ratio method to analyze the data and estimate Q. They
averaged their spectral ratios in a manner similar to Tullos and Reid
(1969). Spencer, Sonnad, and Bulter (1982) did an error analysis to go
along with the attenuation estimates. They observed that the variance
of the Q estimate was very large for small receiver separation, but the
variance decreased quickly to a much smaller amount as the receiver
spacing 1ncreased. They also conclude that local 1nterference due to
multiples accounts for much of the measured attenuation, and that the Q-
estimation problem 1s 111-posed (1.e. small data errors lead to large
estimation errors).

From their data, 1t appears as though the variance 1s very high for
receiver separation below 200 ft., for a frequency band of 0-125 Hz.
The center of the band, 62.5 Hz, 1s 200 times lower than a typical
frequency 1n sonic logs (12,5 kHz). Thus the minimum receiver spacing
scales down to about one foot for sonic log frequencies, hopefully this
means that receiver spacings over one foot will give adequate accuracy
in estimating Q.

Two recent papers discuss attenuation affects present 1n surface
seismic data. Bickel (1982) shows that for a band-limited source, a
filter can be both a reasonably accurate 1inverse Q filter and stable as
well, Unfortunately, Bickel (1982) 1ignores the very difficult question
of Q-estimation by showing that 1f Q = 50 for a model, 1inverse filters

use Q = 40 or Q = 60 work fairly well to remove the attenuation
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effects. He then concludes that all that 1s needed 1s a rough estimate
of Q, and he makes no effort to handle a depth-variable attenuation
coefficient,

The work of Hale (1982) 1s significantly different 1in that he
describes an algorithm to estimate Q. Assumptions made by Hale i1nclude
(1) Q does not vary with depth (2) the source waveform 1s minimum
phase. To preserve strict causality in order to maintain the minimum
phase assumption, Hale (1982) changes the attenuation model by re-
placing  1n equation (3) with

o = o] + 3 H(Jo]) (18)

where |w| 1s the absolute value of angular frequency w, J = [ -1, H(e)
1s the Hilbert transform operator and ' 1s the "new" frequency. Hale
and Bickel both use as their basic 1inverse attenuation operation the

"1nverse" of that given by equation (3)

+ wl
nc (19)

Flw,z) = e

where w,Z,Q, ¢ are as defined before. Hale then forces causality with
the substitutions given by equation (18).

Hale then does the following. Let x(t) be the 1nput trace to
inverse attenuation operator, £(t) be the output trace, and U(w) = |w|

+ J H(|w|). Then, by the principle of superposition
U(w
-éql t
ey = gedre @ (20)

where X(w) = Fourier Transform (F.T.) of x(t). This can be rewritten

as

Pty = 2 e(‘]wt)X(w)[1+(t/2Q)U(w)+;. (,z,;_)zUz(w)‘l'...]
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or,
B )
fo) = 2 F G % X)) (21)
1=

where * denotes convolution, U(w) 1s the F.T. (u(t)), and u*1 means u(t)
convolved with 1tself 1 times. According to Hale, the number of terms,
necessary to estimate ?(t) in Equation (21) 1s a function of t and Q,
but the computational effort needed to wmplement (21) 1s comparable to
other time-variable deconvolution schemes. Most of the effort to eval-
uate (21) 1s 1nvolved 1n the convolution. Thus the Q-1independent con-
volution only need be calculated once. Then ?(t) can be evaluated for

various guesses of Q, the optimum being the Q which minimizes
at
E= z [F(t) e*07? (22)
t
Unfortunately, the convolutional model used by Hale and Bickel does not
fit the models used for sonic logs, and Hale's assumption of depth-
invariant Q 1s not a realistic one,

The seismic refraction experiment used by Jacobson, Shor, and
Dorman (1981) consisted of depth charges set to explode 1n deep water,
and seafloor hydrophones as receivers. The P-wave energy from the
source reaches the seafloor, and some of 1t 1s refracted along the floor
and rock layers below 1t. As 1n the acoustic log case the travelling
refracted wave emits energy which travels back up to the receivers on
the seafloor. Their method of Q-estimation 1s based upon the Jth ob-
servation of the spectral ratio as previously defined. According to

Jacobson et al

SR, (w,Z) m t

where SR,(w,z) 1s the 3t observation of the spectral ratio at depth Z

IA
>

(23)



27

and frequency w, Q(Z) 1s the attenuation coefficient at depth Z, n 1s
the total number of layers, and t1J 1s traveltime in the 1th layer for
the Jth observation. Rewriting the right hand side of (23) using k, for
the attenuation for the 1th layer measured n dB/kHz/m and PL1J for the

path length for layer 1 and the Jth apparent velocity yields
SRJ(w,Z) oo

Now, note that (24) now describes a linear system of equations of
the form Ab = c. This underdetermined system of equations would nor-
mally be solved by the minimum norm least-squares technique. But,
Jacobson, Shor, and Dorman (1981) chose to use an 1inverse technique from
Wiggins (1972). This technique 1involves solving the system by decom-
posing the matrix A 1nto orthonormal eigenvectors and ranking these
eigenvectors. The total number of eigenvectors used 1s based upon a
chi-square analysis of the result using different numbers of eigen-
vectors, Jacobson, Shor, and Dorman state that this method 1s similar
to least-squares analysis, and i1ndeed 1t appears to be very similar to
using the so called QR decomposition with column pivoting to solving a
least squares system of equations (Golub and VanLoan, 1983). In fact,
the only thing noticeably different about Wiggins technique as used by
Jacobson 1s that a chi-square test 1s used to determine when enough
eigenvectors have been used. This 1s 1n contrast to some cut-off for
minimum eigenvalues suggested by Golub and VanLoan.

Jacobson, Shor, Dorman (1981) concluded that their data analysis
method produced less variance than other methods. Their data agreed
with the usual conclusion that, over a frequency range of 0 to 100 Hz, Q

1s frequency 1ndependent and that Q generally 1increases with depth.
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They did note a possible sharp 1increase 1n attenuation (decrease in Q)
around a depth of 600 meters and an average Q around one hundred.
However, 1t must be pointed out that their data showed very wide con-
fidence 1intervals, with possible ranges of Q at some depths from about
30 to 100 or from 100 to infinity.

To estimate the acoustic attenuation coefficient of the human liver
from ultrasound data, Kuc and Schwartz (1979) used an 1interesting tech-
nique which 1s not based upon the spectral ratio method (the attenuation
coefficient yields data about liver cirrhosis). Kuc amd Schwartz (1979)
showed that 1f the source power spectrum 1s Gaussian, and 1f the con-
stant-Q model holds, then the received signal will also have a Gaussian
power spectra. Furthermore, the received spectrum will be shifted down
in frequency and the size of the shift wi1ll be proportional to Q'l.

Suppose the 1nput spectrum 1s Gaussian, centered at frequency w,
with variance 52. Then,

(ww,)?
2

2s

Ry (w) = e (25)

If a pulse with the above spectrum passes through an attenuative, con-

stant-Q medium of thickness Z and velocity c, then the output spectrum

would be
(w-0,)?
_wl - 5
Ry(w) = e 20 e 252 P (26)
Then
2 (27)
- 2b _ QZ (0.)-0)0) wz . woz
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20,0,~1s”
where a =
Qcs
Completing the square on (27) requires that the new center frequency,

w,', be given by

2
o = Eﬁé" @ © Z%E (28)

where the second term (Zsz/ZQc) defines the shift 1in the peak and 1t 1s
proportional to 01,

The shift in the peak 1s determined by the cross correlation be-
tween Ry(w) and Ry(w). The cross-correlation shift detector 1s optimum
in the least-squares sense, If the noise in the system 1s Gaussian,
then the cross-correlation detector will also be a maximum T11kelihood
(ML) detector. This method has the potential to be applicable to acous-
tic well log data because the source spectrum may be roughly Gaussian 1n
shape. For example, Figure 3 1s a plot of the source spectrum of a
typical acoustic logging tool (Aron, Murray, and Seeman, 1978). The
main lobe of this spectrum 1s approximately Gaussian in shape. However,
the tuning effects could easily distort this shape and make this method

1naccurate,

1.3 Summary of This Chapter and

Descraption of This Thesis

Applying plane-wave attenuation models to a borehole 1s discussed
in Section 1.2, as 1s the basic or fundamental method of estimating Q,
known as the spectral ratio method. This method 1s based upon the
observation that from Equation (3), the logarithm of the ratio of power
spectra should be Tlinear 1n frequency. The slope of this Tine should be

inversely proportional to Q. On real data, Q 1s estimated from the
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slope of the least squares best fit line to the log-spectral-ratio of
the data.

Many different methods have been used to estimate the acoustic
attenuation coefficient, Q, from many different types of acoustic
data. These data types include surface seismic, vertical seismic pro-
file (VSP), sonic logs, offshore refraction, earth quakes, and ultra-
sonic data. Most methods are based upon the spectral ratio method, and
Section 1.2 also contains a discussion of these methods.

Two previously used methods for estimating attenuation, the spec-
tral ratio method and the Wiever filter method, are studied in more
depth and tested on simple model data in Chapter II. The performance of
these estimators 1n the presence of additive noise 1s evaluated, as 1s
the performance on data arrising from source spectra with "zeroes" or
"nulls" 1n them, Finally, the performance of these methods 1s compared
with model data from a source spectrum with "zeroes" which 1s also
contaminated with noise.

Chapter II also 1ntroduces an analysis of the attenuation
estimation problem from a different point of view. A value of Q can be
calculated from the receilved P-wave arrivals from two adjacent
receivers, at each frequency point. These Q estimates can be cast as a
matrix, with the column number representing the frequency value and the
row number representing the adjacent receiver pair number (or depth).
Th1s matrix representation of Q estimates leads to several new ways of
estimating Q. These new methods 1nvolve eigenvector-eigenvalue
decomposition as well as robust and maximum 1ikelihood estimation.

Since the attenuation coefficient, Q, 1s assumed to be frequency

independent, then all of the columns of the data matrix will be the
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same., Thus this matrix will be a rank one matrix. For real data, of
course, the estimates w11l be noisy and the borehole w11l not conform to
the 1deal model. Therefore, the matrix will not be a rank one matrix.

However, 1f the 1deal model 1s fairly accurate, and 1f the noise
level 1s low, then the matrix will be "almost" rank one. In other
words, the matrix will have one dominant eigenvalue. For non-square
matrices, the dominant eigenvector (of the column space) corresponding
to the dominant eigenvalue 1s found using singular value decom-
position, It can be shown that this dominant eigenvector 1s an optimum
least-squares estimate for the values of Q. Thus, the most significant
eigenvector of the column space of the Q matrix 1s an estimate of Q as a
function of depth or receiver pair number. This method can be compared
to an optimum (least squares) weighted sum of the columns of the Q
matrix.

Estimation of Q from power spectra 1s an 111-posed problem because
small errors 1n the spectral estimate may lead to large errors 1n the
final estimate of Q. Even for simple additive input noise models, the
noise ditribution which contaminates the Q estimate cannot be written 1in
closed form., Rather, the errors 1n Q estimation can only be analyzed
using computer simulations, These simulations show that even 1f the
input noise 1s Gaussian, the error 1n attenuation estimation can be
highly non-Gaussian., So, estimators which are more robust than least-
squares methods, and thus less sensitive to very bad data points, are
needed for more reliable estimates of Q. Several classes of robust
estimators and the underlying principle of maximum Tikelihood estimation

are introduced 1n Chapter III.
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Robust estimators of attenuation are also "justified" 1in Chapter
III. A fairly simple model for noise 1n attenuation estimation 1s also
introduced 1n that chapter, and several types of robust estimators are
tested and compared for various noise models using computer simu-
lations. These estimators are also compared with some of the previously
discussed least-squares methods on the new noise models 1introduced 1n
Chapter III.

More realistic noise models applicable to acoustic log data are
introduced 1n Chapter IV. The effect of the noise in these models on
the attenuation estimate from various robust estimators 1s analyzed.
Computer simulations are used to compare these robust estimators with
other types of estimators, including median, mean, -trimmed mean, and
least-squares estimators. The comparisons are based upon accuracy of
the estimation, ability to handle non-assumed noise distributions, and
computational considerations,

The models used to simulated borehole propagation to this point are
fairly simple, one dimensional, 1dealized models. These models do not
include geometrical spreading losses and other complications due to the
borehole 1tself. The tuning effect of the borehole acting as a wave-
guide may result 1n geometrical losses which may not conform to the
losses predicted by theory. In addition, these losses may be very
dependent on frequency. Therefore the robust estimation methods as well
as simpler least-squares methods (spectral ratios, eigenvector decom-
position) should be tested on more realistic data. Chapter IV also
contains a discussion of the testing of the above estimators on "real-

1st1c" borehole model data from Conoco.
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As a final test of the Q-estimation algorithms, their performance
on real full waveform sonic data 1s evaluated. Unlike the models, the
actual value of Q 1s unknown. Therefore the preformance of the esti-
mators 1s more difficult to determine since the "answer" remains un-
known. The real data used for this study comes from sonic logs from
Conoco's borehole test facility, and some results from this data are

also given 1n Chapter IV,



CHAPTER II

LEAST SQUARES ATTENUATION ESTIMATION METHODS

The spectral ratio method 1s the fundamental method of attenuation
estimation. In order to develope an understanding of attenuation esti-
mation 1n general and the spectral ratio method 1n particular, the
performance of the spectral ratio method on simple model data 1s an-
alyzed. In addition, the effects of noise and zeros 1n the source
spectra on the spectral ratio method are studied. Since adding a con-
stant to the diagonal of the autocorrelation matrix in the Wiener filter
method roughly corresponds to whitening the spectra of the received
signals, then the Wiener filter method should be able to handle spectral
zeros better than the spectral ratio method. So, the Wiener filter
method 1s also analyzed with regard to the effects noise and spectral
shape have on the attenuation estimate. This method 1s also compared to
the spectral ratio method.

There are other attenuation estimation methods which are different
from the spectral ratio from just two adjacent receivers. First, re-
member that an estimate of attenuation can be calculated from every
frequency value used 1n the spectral ratio method, rather than just one
value of Q from the best-fit line through many frequency points. This
1s assuming that geometrical spreading has already been accounted for.
These Q estimates can be cast as a matrix where the row number cor-

responds to the reciever pair from which the Q-estimate 1s made, and the

35
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column number corresponds to frequency. Then for a reasonable model,
this leads to a new technique where the dominant eigenvector of the
column space of the data matrix forms an optimum estimate of Q for each
receiver pair, These receiver pairs correspond to depth., This forms
the basis of the eigenvector decomposition technique for the estimation
of attenuation. The eigenvector decomposition method should perform
better than the spectral ratio method for data with spectral zeros. To
evaluate this method, 1t 1s compared to both the Wiener filter and
spectral ratio methods on several data sets. These data sets contain
various levels of noise and some of the data sets are from sources with

spectral zeros.

2.1 Numerical Modeling of the Spectral

Rat1o and Wiener Filter Methods

Since many researchers have used the spectral ratio method or a
variant of 1t, 1t 1s worthwhile to show a few simple examples to 11-
lustrate the use of the method. Consider a single layer, one-dimen-
s1onal model with the following parameters
receiver spacing 2 ft.
velocity 10,00 ft./sec.

Q 50

noise 1%

Also, consider the broad-banded, cosine shaped spectrum 1s shown 1n
Figure 4a for the input. The frequency range for this example 1s 10 kHz
to 30 kHz. The spectrum of the signal after attenuation by the single-
layer model with the above parameters 1s shown 1n Figure 4. Figure 5

shows the log spectral ratio, SR(w) (see Equation 6) for this data set.
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TABLE I

AVERAGE O ESTIMATE AND STANDARD DEVIATION OF THE ESTIMATE
FOR SOURCE FROM I'IGURE 4A

SNR Average Q Estimate Standard Deviation of Estimate
10000, 50.1 1.3
1000, 50.1 0.2
100, 49.6 4,0
10. 49.8 14.4
1. 59.5 539,
TABLE II

AVERAGE O ESTIMATE AND STANDARD DEVIATION OF THE ESTIMATE
FOR SOURCE FROM FIGURE 7

SNR Average Q Estimate Standard Deviation of Estimate
10000, 50.9 3.3
1000. 50.3 9.3

100. 295 1900

100. 56.3 28,7*

*Jsing the best 90 of 100 trials from the line above,
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To more accurately simulate the borehole environment, Gaussian
noise has been added to the received spectra with the noise power level
of one percent of the signal power. Figure 6a shows the spectrum of the
signal after attenuation and with the noise added on a typical test
run. The log spectral ratio 1s shown 1n Figure 6b, and the attenuation
estimated by the least-squares fit 1s Q = 47 8, and the root-mean-square
error of the fit 1s 0.048.

In order to gain a better understanding of the accuracy of the
attenuation estimate, the experiment described above was repeated 100
times with the same parameters. The average value of Q was 49.6, and
the calculated standard deviation was 4.0. So, Q could be calculated
fairly reliably 1n this case. Table 1 shows the average and standard
deviation of Q for various signal-to-noise ratios.

Next, let us consider spectra that have both uncorrelated noise and
zeros. Figure 7 shows a source spectral shape from Aron et al (1978),
and the source obviously has a zero 1n 1ts spectrum The effect of this
zero on the numerical calculations 1s very significant. Assuming the
borehole behaves as a linear system, then very 1ittle energy will pro-
pagate with frequencies 1n the vicinity of the zero. Thus the spectral
ratio will be the ratio of a small number to (perhaps) an even smaller
number. This obviously leads to numerical instabilities. Furthermore,
since random noise may be present at all frequencies, overwhelming the
signal near spectral zero, then the spectral ratio may involve ratios of
noise to noise. This leads to completely unreltrable spectral ratio
estimates, with potentially very high errors

This spectral ratio method 1s unable to handle the more realistic

case of a source with spectral zeros (see Figure 7) and additive random
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noise. To demonstrate this, the same model as before was used The
spectral ratio method was used on this data set, with and without
noise. When the full frequency range (7-25 kHz) was used to calculate
Q, negative (non-physical) values of Q resulted. When the frequency
range was reduced to include just the main lobe (7-12 kHz), the results
are much better. Table 2 Tlists average Q estimates, and the standard
deviation of the estimate for several different noise levels. While the
spectral ratio method works for a limited bandwidth, 1t 1s unable to
handle the spectral zero 1n the presence of any significant amount of
noise.

Table 3 T1ists the estimated Q and the standard deviation 1n the
estimate of Q at varying noise levels for the sorce spectrum shown 1in
Figure 7 (over the full 7-25 kHz frequency range). Compared to the
spectral ratio method, the Wiener filter method does a much better job
of Q estimation when the source spectrum has zeros. However, the Wiener
technique 1s also very sensitive to parameter choice. In order to
stabi11ze the estimate of Q when the source spectrum contained zeros,
the autocorrelation matrix (see Equation (10)) must be diagonally
loaded As previously mentioned, this 1s approximately equivalent to
adding white noise to the spectrum of the i1nput signal. Unfortunately,
the Q-estimate 1s very sensitive to the amount of diagonal loading If
there 1s too 11ttle diagonal loading, then the attenuation estimate will
be poor due to the previously mentioned spectral zeros. If too much
dragonal loading occurs, then the errors induced by the loading 1tself
cannot be corrected.

For the single examples, 1t has proven possible to set the loading

and threshold parameters to get reasonably accurate answers (of course,



TABLE III

AVERAGE 0 ESTIMATE AND STANDARD DEVIATION OF THE 'IENER
METHOD ESTIMATE FOR SOURCE FROM FIGURE 7

SNR Average Q Estimate Standard Deviation of Estimate
10000. 50.6 3.0
1000, 50.8 10.1

100, 51.7 27.3

10, 52.6 47.9

44
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the Q 1s already known). It appears that by noticing the change 1n Q
estimates versus the two parameters, 1t 1s possible to pick values
corresponding to good estimates, by choosing parameters such that small
changes 1n the parameters lead to very small change 1n Q. Unfortuately,
for multi-layered models (corresponding to data from a multi-receiver
tool), choosing the correct parameters becomes much more difficult.
Because the Q values differ, and because the spectral shape of the
signal changes as 1t propagates through the model, the "best" choice of
the parameters 1s different for the different layers (corresponding to
different receiver pairs from the same tool). For a "noisy" source with
spectral zeros, 1t has not proved possible to pick the correct para-
meters well enough to make reliable estiamte of Q vs depth. Therefore,
the Wiener filter method may not prove to be practical for "real world"

well log data, and 1t 1s dropped from further consideration.
2.2 Matrix Representation of Data

Most of the techniques discussed so far use or are based upon the
method of spectral ratios to actually estimate the attenuation coef-
ficient, Q Unfortunately, as examples have shown and several authors
have pointed out, the spectra of received signals typically have zeros
or "nulls” 1n them. These zeros result 1n extreme 1nstability 1in the
calculation of Q from the slope of the spectral ratio plot. Since the
signal values 1n the frequency range surrounding a zero 1s low, the
noise may predominate. Furthermore, since a spectral zero at one re-
ceiver frequency means a spectral zero at an adjacent receiver, then the

spectral ratio at the frequency corresponding to the zero represents the
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ratio of noise to noise. Therefore, 1n the vicinity of a spectral zero
the calculated values of the spectral ratio may be very inaccurate

Several of the papers discussed earlier contain various methods of
dealing with the problem of relatively meaningless data i1n some spectral
regions of the spectral ratio. One approach 1s to only use data from
the spectral peak, where the signal-to-noise ratio 1s presumably the
best. Cheng, Toksoz, and Will1s (1981 and 1982) measured the amplitude
decay of the spectral peak, and from this Q 1s estimated. This does
solve the problem of spectral zeros However, the spectrum may be
contaminated by noise even at the peak, and only using the peak value
1gnores meaningful data at other frequencies. Note the difference
between this and the spectral ratio method, where all frequencies are
treated equally

An effective method of treating the above problem 1s to weight the
frequencies used 1n the Q-estimate according to the reliability of the
data. Consider the approach by Goldberg, Kan, and Castagna (1984),
where the parameters are estimated by minimizing the error between the
predicted model and the data, with the error weighted by signal power
The following 1s an alternative formulation of the problem which leads
to some useful results and 1t allows weighting of different parts of the

spectrum by different amounts.
2.3 Eigenvector Decomposition

The definition of the spectral ratio, SR(1) (Equation 8) can be

generalized from 2 receivers to m receivers, and can be written as
X1 1
Q. (1) = - (29)
1 ¢, _1n RN
R, (1)

1-
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where, X = receiver offset, « = frequency, ¢, = phase velocity for the
strata between the depths of receivers R, and R,_1, R,(w) 1s the re-
ceived spectrum of the 1th receiver, and Q, 1s the corresponding atten-
uation estimate. This equation only holds true 1f the geometrical
spreading losses are previously accounted for. For the time being, all
frequency 1ndependent losses (such as spreading loss and possibly fluid
borehole coupling) are assumed to have been corrected for.

Equation (29) represents an estimate of Q based upon one frequency
point and 1f o 1s chosen to be the frequency of the spectral peak, then
this 1s essentially the estimator used by Cheng, Toksoz, and Willis
(1981 and 1982) However, this single data point may be contaminated by
noise, and 1f w corresponds to a spectral zero, then the calculated
spectral ratio may contain no useful information In terms of discrete

frequency, « can be written as w = j(Aw) = w, , where wg 18 the jJth

J
frequency value. Then the attenuation measurements from one shot with a
multi-receiver tool can be written as a matrix A, where the (1,3) ele-

ment of A 1s

- _ 2z 1
373 = Qyleg) = 'z%) : [R.l(m) ] (30)
-1n
R lw[
1-1

In this form, each element aJ) of the matrix A represents an esti-
mate of Q from the 1th receiver pair at and the jth frequency The rows
of A correspond to Q estimates for a given receiver across all fre-
quencies, and the columns of A correspond to Q estimates for a given
frequency for all the receivers If the data were perfect (no noise)
and assuming the constant-Q model holds, then all of the columns would

be the same Therefore A w11l be rank one, and the non-zero eigenvector
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of the column space of A (an eigenvector of AAT) 1s proportional to the
1dentical columns of A.

O0f course, any real data will have noise and the rank of A will
never be one. But, since the columns should be nearly the same, then
one eigenvalue of A will be much larger than the rest, and the cor-
responding eigenvector of the column space will be a good estimate of
the columns of A. In fact, the following will show that the eigenvector
of the column space of A corresponding to the largest eigenvalue 1s the
same as the vector most nearly parallel to the columns of A  Further-
more, this vector 1s also a minimum mean square error estimate for the
columns of A.

Let us consider the singular value decomposition of an M by N real

matrix A, which can be expressed as
A = upvT (31)

where U and V are orthonormal matrices determined by the eigenvalue -

eigenvector decomposition. This decomposition leads to

(AAT) = u(pnTyuT (32)

(ATA) = v(DTp)VT

where (T) represents transpose The martix D has the general form

D 0
1
[0 0] (33)

where D; 1s a diagonal matrix with
Dl = dia (dl’dZ’ ,dk)
and 0's are null matrices of appropriate dimensions The diagonal

entries 1n Dy are positive square roots of the nonzero eigenvalues of
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AAT or ATA For future use, we will assume that the diagonal values 1n

Dl’ dl,dz,...dk, are ordered. That 1s,

Now, we want to define a column vector c that 1s most nearly par-
allel to the columns of A. In other words, we want to find a column

vector ¢ such that

m
n

n M=

LY

sE-9T -9 (34)
1

1S minimum, where A1 1s the 1th column 1n A and ¢ 1s constrained such
the ¢ T c 1s a constant, say one The error E can be expressed as

E=

N
A A+ (e -2 = AT
1 -

1 1 1

ny =

where the first two terms are positive. It 1s clear that E 1s minimized
when the last tern 1s maximized. The vector c can be determined by

maximizing (E_A_I _c_)2 , which can be written as

c=c AAT ¢ (35)

Expand ¢ 1n term of columns of U, where U 1s defined 1n Equation
(31) Ths 1s,

c=Ub (36)
Substituting Equation (36) and (32) 1nto Equation (35) yields

¢ = bTuTu(onT)uTup.
Let b, be the 1th component of b. Since ETE. = ETE, then choosing a ¢ to
maximize C 1s equivalent to choosing ET =10 0] Therefore we can
state the following theorem

Theorem 1 The column vector ¢ 1s the eigenvector corresponding to the

largest eigenvalue d; of the symmetric matrix AnT.
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In the above analysis we assumed that the vectors A, are deter-

ministic. We can generalize this by writing the matrix A 1n the form
A= [xtny xinp . . x+nyl (37)

where x 1s an M dimensional column vector and Ny 1=1,2, ..,N are M
dimensional noirse vectors, where the entries are from N(O,sf) That 1s,

Ny the {1,)) entry 1n the M by N matrix given by

Y=[m£2- _EN]’
satisfies the following Ny 1s a white Gaussian random variable, with

ng

si 1fi1=%kandj=1

EL "1J"k1] = (38)

0, otherwise

Note that the entries i1n A are really estimates of Q and also the pur-
pose of the model in (36) for the matrix A 1s to model the case when the
received spectra have zeros or nulls. This means that for some fre-
quencies, the corresponding columns 1n A will contain data contaminated
by noise, while other columns w111 contain more reliable data.

If A 1s as given 1n Equation (36), then finding a vector ¢ to
minimze the error (c - §)T (c - x) from A corresponds to finding a ¢ to

T

maximize C x subject to the previously mentioned constraint on c. This

1s the same c which maximizes E(STAATS), where E 1s the expected value
operator. Therefore, the eigenvector corresponding to the Tlargest
eigenvalue of AAT 1s an optimum (least squares) estimate of the deter-
ministic vector x Since the elements of A are actually Q estimates

described by Equation (32), then x 1s an optimum estimate of frequency

1ndependent Q values as a function of depth
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This interesting approach of estimating the values of Q as a func-
tion of depth using eigenvectors 1s not free from problems when the data
matrix 1s as modelled 1n equation (36). The problem results from the
fact that the matrix, E(AAT), 1s not rank 1 due to the noise Let the

matrix X consisting of n i1dentical column vectors be written 1n the form
X=[xx..x] (39)
Then from Equations (38) and (39), we have

AAT = XXT + xYT + vxT + vyT
From this 1t follows that
N

ELAAT] = xxT + (=
1=1

s2)1 (40)
where I 1s an 1dentity matrix of dimension M and E 1s the expected value
operator. From (40), 1t follows that the rank of E(AAT) 1s M, and not
equal to 1 The effect of the variance of the noise 1s to add a pos-
1tive constant to the eigenvalues, but the eigenvectors remain un-
changed Therefore, while the noise does change the structure of the
AAT matrix, the eigenvector corresponding to the largest eigenvalue
should st111 be a reasonable estimate of the vector x.

The eigenvector decomposition method using the eigenvector cor-
responding to the most significant eigenvalue can be easily and ef-
ficiently i1mplemented by the power method (Golub and Van Loan, 1983).
This simple 1terative method converges to the eigenvector corresponding
to the dominant eigenvalue provided the eigenvalue 1s larger 1n mag-
nitude than the second largest eigenvalue 1n magnitude In fact, the
ratio of the largest to second largest eigenvalue controls the rate of

convergence. So, as long as the constant-Q model holds and the noise 1s
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not too large, the algorithm converges fairly quickly to the dominant
ergenvector.

This method of signal estimation was tested with a model based upon
Equation (37). The results were 1nitially worse for the eigenvector
algorithm than for simply averaging the columns. The reason appeared to
be because the realizations of AAl were frequently quite different from
1ts expected value. This resulted in the YY! matrix not being
diagonal. Furthermore, the diagonal values, while usually larger than
off diagonal values, were not at all the same. To simulate data from a
typical tool from only one shot, with eight receiver pairs, an eight by
e1ght matrix was used to simulate (AAT). Obviously, this 1s not a large
enough sample.

The results were drastically improved when the diagonal entries 1n
(AAT) were modified to make the rank of the matrix as close as possible
to rank one. This construction actually 1involves adding a diagonal
matrix, say dia (aj,ap,. .ay), such that the matrix S = (AAT) +
d1a(a1,a2, ..,aM) 1s close to a rank 1 matrix. Note that this handles a
more general case than the case where a,'s are equal. The diagonal
entries are computed successively by using the following method First,
note that the determinants of all 2x2 submatrices of a rank 1 matrix are
all zero. Second, assuming that a1,3, ..a,_1 are computed earlier, and
assuming further a, = 0, k>1+1, compute all possible 2x2 subdeterminants
of S 1nvolving s,,. Clearly, these determinants will have a, as a
variable. Now compute a set of a, to make these determinants be zero

Then, use the median of that set for a, oOnce all the values of a, are

computed, then the process can be repeated. This resulted 1n a sig-

nificant 1mprovement over simply averaging the columns.
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The following derivation from Lanczos (1961) shows that c, the most
significant eigenvector of the column space of the M by N matrix A, 1s a

weighted sum of the columns of A. Let

0 A
> [AT o]
be a (M+N) by (M+N) matrix. Since S 1s a normal matrix, 1t has (M + N)
orthogonal eigenvectors. Let
¢
L
be the eigenvector of S corresponding to the largest eigenvalue, denoted

by d. Then the eigenvalue equation 1s

Sw = dw
Thie 1mplies Ag = dg__, and AT c= dg_.
Therefore, ¢ 1s a weighted sum of the columns of the matrix A, where the
weights are proportional to the elements of g.

Recall that c 1s constrained such that gT c =1. This 1s con-
venient since c, the solution to an eigenvector 1s fixed in terms of 1ts
direction but not 1ts length. In orther words, c 1s only determined to
within an overall scale factor.

To be used as an estimate of the vector X, € must be rescaled 1n

amplitude. Idealy,

cleq=xx

where q 1s scale factor. But since x 15 the unknown, xTx must be

approximated, the approximation used here 1s the following. Denote the

average of the columns of the matrix A by the vector a. Then approxi-

mate the value of x'x by _a_T_él_
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An alternate way to formulate the problem 1s to find an optimum,
unbiased solution. This 1s accomplished by directly solving

ATag = d%g
for g. Then, rescale C to a new vector 3‘ where

c'=ghg

If g 1s normalized so that
N

d= = g
J=1

J
where the gJ's are the elements of g, then c' would be an unbiased
estimate of x.

The weights for an optimal weighted sum of the columns of A can
also be calculated using straight forward least squares minimization.
Let

S:.'
J

) A v, (41)

M =

Then choose y:r = [wl, Wo, . ,va] such that the square error between c
and the i) vector
M

E, = E[ =
1 1=1

(c, - x)%] (43)
1s mnimzed, where ¢, and x, are the 1th elements of the vectors ¢ and
X, respectively. In order to match the assumptions used i1n the eigen-
vector decomposition estimation, an appropriate constraint on ng must
be made. Such a constraint could take the form E(ng_) = 1T1° Adding
th1s constraint to (38) and using the Lagrange multiplier approach would

result 1n a new error function
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M
Ep=E[L = (cq - x,)21 + plE(cTc) - xTx] (43)
1=1

where p 1s the Lagrange multiplier. Finding the optimum weights, w,
would 1nvolve setting

EEE =0 fork=1,2, .. , Nand EE% =0

5wy 6p

Unfortunately this leads to a system of non-linear equations for which
no closed form solution exists. Therefore, the equations can only be
solved numerically.

The above constraint optimization problem, due to 1ts lack of
simple solution, does not lead to an understanding of the properties of
the weigted sum formulation. However, minimizing the errer E 1n Equa-
tion (42) with an unbaised constraint does lead to a simple solution.
Further, the properties of this solution should approximate those of the
constrained least-squares problem 1n Equation (43). The unbiased con-
straint 1s that

N
z w =1 (44)

3=1 J
which guarantees E(c) = x. For this constraint, define the error func-
tion E3 by

M 2 N
Ey = E[ = (c1 - x1) J+p(= W, - 1)
1=1 J=1

Setting

5E4
g—w—-k—-o.'fork-l,z, -,N

leads to
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M=

N
1 E[Jza(a1JwJ " Xayd+p=0

1

Since a1J =X, + Nyys then

. =4 2 2
B2y * agp) = %% + 4% 5,

and
E(X.l a1k) = X12.
This reduces to

M N

= [z w.(x 2 + o,

2 29, ..
i B RO (3 TURE IR R

thus,

Moo N 2
Zox (= wJ-1)+M We O +p=0
1=1 J=1
But the constraint, Equation (44), reduces this to
wk‘ﬁ (45)

o

Applying the constraint, Equation (44), to (45) gives

ﬁfo - .]r_l__ﬂ kK=1,2, .., N (46)
1
=
J=1 j;z

Since these weights, Wk, are a function of the column variances,

2, they cannot be used on real data because the column variance are

%
not known. However, 1t 1s possible to estimate these variances from the
data. Unfortunately, there will be errors 1n the estimation of the
variances which will 1n turn effect the results 1n the estimation of the
weights These errors will lead to less than optimal performance and

may, 1n some cases, result 1n worse performance than a simple average of

the columns. Equation (46) does provide useful 1nformation, however
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The 1deal weights can be used to calculate the expected value of the
minimum square error, Ep.., which would result from an optimum weighted
sum of the columns. The error should serve as an approximate lower
bound for the error from the eigenvector estimator as well as for the
error from any weighted sum of the column of A. The maximum expected
error of a weighted sum of columns would actually be M °hax2s where
omax 15 the variance of the "worst" column. However, the error using
the simple column average should serve as a reasonable upper bound for
most data corresponding to the Gaussian model used here (see Equation
(36)).

Substituting Equation (42) 1nto (43) and calculating the error, Ej,

results 1n
M N 2
E.=E § [ Ei (x1 + nu)wJ - x1]

which becomes
; [x.( ; ) :
E=E = [x(zw, -1)+ = w_.n
3 1=1 ! J=1 J J=1 J

2
IJ]

This simplifies to

N

E=M z wlo? (47)
3=1 J J
If a simple average 1s computed, then w=1/N and
N
M 2
E = > o (48)
avg ﬁz J=1 J
If the optimum weights given by Equation (45) are used, then
E =M (49)
min N 1
=

According to Gimlin, Keener, and Lawrence (1982), 1t can be shown, using
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Cauchy's 1nequality and the theorems of arithmetic and geometric means,

that
N N
2 1 2
T g.f = > N
This 1s sufficient to prove that
E = M <E =M g 2
min 'N""‘I_ - ravg 7 =1 9
=
3=1 957
with equality occuring when oy =0.

2 .4 Results of E1genvector Decomposition

To test the eigenvector estimator, and to compare 1t with simply
averaging the columns, a matrix A 1s generated to match the model given
by Equation (37). Remember from Equation (37), that the (1,3) element

of the matrix A 1s given by

a1J = X, "13’ 1=1, 2, .. , M, 3=1,2, .. , N

The "signal" vector x 1s composed of elements which are computer gen-
erated, pseudo-random numbers from a probability density function which
1s unifrom on (0,1). The noise vectors, n,, are composed of random

numbers which are N(O, o 12). The column variances, 012

, are uniform
random variables which are uniform on the interval (O, Vmax)’ where Vp.
1s the user determined maximum noise variance.

The e1genvector estimator was used to estimate the signal vector,x,
from the model data For each test, the total square error between X
and 1ts estimate was calculated In addition, a median estimator which

calculates the median of {a11, ay2s oo s a,N} for1=1,2, .. , M,and a

column average estimator which calculates the average (mean) of {a,1,
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3,9, «« 5 ayy} for 1=1, 2, . , M are also used on the model. The total
square error for these methods was calculated. Based on the values of
the randomly generated variances, the werghted-sum minimum error from
Equation (41) 1s computed for comparison with actual errors. The re-
sults are shown 1n Table IV For every row listed 1n Table IV, a signal
vector x and a set of column variances are generated. Column one 1ists
the maximum column variances for the row, which 1s actually the upper
Timit of the uniform distribution from which the column variances are
chosen Once the signal vector and column variances are determined, ten
sets of noise vectors are generated. For each set of noise vectors, the
square errors of the previously mentioned estimators are calculated and
the average square errors from the 10 sets are listed 1n appropriate
columns. For the data shown 1n Table IV, the si1ze of matrix A chosen to
be 10 by 10 (M = N = 10).

Note that 3 to 4 runs were made at each listed level of maximum
column variance. Each run used a different signal vector and noise
(column) variances and 10 sets of noise vectors to calculate average
errors. Surprisingly there 1s a large variation error levels. Unfortu-
nately, this makes conclusions regarding the relative performance of the
estimators difficult. There are, however, several 1important obser-
vations which can be made from this data. The eigenvector estimator
outperformed the average for all cases except when the noise variance
(maximum = 1 0) 1s greater than the average signal power, which 1s E(sz)
= 1/3. Clearly, poorer estimates of optimum weights should result from
large noise variances Since the eigenvector estimator 1mplicitly uses
a set of optimum weights (the vector g 1n equation (39)), then 1ts

performance should depart from the optimum attainable from Equation




TABLE IV
TOTAL SQUARE ERROR IN SIGNAL ESTIMATION

Maximum Eigenvector Average Median Minimum
Noise Variance Error Error Error Error
0.0001 1.7x102 1.9x10'g 7.4x10‘g 1.3x10‘i1
0.0001 4.5x10'g 4.8x1070 4.2x107 3.0x10'1%
0.0001 3.2x10" 3.7x10" 5.0x10" 2.8x10"
0.001 3.5x10'; 3.8x10'g 4.7x10'; 1.3x10~/
0.001 3.3x107 3.8x1070 1.6x1077 2.2x10'g
0.001 3.0x10™ 3.4x10" 1.8x10" 5.0x10"
2.5x10'g 2.8x10'g 3.2x10'g 1.4x10"°2
2.9x107 3.3x107 1.3x1077 z.1x10'§
1.2x1077 1.3x107) 3.7x1070  1.9x107/
4.4x10" 5.0x10" 3.9x10" 7.5x10"
2.9x10'§ 3.2x10'§ 2.2x10'g 6.0x10'g
6.0x1073 6.6x1073 7.1x1073  1.7x107;
3.8x1073 4.3x1077 2.0x1073  9.4x107,
3.5x10" 3.6x10" 2.7x10" 1.2x10"
.60 .44 .45 12
.66 .49 .42 3.0x10"
.29 .32 .32 .16
.34 .30 .89 1.8x10"3
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(49) In fact, the ei1genvector methods performance generally falls well
short of the optimum weighted performance However, as long as the
noise variances are sufficiently smaller than the signal variance, the
e1genvector technique does represent a considerable i1mprovement over a
simple column average.

The most important thing to note about the results in Table IV 1s
that the median estimator performed about as well as the eigenvector
estimator and the column average. It 1s, however, difficult to make
definite statements regarding the performance of the median estimator.
The ratio of eigenvector error to average error 1s fairly constant for
the tri1als listed 1n Table IV, with the eigenvector method having typ-
1cally about ten percent lower error But, the ratio of the median
error to the eigenvector and average errors varies greatly So, a new
method of analyzing the relative performance 1s needed. This 1s dis-
cussed next.

A table simlar to Table IV 1s generated i1n a computer But 1n-
stead of 10 sets of noise vectors generated for every choice of signal
vector, x, and 10 column variances, 30 test sets of noise are generated
as 1nput to the estimators. Thus the average errors that are listed 1n
this table 1n the computer result from more tests and should be more
reliable. Instead of only a few signal vectors and sets of column
variances, 30 are generated This means that for a particular maximum
noise variance, 30 different signal vectors and column variances are
generated, and for each signal vector and set of column variances, 30
sets of noise are generated Unfortunately, simply averaging all the
rows with a particular maximum column variance does not yield anything

meaningful. This 1s because some sets of column variances may have
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significantly higher noise levels than others even with the same maximum
column variances. So, taking an average of these tests would mean that
the tests which resulted i1n higher errors would overwhelm those with
lower errors. Thus, the average performance of the median compared to
the other estimators would tend to mimic that for the tests with the
highest noise levels, obviously this 1s not good. The first step to-
wards combining the data 1s to normalize all of the errors by dividing
each error by the error for the column average from the same row. Then
the median of the normalized errors for each estimator 1s used to repre-
sent that estimator's relative performance for the particular maximum
column variance. The results are tabulated in Table V. 1In addition, a
count 1s also kept of the number of trials for which each of the three
estimators had the first or second lowest average noise levels The
results of this ranking are shown 1n Table VI.

Since each row of Table V represents the median of 30 trial runs
with 30 different sets of noise per run, and since the results are
normalized so that each trial 1s weighted about equally, then meaningful
conclusions can be made from the data Except for noise variance
greater than or equal to signal variance, the eigenvector technique
always yielded lower average errors than the column average. Further-
more, the eigenvector error 1s typically about 10 percent lower than
that for the column average error However, the median estimator per-
formed even better. A typical error from the median method 1s 30 per-
cent lower than for the column average method, and 1t 1s about 20
percent lTower than for the eigenvector method From the above results,

1t appears that the median 1s the superior estimator However, the




TABLE V

MEDIAN NORMALIZED ERROR FOR 30 TRIALS
WITH 30 SETS OF NOISE PER TRIALS

Maximum Eigenvector Average Med1ian Minimum

Noise Variance Error Error Error Error
0.0001 0,898 1.0 0.740 0.116
0.001 0.9000 1.0 0.674 0.057
0,01 0,913 1.0 0.696 0.114
0.1 0.898 1.0 0.693 0.112
1.0 1.135 1.0 0.683 0,110

TABLE VI

NUMBER OF TIMES (OUT OF 30 TRIALS) EACH ESTIMATE
RESULTS IN FIRST OR SECOND
LOWEST ERROR

Max imum Eigenvector Column Average Median
Noise Variance 1st 2nd 1st 2nd 1st 2nd
0.0001 12 18 7 18

0 5
0.001 5 25 1 4 25 1
0.01 11 19 0 7 19 4
1 7 23 0 3 23 4
.0 1 4 0 24 24 2
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results listed 1n Table VI show that the median 1s not always the best
estimator.

Each entry 1n Table VI 1s the number of times, out of 30 trials,
that the particular estimator had the lowest or second lowest average
error. It 1s 1mportant to keep 1n mind that the average error for each
trial 1s actually the average error for one specific signal vector and
one set of column variances, averaged over 30 trials (30 sets of noise)
for the given column variances. For example, suppose one reads from
Table VI that for a particular one maximum noise variance, the eigen-
vector method had the lower average error 11 times and the median had
the lower average error 19 times Th1s should be 1nterpreted to mean
that for eleven different choices of a signal vector and column vari-
ances, the eigenvector error (averaged over 30 different sets of noise
for those variances) was lower than the other 11 times and the average
median error was lower 19 times.

Since each one of these trials 1s really the average of 30 trials
on 30 noise sets, then one might say that for 19 trials, the "expected
value" of the error of the median estimator 1s lower than that for the
eigenvector method. The term "expected value" 1n quotation marks 1s
really an approximation of the expected value by an average of thirty
sets of noise.

For the most part, the results from Table VI are as expected given
the results 1n Table V. However, there are a few points about Table VI
which need to be stated. Even when the median of the average errors of
the median estimator 1s lower than for all other estimators, the fol-
lowing 1s true For some noise levels, the eigenvector technique re-

sulted 1n the 1lower average error nearly as often as the median
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technique. Also, as often as 7 out of 30 times the average error of the
median estimator 1s higher than the average errors for the sample aver-
age or eigenvector method. So, the median estimator 1s not as con-
sistent as the other estimator, but 1t 1s usually better

The median outperformed the eigenvector and column average methods
even though the Tlatter two methods are supposed to be optimum for
Gaussian noise (used 1n the tests) while the median 1s not  This 1s
because the answer for the average estimator 1s an optimum estimator of
a parameter corrupted by Gaussian noise as long as the noise variance 1s
the same for every sample point. This obviously does not apply to this
case as the variances vary a great deal. The following example from

Huber (1981) 11lustrates this point well. Let
F = (l-e)X + eY,
where X ~ N(0, @2) and Y ~ N(0, 9072)

Here,

1
d =
N N 1

"=
TR

=rl
'X1|’ ' [ b%

1=1

are being compared as estimates of the scatter (variance) of the random
variable F For a single Gaussian random variable, sy 1s the optimum

estimator. Define the asymptotic relative efficiency, ARE, as

var(sN)

[E(sN)]

ARE =N112°V3F—T3§T

[E(d,)1

where var 1s the vartance operator
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Huber shows that for e < 001, ARE(e) < 1, which means that sy 1s the
more efficient estimator However, for .002 <E < .998, dN 1s the more
efficient estimator Therefore, 1f the data departs at all from the
nominal Gaussian model, then the performance of the least-squares based
estimators deteriorate rapidly compared to other types of estimators
such as the median estimators. The eigenvector method does not reach
the potential lower 1Timt of error because of problems previously dis-
cussed 1n the Section (2.3). This leads to the search for better esti-
mators using maximum likelihood methodology, and to the concept of

robust estimators which will be discussed 1n the next chapter.
2.5 Chapter Summary

Many Tleast-squares based Q estimators have been evaluated The
Wiener filter method has been dropped from consideration because 1t 1s
very sensitive to the choice of parameters. Further, 1t 1s not gener-
ally possible to set the parameters so that the estimator works well on
multi-layered models The spectral ratio method works well on broad
band data, but does not do well on data with a realistic spectrum. In
fact, the spectral ratio method only yields reasonable results when the
bandwidth of the estimation 1s reduced to include only the main lobe 1n
the received spectrum, and not the spectral zero Limiting the band-
width to the main lobe or peak 1s to be avoided 1f possible because 1t
reduces the number of data points over which the attenuation estimation
1s made

Attenuation estimates at each frequency and for each receiver pair
can be formulated 1n terms of matrices. This matrix formulation leads

to a new model for attenuation, given by Equations (36) and (37), and
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subsequently leads to new methods of Q estimation. They 1include the
e1genvector decomposition method and the sample median and sample mean

of the columns.

The median estimator 1s generally the best of these methods, al-

though the eigenvector decomposition method does sometimes outperform
the median method Both the eigenvector decomposition and median
methods are better estimators than the average of the columns. Of these
two, the median estimator 1s preferred because 1t 1s simpler to compute
and 1t never fails to converge. The excellent performance of the median
estimator leads to the consideration of a group of estimators known as
robust estimators, since the median 1s a common example of a robust

estimator.



CHAPTER III
ROBUST ESTIMATION

The principle attenuation algorithms discussed so far, the spectral
ratio method, the Wiener filte method, and the eigenvector method, are
all designed using a least-squares criterion. That 1s, the parameters
are chosen to minimize the square error between the data and the model
prediction based on the chosen parameters. The least-squares criterion
1s frequenctly chosen for many theoretical reasons. These reasons
include (1) least-squares optimization problems generally lead to more
tractable mathematics (2) filters and estimators based upon least-
squares criterion frequently have nice Tlinear properties (3) least
squares estimators are maximum 1ikelihood estimators for Gaussian noise.

There are also many reasons not to use least-squares estimators.
Whilé they are maximum-l1ikelithood estimators for Gaussian noise, the
estimators are not necessarily optimum for any type of real data
Gaussi1an noise models are very popular for the same reasons as least-
squares techniques, they 1lead to pleasing theoretical results For
example, the maximum 1likelihood estimate of the data corrupted by
Gaussian noise 1s the sample mean. In fact, according to Watt (1983),
the reason Gauss chose the Gaussian noise distribution 1s because 1t led
to the arithmetic mean as an optimum estimator, not because 1t 1s a good
descriptor for any sets of real data However, there 1s one

theoretically sound reason for assuming a Gaussian noise distribution,

68
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and that 1s the Central Limt theorem. This theorem states that as n
increases to infimity, the distribution of any linear sum of n random
variables (of any continuous distribution) will approach a Gaussian
distribution

The greatest weakness of Tleast-squares estimators 1s they lack
robustness. Estimators are generally considered to be robust 1f they
are relatively 1mmune to extreme outlying data points or 1f their
performance does not deteriorate significantly when the actual noise
distribution encountered differs from the assumed model. Unfortunately,
least-squares estimators are extremely sensitive to outliers because
they give equal weight to all of the data points. This means that one
very bad data point may pull the estimate away from many good points due
to the very large size of the error. In addition, as demonstrated by
the example from Huber (1981) discussed 1n this thesis, least-squares
estimators are also sensitive to deviations from the assumed noise
distribution. From this point, a reasonable next step 1s to analyze the

errors and see 1f the estimates are robust.

3.1 Data Modelling of the Q

Estimation Problem

The model for the data matrix, A, given by equation (37) has been
used as a working model for the matrix whose elements are Q estimates
In this model, the Q estimates themselves are considered to be
contaminated by Gaussian noise. On the other hand, 1t would seem more
physically reasonable 1f the Gaussian noise was modelled as additive
noise to the original signal. That 1s

r(t) = s(t) + n(t)
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where r(t) 1s the received P-wave signal, n(t) 1s Gaussian white noise,
and s(t) 1s the "pure" signal. Since the Fourier transform 1s a linear

operator, 1t follows that
Rlw) = S(w) + N{w)

where R(w), S(w), and N(w) are the Fourier transforms of r(t), s(t), and
n(t) respectively. The spectral ratio defined by Equaion (8)
corresponding to the received signal ry(t) and rp(t) 1s

Sz(w) + Nz(w)

SR(w) = Sl(w) +‘Niﬁn)]

= - In[

(50)
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where R,(w) = Fourier transfer of r,(t).

It would be convenient 1f Equation (50) could be reduced to the

form
SR(w) = SRo(w) + N (51)
where
Sz(w)
SRo(w) = - 1n[SITZﬁJ

and N 1s a noise term independent of S;(w) and Sp(w). If Equation (50)
could be reduced to the form of (51), then a fairly simple maximum
11kel1hood estimator could be derived from SR(w) based upon the
functional form of N (as a function of Ny(w) and Ny(w)). Unfortunately,
separation of the terms 1n Equation (51) 1s not possible and therefore
the distribution of the errors 1n SR(w) must be analyzed numerically
using computer simulations

Because of the symmetry of the model 1n Equation (50), analyzing

1/SR(w), which 1s proportional to Q, should give the same result as
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analyzing SR( w) To 1mplement the simulation for attenuation
estimation, or equivalently analysis for the estimation of SR( ), a
simple one-dimensional model 1s constructed. This model 1s similar to
the ones used to test the spectral ratio and Wiener filter Q estimators

earlier 1n this work. The model 1s as follows

Y‘l(t) Sl(t) + nl(t)

rpft) = sp(t) + ny(t)

where ri(t) and ry(t) are the received P-wave signals at two adjacent
receivers, and ny and n, are white Gaussian noise processes such that
the signal to noise ratio (SNR) 1s 100. Here, SRo(w), the 1deal log-

spectral ratio 1s given by

_ L

As before, Z 1s the model Tlayer thickness, ¢ 1s the P-wave phase
velocity, and the attenuation, Q, 1s assumed to be frequency

1ndependent. Then Q can be estimated from SR(w) by

Q= ZeSRteT (53)

where SR(w) 1s as defined 1n Equation (50). Note that a value for Q can
be calculated for every frequency point. With Q = 50, and the source
spectrum as shown 1n Figure 4a. Q 1s calculated for the 100 frequency
points which 1ie within the fequency band of the source. This process
1s repeated for 50 different sets of noise, resulting i1n a total of 5000
Q estimates.

These 5000 Q estimates are put i1nto bins and a histogram of the

values 1s made. A plot of this histogram appears as the solid 1ine 1n
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Figure 8. The data points at each end of the graph which appear to rise
sharply simply represent the total number of values which exceed the
1imts of the histogram on either side. The main lobe of the graph,
1ying approximately between 35 and 65 on the x-axi1s, appears to have
roughly a Gaussian shape. But 1t 1s 1mportant to determine how well the
data really fits a Gaussian curve. A Gaussian curve 1s generated to
approximately match the histogram 1n plot amplitude, mean, and width of
the main lobe using "eyeball" fit. The variance of the histogram data
1s very high due to the 1large number of outliers (the variance =
2300). So the variance of 1interest 1s that of the Gaussian curve which
1s fitted to the histogram (the Gaussian 1s the dotted curve 1n Figure
7). Note that the Gaussian curve fits the main lobe of the histogram
data very well except for that part of the main lobe which lies to the
right of Q = 55.

The variance of the best-fit Gaussian curve 1s 64, so the standard
deviation 1s = 8. The histogram plot deviates widely from the Gaussian
1n the tails, because of the large number of data points with very large
deviations from the mean. For example, approximately 350 of 5000 data
points lie outside the Timits of the histogram That 1s, 350 of 5000
data points 1i1e outside plus or minus six standard deviations from the
mean To demonstrate how badly the model deviates from the Gaussian
model, consider the following probabilities. The probablity of one data
point from a Gaussian distribution being outside plus or minus six
standard deviations from the mean 1s less than 1078, By using a
Gaussian approximation for a binomial distribution, 1t can be shown that
the probability of finding 350 or more of 5000 data points outside of

8
0-4x10

plus or minus si1x standard deviations 1s about 1 Obviously, the
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tails of this distribution are not Gaussian, though perhaps the main
lobe colld sti111 be modelled as a Gaussian distribution. Clearly, an
estimator which 1s less sensitive than least-squares estimators to these
frequently occuring outliers than 1s needed. A more rigorous approach
to deriving estimators which are optimum for a particular noise
distribution 1s known as maximum 1ikelihood estimation theory. The rest
of this chapter deals with the development of maximum T1ikelihood

estimators and their application to some data models.
3.2 Maximum Likel1hood Estimation

The description here of the fundamental 1deas of maximum 1ikelihood
theory are taken mainly from Van Trees (1968), while the sections which
relate to robust estimation come mainly from Huber (1981), Watt {1983),
and Kassam and Poor (1985)

Bayesian estimation theory can be thought of as an extension of
Bayesian detection theory. In Bayesian detection theory, the goal 1s to
make a "good" guess about which of two possible hypothesis, Hy or Hy, 1s
true. Since the guess 1s to be as "good" as possible, a quantitative
measure of the "goodness" of the guess must be used The risk R 1s the
mathematical measure of the decision quality and the optimal detector
minimzes the risk, R. Denote Pr(H,IH;) to be the probability of the
event H1iHJ. That 1s, Pr(H1IHJ) 1s the probability of guessing H, given

that Hy 1s true (1 and j are 0 or 1) Then the risk, Ry, 1s defined by
R = CooPoPptHglHg) + C1gPoPp(HylHg) + C1qPPL(H{IH{) + Cq1P1P.(HglH;)

where the C1J are the cost functions associated with the events H1IHJ,

and Pg and P; are the a priori probabilities of the events Hp and H1-
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For Bayesian estimation the cost function 1s, 1n general, a
function of the parameter to be estimated, a, 1ts estimate, a, and the
observed random variable, X. Note that x may be vector valued. Most
cases of 1nterest are 1imited to cost functions C which are functions

only of the estimation error, a - ’a\(i) Then, the risk R can be written
R = E{C[a - 2(x)1}

or

+
R =f°°daf°°C[a - 2(x)1 P, (a, x)dx (54)
) e ==

where Pa,x (a,x) 1s the joint probability density of the estimation
parameter a and the observation, x. The estimation parameter, a, 1s
considered at this point to be a random variable However, 1t will

later be restricted to be a non-random parameter. Common cost functions

1nclude
Cle) = 2 (55)
Cle) = lel (56)
1, lel >A/2
Cle) = (57)

0, lel <a/2
A
where the error e = a - a(x), and A1s an undefined parameter It 1s
interesting to note that 1f C 1s chosen as 1n Equation (55), the square

error cost function, then setting

to minimize R results 1n

+®
6\()_() =/ a Pa')_((ab_()da

[> ]



76

Now, a(x) 1s the conditional mean, and Palx(a|39 1s the conditional
probability density of a given x. If C 1s chosen as 1n Equation (56),

the absolute error, then

a(x) -
i da Pah_( (alx) =/:(x) da Palgs (alx).

where 2 1s the conditional median, or the median of the a posteriorm
density.

The cost function i1n (57), known as the uniform cost function, 1s
the most 1mportant of the three 1n that 1t leads to the maximum

11kel1hood estimate  The risk expression for this cost function leads

+oo +A/2
R =f- d)_( P)-(()_() 1 -/: _A/zpah.(. (al;)daj,, (58)

(> o]

to

where Px(z) 1s the probability density function of the observation, x
M1n1m1z:;g R 1n (58) requires maximizing the inner 1ntegral. As

A becomes arbitrarily small, the value of 2 which mnimized R 1s the
maximum of the a posterior1 density, P, (alx).  Since the natural
Togarithm 1s a monotone 1ncreasing funct1on:-and since all probabilities
are non-negative, then maximizing the conditional probability 1s
equivalent to maximizing the natural 1logarithm of the conditional
probabili1ty density Remember that the conditional probability density
1s also the a posteriori density Working with the 1logarithm of
probabil1ty densities 1s convenient because the natural log of Pa'x(alzj
often has a fairly simple form The following, known as tﬂ; MAP

(Max1mum a Posteriori) equation 1s a necessary, but not sufficient,

condition for locating the maximum of R.
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§ln Palx
5a

(alx)
= 0. (59)

as= 3(5)

For many problems of 1interest, the estimation parameter, a, 1s not
actually a random variable, but 1s actually an unknown constant. It 1s
possible to rewrite the maximum a posteriori equation to take this 1into

account. From Bayes' Theorem
P)_(la()_da) . P (a)

Pal)_((aQ() = Fx()_() o

Finding an 4 to maximize In Palx (alé) 1s equivalent to maximizing

L(a) = 1n lea

(xfa) + 1n P,(a)

since P,(x) 1s not dependent on a  Now, assuming a 1s no longer a

random variable, then the second term can be dropped. Thus,
L(a) = 1n lea(lja) (60)

According to Van Trees (1965), this corresponds to the 1imiting case of
a maximum a posteriori estimate 1n which the a prior1 knowledge
approaches zero. The log-likelthood function, L(a), or the 1ikelihood
function, Pyjs(xla), are now the functions to be maximized by the choice

of a. As before, a necessary condition for maximization 1s

sL(a) - 0 -
Té——la,_é\—ga-ﬁn P)_da(g_(la)]a:/a\ 0 (61)

which 1s known as the likelihood equation. The estimate derived from
Equation (61) 1s known as the maximum 11kelihood estimate.

Analysis of the variance of maximum Tikelihood estimators 1s often
difficult, but there are various bounds on the variance of the

estimates. One very useful bound 1s known as the Cramer-Rao bound The
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Cramer-Rao bound 1s a Tlower bound on the variances of any unbiased

estimate, ngg, of a. It can be stated 1n two forms, they are

Var[A(x) - al > __H_T-z_l (62)
or
var[A(x) - a] > —} (63)
_E[6 L(a)]
522
provided
6lea(§|a)
5a
and
s2p_, (xla)
xla'=
ba

ex1st and are absolutely 1integrable. Here, Var 1s the variance
operator. It can be shown that the equalities 1n Equation (62) and (63)
hold 1f and only 1f

Lga) = [a(x) - al . k(a) (64)

where k(a) 1s some function of a. An estimate 1s said to be efficient
1f the equality 1n Equation (62) or (63) holds (e g. the estimate meets
the Cramer-Rao bound). It can be shown that 1f an efficient estimate
3(5) of a exists, then the estimate 1s the maximum 1ikelihood estimate
of a. However, 1f an efficient estimate does not exist, meaning that
Equation (64) does not hold, then the only thing known about the
variance of the maximum li1kelihood estimate 1s that 1t must exceed the

Cramer-Rao bound It 1s i1mportant to remember that the Cramer-Rao bound
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only applies to unbiased estimates, although there exists similar bounds
for biased estimates.
To 1nvestigate the use of maximum 1i1kelihood estimation and Cramer-

Rao bounds, consider the following simple but useful model
Xy =a+n, 1=1,2, ., N (65)

where X = [xl,xz,.. ,xN]T 1s the observation vector, a 1s the parameter
to be estimated, and n, 1s a white noise process which 1s N(0, o 12).

For this model.

N (x1-a)2
1
P ...(xla) = @ e Z2 | (66)
xla'= =1V o |2
Then,
(a) (xla) = In[—L 7 N['(x"a)z (0.)]
L(a) =1InP xla) = 1In + X - 1n (o
xla*= (2x)V/2 1=1 2o12 !
Applying Equation (59) yields
N (x,-a)
éL(a) - 1 -
"Eﬁi‘la=9 = 12& —7 0 (67)
1
Therefore, N X,
z
A =171 ;;2 (68)
1
z
1=1 E?Z

Note that 1f o, =0 for1 =1, 2, ..., N, then
N
A_1l
a = T X
N’1=1 1

which 1s the familiar sample mean Obviously, E(R) = a. So, the
estimate 1s unbiased and the Cramer-Rao bound applies Because

sL(a)

ba
estimate must be efficient Since

from Equation (67) has the form of Equation (64), then the
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La) . _ % 1
P 151 72
then by Equation (63)
Var[d(x) - a] = ‘n—l‘l— (69)
=
1=1 3:2

If o =0 for 1 =1, 2, ..., N, then the variance simplifies to
var[d(x) - al = o—

Note that Equation (69) 1s the same as that given by Eqution (49) as the
optimum minimum error from a weighted average Therefore, Equation (49)
describes a Cramer-Rao bound.

According the Van Trees (1965), under ‘“reasonable general"
conditions the maximum Tikelihood estimate converges "in probabi1lity" to
the correct value, a, as N approaches 1infinity Also, the maximum
11kelihood estimate 1s asymptotically Gaussian with mean a. Finally,
even 1f the maximum likelihood estimate 1s not efficient, the estimate
1s asymptotically efficient. In other words,

var[4(x) - a]
T1m = 1.

E[é]npx'a()_(la)]z-l
- Z
6a

If the maximum Tikelihood estimate 1s efficient, then no unbiased

N—oo

estimate with a Tlower variance exists. On the other hand, 1f the
maximum Tikelihood estimate 1s not efficient, then there may exist an
unbiased estimator with a lower variance Unfortunately, there 1s no
simple rule for finding these estimators It 1s also possible that
biased estimates exist which may have lower variances than do maximum

11kel1hood unbiased estimates But, since they are relatively easy to
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find optimum estimators, maximum 1likelthood estimators are very
popular. They are optimum 1n the sense that the maximum 1ikelihood
estimate yields the estimate which 1s most 1ikely to have produced the

given observed parameter set.
3 3 Robust Estimation

There are three basic types of robust estimates. Two of these
types will be dealt with i1n this thesis. The first type 1s called the
M-estimate which has an maximum l1ikelihood form, and may actually be a
maximum likelihood estimate The second type of estimate 1s known as
the L-estimate, which uses a linear combination of statistics That 1s,
the L-estimate uses a linear combination of the data or a Tlinear
combination of some function of the data. Means and medians are both
examples of L-estimates, and they are also M-estimates for particular
noise models.

The M-estimate 1s the solution of an equation which can be of two
forms. The first 1s the equation

e = ? f(x1, a) (70)
where 2 1s the estimate, and f 1s some function of the estimate and the
observed data, x The estimate 1s found by choosing the a to minimize e
1n Equation (70). The alternative form 1s the equation

? F(x,, a) =0 (71)

where

_ &
F(xI,y) = 5y f(x1,y)
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If f 1s of the form f(x,y) = -1n p(x,y) where p 1s a probabil1ty density
function, then the M-estimate 1s a maximum 1ikelihood estimate.

In many problems, 1i1ncluding the attenuation estimation problem
discussed here, the estimate of interest 1s a location estimate Thus,
Equation (71) becomes

?FH1-Q)=O (72)

which can be written as

= Ay _ (73)
1 wl(x1 -a) =0
where
F(x1 - a)
s e (74)
1 a
Therefore, a can be written as
Z w Ll X
A=11"71 (75)
= w]

1
This means that the location estimate, 3, can be written as a weighted

average of the observed data values {xl, X9, ...,xN} If the model 1s
as given by Equations (65) and (66), then the estimate given by Equation
(68) 1s of the same form as Equation (75). Note that Equation (75) has
arisen without assuming a maximum Tikelihood estimation form.

Important properties of any estimate are the bias and the variance
of that estimate A good estimator 1s hopefully unbiased, but the most
important quality of an estimator 1s the variance of the estimate
Obviously, the variance of the estimate should be as small as
possible. As has been discussed, 1t 1s also 1mportant that the estimate
be robust A good 1ndication of the robustness of an estimator 1s the

1influence function of the estimator The 1nfluence function 1s a
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description of the effect a particular observed data value has on the
estimate. For M-estimates of Tlocation, the 1influence function as
defined by Huber (1981) 1s proportional to the function F 1n Equation
(72). If the function 1s bounded, then the estimate which 1s derived
from Equation (72) 1s generally considered to be robust. In other
words, 1f
Tim [F(t)] <

then observed data values which are extreme outliers have only a 1imited
role 1n determining the optimum estimate, a. In fact, some
statisticians prefer a "redscending" 1nfluence function where
Tim {F(t)] =0
so that extreme outliers, which may be "bad" data points, have very
11ttle 1nflucence on the estimate

As previously stated, an estimator 1s robust 1f the estimates are
reasonably efficient estimates on data which deviates from the nominal
model, or 1f the estimate 1s relatively 1mmune to outlying data
points However, estimators which have bounded 1nfluence functions
generally meet the other two criteria, and hence are robust. If the
influence function, F(t), 1s Tlinear 11n t, then 1t 1s obviously
unbounded Since this corresponds to the sample average as an estimate,
then 1t 1s obviously not robust. An estimator which has an 1nfluence
function which 1s not bounded but which 1increases less rapidly than a
Tinear function 1s considered to be somewhat robust. A common example
of a robust estimator 1s the median, for which the influence function F

can be written
-1, t«<0©0
F(t) ={0, t
+1, t=0

1]
o
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Obviously, this 1nfluence function 1s bounded
The L-estimate 1s a linear combination of a function h of the

observations. The estimate 1s of the form
A=
a ? w1h(x1)

Estimation using L-estimates requires finding the optimum set of weights
{wl, W, ...} based upon a particular criterion The weights should be
chosen so that the estimate 1s unbiased or nearly so. There 1s then a
tradeoff between minimum variance and robustness, where the best
estimator has a bounded 1influence function but 1s also fairly
efficient. Both the sample mean and the median are L-estimates as well
as M-estimates It 1s possible to find L-estimates which are as
efficient as M-estimates. In fact, 1t can be shown that for most
distributions there 1s an optimum L-estimate which has the same
asymptotic efficiency as the optimum M-estimate. However, there 1s no
general method for finding optimum L-estimates. Because of the
difficulty of finding optimum L-estimates 1n general, and because the
alpha-trimmed mean, defined later, has good properties, the only L-

estimate under consideration will be the alpha-trimmed mean
3.4 M-estimates
Consider the data model given by Equation (37)

Xq9 =85 + Ny, 1= 1,2, .. , M, 3=1,2,. , N (76)

1J

where the x,j 1s an observation, a; 1s the location parameter to be
estimated, and Ny represents 1ndependent, uncorrelated random noise

The noise process, Ny 1s such that
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,5, 1f 1=k and 3=1

E[n1J . nk]] ) 0, otherwise )
Note that thi1s model 1s essentially the same as given by Equations (37)
and (38) except for notation and that no distribution has been chosen
for the noise As 1n Equation (37), 1f the data have been cast as a
matrix where Xyy 18 the (1,3) element of the matrix, then the noise 1n
each column has the same variance. In this section, maximum Tikel1hood
estimators based upon the model 1n Equation (76) w111l be derived.
being Gaussian, that 1s, n

First, consider the case of n, 1s

J 13
N(O, 032). Since the standard deviations, 032, are unknown, then a
maximum 11kelthood estimate of a = [al, A, « aM]T must also estimate
the standard deviations ¢ = [0}, 0, ..,(rm]T. This 1s the problem
considered by Gimlin, Keener, and Lawrence (1982) The log-11kelihood

function for this model with Gaussian noise 1s

L(a) = =N 1p (2q) - g Min(c ) - 2 zN 1 (x. - a2 (78)
= 7 3=1 J 2'1=1 5=1 332 1] 1
Setting
3Lla)y Ao, k=1,2
= AN ’ = s ’ sM
83y 'ay=ay
and
sL(a) v, -0,1=1,2, ., N
a1 % Ty

to solve for ﬁk and 91, the estimates of a, and oy, results 1n the

following system

N x
kJ
L
A LTl &T L, M (79)
k _N'_l.‘" E) 9 E)

J:l 5?
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and

=

9]2 =ﬁ' z (xﬂ - a1)29 1=1,2, ..., N (80)

1=1

There 1s no closed form solution to Equations (79) and (80), so the
equation must be solved numerically In their paper, Gimlin, Keener,
and Lawrence (1982) use a steepest ascent algorithm to maximize Equation
(78) to find the optimum @ and Q

They did not prove that the steepest ascent algorithm will
converge. They did succeed, however, 1n proving the existence of at
least one solution to Equation (79) and (80). Gimlin, Keener, and
Lawrence (1982) also reported that 1t was necessary to constrain the
steepest ascent algorithm to keep the values of the estimate vector_@
from approaching too closely to any one column of the data matrix X
(with elements x1J) They also discussed the uniqueness of the solution
to the problem. While they were unable to give a proof of the
uniqueness of a solution either to Equations (79) and (80) Gimlin,
Keener, and Lawrence (1982) do state that there 1s strong numerical
evidence that the steepest ascent method converges to a unique maximum
of Equation (78). However, the form of Equations (79) and (80) suggest
that an 1terative technique may be used to solve the system given by
Equations (79) and (80). The 1terative method 1s as follows

1. Find the estimate Qk by using Qk = med1an {xy1, Xy2» s XkNDs

k=1,2,. ,M.

2 Using the currewtéL calculate ? using Equation (80)

3. Calculate a newlg_from Equation (79) using the current @

4 Go to step (2) and repeat as necessary

While 1t has not been proven that this 1terative algorithm
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converges, 1t seems reasonable that 1t should for many cases. Assume
first that the data 1s noisy, but good enough so that the median 1n step
1 gives a reasonable estimate of é@ If we assume that the 1nitial
estimate of_@, 1s close enough to a so that the variance estimates given
by Equation (80) yield higher variance for "bad" data columns relative
to "good" columns, then the next guess for‘ﬁ_should be closer. The
estimate @Loftg_ln Equation (79) 1s a weighted sum of the columns of the

data matrix X. This can be shown by rewriting Equation (79) as

A N

a = ga XkJ wJ , k=1,2, . M (81)
J..

where
1
732

wJ = "TT"‘I' ,J=1,2, .., N. (82)
b
p=1 —&J-Z

If the Jth column 1s noisier than the kth column, then most of the
t1me,052 >°k2 . Therefore 1n the updated estimated @, the noisier jth
column contributes less than the "cleaner" kth column. Thus the new
estimate éi should be a better approximation for a than the previous
estimate, leading 1n turn to even better estimates of Q . So, while
convergence has not been proven, 1t seems plausible that this 1terative
algorithm should converge

Maximizing the log-likelihood function given by Equation (78) 1s

equivalent to minimizing

) N ( o Mo (x1J-S1)2 )
H(S) = = M In(S + > = 83
=1 I+M 7.0 5 st+m

where
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1s the unknown column vector of length (M + N) The 1n1tial guess
necessary for the steepest descent method 1s found by following the
first two steps for the 1terative solution to this problem That 1s,
estimate Ei from the median or mean of the observed data points and use
this estimate for a to estimate the standard deviations, @ . Locating
the minimum of H(S) 1n Equation (83) using the steepest descent
algorithm 1nvolves evaluating the gradient of H(S) for the previous
guess Then a search 1s made, 1n the direction of the negative
gradient, for the minimum H(§) Th1s means that a parameter t 1s chosen

to minimize H(§§1) - tu) where §§1) 1s the 1th guess at the solution and

u 1s the gradient of H at §}1). Then the guess 1s updated according to

i USSR

where t* 1s the scale factor which produces the desired minimum i1n H

It 1s 1nteresting to note from the form of Equation (83) that the
function H to be minimized 1s not Just the weighted sum of the square
errors. There 1s a second term,

N

JEI Mln(SJ + M
and the purpose of this term 1s to guarantee that the estimate which
minimizes H 1n (83) 1s an unbiased estimate. Unfortunately, this
minimization problem has an 1nstability which can easily occur
Remember that finding the zero of the gradient, or the minimum of H(EQ,
corresponds to simultaneously solving Equation (79) and (80). If the.g

portion of some guess S happens to 11e too close to an observed data

vector

T

X; = [Xgqs X Xy ]

11° "21° > ™M1
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then the sum 1n Equation (80) will be very small and so w11l be 912.
Th1s means that the weight, wy, (Equation (81)) on the 1th column for
the next estimate of a will be much higher on the next 1teration,
pushing the estimate even farther away The result 1s convegence to the
data vector which 1s not generally the optimum solution. This does

happen for the 1terative method. The gradient of H, f, 1n Equation (83)

1S given by
y (S = %) (84)
J=1 SJEM , k=1,2,.. ,M
f -
< u -t (X -S )2 k = m+l M+N
k (85)

While 1t 1s not clear from Equations (84) and (85) that the steepest
descent may converge to a data vector, i1n practice 1t occassionally will
unless the algorithm 1s constrained so as not to approach to closely to
the data vector.

The Cramer-Rao bound for this model must be calculated using
Fisher's 1nformation matrix, but 1s has the same form as Equation
(69) Since this problem cannot be expressed in the form given by the
vector equivalent of Equation (64), then the estimate 1s not efficient
and wi1ll not reach the Cramer-Rao bound This vector case maximum
11kel1hood estimator 1s not actually a robust estimator by most
definitions of the term. However, 1t does have some robust-like
properties. If one data vector 1s particularly "bad", then 1t will
st111 have a significant effect on an 1ni1t1al estimate (1f the 1nitial
estimate 1s done using an average). As the steepest descent converges,

the variance estimate of the "bad" vector 1ncreases, and the
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corresponding contribution to the gradient decreases. This can be seen
from Equations (84) and (85). Thus, the "bad" data vector contributes
less and less to the estimates as the method converges. Since "bad"
data points contribute less than "good" data points, this method can be
considered to be somewhat robust.

A wider-tailed noise distribution, which 1s more 1likely to produce
“bad" data points than the Gaussian, and, which results 1n medians as
maximum 1likelihood estimates 1s the Laplacian or double-exponential
distribution. The probabi111ty density function for Laplacian noise has

the form

= b -bixl
P(x) 2-e
Consider the previously studied model

X.=a+n, 1=1, 2, .., N

where X; 1s the observed data, n, 1s Laplacian noise, and a 1s the

parameter to be estimated. The maximum 1ikelihood estimate of a, Q,ls
a = median {x;, Xy, . 5 Xy}

Given a vector model for the data given by Equations (76) and (77),
with a Laplacian noise process, the conditional probability density 1s

given by

(xla) = m m (z=e 33~ % (86)

Thi1s leads to a log-likelihood function given by

N M N (87)
_ -MN i i
L(a) = 52 1n(2) + M 3?1 1n(b ) El ;glelx a, |
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Setting

6L(a) ,
A=
Sak ak ak

and

sL(a)

by by =570 T =12 - s N
1 Py = by

to maximize L(E) results 1n the following system of equations, which 1s

analygous to Equation (79) and (80) for Gaussian noise,

N
JEI bJ . sgn(xkJ - ak) =0,k=1,2, ..., M (88)
b, = M 1=1, 2 N (89)
'l M ] 9 &9 o >
1§1 lxﬂ - a1I
Here, sgn(x) 1s the sign operator defined as !
0, x=0
sgn(x) = {-1, x<0
+1, x>0

Note that from Equation (88), ék 1s a weighted median of data points
from the kth Equation row of the matrix X, and by 1s 1nversely
proportional to an Ll estimate of the scatter of the data values.

This system can be solved in the same manner as that for Gaussian
noise, using either a steepest ascent method on the function L(g) or by
an 1nterative method using Equations (88) and (89). When an estimate
approaches too closely to a data vector, both methods demonstrate the

same type of 1nstabi1lity as did the Gaussian noise based methods

Again, the steepest ascent must be constrained to stay away from the
data vectors. Due to the non-linear nature of this median-type

estimator, a lower bound on the variance of the estimate has not been

calculated
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35 L-Estimates

An L-estimate 1s defined as being an estimate which 1s a sum of
order statistics. This means that, an L-estimate 1s a sum of the
observed data values or a sum of a function of the data values The
sample mean and median are both examples of L-estimates A useful L-
estimate which 1s not also a maximum likelihood estimate 1s the alpha-
trimmed mean. The alpha-trimmed mean 1s an optimum L-estimate for the
"least-informative" distribution given by the following density function
(Huber, 1981)

2

> Ixl <c
f(x) =

1 2
¢y e'cIX| + /e, Ixt > c.

The alpha-trimmed mean of a set of data values Y = {Y;, . , Yy}
can be found 1n the following manner. Let a set Z = {Zl, . s ZN} be an
ordering of the elements of a set Y such that 7, < Z, < .. <Zy Then
the alpha-trimmed mean of the set Y 1s the average of the elements of
the set Z less k data points on each end. In other words, Q, the alpha-

trimmed mean of the set Y 1s given by

N-k
= Z1
1=k+1

A
U N

The number of points trimmed off each end of the set Z 1s related to the
trimming parameter o by k = 1nt (aN), where 1nt(x) denotes the largest
1nteger less than or equal to x

The alpha-trimmed mean has many useful properties. This estimator
retains the robust features of the median because extreme outliers or
"bad" data points only 1influence the estimate 1n that they help to

determine which other data points contribute to the estimate. Yet the
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alpha-trimmed mean can be more efficient than the median for
distributions close to Gaussian. In fact, the alpha-trimmed mean may be
a very good estimator 1n a situation where the noise distribution 1s
primarily Gaussian but 1s contaminated by a longer-tailed distribution
such as the Laplcailan distribution. In this case, the few outliers from
the longer-trailed distribution will be trimmed away and the rest will
be averaged. Thus for a Gaussian distribution contaminated by a
Laplacian distribution, the alpha-trimmed mean may be expected to
outperform maximum 1i1kelihood estimates based upon either pure Laplacian

or Gaussian noise models.
3.6 Results

Consider a model of the form given by Equation (76). In this case,

though, the noise N,y 1s a random process given by

ny = (1 -e) ng,, + (e) ne, (90)

where ng,; 1s a white Gaussian noise process, ne,; 1s a white Laplacian
noise process, and e 1s a contamination parameter. Thus n,; 1s a
Gaussian noise process which 1s contaminated by Laplacian noise  This
contaminated distribution 1s used because 1t 1s a good model for a noise
distribution shown 1n Figure 8

An experiment 1s conducted to test estimators on the model given by
Equation (76), where the noise model 1s given by Equation (90) This
expermment 1s essentially the same as that one described i1n the previous
chapter which produced the results shown 1n Tables V and VI The
primary differences between this experiment and the one previousy

described are that this experiment uses contaminated noise with varying




TABLE VII

MEDIANS OF NORMALIZED AVERAGE NOISE VARIANCES -
LAPLACIAN CONTAMINATION

Contamination Max Noise Alpha-Trimmed ML ML
e Variance Mean Average Laplacian Gaussian Median Normalization

00 0 001 73 10 39 28 74 4 0x10:g
00 0 01 78 10 37 27 66 3 6x10_3
00 01 78 10 40 31 67 3 2x10_‘2
00 05 73 10 40 27 69 7 9x10_7
0 01 0 001 73 10 46 32 74 3 9x10"5
0 01 0 01 69 10 34 29 62 4 2x10_\3
0 01 01 73 10 33 21 63 3 2x10_2
0 01 05 74 10 40 29 72 9 9x10_6
01 0 001 57 10 51 52 57 5 1x10_5
01 0 01 70 10 50 39 67 7 8x10_3
01 01 74 10 41 34 73 3 3x10_2
01 05 52 10 24 17 45 8 3x10_4
05 0 001 55 10 51 59 55 1 2x10_3
05 0 01 52 10 44 45 52 1 3x10_2
05 01 60 10 57 58 60 1 4x10_2
05 05 67 10 54 51 67 8 5x10_4
09 0 001 52 10 45 46 52 4 5x10_3
09 0 01 50 10 a8 51 48 3 6x10_2
09 01 51 10 47 50 51 3 8x10_]
09 05 51 10 44 46 50 1 8x10_4
10 0 001 56 10 51 54 56 4 1x10 3
10 0 01 53 10 a9 58 54 4 9x10 2
10 01 55 10 51 55 56 5 2x10_1
10 05 56 10 49 52 53 2 6x10

v6



95

amounts of contamination and that different estimators are being
evaluated. In this case, the estimators are the following sample
average, sample median, alpha-trimmed mean, a maximum 11kelihood
estimator based upon a Laplacian noise model, and a maximum 1i1kelihood
estimate based upon a Gaussian noise model. Also, to reduce computation
time, only 20 sets of signal vectors and noise variances were generated
and for each set 20 different sets of noise were generated. As was the
case for the previous experiment, both M and N were chosen to be ten to
approximate what one might expect from real data.

As previously mentioned 1n Section 3.1, the most i1mportant measure
of an estimator 1s the variance or error produced by the estimtor. So,
the quality of the estimtor 1s measured by the variance of the final
esimate. Since the actual noise distribution and signal-to-noise ratios
1in real data are unknown, 1t 1s necessary to test the proposed
estimators on a wide range of contamination levels and over a wide range
of signal-to-noise ratios.

Table VII shows the results of this experiment run for maximum
noise variances of 0.001, 0.01, 0.1, and 0.5, and for contamination
levels (e) of 0., .01, 0.1, 0.5, 0.9, and 1 0. Remember that the signal
vector 1s generated from a uniform distribution on (0,1). So, a maximum
column noise variance of 0.5, resulting 1n an "expected" column variance
of 0.25 1s more than the signal vector variance of 0.083 But, the
"expected" column variance of 0 05 from a maximum variance of 0.1 1s
less than the expected signal variance.

Since a table corresponding to Table IV 1s not shown, and since all
of the errors given 1n Table VII are medians of normalized average

errors, there needs to be another column to give an 1i1ndication of the
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absolute level of the errors, rather than Jjust relative 1levels of
error. For this purpose, a separate column, labelled Normalization, 1s
added. The normalization 1s the median of the error values used to
normalize the data 1n Table VII. Multiplying the normalization values
by the error values on the same row of the table would give an example
of typical error values for the various method.

From Table VII, many observations can be made regarding the
relative efficiency of the estimators. Since all of the normalized
average errors are less than one, and since the errors were normalized
to that for the sample average method, then all of the other methods
consistently outperformed the sample average. Thus the sample average
should be dropped from further consideration as an estimator on these
models.

As one might expect, the maximum 1ikelihood estimators based upon
pure Gaussian or pure Laplacian noise outperformed all others when the
noise 1s pure Gaussian (e=0) or pure Laplacian (e=1.0). The surprising
thing about the comparison between the two maximum Tikelihood estimates
1s that even for noise which 1s mostly Laplacian, the performance of the
maximum likeli1hood Gaussian estimator 1s still close to that for the
maximum likelihood Laplacian estimator. It 1s 1nteresting to note from
a comparison of the normalization values for different levels of
contamination that the performance of all of the estimators became worse
as the amount of contamination became larger This 1s 1n spite of the
fact that the overall noise variance remained unchanged.

The trimming parameter for the alpha-trimmed mean was adjusted to
provide optimum performance for each case. In terms of average error,

there 1s not a sigmificant difference between the performances of the
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alpha-timmed mean and the median estimators on the data This 1s
somewhat surprising for the data has been contaminated with primarily
Gaussi1an noise One would think that the alpha-trimmed mean would be a
somewhat better estimator than the median but 1t 1s not. In fact, the
opposite 1s true. The alpha-trimmed mean seems to do slightly worse
than the median for Gaussian data, but 1t does about as well as the
median for primarily Laplacian noise. Overall, the performance of the
alpha-trimmed mean and median estimators 1s definitely worse than that
of the two maximum 1ikelihood estimators when the noise 1s primarily
Gaussian. But, the simpler to compute median and the alpha-trimmed mean
do nearly as well as maximum 1ikelihood estimators when the noise
contains 10% or more Laplacian noise

Table VIII offers a different viewpoint of the results from the
previously described experiment, and 1s analagous to Table VI 1n the
previous chapter. That 1s, Table VIII Tists the total number of times
(out of 20 tests) the various estimators had the 1st, 2nd, or 3rd lowest
average errors.

There 1s nothing particularly surprising about the results 1n Table
VIII considering the results 1n Table VII. The relative performances of
the two ML estimators as shown 1n Table VIII are as expected from the
data 1n Table VII. While there were a few cases when for nearly pure
Gaussian noise the sample average did well, the overall performance of
the sample average was poor. In fact, the sample average nearly always
had the highest average error. Probably the only observation to be made
regarding the relative performance of the estimators for Table VIII
which could not have been made from Table VII 1s the following  When

the noise 1s half or more Laplacian, e > 0 5, the alpha-trimmed mean




TABLE VIII

NUMBER OF TIMES THE AVERAGE ERRORS ARE FIRST, SECOND, OR THIRD LOWEST-LAPLACIAN CONTAMINATION

ML

Gaussian

ML
Laplacian

1

Alpha-Trimmed

Max Noise
Variance

Contamination

Med1an

Average

Mean

3

2

1
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2
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estimator had the Tlowest average error much more often than did the
median and about as often as did the maximum likeli1hood (Gaussian)
method. This 1s 1n spite of the fact that from Table VII, the median
estimator average error for the alpha-trimmed mean 1s about the same as
for the median and higher than that for the maximum 1ikelihood
(Gaussian) estimator. Therefore the alpha-trimmed mean 1s a better

estimator than i1ndicated i1n Table VII.

3.7 Chapter Summary

Overall, there seems to be no clear winner among the estimation
methods discussed here. The sample average 1s obviously the clear
loser. The maximum likelihood estimators outperform the others, but at
a significant computational cost. Further, while the steepest descent
maximum 1ikeli1hood estimators generally converge 1n about 5 1terations,
they do occasionally fail to converge and the estimates appear to bounce
around between data column vectors. Hence, the steepest descent maximum
11keli1hood estimators may not prove to be reliable for real data.

There are many advantages to the sample median and the alpha-
trimmed mean. They can be calculated easily and they have no
convergence problems. Furthermore, for 1levels of contamination of
Gausssian noise by Laplacian noise which are greater or equal to 10%,
the median and the alpha-trimmed mean performed nearly as well as the
maximum 11keli1hood methods. Therefore, the median and the alpha-trimmed
mean may be the best estimators for use on real data, although the

maximum 1i1keli1hood method w11l also remain under consideration.




CHAPTER IV

ATTENUATION ESTIMATION FROM REALISTIC
MODELS AND REAL DATA

It 1s 1mportant to model the effects of additive noise 1i1n the
original 1nput signal on the attenuation estimate. This results 1n a
more accurate model of the types of noise (or errors) wnich might be
present 1n the final attenuation estimates Also, the robust estimators
described 1n the previous chpater should be tested on the same models
used to test the spectral ratio and Wiener filter methods.

To truly evaluate the accuracy of the various attenuation
estimation methods, they should be tested on realistic three dimensional
model data. This step 1s very important because borehole geometry may
strongly effect the estimates, and borehole geometry has not previously
been taken 1nto account 0f course, the best attenuation estimation
methods must be tested on real data. Unfortunately, the results are
very difficult to 1nterpret This 1s because the actual values of Q are
completely unknown, so no conclusion can be made regarding the accuracy

of the techniques.
4 1 Noise Models

The results 1n Figure 7 showed that the contaminating noise (or
errors) 1n the attenuation problem has a long-tailed distribution This

Justifies the use of robust estimators. For the model given by

100
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Equations (66) and (67), with Laplacian contaminated Gaussian noise, 1t
has been shown that the sample average 1s a very poor estimator compared
to some other estimators  Since the spectral ratio method 1s a least-
squares method which does not attempt to weight the data values, the
performance of the spectral ratio method 1s similar to that of the
sample average. Therefore 1f the model given by Equation (66) 1s very
realistic, then these robust methods should yield more reliable
estimates of attenuation than the spectral ratio method.

It seems physically more reasonable to assume that additive noise
1s present 1n the original 1nput signal than at some later point 1n the
analysis. Furthermore, 1f additive Gaussian noise 1s present 1n the
time domain, then the noise 1n the frequency domain w1i1l also be
additive Gaussian noise. In addition, 1t appears that much of the noise
present 1n any seismic signal 1s not simply additive, independent, white
noise, but 1s a noise process that 1s very much correlated with the
signal. In fact, the noise may take the form of a convolution between
the signal and a noise that can be characterized. Therefore the

following noise model 1s proposed

Ry(w) = S (w) + Ny(w) (91)

Ryle) = Eple) .+ Sy(w) + N, (w) (92)

Here Rl(w) and Ry(w) are the amplitude coefficients of the Fourier
Transforms of the time domain signals ry(t) and rp(t)  The signals
rl(t) and rz(t) are the compressional wave forms recorded at adjacent
receivers for the same shot.

In order to model the noise 1n the attenuation estimation problem,

1t 1s necessary to analyze the effect that noise terms 1n Equations (91)
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and (92) have on the actual attenuation estimate The following leads
to an approximate model for the noise or error in the Q estimate wnich
results from the model given by Equations (91) and (92)

Substituting Ry(w) and Ry(«w) from Equation (91) and (92) 1nto the
Equation (66) to find SR(w) yields

Sp(w) N, () Ny (@)
Let SRo(w) be the 1deal log-spectral ratio without noise and
5, (w)

SRo(w) = ‘1" g]-.m
Then, expand the logarithms and assume that the additive noise terms are
very much smaller than the signal terms. In other words, assume that

Nl(w) << Sl(w)
and

Nz(w) << Sz(w).
Then,

SR(®) = SRy(w) - Tn|Ey(e) - N2{¢) + Ny te) (94)
Now, define the total noise term Nt(w) by

Npbo) = SR(w) - SRy(w).

An experiment 1s conducted to test estimators on the model given by
Equation (66), where the noise model 1s given by Equations (91) and
(92). This experiment 1s essentially the same as the described 1n the
previous chapter which produced the results 1n Tables V and VI. The
elements of the signal vector a are computer generated random numbers

which have a uniform distribution on the 1interval (0,1) Each element
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of the variance vector, s, 1s the variance of the noise 1n the
corresponding column of the data matrix X The variance are also
computer generated random numbers which are uniform on the 1interval
(O,MNV), where MNY 1s the maximum noise variance parameter. For a
particular given maximum noise variance, MNV, and contamination

parameter, e, 30 different signal and variance vectors are generated.

Then,
Nz(w) Nl(w)
Nt(w) = -'In[Ez(w)] - E.2.(3).35(3)..+ S'I—WT (95)

Since Q 1s 1nversely proportional to SR(w), then Q 1s proportional to

1 1 1 Nt(w)
SR{w) Wt(w) SRole [SRD(w)]z

SRo(w)[l + SR5 (@7

Hence, Q 1s proportional to the Ni(w) given by Equation (95).

Unfortunately, the signal terms do not separate from the noise 1n this

problem. However, 1f the signal terms, S;(w) and Sp(w), are treated as

constants for the analysis, then the effect of the noise terms

(1ndependent of the signal) can be 1nvestigated. Then the estimate of Q

1s contamined by three noi1se terms which are proportional
to 1n[E2(w)] » Ny(@)/Epl), and Ny (w)

In order to gain some 1i1nsight 1nto the noise model, consider the

form of the three contaminating terms 1f N;j(w) and Ny(w) are N(O,c'lz)

and N(O, 622) respectively, and 1f E;(w) 15 N(O, cez) The distribution

of the first term 1s given by

V4 Z
e "1)2 _(e +1)2

z -(~—-z
fi(z) = £ [e 202 _ g o2 ]
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This distribution 1s approximately zero mean, asymetric, and has second
and fourth moments which are comparable to or less than those of the
process Eo(w). This distribution was studied primarily using computer

modelling. The second term has a distribution given by

2
(z) 2622 Uez 1 [ 7 ’Z] (96)
f,(z) = exp - exp 2 2
2 2 cez o 2 '“E(,e 2(2°0.° + 0,°)

2

Note that as z—w, f(z) becomes proportional to the Cauchy distribution

given by
o,/ o
glz) = oY (97)
ZZ+ UZ/O_Z
Xy

The term N;, 1s of course Gaussian as assumed.

The Cauchy distribution given by Equation (97) 1s the distribution
of the random variable z where z=x/y, x 1s N(O, xz), and y 1s N(O,yz)
The Cauchy distribution 1s a symmetric distribution with a maximum of

Ty
Jtox

g(z) =

at z=0. However, the tails die off so slowly that the 1ntegral defining

the second moment, E(zz),

does not converge. This could be i1nterpreted
as meaning the Cauchy distribution has infinite variance. In addition,
the 1ntegral defining the mean, E(z), also fails to converge. Since the
mean can be thought of "physically" as the center of mass of the
distribution, then the failure of E(z) to converge could be 1nterpreted
to as meaning the tails are so long that the distribution could be
"balanced" anywhere (or perhaps, nowhere)

Since the second term, with distribution given by Equation (96), 1s

asymptotically Cauchy, the distribution also has "infinite" variance and
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the distribution 1s very wide-tailed Now, the noise terms appear to be
two fairly well behaved terms plus one that has very wide tails The
sum of these can be approximated as a Gaussian distribution contaminated
by a Cauchy distribution.

To test the effectiveness of the previously discussed robust
estimators, consider a repeat of the previous experiment (results 1n
Table VI, VII and VIII) with the following changes. First, the
contaminating noise 1s Cauchy rather than Laplacian, and the standard
deviation of the Cauchy noise 1s approximated by the analagous Cauchy
parameter given by ( Ux/ay) from Equation (97). Secondly, since the
sample mean has proved to be a very poor robust estimator and since the
Cauchy noise should make things "worse", the sample mean was not used as
an estimator. Rather, 1t 1s replaced by a maximum 1ikelihood estimator
based upon Cauchy noise and the model from Equation (67). This maximum
11kel1hood estimator 1s 1mplemented using a steepest descent algorithm
stmlar to that used for the other maximum 1ikelithood estimates  The
average errors are normalized to the average error for the median
estimator, since the sample average 1s not used as an estimator 1n this
experiment. The results from this experiment are presented 1n Tables IX
and X which are analogous to Tables VI and VII from the previous
experiment

As was the case for Laplacian contamination, when the noise 1s
primarily Gaussian (e < 0.1) the best estimator 1s clearly the maximum
T1kel1hood Gaussian estimator The second best estimator for mostly
Gaussian noise (e < 01) 1s the maximum Tikelthood Laplacian
estimator These conclusions are supported by data from both Tables

VIII and IX. However, when the contamination 1s large (e >0 5), the




TABLE IX

MEDIAN OF NORMALIZED AVERAGE ERRORS FOR
CAUCHY CONTAMINATION

Contamination Max. Noise Alpha-Trimmed ML ML ML
e Variance Mean Cauchy Laplacian Gaussian Median Normalization

0.0 0.001 1.07 1.82 1.82 1.82 1.0 2.3x10'g
0. 0.01 1.12 5.88 .521 .413 1.0 3.8x1073
0. 0.1 1.06 6.30 .617 .396 1.0 2.6x10"

0. 0.5 1.03 1.62 .798 .378 1.0 5.7x10~2
0.01 0.001 1.03 2.93 .764 .496 1.0 1.7x10-7
0.01 0.01 1.05 6.30 .555 .446 1.0 3.6x10-5
0.01 0.1 1.06 5.19 - .433 1.0 2.9x10-3
0.01 0.5 1.07 4.67 - .423 1.0 8.1x10~2
0.1 0.001 1.04 9.64 .967 .892 1.0 2.1x10-7
0.1 0.01 1.05 13.9 731 .609 1.0 1.2x107°
0.1 0.1 1.04 21.0 .800 .685 1.0 1.8x10-3
0.1 05 1.14 5.26 - .517 1.0 6.4x10-2
0.5 0 001 1.10 6.59 3.57 2.48 1.0 1.7x10-7
0.5 0.01 1.11 9.07 1.94 2.48 1.0 2.2x10°5
0.5 0.1 1.05 24.1 1.80 2.31 1.0 2.9x10-3
05 0.1 1.14 7.93 -- 1.88 1.0 2.9x10-2
0.9 0.001 1.30 - 4.81 3.80 1.0 3.2x10-7
0.9 0 01 1.17 - 4.07 3.51 1.0 4.3x10-5
0.9 0.1 1.23 - -- -- 1.0 3.0x10™3
09 0.5 1.26 - -- -- 1.0 9.7x10~2
1.0 0.001 1.25 -- 7.02 4.30 1.0 4.9x10~7
1.0 0.01 1.23 - 2.82 3.92 1.0 7.6x1073
1.0 0.1 1.20 - -- - 1.0 6.2x10"3
1.0 0.5 1.18 -- -- -- 1.0 8.9x10-2

90l



TABLE X

NUMBER OF TIMES THE AVERAGE ERRORS ARE FIRST, SECOND, OR THIRD LOUEST-CAUCHY CONTAMINATION
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maximum 1i1keli1hood estimators are outperformed by the alpha-trimmed mean
and median estimators by a large margin. The median estimator appears
to be only slightly better than the alpha-trimmed mean from when the
data from Table IX 1s used. But, from Table X, 1t 1s quite clear that
the median 1s almost always better than the alpha-trimmed mean as an
estimator for contaminated distributions.

The dashes 1n Table IX 1ndicate a failure of the algorithm to
converge. When the Cauchy contamination of the Gaussian becomes
significant, the steepest descent maximum T1ikelihood method fails to
converge Furthermore, even 1f the methods do converge, they produce
large errors. This 1s perhaps an 1i1ndication that the estimate 1s
converging to a local maximum or to a data vector. Notice that the
maximum Tikelihood method based on Cauchy noise generally failed to
converge to anything with a reasonably low error. This could be due to
any number of reasons, and no clear answer has been found However, 1t
1s quite possible that the method does converge, but to a "bad"
solution, such as a local maximum This 1s definitely a possiblity for
many reasons One reason 1s that the standard deviailon 1s used as an
1n1tial guess for the Cauchy parameter, a= g;‘ and this may not produce
a reliable enough 1n1ti1al guess Unfortunatgay, the maximum 1ikelihood
equations for the Cauchy distribution do not lead to a system of
equations from which an estimate of the Cauchy parameter can be made A
significant error 1nduced by using the standard deviation for o« may
result 1n such a poor 1niti1al gquess that the maximum 11kelihood Cauchy
method fai1ls to converge The maximum 1likelihood Cauchy method did

converge on small data sets, but not to the same solution as did the

other methods It appears that without a proper 1ni1ti1al guess for the
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parameters, the Cauchy method (when 1t converges) may be converging to a
local maximum rather than minimum.

The main conclusion to be reached from the data i1n Tables IX and X
1s that for e < 0.1, and for Cauchy contamination less than or equal to
10 percent, the maximum likelihood estimator for a Gaussian noise model
1s the best. Also, when e < 0.5, the sample median 1s the best
estimator and the alpha-trimmed mean does nearly as well For 1large
amounts of Cauchy contamination, the maximum 11kelihood methods
generally fail due to 1ts 1nability to adaquately estimate the data
values and the ‘"error" parameters (estimates of spread of the
distribution) The maximum 1ikelihood methods have a potential
disadvantage for use on real data This 1s because even the 1nput noise
models and distributions are unknown, so the distributions could be non-
Gaussian. As can be seen from Cauchy contaminated Gaussian noise, these
maximum T1ikelihood methods are much more sensitive to the noise
distribution than 1s the median Because of 1ts reliability for all
types of noise, the median appears to be the best choice for an

estimator at this point.

4.2 Robust Attenuation Estimation from

1-D Model Data

To simulate data from Conoco's borehole model and to test the
robust estimates on a more physical model, a simple earth model 1s
constructed. There are 10 1dentical 2 foot thick layers with a velocity
of 15000 ft./sec and Q=100 The source used 1s the digitized source
plotted 1n Figure 4 The bandwidth used 1s 7-12 KHz (the peak area of

the spectrum), and 10 runs with 10 noise sets per run are used 1n the
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experiment The results, 1n terms of standard deviation of the
estimates, are given 1n Table XI for various maximum likelihood and
robust estimates, as well as for several attenuation methods previously
discussed. White Gaussian noise 1s added to the time-domain 1nput
signals so that the signal-to-noise ratio's (SNR) are 100 and 1000.
That 1s,

ry(t) = s;(t) + n,(t)

where r1(t) 1s the P-wave signal at the 1th receiver, s1(t) 1s the 1deal
signal, and n,(t) 1s a Gaussian noise process.

When the signal-to-noise ratio 1s 1000, then all of the method
shown 1n Table XI worked fairly well. By far the best methods are the
median and the alpha-trimmed mean. The maximum 1i1kelihood estimator for
a Gaussian model did not do well. The results for maximum 11kelihood
Gaussian method were not 1ncluded because they frequently failed to
converge even for the relatively high signal-to-noise ratio of 1000.

When the data contains more noise (signal-to-noise ratio 1s 100),
all the estimators are higher. The eigenvector method failed to
converge and the maximum Tlikelihood (Gaussian) method occasionally
failed to converge. The Wiener filter method worked fairly well, but
the results shown 1n Table XI 1s the best result for the method and 1t
was reached only after a great deal of experimentation to find the
optimum parameters. The spectral ratio method did not do well. For
this model of attenuation estimation, the simplest and most robust
scalar methods, namely the median and alpha-trimmed mean, performed the

best




TABLE XI

ATTENUATION ESTIMATION - STANDARD DEVIATION
OF ERROR FOR A SIMPLE, ONE
DIMENSIONAL MODEL

Signal-to Spectral Wiener Ei1genvector Max. Likelihood Alpha-Trimmed
Noise Ratio Ratio Filter Decomposition Average Gaussian Median Mean
1000. 9.3 10.1 8.9 1.7 14.0 6.3 6.0
100. 1900 27.32 -- 381. 72.81 25.4 25 4
1 = D1d Not always Converge
2 =

Required Careful Adjustment of Parameters

LLL



112

4 3 Attenuation Estimation from Borehole

Model Data

Synthetic data which accurately models the propagation of acoustic
energy 1n a borehole has been supplied by both Amoco and Conoco  The
data set from Conoco was chosen for study because attenuation 1s readily
apparent 1n the Conoco data This data set contains groups of 31 traces
with source-receiver offsets ranging from 3 0 meters to 6 0 meters at
0 1 meter i1ncrements. A complete set of 31 traces 1s modelled for many
different combinations of borehole parameters (e g. shear and P-wave
velocity, shear wave attenuation, and P-wave attenuation). Two sets
were chosen for detailed study

The first data set, shown 1n Figure 9, contains model data with the

following set of parameters Borehole radius = 10. cm, fluid velocity

1600. m/sec., fluid Q = 50 , P-wave velocity = 4000 m/sec , P-wave Q
100 , shear wave velocity = 2300 m/sec., shear wave Q = 100. Figure 10
1s a plot of just the near offset (3.0 m) trace from Figure 9. The
feature of interest 1n this figure 1s the P-wave which begins at about
0.8 mi1liseconds and ends at the onset of the shear wave arrival at
about 1.3 mi1li1seconds Note that the P-wave 1s much lower 1n amplitude
than the other waves, but 1t 1s separated in time from the other waves
and can easily be 1solated using a window. Figure 11 1s a plot of just
the P-wave from the trace 1n Figure 10

A Hamming window 1s used to 1solate the P-wave arrival from the
rest of the trace The total length of the window 1s 0 75 mi1l1seconds
(60 samples) and the shoulder width 1s 0 1 mi1liseconds (8 samples)
Figure 12 shows the camplitude spectrum of the P-wave i1n the near offset

(3 0 m) trace. Figure 13 shows the amplitude spectrum of the far offset
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trace (6 0 m) Both traces have been multiplied by the offset to
approximately correct for geometrical spreading losses. For a different
set of traces without attenuation, multiplying by the offset did a good
Job of correcting for geometric spreading loss (to within a few
percent) The effect of attenuation 1s readily apparent from a
comparison of Figures 12 and 13. It 1s important to note here that the
P-wave spectral shapes and the attenuation estimates are fairly
insensitive to changes 1n the method of windowing. As long as the
window contained most of the P-wave arrival and has some taper at the
shoulders, the resulting spectra are not significantly affected. Other
windows tried 1nclude trapezoidal, raised cosine and rectangular
windows Only the rectangular window gave poor results.

In order to produce reliable attenuation estimates 1t 1s necessary
to carefully choose the frequencies over which the attenuation estimate
1s made. For this model data the best range 1s from 9.5 kHz to 11 §
kHz. The final attenuation estimates are much more sensitive to the
frequencies used than to the windowing function It 1s 1mportant that
the range be restricted to some neighborhood in the vicinity of a
spectral peak. Using less than the optimum number of frequency points
causes a slight deterioration 1n the accuracy of the estimate. However
using too many frequency points results 1n very 1naccurate estimates
It 15 1nteresting to note that the 2.0 kHz frequency band used for the
attenuation estimates results 11n 13 frequency points Since acoustic
logging tools typically have 10-12 receivers, the size of the data
matrix using for many estimation method 1s close to the ten by ten size

previously used for simulations
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The results of applying some of the previously discussed
attenuation estimators to the Conoco borehole model data are shown 1n
Table XII The estimators listed in Table XII are the sample average,
the median, the alpha-trimmed mean, the maximum 1li1kelihood Gaussian
estimator and the maximum 1i1kelihood Laplacian estimator The following
attenuation estimators were tested on the model data but the results are
not 1listed becasue they failed to produce physically reasonable
estimates spectral ratio, eigenvalue decomposition, Wiener filter, and
maximum likelihood Cauchy estimators. Even though Q = 100 1s the
correct value, these estimators usually produced Q estimates 1n the
range -10 < Q < 10

The first row of Table XII lists the results when Q = 100, no noise
1s added, and the frequency range (9.5 - 11 5 kHz) 1s optimum. For this
case, all of the estimators listed did fairly well, except for the
sample average. The median had the lowest average error, and the
maximum Tikelihood Gaussian estimator performed nearly as well as the
median  When the attenuation estimation 1s based upon frequencies from
19.5 kHz to 21.5 kHz (the second lobe of the spectrum) the results of
the estimates are much worse for all of the estimators.

The Conoco model contained one set of traces which were generated
with Q = 30. The results are much worse than for Q = 100, because the
low Q (hi1gh attenuation) results 1n very 1little energy at the far
offsets. The attenuation estimate for the near offset 1s more accurate
than for the far offsets, but the improvement 1s slight Because the Q
1s low, and because dispersion can only be considered negligible 1f when
Q > 10, 1t 1s possible that dispersion effects are reducing the

accuracies of the estimate



TABLE XII

ROOT MEAN SQUARE ERROR OF ATTENUATION
ESTIMATES FROM CONOCO MODEL DATA

Percen True “Frequency Alpha-Trimmed MC MC
Noise Q (kHz) Average Median Mean Gaussian Laplacian
0 100. 9 5-11.5 62.0 12.3 17.2 13.4 171
0. 100 19.5-21.5 42 7 22 0 21.2 27.0 34 6
0 30 9.5-11.5 26.2 300 27.6 27.0 --
01 100 9 5-11.5 63.8 43.0 41.5 - --
1.0 100. 9.5-11.5 66.8 44.7 43.4 -- --

A1
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When noise 1s added to the model, all of the estimators gave
1naccurate estimates. The maximum Tlikelihood Gaussian and maximum
11kelthood Laplacian estimators failed to converge The three
estimators which did give estimates have average root mean square errors
about half as large as the parameter being estimated. Even 0 1 percent
noise added to the signal produced estimates which have very large
variances Actual Q estimates range from near zero to around 150. Any
decrease 1n the amount of additive noise by an order of magnitude has
T1ttle effect on the accuracy of the estimates.

The median attenuation estimator had the best overall performance
on the Conoco model data, and the alpha-trimmed mean also did well. The
column average did not do well at all. The maximum 1ikelihood Gaussian
estimator did very well when no random noise was present, but 1t didn't
converge for even very small levels of random noise. The maximum
T1kel1hood Laplacian estimator dird moderately well on the best no-noise
data set, but this method frequently failed to converge Overall, the
median and the alpha-trimmed mean should perform the best on real data
based upon the performance given in Table XII. The maximum 1i1kelihood
Gaussian estimator may also do well on real data provided the noise

levels are very low

4 4 Attenuation Estimation from Borehole Data

The real acoustic log data used 1n this study comes from Conoco and
was recorded using a 12 receiver Schlumberger tool The source-receiver
offsets range from 13 ft to 18.5 ft , with a receiver to receiver
offsets of 0 5 ft. To thoroughly investigate the use of several methods

of attenuation estimation on the data set, one set of 11 traces 1s
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studred. The first trace, known as the near offset trace (offset = 13.0
ft.) 1s shown 1n Figure 14. The far-offset trace (offset = 18.5 ft ) 1s
shown 1n Figure 15 The loss of amplitude with offset 1s apparent even
though these traces have been approximately corrected for geometric
spreading losses by multiplying each trace by 1ts offset.

The borehole wave under 1nvestigation 1s the P-wave. The P-wave 1s
the very small amplitude event which arrives first. In Figure 14, the
P-wave arrives at 77 samples on the time axis and dies away at 125
samples on the time axis (the units of time 11n the plots are
"samples"). The P-wave lasts about 50 samples, and so 50 samples 1s
chosen as the length of the Hamming window applied to separate the P-
wave data from the rest of the data. The shoulder width of the Hamming
window 1s chosen to be eight samples. Figures 16, 17 and 18 the
amplitude spectra of the windowed P-wave arrival at offsets of 13.0 ft.,
15 0 ft., and 18.5 ft., respectively. Notice that the spectrum 1n
Figure 16 1s smooth, and the spectrum in Figure 18 1s fairly smooth.
However, the spectrum of Figure 17 has a null or zero which occurs set
the same frequency as the peak of the main 1lobe 1n Figure 16.
Unfortunately this spectral shape makes attenuation estimation very
difficult.

Attempting to estimate Q for each receiver pair resulted 1n
negative or nearly zero Q estimates for all methods. Only when the
attenuation estimate 1s based upon the ratio of the spectra from the
near and far offset receivers do physically reasonable answers result
The results of a few attenuation estimators for various frequency ranges
are shown 1n Table XIII. There 1s a strong correlation between Q values

and P-wave velocity. When the P-wave velocity 1s high, there 15 usually



TABLE XIII

ATTENUATION ESTIMATES FROM CONOCC DATA

Layer Receiver Frequency Average Median Alpha-Trimmed
Number Spacing (ft ) (kHz) Q Q Mean Q
1 5.5 10.0-11.5 38.3 360 37.1

1 5.5 7.5-11 5 20.8 14.9 17.2

1 20 10 0-11.5 700.8 191 20.9

2 2.0 10.0-11.5 22.7 21.6 24.5

1 20 7 5-115 35.34 8.4 13.3

2 20 7.5-11.5 20.7 18 4 18.7

1 - - . 08 38 3.8

2 - - -5.8 -6.0 -6.0

3 -- -—- 4.8 4.8 4.8

4 -- -— 8.4 8.4 8.4

5 5 10 -11.5 80 8.0 8.0

6 - -— 4.4 -16.1 -16 1

7 - -—— .82 .81 81

8 -- -— -.82 -.79 -.79

9 - - 2.5 2.5 2.5

10 - - -8.9 -8 0 -8.0

8cl
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11ttle attenuation (high Q) Since the P-wave velocity estimate for
this data set measured from the onset of the P-waves 1s 2x10% ft./sec
(which 1s fairly high), then Q estimates should also be high (perhaps Q
= 100).

As can be seen from Table XIII, most of the attenuation values are
lower than should be expected based upon laboratory results. 1If the
criterion for Judging the performance of attenuation estimators 1s the
laboratory values, then the best results are from using a narrow
frequency band (10 kHz to 11.5 kHz) which corresponds to the
neighborhood of the largest spectral peak 1i1n Figure 18 As previously
mentioned, thi1s result 1s based upon the spectral ratio 1nvolving the
near and far offset traces only The only techniques which produce
reasonable results are the sample average, the median, and the alpha-
trimmed mean. The maximum 1ikeli1hood methods and the eigenvector method
do not work on just one spectral ratio. Unfortunately, attenuation
estimates from real data can be judged for accuracy only by comparing
the Q estimates with values measured 1n laboratories. These laboratory
measurements 1ndicate that Q values may range from 50 to 150 though
values outside that range are possible. Estimators such as the spectral
ratio and Wiener filter methods fail on this data set (they yield
negative values). The results with the highest Q estimates from Table
XIII range from 36.0 for the median to 38.3 for the sample average with
the alpha-trimmed mean 1n the middle. The difference between these
three estimates 1s probably not significant, and 1t 1s not possible to

decide which 1s better based upon this one result.
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4 5 Chapter Summary

Attenuation estimation methods have been tested on fairly realistic
models which may have noise added. The only estimators able to perform
adaquately are the median and the alpha-trimmed mean The sample
average and the maximum Tikelithood Gaussian method work well
occassionally but not consistently. Therefore, based upon performance
on model data, and taking i1nto account computational considerations, the
median and the alpha-trimmed mean are superior to the others. This
conclusion 1s not changed by the results on real data, because the
estimators cannot be Jjudged when the values to be estimated remain
unknown, and because the median and alpha-trimmed mean do give

physically reasonable estimates.



CHAPTER V

SUMMARY AND CONCLUSIONS

The estimation of the attenuation coefficient, Q, from acoustic
well log data 1s a difficult problem. The problem 1s 111-posed, so that
small errors 1n the estimation of the spectra of the received signals
may result 1h large errors 1n the estimation of Q A physically
reasonable noise model leads to an error distribution 1n the final
attenuation estimate which 1s very long-tailed Adding small amounts of
random noise to borehole model data caused the estimators to yield
1naccurate estimates, the behavior of the estimators on model data with
small amounts of noise matched what one would expect from the long-
tailed noise distributions previously modelled. Some of the estimators
worked well enough on real data to yield physically reasonable values of
Q. Unfortunately, the accuracy of the Q estimates from real data
remains unknown, because the actual Q values for the rock surrounding
the borehole are unknown.

The classic attenuation estimator, the spectral ratio method, 1s
the most commonly used method for attenuatione estimation on all types
of acoustic data This method 1s computationally simple, and 1t allows
for an unknown amount of frequency-indenpendent geometric spreading
losses. However, this method also has many disadvantages. The ratio of
noise contaminated spectra results 1n very unstable estimates of the

pure spectral ratio Since the spectral ratio method 1s a least-squares
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method and 1s thus sensitive to bad data points, the method does not
work very well when the spectra contain zeros and noise Because the
spectral ratio method can handle unknown geometric loss factors 1f 1t
must estimate another parameter. This 1s actually a disadvantage
because the estimating an unnecessary parameter (the intercept of line
in the spectral ratio method) results i1n higher estimation errors. The
Wiener filter method 1s a variation of the spectral ratio method and can
handle spectral zeros better. Unfortunately, 1t 1s very sensitive to
parameter selection, and since 1t 1s also a least squares technique, the
Wiener fitler method 1s too sensitive to large spectral errors.

The Q estimates for each frequency and depth can be cast as a
matrix, and the eigenvector corresponding to the largest eigenvalue 1s
an optimum least-squares estimate for the values of Q versus depth.
Unfortunately, the eigenvector method performs only slightly better than
simply averaging the columns of the matrix to find Q. However, the
matrix formulation 1tself leads to maximum likelihood vector estimators
to find Q versus depth Maximum 1ikelihood estimators based upon
Gaussian, Laplacian, and Cauchy noise were 1mplemented using the
steepest descent method and tested on various data sets The Gaussian
based estimator performed the best overall, and had fewer convergence
problems However 1t did not work very well on model data with random
noise.

Two very simple robust estimators, the sample median and the alpha-
trimmed mean, were tested on many models, with varying levels of noise
with different distributions  These two methods proved to be superior
to all of the methods for most test cases. This 1s because these

estimators are very robust, and thus not sensitive to bad data values
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Furthermore, their computational simplicity and lack of convergence
problems makes them the optimum choices for use on real data.

However, the maximum likelihood estimator based upon a Gaussian
noise model did work about as well as the median and alpha-trimmed mean
on several data sets In particular, the maximum 11kelihood (Gaussian)
method worked well on the synthetic borehole data for low noise
levels. So, 1t should work on real data when the spectrum 1s smooth and
the background noise level 1s Tow.

A1l of the estimators which have been tested on model data were
also tested on the real data set from Conoco Unfortunately, only three
estimators gave physically reasonable results on real data They are
the sample average, the median, and the alpha-trimmed mean. The
estimates of Q from real data are strongly affected by the choice of the
frequency band over which the estimate 1s made. For models, the optimum
results were achieved from a narrow band around the peak of the
spectrum. The spectra from the real data 1s sometimes more complicated
than the spectra i1n the models, but choosing a window 1n frequency which
contains the spectral peak for most offsets did yi1eld what 1s probably
the best results This complicated spectrum 1s probably the cause of
the failure of the maximum 1ikelihood (Gaussian) method.

Since the actual Q values for the real data are unknown, the
accuracy of the Q estimates 1s also unknown. However, based upon
laboratory data and given the apparent P-wave velocity, estimates of Q
should be near Q = 100. The "best" Q estimates from the real data are
1n the range of 36 to 38 This may be too low, but 1t 1s 1mpossible at
this time to make any significant conclusions regarding the accuracy of

these estimates In fact, even 1f laboratory Q measurements are made
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from a core of the well which the data 1s from, one would sti11 not be
able to reach a conclusion regarding the accuracy of the attenuation
estimates. This 1s because attenuation 1s a strong function of the
environment of the rock (pressure, fuild saturation, etc...) So, 1n
order to compare Tlaboratory values with well log values of Q, the
measurements made 1n the lab must be under essentially the same
environmental conditions as those 1n the borehole. This may not be
possible. But, 1f 1t 1s possible to make such measurements, 1t should
be done so that the accuracy of Q estimates from real data can be
determined Only when this 1s completed will 1t be possible to 1mprove
attenuation estimation algorithms to the point that they can be used
routinely on real data.

Futher research 1n the area of attenuation estimation from acoustic
logs should emphasize two areas One area 1n which more research 1s
necessary 1s understanding the effects of borehole and tool geometrics
on the spectra of the received waveforms. Irregularities 1n the
borehole and ti1ting of the tool produce features in the spectra of the
received signal which makes attenuation estimation difficult. It may
prove possible to model these 1rregularities with a simple model and
remove them from the data i1n the same manner as multiple reflections are
removed from surface seismic data.

Even 1f the problems with spectral 1rregularities were solved, much
work would sti1l need to be done to evaluate the accuracy of the
attenuation estimates. Experiments to estimate the attenuation from
cores should be conducted where the core 1s kept 1n conditions that are
as close to those 1n the borehole as possible The frequences used

should correspond to those of the source 1n the acoustic logging tool
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In addition, attempts should be made to generate attenuation estimates
from vertical seismic profile data and surface seismic data for
comparison with estimates from acoustic legs. Once the accuracy of the
attenuation estimates 1s established, then work can be done to develop

rules for the 1interpretation of attenuation logs.



BIBLIOGRAPHY

Ak1, K., and Richards, P G., 1980, Quautitative Seismology Theory and
Methods W.H. Freeman and Co

Anderson and Castagna, 1984, Analysis of Sonic Log Compressional Wave
Amplitudes using Borehole Compensation Techniques Presented at
SPWLA 25th Annual Logging Symposium, June 10-13

Andrews, D.F., 1981, Robust Statistics John Wiley & Sons, Inc

Aron, J., Murray, J. and Seeman, B., 1978, Formation Compressional and
Shear Interval-Transit-Time Logging by Means of Long Spacings and
Digital Techniques Presented at 53rd Ann. Fall Conf. and Exhib of
Soc. of Petroleum Eng. of AIME (SPE 7746).

Bednar, J.B , and Watt, T L., 1984, Alpha-Trimmed Means and Their
Relationship to Median Filters Acoustics, Speech, and Signal
Processing, Vol 32, No 1, pp 145-153

Bickel, S.H., 1982, Constant Q Inverse Filters Society of Exploration
Geophysicists Annual Meeting, Dallas, Tx.

Cheng, C.H , Toksoz, M.N., Willis, and M.E., 1981, Velocity and
Attenuation from Full Waveform Acoustic Logs Society of
Professional Well Log Analysts Annual Symposium.

Cheng, C.H , Toksoz, M.N., Willis, and M E., 1982, Determination of 1n
Si1tu Attenuation from Full Waveform Acoustic Logs Jour of
Geophysical Res , Vol 87, No. B7, pp 5477-5484.

Engelhard, L., Gross, T, and Newport, F , 1984, Comment on
"Determination of 1n Situ Attenuation From Full Waveform Acoustic
Logs" Jour. of Geophysical Res., Vol 89, No. B5, p. 3400.

Gilbert, F., 1971, Ranking and Winnowing Gross Earth Data for Inversion
and Resolution Geophys. J Roy Astr Soc , Vol. 23, pp. 125-128.

Gimlin, D R., Keener, M.S , and Lawrence, J F., 1982, Maximum Likel1ihood
Stocking 1n White Gaussian Noise With Unknown Variances IEEE
Transactions on Geoscience and Remote Sensing, Vol GE-20, No 1

Goldberg, D S., Kan, T.K , and Castagna, J.P , 1984, Attenuation

Measurements From Sonic Log Waveforms Presented at SPWLA 25th
Annual Logging Symposium, June 10-13

136



137
Hale, D , 1982, Q-Adaptive Deconvolution Society of Exploration
Geophysicists Annual Meeting, Dallas, Tx.

Hami1ton, E., 1972, Compressional Wave Attenuation i1n Marine Sediments
Geophysics, Vol. 37, pp. 620-646.

Huber, P.J , 1981, Robust Statistics John Wiley & Sons, Inc.

Jacobson, R.S., Shor, G.G , and Dorman, L.M., 1981, Linear Inversion of
Bodywave Data-Part II  Attenuation Versus Depth Using Spectral
Ratios Geophysics, Vol. 46, pp. 152-162

Johnston, D.H., and Toksoz, M.N., 1981, Seismic Wave Attenuation
Society of Exploration Geophysicists (pub.), pp. 459.

Kassan, S A, Poor, and H.V , 1985, Robust Techniques for Signal
Processing A Survey Proceedings of the IEEE, Vol. 73, No 3.

Knopoff, L., Aki, K., Archambeau, C.B., Ben-Menahem, A , and Hudson,
J.A., 1964, Attenuation of Dispersed Waves Jour. of Geophys. Res.,
Vol. 69, No 8, pp 1655-1657.

Kuc, R., and Schwartz M, 1979, Estimating the Acoustic Attenuation
Coeffitient Estimation Technique for Liver Pathology
Characterization IEEE Trans. Sonics Biomed. Eng BME-27, pp 312-
319.

Kuc, R, 1981, Digital Filter Models for Media Having Linear With
Frequency Loss Characteristics J Acoust. Soc. Amer., Vol 69, pp
35-40.

Kuc, R., 1984, Estimating Attenuation From Reflected Ultrasound Signals
Comparison of Spectral-Shift and Spectral-Difference Approaches
IEEE Transactions on Acous. Speech Si1g. Proc., Vol. ASSP-32, No. 1,
pp 1-6-

Kuster, G T , and Toksoz, M.N., 1974, Velocity and Attenuation of
Seismic Waves 1n Two-Phase Media Part I Theoretical Formulations
Geophysics, Vol 39, pp 587-606.

Lanczos, C , 1961, Linear Differential Operators D. Van Nostrand Co.,
Inc.

Mavko, G.M., and Nur, A , 1975, Melt Squirt i1n the Aesthenosphers J
Geophysical Research, Vol 80, pp. 1444-1448

McCartey, L A, 1985, An Autoregressive Filter Model for Constant Q
Attenuation Geophysics, Vol. 50, pp. 749-758.

McDonal, F J., Angona, F A., Mills, R.L , Sengbush, R.L , Von Nostrand,
R.G , and White, J E , 1958, Attenuation of Shear and Compressional
Waves 1n Pierre Shale Geophysics, Vol 23, pp 421-439



138

Nur, A., and Winkler, K., 1980, The Role of Friction and Fluid Flow 1n
Wave Attenuation 1n Rocks (abst) Geophysics, Vol 45, pp. 591-592

0'Doherty, R F., and Austey, N.A , 1971, Reflections on Amplitudes
Geophys. Prosp., Vol 19, pp. 430-458.

Parks, T W., McClellan, J.H., and Morris, C.F., 1983, Algorithm for
Full-Waveform Sonic Logging Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing.

Pisarenko, V F., 1970, Statistical Estimates of Amplitude and Phase
Corrections* Geophys. J.R., Astr Soc., Vol. 20, 89-98.

Schoenberger, M., and Levin, F.K , 1974, Apparent Attenuation Due to
Introbed Multiples Geophysics, Vol 39, pp. 278-291.

Spencer, T.W., Sonnard, J.R., and Butler, T.M., 1982, Seismic Q-
Stratigraphy or Dissipation Geophysics, Vol. 47, No. 1, pp. 16-24

Stoll, R.D., and Bryan, G.M., 1970, Wave Attenuation 1n Saturated
Sediments J. Acous. Soc Am., Vol 47, pp. 1440-1447

Strang, G., 1980, Linear Algebra and Its Applications Academic Press,
Inc.

Taylor, S.R., and Toksoz, M.N., 1982, Measurements of Interstation Phase
and Group Velocities and Q Using Wiener Filtering Bull. Seirs. Soc.
Amer , Vol 72, No 1, pp. 73-91

Tittman, B.P , Nadler, H., Clark, V.A , Ahlberg, L A., and Spencer,
T.W., 1981, Frequency Dependence of Seismic Dissipation 1n Saturated
Rocks Geophys. Res. Lett., Vol. 8, pp. 36-38.

Toksoz, M.N., Johnston, D.H., and Timur, A., 1979, Attenuation of
Seismic Waves 1n Dry and Saturated Rocks I. Laboratory
Measurements Geophysics, Vol. 44, pp 681-690

Tullos, F.N , and Reid, A.C., 1969, Seismic Attenuation of Gulf Coast
Sediments Geophysics, Vol 34, pp 516-528

Van Trees, H.L., 1968, Detection, Estimation, and Modulation Theory
John Wiley and Sons, Inc.

Walsh, J B , 1966, Seismic Wave Attenuation 1n Rock Due to Friction J.
Geophys Res , Vol 71, pp 2591-2599

Walsh, J B , 1968, Attenuation 1n Partially Melted Material J Geophys
Res., Vol 73, pp 2209-2216

Watt, T.L , 1984, Some Applications of Robust Statistical Procedures to
Proplems 1n Seismic Signal Processing Ph D Thesis, University of
Tulsa



139

White, J E , 1975, Computed Seismic Speeds and Attenuation 1n Rocks With
Partial Gas Saturation Geophysics, Vol 40, pp. 224-232

Wiggins, R.A., 1972, The General Linear Inverse Problem, Implications of
Surface Waves and Free Oscillations for Earth Structure Reviews of
Geophys and Space Physics, Vol. 10, No. 1, pp 251-285.

Williams, D M., Zemanek, J., and Angona, F.A., et. al., 1984, The Long

Spaced Acoustic Logging Tool Presented at SPWLA 25th Annual Logging
Symposium, June 10-13.

Will1s, M.E., 1983, Sersmic Velocity and Attenuation From Full Waveform

Acoustic Logs Ph.D. Thes1s at Massachusetts Institute of
Technology.



VITA
Steven Wayne Patton
Candidate for the Degree of
Doctor of Philosophy

Thesis  ATTENUATION ESTIMATION FROM ACOUSTIC WELL LOGS
Major Field Electrical Engineering
Biographical

Personal Data Born 1n San Diego, California, February 16, 1958,
the son of William K and Shirley J. Patton. Married to Laura
M. Ondrake on May 31, 1980.

Education Graduated from Heritage High School, Littleton,
Colorado, 1n May, 1976, received the Bachelor of Science
degree 1n Mineral Engineering-Physics from Colorado School of
Mines 1n May, 1980, received the Master of Science degree 1n
Electrical Engineering from Stanford University 1n June, 1981,
completed requirements for the Doctor of Philosophy degree at
Oklahoma State University in May, 1986.

Professional Experience Research Geophysicist, Conoco
Incorporated, Ponca City, Oklahoma, July, 1981, to December,
1984, Graduate Research Assistant, School of Electrical and
Computer Engineering, Oktahoma State University, August, 1983,
to December, 1985.

Awards/Affil1ations Stanford School of Engineering Graduate
Fellowship, Boettcher Foundation Scholarship, member Tau Beta
P1, Sigma P1 Sigma, Eta Kappa Nu, Institute of Electrical and
Electronics Engineers, and Society of Exploration
Geophysicists.



