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Abstract

We propose a reservoir computing inspiring neural network approach for salt-and-pepper noise removal.

Despite the fact that reservoir computing was derived from RNNs dealing with sequential data and that

images are not sequential data, our clever reservoir design has made it possible for the reservoir to

process image data through a nonlinear image-specific forward operator replacing the linear operator of

the multiplication by a randomly chosen input weight matrix. There are two essential advantages of the

proposed method. One is that it takes only a small amount of training data as many as a few hundreds

of 24×24 images and outperforms most analytic or machine-learning based denoising models for salt-

and-pepper noise unlike most neural networks requiring a large amount of training data for good results

to avoid overfitting, if not the best. Another is that the reconstruction is completely parallel, in that

noisy pixels do not communicate with each other, and hence, noise in different pixels can be removed in

parallel. Recursive reservoir architecture is also discussed to further improve the reconstruction quality,

confirmed by various numerical simulations.
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I Introduction

In order to research about image restoration, image degradation is used. By giving some noises on the

images, we research how to restore these noisy images. Image degradation is the behavior that gives

images some noise or blur. The examples are salt-and-pepper noise, Gaussian noise using Gaussian

distribution, Periodic noise, Exponential noise and so on.

Image restoration is the behavior that removes from blurry or noisy images. Also, image restoration

has developed for decases such as hunt’s paper [4], using Baysian-based method [5] and so on. Many

people developed filters to restore noisy images. Median filter is effective in removing salt-and-pepper

noise, Midpoint filer is effective in removing Gaussian noise and Uniform noise, and Mean filter is

effective in removing Gaussian noise and uniform noise. But the limit appears when the noise is high,

especially median filter is ineffective in removing salt-and-pepper noise when 40 % or more noise is

given.

Echo state network( [2]) is a type of Reservoir Computing( [1]) that is derived from Recurrent

Neural Network(RNN, [6]). Unlike other RNNs as well as other ANN(Artificial Neural Network),

Reservoir Computing including ESN only trained output weights. And other weights including input

weights are randomly selected. RNN is used to train weights through Back-propagation( [6]). But

Reservoir Computing uses no back-propagation, but least square method. Because of these differences,

the computational cost of RC including ESN is cheaper than that of RNNs.

Nowadays, Image-related works such as restoration, enhancement, segmentation and so on mainly

use convolutional neural network(CNN). Convolutional Neural Network mainly uses many convolu-

tional filters such as ResNet( [7]), AlexNet [8], VGGNet( [9]) and so on. However, CNN has some

problems about computational cost as well as other Artificial Neural Networks. And because CNN uses

too many parameters and back-propagations( [6]), the cost of CNN is so expensive.

Because Echo State Network has not been used in image-related work, we try to apply ESN to

restore noisy images to solve this problem such as expensive cost problem. So we expect ESN can also

apply image-related works such as image restoration and solve the computational cost problem.

Chapter 2 introduces theories that are used in paper. we explain about Recurrent Neural Net-

work(RNN), Reservoir Computing(RC), Echo State Network(ESN) and some filters that is used in

paper. Chapter 3 explains how to restore the noisy image. Before training, input images are given

salt-and-pepper noise and we apply Echo State Network to restore them. Chapter 4 compares previous

methods to show that ESN can be also used in image-related work. And Chapter 5 refer some limitations

and future works.
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II Theory

We introduce the theories that uses to restore noisy images. First, we explain RNN, RC and ESN.

Second, we explain filters that is used.

2.1 Recurrent Neural Network(RNN)

RNN is the one of the artificial neural network (ANN) and mainly used for text generation and speech

recognition. The architecture have cycles where the model feeds the network outputs from a previous

step as an input to the network in order to take into account historical information. And there are many

type of RNNs structures such as one-to-many(image captioning), many-to-one(sentimental analysis,

spam-mail classification), and many-to-many(chatbot, translator). The main expression is like this.

Figure 1: The structure of RNN.

ht = fh(Whxt +Uhht−1)

yt = fy(Wyht)
(1)

Where xt is the input, ht is the hidden layer, yt is the output, Wh, Uh and Wy are the weights, fh

and fy are the activation functions (for example, hyperbolic tangent or sigmoid), and bh and by are the

biases. Like the other ANN(for example, CNN(Convolutional Neural Network)), RNN also uses back-

propagation [6] to update weights(Wh, Uh and Wy) for every epoch. Back-propagation is the method

using gradient of the loss function with respect to weights. But the limit is the expensive computational

cost, slow convergence and the gradient decending. Because Back-Propagation uses differentiation and

many chain rules. Because of those, the application of RNN is not feasible. To overcome these shortage,

improved RNNs are developed: LSTM (Long Short-Term Memory) [10], GRU (Gated Recurrent Unit)

[11]. Also, RC (Reservoir Computing) is derived from RNN, but there are differences from other RNNs.
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2.2 Reservoir Computing(RC)

Reservoir Computing(RC) consists of a reservoir and a readout mapping. ’Reservoir’ means ’a place

where a liquid is stored’. And the word ’liquid’ means the hidden layer vector at RNN. So we call this

liquid ’reservoir state vector’. The expression is like this.

Figure 2: The structure of RC. [1]

ht+1 = fh(Whxt +Uhht +Vhyt +bh)

yt+1 =Wyxt+1 +Uyht +Vyyt +by

(2)

where Wh, Uh and Vh are weights to the reservoir(input weights) and Wy, Uy and Vy are weights to the

output(output weights). Also, ht is called a ’Reservoir State Vector’.

As we can see, the structure is similar to RNN. But there are differences between RC and other

RNNs. First, RNNs train all the weight including input weights, but RC trains only output weights.

Instead, the input weights on RC are initialized randomly. Second, when we train weights, RNN uses

back-propagation that is used in other neural networks. But RC uses a simple method such as least square

method. Because the weights on the recurrent connections in the reservoir are not necessarily trained.

These differences cause the difference of computational costs. Because RNNs use all the weights in

training and back-propagation that uses many chain rules, the cost is expensive. On the other hand, RC

uses only the output weights in training and least square method, so the cost is cheap. The examples are

ESN (Echo State Network) and LSM (Liquid State Machine).

2.3 Echo State Network(ESN)

’Echo’ means ’something that repeats or resembles something else’ or ’something that is similar to

something that happened or existed before’. So, ’Echo State’ means ’if the network has been run for

a very long time, the current network state is uniquely determined by the history of the input and the

(teacher-forced) output’. ESN is a type of RC, and also belongs to RNN. So the expression is similar to

RNN and RC.

3



Figure 3: The structure of ESN. [2]

ht+1 = fh(Winxt +Wht +Wbackyt)

yt+1 =Wout


xt

ht+1

yt

 (3)

where Wout is the weight to the output that is trained. And


xt

ht+1

yt

 is the concatenation of column

vectors. And the row vector version is like this.

ht+1
T = fh(xt

TWin +ht
TW + yt

TWback)

yt+1
T =

[
xt

T ht+1
T yt

T
]

Wout

(4)

Echo state network finds Wout using the least square error.

Ŵout = argmin
Wout

∥Y −XWout∥2
2

Ŵout = (XT X)†XTY

X =


x1

T h2
T y1

T

x2
T h3 y2

T

...

xT−1
T hT

T yT−1
T



Y =


y2

T

y3
T

...

yT
T



(5)
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where ŷt is the ground truth output vector and the matrix X† means the pseudoinverse of the matrix

X . In order to determine echo state, these propositions are used. Especially, these propositions are easy

to check the echo state.

Proposition 1 Assume a sigmoid network with unit output functions fi = tanh.

(a) Let the weight matrix W satisfy σmax = Λ < 1, where σmax is its largest singular value. Then

d(T (x,h),T (x′,h′)) < Λd(h,h′) for all inputs x, for all states h,h′ ∈ [−1,1]N . There, T means the

network state update operator: T (xt ,ht) = f (Winxt +Wht)

(b) Let the weight matrix have a spectral radius |λmax| > 1, where λmax is an eigenvalue of W with the

largest absolute value. Then the network has an asymptotically unstable null state. This implies that it

has no echo states for any input set U containing 0 and admissible state set A = [−1,1]N .

So according to (b) in the proposition, the spectral radius of W must be smaller than 1 to maintain

the echo state. So, we should determine the weight matrix W like this.

Algorithm 1 The weight Algorithm.
1: Randomly generate W0 by sampling the weights from a uniform distribution over [0,1]

2: Normalize W0 to W1 with unit spectral radius λmax of W0

W1 =
1
λ

W0

3: Scale W1 to W , whereby W has a spectral radius of ρ < 1

W = ρW1

ESNs with leaky integrator neurons

Echo State Network with leaky integrator neurons is to learn slowly and continuous changing systems.

So we introduce networks with a continuous dynamics. The evolution of a continuous-time leaky inte-

grator network is like this,

ḣ =C(−ah+ f (W inx+Wh+W backy)) (6)

where C is the time constant and a is the leaking decay rate. So, this solution is like this.

hn+1 = (1−δCa)hn +δC f (W inxn+1 +Whn +W backyn) (7)

where δ is the stepsize. By choosing C small, one can employ the Echo State Network of type (8)

to model slow systems. Or we can write if we take the leaking decay rate a = 1.

hn+1 = αhn +(1−α) f (W inxn+1 +Whn +W backyn) (8)
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2.4 Filters to restore noisy images

Before we introduce filters that we restore noisy images, we explain the meaning of ’Adaptive’ filter. [12]

Unlike other filters, ’Adaptive’ filter only uses not-noisy pixels since it is appropriate in removing salt-

and-pepper noise. So we define the pixel set M, which means the set of not-noisy pixels when giving

salt-and-pepper noises,

M(i, j) = {(s, t)|0 < [I1](i+s, j+t) < 1} (9)

where we use the pixel values the interval [0,1].

Adaptive mean filter

Mean filter is the filter that used mean value around a pixel. But adaptive mean filter is excluded from

the noisy pixels. The expression is like this.

I′(i, j) =
1
m ∑

(s,t)∈M(i, j)

I(i+s, j+t)

m = |M(i, j)|
(10)

where |A| means the number of elements of the set A.

Adaptive gaussian filter

Gaussian filter uses the Gaussian distribution to make the filter. Adaptive gaussian filter is also excluded

from the noisy pixels.

I′(i, j) =
1
g ∑
(s,t)∈M(i, j)

G(s, t)I(i+s, j+t)

g = ∑
(s,t)∈M(i, j)

G(s, t)

G(s, t) =
1√
2π

e−
s2+t2

2

(11)

Adaptive unsharp masking filter

Unsharp masking filter is the filter that enhances the edges. And Unsharp masking filter is made by

subtracting blurred image from the original image. Adaptive unsharp masking filter is also excluded

from the noisy pixels. There, We use Adaptive Unsharp masking filter with Gaussian distribution(G(s, t))

for a blurred image. The expression is like this.
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I′(i, j) =
1
u ∑
(s,t)∈M(i, j)

U(s, t)I(i+s, j+t)

u = ∑
(s,t)∈M(i, j)

G(s, t)

U(s, t) =

−G(s, t) if (s, t) ̸= 0

∑
l
s=−l ∑

l
t=−l G(s, t) if (s, t) = 0

(12)

These filters will be used to find Win for a patch.

III Image Restoration

We explain how to restore the noisy images. We use the salt-and-pepper noise to give noisy images.

And we use ESN to restore noisy images.

3.1 Impulse noise(also called salt-and pepper noise)

We used Noise matrix N whose element is 1 where the corresponding pixel is noisy and 0 otherwise.

N(i, j,c) =

 1 if (I1)(i, j,c) = 1 or 0

0 otherwise
(13)

where c means the colors, red(c = 1), green(c = 2) and blue(c = 3).

Next, we apply the noise partition. This means we divide the noise pixels evenly and randomly, say

N1 and N2. There, N1 and N2 are used to apply the adaptive filters to make Win. And N1 is used for the

1st reservoir, N2 is used for the 2nd reservoir, and N is used for the other reservoirs.

And we use the noisy input image I1 for the 1st reservoir, and the output image In that is generated

by the previous reservoir is used to the input.

3.2 Finding Win and a reservoir for a patch

We make ‘Win’ for a (2p+ 1)× (2p+ 1) patch using adaptive mean, adaptive gaussian and adaptive

unsharp masking filter.(Section 2.4) And the size of ‘Win’ for a patch is ((2p+ 1)∗ (2p+1)∗ 3)× (3 ∗
3+1) = ((2p+1)∗(2p+1)∗3)×10. So we make the element of (Win)(i, j) the coefficient of filters. [12]

7



(d) 40% noise (e) 60% noise (f) 80% noise

Figure 4: Salt and Pepper noise

[(Win)(i, j)]((2p+1)(2p+1)(c−1)+(2p+1)(s+2)+t+3,c) =


1
m if N(i, j,c) = 0

0 otherwise

[(Win)(i, j)]((2p+1)(2p+1)(c−1)+(2p+1)(s+2)+t+3,3+c) =


1
g G(s, t) if N(i, j,c) = 0

0 otherwise

[(Win)(i, j)]((2p+1)(2p+1)(c−1)+(2p+1)(s+2)+t+3,6+c) =


1
uU(s, t) if N(i, j,c) = 0

0 otherwise

[(Win)(i, j)]((2p+1)(2p+1)(c−1)+(2p+1)(s+2)+t+3,10) = 0

(14)

In 2nd reservoir, we use N2 instead of N. And from 3rd reservoir, we don’t use the adaptive filter.

Because in I3 that is used for the 3rd reservoir, there are few noises. So we find Win like there is no

(i, j,c) such that N(i, j,c) = 0. Then, we can make a reservoir state vector for a patch and we use an

activation function to hyperbolic tangent function(tanh). And we refer to the equation (4). Since there

are no input and output vectors, we eliminate input and output terms, but remain the reservoir state term.

So using (8), we can make the next state vector for the patch to make many vectors. And we concatenate

the vectors, we make a reservoir state vector for the patch.
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[r(i, j)]1 = tanh(b+[(Win)(i, j)][In](i, j))

[r(i, j)]k+1 = α[r(i, j)]k +(1−α) tanh
( 0.5

tanh0.5
[r(i, j)]kA

)
r(i, j) = [[r(i, j)]1, [r(i, j)]2, ..., [r(i, j)]K ]1×(10K)

(15)

where [In](i, j) is a (2p+1)× (2p+1) input patch whose center is (i, j), α ∈ [0.1] is the coefficient

and A is the weight matrix. This matrix is made from Algorithm 1

3.3 Finding a reservoir state matrix for n-th reservoir

We made many reservoir state vectors for patches respectively. Next We concatenate the vectors to make

a reservoir state matrix for an input image. So we call this matrix ’genRn’. Then, We make a reservoir

state matrix(Rn) for an image using the reservoir state matrix for an input image(genRn) and the previous

reservoir state matrix for an image. We use this equation (8). Since the output image(restored image) is

used as the next reservoir input image, we don’t need to use ‘Wback’. And since the input image is used

to find Wins and r(i, j)s for patches, the term Winxt is eliminated.

genRn =


R(p+1,p+1)

R(p+1,p+2)

...

R(X−p,Y−p)


((X−2p)(Y−2p))×(10K)

R1 = genR1

Rn = βgenRn +(1−β ) tanh
{ 0.5

tanh0.5
genRnBn

}
(16)

where β ∈ [0,1] is the coefficient, and Bn is the weight matrices that are made from Algorithm 1.

And X and Y are the size of input image.

3.4 Finding Wout for n-th reservoir

Next, we find ‘Wout’ to use test images. And we use the least square method to find ‘Wout’. The error

function is like this.

E((Wout)n) =
L

∑
l=1

∥Zl −Rl
n(Wout)n∥2 (17)

To find ‘Wout’, we just differentiate this and find ‘Wout’ that equals to 0. So we can find ‘Wout’ like

this.

∂E((Wout)n)

∂ (Wout)n
=−2

L

∑
l=1

(Rl
n)

T Zl +2
{ L

∑
l=1

(Rl
n)

T Rl
n

}
(Wout)n

⇒ (Wout)n =
{ L

∑
l=1

(Rl
n)

T Rl
n
}†{

L

∑
l=1

(Rl
n)

T Zl}
(18)
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1st reservoir 2nd reservoir 3rd reservoir

n-th reservoir

𝐼1 𝐼2 𝐼3

𝐼𝑛 𝐼𝑛+1

Figure 5: The structure of the reservoirs to restore noisy image.

where A† is the pseudoinverse of a matrix A and Zl is the ground truth image.

3.5 Image restoration

Finally, we can restore the noisy image. Since we know the noisy pixels and the non-noisy pixels in the

first input, we only restore the noisy parts. But we don’t need to restore the non-noisy parts. And the

restored image is used into the input for the next reservoir.

I2 = (1−N1)⊙ I1 +N1 ⊙Rl
1(Wout)1

I3 = (1−N2)⊙ I2 +N2 ⊙Rl
2(Wout)2

In+1 = (1−N)⊙ In +N ⊙Rl
n(Wout)n

(19)

where ’⊙’ means the element-wise multiplication between matrices. The term ’(1−N)⊙ In’ means

that the pixel values of non-noisy parts remain, but the term ’N ⊙Rl
n(Wout)n’ means that the noisy pixels

are modified to the restored pixels. And the output image In+1 is used to the next reservoir input.

Reservoir State Matrices Sequential Concatenation

We also consider the reservoir state matrices sequential concatenation. This method is just to concatenate

all the previous state matrices. The expression is like this

RC1 = R1

RCn =
[
R1 R2 ... Rn

] (20)
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So, the restored image is like this.

(Wout)n =
{ L

∑
l=1

(RCl
n)

T RCl
n

}†{ L

∑
l=1

(RCl
n)

T Zl
}

I2 = (1−N1)⊙ I1 +N ⊙RCl
1(Wout)1

I3 = (1−N2)⊙ I2 +N ⊙RCl
2(Wout)2

In+1 = (1−N)⊙ In +N ⊙RCl
n(Wout)n

(21)

No leaky integrator neurons

We also consider without leaky integrator neurons. That is, we also use the original expression of ESN4.

There, we also eliminate the weight matrices.

Rn = tanh
{ 0.5

tanh0.5
genRn

}
(22)

IV Experiment

We use the error analysis, PSNR, RMSE and SSIM to compare existed methods. PSNR is Peak Signal-

Noise Ratio, RMSE is Root Mean Square Error, and SSIM is Structural Similarity Index Measure. These

are mainly used to estimate the error of the images.

MSE(Z, In) =
1

3XY

X

∑
i=1

Y

∑
j=1

3

∑
k=1

(Z(i, j,k)− (In)(i, j,k))
2

PSNR(Z, In) =−10log10 MSE(Z, In)

RMSE(Z, In) =
√

MSE(Z, In)

SSIM(Z, In) =
(2µZµIn + c1)(2σ(Z,In)+ c2)

(µZ
2 +µIn

2 + c1)(σZ
2 +σIn

2 + c2)

µI =
1

3XY

X

∑
i=1

Y

∑
j=1

3

∑
c=1

I(i, j,c)

σI =
1

3XY −1

X

∑
i=1

Y

∑
j=1

3

∑
c=1

(I(i, j,c)−µI)
2

σ(I,J) =
1

3XY −1

X

∑
i=1

Y

∑
j=1

3

∑
c=1

(I(i, j,c)−µI)(J(i, j,c)−µJ)

c1 = 0.012

c2 = 0.032

(23)
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We set the number of reservoirs 10(n = 1,2, ...10), α = 0.5, β = 0.9, ρ = 0.9 (from Algorithm 1)

and K = 8(from the equation (15) ). And we use 200 training images(L = 200) whose sizes are all

24×24(X = Y = 24 from the equation (16) ) to find (Wout)n.

4.1 The result depending on patch sizes

First, we implement depending on the patch sizes : 5×5, 7×7 and 9×9. And we select the 6th reservoir

because test images’ error results are almost no better from 6th reservoir. (Figure 6-7, Appendix Figure

20-24 )

60% noise 80% noise

5×5 7×7 9×9 5×5 7×7 9×9

PSNR 31.4036 30.9735 30.7163 26.7905 26.6868 26.1899

castle RMSE 0.0269 0.0283 0.0291 0.0458 0.0463 0.0490

SSIM 0.9761 0.9734 0.9715 0.9253 0.9295 0.9205

PSNR 34.3632 34.8627 34.6315 31.2212 32.7827 30.9204

pyramid RMSE 0.0191 0.0181 0.0186 0.0275 0.0230 0.0284

SSIM 0.9897 0.9908 0.9896 0.9694 0.9843 0.9763

Table 1: The result depending on patch sizes

(a) 60% noise and 5×5 (b) 60% noise and 7×7 (c) 60% noise and 9×9

(d) 80% noise and 5×5 (e) 80% noise and 7×7 (f) 80% noise and 9×9

Figure 6: The result images depending on the pixel sizes.(Pyramid)
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(a) 60% noise and 5×5 (b) 60% noise and 7×7 (c) 60% noise and 9×9

(d) 80% noise and 5×5 (e) 80% noise and 7×7 (f) 80% noise and 9×9

Figure 7: The result images depending on the pixel sizes.(Castle)

We can find when the noise is 60%, 5×5 patch looks best on Table 1 and Appendix Table 5. In fact,

many papers use the smaller filter. That’s because the smaller the filter size, the less size of input weights

for patches respectively. So, the computational cost is cheaper and the performance is better. However,

Although the Table 1 shows that there are some cases that the best errors(PSNR, RMSE, SSIM) are 5×5

patch, the figure (d) in Figure 6 - 7 and Appendix Figure 20-24 is found noisy by the naked eye, whereas

the cases of 7×7 and 9×9 looks clean.

That’s because if we take 5× 5 patch, then the number of noise pixels is 20 of 25 on average. So,

we can find that there are some patches that have all the noise pixels. Because we use adaptive filters to

find Win, the patches cannot apply the adaptive filters. So, these patches cause the remaining noise after

restoration. On the other hand, if we expand the patch such as 7×7 and 9×9, then there are few patches

that have all the noise pixels. So we can apply the adaptive filters better than the case about 5×5 patch,

and there are few noises on the result image((e) and (f) in Figure 6 - 7 and Appendix Figure 20-24).

Therefore, we adopt the case about 5×5 patch when the noise intensity is 60% and the case about

13



Figure 8: The parts of the result when taking 5×5 pixel

7×7 patch when the noise intensity is 80% on the next experiment.

4.2 Comparing the existed methods

Second, we compare other restoration methods like median filter, mean filter, gaussian filter, adaptive

mean filter, adaptive gaussian filter, CNN with median filter [3] ,image restoration PDE and Kim’s [12].

And we adopt the RSMSC , reservoir state matrices sequential concatenation. (Table 2 - ??) (Figure 13

- 30)

In the past, median filter, mean filter and gaussian filter were used to solve the noisy images as well

as edge detection. The advantage of median filter is to be able to preserve the edges while removing

noises. Especially, for salt and pepper noise, median filter is effective. The advantage of mean filter is

to be useful in removing Gaussian noise and Uniform noise. But because mean filter uses the pixel far

away from the center, the disadvantage is that the boundaries can be blurred.

Figure 9: CNN with median filter [3]
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Recently, many papers about image restoration are published, CNN with median filter [3] and image

restoration PDE and so on. First, CNN with median filter uses CNN, which is mainly used in image-

related work such as classification, image detection and so on. By using many residual blocks, the

performance is much better than the previous filters.

Second, image restoration PDE is derived from [13] and [14]. The expression of the image restora-

tion PDE is like this.

ut = div
(

∇u
|∇u|

)
(24)

The advantage of PDE is to make the noisy image smoothly. But the disadvantage of PDE is not to

be able to preserve the boundaries. Because the equation (24) is the 2nd order PDE, it does not perform

well on the edge.

The comparison results are like these.(Figure 10-13, Appendix Figure 25-32)

(a) Median filter (b) Mean filter (c) Gaussian filter

(d) Adaptive Mean filter (e) Adaptive Gaussian filter (f) CNN with median filter

(g) image restoration PDE (h) Kim’s (i) ESN(RSMSC)

Figure 10: The result images with 80% noise.(Pyramid)

The pyramid image results tell that kim’s and ESN(RSMSC) are the best among them. We can find

that the (g) of Figure 10 is a little blurry. By looking at Figure 11, the sand part of the image using PDE

is blurry, whereas those using kim’s and ESN(RSMSC) looks clear.
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Kim’sImage Restoration PDE ESN(RSMSC)

Ground Truth

Figure 11: The result images with 80% noise.(Pyramid)

Kim’sImage Restoration PDE ESN(RSMSC)Ground Truth

Figure 12: The result images with 80% noise.(Castle)

The castle image results tell that (i) is the best among them. the sky of (f) is blurry, those of (g) and

(h) respectively still have noises. However, the sky of (i) looks clean, so does the lake. And we compare

the window that the castle has. The image of PDE looks blurry and so does the bottom line. And that

of ESN(RSMSC) is better than that of kim’s because the bottom line looks clear and the window shape

looks similar to the ground truth image.
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(a) Median filter (b) Mean filter (c) Gaussian filter

(d) Adaptive Mean filter (e) Adaptive Gaussian filter (f) CNN with median filter

(g) image restoration PDE (h) Kim’s (i) ESN(RSMSC)

Figure 13: The result images with 80% noise.(Castle)
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The next tables show the error analysis. And the ’ESN(RSMSC)’ adopted the reservoir whose result

is the best. In addition, ’AM’ means ’adaptive mean filter’, ’AG’ means ’adaptive gaussian filter, and

’CNN’ means ’CNN with median filter [3]’.(Table 2, Appendix Table 6 - 8)

Castle

median filter mean filter gaussian filter AM AG

PSNR 14.6816 13.6384 13.2709 22.3886 20.7015

60% RMSE 0.1845 0.2080 0.2170 0.0760 0.0922

SSIM 0.3168 0.2369 0.2259 0.8150 0.7918

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 27.0793 27.5422 28.6168 31.4036
60% RMSE 0.0767 0.0420 0.0371 0.0269

SSIM 0.9218 0.9385 0.9541 0.9761

median filter mean filter gaussian filter AM AG

PSNR 8.9198 11.7790 11.4299 19.5233 17.9506

80% RMSE 0.3581 0.2577 0.2682 0.1056 0.1266

SSIM 0.0993 0.1252 0.1150 0.7317 0.7163

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 25.0120 23.9934 25.3382 26.6868
80% RMSE 0.0973 0.0631 0.0541 0.0463

SSIM 0.8775 0.8723 0.9066 0.9295

Pyramid

median filter mean filter gaussian filter AM AG

PSNR 15.3693 15.3897 14.7767 30.3653 23.9161

60% RMSE 0.1704 0.1700 0.1825 0.0303 0.0637

SSIM 0.3959 0.3217 0.2920 0.9715 0.8081

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 31.6906 33.9072 35.0199 34.3632

60% RMSE 0.0451 0.0202 0.0177 0.0191

SSIM 0.9204 0.9888 0.9904 0.9897

median filter mean filter gaussian filter AM AG

PSNR 9.3725 13.6455 13.6105 26.7536 21.8543

80% RMSE 0.3399 0.2078 0.2212 0.0460 0.0808

SSIM 0.1095 0.1641 0.1491 0.9292 0.7489

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 29.9931 31.2058 32.0238 32.7827
80% RMSE 0.0548 0.0275 0.0251 0.0230

SSIM 0.8799 0.9781 0.9814 0.9843

Table 2: The error results comparing other methods(Castle and Pyramid)
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Although there are some cases that the image restoration PDE is the best(Table 6), the boundaries in

image of PDE are mostly blurred. But, those of ESN with RSMSC are clear. That’s because when we

find input weights, unsharp masking filter is used. And unsharp masking filter makes boundaries clear.

Therefore, the problem of image restoration PDE is that there are some noises, especially on boundaries,

and the boundaries looks blurred. Also, there are some cases that kim’s is the best(Table 2). But there

are some noises (Figure 13,27) on the background. That’s because kim’s does not use many reservoirs,

whereas ESN with RSMSC uses many reservoirs and can pick a reservoir whose result is the best. As we

can see, the result of ESN with the reservoir state matrices sequential concatenation is the best among

them. Of course, the methods of only using one filter such as Median filter, Mean filter, Gaussian filter,

Adaptive Mean filter and Adaptive Gaussian filter are much worse than the others. Although CNN with

median filter is not worse than PDE and ESN, the computational cost in training is much expensive than

those, taking several hours. Because CNN with median filter has lots of layers and parameters, and

back-propagation [6] is used many times. A few parameters and the way to find the parameters using

least square method lead ESN to take lower cost.

4.3 The result with the reservoir state matrix sequential concatenation and no leaky
integrator neurons

Third, we use the reservoir state matrix sequential concatenation (20), say RSMSC. We compare with

4.1, say Vanilla. Also, we compare No leaky integrator neurons (3.5), say NoLIN. Then the training

result about the MSE(Mean Square Error) is like this. (Figure 14, 15)

Figure 14: The training error with 60% noise.
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Figure 15: The training error with 80% noise.

We can find that the MSE(Mean Square Error) of RSMSC(Reservoir State Matrices Sequential Con-

catenation) is strictly decreasing as the number of reservoir is larger, whereas the others(Vanilla and

NoLIN) are increasing slightly again. So we can expect that the test result of RSMSC will be also the

best among them. The next test results show the case of 6th reservoir. (Table 3, Appendix Table 9)

60% noise, 5×5 patch 80% noise, 7×7 patch

Vanilla RSMSC NoLIN Vanilla RSMSC NoLIN

PSNR 29.0934 31.4036 29.4728 23.5922 26.6868 24.5124

castle RMSE 0.0351 0.0269 0.0336 0.0661 0.0463 0.0595

SSIM 0.9380 0.9761 0.9525 0.8395 0.9295 0.8651

PSNR 31.2479 34.3632 30.7714 26.1793 32.7827 26.5237

pyramid RMSE 0.0274 0.0191 0.0289 0.0491 0.0230 0.0472

SSIM 0.9743 0.9897 0.9756 0.9338 0.9843 0.9460

Table 3: The result comparing RSMSC and NoLIN

As we can see, the result of RSMSC is a little better than the others. That is, the result of the 6th

reservoir of RSMSC is the best among theirs.
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4.4 The result depending on the number of training datasets

We consider depending on the number of training datasets.

The number of training datasets

Blue line 50

Red line 100

Green line 200

Sky-blue line 500

Yellow line 1000

Table 4: The meaning of the line colors

Figure 16: The result comparison depending on the number of training datasets. (Castle, 60% noise)
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Figure 17: The result comparison depending on the number of training datasets. (Castle, 80% noise)

Figure 18: The result comparison depending on the number of training datasets. (Pyramid, 60% noise)
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Figure 19: The result comparison depending on the number of training datasets. (Pyramid, 80% noise)

We can find that the more the number of training datasets, the better results. And the yellow

lines(1000 training datasets) are the best results of most cases. (Figure 16-19, Appendix Figure 33-

37)

V Conclusion

RNN is mainly used in text-related work. And CNN is used in image-related work. But RNN and

ESN are also used in image-related work as well as CNN. This paper dealt with image restoration given

salt-and-pepper noise. So I think ESN can also restore images given other noise modelings such as

gaussian noise, uniform noise and so on. Also, I think ESN can be applied by other image-related work

such as image enhancement, segmentation, line detection and so on. And ESN can solve the problem

about computational cost, which is happened by other Artificial Neural Network(ANN) such as CNNs

and RNNs. But the limitation is that if the number of the reservoir is larger, then the errors such as

PSNR, RMSE and SSIM are getting worse than the previous reservoir. And if we use the reservoir state

matrices sequential concatenation, then the errors are getting worse faster, causing the Overfitting. I

think the theories about ESN are deficient, so we have to find some properties about ESN to solve the

error problem in the future.
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Appendix

The result depending on patch sizes(4.1)

60% noise 80% noise

5×5 7×7 9×9 5×5 7×7 9×9

PSNR 41.6450 41.1023 40.5721 34.9082 36.7414 35.8637

airplane RMSE 0.0083 0.0088 0.0094 0.0180 0.0146 0.0161

SSIM 0.9909 0.9905 0.9882 0.9464 0.9779 0.9609

PSNR 32.8087 32.6997 32.2161 28.4740 28.1163 27.6197

cheetah RMSE 0.0229 0.0232 0.0245 0.0377 0.0393 0.0416

SSIM 0.9897 0.9894 0.9884 0.9707 0.9704 0.9602

PSNR 34.0846 33.3768 33.0972 29.2545 29.8326 28.5153

butterfly RMSE 0.0198 0.0214 0.0221 0.0345 0.0322 0.0375

SSIM 0.9920 0.9903 0.9901 0.9765 0.9807 0.9734

PSNR 29.1049 28.7655 28.6648 24.6654 24.5742 24.4834

statue RMSE 0.0351 0.0365 0.0369 0.0584 0.0591 0.0597

SSIM 0.9370 0.9322 0.9317 0.8184 0.8212 0.8149

PSNR 33.0169 32.6349 32.3923 28.3608 28.3022 28.0573

camel RMSE 0.0223 0.0233 0.0240 0.0382 0.0384 0.0395

SSIM 0.9742 0.9704 0.9694 0.9182 0.9212 0.9124

Table 5: The result depending on patch sizes

(a) 60% noise and 5×5 (b) 60% noise and 7×7 (c) 60% noise and 9×9

(d) 80% noise and 5×5 (e) 80% noise and 7×7 (f) 80% noise and 9×9

Figure 20: The result images depending on the pixel sizes.(Airplane)
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(a) 60% noise and 5×5 (b) 60% noise and 7×7 (c) 60% noise and 9×9

(d) 80% noise and 5×5 (e) 80% noise and 7×7 (f) 80% noise and 9×9

Figure 21: The result images depending on the pixel sizes.(Cheetah)

(a) 60% noise and 5×5 (b) 60% noise and 7×7 (c) 60% noise and 9×9

(d) 80% noise and 5×5 (e) 80% noise and 7×7 (f) 80% noise and 9×9

Figure 22: The result images depending on the pixel sizes.(Status)
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(a) 60% noise and 5×5 (b) 60% noise and 7×7 (c) 60% noise and 9×9

(d) 80% noise and 5×5 (e) 80% noise and 7×7 (f) 80% noise and 9×9

Figure 23: The result images depending on the pixel sizes.(Butterfly)

(a) 60% noise and 5×5 (b) 60% noise and 7×7 (c) 60% noise and 9×9

(d) 80% noise and 5×5 (e) 80% noise and 7×7 (f) 80% noise and 9×9

Figure 24: The result images depending on the pixel sizes.(Camel)
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Comparing the existed methods(4.2)

(a) Median filter (b) Mean filter (c) Gaussian filter

(d) Adaptive Mean filter (e) Adaptive Gaussian filter (f) CNN with median filter

(g) image restoration PDE (h) Kim’s (i) ESN(RSMSC)

Figure 25: The result images with 80% noise.(Airplane)

Kim’sImage Restoration PDE ESN(RSMSC)

Ground Truth

Figure 26: The result images with 80% noise.(Airplane)
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(a) Median filter (b) Mean filter (c) Gaussian filter

(d) Adaptive Mean filter (e) Adaptive Gaussian filter (f) CNN with median filter

(g) image restoration PDE (h) Kim’s (i) ESN(RSMSC)

Figure 27: The result images with 80% noise.(Cheetah)

Kim’sImage Restoration PDE ESN(RSMSC)

Ground Truth

Figure 28: The result images with 80% noise.(Cheetah)
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Kim’sImage Restoration PDE ESN(RSMSC)

Ground Truth

Figure 29: The result images with 80% noise.(Butterfly)

(a) Median filter (b) Mean filter (c) Gaussian filter

(d) Adaptive Mean filter (e) Adaptive Gaussian filter (f) CNN with median filter

(g) image restoration PDE (h) Kim’s (i) ESN(RSMSC)

Figure 30: The result images with 80% noise.(Butterfly)
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(a) Median filter (b) Mean filter (c) Gaussian filter

(d) Adaptive Mean filter (e) Adaptive Gaussian filter (f) CNN with median filter

(g) image restoration PDE (h) Kim’s (i) ESN(RSMSC)

Figure 31: The result images with 80% noise.(Status)
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(a) Median filter (b) Mean filter (c) Gaussian filter

(d) Adaptive Mean filter (e) Adaptive Gaussian filter (f) CNN with median filter

(g) image restoration PDE (h) Kim’s (i) ESN(RSMSC)

Figure 32: The result images with 80% noise.(Camel)

median filter mean filter gaussian filter AM AG

PSNR 17.1949 17.0207 13.2709 33.4803 24.6801

60% RMSE 0.1381 0.1409 0.2170 0.0212 0.0583

SSIM 0.1846 0.1099 0.2259 0.9694 0.9383

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 33.7118 40.6265 39.1251 41.6450
60% RMSE 0.0357 0.0093 0.0111 0.0083

SSIM 0.9802 0.9922 0.9891 0.9909

median filter mean filter gaussian filter AM AG

PSNR 10.0962 15.5592 11.4299 28.3966 22.4976

80% RMSE 0.3127 0.1667 0.2682 0.0380 0.0750

SSIM 0.0258 0.0681 0.1150 0.8672 0.9049

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 33.1430 36.3365 35.4601 36.7414
80% RMSE 0.0381 0.0152 0.0169 0.0146

SSIM 0.9729 0.9822 0.9763 0.9779

Table 6: The error results comparing other methods(Airplane)
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Cheetah

median filter mean filter gaussian filter AM AG

PSNR 14.9531 13.4197 13.0186 24.3609 21.8690

60% RMSE 0.1788 0.2133 0.2234 0.0605 0.0806

SSIM 0.3665 0.2501 0.2258 0.9268 0.8251

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 26.6908 28.5834 30.3032 32.8087
60% RMSE 0.0802 0.0372 0.0305 0.0229

SSIM 0.9103 0.9742 0.9816 0.9897

median filter mean filter gaussian filter AM AG

PSNR 8.9269 11.5213 11.1766 22.4293 19.9140

80% RMSE 0.3578 0.2654 0.2762 0.0756 0.1010

SSIM 0.0912 0.1239 0.1122 0.8733 0.7669

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 17.9008 25.1183 26.7132 28.1163
80% RMSE 0.2206 0.0555 0.0462 0.0393

SSIM 0.8278 0.9426 0.9605 0.9704

Butterfly

median filter mean filter gaussian filter AM AG

PSNR 14.6588 14.4087 13.9653 26.1719 24.4800

60% RMSE 0.1850 0.1904 0.2003 0.0491 0.0597

SSIM 0.4530 0.3582 0.3283 0.9579 0.8987

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 28.3151 32.4354 32.1753 34.0846
60% RMSE 0.0665 0.0239 0.0246 0.0198

SSIM 0.9452 0.9898 0.9884 0.9920

median filter mean filter gaussian filter AM AG

PSNR 9.0440 12.6151 12.1954 23.7028 21.8439

80% RMSE 0.3530 0.2340 0.2456 0.0653 0.0809

SSIM 0.1287 0.1765 0.1606 0.9199 0.8439

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 26.2850 27.6185 28.3437 29.8326
80% RMSE 0.0840 0.0416 0.0383 0.0322

SSIM 0.9148 0.9721 0.9738 0.9807

Table 7: The error results comparing other methods(Cheetah and Butterfly)
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Status

median filter mean filter gaussian filter AM AG

PSNR 14.7915 13.2267 12.8724 20.5678 19.7567

60% RMSE 0.1821 0.2181 0.2272 0.0937 0.1028

SSIM 0.2419 0.1606 0.1530 0.5626 0.5795

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 24.5522 25.1667 26.9897 29.1049
60% RMSE 0.1026 0.0552 0.0447 0.0351

SSIM 0.8272 0.8277 0.8919 0.9370

median filter mean filter gaussian filter AM AG

PSNR 8.8632 11.3696 11.0474 18.9474 17.7616

80% RMSE 0.3604 0.2701 0.2803 0.1129 0.1294

SSIM 0.0555 0.0857 0.0785 0.4972 0.4880

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 22.3835 22.4563 23.3142 24.5742
80% RMSE 0.1316 0.0754 0.0683 0.0591

SSIM 0.7192 0.6822 0.7641 0.8212

Camel

median filter mean filter gaussian filter AM AG

PSNR 15.4575 13.8839 13.4781 24.8134 22.3765

60% RMSE 0.1687 0.2022 0.2119 0.0575 0.0761

SSIM 0.3097 0.2049 0.1879 0.8184 0.7496

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 27.7171 29.2633 30.4913 33.0169
60% RMSE 0.0712 0.0344 0.0299 0.0223

SSIM 0.8935 0.9365 0.9552 0.9742

median filter mean filter gaussian filter AM AG

PSNR 9.1941 12.0469 11.7036 21.9878 19.9130

80% RMSE 0.3470 0.2498 0.2599 0.0795 0.1010

SSIM 0.0715 0.1042 0.0947 0.7323 0.6653

CNN PDE Kim’s [12] ESN(RSMSC)

PSNR 25.4638 25.7634 26.9098 28.3022
80% RMSE 0.0923 0.0515 0.0451 0.0384

SSIM 0.8271 0.8645 0.9002 0.9212

Table 8: The error results comparing other methods(Status and Camel)
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The result with the reservoir state matrix sequential concatenation and no leaky integra-
tor neurons(4.3)

60% noise, 5×5 patch 80% noise, 7×7 patch

Vanilla RSMSC NoLIN Vanilla RSMSC NoLIN

PSNR 37.8147 41.6450 39.0332 31.8228 36.7414 33.3823

airplane RMSE 0.0129 0.0083 0.0112 0.0256 0.0146 0.0214

SSIM 0.9705 0.9909 0.9764 0.9135 0.9779 0.9481

PSNR 30.2185 32.8087 30.4329 25.1251 28.1163 25.4582

cheetah RMSE 0.0308 0.0229 0.0301 0.0554 0.0393 0.0533

SSIM 0.9695 0.9897 0.9722 0.9199 0.9704 0.9350

PSNR 30.4722 34.0846 30.9037 24.8842 29.8326 25.4788

butterfly RMSE 0.0299 0.0198 0.0285 0.0570 0.0322 0.0532

SSIM 0.9763 0.9920 0.9813 0.9333 0.9807 0.9427

PSNR 27.1667 29.1049 27.5919 22.6137 24.5742 22.8554

status RMSE 0.0438 0.0351 0.0417 0.0740 0.0591 0.0720

SSIM 0.8897 0.9370 0.9037 0.7294 0.8212 0.7379

PSNR 30.0197 33.0169 30.6378 24.9127 28.3022 25.2870

camel RMSE 0.0316 0.0223 0.0294 0.0568 0.0384 0.0544

SSIM 0.9327 0.9742 0.9434 0.8360 0.9212 0.8480

Table 9: The result comparing RSMSC and NoLIN
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The result depending on the number of training datasets(4.4)

(a) 60% noise

(b) 80% noise

Figure 33: The result comparison depending on the number of training datasets. (Airplane)
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(a) 60% noise

(b) 80% noise

Figure 34: The result comparison depending on the number of training datasets. (Cheetah)
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(a) 60% noise

(b) 80% noise

Figure 35: The result comparison depending on the number of training datasets. (Butterfly)
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(a) 60% noise

(b) 80% noise

Figure 36: The result comparison depending on the number of training datasets. (Statue)
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(a) 60% noise

(b) 80% noise

Figure 37: The result comparison depending on the number of training datasets. (Camel)
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