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Abstract

We study Kyle models with terminal trading constraints that are variations of Kyle (1985)

and Back (1992) where the insider has no trading constraint. We find that the constraint

produces new features to our model. First, it turns out that we need a new state process in

the structure of equilibria. Second, we show that our insider places a block order at terminal

time, ΔθT = ã − θT−, to satisfy her constraint. We prove the existence of equilibria in both

discrete time and continuous time settings. For the continuous time model, we establish the

explicit equilibrium by deriving an autonomous system of first-order nonlinear ordinary differ-

ential equations (ODEs). Moreover, we obtain results associated with empirical findings, for

example, autocorrelated aggregate holdings, decreasing price impact function, and U-shaped

trading patterns.

Keywords: stochastic control, insider trading, market microstructure, trading constraint,

Kyle equilibrium
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Chapter 1

Introduction

The search for equilibrium price formulations in the presence of insiders with asymmetric infor-

mation has been an important research topic in financial mathematics since the pioneering work

of Albert S. Kyle (see [2]). In [2], Kyle considered three market participants: a risk-neutral

insider, risk-neutral and competitive market makers, and random noise traders. He found equi-

libria in both discrete time and continuous time settings with fundamental asset value, ṽ, which

is assumed to be a normal random variable.

There are numerous variations and generalizations of the Kyle model. Kerry Back estab-

lished the existence of unique equilibrium in a continuous time setting with fundamental asset

value, f(ṽ), where f is an increasing function (see [1]). The papers [3] and [4] consider equilibria

for the case where multiple insiders exist. The paper [6] considers a market structure with a

risk-averse insider and [7] and [5] consider equilibria with general price distribution and noise

trading.

In fact, investors may have trading constraints, therefore, equilibrium models with trading

constraints have been studied by many researchers. However, the constraints make it difficult to

examine equilibrium structure and to prove the existence of equilibria. The papers [9], [10] and

[8] consider Kyle models with terminal trading constraint and analyze equilibrium numerically.

We impose a trading constraint on our insider at terminal time, t = T . To be specific, we

use a “hard” constraint formulation for the insider’s stock holding process (θt)t∈[0,T ] such that

the terminal value of the process satisfies θT = ã, almost surely. (i.e., P(θT = ã) = 1).

Actually, trading restrictions have been used in many problems: for example, Radner equi-

librium models and models based on “soft” constraints (see [8],[9] and [10]). However, there is

no equilibrium existence proofs in the settings of [2] when the insider has either a soft or hard

trading constraint. We prove global existence of an equilibrium when the insider has terminal
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trading constraint.

To sum up, the contributions of this thesis can be summarized as followings:

1. Giving an existence proofs in discrete and continuous settings: To the best of our knowl-

edge, there is no equilibrium existence proof in the settings of Kyle and Back when the insider

has a soft or hard trading target. We establish the existence of an equilibrium when the insider

needs to meet hard trading constraint in both discrete time version and continuous one. Fur-

thermore, in the continuous time setting, we express the equilibrium explicitly by solving an

autonomous two-dimensional coupled system of ordinary differential equations.

2. Introducing a new state variable: Due to the restriction θT = ã, our equilibrium structure

requires a new state variable Qt = E[ã− θt|FM
t ] in addition to the aggregate order process Yt.

Consequently, the pricing rules cannot be represented by a function of Yt only, as in [2] and [1].

In addition, we see that the insider’s optimal trading strategy is a linear function of Qt and

ã− θt. Based on these two state variables we create generalized pricing rules.

3. Finding that the insider’s optimal behavior includes placing a block order at the terminal

time: We define the admissible set which allows the insider’s trading process to jump at any time

on the trading interval. Whereas such jump processes are suboptimal in [1], our constrained

insider trades continuously before the terminal time and then makes block order at the terminal

time.

4. Solving problems with fully informed/partially informed insider with constraint, simul-

taneously : Initially, we assume that the insider in order model can observe the target ã, but

cannot observe the asset value ṽ. Nevertheless, one has a partial information of ṽ since we

assume that there is a positive correlation between ã and ṽ. We then establish the existence

of equilibrium with the insider in Theorem 5.4.1. Furthermore, when the insider has full in-

formation (i.e., one observes about both ã and ṽ), we find that the equilibrium constructed in

Theorem 5.4.1 continues to be an equilibrium.

5. Verifying that properties of the equilibrium are consistent with several empirical findings :

In the equilibrium, we see that (i) the price impact decreases over time, (ii) the autocorrelation

of all participants’ holdings is positive and (iii) the optimal trading strategy of the insider follows

U-shaped patterns.

In Chapter 2, we introduce mathematical concepts used to analyze our model. We review

Kyle [2] and Back [1] in Chapter 3. In Chapter 4, we construct and find an equilibrium of

our model in discrete time setting. Chapter 5 shows that an equilibrium exists in continuous

time setting and discusses several properties of the equilibrium. The Appendix contains the

justification of the appearance of the state variables ã − θ· and Q· and considers the market
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with a fully informed insider.
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Chapter 2

Preliminary

This chapter summarizes necessary mathematical concepts that can be used to solve the prob-

lem. Please refer [13] and [12] for details.

This dissertation includes abuse of notation. Δ means difference in the discrete time set-

ting and jump in the continuous time setting. For example, ΔXn = Xn −Xn−1 in the discrete

time, and ΔXt = Xt −Xt− in the continuous time.

Definition 2.0.1 (Brownian motion). Let (Ω,F ,P) be a probability space. We define W =

{Wt,Ft; 0 ≤ t < ∞} as a standard Brownian Motion if the followings hold:

(i) W0 = 0 almost surely and Wt2 −Wt1 ∼ N(0, t2 − t1) for any 0 ≤ t1 < t2.

(ii) For 0 = t0 < t1 < · · · < tn, Wt1 −Wt0 ,Wt2 −Wt1 , · · · ,Wtn −Wtn−1 are independent.

(iii) Trajectories are continuous almost surely:

∃Ω∗ ∈ F such that P(Ω∗) = 1 and t �→ Wt(ω) is continuous for ω ∈ Ω∗.

Definition 2.0.2 (Semimartingale). We define a real valued process X defined on the filtered

probability space (Ω,F , (Ft)t≥0,P) as a semimartingale if it can be decomposed as

Xt = Mt + Vt

where M is a local martingale and V is a càdlàg adapted process of locally bounded variation.

We call an R
n-valued process X = (X1, · · · , Xn) as a semimartingale if each of its components

Xi is a semimartingale.

Definition 2.0.3 (Quadratic covariation process). Let Xt and Yt be real-valued stochastic

processes defined on a probability space (Ω,F ,P). Its quadratic covariation is also a process,
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which is defined as

[X,Y ]t = lim
||P ||→0

n∑
k=1

(
Xtk −Xtk−1

) (
Ytk − Ytk−1

)

where P ranges over partitions of the interval [0, t] and the norm of the partition P is the mesh.

This limit is defined using convergence in probability.

Definition 2.0.4 (Itô’s formula with jumps). Let X = (X1, · · · , Xn) be an n-tuple of semi-

martingales and let f : Rn → R have second order partial derivatives and they are continuous.

Then f(X) is a semimartingale and the following formula holds:

f(Xt)− f(X0)

=

n∑
i=1

∫ t

0−
∂f

∂xi
(Xs−)dXi

s +
1

2

∑
1≤i,j≤n

∫ t

0−
∂2f

∂xi∂xj
(Xs−)d[X i, Xj ]cs

+
∑

0<s≤t

{
f(Xs)− f(Xs−)−

n∑
i=1

∂f

∂xi
(Xs−)ΔX i

s

}
,

where [·, ·]c denotes the continuous part of the quadratic covariation process.

Theorem 2.0.5 (Kalman-Bucy filter). Let (Ω,F ,P) be a complete probability space, and let

(Ft), 0 ≤ t ≤ T be a nondecreasing family of right continuous σ−algebras of F-augmented by

P-null sets in F . Suppose the observable process X = (Xt,Ft) follows an Itô process

Xt = X0 +

∫ t

0
As(ω)ds+

∫ t

0
Bs(X)dWs,

where W = (Wt,Ft) is a Brownian motion, the process A = (At(ω),Ft) is P-a.s. integrable and

B = (Bt(X),Ft) is P-a.s. square integrable. Assume that the process Y = (Yt,Ft), t ≤ T is

Yt = Y0 +

∫ t

0
Hsds+ Zt

where Zt is Ft-adapted martingale and H = (Ht,Ft) is a random process with

∫ T

0
|Hs|ds < ∞

P-a.s. We also assume that

sup
0≤t≤T

E[Y 2
t ] < ∞,

∫ T

0
E[H2

t ]dt < ∞,∫ T

0
E[A2

t ]dt < ∞,

B2
t (x) ≥ C > 0.
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Then for each t, 0 ≤ t ≤ T , (P-a.s.)

E[Y |Ft] = E[Y |F0] +

∫ T

0
E[H|Fs]ds+

∫ T

0

{
E[D|Fs] +

(
E[Y A|Fs]− E[Y |Fs]E[A|Fs]B

−1
s (X)

)}
dW̄s,

where

W̄t =

∫ t

0

dXs − E[A|Fs]ds

Bs(X)

is a Brownian motion (with respect to the system (FX
t ), 0 ≤ t ≤ T ), and D = (Dt,Ft) is a

process with

Dt =
d〈Z,W 〉t

dt
.
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Chapter 3

Literature Review

The models proposed by [2] and [1] have been widely adopted in the literature on financial

economics. In this chapter, we first review the sequential auction equilibrium in [2] and then

review the continuous time version of Kyle equilibrium in [1].

3.1 Kyle (1985)

Trading starts at time t = 0 and ends at time t = 1. Assume that there are N auctions and

0 = t0 < t1 < · · · < tN = 1 where the time of nth auction is tn. The true asset value, ṽ,

is assumed to be normally distributed with a mean p0 and variance Σ0. Noise traders in the

market trade Δũn at the nth auction. Assume that Δũn is normally distributed with zero mean

and variance σ2
uΔtn and is independent of ṽ for all n = 0, 1, · · · , N . Denote Δx̃n the quantity

traded by the insider at the nth iteration. Let p̃n be the market clearing price at the time n.

By this formulation, the insider observes not only the ṽ, but also all the past prices. We thus

see that the insider’s position at the time n is,

x̃n = Xn(ṽ, p̃1, · · · , p̃n−1), for any n = 1, · · · , N , (3.1)

where Xn is a measurable function. The market makers can observe the aggregate order of all

traders, so the price p̃n is determined by

p̃n = Pn(x̃1 + ũ1, · · · , x̃n + ũn), for any n = 1, · · · , N , (3.2)

for some measurable function Pn.

Define the vectors of functions X := 〈X1, · · · , XN 〉 and P := 〈P1, · · · , PN 〉 as the informed

trader’s strategy and the market makers’ pricing rule, respectively. For any n, define π̃n as the
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profits of the insider at time n. Therefore, π̃n is given by

π̃n =

N∑
k=n

(ṽ − p̃k)x̃k. (3.3)

Now we can define the equilibrium concept:

Definition 3.1.1. A sequential auction equilibrium is defined as a pair (X,P ) such that the

following conditions hold:

(i) Profit maximization: For any n = 1, · · · , N and for any X ′ = 〈X ′
1, · · · , X ′

N 〉 which satisfies

X ′
1 = X1, · · · , X ′

n−1 = Xn−1, we have

E[π̃n(X,P )|ṽ, p̃1, · · · , p̃n−1] ≥ E[π̃n(X
′, P )|ṽ, p̃1, · · · , p̃n−1] (3.4)

(ii) Market efficiency: For all n = 1, · · · , N ,

p̃n = E[ṽ|x̃1 + ũ1, · · · , x̃n + ũn] (3.5)

Definition 3.1.2. If an equilibrium is called a linear equilibrium if the component functions

of X and P are linear, and is called a recursive linear equilibrium if there exist a constants

λ1, · · · , λN such that for n = 1, · · · , N ,

p̃n = p̃n−1 + λn(Δx̃n +Δũn).

Theorem 3.1.3 (Kyle (1985)). There is a unique linear equilibrium that is recursive. In this

equilibrium there are constants βn, λn, αn, δn and Σn such that for n = 1, · · · , N ,

Δx̃n = βn(ṽ − p̃n−1)Δtn,

Δp̃n = λn(Δx̃n +Δũn),

Σn = V(ṽ|Δx̃1 +Δũ1, · · · ,Δx̃n +Δũn),

E[π̃n|v, p1, · · · , pn−1] = αn−1(v − pn−1)
2 + δn−1.

Given Σ0, the constants βn, λn, αn, δn,Σn are the unique solution to the difference equation

system

αn−1 =
1

4λn(1− αnλn)
,

δn−1 = δn + αnλ
2
nσ

2
uΔtn,

βnΔtn =
1− 2αnλn

2λn(1− αnλn)
,

λn =
βnΣn

σ2
u

,

Σn = (1− βnλnΔtn)Σn−1

subject to αN = δN = 0 and the second order condition λn(1− αnλn) > 0.
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Kyle proved this theorem by applying both the backward induction argument and the pro-

jection theorem. In this equilibrium, the price impact function is a constant and the insider’s

optimal order rate process is constant, since E[x̃n|ṽ]
ṽ = σu

σv
.

3.2 Back (1992)

As in [2], let the trading starts at time t = 0 and ends at time t = 1. Consider tradings to occur

continuously throught the interval [0, 1]. The insider already possesses about the information

ṽ. Assume the distribution function of ṽ is denoted by F and the support of F is an interval,

including the whole real line or half line, and that F is continuous on this interval. Therefore,

the inverse of F is well defined on the interval (0, 1). We also assume that

∫ ∞

−∞
v2dF < ∞.

Moreover, there are risk neutral market makers and noise traders. Let Zt the cumulative orders

of the noise traders at time t and this is independent of ṽ. Assume that the process Z to be a

Brownian motion with a mean zero and variance σ2. Let Xt denote the cumulative orders of

the insider and Y = X + Z. Back considered equilibria as having the property that the price

at time t depends only on cumulative orders Yt and not on the history of orders. Therefore,

we assume Pt = H(Yt, t) for some function H. Let H denote the class of continuous functions

H : R× [0, 1] → R that are twice-continuously differentiable in y and continuously differentiable

in t on R× (0, 1) and for which H(·, t) is strictly monotone for each t ∈ [0, 1] and

E
[
H(Z1, 1)

2
]
< ∞ and E

[∫ 1

0
H(Zt, t)

2dt

]
< ∞.

A pricing rule is an element of H. Let X denote the class of semimartingales X adapted to F
such that

E

[∫ 1

0
H(Xt− + Zt, t)

2dt

]
< ∞ for all H ∈ H.

As in Kyle(1985), an equilibrium is a pair (H,X) for which

(i) Given a trading strategy X ∈ X , a pricing rule H satisfies H(Yt, t) = E[ṽ|(Ys)s≤t] for all

t ∈ [0, 1].

(ii) Given a pricing rule H ∈ H, a trading strategy X ∈ X maximizes

E

[∫
[0,1]

(ṽ − Pt−)dXt − [P,X]1

]

Based on these structures, Back established the following equilibrium:
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Theorem 3.2.1. Define

H(y, t) = E[h(y + Z1 − Zt)], (3.6)

where h = F−1 ◦N . For each v ∈ V , define

Xt = (1− t)

∫ t

0

h−1(v)− Zs

(1− s)2
ds. (3.7)

Then (H,X) is an equilibrium.

The contribution of this paper is its finding that the distribution of the risky asset follows

general form, not normal distribution.
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Chapter 4

Discrete Time

4.1 Model

We develop a variation of Kyle’s multi-period discrete time model where the insider has a

trading constraint ã. The trading day is normalized to the interval [0, 1], and there are N ∈ N

trading points with time step Δ = 1
N . As in [2], the true value of the asset ṽ is defined as a

normal random variable with mean zero and variance σ2
v > 0. The insider’s trading constraint

ã is also a normal random variable with mean zero and variance σ2
a > 0. Assume that ã and ṽ

are correlated with correlation ρ ∈ (0, 1]. Our model posits three types of market participants:

1. Insider : The (risk-neutral) insider’s order for the stock at time n = 0, 1, 2, · · · , N is denoted

by Δθn so that θn is her accumulated position at time n. We assume that the initial holding

of the insider is zero, θ0 = 0. Moreover, this constrained insider needs to satisfy the trading

target ã at the terminal time, i.e., θN = ã. At time t = 0 the insider knows ã and observes the

stock-prices over time. The main difference between Kyle’s insider and ours is that ours has

no information about the exact asset value ṽ until all information is revealed. However, one

still has partial information about the asset value since we assume that ṽ and ã have a positive

correlation ρ ∈ (0, 1]. In other words, ã gives the insider initial private information about the

asset value. Roughly speaking, the situation that an insider has partial information about the

true asset value can be considered as a case where the insider knows secret information that

affects the stock price.

2. Noise Traders: These traders submit net stock orders is exogenously given by ΔWn(:=

Wn − Wn−1) at time n = 1, · · · , N . These increments are normally distributed with zero

mean and variance σ2
wΔ for a positive constant σw. Assume that ṽ, ã and (Wn)

N
n=1 are jointly

Gaussian, W1, · · · ,WN are independent, and they are independent of ṽ and ã.

11



3. Market makers: The (competitive and risk-neutral) market makers observe the total net

order Yn at time n = 1, · · · , N , where

Yn = Δθn +ΔWn, W0 = 0. (4.1)

Therefore, the market makers’ filtration is

FM
n := σ (Y1, · · · , Yn) , n = 1, · · · , N. (4.2)

Based on this filtration, the market makers set the stock price by

Pn = E
[
ṽ
∣∣FM

n

]
, n = 1, · · · , N, P0 = 0. (4.3)

In addition, the market makers predict the insider’s remaining trading demand ã− θn :

Qn = E
[
ã− θn

∣∣FM
n

]
, n = 1, · · · , N, Q0 = 0. (4.4)

Note that the insider’s filtration is

FI
n := σ (ã, Y1, · · · , Yn−1) , n = 1, · · · , N. (4.5)

Based on this filtration, the insider wants to maximize her expected profit:

sup
Δθ

E

[
N∑

n=1

(ṽ − pn)Δθn

∣∣∣∣∣FI
0

]
= sup

Δθ
E
[
ã(ṽ − PN ) + θN−1ΔPN + · · ·+ θ1ΔP2

∣∣FI
0

]
(4.6)

=
ρσv
σa

ã2 − inf
Δθ

E

[
N∑

n=1

(ã− θn−1)ΔPn

∣∣∣∣∣FI
0

]
(4.7)

where the second equality is from joint normality of ṽ and ã, PN =

N∑
n=1

Pn and P0 = 0.

Definition 4.1.1. An equilibrium is defined as a pair (θ, P ) such that the following two con-

ditions hold:

(i) Optimal Trading Strategy of the Insider: Given the function Pn, the strategy θn

maximizes the insider’s profit (4.7).

(ii) Pricing Rule: Given the function θn, the pricing rule Pn satisfies (4.3).

4.2 Conjectured form of equilibrium

Consider a set of possible candidate values for an equilibrium:

λn, μn, rn, sn, βn, αn for n = 1, · · · , N with βN = αN = 1 (4.8)
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Our goal is to construct an linear equilibrium that satisfies the following systems:

ΔPn = λnYn + μnQn−1, P0 = 0, (4.9)

ΔQn = rnYn + snQn−1, Q0 = 0, (4.10)

Δθn = βn (ã− θn−1 −Qn−1) + αnQn−1, θ0 = 0. (4.11)

Yn = Δθn +ΔWn, W0 = 0. (4.12)

Moreover, we define some variance and covariance functions which will be used in later:

Σ(1)
n = E

[
(ã− θn−1 −Qn−1)

2
]

(4.13)

Σ(2)
n = E [(ã− θn−1 −Qn−1) (ṽ − Pn−1)] (4.14)

The following result is an application of the classic Kalman filter from jointly normal distribu-

tions.

Lemma 4.2.1. Consider the linear system that satisfies (4.9)-(4.12) with arbitrary coefficients

λn, μn, rn, sn. If this system satisfies

λn =
βnΣ

(2)
n−1

β2
nΣ

(1)
n−1 + σ2

wΔ
, μn =

−αnβnΣ
(2)
n−1

β2
nΣ

(1)
n−1 + σ2

wΔ
, (4.15)

rn =
(1− βn)βnΣ

(1)
n−1

β2
nΣ

(1)
n−1 + σ2

wΔ
, sn =

−αn(1− βn)βnΣ
(1)
n−1

β2
nΣ

(1)
n−1 + σ2

wΔ
− αn, (4.16)

then the process P and Q satisfy the relation (4.3) and (4.4), respectively.

Moreover, the variance and covariance functions for the market makers’ prediction have the

following relations:

Σ(1)
n = (1− (1 + rn)βn)

2Σ
(1)
n−1 + r2nσ

2
wΔ (4.17)

Σ(2)
n = (1− (1 + rn)βn)Σ

(2)
n−1 − λnβn(1− (1 + rn)βn)Σ

(1)
n−1 + λnrnσ

2
wΔ (4.18)

Proof. For any n = 1, · · · , N , define a process Ŷn as

Ŷn := Yn − αnQn−1 (4.19)

= Δθn +ΔWn − αnQn−1 = βn(ã− θn−1 −Qn−1) + ΔWn (4.20)

where the second equality (4.19) follows from the definition of FM
n−1 = σ(Y1, · · · , Yn−1). These

random variables Ŷ1, · · · , ŶN are mutually independent Gaussian random variables. Further-

more, we have σ(Ŷ1, · · · , Ŷn) = σ (Y1, · · · , Yn) = FM
n for all n = 1, · · · , N . Therefore, by the

13



projection theorem for joint normal random variables,

ΔPn = E [ṽ|Y1, · · · , Yn]− E [ṽ|Y1, · · · , Yn−1]

= E

[
ṽ
∣∣∣Ŷ1, · · · , Ŷn]− E

[
ṽ
∣∣∣Ŷ1, · · · , Ŷn−1

]
=

Cov(ṽ, Ŷn)

V ar(Ŷn)
Ŷn =

E[ṽŶn]

V ar(Ŷn)
Ŷn

(4.21)

ΔQn = E [ã− θn|Y1, · · · , Yn]− E [ã− θn|Y1, · · · , Yn−1]

= E

[
ã− θn−1

∣∣∣Ŷ1, · · · , Ŷn]− E

[
ã− θn−1

∣∣∣Ŷ1, · · · , Ŷn−1

]
− E

[
Δθn

∣∣∣Ŷ1, · · · , Ŷn]

=
Cov

(
ã− θn−1, Ŷn − E

[
Ŷn

∣∣∣Ŷ1, · · · , Ŷn−1

])
V ar

(
Ŷn − E

[
Ŷn|Ŷ1, · · · , Ŷn−1

]) (
Ŷn − E

[
Ŷn

∣∣∣Ŷ1, · · · , Ŷn−1

])
− E

[
Δθn

∣∣∣Ŷ1, · · · , Ŷn]

=
E

[
(ã− θn−1)Ŷn

]
V ar(Ŷn)

Ŷn − E

[
βn (ã− θn−1 −Qn−1) + αnQn−1

∣∣∣Ŷ1, · · · , Ŷn]

=
E

[
(ã− θn−1) Ŷn

]
V ar(Ŷn)

Ŷn − βnE
[
ã− θn−1 − Ŷn−1

∣∣∣Ŷn]− αnQn−1

=
E

[
(ã− θn−1 −Qn−1) Ŷn

]
V ar(Ŷn)

Ŷn − βn
E

[
(ã− θn−1 −Qn−1) Ŷn

]
V ar(Ŷn)

Ŷn − αnQn−1

= (1− βn)
E

[
(ã− θn−1 −Qn−1) Ŷn

]
V ar(Ŷn)

Ŷn − αnQn−1

(4.22)

Moreover, from the linear construction, we can compute the expectations:

V ar(Ŷn) = E

[
(βn(ã− θn−1 −Qn−1) + ΔWn)

2
]
= β2

nΣ
(1)
n−1 + σ2

wΔ

E

[
ṽŶn

]
= E

[
(ṽ − Pn−1) Ŷn

]
= E [(ṽ − Pn−1) (βn(ã− θn−1 −Qn−1) + ΔWn)] = βnΣ

(2)
n−1

E

[
(ã− θn−1 −Qn−1) Ŷn

]
= E [(ã− θn−1 −Qn−1) (βn(ã− θn−1 −Qn−1) + ΔWn)] = βnΣ

(1)
n−1

(4.23)

Therefore, combining (4.21)-(4.23) with (4.9) and (4.10), we can find the relations (4.15) and

(4.16). Furthermore, we can compute the variance and covariance of market makers’ prediction

14



by using (4.15)-(4.14):

Σ(1)
n = E

[
(ã− θn −Qn)

2
]

= E

[
(ã− θn−1 −Qn−1 −Δθn −ΔQn)

2
]

= E

[
(ã− θn−1 −Qn−1 −Δθn − rnYn + (1 + rn)αnQn−1)

2
]

= E

[
(ã− θn−1 − (1− (1 + rn)αn)Qn−1 −Δθn − rnΔθn − rnΔWn)

2
]

= E

[
(ã− θn−1 − (1− (1 + rn)αn)Qn−1 − (1 + rn){βn(ã− θn−1 −Qn−1 + αnQn−1)} − rnΔWn)

2
]

= E

[
((ã− θn−1 −Qn−1)(1− (1 + rn)βn)− rnΔWn)

2
]

= (1− (1 + rn)βn)
2Σ

(1)
n−1 + r2nσ

2
wΔ

(4.24)

Σ(2)
n = E [(ṽ − Pn)(ã− θn −Qn)]

= E [(ṽ −ΔPn − Pn−1)(ã− θn−1 −Qn−1 −Δθn −ΔQn)]

= E

[(
(ṽ − Pn−1)− λnβn(ã− θn−1 −Qn−1)− λnΔWn

)
(
(1− (1 + rn)βn)(ã− θn−1 −Qn−1)− rnΔWn

)]
= (1− (1 + rn)βn)Σ

(2)
n−1 − λnβn(1− (1 + rn)βn)Σ

(1)
n−1 + λnrnσ

2
wΔ

(4.25)

4.3 Existence of equilibrium

We conjecture that the state variables are ã − θn and Qn. Our treatment of Q as a state

variable will be discussed in §4.4. Theorem 4.3.1 shows that the insider’s value function in (4.7)

for n = 0, 1, · · · , N follows the quadratic function

inf
θk∈FI

k−1

E

[
N∑

k=n+1

(ã− θk−1)ΔPk

∣∣∣∣∣FI
n

]
= In(ã− θn −Qn)

2 + Jn(ã− θn −Qn)Qn +Kn (4.26)

where In, Jn and Kn are constants.

Theorem 4.3.1. Let Σ
(1)
N−1 > 0 and Σ

(2)
N−1 > 0. Suppose that 0 < βn

1−βn
<

√
σ2
wΔ

Σ
(1)
n

holds

for all n = 1, · · · , N . There exists a linear and recursive equilibrium in the system (4.9)-

(4.14). In this equilibrium, there are constants βn, αn, In, Jn,Kn, λn, μn, rn, sn,Σ
(1)
n and Σ(2)

n

which satisfies (4.26),(4.17),(4.18), (4.15) and (4.16). In particular, the insider’s value function

15



has the quadratic form as in (4.26) and the coefficients for the value functions satisfy

In−1 = λnβn + In(1− (1 + rn)βn)
2 + Jn((1− (1 + rn)βn)rnβn)

Jn−1 = λnβn + Jn((1− (1 + rn)βn)(1− αn))

Kn−1 = Kn + Inr
2
nσ

2
wΔ− Jnr

2
nσ

2
wΔ

(4.27)

subject to βN = αN = 1 with the second order condition

(1 + rn)
2In − rn(1 + rn)Jn > 0. (4.28)

Proof. Suppose that (4.26) holds for time n+ 1. Then the insider’s value function in the n-th

iteration becomes

inf
θk∈FI

k−1

E

[
N∑

k=n

(ã− θk−1)ΔPk

∣∣∣∣∣FI
n−1

]
(4.29)

= inf
θk∈FI

k−1

E
[
(ã− θn−1)ΔPn + In(ã− θn −Qn)

2 + Jn(ã− θn −Qn)Qn +Kn

∣∣FI
n−1

]
(4.30)

By the joint normality and definition of (4.9)-(4.12), we can compute the conditional expecta-

tions:

E[(ã− θn−1)ΔPn|FI
n−1] = E

[
(ã− θn−1)(λnYn + μnQn−1)

∣∣FI
n−1

]
= (ã− θn−1)(λnΔθn + μnQn−1)

E
[
(ã− θn −Qn)

2
∣∣FI

n−1

]
= E

[
(ã− θn−1 −Qn−1 −Δθn −ΔQn)

2
∣∣∣FI

n−1

]
= E

[
(ã− θn−1 −Qn−1 −Δθn − rnΔθn − rnΔWn − snQn−1)

2
∣∣∣FI

n−1

]
= (ã− θn−1 −Qn−1 − (1 + rn)Δθn − snQn−1)

2 + r2nσ
2
wΔ

E
[
(ã− θn −Qn)Qn

∣∣FI
n−1

]
= E

[
(ã− θn−1 −Qn−1 − (1 + rn)Δθn − rnΔWn − snQn−1) (Qn−1 + rnΔθn + rnΔWn + snQn−1)

∣∣FI
n−1

]
= (ã− θn−1 −Qn−1 − (1 + rn)Δθn − snQn−1) (Qn−1 + rnΔθn + snQn−1)− r2nσ

2
wΔ

(4.31)

Therefore, by using (4.31), (4.30) becomes

(4.30) = inf
θ

(
(ã− θn−1)(λnΔθn + μnQn−1) +Kn

+ In

(
(ã− θn−1 −Qn−1 − (1 + rn)Δθn − snQn−1)

2 + r2nσ
2
wΔ
)

+ Jn
(
(ã− θn−1 −Qn−1 − (1 + rn)Δθn − snQn−1) (Qn+1 + rnΔθn + snQn−1)− r2nσ

2
wΔ
) )

(4.32)
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By taking derivatives,

λn(ã− θn−1) + In (−2(1 + rn) (ã− θn−1 −Qn−1 − (1 + rn)Δθn + snQn−1))

+ Jn (−(1 + rn) (Qn+1 + rnΔθn + snQn−1) + rn (ã− θn−1 −Qn−1 − (1 + rn)Δθn − snQn−1)) = 0

(4.33)

With the second order condition (4.28), we derive a candidate optimizer of the insider’s problem:

For n = 1, · · · , N ,

Δθn = βn (ã− θn−1 −Qn−1) + αnQn−1, (4.34)

where

βn =
λn − 2In(1 + rn) + rnJn

2{rn(1 + rn)Jn − In(1 + rn)2} and αn =
λn + 2(1 + rn)snIn − Jn(1 + sn + rn2rnsn)

2{rn(1 + rn)Jn − In(1 + rn)2}
(4.35)

Furthermore, combining (4.30), (4.31) and (4.26) produce the difference equations for the coef-

ficient functions (4.27). We confirm that the candidate equilibrium is a true equilibrium. Define

xn := βn

1−βn
and by combining (4.35) with (4.15)-(4.16), we have for all 1 ≤ n ≤ N − 1,

2

(
Σ
(1)
n

σ2
wΔ

)2

(Jn − In)x
3
n+

(
Σ
(1)
n

σ2
wΔ

Jn − 2Σ
(1)
n

σ2
wΔ

In − Σ
(2)
n

σ2
wΔ

)
x2n

+

(
2Σ

(1)
n

σ2
wΔ

In − Σ
(1)
n

σ2
wΔ

Jn − Σ
(2)
n

σwΔ

)
xn + 2In = 0.

(4.36)

First, we consider time n = N − 1 case. Since αN = βN = 1 and IN = JN = 0, we have

IN−1 = JN−1 = −λNβN = −λN =
−Σ

(2)
N−1

Σ
(1)
N−1+σ2

wΔ
from (4.27). Hence, the (4.36) for time n = N−1

becomes (
λN

Σ
(1)
N−1

σ2
wΔ

+
Σ
(2)
N−1

σ2
wΔ

)
x2N−1 +

(
−λN

Σ
(1)
N−1

σ2
wΔ

+
Σ
(2)
N−1

σ2
wΔ

)
xN−1 − 2λN = 0

This equation can be more simply transcribed as,

(
2Σ

(1)
N−1 + σ2

wΔ
)
x2N−1 + σ2

wΔxN−1 − 2σ2
wΔ = 0. (4.37)

Define a function f(xN−1) =
(
2Σ

(1)
N−1 + σ2

wΔ
)
x2N−1 + σ2

wΔxN−1 − 2σ2
wΔ. Then

f(0) = −2σ2
wΔ < 0, (4.38)

f

(
σ2
wΔ

Σ
(1)
N−1

)
=
(
2Σ

(1)
N−1 + σ2

wΔ
) σ2

wΔ

Σ
(1)
N−1

+ σ2
wΔ

√
σ2
wΔ

Σ
(1)
N−1

− 2σ2
wΔ = σ2

wΔ

(
σ2
wΔ

Σ
(1)
N−1

+

√
σ2
wΔ

Σ
(1)
N−1

)
> 0.

(4.39)
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Therefore, between 0 and
√

σwΔ

Σ
(1)
N−1

there is a solution xN−1. And this xN−1 satisfies the second

order condition:

(1 + rN−1)
2IN−1 − rN−1(1 + rN−1)JN−1 > 0 ⇔ IN−1

(
Σ

(1)
N−1

σ2
wΔ

xN−1 + 1

)
> 0

⇔ xN−1 > − σ2
wΔ

Σ
(1)
N−1

.
(4.40)

Therefore, the solution occurs atN−1-th time step. We can also prove its existence by backward

induction. Suppose that there exists a solution xn such that 0 < xn <

√
σ2
wΔ

Σ
(1)
n

for 1 ≤ n ≤ N−1.

Then in n− 1 iteration, as in (4.36), we get a cubic equation:

2

(
Σ
(1)
n−1

σ2
wΔ

)2

(Jn−1 − In−1)x
3
n−1+

(
Σ
(1)
n−1

σ2
wΔ

Jn−1 −
2Σ

(1)
n−1

σ2
wΔ

In−1 −
Σ
(2)
n−1

σ2
wΔ

)
x2n−1

+

(
2Σ

(1)
n−1

σ2
wΔ

In−1 −
Σ
(1)
n−1

σ2
wΔ

Jn−1 −
Σ
(2)
n−1

σwΔ

)
xn−1 + 2In−1 = 0.

(4.41)

As in above, we define the cubic function in the left-hand side of (4.41) as fn−1(xn−1). Then,

fn−1(0) = 2In−1 > 0, (4.42)

fn−1

(√
σ2
wΔ

Σ
(1)
n−1

)
=

√
Σ
(1)
n−1

σ2
wΔ

Jn−1 + Jn−1 −
Σ
(2)
n−1

Σ
(1)
n−1

− Σ
(2)
n−1

σ2
wΔ

√
σ2
wΔ

Σ
(1)
n−1

=

⎛
⎝1 +

√
Σ
(1)
n−1

σ2
wΔ

⎞
⎠(Jn−1 −

Σ
(2)
n−1

Σ
(1)
n−1

)
< 0

(4.43)

where the last inequality of (4.43) holds since

Jn−1 −
Σ
(2)
n−1

Σ
(1)
n−1

=
λn

1 + rn
− λn−1

rn−1
=

βnΣ
(2)
n−1

βnΣ
(1)
n−1 + σ2

wΔ
− βnΣ

(2)
n−1

βnΣ
(1)
n−1

< 0. (4.44)

(4.42) and (4.43) imply that there exists a solution xn−1 of the cubic equation (4.36) between

the interval

(
0,

√
σ2
wΔ

Σ
(1)
n−1

)
. In addition, note that (4.36), (4.44) and the interval of xn−1 implies

that

Σ
(1)
n−1

σ2
wΔ

(In−1 − Jn−1)xn−1 + In−1 =

xn−1(1 + xn−1)
Σ

(1)
n−1

σ2
wΔ

(
Jn−1 − Σ

(2)
n−1

Σ
(1)
n−1

)

2

(
Σ

(1)
n−1

σ2
wΔ

x2n−1 − 1

) > 0. (4.45)

Therefore, the the solution xn−1 satisfies the second order condition (4.28):(
1 +

Σ
(1)
n−1

σ2
wΔ

xn−1

)(
Σ
(1)
n−1

σ2
wΔ

(In−1 − Jn−1)xn−1 + In−1

)
> 0 (4.46)

⇔ (1 + rn−1) ((1 + rn−1)In−1 − rn−1Jn−1) > 0 ⇔ (4.28). (4.47)
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By backward induction, there exists an equilibrium satisfying all the relations (4.9)-(4.18) and

(4.26)-(4.27).

In §4.4 , we address state variables. We explain that Qt = E[ã−θt|FM
t ] and ã−θt are considered

naturally as state variables in the linear setting.

4.4 Uniqueness of the linear structure

In the previous sections, Qt = E[ã−θt|FM
t ] and ã−θt are considered naturally as state variables

in a linear market. In this section, we will make sure that it is really natural to consider those

state variables in our linear market.

First, the insider’s expected profit is zero at time N since all information is revealed to all

market participants at the terminal time N . In addition, suppose that for all n = 1, · · · , N ,

FI
n := σ(ã, Y1, · · · , Yn−1) and FM

n := σ(Y1, · · · , Yn),
ΔPn = λnYn + hn−1,

ΔYn = Δθn + σwΔWn,

ΔθN = ã− θN−1 (Because of the terminal constraint),

(4.48)

where λn is a constant and hn−1 is some linear function of Y1, · · · , Yn−1 so that FM
n−1 measurable.

The insider’s expected profit at time N − 1 is

E[(ã− θN−1)ΔPN |FI
N−1]

= E[(ã− θN−1)(λNYN + hN−1)|FI
N−1]

= E[(ã− θN−1)(λN (ã− θN−1 + σwΔWN ) + hN−1)|FI
N−1]

= λN (ã− θN−1)
2 + (ã− θN−1)hN−1

(4.49)

By the market efficiency condition, we have

0 = E
[
ΔPN

∣∣FM
N−1

]
= E

[
λN (ã− θN−1 +ΔWN ) + hN−1

∣∣FM
N−1

]
= λNE

[
ã− θN−1

∣∣FM
N−1

]
+ hN−1

Therefore we get hN−1 = −λNE[ã−θN−1|FM
N−1], implying that E[ã−θN−1|FM

N−1] = E[ΔθN |FM
N−1]

is linear in Y1, · · · , YN−1. Therefore, (4.49) becomes

E
[
(ã− θN−1)ΔPN

∣∣FM
N−1

]
= λN (ã− θN−1)

2 − λN (ã− θN−1)E[ã− θN−1|FM
N−1]

= λN (ã− θN−1 −QN−1)
2 − 3λN (ã− θN−1 −QN−1)QN−1.

(4.50)
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This coincides with the equation (4.26) in n = N − 1. We suppose that Qn = E[ã− θn|FM
n ] is

linear in Y1, · · · , Yn. If we use this assumption to check whether Qn−1 is linear in Y1, · · · , Yn−1,

we can conclude that Qn is linear in Y1, · · · , Yn for any n = 1, · · · , N , thanks to backward

induction. Let Qn = cnYn + cn−1Yn−1 + · · ·+ c1Y1 with some constants cn, cn−1, · · · , c1.
Again, by the market efficiency condition,

0 = E
[
ΔPn

∣∣FM
n−1

]
= E

[
λnYn + hn−1

∣∣FM
n−1

]
= λnE

[
Δθn

∣∣FM
n−1

]
+ hn−1

Hence, we have hn−1 = −λnE[Δθn|FM
n−1], that is, E

[
Δθn

∣∣FM
n−1

]
is linear in Y1, · · · , Yn−1. Then

we check that Qn−1 is also a linear function in Y1, · · · , Yn−1:

Qn−1 = E
[
ã− θn−1

∣∣FM
n−1

]
= E

[
ã− θn

∣∣FM
n−1

]
+ E

[
Δθn

∣∣FM
n−1

]
= E

[
Qn

∣∣FM
n−1

]
+ E

[
Δθn

∣∣FM
n−1

]
= E

[
cnYn + cn−1Yn−1 + · · ·+ c1Y1

∣∣FM
n−1

]− 1

λn
hn−1

= cnE
[
Δθn +ΔWn

∣∣FM
n−1

]
+ (cn−1Yn−1 + · · ·+ c1Y1)− 1

λn
hn−1

= − cn
λn

hn−1 + (cn−1Yn−1 + · · ·+ c1Y1)− 1

λn
hn−1

(4.51)

By backward induction, we confirm that Qn is linear in Y1, · · · , Yn for all n = 1, · · · , N . Thus:

ΔQn = Qn −Qn−1 = rnYn + h̃n−1 (4.52)

where h̃n−1 is some linear function in Y1, · · · , Yn−1. We then want to check that the form of

insider’s value function (4.26) is natural. In (4.50), we already checked that the value function

for n = N − 1 is the same as (4.26). Assume that the value function of time n satisfies (4.26)

and consider the time n− 1:

E

[
(ã− θn−1)ΔPn +

N∑
k=n+1

(ã− θk−1)ΔPk

∣∣∣∣∣FI
n−1

]

= E
[
(ã− θn−1)ΔPn + In(ã− θn −Qn)

2 + Jn(ã− θn −Qn)Qn +Kn

∣∣FI
n−1

] (4.53)
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To compute these expectations, observe that

1. E[(ã− θn−1)ΔPn|FI
n−1] = E

[
(ã− θn−1)(λnYn + hn−1)

∣∣FI
n−1

]
= (ã− θn−1)(λnΔθn + hn−1) = (ã− θn−1)(λnΔθn − λnE[Δθn|FM

n−1])

2. E
[
(ã− θn −Qn)

2
∣∣FI

n−1

]
= E

[
(ã− θn−1 −Qn−1 −Δθn −ΔQn)

2
∣∣∣FI

n−1

]
= E

[(
ã− θn−1 −Qn−1 −Δθn − rnΔθn − rnΔWn − h̃n−1

)2∣∣∣∣FI
n−1

]

=
(
ã− θn−1 −Qn−1 − (1 + rn)Δθn − h̃n−1

)2
+ r2nσ

2
wΔ

3. E
[
(ã− θn −Qn)Qn

∣∣FI
n−1

]
= E

[(
ã− θn−1 −Qn−1 − (1 + rn)Δθn − rnΔWn − h̃n−1

)(
Qn+1 + rnΔθn + rnΔWn + h̃n−1

)∣∣∣FI
n−1

]
=
(
ã− θn−1 −Qn−1 − (1 + rn)Δθn − h̃n−1

)(
Qn+1 + rnΔθn + h̃n−1

)
− r2nσ

2
wΔ

where we used (4.48) and (4.52). Plugging these relations in (4.53) and taking derivatives with

respect to Δθn yields

λn(ã− θn−1) + In

(
−2(1 + rn)

(
ã− θn−1 −Qn−1 − (1 + rn)Δθn − h̃n−1

))
(4.54)

+ Jn

(
−(1 + rn)

(
Qn+1 + rnΔθn + h̃n−1

)
+ rn

(
ã− θn−1 −Qn−1 − (1 + rn)Δθn − h̃n−1

))
= 0

(4.55)

For n = 1, · · · , N , we get

Δθn = an(ã− θn−1) + bnQn−1 + cnh̃n−1 for some constant an, bn, cn. (4.56)

Therefore, from the previous observation, hn−1 becomes a linear combination of Qn−1 and h̃n−1.

hn−1 = −λnE
[
Δθn

∣∣FM
n−1

]
= −λn

(
anE

[
ã− θn−1

∣∣FM
n−1

]
+ bnQn−1 + cnh̃n−1

)
= −λn

(
(an + bn)Qn−1 + cnh̃n−1

) (4.57)

Observe that for any n = 1, · · · , N ,

Ŷn := Yn − E
[
Yn
∣∣FM

n−1

]
= Δθn +ΔWn − E

[
Δθn +ΔWn

∣∣FM
n−1

]
= an(ã− θn−1) + bnQn−1 + cnh̃n−1 +ΔWn − E

[
an(ã− θn−1) + bnQn−1 + cnh̃n−1 +ΔWn

∣∣∣FM
n−1

]
= an

(
ã− θn−1 − E

[
ã− θn−1

∣∣FM
n−1

])
+ΔWn
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So Ŷ1, Ŷ2, · · · , ŶN are mutually independent, and ã − θn and Ŷn are also independent for all

n = 1, · · · , N . Finally, the projection theorem for joint normal random variables produces

ΔQn = E
[
ã− θn

∣∣FM
n

]− E
[
ã− θn−1

∣∣FM
n−1

]
= E

[
ã− θn−1

∣∣FM
n

]− E
[
ã− θn−1

∣∣FM
n−1

]− E
[
Δθn

∣∣FM
n

]
=

Cov(ã− θn−1, Ŷn)

V ar(Ŷn)
(Yn − E

[
Δθn

∣∣FM
n−1

]
)− anE

[
ã− θn−1

∣∣FM
n

]− bnQn−1 − cnh̃n−1

=
Cov(ã− θn−1, Ŷn)

V ar(Ŷn)
(Yn − E

[
Δθn

∣∣FM
n−1

]
)− anE

[
ã− θn−1

∣∣∣Ŷn]− bnQn−1 − cnh̃n−1

= (1− an)
Cov(ã− θn−1, Ŷn)

V ar(Ŷn)

(
Yn − ((an + bn)Qn−1 + cnh̃n−1)

)
− bnQn−1 − cnh̃n−1

(4.58)

Comparing (4.52) and (4.58), we have

h̃n−1 = δnQn−1 for some constant δn. (4.59)

Moreover, this observation and (4.57) yields

hn−1 = δ̄nQn−1 for some constant δ̄n. (4.60)

Ultimately, the insider’s holding in (4.56) is now

Δθn = an(ã− θn−1) + dnQn−1 for some constants an, dn (4.61)

Combining (4.54), and (4.60)-(4.61), we conclude that insider’s value function follows the form

(4.8).
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Chapter 5

Continuous Time

This chapter includes the published contents:

J. Choi, H. Kwon and K. Larsen (2023): Trading Constraints in Continuous-Time Kyle Models,

SIAM Journal on Control and Optimization 61, 1494–1512

5.1 Model

Basically, we assume the same structure as that used in a discrete-time system. The time

index denoted by n in the discrete-time system is replaced by t ∈ [0, T ] in continuous-time

one. Here, the terminal time T is arbitrary and finite; that is, T ∈ (0,∞). Again, our model

includes three types of market participants : noise traders, an insider with trading constraint,

and (competitive) market makers:

1. Noise Traders: As in the discrete-time system, these traders’ cumulative order process is

exogenously given by σwWt at time t ∈ [0, T ].

2. Insider : This trader’s cumulative order process is denoted by (θt)t∈[0,T ]. The insider’s initial

holding is zero, θ0− = 0, and the insider should meet the trading target at the terminal time,

that is, θT = ã ∼ N (0, σ2
a). The insider knows the terminal target and can observe the price

process P . Therefore, the insider’s filtration is

FI
t = σ

(
ã, (Ps)s∈[0,t]

)
for all t ∈ [0, T ].

Similarly, we can assume that the insider directly observes the aggregate orders Yt = σwWt+θt;

hence, the insider’s filtration is replaced with

FI
t = σ

(
ã, (Ys)s∈[0,t]

)
= σ

(
ã, (Ws)s∈[0,t]

)
for all t ∈ [0, T ].
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The insider wants to maximize her expected profit subject to the constraint θT = ã:

sup
θ∈A

E

[∫ T

0
(ṽ − Pt−) dθt

∣∣∣∣FI
0

]
= sup

θ∈A
E

[
(ṽ − PT ) θT −

∫ T

0
Pt−dθt

∣∣∣∣FI
0

]
(5.1)

= ρ
σv
σa

ã2 − inf
θ∈A

E

[∫ T

0
(ã− θt−) dPt

∣∣∣∣FI
0

]
(5.2)

where A is set of all admissible strategies, which is defined in Definition 5.1.1. Here, the equality

in (5.1) in comes from the integration of parts as in Back(1992) and last one comes from the

joint normality of ṽ and ã.

3. Market Makers : These traders observe the aggregate orders dYt over time where Yt =

σwWt + θt. Therefore, the market makers’ filtration is

FM
t = σ

(
(Ys)s∈[0,t]

)
for all t ∈ [0, T ].

As in the discrete setting, all the market participants can observe this aggregate process Y over

time but only the insider can distinguish the amount of θ and W from Y . Moreover, the market

makers set the stock price by using the information of Y in order to clear the market; that is,

they will set the market price as

Pt = E
[
ṽ
∣∣FM

t

]
for all t ∈ [0, T ]. (5.3)

Before defining a concept of an equilibrium, we have to consider the insider’s state variables. In

this setting, we conjecture that the insider’s state variables are ã− θt and Qt =: E
[
ã− θt

∣∣FM
t

]
,

which represent the remaining trading amount of the insider to the constraint, and the estimated

value of the amount is considered by the market maker. We will see that the insider’s optimal

trading strategy is a linear combination of those state variables:

dθt = (β(t) (ã− θt− −Qt−) + α(t)Qt−) dt (5.4)

As in the discrete time setting in Chapter 4, we only consider linear equilibria:

dPt = λ(t)dYt + μ(t)dQt−dt, for t ∈ (0, T ), P0 = 0 (5.5)

ΔPT = λ(T ) (ã− θT− −QT−) (5.6)

dQt = r(t)dYt + s(t)dQt−dt, for t ∈ (0, T ), Q0 = 0. (5.7)

The functions λ(t), μ(t), r(t) and s(t) will be determined in equilibrium. To solve the insider’s

optimization problem with this linear structure, we need to exclude doubling strategies from

our definition of the set of admissible strategies:

Definition 5.1.1 (Admissible Strategies). A process (θt)t∈[0,T ] with initial condition θ0− = 0

and the terminal constraint θT = ã is an admissible strategy if it satisfies the following:
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(i) The order process θt is cádlág semimartingale which is adapted to insider’s filtration FI
t

and square integrable E

[∫ T

0
θ2t dt

]
< ∞.

(ii) For given continuous functions r, s : [0, T ) → R, a cádlág solution (Qt)t∈[0,T ) of the SDE

(5.7) exists and the solution (Qt)t∈[0,T ) is square integrable E

[∫ T

0
Q2

tdt

]
< ∞ and have

an almost surely finite limit lim
t↑T

Qt =: QT−.

(iii) For given continuous functions μ : [0, T ) → R and λ : [0, T ] → R, a cádlág solution

(Pt)t∈[0,T ] of the SDE (5.5)-(5.6) exists such that the stochastic integral

∫ t

0
(ã−θs−)dPs, t ∈

[0, T ] is a well-defined semimartingale with integrable

∫ T

0
(ã−θs−)dPs and an almost surely

finite limit lim
t↑T

Pt =: PT−.

Moreover, define A as the set that contains all admissible strategies.

Definition 5.1.2 (Kyle Equilibrium). Continuous functions μ, r, s, β, α : [0, T ) → R and λ :

[0, T ] → R constitute an equilibrium if

(i) For the pricing rule (5.5) and (5.6) with Qt in (5.7), the stock-holding process

dθt = β(t) (ã− θt− −Qt−) + α(t)Qt−, θ0− = 0 (5.8)

ΔθT = ã− θT−. (5.9)

is in A and maximizes the insider’s expected profit (5.2).

(ii) For the insider’s strategy (5.8)-(5.9) with Qt in (5.7), Pt that follows the dynamics (5.5)-

(5.6) satisfies the market clearing condition (5.3).

5.2 Candidate Equilibrium

This section includes a derivation of value function, candidate equilibrium and corresponding

ODEs for the insider’s optimization problem in (5.2). The next result shows relations between

the functions λ, μ, r, s,Σ1,Σ2, β, α by using the classic Kalman-Bucy filter.

Lemma 5.2.1. We assume that θ, P,Q satisfy the system (5.5)-(5.9).

(i) Suppose that the conditional expectations Pt = E
[
ṽ
∣∣FM

t

]
and Qt = E

[
ã− θt

∣∣FM
t

]
hold.

Define Σ1,Σ2 : [0, T ] → R be

Σ1(t) = E

[
(ã− θt −Qt)

2
]

(5.10)

Σ2(t) = E [(ṽ − Pt) (ã− θt −Qt)] (5.11)
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Then the terminal time pricing rule coefficient satisfies

λ(T ) =

⎧⎪⎪⎨
⎪⎪⎩
any constant if Σ1(T−) = 0

Σ2(T−)

Σ1(T−)
(ã− θT− −QT−) if Σ1(T−) �= 0

(5.12)

For t ∈ [0, T ), the pricing rule coefficients satisfy

λ(t) =
β(t)Σ2(t)

σ2
w

, μ(t) = −α(t)λ(t) (5.13)

r(t) =
β(t)Σ1(t)

σ2
w

, s(t) = −α(t)(1 + r(t)) (5.14)

and the differential equations for the dynamics are given by

Σ′
1(t) = −σ2

w

(
r(t)2 + 2r(t)

)
, Σ1(0) = σ2

a (5.15)

Σ′
2(t) = −σ2

w (1 + r(t))λ(t), Σ2(0) = ρσaσv. (5.16)

(ii) Suppose that λ, μ, r, s,Σ1,Σ2 satisfy (5.10)-(5.14), then Pt = E
[
ṽ
∣∣FM

t

]
, Qt = E

[
ã− θt

∣∣FM
t

]
and (5.10)-(5.11) hold.

Proof. (i) We can replace t− by t in (5.5)-(5.8) due to the continuity of the processes θ, P,Q.

First, the dynamics of θ, P,Q in (5.5)-(5.9) imply the joint normality of ṽ−Pt, ã− θt −Qt and

Ys for s ∈ [0, t]. From this, we observe that E [(ṽ − Pt)Ys] = E [(ã− θt −Qt)Ys] = 0 for s ∈ [0, t].

Therefore, we conclude that ṽ − Pt, ã − θt − Qt and (ṽ − Pt)(ã − θt − Qt) are independent of

FM
t . Therefore, using this independence, we obtain

E
[
ṽ (ã− θt −Qt)

∣∣FM
t

]
= E

[
(ṽ − Pt) (ã− θt −Qt)

∣∣FM
t

]
= Σ2(t), (5.17)

E
[
(ã− θt) (ã− θt −Qt)

∣∣FM
t

]
= E

[
(ã− θt −Qt)

2
∣∣∣FM

t

]
= Σ1(t). (5.18)

and Theorem 8.1 in Liptser and Shiryaev(2001), we derive the SDEs for Pt and Qt :

dPt =
E
[
ṽ (β(t)(ã− θt −Qt) + α(t)Qt)

∣∣FM
t

]− α(t)PtQt

σ2
w

(dYt − α(t)Qtdt)

=
β(t)Σ2(t)

σ2
w

(dYt − α(t)Qtdt) for t ∈ [0, T ). (5.19)

dQt =
E
[
(ã− θt) (β(t)(ã− θt −Qt) + α(t)Qt)

∣∣FM
t

]− α(t)Q2
t

σ2
w

(dYt − α(t)Qtdt)− α(t)Qtdt

=
β(t)Σ1(t)

σ2
w

(dYt − α(t)Qtdt)− α(t)Qtdt for t ∈ [0, T ). (5.20)

where (5.19) and (5.20) comes from the joint normality relations (5.17) and (5.18), respectively.

Therefore, Pt and Qt satisfies the pricing rule (5.13) and (5.14).
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We observe that the expressions (5.13) and (5.14) produce

d (ã− θt −Qt) = −dθt − dQt = −dθt − r(t)(dθt + σwdWt)− s(t)Qtdt

= −(1 + r(t))(β(t)(ã− θt −Qt)dt+ α(t)Qtdt) + (1 + r(t))α(t)Qtdt− σwr(t)dWt

= −(1 + r(t))β(t)(ã− θt −Qt)dt− σwr(t)dWt

d(ṽ − Pt) = −λ(t)(dθt + σwdWt)− μ(t)Qtdt

= −λ(t)β(t)(ã− θt −Qt)dt− σwλ(t)dWt

(5.21)

Applying Ito’s formula and (5.21) to (5.10) and (5.11), we get

Σ1(t) = E

[ ∫ t

0
2 (ã− θs −Qs)

(
− (1 + r(s))β(s) (ã− θs −Qs) ds− σwr(s)dWs

)
+ σ2

wr(s)
2ds
]

=

∫ t

0

(
− 2(1 + r(s))β(s)Σ1(s) + σ2

wr(s)
2
)
ds

= −σ2
w

∫ t

0
(2r(s) + r(s)2)ds,

where the last equality is due to (5.14). The above equation produces (5.15).

Similarly, we obtain

Σ2(t) = E

[ ∫ t

0
(ṽ − Ps)

(
− (1 + r(s))β(s) (ã− θs −Qs) ds− σwr(s)dWs

)
+ (ã− θs −Qs)

(
− λ(s)β(s)(ã− θs −Qs)ds− σwλ(s)dWs

)
+ σ2

wr(s)λ(s)ds
]

− σ2
w

∫ t

0
(1 + r(s))λ(s)ds

and the above equation produces (5.16).

Moreover, we derive the condition for the terminal pricing rule:

ΔPT = E
[
ṽ
∣∣FM

T

]− E
[
ṽ
∣∣FM

T−
]

= E
[
ṽ − PT−|FM

T− ∪ σ(ã− θT−)
]

=

⎧⎪⎨
⎪⎩
E
[
ṽ − PT−|FM

T−
]

if ã− θT− = QT−

E [ṽ − PT−|σ(ã− θT− −QT−)] if ã− θT− �= QT−

=

⎧⎪⎪⎨
⎪⎪⎩
0 if Σ1(T−) = 0

Σ2(T−)

Σ1(T−)
(ã− θT− −QT−) if Σ1(T−) �= 0

, (5.22)

where the first inequality is due to PT−, QT− ∈ FM
T− and the second equality is due to the joint

normality and independence structure we mentioned above. The third equality holds because

Σ1(T−) = 0 if and only if ã − θT− − QT− = 0 almost surely. Therefore, comparing with (5.6)
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we get (5.12).

(ii) Define P̂t := E
[
ṽ | FM

t

]
and Q̂t := E

[
ã− θt | FM

t

]
, and

Σ̂1(t) := E[(ã− θt − Q̂t)
2], Σ̂2(t) := E[(ṽ − P̂t)(ã− θt − Q̂t)].

In this case, we the market makers’ innovation process is

dYt − E
[
Yt
∣∣FM

t

]
dt = dYt − E

[
β(t)(ã− θt −Qt) + α(t)Qt

∣∣FM
t

]
dt

= dYt −
(
β(t)(Q̂t −Qt) + α(t)Qt

)
dt

Hence, similarly as in part (i) proof, by Theorem 8.1 in Liptser and Shiryaev 2001, we obtain

the SDEs for P̂t and Q̂t:

dP̂t =
β(t)Σ̂2(t)

σ2
w

(
dYt −

(
β(t)(Q̂t −Qt) + α(t)Qt

)
dt
)
,

dQ̂t = −
(
β(t)(Q̂t −Qt) + α(t)Qt

)
dt+

β(t)Σ̂1(t)

σ2
w

(
dYt −

(
β(t)(Q̂t −Qt) + α(t)Qt

)
dt
)
,

and the differential equations for Σ̂1 and Σ̂2:

Σ̂′
1(t) = −2β(t)Σ̂1(t)− β(t)2Σ̂1(t)

2

σ2
w

, Σ̂1(0) = σ2
ã, (5.23)

Σ̂′
2(t) = −β(t)Σ̂2(t) +

β(t)2Σ̂1(t)Σ̂2(t)

σ2
w

, Σ̂2(0) = ρσãσṽ. (5.24)

Due to (5.13)-(5.14), we observe that (5.15)-(5.16) and (5.23)-(5.24) are the same system of

ODEs. Therefore, we conclude that Σ̂1 = Σ1 and Σ̂2 = Σ2. Hence, the SDEs (5.5)-(5.7),

together with the relations (5.13)-(5.14), produce the SDEs for P̂t − Pt and Q̂t −Qt:

d(P̂t − Pt) = −β(t)2Σ2(t)

σ2
w

(Q̂t −Qt)dt,

d(Q̂t −Qt) = −
(
β(t) +

β(t)2Σ1(t)

σ2
w

)
(Q̂t −Qt)dt.

Therefore, we get Pt = P̂t and Qt = Q̂t since P0 = Q0 = P̂0 = Q̂0 = 0.

5.3 Derivation of Differential Equations

Recall that the insider want to minimize (See (5.2)):

E

[∫ T

0
(ã− θt−) dPt

∣∣∣∣FI
0

]
. (5.25)
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To derive the HJB equation corresponding to (5.25), it suffices to consider holding processes θt

with θ0 := 0 and dynamics

dθt =

⎧⎪⎨
⎪⎩
θ′tdt, t ∈ (0, T ),

ã− θT−, t = T,

(5.26)

where θ′t is an arbitrary order-rate process. From previous calculation, we see that the state

process

Xt := ã− θt −Qt, t ∈ [0, T ] (5.27)

has dynamics

dXt = −θ′tdt− r(t)
(
θ′tdt+ σwdWt

)− s(t)Qtdt, t ∈ (0, T ). (5.28)

We conjecture that the value function corresponding to the infimum of (5.25) has the following

quadratic structure:

V (t, x, q) := Ix2 + J(t)xq +K(t), t ∈ [0, T ], x, q ∈ R, (5.29)

where I > 0 is a constant and (J,K) are deterministic functions of time. Assume that all

processes are continuous. From the HJB equation, by equating the drift, we get:

(ã− θt) dPt + dV (t,Xt, Qt)

= (Xt +Qt)
(
λ(t)dθt − λ(t)α(t)Qtdt+ σwλ(t)dWt

)
+
(
J ′(t)XtQt +K ′(t)

)
dt

+ (2IXt + J(t)Qt)
(
− (1 + r(t))dθt + (1 + r(t))α(t)Qtdt− σwr(t)dWt

)
+ J(t)Xt

(
r(t)dθt − (1 + r(t))α(t)Qtdt+ σwr(t)dWt

)
+ σ2

w(I − J(t))r(t)2dt

=
(
(λ(t)− 2(1 + r(t))I + J(t)r(t))Xt + (λ(t)− (1 + r(t))J(t))Qt

)
dθt

+
(
I ′X2 + (J(t)(1 + r(t)− λ(t))α(t)Q2

t +
(
J ′(t)− λ(t)α(t) + (1 + r(t))α(t)(2I − J(t))

)
XtQt

)
dt

+
(
K ′(t) + σ2

w(I − J(t))r(t)2
)
dt+

(
λ(t)(Xt +Qt) + r(t) (J(t)Xt − 2IXt − J(t)Qt)

)
σwdWt

(5.30)

where dPt and dQt are from (5.5) and (5.7) and dXt is from (5.28). From Ito’s lemma, we see

that the drift of (5.30) is linear of θ′t, so the slope and intercept must be zero separately:

λ(t)− 2(1 + r(t))I + J(t)r(t) = 0,

λ(t)− (1 + r(t))J(t) = 0,

J ′(t)− λ(t)α(t) + (1 + r(t))α(t)(2I − J(t)) = 0,

K ′(t) + σ2
w(I − J(t))r(t)2 = 0.

(5.31)
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Equivalently,

J(t) =
λ(t)

1 + r(t)
,

I =
λ(t)(1 + 2r(t))

2(1 + r(t))2
(In fact, this is a constant.),

α =
J ′(t)
J(t)

,

K ′(t) = −σ2
w(I − J(t))r(t)2.

(5.32)

Our equilibrium existence proof is based on two dimensional coupled system of ODEs. To derive

this system, consider the second equation of (5.32):

2I(1 + r(t))2 = λ(t)(1 + 2r(t)) =
Σ2(t)

Σ1(t)
r(t)(1 + 2r(t)) (5.33)

where the last equality is from (5.13) and (5.14). By using the ODEs in (5.15) and (5.16),

=⇒ 4I(1 + r(t))r′(t) =
Σ2(t)

Σ1(t)2
σ2
wr(t)

2(1 + 2r(t)) +
Σ2(t)

Σ1(t)
(1 + 4r(t))r′(t)

=⇒ 2
Σ2(t)

Σ1(t)

r(t)(1 + 2r(t))

1 + r(t)
r′(t) =

Σ2(t)

Σ1(t)2
σ2
wr(t)

2(1 + 2r(t)) +
Σ2(t)

Σ1(t)
(1 + 4r(t))r′(t)

=⇒
(2r(t)(1 + 2r(t))

1 + r(t)
− (1 + 4r(t))

)
r′(t) =

σ2
wr(t)

2(1 + 2r(t))

Σ1(t)

=⇒ r′(t) = −σ2
wr(t)

2(1 + r(t))(1 + 2r(t))

(1 + 3r(t))Σ1(t)

(5.34)

Therefore, we have a ODE system: For t ∈ (0, T ),⎧⎪⎪⎨
⎪⎪⎩
Σ′
1(t) = −σ2

w(r(t)
2 + 2r(t)), Σ1(0) = σ2

a,

r′(t) = −σ2
wr(t)

2(1 + r(t))(1 + 2r(t))

(1 + 3r(t))Σ1(t)
, r(0) = r0

(5.35)

Here, we can choose the initial condition r(0) = r0 such that Σ′
1(t) in (5.35) satisfies the

terminal limit lim
t↑T

Σ1(t) = 0. We will see in Theorem 5.4.1 that the market makers can predict

the insider’s terminal block order ΔθT = ã−θT− �= 0. The next lemma shows that the existence

of the above coupled ODE system.

Lemma 5.3.1. There exists a constant r0 ∈ (0,∞) such that the coupled ODE system (5.35)

with initial conditions

r(0) = r0 and Σ1(0) = σ2
a, (5.36)

have global solutions in C1([0, T ]) that satisfy

Σ1(T ) := Σ1(T−) = 0, r(T ) := r(T−) = 0, r(t),Σ1(t) > 0 for t ∈ [0, T ). (5.37)
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Proof. Define f(r) := −σ2
wr(t)2(1+r(t))(1+2r(t))

1+3r(t) . Then r′(t) = f(r(t))
Σ1(t)

. Suppose that Σ1(t) =

g(r(t)). Then

− σ2
w

(
r(t)2 + 2r(t)

)
= Σ′

1(t) =
g′(r(t))f(r(t))

g(r(t))

⇒ g′(r(t))
g(r(t))

=
(1 + 3r(t))(r(t) + 2)

r(t)(1 + r(t))(1 + 2r(t))

⇒ g(r) =
σ2
a

k(r0)
· k(r), (5.38)

where k(r) =
r(t)2(1 + 2r(t))3/2

(1 + r(t))2
. Therefore, the ODE for r(t) can be written as

r′(t) =
f(r(t))

Σ1(t)
=

f(r)

g(r)
= −k(r0)

σ2
a

f(r)

k(r)

= −k(r0)

σ2
a

σ2
w

(1 + r(t))2

r(t)2(1 + 2r(t))3/2
r(t)2(1 + r(t))(1 + 2r(t))

1 + 3r(t)

= −σ2
w

σ2
a

k(r0)
(1 + r(t))3√

1 + 2r(t)(1 + 3r(t))

Therefore, we get

d

dt

(
F (r(t))

)
= −σ2

w

σ2
a

k(r0) where F (r) := 4 tan−1
(√

1 + 2r(t)
)
−
√

1 + 2r(t)(3 + 4r(t))

(1 + r(t))2
.

(5.39)

Observe that

F ′(r) =
(1 + 3r(t))

√
1 + 2r(t)

(1 + r(t))3
> 0 for r ≥ 0.

Hence, the function F : [0,∞) −→ [π− 3, 2π) is strictly increasing and bijective. Therefore, the

inverse function F−1 : [π − 3, 2π) −→ [0,∞) is well-defined. Therefore, (5.39) produces

F (r(t)) = F (r0)− σ2
w

σ2
a

k(r0)t

⇒ r(t) = F−1

(
F (r0)− σ2

w

σ2
a

k(r0)t

)
= 0 for t ∈ [0, τ(r0)],

where τ(r0) is defined by τ(r0) :=
σ2
a

σ2
wk(r0)

(F (r0) − F (0)). (Here, we choose the function τ

such that r(τ(r0)) = 0 and r(t) > 0 for 0 ≤ t < τ(r0).) This observation and (5.39) imply that

Σ1(τ(r0)) = 0 and Σ1(t) > 0 for 0 ≤ t < τ(r0). Finally, for given r0 > 0, we conclude that⎧⎪⎪⎨
⎪⎪⎩
r(t) = F−1

(
F (r0)− σ2

w

σ2
a

k(r0)t

)

Σ1(t) = g(r(t))

for t ∈ [0, τ(r0)] (5.40)
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is a unique solution of (5.35) on t ∈ [0, τ(r0)), and this solution has the property that

r(τ(r0)) = Σ1(τ(r0)) = 0, r(t) > 0,Σ1(t) > 0 for t ∈ [0, τ(r0)). (5.41)

Now it remains to check that for any given T > 0, there is unique r0 ∈ (0,∞) such that

T = τ(r0). By the L’Hopital’s rule,

lim
r↓0

τ(r) =
σ2
a

σ2
w

lim
r↓0

F ′(r)

lim
r↓0

k′(r)
= lim

r↓0
σ2
a

σ2
w

1

r(t)(r(t) + 2)
= ∞

lim
r→∞ τ(r) = lim

r→∞
σ2
a

σwK(r)
(F (r)− F (0)).

(5.42)

Note that

τ ′(r) = − σ2
a

σ2
w

(1 + r(t))(1 + 3r(t))

r(t)3(1 + 2r(t))5/2
h(r)

where h(r) :=
(
4 tan−1

(√
1 + 2r(t)

)
− π + 3

)
(r(t) + 2)−6

√
1 + 2r(t). Since h′′(r) =

2
√
1 + 2r(t)

(1 + r(t))2
>

0 for r ≥ 0, the initial values h(0) = 0 and h′(0) = 1 > 0 imply that h(r) > 0 for r > 0. There-

fore, we get τ ′(r) < 0 for r > 0 and we conclude that τ : (0,∞) −→ R is strictly decreasing.

This and (5.42) imply that τ ensures the unique existence of r0 which satisfies τ(r0) = T .

The combination Lemma 7.1.1 and Lemma 7.1.2 in appendix is alternative proof of the existence

of the ODE system (5.35).

5.4 Verification

The next result is our main contribution and the theorem ensures the existence of an equilibrium

in the sense of Definition 5.1.2.

Theorem 5.4.1. Let ρ ∈ (0, 1], let r(t) and Σ1(t) be as in Lemma 5.3.1, and define the constant

I :=
ρσv
σa

r0(1 + 2r0)

2(1 + r0)2
> 0 and the functions

λ(t) = 2I

(
1 + r(t)

)2
1 + 2r(t)

, t ∈ [0, T ],

β(t) =
σ2
wr

2
0(1 + 2r0)

3
2

σ2
ã(1 + r0)2

· (1 + r(t))2

r(t)(1 + 2r(t))
3
2

, t ∈ [0, T ),

α(t) =
σ2
wr

2
0(1 + 2r0)

3
2

σ2
ã(1 + r0)2

· (1 + r(t))2

(1 + 3r(t))(1 + 2r(t))
3
2

, t ∈ [0, T ],

μ(t) = −ρσ2
wσṽr

3
0(1 + 2r0)

5
2

σ3
ã(1 + r0)4

· (1 + r(t))4

(1 + 3r(t))(1 + 2r(t))
5
2

, t ∈ [0, T ],

s(t) = −σ2
wr

2
0(1 + 2r0)

3
2

σ2
ã(1 + r0)2

· (1 + r(t))3

(1 + 3r(t))(1 + 2r(t))
3
2

, t ∈ [0, T ].

(5.43)

32



Then the functions λ, μ, r, s, β, α constitute an equilibrium in Definition 5.1.2.

Additionally, as we shall see, the process Qt satisfies Qt = E
[
ã− θt

∣∣FM
t

]
.

Remark 5.4.2. We allow jumps at any time for admissible strategies. We will see that jumping

before the terminal time is sub-optimal (See (5.8)-(5.9)). The optimal strategy has a block

order at the terminal time, but the jump size is QT−, which is predictable to the market maker

since QT− ∈ FM
T− (See Proposition 5.5.1-(4).)

Remark 5.4.3. However, this doesn’t mean that the market maker knows the exact value of ã.

The market maker knows only the terminal block order at the terminal time (i.e., ã − θT−).

The insider still has some private information for the true value ã (or ṽ in some sense) until the

end. (See Proposition 5.5.1-(5).)

Proof. We start by defining the function

Σ2(t) :=
λ(t)Σ1(t)

r(t)

=
ρσãσṽ

r0
√
1 + 2r0

r(t)
√
1 + 2r(t),

(5.44)

for t ∈ [0, T ]. Since r(t) is continuous on t ∈ [0, T ] and r(T ) = 0, Σ2(t) is continuous on t ∈ [0, T ]

with Σ2(T ) = 0.

We divide the proof into three steps: The first step shows that θ in (5.8)-(5.9) is optimal.

Step 2 verifies whether the θ is admissible strategy. Finally, we verify the market clearing

condition (5.3).

Step 1/3: In this step, we show that the value function corresponding to (5.2) is greater than

or equal to V (t, x, q) in (5.29) for the coefficient functions J,K : [0, T ] → R defined by

J(t) :=
λ(t)

1 + r(t)
,

K(t) := σ2
w

∫ T

t

(
I − J(u)

)
r(u)2du.

(5.45)

We let Xt be as in (5.27). Then, for any θ ∈ A, we have

d[X,X]ct =
(
1 + r(t)

)2
d[θ, θ]ct + σ2

wr(t)
2dt+ 2σw

(
1 + r(t)

)
r(t)d[θ,W ]ct ,

d[X,Q]ct = −r(t)
(
1 + r(t)

)
d[θ, θ]ct − σ2

wr(t)
2dt− σwr(t)

(
2r(t) + 1

)
d[θ,W ]ct .

(5.46)
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For t ∈ [0, T ), Itô’s formula gives∫
[0,t]

(ã− θu−)dPu + V (t,Xt, Qt)

=

∫
[0,t]

(ã− θu−)λ(u)
(
dθu + σwdWu − α(u)Qudu

)
+ Iã2 +K(0) +

∫
[0,t]

(
J ′(u)XuQu +K ′(u)

)
du

+

∫
[0,t]

((
2IXu− + J(u)Qu−

)
dXu + J(u)Xu−dQu + Id[X,X]cu + J(u)d[X,Q]cu

)

+
∑

0≤u≤t

(
ΔV (u,Xu, Qu)−

(
2IXu− + J(u)Qu−)

)
ΔXu − J(u)Xu−ΔQu

)

= Iã2 +K(0) +

∫ t

0

((
λ(u)− 2r(u)I + r(u)J(u)

)
Xu +

(
λ(u)− r(u)J(u)

)
Qu

)
σwdWu

+ 1
2

∫ t

0
λ(u)d[θ, θ]cu + 1

2

∑
0≤u≤t

λ(u)(Δθu)
2, (5.47)

where we used ã− θu− = Xu− +Qu−, (5.43), (5.45), and (5.46) to obtain the second equality.

In (5.47), the stochastic integral with respect to dWu is a martingale on t ∈ [0, T ] because of

the square integrability requirement in Definition 5.1.2. The Lemma 5.3.1 and λ(t) in (5.43)

show that λ(t) is positive on the interval [0, T ]. Therefore, for any θ ∈ A, taking a limit t ↑ T

and expectation with respect to the insider’s filtration produce

E

[∫
[0,T )

(ã− θu−)dPu + lim
t↑T

V (t,Xt, Qt)
∣∣∣FI

0

]
≥ Iã2 +K(0). (5.48)

By using r(T−) = 0, J(t) in (5.45), and λ(t) in (5.43) we obtain1

J(T−) = λ(T ) = 2I > 0. (5.49)

Combining (5.49) with (5.6) produces the inequality

(ã− θT−)ΔPT = λ(T )X2
T− + λ(T )XT−QT−

= 2IX2
T− + J(T−)XT−QT−

≥ lim
t↑T

V (t,Xt, Qt). (5.50)

We combine (5.48) and (5.50) to conclude that

inf
θ∈A

E

[∫
[0,T ]

(ã− θu−)dPu

∣∣∣FI
0

]
= inf

θ∈A
E

[∫
[0,T )

(ã− θu−)dPu + (ã− θT−)ΔPT

∣∣∣FI
0

]

≥ inf
θ∈A

E

[∫
[0,T )

(ã− θu−)dPu + lim
t↑T

V (t,Xt, Qt)
∣∣∣FI

0

]

≥ Iã2 +K(0).

(5.51)

1The functions λ(t) and J(t) are continuous functions on t ∈ [0, T ], so we have λ(T−) = λ(T ) and J(T−) =

J(T ). Except for β, the other functions (r,Σ1,Σ2, μ, s, α) are also continuous on t ∈ [0, T ].
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If θ satisfies (5.8), then Δθt = 0 and [θ, θ]t = 0 for all t ∈ [0, T ). Consequently, the second

inequality in (5.51) becomes equality.

Moreover, from the Kalman-Bucy result in Lemma 5.2.1, the expression (5.10) and the boundary

condition Σ1(T−) = 0 give

0 = lim
t↑T

E

[
(ã− θt −Qt)

2
]
≥ E

[
(ã− θT− −QT−)2

]

where the inequality is from the Fatou’s lemma. Finally, we get

XT− = ã− θT− −QT− = 0, almost surely, (5.52)

implying that the first inequality in (5.51) becomes an equality.

In conclusion, θt in (5.8)-(5.9) is an optimal solution and satisfies

E

[∫
[0,T ]

(ã− θu−)dPu

∣∣∣∣∣FI
0

]
= Iã+K(0).

Step 2/3: We need to confirm that the optimal θ in (5.8)-(5.9) is an admissible strategy. Let

(Pt, Qt, θt) be the solution of SDE (5.5), (5.7) and (5.8), respectively. The existence of the

solution is guaranteed by the continuity of λ, μ, r, s, β, α on the interval [0, T ). Before we check

the admissibility, observe that for t ∈ [0, T ),

Σ3(t) := E
[
Q2

t

]
= E

[∫ t

0
(2QudQu + σ2

wr(u)
2du)

]

= E

[∫ t

0

(
2r(u)β(u)Qu(ã− θu −Qu)du− 2α(u)Q2

udu+ 2r(u)QudWu + σ2
wr(u)

2du
)]

=

∫ t

0

(−2α(u)Σ3(u)du+ σ2
wr(u)du

)
(5.53)

where the last equality holds since

E [Qt(ã− θt −Qt)] = E[QtE[ã− θt −Qt|FM
t ]] = 0, t ∈ [0, T ) (5.54)

and (5.13)-(5.14). By taking derivative with respect to time t, we have

Σ′
3(t) = −2α(t)Σ3(t) + σ2

wr(t)
2, Σ3(0) = 0. (5.55)
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Likewise, for the function Σ4(t) := E[(ṽ − Pt)
2], Itô’s lemma produce

Σ4(t) = E

[∫ t

0

(
2(ṽ − Pu)(−dPu) + σ2

wλ(u)
2du
)]

= E

[∫ t

0

(−2λ(u)β(u)(ã− θu −Qu)(ṽ − Pu)du− 2λ(u)(ṽ − Pu)dWu + σ2
wλ(u)

2du
)]

=

∫ t

0

(−2λ(u)β(u)Σ1(u)du+ σ2
wλ(u)

2du
)

= −
∫ t

0
σ2
wλ(u)

2du

Hence,

Σ′
4(t) = −σ2

wλ(t)
2dt, Σ4(0) = σ2

v . (5.56)

Given that we can see (5.43), the function r, α, λ are bounded on the interval [0, T ]. Hence,

sup
t∈[0,T )

Σi(t) < ∞ (5.57)

holds for all i ∈ {1, 2, 3, 4}. (See (5.15),(5.16),(5.55) and (5.56).) Moreover, the explicit expres-

sions of β and Σ1 in (5.43) and (5.38) imply that

sup
t∈[0,T )

β(t)2Σ1(t) = sup
t∈[0,T )

σ4
wr

2
0(1 + 2r0)

3/2

σ2
a(1 + r0)2

(1 + r(t))2

(1 + 2r(t))3/2
< ∞

sup
t∈[0,T )

β(t)r(t) = sup
t∈[0,T )

σ2
wr

2
0(1 + 2r0)

3/2

σ2
a(1 + r0)2

(1 + r(t))2

(1 + 2r(t))3/2
< ∞.

(5.58)

Now, we can verify the conditions in Definition 5.1.1 to check the admissibility of θ in (5.8)-(5.9).

(i) For t ∈ [0, T ),

E
[
θ2t
]
= E

[(∫ t

0
(β(u)(ã− θu −Qu) + α(u)Qu)du

)2
]

= C ·
∫ t

0

(
β(u)2Σ1(u) + α(u)2Σ3(u)

)
du

where a constant C is independent of t.

(ii) (5.57) ensures that E

[∫ T

0
Q2

tdt

]
is finite. Define a process Zt := e

∫ t
0 α(u)duQt for t ∈ [0, T ).

By Itô’s formula,

dZt = e
∫ t
0 α(u)dudQt + α(t)e

∫ t
0 α(u)duQtdt

= e
∫ t
0 α(u)dur(t) (β(t)(ã− θt −Qt)dt+ σwdWt)

where β(t)(ã− θt −Qt)dt+ σwdWt = Yt −E[Yt|FM
t ] ∈ FM

t . Therefore, Zt is a martingale

with respect to FM
t . Moreover, (5.58) and the boundedness of r(t) and α(t) on t ∈ [0, T )
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imply that Zt is a square integrable martingale:

sup
t∈[0,T )

E[Z2
t ]

= sup
t∈[0,T )

E

[(∫ t

0
e
∫ u
0 α(v)dvr(u)(β(u)(ã− θu −Qu)du+ r(u)dWu)

)2
]

= sup
t∈[0,T )

(∫ t

0
e
∫ u
0 α(v)dvr(u)2β(u)2Σ1(u)du+

(
e
∫ u
0 α(v)dvr(u)

)2
du

)
< ∞

Hence, the limit lim
t↑T

Zt exists almost surely and finite and so is QT−.

(iii) Similar to (ii), the process (Pt)t∈[0,T ) is a square integrable martingale uniformly bounded

in L2(P), implying the existence of PT−.

Step 3/3: The market clearing condition in Definition 5.1.2 has yet to be proven. For t ∈ [0, T ),

which follows from the Kalman-Bucy result in Lemma 5.2.1. We need only to check that (5.3)

holds for t = T :

E[ṽ|FM
T ] = E[ṽ|FM

T− ∪ σ(ã− θT−)]

= E[ṽ|FM
T−]

= PT−

= PT− + λ(T )(ã− θT− −QT−)

= PT

(5.59)

where the first equality is due to

FM
T = σ

(FM
T− ∪ σ(ΔYT )

)
= σ

(FM
T− ∪ σ(ΔθT )

)
= σ

(FM
T− ∪ σ(ã− θT−)

)
,

the second equality is due to XT− = 0 and QT− = FM
T−, the fourth equality is due to XT− =

ã− θT− −QT− = 0, and the last equality comes from (5.6).

5.5 Properties and Numerics of Equilibrium

From now on, we discuss new and desirable features produced by the insider’s terminal trading

constraint θT = ã.

Proposition 5.5.1. In equilibrium with the setting of Theorem 5.4.1, we have the following:

1. The scaled order autocorrelation of all trader’s aggregate holdings is positive

lim
h↓0

1

h

E[(Yt − Yt−h)(Yt+h − Yt)]√
V[Yt − Yt−h]V[Yt+h − Yt]

= α(t)

(
α(t)Σ3(t)

σ2
w

+ r(t)

)
> 0, t ∈ (0, T ), (5.60)
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where the positive function Σ3(t) is defined in (5.53). Moreover, the process Qt is mean

reverting.

2. The price-impact function λ(t) is decreasing for t ∈ [0, T ].

3. For ã �= 0, the mapping [0, T ) � t �→ 1

ã
E[θ′t|FI

0 ] is U shaped where θ′t is the insider’s

equilibrium order-rate process2

θ′t := β(t)(ã− θt) +
(
α(t)− β(t)

)
Qt, t ∈ [0, T ), (5.61)

and the terminal block order satisfies 0 <
1

ã
E[ΔθT |FI

0 ] < 1.

4. ΔθT = QT− �= 0 almost surely, and QT− ∈ FM
T− and ΔPT = 0.

5. PT �= E[ṽ|FI
0 ] almost surely.

Proof. (1): To simplify, we give the proof for σw := 1. Based on dQt in (5.7), the dynamics of

θ′t in (5.61) have the form

dθ′t = Atdt+
(
α(t)− β(t)

)
r(t)dWt, t ∈ [0, T ), (5.62)

for some integrable process At. For h > 0, we have

E[(Yt − Yt−h)(Yt+h − Yt)] = E

[(∫ t

t−h
θ′sds+Wt −Wt−h

)(∫ t+h

t
θ′sds+Wt+h −Wt

)]

= E

[(∫ t

t−h
θ′sds+Wt −Wt−h

)∫ t+h

t
θ′sds

]

= E

[∫ t

t−h
θ′sds

∫ t+h

t
θ′sds

]
+

∫ t+h

t
E[(Wt −Wt−h)θ

′
s]ds.

The first term above can be approximated as h2E[(θ′t)
2] for h > 0 close to 0. For the second

term, we let s ∈ [t, t+ h] and compute

E[(Wt −Wt−h)θ
′
s] = E

[
(Wt −Wt−h)

(
θ′0 +

∫ s

0

(
Audu+

(
α(u)− β(u)

)
r(u)dWu

))]

= E

[
(Wt −Wt−h)

∫ s

t−h

(
Audu+

(
α(u)− β(u)

)
r(u)dWu

)]

=

∫ t

t−h

(
α(u)− β(u)

)
r(u)du+O(h3/2),

2It turns out that E[θ′t|FI
0 ] is linear in ã; hence, the ratio E[θ′t|FI

0 ]/ã does not depend on ã.
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where we used the following observations:

E

[
(Wt −Wt−h)

(∫ t

t−h

(
Audu+

(
α(u)− β(u)

)
r(u)dWu

))]

= E

[
(Wt −Wt−h)

∫ t

t−h
Audu

]
+

∫ t

t−h

(
α(u)− β(u)

)
r(u)du

=

∫ t

t−h

(
α(u)− β(u)

)
r(u)du+O(h3/2),

E

[
(Wt −Wt−h)

(∫ s

t
Audu+

(
α(u)− β(u)

)
r(u)dWu

)]

= E

[
(Wt −Wt−h)

∫ s

t
Audu

]

= O(h3/2).

Therefore, we obtain the scaled autocorrelation:

lim
h↓0

1

h

E[(Yt − Yt−h)(Yt+h − Yt)]√
V[Yt − Yt−h]V[Yt+h − Yt]

= lim
h↓0

E[(Yt − Yt−h)(Yt+h − Yt)]

h2

= E[(θ′t)
2] +

(
α(t)− β(t)

)
r(t)

= β(t)2Σ1(t) + α(t)2Σ3(t) +
(
α(t)− β(t)

)
r(t)

= α(t) (α(t)Σ3(t) + r(t)) > 0,

where the third equality is due to (5.10),(5.11) and (5.54), and the last equality is due to

r(t) = β(t)Σ1(t) from (5.14).

(2): Using the ODE (5.35) and the expressions of Σ1(t) and λ(t) in (5.40) and (5.43), we

obtain

λ′(t) = −2ρσ2
wσṽr

3
0(1 + 2r0)

5
2

σ3
ã(1 + r0)4

r(t)(1 + r(t))4

(1 + 3r(t))(1 + 2r(t))
5
2

< 0 for t ∈ (0, T ).

(3): Let f, g : [0, T ) → R be defined as

f(t) :=
E[θt|FI

0 ]

ã
, g(t) :=

E[Qt|FI
0 ]

ã
.

The SDEs (5.7) and (5.8) and the relation s(t) = −(1 + r(t))α(t) from (5.14) produce the

following ODEs for f and g:

f ′(t) = β(t)
(
1− f(t)− g(t)

)
+ α(t)g(t), f(0) = 0,

g′(t) = r(t)β(t)
(
1− f(t)− g(t)

)− α(t)g(t), g(0) = 0.

We can find explicit expressions of the unique solution of the above ODE system by using (5.43):

f(t) = 1− (1 + 2r(t))
3
2

r0
√
1 + 2r0(1 + r(t))

+
(1 + r0 − r20)(1 + 2r(t))

r0(1 + 2r0)(1 + r(t))
,

g(t) =
1 + 2r(t)

1 + r(t)

(
1 + r(t)− r(t)2

r0
√
1 + 2r0

√
1 + 2r(t)

− 1 + r0 − r20
r0(1 + 2r0)

)
.
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These expressions give

f ′′(0) = − σ4
wr

4
0

σ4
ã(1 + 3r0)

< 0,

f ′′(T−) =
3σ4

wr
3
0(1 + 2r0)

2

σ4
ã(1 + r0)4

(√
1 + 2r0 − 1 + r0(r0 − 1)

)
> 0,

(5.63)

where the second equality is due to r(T−) = 0 and the second inequality is due to⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(√
1 + 2r0 − 1 + r0(r0 − 1)

) ∣∣∣
r0=0

= 0,

d

dr0

(√
1 + 2r0 − 1 + r0(r0 − 1)

) ∣∣∣
r0=0

= 0,

d2

dr20

(√
1 + 2r0 − 1 + r0(r0 − 1)

)
= 2− 1

(1 + 2r0)
3
2

> 0, for r0 ∈ (0,∞).

.

Let H : [0,∞)2 → R be defined as

H(x, y) :=

(
σ6
ã(1 + r0)

6(1 + 2r(t))
7
2 (1 + 3r(t))5

σ6
wr

5
0(1 + 2r0)3(1 + r(t))5

f ′′′(t)

)∣∣∣∣∣
r(t)=x, r0=y

.

Direct computations produce for 0 < x ≤ y:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H(x, x) = (1 + x)(1 + 3x)3(1 + 2x+ 4x2)
√
1 + 2x > 0,

Hy(x, x) =
2(1 + 3x)(1 + x(20 + x(4 + 3x)(22 + 3x(7 + 4x))))√

1 + 2x
> 0,

Hyy(x, y) =
2(1 + 3y(3 + 5y))(11 + x(55 + x(83 + 33x)))

(1 + 2y)
3
2

> 0,

,

where Hy and Hyy denote partial derivatives. These inequalities imply that

H(x, y) > 0 for 0 < x ≤ y. (5.64)

Since 0 < r(t) ≤ r0 for t ∈ [0, T ), the definition of H and (5.64) produce

0 < H(r(t), r0) =
σ6
ã(1 + r0)

6(1 + 2r(t))
7
2 (1 + 3r(t))5

σ6
wr

5
0(1 + 2r0)3(1 + r(t))5

f ′′′(t) for t ∈ [0, T ),

and we obtain

f ′′′(t) > 0 t ∈ [0, T ). (5.65)

Combining (5.63) and (5.65), we conclude that the map t �→ E[θ′t|FI
0 ]

ã
= f ′(t) is U shaped for

t ∈ [0, T ).

Finally, to prove 0 <
1

ã
E[ΔθT |FI

0 ] < 1, we observe

1

ã
E[ΔθT |FI

0 ] = 1− f(T−)

=

√
1 + 2r0 − 1 + r0(r0 − 1)

r0(1 + 2r0)
,

(5.66)
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where the first equality uses ΔθT = ã−θT− and the definition of f , and the second equality uses

the explicit expression of f and r(T−) = 0. The conclusion follows because
√
1+2r0−1+r0(r0−1)

r0(1+2r0)
∈

(0, 1) for r0 > 0.

(4): ΔθT = QT− is from (5.52) and ΔPT = 0 is from (5.59). We obtain QT− �= 0 a.s.

because
1

ã
E[QT−|FI

0 ] =
1

ã
E[ΔθT |FI

0 ] �= 0 by part (3).

(5): The explicit solution of (5.56) is given by

Σ4(t) =
ρ2σ2

ṽ

√
1 + 2r0

(1 + r0)2
(1 + r(t))2√
1 + 2r(t)

+ (1− ρ2)σ2
ṽ . (5.67)

Because ṽ − ρ
σṽ
σã

ã is independent of FI
t , we obtain for t ∈ [0, T ) that

E

[(
ρσṽ
σã
ã− Pt

)2]
= E

[
(ṽ − Pt)

2
]
− E

[(
ṽ − ρσṽ

σã
ã
)2]

= Σ4(t)− (1− ρ2)σ2
ṽ

=
ρ2σ2

ṽ

√
1 + 2r0

(1 + r0)2
(1 + r(t))2√
1 + 2r(t)

. (5.68)

The expression in (5.68) and Fatou’s lemma produce

E

[(
ρ
σṽ
σã

ã− PT

)2
]
≥ ρ2σ2

ṽ

√
1 + 2r0

(1 + r0)2
> 0,

where we have used r(T−) = 0 and PT = PT−.
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The above figures illustrate the price impact function λ(t), the insider’s expected order rates,

the scaled autocorrelation of aggregate holdings, and the remaining unconditional variance of

PT − E[ṽ|FI
0 ] = PT − ρ

σṽ
σã

ã.

The parameters are σw := 1, σṽ := 1, ρ := 0.3, T := 1, and σã := 5 (—), σã := 3 (- - -), and

σã := 1 (- · -).

5.6 Convergence of discrete time equilibrium to continuous time

equilibrium

As in [17], we can consider that the discrete time system in Chapter 4 converges to the continuous

time system in Chapter 5. We haven’t been able to prove this yet, so we are leaving it for future

work. Let σ2
w = 1 for simplicity. If we can show that the limits of

βn
Δ

and
αn

Δ
are exists and

indeed converge to β(t) and α(t) respectively, then all other functions in discrete time converge

to corresponding one in the continuous time setting. For example,

rn =
(1− βn)βnΣ

(1)
n−1

β2
nΣ

(1)
n−1 + σ2

wΔ
=

(1− βn)
βn

Δ Σ
(1)
n−1

βn
βn

Δ Σ
(1)
n−1 + 1

Δ→0−−−→ r(t) = β(t)Σ1(t)

λn =
βnΣ

(3)
n−1

β2
nΣ

(1)
n−1 + σ2

wΔ
=

βn

Δ Σ
(3)
n−1

βn
βn

Δ Σ
(1)
n−1 + 1

Δ→0−−−→ λ(t) = β(t)Σ3(t)

Figure 5.1 shows graphs of r and λ in the discrete equilibrium and the continuous equilibrium.

The green line is the continuous time solution when the terminal time T = 1, and the blue line

is the discrete time solution when the time step is Δt =
1

20
,

1

100
and

1

2000
, respectively.

5.7 Generalization to nonzero means of ṽ and ã

Up to now, we considered the case that both the asset value and the terminal trading target

have zero mean. In this section, we are going to see the case which is ṽ and ã have nonzero

mean. Let ã0 ∼ N(0, σ2
a), ṽ0 ∼ N(0, σ2

v), ã := m + ã0 and ṽ := n + ṽ0 where m,n �= 0. (The

reason why we can assume ã and ṽ like this is that m + ã0
d
= ã and n + ṽ0

d
= ṽ hold). Let ·(0)

be a process of the mean zero case, for example, θ(0) is the proess of the insider with ã0 and ṽ0.

Processes which don’t have script (0) are the case with ã and ṽ.
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Figure 5.1: Graphs of r and λ in the discrete equilibrium and the continuous equilibrium. The

terminal time is T = 1 and the initial values are r(0) = 1 and Σ1(0) = 0.8070001.

Then, the following linear system constitutes an equilibrium:

θt = f(t) + θ
(0)
t where f(t) = m

(
1− e−

∫ T
0 α(s)ds

)
ΔθT = ã− θT− = Δθ

(0)
T +me−

∫ T
0 α(s)ds

dYt = dθt + dWt (For simplicity, let σ2
w = 1.)

dPt = λ(t)
(
dYt − f ′(t)dt

)
+ μ(t) (Qt −m+ f(t)) dt

dQt = r(t)dYt + s(t) (Qt −m+ f(t)) dt− (1 + r(t))f ′(t)dt

(5.69)

where λ, μ, r, s, β, α are same as in Theorem 5.4.1. Note that

E
[
ṽ
∣∣FM

t

]
= E

[
n+ ṽ0

∣∣FM
t

]
= n+ P

(0)
t (5.70)

E
[
ã− θt

∣∣FM
t

]
= E

[
m+ ã0 − f(t)− θ

(0)
t

∣∣∣FM
t

]
= m− f(t) +Q

(0)
t (5.71)
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E

[
ṽ
(
ã0 − θ

(0)
t −Q

(0)
t

)∣∣∣FM
t

]
= E

[
(n+ ṽ0)

(
ã0 − θ

(0)
t −Q

(0)
t

)∣∣∣FM
t

]
= E

[(
ṽ0 − P

(0)
t

)(
ã0 − θ

(0)
t −Q

(0)
t

)∣∣∣FM
t

]
= Σ2(t)

(5.72)

E

[
(ã− θt)

(
ã0 − θ

(0)
t −Q

(0)
t

)∣∣∣FM
t

]
= E

[(
m+ ã0 − f(t)− θ

(0)
t

)(
ã0 − θ

(0)
t −Q

(0)
t

)∣∣∣FM
t

]
= E

[(
ã0 − θ

(0)
t

)(
ã0 − θ

(0)
t −Q

(0)
t

)∣∣∣FM
t

]
= Σ1(t)

(5.73)

where Σ1(t) and Σ2(t) are defined in 5.10 and 5.11. We derive SDEs for E
[
ṽ
∣∣FM

t

]
and

E
[
ã− θt

∣∣FM
t

]
:

dE
[
ṽ
∣∣FM

t

]
= β(t)E

[
ṽ
(
ã0 − θ

(0)
t −Q

(0)
t

)∣∣∣FM
t

] (
dYt − f ′(t)dt− α(t)Q

(0)
t dt

)
= β(t)Σ2(t)

(
dYt − f ′(t)dt

)− β(t)Σ1(t)α(t)
(
m− f(t)− E[ã− θt|FM

t ]
)
dt

(5.74)

dE
[
ã− θt

∣∣FM
t

]
= β(t)E

[
(ã− θt)

(
ã0 − θ

(0)
t −Q

(0)
t

)∣∣∣FM
t

] (
dYt − f ′(t)dt− α(t)Q

(0)
t dt

)
− f ′(t)dt− α(t)Q

(0)
t dt

= β(t)Σ2(t)dYt − (1 + β(t)) Σ2(t))f
′(t)dt− β(t)Σ2(t)α(t) (Qt −m+ f(t)) dt

(5.75)
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As in Lemma 5.2.1, we can get Pt = E[ṽ|FM
t ] and Qt = E[ã− θt|FM

t ] hold.

For t ∈ [0, T ),∫
[0,t]

(ã− θu−)dPu + V (t,Xt, Qt)

= Iã2 +K(0) +

∫
[0,t]

(J ′(u)Xu−Qu− +K ′(u))du

+

∫
[0,t]

(ã− θu−)
(
λ(u)(dθu − f ′(u)du+ dWu) + μ(u)(Qu −m+ f(u))du

)
+

∫
[0,t]

(2IXu− + J(u)Qu−)
(−(1 + r(u))dθu − r(u)dWu − s(u)(Qu −m+ f(u))du+ (1 + r(u))f ′(u)du

)
+

∫
[0,t]

J(u)Xu−
(
r(u)dθu + r(u)dWu + s(u)(Qu −m+ f(u))du− (1 + r(u))f ′(u)du

)
+

∫
[0,t]

(Id[X,X]cu + J(u)d[X,X]cu)

+
∑

0≤u≤t

(ΔV (u,Xu, Qu)− (2IXu− + J(u)Qu−)ΔXu − J(u)Xu−ΔQu)

=

∫
[0,t]

((λ(u)− 2(1 + r(u))I + J(u)r(u))Xu− + (λ(u)− J(u)(1 + r(u)))Qu−) dθu

+

∫
[0,t]

((−λ(u) + 2I(1 + r(u))− J(u)(1 + r(u)))Xu− + (−λ(u) + J(u)(1 + r(u)))Qu−) f ′(t)dt

+

∫
[0,t]

(
(−μ(u)m+ μ(u)f + J(u)s(u)m− J(u)s(u)f)Qu− + (K ′(u) + (I − J(u))r(u)2)

+ (−mμ(u) + μ(u)f + 2Ims(u)− 2Is(u)f −mJ(u)s(u) + s(u)J(u)f)Xu−

+ (μ(u) + J ′(u)− 2Is(u) + s(u)J(u))Xu−Qu− + (μ(u)− s(u)J(u))(Qu−)2
)
du

+

∫
[0,t]

((λ(u)− 2Ir(u) + J(u)r(u))Xu− + (λ(u)− r(u)J(u))Qu−) dWu

+
1

2

∫
[0,t]

λ(u)d[θ, θ]cu +
1

2

∑
0≤u≤t

λ(u)(Δθu)
2

= Iã2 +K(0) +

∫ t

0
((λ(u)− 2Ir(u) + J(u)r(u))Xu− + (λ(u)− J(u)r(u))Qu−) dWu

+
1

2

∫ t

0
λ(u)d[θ, θ]cu +

1

2

∑
0≤u≤t

λ(u)(Δθu)
2

Taking t ↑ T produces the limit∫
[0,T )

(ã− θu−)dPu + V (T,XT−, QT−)

= lim
t↑T

(∫
[0,t]

(ã− θu−)dPu + V (t,Xt, Qt)

)

= Iã2 +K(0) +

∫ t

0
((λ(u)− 2Ir(u) + J(u)r(u))Xu− + (λ(u)− J(u)r(u))Qu−) dWu

+
1

2

∫ t

0
λ(u)d[θ, θ]cu +

1

2

∑
0≤u≤t

λ(u)(Δθu)
2
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By taking expectations, we get

E

[∫
[0,T )

(ã− θu−)dPu + V (T,XT−, QT−)

∣∣∣∣∣FI
0

]
≥ Iã2 +K(0)

Note that

(ã− θT−)ΔPT = (ã− θT−)ΔP
(0)
T

= (ã− θT−)λ(T )(ã0 − θ
(0)
T− −Q

(0)
T−)

= λ(T )(ã− θT−) (ã−m− θT− + f(T−)−QT− +m− f(T−))

= λ(T )(ã− θT−)(ã− θT− −QT−)

= λ(T )(ã− θT− −QT−)2 + λ(T )(ã− θT− −QT−)QT−

≥ V (T,XT−, QT−)

Therefore,

Iã2 +K(0) ≤ inf
θ∈A

E

[∫
[0,T )

(ã− θu−)dPu + V (T,XT−, QT−)

∣∣∣∣∣FI
0

]

≤ inf
θ∈A

E

[∫
[0,T )

(ã− θu−)dPu + (ã− θT−)ΔPT

∣∣∣∣∣FI
0

]

= inf
θ∈A

E

[∫
[0,T ]

(ã− θu−)dPu

∣∣∣∣∣FI
0

]

Since θt = 0 and [θ, θ]t = 0 for all t ∈ [0, T ), the first inequality becomes an equality. Moreover,

the second inequality becomes an equality if we can check that XT− = ã − θT− − QT− = 0

almost surely. As in the previous chapter, we get XT− = ã− θT− −QT− = 0 a.s. because

0 = lim
t↑T

E

[
(ã− θt −Qt)

2
]
≥ E

[
(ã− θT− −QT−)2

]
.
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Chapter 6

Conclusion

This dissertation studies the market microstructure theory based on the Kyle (1985) model in

both discrete time and continuous time sense. The main point of our dissertation is that we

establish the existence of an equilibrium if the insider have to satisfy hard trading constraint

at the end of the market. As far as we can tell that there is no equilibrium existence proof

in the settings of [2] and [1] when the insider has a soft or hard trading target. Moreover, we

construct an equilibrium with an insider with a terminal target at the end of trading. Based on

theoritical derivation, we show some characteristics in our equilibrium:

(i) The market impact function is time-decreasing,

(ii) The scaled autocorrelation of all trader’s order is positive,

(iii) The insider has U-shaped trading patterns over daytime,

(iv) The insider’s terminal block order is predictable by market makers,

(v) The equilibrium market price at the terminal time is different from the insider’s initial

expectation of the true value of the asset.

Since we have fully derived the equilibrium in a continuous time model, one might ask why the

discrete time model is important. The reason lies in §4.4. In the continuous time model, we

have not checked whether it is natural to use the state variable Q in the linear structure (i.e.,

about the uniqueness of the linear structure). Therefore, we could say the §4.4 could explain

the reason why we use the state variable Q in the continuous time model. Therefore, one of

my future work is to prove the uniqueness of the linear structure in the continuous time model.

Moreover, to prove the convergence from the discrete time model to the continuous time model

will also one of the important future works.
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Chapter 7

Appendix

7.1 Alternative proof for the existence of ODE (5.35)

This is the alternative proof for the existence of ODE (5.35)(Let σw = 1 for simplicity.):

Lemma 7.1.1. Let the initial value r(0) > 0 fixed. Then there exists τ ∈ R
+ such that (5.35)

has a unique solution on [0, τ), and the solution satisfies

Σ1(t) > 0 and r(t) > 0, for t ∈ [0, τ)

lim
t↑τ

Σ1(t) = lim
t↑τ

r(t) = 0
(7.1)

Proof. We can check that if r > 0 and Σ1 > 0,(
r

Σ1

)′
=

r2(1 + 4r + r2)

(1 + 3r)Σ2
1

> 0,

(
Σ1

r3

)′
=

1 + 2r + 3r2

r2 + 3r3
> 0 (7.2)

Starting from r(0) > 0 and Σ1(0) > 0, the solution of (5.35) decreases since r′ < 0 and Σ′
1 < 0.

Let

τ := inf{t > 0 : Σ1(t) = 0 or r(t) = 0} (7.3)

From (7.2),

Σ1(0)

r(0)3
r(t)3 < Σ1(t) <

Σ1(0)

r(0)
r(t) for t ∈ (0, τ) (7.4)

Therefore, we have three possibilities:

(a) τ < ∞ and lim
t↑τ

Σ1(t) = lim
t↑τ

r(t) = 0.

(b) τ = ∞ and lim
t↑τ

Σ1(t) > 0.

(c) τ = ∞ and lim
t↑τ

Σ1(t) = lim
t↑τ

r(t) = 0. The case (b) is impossible because Σ′′
1(t) > 0 for
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t ∈ [0, τ), and (b) implies lim
t↑τ

Σ′
1(t) = 0, which implies lim

t↑τ
r(t) = 0, which is contradicts to

(7.4). Moreover, we have (
r(t)2

Σ1(t)

)′
=

(1− r)r2

(1 + 3r)Σ2
1

> 0 for 0 < r < 1 (7.5)

If (c) is true, then there exists t0 > 0 such that
r(t)2

Σ1(t)
increases on [t0,∞). Then r′(t) < − r(t0)

2

Σ1(t0)
for t ∈ [t0,∞), which contradicts τ = ∞ (since r will touch 0 in finite time). Therefore, (a) is

the only possibility, and the proof is complete.

Lemma 7.1.2. In Lemma 7.1.1, τ is a function of r(0). The following inequality holds:

Σ1(0)

r(0)2 + 2r(0)
< τ(r(0)) <

Σ1(0)

r(0)
+

Σ1(0)√
r(0)

(7.6)

In particular,

lim
r(0)↓0

τ(r(0)) = ∞, lim
r(0)↑∞

τ(r(0)) = 0. (7.7)

Proof. Since r is decreasing function,

Σ′
1(t) = −r(t)2 − 2r(t) > −r(0)2 − 2r(0)

By the definition of τ and the above inequality, we obtain

Σ1(0)

r(0)2 + 2r(0)
< τ(r(0)).

Define τ1 := inf{t > 0 : r(t) = 1} and observe that(
r(t)3/2

Σ1(t)

)′
=

(1 + 5r(t))r(t)5/2

2(1 + r(t))Σ1(t)2
> 0.

Therefore,

r′(t) = −r(t)3/2

Σ1(t)

√
r(t)(1 + r(t))(1 + 2r(t))

1 + 3r(t)
< −r(0)3/2

Σ1(0)
for t ∈ [0, τ1]

=⇒ τ1 <
r(0)
r(0)3/2

Σ1(0)

=
Σ1(0)√
r(0)

(7.8)

Finally, using (7.4) and (7.5) produces

r(t)2

Σ1(t)
>

r(τ1)
2

Σ1(τ1)
>

r(0)

Σ1(0)
r(τ1) =

r(0)

Σ1(0)

=⇒ r′(t) = −r(t)2(1 + r(t))(1 + 2r(t))

(1 + 3r(t))Σ1(t)
< − r(0)

Σ1(0)

=⇒ τ − τ1 <
Σ1(0)

r(0)

(7.9)

Combining (7.8) and (7.9) yields another side of the inequality.
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7.2 Insider with full information case

It is very natural to question the case which the insider has the information about both the

exact asset value ṽ and the terminal trading constraint θT = ã. In this section we consider the

insider with filtration FI
t := σ

(
ṽ, ã, (Ws)s∈[0,t]

)
. First, we conjecture that state variables of the

insider’s opimitzation problem are ã − θt − Qt, Qt and ṽ − Pt and conjecture that the pricing

rules follow dynamics (simplified as, σ2
w = 1) :

dYt = dθt + dWt, (7.10)

dPt = λ(t)dYt + μ(t)Qt−dt, (7.11)

dQt = r(t)dYt + s(t)Qt−dt, (7.12)

dθt =
(
β(t) (ã− θt− −Qt−) + α(t)Qt− + γ(t) (ṽ − Pt−)

)
dt, (7.13)

ΔθT = ã− θT−. (7.14)

Furthermore, let’s assume that all processes are continuous in t ∈ (0, T ). As in the Lemma 5.2.1,

dPt = E
[
ṽ
∣∣FM

t

]
and dQt = E

[
ã− θt

∣∣FM
t

]
produce

dPt = (β(t)Σ2(t) + γ(t)Σ3(t)) (dYt − α(t)Qtdt),

dQt = (β(t)Σ1(t) + γ(t)Σ2(t)) (dYt − α(t)Qtdt)− α(t)Qtdt.
(7.15)

where

Σ1(t) := E[(ã− θt −Qt)
2],

Σ2(t) := E[(ṽ − Pt) (ã− θt −Qt)],

Σ3(t) := E[(ṽ − Pt)
2].

(7.16)

Therefore, we have following relations:

λ(t) = β(t)Σ3(t) + γ(t)Σ2(t), μ(t) = −α(t)λ(t),

r(t) = β(t)Σ1(t) + γ(t)Σ3(t), s(t) = −α(t)(1 + r(t)).
(7.17)

Observe that the state processes have following dynamics with the relations (7.17):

d(ã− θt −Qt) = −dθt − dQt = −dθt − r(t)dθt − r(t)dWt − s(t)Qtdt

= −(1 + r(t))dθt − r(t)dWt − s(t)Qtdt

= −(1 + r(t))β(t)(ã− θ −Qt)dt− (1 + r(t))γ(ṽ − Pt)dt− r(t)dWt

d(ṽ − Pt) = −dPt = −λ(t)(dθ + dWt)− μ(t)Qtdt

= λ(t)(β(t)(ã− θt −Qt) + γ(t)(ṽ − Pt))dt− λ(t)dWt

(7.18)
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By using (7.15)-(7.18), the variance and covariance of market maker’s estimation follow

dΣ1(t) =
(
− 2r(t)− r(t)2

)
dt

dΣ2(t) = −
(
1 + r(t)

)
λ(t)dt

dΣ3(t) = −λ(t)2dt

(7.19)

The insider want to maximize her expected profit subject to the constraint θT = ã. Since

FI
0 = σ(ṽ, ã), the left-hand-side of (5.1) becomes

sup
θ∈A

E

[
(ṽ − PT )θT +

∫
[0,T ]

θt−dPt

∣∣∣∣∣FI
0

]
= ṽã− inf

θ∈A
E

[∫
[0,T ]

(ã− θt−)dPt

∣∣∣∣∣FI
0

]
(7.20)

with the admissible set A is as in Definition 5.1.1. Define Xt := ã − θt − Qt and Zt = ṽ − Pt.

Suppose that the processes are continuous and let

inf
θ∈A

E

[∫
[0,T ]

(ã− θt−)dPt

∣∣∣∣∣FI
0

]

= A(t)X2
t +B(t)Q2

t + C(t)Z2
t +D(t)XtQt + E(t)XtZt + F (t)QtZt +G(t) (7.21)

=: V (t,Xt, Qt, Zt) (7.22)

The HJB equation implies that

(ã− θt) dPt + dV

= dθ
((

λ(t)− 2(1 + r(t))A(t) + r(t)D(t)− λ(t)E(t)
)
Xt

+
(
λ(t)− (1 + r(t))D(t) + 2r(t)B(t)− λ(t)F (t)

)
Qt

+
(− (1 + r(t))E(t) + r(t)F (t)− 2λ(t)C(t)

)
Zt

)
+ dWt

((
λ(t)− 2r(t)A(t) + r(t)D(t)− λ(t)E(t)

)
Xt+(

λ(t)− r(t)D(t) + 2r(t)B(t)− λ(t)F (t)
)
Qt +

(− r(t)E(t) + r(t)F (t)− 2λ(t)C(t)
)
Zt

)
+ dt

(
A′(t)X2

t +
(
B′(t)(1 + r(t))α(t)D(t)− 2(1 + r(t))α(t)B(t) + α(t)λ(t)F (t)

)
Q2

t

+
(
D′(t) + 2(1 + r(t))α(t)A(t)− (1 + r(t))α(t)D(t) + α(t)λ(t)E(t)

)
XtQt

+
(
F ′(t) + (1 + r(t))α(t)E(t)− (1 + r(t))α(t)F (t) + 2α(t)λ(t)C(t)

)
QtZt

+
(
G′(t) + r(t)2A(t) + r(t)2B(t) + λ(t)2C(t)− r(t)2D(t) + r(t)λ(t)E(t)− r(t)λ(t)F (t)

)
+ C ′(t)Z2

t + E′(t)XtZt

)
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Equating coefficients forXt, Qt and Zt in the dθt term and coefficients forX2
t , Q

2
t , Z

2
t , XtZt, XtQt,

QtZt and deterministic terms in the dt term to zero gives

A′(t) = 0, C ′(t) = 0, E′(t) = 0,

B′(t)− 2α(t)B(t) = 0,

D′(t)− α(t)D(t) = 0,

F ′(t)− α(t)F (t) = 0,

B(t) =
(1 + r(t))2

r(t)2
A(t) +

λ(t)2

r(t)2
C +

λ(1 + r(t))

r(t)2
E(t)− λ(t)(1 + 2r(t))

2r(t)2
,

D(t) =
2(1 + r(t))

r(t)
A(t) +

λ(t)

r(t)
E(t)− λ(t)

r(t)
,

F (t) =
1 + r(t)

r(t)
E(t) +

2λ(t)

r(t)
C(t).

(7.23)

Note that A(t) =
λ(t)(1 + 2r(t))

(1 + r(t))2
, D(t) =

λ(t)

1 + r(t)
and B = C = E = F ≡ 0 solves the equations

(7.23). These functions are exactly the same as (5.32). Therefore, as in Theorem 5.4.1, Itô’s

formula produces for t ∈ (0, T ),∫
[0,t]

(ã− θs−)dPs + V (t,Xt, Qt, Zt)

= V (0, X0, Q0, Z0) +

∫ t

0

(
2A(s)Xs− +D(s)Qs− + E(s)Zs−

)
dWs

+

∫ t

0

(
(1 + r(s))2A(s) + r(s)2B(s) + λ(s)2C(s)

− r(s)(1 + r(s))D(s) + λ(1 + r(s))E(s)− λ(s)r(s)F (s)
)
d[θ, θ]cs

+

∫ t

0

(
r(s)(1 + 2r(s))A(s) + 2r(s)2B(s) + 2λ(s)2C(s)

− r(s)(1 + 2r(s))D(s) + λ(s)(1 + 2r(s))E(s)− 2λ(s)r(s)F (s)
)
d[θ,W ]cs

+
∑
s≤t

(
ΔV (s,Xs, Qs, Zs)− (2A(s)Xs− +D(s)Qs− + E(s)Zs−)ΔXs

− (2B(s)Qs− +D(s)Xs− + F (s)Zs−)ΔYs − (2C(s)Zs− + E(s)Xs− + F (s)Qs−)ΔZs

)
= V (0, X0, Y0, Z0) +

∫ t

0

(
2A(s)Xs− +D(s)Qs− + E(s)Zs−

)
dWs

+

∫ t

0

λ(s)

2
d[θ, θ]cs +

∑
s≤t

λ(s)

2
(Δθs)

2.

(7.24)

The stochastic integral with respect to dWs is a martingale on t ∈ [0, T ] and, the last two terms

are positive for any θ ∈ A. Therefore, the same equilibrium in Theorem 5.4.1 continues to be

an equilibrium with full informed insider case. While prediction of price terms like γ(t) (ṽ − Pt)
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with deterministic function γ(t) have a important role in Kyle(1985) and Back(1992), they are

not important in our case because the infimum in (7.20) is not related to ṽ. Therefore, the

equilibrium constructed in Theorem 5.4.1 is still valid even when the insider intially knows both

ṽ and ã.
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