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Abstract 

Proteins are dynamic molecules, and their structural fluctuations play a crucial role in their function. 

Quantification of these motions is hence central to our understanding of a protein’s function. The timescales of 

these fluctuations span over 12 orders of magnitude from ultrafast picoseconds vibrational motions to slow 

seconds long global changes. While the ultrafast and slow motions have been well characterized, the intermediate 

conformational changes occurring at microsecond to millisecond timescales remain to be clearly understood. This 

thesis explores the use of single molecule multidimensional fluorescence spectroscopy to investigate protein 

conformational changes occurring at microsecond to millisecond timescales. The information of conformational 

transition rates gives insight into their operating principles and the mechanisms behind their biological functions. 

Single-molecule Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy (sm-2DFLCS) is used 

to resolve distinct conformations of protein molecules based on different fluorescence lifetimes. Time resolved 

fluorescence photon traces are converted to two-dimensional emission delay correlation maps which are then 

converted to lifetime correlation spectra using a nonlinear optimization algorithm. Key advancements in the 

technique were achieved by adapting analytical strategies from 2D NMR analysis protocols which convert the 

underlying optimization problem from constrained to unconstrained optimization resulting in a fast and robust 2D 

Inverse Laplace Transformation algorithm (2D-ILT). This enables monitoring of forward and reverse 

conformational transitions in a protein independently. 

Nonequilibrium thermodynamics of pump protein Bacteriorhodopsin is characterized using the improvised 

2D-ILT algorithm. Independent measurement of forward and reverse conformational transitions reveals 

microscopically irreversible transitions in the reaction cycle of the proton pump. Nonequilibrium thermodynamic 

properties such as entropy production, flux and affinity are quantified through portions of the reaction cycle. It is 

shown that the rate of irreversible transitions shows an inverse dependence on temperature and fitting the trend 

with Gibbs-Helmholtz relation yields experimentally determined enthalpy of transition. 

Coupling of proteins internal reaction coordinate and surrounding solvent is investigated by monitoring 

microsecond equilibrium fluctuations in the chromophore pocket of eGFP. It is observed that the dynamics of 

local rearrangements around the chromophore are coupled to the bulk viscosity of the solvent. The dependence is 

observed to deviate from Kramer’s scaling and the deviation is attributed to proteins’ internal friction. 
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𝑘௡௥ – rate of non-radiative relaxation. 

𝑄 – Fluorescence quantum yield 

τ – Fluorescence lifetime 

ε – Molar extinction coefficient 

σ – Absorption cross-section 

𝑁஺ – Avogadro’s Number = 6.02214076×1023 mol−1. 

ℏ - Plank’s Constant = 6.62607015×10−34 J⋅Hz−1 

𝐾௜௝  – Kernel with pre-defined lifetime decays 

𝐴௜௝ – Column vector of amplitudes of fluorescence decays 

𝑀൫𝑡ଵ,௜ , 𝑡ଶ,௝, 𝛥𝑇൯ – 2D emission delay histogram 

𝑚 – 1D vector lexicographically ordered 𝑀 matrix. 

𝐹(𝜏ଵ, 𝜏ଶ, 𝛥𝑇) - joint probability distribution of occurrence of a photon with lifetime 𝜏ଶ occurring 𝛥𝑇 on 

registering a photon with lifetime 𝜏ଵ. 

𝑓 - 1D vector lexicographically ordered 𝐹 matrix. 

𝑄(𝑓) – objective function to be minimized 

𝛼 – Regularization constant 

𝑈௜ – left singular values of kernel 𝐾௜  

Σ୧ – Eigen values of kernel 𝐾௜  

𝑉௜ – right singular values of kernel 𝐾௜  

𝜎ො – standard deviation of the noise 
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Chapter 1. Introduction 

1.1. Motivation 

Proteins are dynamic and not static systems (1, 2) and the dynamics play a crucial role in the 

function of proteins (3). Proteins are known as the functional unit of life because they are responsible 

for performing vast arrays of functions within living organisms. Structurally, a protein molecule is a 

long sequence of amino acid residues which folds in a well-defined 3-dimensional shape. The function 

of a protein is believed to be intimately connected to its 3D structure. Thus, the structure-function 

relationship in proteins has been an important area of study particularly for biophysicists. This has been 

greatly facilitated by techniques such as X-ray crystallography (4, 5), NMR spectroscopy (6-8) and 

circular dichroism spectroscopy (9), which help resolve the structure of a protein molecule.  

Traditionally, protein function has been examined via chemical kinetic measurements where the 

chemical rate constants of catalytic enzymes were probed and their dependence with respect to 

environmental parameters such as temperature, pH and salinity was explored (10, 11). These approaches 

still did not provide the complete understanding of how the structure played a role in the proteins 

function. It was shown that large scale conformational motions were responsible for altering the local 

electronic environment and thus acting as catalysts (1, 12). Recently, the focus has shifted towards 

studying the structure-dynamics-function relationship in proteins. This exploration into protein 

dynamics has been greatly facilitated by modern techniques such as high-resolution X-ray 

crystallography, Cryo-electron microscopy, molecular dynamics simulations, etc. Single-molecule 

fluorescence techniques such as Forster Resonance Energy Transfer (FRET) and fluorescence 

correlation spectroscopy (FCS), amongst other techniques, have provided direct quantitative 

measurements of conformational motions in proteins. The work presented in this thesis outlines the 

development of emerging single-molecule multi-dimensional fluorescence lifetime correlation 

spectroscopy (sm-2D-FLCS) and its application to the study of proteins functioning both at equilibrium 

and far-from-equilibrium. 
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1.2. Chemical exchange and irreversibility in proteins 

Protein molecules exist in an interesting range of length scales and energetics. Systems at such 

colloidal length scale are not large enough to be influenced by inertial forces which govern the motion 

of macroscopic objects and not small enough to be described efficiently by our knowledge of atomic 

scales and chemical bonds. This results in a complex system where the interactions are dominated by 

entropic factors given the large degrees of freedom rather than the enthalpic factors that are relevant at 

atomic level. Thus, one starts to build a picture of a protein as a highly complex machine closely coupled 

with its surrounding thermal bath and, hence exhibiting stochastic fluctuations.  

Protein dynamics is understood in terms of motion on a rugged free energy landscape with respect 

to a suitable reaction coordinate. This is a statistical description of a protein’s potential surface where 

each conformational intermediate is represented by a local minimum (valleys) in the free energy surface 

and the energy required to transition within the intermediates is captured by local maxima (peaks) (2, 

12, 13). Despite its abstractness, the energy landscape is a useful representation of a protein because it 

captures both the thermodynamic as well as the kinetic information of the system. Using this 

representation, Frauenfelder et.al explained the dynamics and function of myoglobin and predicted the 

heights of energy barriers between distinct conformational states. 

That is however not the complete picture describing protein dynamics because some functions 

inside the cell require energies over a magnitude higher than what can be harnessed from thermal 

fluctuations to achieve a net directional transport (e.g., Kinesin, Transmembrane channels) or to perform 

work against a chemical potential (e.g., F-ATPase). To accomplish work against the randomizing 

thermal forces, a molecular machine must consume external energy to access modes that are practically 

improbable to reach using surrounding thermal fluctuations and hence should function out of 

equilibrium. The dissipation of energy along a series of conformational changes can cause a temporal 

asymmetry and thus ensure a net directional action of the protein. The dissipative nature of transitions 

is important in maintaining asymmetry in the forward and reverse transition probabilities (14-17). It is 
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not yet established how one can incorporate a generalized free-energy landscape for out-of-equilibrium 

protein systems. However, the first steps towards experimentally probing it would be to design a 

technique capable of detecting distinct conformations, measuring the rate of conformational changes, 

and measuring the forward and reverse transitions independently. 

To accurately model the protein conformation changes, one also needs to consider how proteins 

surroundings affect its dynamics. The extent of coupling between a protein’s motions determines its 

transition kinetics. When residues in the protein are exposed to solvent, it is observed that large scale 

motions such as domain rearrangement are strongly coupled to the surrounding solvent as these require 

significant displacement of the solvent. On the other hand, fast side chain fluctuations that require 

insignificant solvent rearrangement are uncoupled from the bath. Little is known about the 

hydrodynamic coupling of conformational changes that take place in the interior of the protein. 

Quantifying such coupling with the internal reaction coordinate would require one to measure 

conformational transition rates with respect to varying physical properties of the solvent. 

This thesis focuses on application of one such technique known as single molecule multi-

dimensional fluorescence lifetime correlation spectroscopy using which we quantify the 

thermodynamic parameters relevant to understanding of non-equilibrium dynamics of protein systems. 

This technique is based on 2-Dimensional Fluorescence Lifetime Correlation Spectroscopy introduced 

by Tahara and coworkers (18, 19). Adaptation of optimization protocols from multi-dimensional NMR 

relaxation spectroscopy (20-22)  results into fast and robust data fitting enabling us to measure 

asymmetric kinetics in protein conformational changes. This is a time resolved fluorescence technique 

that utilizes changes in fluorescence emission lifetimes as a measure for changes in microscopic 

environment of the fluorophore and thus can detect distinct protein conformations. Following section 

covers the prerequisite introduction to experimental aspects of time resolved fluorescence.  

1.3. Fluorescence 

Fluorescence is the process by which a molecule in an electronically excited state decays to ground 

state via emission of a photon. Molecules exhibiting this phenomenon are called chromophores or 
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fluorophores. Excitation can be achieved by absorption of a single or multiple photons. On an average, 

the emitted photon has lower energy than that of the absorbed photon and hence higher wavelength. 

This change in wavelength is known as Stokes’ shift. This is helpfully illustrated using the Jablonski 

diagram (Figure 1.1), where the electronic states of a molecule are represented according to their energy 

levels and the transitions between them are denoted by directional arrows (23, 24). Excitation is 

followed by rapid internal conversion involving relaxation from higher energy excited states to first 

excited singlet state (𝑆ଵ). From here, the molecule can return to ground state via spontaneous radiative 

decay (fluorescence) or non-radiative decay.  

 

 

Figure 4.1: The Jablonski diagram. Horizontal grey lines represent the electronic states where S0 is the 

ground state, S1 and S2 are electronic excited states. Arrows represent energy transfer. Photon absorption is 

marked blue, emission of fluorescent photon is marked green, and phosphorescence is marked red. The non-

radiative decay processes are denoted with dashed arrows. 

 

The rate of relaxation to ground state is a function of the molecular orbital overlap of the excited 

state with the ground state (𝑆଴) and the electronic microenvironment of the chromophore. The rate of 

radiative relaxation also known as the emissive rate is given by Γ and the non-radiative decay rate is 

given by 𝑘௡௥ which comprises of various processes such as intersystem crossing to triplet state and 

dissipation via collisions. The fluorescence quantum yield (Q) is the probability that the excited state 

of a molecule will deactivate to the ground state with emission of a photon which is given by, 
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𝑄 =
P୻

P୻ + 𝑃௡௥
 

1.1 

Where 𝑃୻  is the probability of relaxation by radiative decay and 𝑃௡௥  is the probability of 

relaxation by a non-radiative decay. Fluorescence emission is a spontaneous process and individual 

emissions are independent of each other. This results in a single exponential decay statistics with a 

characteristic rate known as fluorescence lifetime (τ) which can be given by 

τ =
1

P୻ + 𝑃௡௥
 

1.2 

Alternatively, it can also be referred to as the average time between excitation and fluorescence 

emission. This process has typical timescales of nanoseconds (10-9 s) and the wavelengths associated 

typically lie on the visible spectrum (400-800nm) of the electromagnetic radiation. Fluorescence 

emission from a system can be characterized by physical observables such as intensity, wavelength 

(energy), polarization and lifetime with very high sensitivity and specificity. Since the emission 

properties are directly linked to the molecular structure and the electronic microenvironment of the 

chromophore, measurement of these properties gives us the ability to directly monitor chemical 

processes at molecular level. This is the essence of fluorescence spectroscopy. 

Time-resolved fluorescence measurements: 

We can classify fluorescence measurements in two categories: steady-state and time-resolved. 

Steady-state measurements are the most widely used and the technique consists of irradiating the sample 

with a continuous illumination of light. The intensity or the emission spectrum is then recorded. Time-

resolved measurement includes illumination of the sample with a pulsed source of light. Such 

measurements yield information about the intensity decay or the anisotropy decay of the sample. The 

pulse width of light should be much shorter than the decay timescales and the detector should have a 

sufficiently high time resolution. Steady-state measurements can be thought of as an average of the 

time-resolved processes. Although it is practically difficult and expensive to setup time-resolved 

fluorescence measurements, most of the temporal information about the molecule and its dynamics is 

lost during the steady-state measurements. For instance, a molecule can exhibit two conformations with 
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different intensities and switch from one state to another. A steady-state measurement of such system 

will yield an intensity which is average of intensity of two states however, a time-resolved experiment 

will not only detect two different intensities, but one can also probe the rate of conformational 

transitions. Time-resolved fluorescence measurements can thus provide the dynamic information about 

the chromophore and its environment. 

 

Figure 1.5. Schematic comparison of steady-state and time-resolved fluorescence measurements. A and C 

are the C are the Temporal profiles of excitation intensities for steady-state and time-resolved measurements 

respectively. B shows the Emission spectra obtained using a continuous illumination. D shows a histogram of the 

time-resolved fluorescence delays measured using pulsed excitation shown in C. 

 

1.4. Thesis plan 

The following chapters focus on development and implementation of a time resolved fluorescence 

technique known as Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. Using this 

technique, we monitor the chemical exchange dynamics of single protein molecules undergoing 

conformational change and infer the reaction dynamics and effect of local microenvironment. 

Chapter 2 provides the prerequisite information for the experimental and analytical techniques 

used this this thesis. It introduces the basic techniques of fluorescence microscopy, single molecule 

fluorescence detection, and principles of time resolved fluorescence measurements using Time 

Correlated Single Photon Counting (TCSPC). Then we discuss the computational technique used to 



25 

 

analyze time-resolved fluorescence data known as Inverse Laplace Transform (ILT) using the 

Maximum Entropy Method (MEM). This chapter is written with broader scope for readers who are not 

familiar to fluorescence microscopy techniques. 

Chapter 3 covers the detailed procedure for 2D-FLCS analysis of the time resolved fluorescence 

time traces. The core of the technique is based around regularized optimization to obtain the Two-

Dimensional Inverse Laplace Transform (2D-ILT) of the fluorescence data. We introduce a fast and 

robust alternative to the conventional MEM technique which has been adapted from 2D NMR 

relaxometry techniques. There are three key advancements which makes our technique more efficient 

namely, data compression using Singular Value Decomposition (SVD), Tikhonov Regularization 

instead of the MEM regularizer and finally, the Butler-Reeds-Dawson algorithm which converts the 

constrained optimization in the Tikhonov regularization to an unconstrained problem which results in 

tremendous speedup. We demonstrate the working of this technique using discrete time markovian 

monte carlo simulations. 

Chapter 4 demonstrates the implementation of single molecule 2D-FLCS to investigate 

nonequilibrium thermodynamics of a trans-membrane proton pump, Bacteriorhodopsin. We 

independently quantify the forward and reverse conformational transitions through portions of the 

catalytic cycle during operation and show that microscopic irreversibility is the fundamental operating 

principle of optically driven nonequilibrium pump proteins. We quantify the reaction flux, affinity, 

associated entropy production and enthalpy as a function of temperature and infer that the degree of 

irreversibility decreases with increasing temperature following the Gibbs-Helmholtz relation. 

Chapter 5 explores the coupling of internal reaction coordinate with the surrounding solvent in 

the protein eGFP at microsecond timescales. Using 2D-FLCS, we monitor the equilibrium fluctuations 

inside the chromophore pocket of eGFP protein and quantify transition rates with respect to solvent 

viscosity. We show that the internal dynamics are coupled to the solvent viscosity however the 

dependence deviates from predications from Kramer’s theory and is attributed to proteins internal 
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friction. 

Chapter 6 concludes the thesis summarizing the advantages of the technique, its implementation 

cases, limitations, and possibilities of its development in the future.  
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Chapter 2. Technical background 

This chapter describes the preliminary experimental and analytical techniques which constitute 

the building blocks of the work presented in this thesis. Fluorescence microscopy has become 

increasingly beneficial for studying biological systems since it provides high sensitivity down to single 

photon detection and high specificity since the signal only originates from the target fluorescent 

molecules. It has also gained popularity due to its ease of use, recent advances in fast and sensitive 

detectors, newly developed fluorophores, and methods of tagging biomolecules with fluorophores. A 

fluorescence microscope thus combines the magnifying properties of a light microscope with the 

emission properties of fluorescent molecules.  

2.1 Fluorescence microscopy. 

Basic components of a fluorescence microscope are an intense light source such as Xe-arc lamp 

or laser, a magnifying objective, a dichroic filter, and a detector such as Avalanche Photo Diode (APD), 

Photo Multiplier Tube (PMT) or a CCD camera. The most common arrangement of these components 

is epifluorescence microscopy where the illumination and the collection of fluorescence is done using 

the same objective. Based on the geometry of illumination and image generation, there are two widely 

used configurations namely, wide-field, and confocal microscope. In the case of wide-field microscope, 

a parallel beam excites all the fluorophores in the field of view at once and the resulting fluorescence is 

captured on a camera. This simultaneous illumination allows for faster imaging however it suffers from 

lower contrast due to fluorescence from sample out of focus Fig.2.1. To circumvent this problem, the 

idea of rejecting the out-of-focus was proposed by Minsky in 1957 (1) and the confocal microscope was 

developed in 1977 by Sheppard et al (2). Confocal microscopy employs a focused illumination at a 

point in the sample and collects the fluorescence with a point detector through a pinhole to reject the 

background from out-of-focus light. The pinhole is placed at the conjugate focal plane such that only 

the fluorescence originating from the part of the sample in the focal volume of the objective lens, can 
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pass through. This acts as a special filter to reduce the incidence of out-of-focus light on the detector 

and hence improves the image contrast. The beam is then raster scanned along a grid usually using 

galvo mirrors to generate the point-by-point image of the sample. Fig.2.2 shows a schematic of a 

confocal microscope setup. This also provides an optical sectioning capability which can be used to 

obtain a 3-dimensional reconstruction of the fluorescent sample. 

 

Figure 2.1 Schematic of a widefield microscope. The light beam coming from the laser is focused on 

the back focal plane of the objective lens which causes a parallel beam to be incident on the sample in focus. The 

fluorescence from the illuminated area is collected by the objective and passes through the dichroic followed by 

an emission filter after which the image is formed on the CCD camera. 
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Figure 2.2. Schematic of a confocal microscope. The light coming from the laser source is focused 

inside the sample using an objective lens. The fluorescence coming from the diffraction limited spot is collected 

by the objective and passes through the dichroic mirror onto a confocal pinhole which filters out the fluorescence 

coming from out of focus planes. This light is then passed through an emission filter and is detected using a point 

detector such as APD or PMT. 

 

Sharpest image contrast is obtained when the pinhole size and the excitation spot size is the 

smallest. The minimum size of excitation volume is limited by numerical aperture (NA) of the objective 

lens, refractive index of the sample, and the wavelength of the light used. The limit of resolution for a 

light microscope was introduced by Ernst Abbe in 1873 which states that the minimum resolvable 

distance between two points using light of wavelength 𝜆, in a medium of refractive index 𝑛 and the 

convergence half-angle 𝜃 is given by. 

 
𝑑 =

λ

2 𝑛 𝑠𝑖𝑛θ
=

λ

2𝑁𝐴
 

 

2.3 
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The diffraction limited excitation spot has a shape of a 3-dimensional Gaussian function and is 

known as the point spread function (PSF) where, the full width half maximum (FWHM) in the x-y plane 

is given by Abbe’s limit and the along the z-axis is typically 3-5 times the lateral resolution. 

2.2 Single molecule detection 

The power to detect a bright signal against a dark background within a diffraction limited 

volume and with high specificity allows for the ability to detect fluorescence from even a single 

molecule. It is appealing to measure single molecule fluorescence because the measured signal now 

represents the absolute quantities rather than relative intensity values. The most important reason to use 

single molecule detection is to avoid ensemble averaging. This permits us to probe time varying 

processes of the molecule directly if the photophysical properties change too. For instance, consider a 

protein that fluctuates between an open and a closed conformation such that the fluorescence intensity 

is reduced in a closed state and increased in open state. In a bulk spectroscopic measurement, we would 

only be able to measure the average fluorescence intensity which will be a function of the probability 

distribution of the conformations, and this yield no information about the rate of switching between the 

two states. On the other hand, if we probe the same system at the single molecule level, the measured 

signal will consist of a time trace consisting regions of high and low intensity detected directly from 

one molecule. One can then obtain the information about frequency of ‘flips’ and construct a frequency 

histogram and obtain the rate of transition between the states. A distribution provides more information 

than the average value alone especially in the case of a heterogeneous sample. Single molecule 

fluorescence is also a local reporter of the molecule’s microenvironment can reveal properties of the 

surroundings of a fluorophore. Another advantage of single molecule measurement is that it removes 

the need of bulk synchronization which typically involves complex instrumentation (such as NMR). If 

the sample has multiple states, one can only probe the properties till the states remain correlated even 

after synchronization. Thus, we establish the motivations and advantages of using single molecule 

fluorescence detection. 



34 

 

The earliest accounts of single molecule fluorescence measurements are from 1970s when Hirschfeld 

observed antibodies labelled with multiple fluorescein molecules (3). In 1989, Moerner et.al detected 

single dye molecule embedded in organic crystals at liquid helium temperatures (4). Keller and 

coworkers were the first ones to report single molecule measurement at room temperature in 1990 where, 

they detected single rhodamine-6G molecules flowing through a small detection volume (5). In 2014, 

the Nobel Prize in Chemistry was awarded to Stefan Hell, W.E. mourner and Eric Betzig for 

development of single molecule localization and super resolution techniques. Since then, the field of 

single molecule fluorescence-based techniques has advanced rapidly introducing powerful techniques 

such as sm-FRET, PALM, STORM, etc. 

To get an idea of experimentally measured quantities in case of single molecule detection, we 

can consider a typical fluorophore Alexa-488 illuminated using a 532 nm laser with intensity of 

100W/cm2. We can estimate the number of photons which can be detected from a single Alexa molecule 

dissolved in water. The absorption cross-section 𝜎  is defined as the effective area presented by a 

molecule to the incident radiation. 

 
𝜎 =

2.303ε

𝑁஺
= 2.7 Åଶ 

 

2.2 

Where 𝑁஺ is the Avogadro’s number. From these values, we can estimate and compare the 

molar extinction coefficient of Alexa488 determined from bulk absorption spectroscopy; 

𝜀 =  73,000 L/mol/cm. To estimate the number of photons illuminating this Alexa molecule, we first 

calculate energy per photon using. 

  𝐸 =  ℏ𝑐/𝜆 

 

2.4 

Where ℏ is the Plank’s constant, c is speed of light and 𝜆 is the wavelength of the laser which 

yields 𝐸 = 3.7 × 10ିଵଽ J/photon. Hence with given illumination intensity, we obtain a photon flux of 
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𝑞௣ = 2.7 × 10ଶ଴ photons/s/cm2. Thus, the number of photons absorbed by the molecule is the product 

of incident flux and the extinction coefficient. 

 𝑞௔ = 𝑞௣. σ஺௟௘௫௔ ≈ 7.3 × 10ସ 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 

 

2.5 

The quantum yield of Alexa 488 is 𝑄 =  0.92. Hence, the amount of fluorescently emitted photons is. 

 𝑞௔ . 𝑄஺௟௘௫௔ = 6.7 × 10ସ𝑝ℎ𝑜𝑡𝑜𝑛𝑠 2.6 

We can estimate the upper bound of the number of detectable photons using an objective lens 

of a high numerical aperture (N.A. = 1.4) and refractive index of media (n = 1.52 for immersion oil). 

Using the relation 𝑁. 𝐴. = 𝑛 sin 𝜃 , we get 𝜃 ≈ 67௢  which leads to only 12% of the solid angle 

accessible from the fluorescence emission. Thus, we have ≈ 8 × 10ଷ detectable photons from a single 

Alexa 488 molecule which can be easily detected by modern detectors.  

For freely diffusing fluorophores into the detection volume, the detected signal takes the form 

of emission bursts which originates from molecules passing through the confocal volume. One can then 

evaluate the correlation function of these fluorescence traces and determine properties of the 

fluorophores such as diffusion coefficient, and anisotropy. The measurement is temporally limited by 

the average residence time of the diffusing molecules in the detection volume (≈ 𝜇𝑠). With the advent 

of surface immobilization techniques, one can covalently fix single molecules on the coverslip surface 

and localize single molecules and perform measurement over prolonged time scales limited by photo 

bleaching (ms-s). 

2.3 Time Correlated Single Photon Counting (TCSPC) 

Fluorescence microscopy when combined with time resolved measurement capability can be a 

powerful tool to obtain temporal information at microscopic scales. The most common apparatus for 

time resolved fluorescence experiments is Time Correlated Single Photon Counting (TCSPC). This 

technique uses a pulsed laser with high repetition rate and pulse width of order of femtoseconds to 
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picoseconds which is typically the output of a mode-locked laser. In principle, TCSPC detects single 

photons and measures the time of their arrival with respect to a reference signal from the light source. 

Using high repetition rate, one can accumulate sufficient photons and get a precise statistical distribution 

of their arrival times. The photon detection rate is usually set to a very low value such that coincidence 

of collecting two photons in the same signal period is extremely unlikely. There are numerous 

advantages of using TCSPC mainly, it has a near-ideal photon efficiency meaning that every photon 

sensed by the detector ends up in the resultant photon distribution and secondly, it has an extremely 

high time resolution which is limited by the instrument response function (IRF) of the detector (typically 

~ 50 ps). (6-8) 

 

Figure 2.3 Fluorescence decay of Alexa 488 in water. The trace in blue shows the fluorescence emission 

delay histogram of Alexa 488 solution. The experimentally observed histogram is the result of the true decay 

convoluted by the Instrument Response Function (IRF) shown in orange. The decay can be fit to obtain the 

fluorescence lifetime of Alexa 488 which in this case is 4.8 ns. 

The working of TCSPC can be understood as a fast stopwatch controlled by a START signal 

and a STOP signal. An internal clock is initiated with the START signal coming from the laser excitation 

pulse and the STOP signal is sent by the detector on arrival of a photon. The time delay between the 
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START and the STOP pulse is then saved as one data point for the arrival time. With large number of 

repetitions, a histogram of the stored arrival times is given as output. Specifically, the components of 

TCSPC electronics consist of Constant Fraction Discriminators (CFD), Time-to-Amplitude Converter 

(TAC), Analog to Digital Converter (ADC) and digital memory. Fig.2.4. 

 

Figure 6.4 Components of a TCSPC setup. The fluorescence photons from the sample arrive on the 

detector. The signal is relayed to the Constant Fraction Discriminator (CFD) which determines the timing of the 

pulse. The sync pulse from the laser driver is also connected to another CFD to determine its timing. Outputs of 

both CFDs are connected to the Time to Amplitude Converter (TAC) which, then is connected to the Analog to 

Digital Converter (ADC) and this timing information of the incident photon is stored in the memory (MEM) and 

is further sent to the computer. 

 

Figure 2.5. Working of a Constant Fraction Discriminator (CFD). The input pulse is split into two components 

and one of them is inverted. A delay circuit produces a known time lag in one of the pulses. Both pulses are then 

added together. The zero-crossing point of the resultant pulse is determined. This point represents the time when 

the input pulse is at its maximum amplitude. Such timing calculation is robust to fluctuations in the absolute 

amplitudes of the input pulse. 
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First the incoming signals are threshold filtered to eliminate electronic noise. The CFDs are 

implemented at both the START and the STOP inputs and are used to extract the precise timing 

information of an electronic pulse. In a CFD, the input signal is compared to an inverted and delayed 

version of itself. The comparison signal changes its sign when a constant fraction of the detector pulse 

height is reached. This zero-crossing point is suitable to derive the timing of the pulse independent of 

the pulse amplitude as depicted in Fig.2.5. The TAC is a fast clock which initiates counting in the form 

of a growing voltage ramp signal on the arrival of the start pulse and halts it on the arrival of the stop 

pulse. The height of this ramp thus corresponds to the timing delay between the START and the STOP 

pulse Fig,2.4. The ADC then converts this analog voltage to a digital output and stores it in the memory. 

The resolution of timing detection is given by the number of channels in the ADC and has units 

picoseconds/channel. Modern TCSPCs (PicoQuant - PicoHarp 300 (9) used in the experiments 

presented in this work) have resolution as low as 4 ps/channel. The shortest lifetime that can be 

measured however, is limited by the quadrature sum of all the components that create noise in the timing 

signal i.e., electronics jitter, the IRF of the detector, and the pulse width of the excitation laser.  

 
τ௠௜௡ = ට𝑒௝௜௧௧௘௥

ଶ + 𝑒ூோி
ଶ + 𝑒௣௪

ଶ  

 

2.7 

Where 𝑒 represents the full width half maximum error of the respective component.  

Fig.2.3. shows an example fluorescence lifetime data set obtained from TCSPC measurement 

of Alexa 488 dye in water illuminated using a 488nm laser and a PMT hybrid detector. Black curve 

represents the instrument response function of the detector. The fluorescence lifetime of A488 can thus 

be estimated by either fitting the tail of the obtained decay of by using IRF re-convolution and is found 

to be 4.8 ns. 

2.3.1.  Advanced TCSPC: 

The above explained method is adequate to obtain the fluorescence lifetime histograms. 
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However, in modern practices, we can implement efficient photon collection and memory storage 

methods. One such practice is the use of TCSPC in reverse mode. Since the count rate is sufficiently 

low, most of the pulse intervals have no photons in them. Thus, in reverse mode, the light source is 

connected to the STOP input of the TAC and the detector is connected to the START. By adjusting a 

fixed delay in the reference pulse from the laser driver, the TAC is only triggered if a photon is detected. 

The time axis is hence reversed but this makes the collection process highly efficient (7). Instead of 

storing the photons in a histogram, a global timing can also be performed separately for each photon 

which records the time from the start of the photon collection experiment. This is called the Time-

Tagged Time-Resolved mode (TTTR) and is useful in photon correlation analysis. There are two modes 

of operating TTTR mode; T2 – where both TCSPC inputs are connected to detectors and T3 – where 

detector is connected to STOP, and laser SYNC is connected to the STOP input. (10) The work in this 

thesis utilizes the T3 mode measurements.  

 

Figure 2.6 Working of a Time to Amplitude Converter (TAC). This is a linear ramp generator circuit which 

has a start trigger and a stop trigger. The resultant analog voltage is proportional to the time delay between both 

triggers. This voltage is held till the ADC processes it and is then reset to the default value to be ready for accepting 

the next start pulse. 

 

2.4 Analysis of fluorescence decays 

Fluorescence parameters such as the absorption and emission spectra, lifetime, quantum yield, 



40 

 

etc. are extremely sensitive to the local microenvironment of the fluorophore. This same sensitivity, 

however, makes it difficult to interpret the data if various configurations of the microenvironment exist. 

Though there exists a method of associating absorption or emission peaks and peak shifts with the 

properties of the local environment, there is no consensus on interpreting fluorescence decays and 

associating the parameters with the microenvironment. Time-resolved fluorescence data is thus 

complex and cannot be analyzed by straightforward curve fitting procedures.  

Given a time trace of fluorescence photons, the emission delays follow an exponential 

distribution and can be represented as 

 
𝐼(𝑡) = ෍ 𝑎௝

௡

௝ୀଵ

𝑒𝑥𝑝൫ି௧/தೕ൯ 

 

2.8 

Consisting of 𝑛  components with amplitudes 𝑎௝  and respective fluorescence lifetimes τ௝ . 

However, experimentally measured TCSPC data is a convolution of the intrinsic fluorescence intensity 

decay and the instrument response function (𝐼𝑅𝐹) given by  

 
𝐼௢௕௦(𝑡) = න 𝐼𝑅𝐹(𝑡௜ − 𝑡଴) 𝐼(𝑡 − 𝑡௜) 𝑑𝑡

௧

଴

 

 

2.9 

Where 𝑡଴ is the zero-time shift of the detector. In time resolved experiments, one is interested 

in determining 𝜏’s which are the fluorescence lifetimes and their corresponding amplitudes (𝑎) which 

must be obtained by fitting the observed intensity decays in Eq.2.8. This process of converting the 

information from intensity in time-space to the amplitudes in lifetime-space is also known as the Inverse 

Laplace Transform (ILT). The result of ILT of fluorescence decays yields what is known as the lifetime 

spectra Fig.2.5. which is more discernable for spectroscopists. However, there is no analytical method 

for the ILT. In other words, it is clear from Eq.2.8. that given the lifetime and the amplitude information, 

one can easily obtain the intensity-time distribution but, given for a given intensity-time plot, one cannot 



41 

 

trivially calculate the lifetime spectra. Thus, in order to achieve the ILT, one must use numerical 

approximation methods. 

 

 

Figure 2.7 Inverse Laplace Transform. A shows a simulated biexponential fluoresce decay and B shows its 

corresponding Inverse Laplace Transform revealing the component lifetimes at 0.6 ns and 2.5 ns. 

 

Traditional curve fitting procedures use a nonlinear least-square minimization technique to estimate the 

parameters of the distribution. It consists of defining a 𝜒ଶ function which is a measure of the error 

between the data and the fit and is given by. 

 𝜒ଶ = ෍(𝑐௜ − 𝑚௜)ଶ 𝑤௜

௜

 

 

2.10 

Where 𝑐௜ is the experimental data, 𝑚௜ is the fit and 𝑤௜ is weighting which is typically 𝑤௜ = 1/𝜎௜
ଶ ; 

𝜎௜ being the point-wise standard deviation of the data. One typically begins with an initial guess of the 

fit parameters, computes the 𝜒ଶ using Eq.2.10, and iteratively updates the guess to minimize it. It is 

observed that standard methods of nonlinear least-square curve fitting are inaccurate because the small 

number of counts lead to the errors having Poissonian distribution rather than Gaussian. Even for decays 

consisting of single exponential components, the error in lifetime estimates maybe as high as 15%. 

There have been approaches to reduce this error by modifying the weighting function (11) however, 

inaccuracies still exist for fitting multi-exponential decays using. The reason behind this imprecision is 
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because the ILT is notorious for being an ill-conditioned problem because it is numerically unstable. In 

other words, there are multiple possible solutions which can be fit to a multi-exponential decay with 

given confidence and, small fluctuations in the data in Eq.2.8 𝐼(𝑡) can lead to large fluctuations in the 

ILT given by 𝑎(𝜏). 

A typical approach of solving ill-conditioned problems and prevent overfitting is regularization. 

This involves adding a regularizing function to the least square error term which acts as a penalty for 

every new information added to the solution. Thus, it helps in eliminating unfeasible solutions and 

promotes stable solutions. The combined function is known as the objective function and takes the form. 

 𝑄(𝑐௜) =  𝜒ଶ + 𝛼 𝑅(𝑐௜) 

 

2.11 

Where, 𝛼 is a regularization constant which determines the weight of the regularizing term 

with respect to 𝜒ଶ term. 𝑅(𝑐௜) can take various functional forms however they achieve a common 

goal. Table.2.1. shows a few examples of commonly used regularization functions.  

Regularizing function Functional form 

Maximum Entropy 𝑅(𝑝௜) = − ෍ 𝑝௜𝑙𝑜𝑔 𝑝௜ 

Tikhonov / L2 / Ridge regression 𝑅(𝑝௜) = ෍ 𝑝௜
ଶ 

L1 / Lasso regression 𝑅(𝑝௜) = ෍|𝑝௜| 

 

Table 2.1 Common regularizing functions and their functional forms 
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2.4.1 Maximum Entropy Method 

First account of regularized fitting for analyzing fluorescence data was published by Livesey 

et.al. in 1987 (12) where they used the Maximum Entropy Method (MEM) which has been the method 

of choice for ILT analysis of fluorescence decays. MEM was originally implemented famously for 

image reconstruction by Bryan and Skilling in 1984 (13). In principle, MEM tries to fit the data without 

adding any extra correlations and thus yields solutions which follow Bayesian statistics (14) (15). 

Among all feasible solutions possible, one chooses the solution with maximum information entropy 

given by: 

 
𝑆 = න ൭𝑎(τ) − 𝑚(τ) − 𝑎(τ). 𝑙𝑛 ቆ 

𝑎(τ)

𝑚(τ)
ቇ൱ 𝑑τ



଴

 

 

2.12 

Where, 𝑎(τ)  is the amplitude of lifetime component τ  and 𝑚(τ)  is a prior model of the 

about the system (typically, it is set to constant at the beginning of fitting indicating no prior 

information). 

 

 

Figure 2.8. ILT on experimental data using Maximum Entropy Method (MEM). Panel A shows the 

experimentally obtained fluorescence decay from eGFP protein solution (black). The observed decay is the result 

of true exponential decay convoluted by the IRF (shown in red). Panel B shows the resultant ILT obtained using 

Maximum entropy method which shows the lifetime components at 1.5 ns and 2.7 ns. 
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The MEM regularized optimization procedure is as follows: 

i. One defines the Objective function following Eq.2.10 and Eq.2.12 

 𝑄(𝑐) = 𝜒ଶ(𝑐) + 𝛼 𝑆(𝑎) 

 

2.13 

Note that in above equation, χଶ term is summed over time space and the 𝑆 term is summed over 

lifetime-space.  

ii. First guess solution is set to a uniform prior multiplied with a small constant. 

iii. χଶ term is evaluated from the guess solution using the forward function given in Eq.2.10 

iv. 𝛼 is set to a high value which emphasizes the entropic penalty for the initial iterations. 

v. One then minimizes the objective function 𝑄  and stores the optimum solution as 𝑚 

which sets the prior in Eq.2.12 for the next iteration. 

vi. This process is iterated while gradually decreasing the value of α until a suitable stopping 

criterion is reached. 

vii. The result is a solution which has the least error from the data while having the maximum 

information entropy. In other words, this procedure yields a solution with the least bias or 

external correlations. 

Various methods have been suggested for the stopping criteria but, they are intended to achieve the 

same goal (12, 13, 15, 16). Fig.2.6. shows an example experimental fluorescence decay and its ILT 

obtained using MEM.  
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Chapter 3: Fast and robust two-dimensional inverse Laplace 

transformation of single-molecule fluorescence lifetime data 

Section 3.1 Introduction 

Biological systems viewed from a physical standpoint are non-equilibrium dynamical systems 

that exchange between metastable states to carry out a certain function. To determine their kinetics, 

dynamics, efficiency, and working, the first step is to measure these exchange rates. This is especially 

important in case of biological macromolecules such as proteins and nucleic acids. 

The first experimental report on probing the chemical exchange rates was provided by Jeener 

et.al (1). who used 2D NMR spectroscopy to look at exchange rates in heptamethylbenzenonium ion. 

Fayer, et.al (2) also demonstrated ultrafast 2D IR vibrational echo exchange spectroscopy. Exchange in 

larger macromolecules such as proteins is more efficiently probed using fluorescence-based techniques 

since NMR and IR characterization becomes increasingly difficult with increasing molecular size. 

Single molecule fluorescence spectroscopy has provided great insights into dynamics of 

biomolecules. sm-FRET has been the primary technique of choice since it provides a signal which is 

highly sensitive to the distance between chromophores. It involves labelling a biomolecule with two 

chromophores which are FRET pairs; meaning excited electronic state of one (donor) is coupled with 

another (acceptor) such that the excitation energy is transferred from donor to acceptor in a non-

radiative fashion. One measures appropriate optical filters to get signals from both channels separately. 

Conformational transitions are observed as rapid changes in emission intensity at both donor and 

acceptor channels depending on the distance between them. One can then change the placement of the 

chromophores to obtain more details about the conformational transitions. Hoffmann et.al (3) 

demonstrated exchange between conformational states of polypeptides and proteins labelled with FRET 

pairs. However, FRET is experimentally challenging in detecting conformation changes in proteins 

since it requires precise labelling of two chromophores on a single protein macromolecule and it projects 
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a complex configuration change onto a single reaction coordinate axis corresponding to distance 

between the chromophores. (4-7). 

Single-molecule 2D fluorescence lifetime correlation spectroscopy (sm-2D-FLCS), first deve

loped by Tahara and coworkers (8-10) and later extended into the single-molecule regime by 

Schlau-Cohen and workers (11), provides an alternative analysis of single-molecule data that d

oes not sacrifice chemical selectivity or temporal resolution. In this approach, time-correlated 

single photon counting (TCSPC) is used to detect fluorescence intensity and emission delay ti

me from a single chromophore, either freely diffusing in dilute solution (8-10) or surface im

mobilized (11). The data are recorded in the TTTR mode which generates a real-time photon 

stream (characterized by a global macro time) with a recorded emission delay time (characteri

zed by a micro-time) for each registered photon (12). Distinct chemical species in the system 

are distinguished by their fluorescence lifetime. Thus, chemical exchange between two states c

an be kinetically resolved on the condition that they have different fluorescence lifetimes.  

A series of 2D photon histograms is generated by cataloging all photon pairs separated by

 a systematically varying waiting time ΔT from an experimentally recorded photon stream (8, 

9). A 2D inverse Laplace transform (2D-ILT) of the lifetime histogram generates a 2D-FCLS 

spectrum at the given ΔT. Analogous to 2D-NMR, species that do not undergo any form of e

xchange during ΔT appear as diagonal peaks in the 2D spectrum, while species that exchange

 during ΔT appear as cross-peaks (1). Measuring 2D spectra for a series of ΔT allows the ov

erall correlation function to be effectively split into its components comprising auto-correlation

s for the diagonal components and cross-correlations for the off-diagonal components. Thus, t

he chemical exchange kinetics among the components can be measured directly through time 

correlation functions reflecting chemical exchange between two states (8-11). As this technique 

relies on a single chromophore to resolve conformational dynamics, it can be applied to syste

ms where fluorescence labeling is challenging or to native proteins with an endogenous chro

mophore. Additionally, for a conformational transition of interest, the forward and reverse kine
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tics are resolved as they are recorded in different regions of the 2D spectrum. The ability to 

measure asymmetric forward and reverse kinetics is relevant for studying systems operating o

ut of equilibrium. Lastly, as the technique requires no additional optical setup or heavy comp

uting hardware, it can be implemented on any setup already used for FCS or FRET. 

The challenge of this experimental approach is the need to perform a 2D-ILT, which is a

n ill-conditioned problem and is therefore numerically unstable. This results in multiple solutio

ns satisfying the same problem when solved with traditional least-square analysis (13). Instead,

 this class of problems must be solved via regularized least-square analysis, which imposes a 

penalty on solutions with undesired features and hence promotes smoother solutions. To date, 

the calculation of the 2D spectra is traditionally performed using the maximum entropy metho

d (MEM) (8, 9, 11), which produces a solution using Bayesian inference. The application of 

MEM has two severe limitations: First, it involves a constrained optimization since entropy ca

nnot be defined for negative values, so one must check for the positivity constraint during ea

ch iteration and modify the fit accordingly. This makes the approach computationally inefficie

nt. Second, the 2D spectra is fit as a lexicographically ordered 1D vector resulting in a fittin

g kernel matrix whose size is of the order of the 4th power of number of points in the lifeti

me spectra, leading to a tremendous computational cost. To decrease the computational cost, t

he data is often binned non-uniformly before fitting, which results in loss of temporal inform

ation in the input data (9). 

The challenges of performing 2D inverse Laplace transforms (i.e., converting the time dep

endent relaxation data to a relaxation rate spectrum) are not unique to fluorescence spectrosco

py. Indeed, multi-dimensional Laplace inversions are commonly employed in NMR spectroscop

y, for instance in the computation of T1-T2 correlation spectrum from relaxometry data. Work

 by Venkataramanan and coworkers (14) outlined an efficient algorithm for Laplace inversion 

in NMR relaxometry data that leveraged singular-valued decomposition (SVD) and Tikhonov r

egularization. Subsequent improvements of this approach have been reported (15, 16). 
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 In this chapter, we adopt this general approach for application to single-molecule fluoresc

ence spectroscopy analysis. This algorithm reduces the computation time to merely a few seco

nds per 2D spectrum, and hence enables the analysis of large data sets with high resolution. 

We first elaborate on the methods to generate 2D photon emission delay correlation histogram

s and later present the algorithm to obtain 2D-ILT from these histograms. Finally, we compar

e the performance with traditional techniques and test its robustness to noise. The work in thi

s chapter has been published in Biophysical Journal (17). 

 

Section 3.2 Methods 

A 2D-FLCS spectrum is generated from a 2D-ILT of a lifetime correlation histogram, easily 

measured using standard time-correlated single-photon counting (TCSPC) techniques (18, 19). 

We start with a familiar 1D picture to introduce the concept of ILT. Given a time series of r

ecorded photons, the emission delays are distributed exponentially and can be represented as 

 
𝐼(𝑡) =  ෍ 𝑎௝ exp ቆ−

𝑡

𝜏௝
ቇ

௡

௝ୀଵ

 
3.1 

for 𝑛 independent components with amplitudes 𝑎௝ and respective fluorescence lifetimes 𝜏௝. Thi

s can be represented in matrix form and generalized for the sake of broader application as 

 
𝐼௜ = ෍ 𝐾௜௝ . 𝐴௝

௡

௝ୀଵ

 

3.14 

Where K is a kernel with pre-defined basis of fluorescence lifetime decays 𝐾௜௝ = ൫1/

𝜏௝൯𝑒𝑥𝑝൫ି௧೔/ఛೕ൯, and 𝐴௝ is a column vector representing the amplitudes corresponding the specie

s 𝜏௝ . Kernel 𝐾  can be defined such that the experimental lifetimes are included in 

[𝑡௠௜௡ , 𝑡௠௔௫] with sufficient resolution such that any measured decay can be represented by a 

pre-calculated kernel and an amplitude vector. Under this construction, 𝐴൫𝜏௝൯ represents a 1D 

ILT of 𝐼(𝑡), or the lifetime spectrum corresponding to 𝐼(𝑡), as we convert the time dependen
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t decay into its lifetime components and their probability distribution amplitudes.  

This can be easily extended to 2D. Cataloging all the photon pairs separated by a glo

bal lag time 𝛥𝑇  in the experimentally recorded time series and having emission delays 𝑡ଵ  an

d 𝑡ଶ ,  we can generate a 2D histogram with axes as 𝑡ଵ  and 𝑡ଶ ,  where each point 

𝑀(𝑡ଵ, 𝑡ଶ, 𝛥𝑇) represents the number of coincidences when a photon with delay 𝑡ଶ is detected 

𝛥𝑇 after having detected a photon with delay 𝑡ଵ. The process is described in the following s

ection and Figure 3.1. 

 

Figure 3.1. Schematic of 2D-FLCS analysis. a) excitation of a model 2-state system with a pulsed laser source 

results in a bi-exponential fluorescence decay. b) typical TCSPC measurement shows individual photon detection 

events following pulsed laser excitation. The emission delays between the excitation and emission are denoted by 

𝑡. c) A 2D emission delay correlation map is constructed by measuring the delays between photon pairs separated 

by a preset time lag 𝛥𝑇. d) The 2D Inverse Laplace Transform of the emission delay correlation map at given 

𝛥𝑇 gives a 2D fluorescence lifetime correlation spectra where, individual species are represented by peaks along 

the diagonal and their chemical exchange is represented on the off-diagonal positions. 
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3.2.1 Generation of 2D emission delay correlation histograms 

This technique can be used in a typical confocal fluorescence microscope equipped with TCSPC. The 

data acquisition is in the form of fluorescence time trace acquired in the TTTR mode. In the experiments 

performed for the work presented in this thesis, we have used TCSPC hardware made by PicoQuant. 

The photon streams files are stored with ‘.ptu’ extension. We use an open-source demo code 

‘Read_PTU.m’ to convert the files to .csv to be used in further analysis (20). The data stored is in the 

form of photon index, its global arrival time (MacroTime) and its emission delay time after excitation 

(MicroTime). 

The photon stream is then partitioned to generate a 2D emission delay histogram at a given Δ𝑇 in the 

protocol described as follows: 

a. For a given 𝛥𝑇, define a window of size ΔΔ𝑇  such that its upper bound is 𝛥𝑇 +
ΔΔ்

ଶ
 and 

the lower bound is  𝛥𝑇 −
ΔΔ்

ଶ
. 

b. Initialize a 2D empty array (𝑀) of size (𝑁 × 𝑁), where 𝑁 is the number of TCSPC channels. 

c. For the first photon in the photon trace, store its microtime (as 𝑥). 

d.  Find all the photons in the trace whose Macrotime lies within the constructed window.  

 𝛥𝑇 −
ΔΔ்

ଶ
< 𝑇ெ < 𝛥𝑇 +

ΔΔ்

ଶ
 

e. Store all the recorded Microtimes as an array. 

f. In the 2D array, in the column denoted by 𝑥, increment the elements by 1 for each 

occurrence of their corresponding microtime in array.  

g. Repeat steps [c] to [f] for all the photons in the trace. 

h. Repeat steps [a] to [g] for all 𝛥𝑇 windows. 
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3.2.2. Two-Dimensional Inverse Laplace Transform 

The 2D emission delay histograms can be represented in the form: 

 𝑀൫𝑡ଵ,௜, 𝑡ଶ,௝, 𝛥𝑇൯ = ෍ 𝐹൫𝜏ଵ,௞, 𝜏ଶ,௟ , 𝛥𝑇൯ ⋅ 𝑒𝑥𝑝൫ି௧భ,೔/ఛభ,ೖ൯ ⋅ 𝑒𝑥𝑝൫ି௧మ,ೕ/ఛమ,೗൯

௞௟

 3.3 

Using the kernel structure mentioned in Eq.3.2 above, we can write in matrix notation, 

 𝑀(𝑡ଵ, 𝑡ଶ, 𝛥𝑇) = 𝐾ଵ(𝑡ଵ, 𝜏ଵ) 𝐹(𝜏ଵ, 𝜏ଶ, 𝛥𝑇) 𝐾ଶ(𝑡ଶ, 𝜏ଶ)் 3.4 

where 𝐹(𝜏ଵ, 𝜏ଶ, 𝛥𝑇) is the joint probability distribution of occurrence of a photon with lifetim

e 𝜏ଶ occurring 𝛥𝑇 after registering a photon with lifetime 𝜏ଵ. Each point on 𝐹(𝜏ଵ, 𝜏ଶ, 𝛥𝑇) rep

resents the amplitude of correlation between the components at (𝜏ଵ, 𝜏ଶ) separated by lag time 

𝛥𝑇, the autocorrelations appear along the diagonal of  𝐹(𝜏ଵ = 𝜏ଶ) and the cross correlations a

ppear as off-diagonal peaks of  𝐹(𝜏ଵ ≠ 𝜏ଶ). By varying 𝛥𝑇, one can determine the separated 

time correlation functions of the constituent components in any fluorescence emission time ser

ies. 

Determining 𝐹(𝜏ଵ, 𝜏ଶ,Δ𝑇) is equivalent to performing a 2D-ILT on 𝑀. For efficient ha

ndling, we can convert the 2D form of Eq.4 to 1D by lexicographically ordering the matrices

 𝑚 = 𝑣𝑒𝑐[𝑀], 𝑓 = 𝑣𝑒𝑐[𝐹] and can write the kernel operations 𝐾ଵ and 𝐾ଶ by a single operato

r 𝐾଴ given by the Kronecker product. 

 𝐾଴ = 𝐾ଵ ⊗ 𝐾ଶ 3.5 

And we represent the equivalent 1D problem as: 

 𝑚 = 𝐾଴𝑓 3.6 

Now, the only task at hand is to solve for 𝑓  given 𝑚   and 𝐾଴ . As previously mentio

ned, this equation cannot be solved analytically since it is an ill-conditioned inversion resultin

g in a solution that is not stable or unique. Instead, regularized least-squared technique must 
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be used to approximate the inversion. In regularized least square minimization, the least squar

e minimizes the difference between the input data and the fit, while the regularization impose

s a penalty on undesired features of the fitted solution. The regularization prevents overfitting 

or numerical instability. To avoid any bias, we start with a uniform prior guess of 𝑓 and iter

atively find the solution by minimizing the objective function given by 

 𝑄(𝑓) =‖𝐾଴𝑓 − 𝑚‖ଶ + 𝛼𝑅(𝑓) 3.7 

where the first term on RHS represents the least square term, 𝑅(𝑓) is the regularization funct

ion of choice, and 𝛼 is a regularization constant that weighs the importance of the least squa

re fitting vs regularization. The choice of 𝛼 is critical to appropriate fitting; too small and th

e minimization remains unstable (overfitting), too large and fit may not reflect the underlying 

experimental data (underfitting). Maximum Entropy Method (MEM) has been the traditional m

ethod of choice in ILT of fluorescence decays (as discussed in section 2.4.1) as well as for t

he recently developed 2D-ILT techniques (8, 9, 11). However, for typical 2D-FLCS spectra the

 data sets are too large to compute ILT using MEM efficiently. Instead, the data is binned lo

garithmically, which decreases the data size at the cost of resolution. Furthermore, to obtain a

 meaningful ILT using MEM, one must impose a non-negativity constraint on 𝑓after every ite

ration, since the entropy cannot be defined for negative values. This significantly decreases th

e efficiency of the calculation. 

Tikhonov regularization (TK) is an alternative regularization technique which, although 

does not give the solution with maximum entropy, is sufficient to perform numerical ILT fitti

ng for fluorescence data. The greatest advantage however is that it enables faster and unconst

rained optimization techniques which drastically improve the calculation speeds. Here we highl

ight the strength of Tikhonov regularization at providing a fast and robust method for perfor

ming 2D-ILT. 
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3.2.3 2D-ILT by Tikhonov Regularization 

3.2.3.1 Regularization Function. 

  An alternative approach has been developed in NMR spectroscopy which uses singula

r-valued decomposition (SVD) based data compression and Tikhonov regularization (14-16). T

his approach differs from MEM in several ways. First, the size of the numerical calculation i

s greatly reduced by compressing the kernels using SVD instead of non-uniform binning of t

he data. Since the kernels are smooth functions, the elementwise data is vastly redundant and 

SVD can reduce the data size by roughly a hundred-fold without compromising the quality of

 the fit or the spectral resolution. Second, it uses Tikhonov regularization on the compressed 

data, which ensures a unique solution to the optimization due to the quadratic nature of the t

erms. Third, it employs Butler-Reeds-Dawson (BRD) method to transform the constrained opti

mization to an unconstrained optimization which is computationally efficient to implement. La

stly, it provides a method for choosing an appropriate regularization constant proportional to v

ariance in the data. The outline of the method follows what is presented in references (14-16)

. Using Tikhonov regularization, the objective function to be minimized from, Eq.3.7 becomes

. 

 𝑓መ = 𝑎𝑟𝑔 𝑚𝑖𝑛
௙வ଴

𝑄(𝑓) 3.8 

Were, 

 𝑄(𝑓) =  ฮ𝑚෥ −  𝐾෩଴ 𝑓ฮ
ଶ

+  𝛼‖𝑓‖ଶ 3.9 

The quadratic nature of the terms ensures a unique solution (14). The second term pe

nalizes solutions that have large norms, characteristic of functions with sharp features. Solutio

ns with smoothly varying features are therefore promoted, and 𝛼 scales the desired smoothnes

s with respect to the least squares difference. However, since 𝑓 is the probability distribution, 

it cannot take negative values which makes this a constrained optimization problem. To conve
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rt the inversion to an unconstrained problem the Butler-Reeds-Dawson (BRD) algorithm is em

ployed (14). We do not anticipate significant speed improvement by implementing Tikhonov re

gularizer alone. Instead, its purpose is to enable the use of BRD algorithm which is incompat

ible with maximum entropy regularizer. 

 

Figure 3.2 (a) An example fluorescence decay data exhibiting a biexponential decay. (b) Singular values of 

the kernel matrix K in Eq.3.9 comprising of exponential decays with 100 distinct lifetimes in range (0.1 ns–10 ns). 

The singular values decrease rapidly, and K can be represented accurately by 30 highest singular values. (c) 

Compressed data ~m obtained by Eq.3.19 represented using 30 point. 

 

3.2.3.2. Kernel Compression. 

 Here we demonstrate efficient reduction of computational size of the problem in Eq.3.7 

without significant loss of temporal information of the data. To get a sense of magnitude of the 

computational size, TCSPC experiment performed at the resolution of 64 picoseconds, has data 256 

data points Fig. 3.2.a. The 2D emission delay histogram generated from the time trace are thus of size 

256x256, if we desire to perform 2D ILT with a basis size of 100 lifetime constants, we have the 

estimated spectrum of the size 100x100 and hence the kernels of size 256x100. Converting the problem 

to 1D by lexicographic ordering Eq.3.6 gives us  𝑚଺ହହଷ଺×ଵ =  𝐾଺ହହଷ଺×ଵ଴଴଴଴𝑓ଵ଴଴଴଴×ଵ,  

Which is a tremendously large problem. Traditional solutions include non-

uniform binning of the data and using smaller basis of lifetimes. However, maximum storage space is 

occupied by the kernel which is precalculated and free of noise. 
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Here we show how the size of the problem can be reduced by compressing the kernel using singular 

valued decomposition as demonstrated in (14). For simplicity we illustrate the implementation for 1D 

ILT Eq.3.2. For the implementation in the case of 2D ILT, the compression is performed before 

converting the problem to 1D as follows: 

The 2D ILT problem at hand is to solve for 𝐹 were, 

 𝑀 = 𝐾ଵ𝐹𝐾ଶ
் 3.10 

𝑀 is the 2D emission delay histogram of photon pairs, 𝐾ଵ and 𝐾ଶ are the pre-calculated kern

els, and 𝐹 is the 2D lifetime correlation spectrum. We represent the kernels 𝐾ଵ and 𝐾ଶ by th

eir singular valued decomposition (SVD), 𝐾ଵ = 𝑈ଵ𝛴ଵ𝑉ଵ
் and 𝐾ଶ = 𝑈ଶ𝛴ଶ𝑉ଶ

்,  where 𝑈  and 𝑉 

are unitary matrices and 𝛴 is a diagonal matrix with the singular values of 𝐾 arranged in de

scending order. 

 𝑀 = 𝑈ଵ𝛴ଵ𝑉ଵ
் 𝐹 𝑉ଶ𝛴ଶ

்𝑈ଶ
் 3.11 

 

Figure 3.3 shows the singular values of a kernel formed using basis of 100 decays within ra

nge of lifetimes [0.1 to 10 ns] and for time [0 to 16 ns]. We can represent the kernel matrix

 by a compact SVD where we only keep the 𝑟  singular values greater than 10ିଵହ  (first 30 

values in this case: 𝜎௜ < 10ିଵହ; i >30 ). The resultant compressed kernels 𝑈෩ଵ𝛴෨ଵ𝑉෨ଵ
்
   is an appr

oximation of the original kernel and has the same dimensions as 𝐾ଵ and Kଶ. The difference b

etween the original and the compressed kernel is shown in Figure 3.3.d. We can observe tha

t there is negligible loss of information and that 𝐾෩ approximates 𝐾 well. 
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Figure 3.3. Kernel compression for data analysis. (a) The distribution of singular values of the kernels with 

size 100 and various ranges. (b) The distribution of singular values of the kernels constructed using basis in the 

range [0.1, 10ns] using various sizes. (c) Least square error in the compression where the kernels are constructed 

using the number of singular values on the x-axis. (d) The difference between the primary kernel and the 

compressed kernel constructed using 30 highest singular values. 

 

Using the compact SVD, Eq.3.10 now becomes 

 𝑀 = 𝑈෩ଵ𝛴෨ଵ𝑉෨ଵ
் 𝐹 𝑉෨ଶ𝛴෨ଶ

்𝑈෩ଶ
் 3.12 

Left multiply both sides by 𝑈෩ଵ
் and right multiply both sides by 𝑈෩ଶ 

 𝑈෩ଵ
்𝑀𝑈෩ଶ = 𝑈෩ଵ

் 𝑈෩ଵ𝛴෨ଵ𝑉෨ଵ
் 𝐹 𝑉෨ଶ𝛴෨ଶ

்𝑈෩ଶ
்  𝑈෩ଶ 3.13 

Since 𝑈෩ଵ and  𝑈෩ଶ are unitary matrices, 𝑈෩ଵ
்𝑈෩ଵ = 𝐼 and 𝑈෩ଶ

்𝑈෩ଶ = 𝐼 
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 𝑈෩ଵ
்𝑀𝑈෩ଶ = 𝛴෨ଵ𝑉෨ଵ

்𝐹𝑉෨ଶ𝛴෨ଶ
் 3.14 

 𝑀෩ = 𝐾෩ଵFK෩ଶ
்
 3.15 

Where 𝐾෩ଵ = 𝛴෨ଵ𝑉෨ଵ
்  , 𝐾෩ଶ = 𝛴෨ଶ𝑉෨ଶ

்
  and  𝑀෩ = 𝑈෩ଵ

்MU෩ଶ  is referred to as compressed data. The pr

ojection of the original data on the range space is given by 𝑀෩෩ = 𝑈෩ଵ𝑈෩ଵ
்𝑀𝑈෩ଶ𝑈෩ଶ

் = 𝑈෩ଵ
்𝑀෩𝑈෩ଶ. 𝑀෩෩ 

looks like a smoother version or a low pass filtered version of original data 𝑀. The reduced 

2D problem Eq.3.15 is converted to 1D problem 𝑚෥ = 𝑣𝑒𝑐ൣ𝑀෩൧ and 𝐾෩଴ = 𝐾෩ଵ ⊗  𝐾෩ଶ and 

 𝑚෥ = 𝐾෩଴𝑓 3.16 

Comparing the size of the problem in Eq.3.12 to that of Eq.3.16, we observe that the proble

m size is reduced by a factor of ~100. We can automatically determine 𝑟  using a lower bou

nd for the singular values which in practice is found to be at 1E-9 (~20 singular values). Th

is reduces the problem size by a factor of ~250 without significant loss of information. 

Now, the 1D problem at hand is, 

 𝑚ௗ×ଵ = 𝐾ௗ×௦ 𝑓௦×ଵ 3.17 

where the subscripts denote the dimensions (𝑑 ~ 256, 𝑠 =  100 ).We represent the kernel 𝐾  by its 

singular valued decomposition (SVD), 𝐾 = 𝑈𝛴𝑉், where  𝑈 and 𝑉 are unitary matrices (𝑈்𝑈 =

𝑉்𝑉 = 𝐼) and 𝛴 is a diagonal matrix with the singular values of 𝐾 arranged in descending order. 

 𝑚ௗ×ଵ = 𝑈ௗ×௦ 𝛴௦×௦ 𝑉௦×௦
்   𝑓௦×ଵ 3.18 

Figure 3.2.b shows the singular values of a kernel formed using basis of 100 decays within 

range of lifetimes [0.1 to 10 ns] and for time [0 to 16 ns]. We see that the singular values 

become negligible after approximately 30 values (𝜎௜ <  10ିଵହ  ;  i >30 ). This is attributed to t

he smooth nature of the kernels, which implies that we can represent the kernel matrix by a 

compact SVD where we only keep the 𝑟 highest singular values greater than 10ିଵହ (first 30 
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values in this case). Thus, the matrix 𝛴௦×௦ can be compressed to 𝛴෨௥×௥ without significant los

s of information. 𝑈෩ௗ×௥ and 𝑉෨௦×௥ are formed by selecting the first 𝑟 columns of 𝑈 and first 𝑟

 rows of 𝑉. The resultant compact kernel 𝑈෩ௗ×௥𝛴෨௥×௥𝑉෨௥×௦
்   is an approximation of the original 

kernel and has the same dimensions as 𝐾ௗ×௦ . The difference between the original and the co

mpact kernel is shown in Figure 3.4. We can observe that there is negligible loss of informa

tion and that 𝑈෩ௗ×௥𝛴෨௥×௥𝑉෨௥×௦
்   approximates 𝐾 well. 

 

Figure 3.4. Monte carlo simulation for data with IRF included. (a) The 1D emission delay histogram. (b) 

Emission delay histogram (black) convoluted by the Instrument response function (red). (c) The 1D ILT spectra 

at various zero-time shifts of the IRF. (d) Evaluated least-square error in the fit and convoluted histogram. The 

ILT spectra at the minima of the plot in (d) is selected as the 1D lifetime spectra. 
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Using the compact SVD, Eq.3.12 now becomes 

 𝑚ௗ×ଵ = 𝑈෩ௗ×௥  𝛴෨௥×௥ 𝑉෨௥×௦
்

 𝑓௦×ଵ 3.19 

 𝑈෩௥×ௗ
்  𝑚ௗ×ଵ = 𝛴෨௥×௥  𝑉௥×௦

்  𝑓௦×ଵ 3.20 

 𝑚෥௥×ଵ = 𝐾෩௥×௦ 𝑓௦×ଵ 3.21 

Where  𝑚෥ = 𝑈෩்𝑚 is referred to as compressed data and 𝐾෩ = 𝛴෨𝑉෨ ். Note that the size of the problem 

is reduced using the SVD of kernels and not the experimental data 𝑚. The fitting is now performed on 

𝑚෥  that has dimensions of 𝑟 × 1 Figure 1c. For the typical case of 𝑟 = 30, 

 𝑚෥ଷ଴×ଵ = 𝐾෩ଷ଴×ଵ଴଴ 𝑓ଵ଴଴×ଵ 3.22 

This makes it different than the traditional non-uniform binning approach. Venkatramanan et a

l. have shown that the structure of the problem Eq.3.7 remains unchanged after this transform

ation (14). i.e., the solution 𝑓 that satisfies Eq.3.17 is the same one that satisfies Eq.3.22 and

 again, the solution is unique due to the quadratic nature of the problem. 

Comparing the size of the problem in Eq.3.17 to that of Eq.3.22, we observe that the pro

blem size is reduced by a factor of 10. The reduction factor is even greater in the case of 2

D problem (250 times as shown above Eq.3.16). This compression is a general technique and

 can be used alongside the existing MEM approach (Table 3.1, 3.2) or broadly, with any oth

er problem involving smooth large kernel functions. The projection of the original data on the

 range space is given by. 

 𝑚෥෩ = 𝑈෩𝑈෩்𝑚 = 𝑈෩𝑚෥  3.23 
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where 𝑚෥෩   resembles a smoother version or a low pass filtered version of original data 𝑚  Fig

ure 3.5.a. 

 

Figure 3.5 Noise estimation for stopping criterion. (a) Normalized fluorescence data superimposed with 𝑚෥෩ , 

projection of compressed data onto the range space of kernel given by Eq.3.23. It is observed that 𝑚෥෩  serves as a smooth 

approximation to input data referring to which we infer the corresponding noise level given by Eq.3.35. (b) Shows the 

difference 𝑚෥෩ − 𝑚, which is dependent on the photon counts. We normalize both traces using square root of photon counts 

which eliminates the intensity dependence. (c) Shows the difference after normalization given by ඥ𝑚෥෩ − √𝑚 . 

3.2.3.3. Tikhonov regularization with BRD. 

A brief overview of the BRD approach (14, 21) summarizing is given below. In Eq.3.9, the 

gradient of Q with respect to f must be zero at its minimum, 

 𝜕𝑄

𝜕𝑓௜
= −𝐾෩଴,௜

் ൫𝑚෥ − 𝐾෩଴𝑓൯ + 𝛼𝑓௜ = 0 
3.24 

Where, 

 𝛼𝑓௜ = 𝐾෩଴,௜
் ൫𝑚෥ − 𝐾෩଴𝑓൯ 3.25 

and, 
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 𝑓௜ = 𝐾෩଴,௜
் 𝑐 3.26 

We invoke a vector 𝑐 which maps 𝑓 as, 

 
𝑐 =

𝑚෥ − 𝐾෩଴𝑓

𝛼
 

3.27 

Where 𝑐  has the same dimensions as the compressed data 𝑚෥  . The unconstrained problem the

n becomes (16) 

 𝑐̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝜒 (𝑐) 3.28 

Where, 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓(𝑥) ≔ {𝑥 ∈ 𝑆: 𝑓(𝑠) ≥ 𝑓(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆}, 

 
𝜒(𝑐) =

1

2
𝑐்[𝐺(𝑐) + 𝛼𝐼]𝑐 − 𝑐்𝑚෥  

3.29 

and 

 𝐺(𝑐) =   𝐾෩଴ 𝑑𝑖𝑎𝑔 ቀ𝐻൫𝐾෩଴
்𝑐൯ቁ 𝐾෩଴

் 3.30 

Here, 𝐻(⋅) denotes the Heaviside function, which ensures positive semi-definiteness. The mini

mization of 𝜒(𝑐) can be carried out via standard unconstrained inverse Newton minimization 

routines such as fminunc in MATLAB. The required gradients and Hessian of Eq.3.28 are eas

ily computed as  

 𝛻𝜒(𝑐) = (𝐺(𝑐) + 𝛼𝐼)𝑐 − 𝑚෥  3.31 

and, 

 𝛻𝛻𝜒(𝑐) = 𝐺(𝑐) + 𝛼𝐼 3.32 

Using the optimized vector 𝑐, the ordered vector 𝑓 is calculated as  

 𝑓 = 𝑚𝑎𝑥൫0, 𝐾෩଴
்𝑐൯ 3.33 

The 2D-ILT spectrum 𝐹 is then given by reshaping the 𝑓ଵ×௞௟ vector to a matrix 𝐹௞×௟. We sta

rt with a large value of 𝛼 to estimate 𝑐. The recommended optimum 𝛼 for the following iter
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ations is given by, 

 
𝛼௢௣௧ =

√𝑘 × 𝑙 ⋅ 𝜎ො

‖𝑐‖ி
 

3.34 

With, 

 𝜎ො = 𝑠𝑡𝑑 ቀඥ𝑚෥෩ − √𝑚ቁ 3.35 

Eq.3.35 represents the approximation of noise level in the data obtained by first normalizing the data 

by square root of the photon counts and then comparing it with a smoothened version of itself (Figure

 3.5.a). The optimized vector 𝑐 is iteratively evaluated using this 𝛼௢௣௧. A suitable stopping cri

terion is achieved when. 

 ‖𝑐‖ி > 1/𝜎ො 3.36 

or when the relative difference between consecutive 𝛼 to be less than 0.1%. 

 |𝛼௜ − 𝛼௜ାଵ|

𝛼௜
< 10ିଷ 

3.37 

Stopping criteria in eqn. 3.36 is based on the comparing the cost function with the noise pre

sent in the data to avoid overfitting. Stopping criteria in eqn.3.37 is based on converging val

ues of the regularization constant. Typically, convergence is achieved within 10 iterations for 

both criteria and the iterations are stopped when either of the above-mentioned criteria are m

et. 

 

Algorithm. 

The 2D-ILT algorithm can thus be summarized in the following step-by-step procedure. 

a. Define a basis with an upper bound lower bound and number of points. 

b. Import data and IRF. 

c. Generate a kernel matrix (whose size is length of histogram x ILT basis size). 



65 

 

 𝐾௜௝ = 𝑒𝑥𝑝൫ି௧೔/ఛೕ൯ 3.38 

d. Convolute the kernel with IRF. 

e. Compute the SVD of the kernel and stored the compressed U, S, V matrices 

the compressed kernels are 𝐾෩ଵ = 𝛴෨ଵ𝑉෨ଵ
் 𝑎𝑛𝑑 𝐾෩ଶ = 𝛴෨ଶ𝑉෨ଶ

். 

Compressed data is 𝑚෥ = 𝑈෩ଵ
்

𝑚𝑈෩ଶ and 𝑚෥෩ = 𝑈෩ଵ𝑈෩ଵ
்

𝑚𝑈෩ଶ𝑈෩ଶ
்

= 𝑈෩ଵ𝑚෥𝑈෩ଶ
்

  

Generate the Kronecker product matrix 𝐾෩଴ = 𝐾෩ଵ ⊗ 𝐾෩ଶ.  

f. Unconstrained optimization: initialize a constant array (c), start with initial.  

 
𝜒(𝑐) =

1

2
𝑐்[𝐺(𝑐) + 𝛼𝐼]𝑐 − 𝑐்𝑚෥  

3.39 

 𝛻𝜒(𝑐) = (𝐺(𝑐) + 𝛼𝐼)𝑐 − 𝑚෥  3.40 

 𝛻𝛻𝜒(𝑐) = 𝐺(𝑐) + 𝛼𝐼 3.41 

Where 𝐺(𝑐) = 𝐾଴
෪ 𝑑𝑖𝑎𝑔 ൬𝐻 ቀ𝐾଴

෪் 𝑐ቁ൰ 𝐾଴
෪்   and 𝐻 is the Heaviside function. 

g. 𝛼௢௣௧ =
௟.ఙෝ

|௖|
. where l is the size of the basis, and 𝜎ො = 𝑠𝑡𝑑 ቀඥ𝑚෥෩ − √𝑚ቁ. 

h. Check convergence condition: ቚ
ఈ೔ିఈ೔శభ

ఈ೔
ቚ < 10ିଷ 

i. 𝐹ூ௅் = 𝑚𝑎𝑥(0, 𝐾்𝑐) 

3.2.4 Monte Carlo Simulations 

We demonstrate and compare the performance of both MEM and Tikhonov regularization usin

g Markovian Monte carlo simulations to generate artificial photon time series for a two-state 

system with user defined inputs for fluorescence lifetime, emission intensity and transition rate 

matrix. The monte carlo simulation is a 4-step process: Initialize, Reaction, Photon emission and 

Detection. 

Initialization: This involves setting up the system and defining the parameters for the simulat
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ion. An example initialization parameters setup is shown in the following table. 

 

 

Parameter Value Comment 

Simulation time step 25 ns 1/Laser rep. rate (40MHz) 

No. of TCSPC channels 256 Bin Width = 64 

picoseconds 

Number of conformations 2  

Brightness [10ସ, 10ସ]  photons/second 

Fluoresce lifetimes [1, 3] nanoseconds 

Transition probability matrix 
ቂ 0 10ିସ

10ିସ 0
ቃ  

Simulation size 50 seconds 2 ×  10ଽ 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 

 

Table 3.1 Monte Carlo simulation parameters 

Reaction: The chemical reaction is governed by transition rate matrix. The initial states are randomly 

chosen based on the steady state probabilities. In case of a 2-state simulation, 𝑃ଵ = 𝐾ଶ→ଵ/(𝐾ଵ→ଶ +

𝐾ଶ→ଵ) and 𝑃ଶ = 𝐾ଵ→ଶ/(𝐾ଵ→ଶ + 𝐾ଶ→ଵ). The initial state is stored, and the probability of transition is 

calculated as 𝑃௜→௝ =  𝐾௜→௝ . 𝛿𝑡 where 𝐾௜→௝ is the rate of transition from state 𝑖 to 𝑗  and 𝛿𝑡 is the 

time step. A uniform random number 𝑅௥ is generated between (0,1) (‘rand()’ function in MATLAB) 

and compared with 𝑃௜→௝ . The reaction succeeds if  𝑅௥ < 𝑃௜→௝  and the state is updated from 𝑖 to 𝑗. 

Otherwise, the molecule remains in 𝑖 state. The updated state is stored, and the process is repeated for 

the length of simulation using the new initial state as the updated state. The result is an array which 

shows the trajectory of chemical reaction of the molecule. 

Photon emission: Each state is assigned a brightness property 𝐵௜ in units of 𝑝ℎ𝑜𝑡𝑜𝑛𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 and 



67 

 

a characteristic fluorescence lifetime 𝜏௜ .For every point along the reaction trajectory generated above, 

the probability of emission is given by the 𝑃௘௠ = 𝐵௜ . 𝛿𝑡. 𝑃௘௠  is compared with another uniform 

random number 𝑅௘௠ between (0,1) and photon emission is registered during the time step if 𝑅௘௠ <

𝑃௘௠. This results in a photon emission trajectory. For every emitted photon, an emission delay time is 

generated from using an exponential random number generator (‘exprnd(mu)’ in MATLAB) with the 

lifetime equal to the lifetime of current state. The result is an emission delay trajectory corresponding 

to the photon emission trajectory. 

Detection: The photon emission trajectory is called the MacroTime (𝑇)  and the emission delay 

trajectory is the MicroTime (𝑡). The microtime is discretized based on the expected TCSPC parameters 

(channel width = 64 picoseconds and 256 bins. Photon data beyond the bin limit (16 ns = 256 x 64ps) 

is discarded. The final resultant photon stream is stored in the form of an array with 2 columns – 

MacroTime and MicroTime (𝑇௜, 𝑡௜) 

3.3 Result and Discussion 

To demonstrate the workings of the proposed algorithm and to compare it with traditional M

EM, we generate a simulated photon stream using Markov chain Monte carlo simulations as 

described above (section 3.2.4). We compare the compression efficiency, tolerance to noise, an

d the timing of the algorithm for various relevant parameters. 

3.3.1 Implementation. 

 We simulate a two-state system with fluorescence lifetimes of 𝜏ଵ = 1.0 𝑛𝑠 and 𝜏ଶ = 3.0 𝑛𝑠, a

nd exchange rates of 𝑘௙ = 𝑘௥ = 1 × 10ଷ𝑠ିଵ corresponding to an exchange time of 1 ms. The 

number of photons analyzed is roughly 2.5 × 10ହ. The corresponding 1D and 2D lifetime spe

ctra were obtained by ILT by Tikhonov regularization as described above, using a basis set o

f size L = 100 and with a singular valued decomposition using 30 greatest values. The 1D p

hoton histogram, resulting fit computed by a 1D-ILT, and residual are shown in Figure 3.6.b,

 c. The 1D relaxation rate spectrum shows two peaks located at 𝜏ଵ = 1.0 𝑛𝑠 and 𝜏ଶ = 3.0 𝑛𝑠,
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 consistent with the input parameters of the simulation Figure 3.6.d.  

 The 2D photon correlation histogram evaluated at 𝛥𝑇 = 2 𝑚𝑠, resulting fit computed by 

a 2D-ILT, and residual are shown in Figure 3.6.e, f. A 2D-FLCS spectrum shows two diagonal p

eaks at 𝜏ଵ = 1.0 𝑛𝑠  and 𝜏ଶ = 3.0 𝑛𝑠 , and two off-diagonal cross-peaks between these transitions 

Figure 3.6.g. The cross-peaks indicate that chemical exchange has occurred within the timescale 𝛥𝑇 =

2 𝑚𝑠, which is consistent with the input transition rate matrix.  

 Computing the 2D-FLCS spectrum for a series of 𝛥𝑇  delay times allows the chemical 

exchange kinetics to be directly measured. Figure 3.7.a-c shows the 2D-FLCS spectrum measured for 

delay times ranging from 10 μs to 2 s. At early times 𝛥𝑇 < 𝜏௘௫௖௛௔௡௚௘, only diagonal peaks are observed 

as no chemical exchange had occurred Figure 3.7.a. As 𝛥𝑇  is increased, cross-peaks emerge as 

chemical exchange occurs Figure 3.7.b. The exchange cross-peaks reach a steady state as 𝛥𝑇 >

𝜏௘௫௖௛௔௡௚௘ Figure 3.7.c. Monitoring the amplitude of these diagonal and cross-peaks provides direct 

information regarding the chemical exchange process. The amplitude of the peaks can be expressed as, 

 𝐶௜௝(𝛥𝑇) = ൻ𝑆௜(𝑡)𝑆௝(𝑡 + 𝛥𝑇)ൿ 3.42 

Where 𝑖  and 𝑗  represent the state of the system with lifetimes 𝜏௜  and 𝜏௝ .  𝐶௜௝(𝛥𝑇)  thus 

represents the probability of the system in state 𝑖 at time 𝑡 to be observed in state 𝑗 at later time 𝑡 +

𝛥𝑇. The diagonal is given by the condition 𝑖 =  𝑗, while cross-peaks are given by the condition 𝑖 ≠  𝑗. 

The two autocorrelation and cross-correlation functions obtained from the 2D-FLCS spectra are shown 

in Figure 3.7.d. As expected, the auto-correlation functions decay on the timescale of 𝜏௘௫௖௛௔௡௚௘, while 

the cross-correlation functions grow on the timescale 𝜏௘௫௖௛௔௡௚௘  . Fitting the data provides a direct 

measure of 𝜏௘௫௖௛௔௡௚௘ for the system. 
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Figure 3.6. Laplace inversions by Tikhonov Regularization. Monte Carlo simulations generate an artificial 

photon stream of a two-component system with fluorescence lifetimes of 𝜏ଵ = 1𝑛𝑠 and 𝜏ଶ = 3𝑛𝑠 undergoing 

equilibrium chemical exchange at a rate of 1 × 10ଷ𝑠ିଵ. (a) Raw 1D-photon histogram (blue) and the obtained 

fit (red) from 1D-ILT. (b) The 1D lifetime spectrum shows two peaks with relaxation rates of 1 and 3 ns, consistent 

with fluorescence lifetime of the two components in the system. (c) Residual between the 1D photon histogram 

and the fit obtained by 1D-ILT. (d) 2D photon correlation histogram and (e) 2D relaxation rate spectrum computed 

at a waiting time of 𝛥𝑇 = 2𝑚𝑠 obtained from a 2D-ILT. The spectrum consists of diagonal peaks at 1 and 3 ns, 

as well as cross-peaks indicating chemical exchange between the two species. (𝑓) Residual between the 2D 

photon correlation histogram and 2D-ILT fit. 
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Figure 3.7 Chemical Exchange kinetics of a two-state system. 2D-FLCS spectra computed at (a)𝛥𝑇 = 10 −

20µ𝑠 , (b) 𝛥𝑇 = 100 − 200µ𝑠 , and (c) 𝛥𝑇 = 1 − 2𝑚𝑠 . At 𝛥𝑇 < 𝜏௘௫௖௛௔௡௚௘  , no cross-peaks are observed 

between the two states, indicating no exchange has occurred. As 𝛥𝑇 approaches 𝜏௘௫௖௛௔௡௚௘ , cross-peaks emerge 

indicating both forward and reverse transitions between the two states. (d) The kinetics of the exchange process 

are reflected in the autocorrelation and cross-correlation functions of the diagonal and off-diagonal peaks, 

respectively. Fitting either the autocorrelation or cross-correlation functions provide a direct measure of the 

exchange kinetics in the system. 

 

In practice, lifetime histograms are convoluted by a systematic instrument response fun

ction IRF and do not manifest as pure exponential decays. We can account for this by fitting

 the data with kernels convoluted by a known IRF which can be measured experimentally fro

m scattering of the excitation pulse from a colloidal medium. The experimentally observed T

CSPC histogram is modelled from Eq.3.1 as 



71 

 

 
𝐼௢௕௦(𝑡, 𝜏) = ෍ IRF(𝑡௜ − 𝑡଴) exp ൬−

𝑡 − 𝑡௜

𝜏
൰

௜

 
3.43 

where, 𝑡଴ is the unavoidable zero-time shift for the IRF. It is important so estimate the corre

ct value of 𝑡଴  as it can lead to undesirable errors in the ILT spectrum. To circumvent this, 

we calculate the 1D-ILT spectrum at various values of zero-time shifts and use the range ove

r which the fitting least square error 𝜒ଶ  is minimum. The ILT obtained from this range is t

hen averaged to obtain the final 1D-ILT spectrum to be used for further analysis. 2D spectru

m is calculated using the same range of zero-time-shifts. The kernels to be fitted are also co

nvoluted with the IRF similarly Figure 3.4. 

 

3.3.2. Effect of compression:  

Kernel compression increases the computational speed by excluding redundant or insignificant 

information and thus reducing the size of the problem. However, there is a tradeoff between the 

magnitude of compression and loss of information. The measure of compression in our case is given by 

the number of singular values chosen to represent the kernel of exponential. Figure 3.2.b shows the 

singular values for a kernel comprising of 100 basis exponentials ranging from lifetimes [0.1ns to 10ns]. 

It is observed that only the greatest 30 singular values are enough to sufficiently describe the kernel. 

This is demonstrated in Figure 3.3.d showing the difference between the true kernel and the 

approximated kernel constructed by choosing only the 30 greatest singular values and Figure 3.3.c 

showing the least square error (lsq) in the kernel approximation 𝑙𝑠𝑞 = 𝛴൫𝐾 − 𝐾௖௢௠௣௔௖௧൯
ଶ
.  

Finally, transforming the problem by operation of 𝑈், Eq.3.20 reduces the computational size 

by 10 times for 1D ILT and 250 times for 2D ILT. The number of significant singular values depends 

largely on the range of lifetimes used to generate the basis and not the number of basis vectors chosen 

for fitting (Figures 3.3.a, b).  
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3.3.3. Dependence on total photon counts: 

  A robust algorithm should produce consistent results for various realizations of data obtained 

from same source. In case of regularized optimization, this is reflected in the choice of the regularization 

parameter 𝛼 Eq.3.7. 𝛼 represents the bias towards the smoothness with respect to the least square 

errors which manifests as the width of the peaks in case of the inverse Laplace transform. We start with 

a sufficiently high value of 𝛼 and gradually decrease it following Eq.3.34 as suggested in (21), where 

𝜎ොଶ is a measure of the variance in data.  

 Determining 𝜎ො  is straightforward in experiments influenced by uniform gaussian noise 

however, for the fluorescence lifetime histogram, the photon counts follow Poisson distribution at each 

point individually. As a result, the variance at each point is different and is proportional to the total 

accumulated photons. The best case is to determine the point-wise variance experimentally however, 

the data used for determination can be simply added together into a fluorescence decay with more counts 

and hence less relative noise. Thus, we chose to approximate the point-wise variance by comparing the 

data with a smoothened version of itself. Luckily, 𝑚෥෩ = 𝑈෩்𝑈෩ m which is the projection of compressed 

data to the range space of the kernels serves as an approximate smoothened curve corresponding to the 

data given that the total number of photons is sufficiently high (above ~ 10ସ total photons) Figure 

3.5.a. Then we estimate 𝜎ො using Eq.3.35, where the traces 𝑚 and 𝑚෥෩  are normalized by their square 

root which effectively removes the intensity dependence of each data point and produces uniformly 

distributed residues Figure 3.5.b, c. Decrease in photon counts leads to higher 𝜎ො which in turn leads 

to a higher 𝛼௢௣௧ and hence smoother fits. Figure 3.8.a, b shows dependence of 𝜎ො and 𝛼௢௣௧ on the 

total photon counts. Figure 3.8.c-f also shows the normalized 1D and 2D ILT fits for trajectories with 

various total photon counts. A similar approach of using preliminary fits has been shown to improve the 

accuracy and precision of estimated parameters in fitting of single molecule fluorescence decays (22). 

A qualitative analysis of effect of noise on the resulting ILT fits is detailed as follows and demonstrated 

in Figures S3, S4. 



73 

 

 

Figure 3.8 Dependence of 2D spectrum on total photon counts. (a) The estimated 𝜎ො with respect to total 

photon counts in the fluorescence data. (b) Shows the optimum regularization parameter obtained with respect to 

the total photon counts in the fluorescence data. Error bars denote the standard deviation using 30 instances of 

simulated data. Higher 𝛼௢௣௧ due to lower photon counts results in smoother fits and vice versa as demonstrated 

in (c), which showing 1D-ILT of three trajectories with varying total photons. (d–f) show the normalized 2D-ILT 

obtained at 𝛥𝑇 = 2𝑚𝑠 using the simulated trajectories from (c). 

 

Examining the effect of total photon counts on the obtained ILT spectrum, it is observed from 

Figure 3.8.c that the peak width systematically decreases with increasing total photon counts and hence 

proportionally, decreasing the estimated noise given by σෝ (Fig 3.8.a). Figure.3.9.a shows the average 

peak widths with respect to total photon counts averaged from 30 instances of simulated data. Although 

it is tempting to characterize the obtained spectra, we must note that the spectra consist of a 

logarithmically spaced basis of lifetimes to which, the algorithm assigns the most probable amplitudes. 

It is not clear what the width of the peak would imply in the spectra composed of a logarithmically 

spaced points since, even if two peaks appear to have similar widths, they span vastly different range. 

We also noticed that the widths vary inversely with the size of the basis (Figure.3.9.b) which might be 

attributed to larger basis having more resolution or more degrees of freedom.  
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For cases of lower fluorescence photon counts, Lower signal to background ratios (SBR), might 

contribute to either artefacts or cause a systematic bias in the ILT spectrum. We tested the background 

dependence using additive gaussian noise to the simulated fluorescence decays. We added a second 

source in the simulation which emits photons at experimentally observed rate of 150 cps (counts per 

second) and is independent of the microtime. Keeping the background levels constant, we varied the 

brightness of the fluorophore to obtain fluorescence decays. The SBR is quantified as ratio of total 

fluorescence photons to the total background photons. We notice firstly that the spectrum systematically 

shifts to prefer the higher lifetimes and secondly, we start to observe a “tail” at highest lifetime in the 

spectra at lower SBR as shown in Figure.3.10.a. This is most likely because at longer microtime, a non-

zero background is equivalent to having a component with very large lifetime.  

 

 

Figure 3.9 (a) shows the dependence of peak-widths of obtained 1D ILTs with respect to the total photon 

counts in the units of basis points. (b) shows the dependence of peak widths with respect to the size of the basis of 

lifetimes chosen for the 1D ILT 
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Figure 3.10. Baseline correction for background noise. (a) shows the effect of added background noise on 

the ILT as an observed “tail” shown in blue. On implementing baseline correction on the same data, this artefact 

is eliminated as shown in red. (b) at lower signal to background ratios, minor but systematic shifts are observed 

in the peak positions of obtained 1D-ILT which are also eliminated by applying baseline correction for the 

background noise. (c) The “tail” artefact is observed to have systematic dependence on the SBR as shown in 

green and is reduced on applying the baseline correction. 

 

 For improving the accuracy of the algorithm, one can parameterize the background and extend 

the current algorithm to fit for the background parameter. However, during the experiment, one can also 

measure the background separately by focusing on a dark spot in the sample and running a blank 

experiment. We found that applying an approximate correction in the form of baseline subtraction 

reduces the systematic errors. Since the detectors used have a systematic zero-time shift, one can 

approximate the points on the left-hand side of the IRF as background and use the mean of the counts 

of that segment of the trace as a baseline. Figure.3.10.b shows the errors in estimated peak positions 

with respect to the signal to background ratio. Figure.3.10.c shows the height of the “tail” originating 

due to higher SBR at low. We thus set a lower bound on the SBR till which we can obtain reliable ILT 

results which is SBR=70 (1E4 cps) without baseline correction and SBR = 2.5 (400 cps) with baseline 

correction where the brackets denote the brightness of fluorophore corresponding to the SBR for 

background fixed at 150 cps. 
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3.3.4. Application to experimental data. 

In this section, we demonstrate the utility of the outlined 2D-ILT algorithm on experimental 

data. We measure 2D-FLCS for bacteriorhodopsin (bR), a trans-membrane proton pump protein with 

an endogenous retinal chromophore. Photon absorption by the retinal chromophore initiates a complex 

reaction cycle that involves a series of conformational transitions that occur on timescales ranging from 

μs to ms (23). The dynamics of conformational transitions involved in the biochemical cycle can be 

mapped through changes in the retinal chromophore fluorescence lifetime (24). Note, here we are 

interested only in demonstrating the use of the outlined approach to obtaining reliable 2D-FLCS spectra 

for an experimental system. An analysis of the dynamics of bR reaction cycle are reported elsewhere 

(24).  

The crystal structure and absorption spectra of bR is shown in Figure 3.11.a, b. The 

experiments were carried out with 532 nm excitation. 2D-FLCS spectra computed at ∆T = 10-50 μs and 

∆T = 10-50 ms are shown in Figure 3.11.c, d (single-molecule fluorescence traces contained ~5x106 

photons). At ∆T = 10-50 μs, the spectrum contains three diagonal peaks, which can be assigned to the 

K, L, and N intermediates of the reaction cycle (Figure 3.11.c) (23-25). Cross-peaks are observed 

between the K and L intermediates indicating exchange, consistent with the ms exchange rates measured 

from bulk spectroscopy. At later times, cross-peaks between the L and N state, as well as the K and N 

state, appear, consistent with a ms exchange time. (26)   
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Figure 3.11. 2D-ILT on Bacteriorhodopsin single-molecule fluorescence data. (a) Crystal structure of bR, 

with the retinal chromophore highlighted in green. (b) Absorption spectrum of the bR in the ground state, with 

𝜆_𝑚𝑎𝑥=560 𝑛𝑚. (c and d) 2D-FLCS spectra computed for 𝛥𝑇 = 10 − 50µ𝑠 and 𝛥𝑇 = 10 − 50𝑚𝑠. The three 

diagonal peaks can be assigned to the K, L, and N intermediate formed during the photoinduced reaction cycle of 

bR. Cross-peaks evolve because of chemical exchange between the intermediate species. 

 

3.3.5. Comparison to existing methods. 

We tested the fitting of same sets of simulated data and quantified the performance of each step 

individually. The key improvements suggested are kernel compression (KC), Tikhonov regularization 

(TK), and implementation of the BRD algorithm (BRD). Table 3.2 and 3.3 show the computational 

time in seconds required to evaluate the 1D and 2D ILT fits using MEM alone, MEM with KC, (TK) 

alone, TK and KC, TK and BRD, and finally TR with KC and BRD. The corresponding 1D and 2D ILT 

fits are shown in Figure 3.12. We observe that all the above techniques give accurate results. For cases 

involving constrained optimization without compression, Figure 3.12.g, i (MEM and TK) the 2D ILTs 

appear smoother as compared to the fits obtained using constrained optimization along with kernel 

compression. However, considering computational efficiency and memory requirements (Table 3.2 and 

Table 3.3), we observe that the best and results are obtained when the techniques (TK, KC, BRD) are 

used in conjunction Figure 3.12.e, k.  
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Figure 3.12. Comparison of TK and MEM. (a–f) Show 1D-ILT of same simulated data set comprising 

2 × 10଺ total photons with lifetimes 1 and 3 ns. (g–l) show the 2D-ILT of the same data set evaluated at 𝛥𝑇 =

2𝑚𝑠. The computational times for the simulations are given in Tables 2 and 3. 

 

Regularizer No Compression Compression on BRD BRD Only 

MEM 32 ± 3 9.1 ± 0.3 - - 

Tikhonov 29 ± 3 8.90 ± 0.25 0.17 ± 0.02 0.22 ± 0.02 

 

Table 3.2 Computation times in seconds for methods for 1D ILT of same set of data comprising 2 ×

10଺ total photons. 

 

Regularizer No Compression Compression on BRD BRD Only 

MEM 9 × 10ଷ 4 × 10ଷ - - 

Tikhonov 8 × 10ଷ 1.4 × 10ଷ 20 500 

 

Table 3.3 Computation times in seconds for methods for 2D ILT of same set of data with the 2D emission 

delay histograms evaluated at 𝛥𝑇 = 2𝑚𝑠. 
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Basis Size ID ILT Time (s) 2D ILT Time (s) 

1000 0.40 1000 

100 0.17 20 

50 0.05 1 

 

Table 3.4 CPU time required for execution of the fits for various sizes of basis set. 

 

Table 3.4 shows typical computational times required to evaluate 1D and 2D-ILT fits for vari

ous sizes of lifetime 

basis. The fittings were performed on an Intel-Core i7-4790 CPU and using home-built code 

written in MATLAB 2020a software. The code is publicly available at (https://github.com/saur

abhtauke/2D-FLCS_King_lab). 

3.3 Conclusion 

Single-molecule 2D-FLCS is a powerful tool for studying dynamics of biological macromolecu

les, though the difficulty of computing inverse Laplace transforms may be prohibitive to its w

ide-spread application. Here, we outline a fast and robust method of computing 2D inverse L

aplace transforms. The method, based on singular-valued decomposition and Tikhonov regulari

zation, is adopted from NMR spectroscopy for application to single-molecule fluorescence spe

ctroscopy. The approach allows for stable inversions of large, noisy data sets, common in sin

gle-molecule spectroscopy, to be carried out efficiently, without sacrificing the resolution of th

e spectra. Furthermore, using Monte carlo simulations to generate artificial photon streams, we

 demonstrate that this technique is robust in terms of the spectral resolution, noise tolerance, 

and computational efficiency. This provides an alternative method (beyond typical maximum e

ntropy methods) for performing Laplace inversions of single-molecule fluorescence data that is

 easily implemented. 
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Chapter 4: Reaction cycle of operating pump protein 

studied with single molecule spectroscopy 

4.1 Introduction 

Motor and pump proteins operate through non-thermal motions (nonequilibrium fluctuations)(1-4) 

induced by the input of energy, for example, by ATP hydrolysis or photon absorption. For some pump 

proteins, the mechanism of action has been adequately described using the principle of microscopic 

reversibility,(5) where equilibrium mechanical motions of the protein are rectified by an asymmetric 

potential that biases diffusion in one direction.(6, 7) In contrast, optically driven pump proteins are 

thought to operate through a ‘power-stroke’ mechanism, where a series of directional conformational 

transitions follow from a sudden structural change.(3, 8) For this physical mechanism, which is 

inherently far-from-equilibrium, the validity of equilibrium notions of time-reversal symmetry and 

detailed balance, as well as the response to temperature, are yet to be established.  

In this work, we study the reaction cycle of bacteriorhodopsin (bR), an optically-driven H+ pump 

found in Archaea (Figure.4.1.a,b),(9) at the single-molecule level. This system was chosen as a model 

system as the intermediate species involved in the reaction cycle have been well characterized and bulk 

spectroscopy experiments have provided the timescale for elementary transitions of the cycle.(10) 

However, ensemble experiments cannot resolve forward and reverse transitions required to quantify 

nonequilibrium thermodynamic properties.  

Photon absorption induces a trans-cis isomerization of the retinal chromophore. Steric repulsions 

between the isomerized chromophore and the protein scaffold initiates a multi-step reaction cycle 

involving multiple intermediate species (Figure.4.1c).(11, 12) Key to our understanding of 

nonequilibrium reaction cycles are the roles of time-reversal symmetry and the corresponding entropy 

production.(13) To characterize these properties on a single-molecule level, we leverage 

multidimensional single-molecule fluorescence lifetime correlation spectroscopy (sm-2D-FLCS),(14-
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16) which utilizes multiple light-matter interactions separated by a controlled waiting time to monitor 

structural or chemical transitions of a molecule. The details of the technique are published elsewhere.(17) 

Briefly, sm-2D-FLCS takes advantage of the differences in fluorescence lifetimes as a probe for 

resolving multiple intermediates during the catalytic cycle. The experiment is carried out on a confocal 

microscope equipped with TCSPC (Time Correlated Single Photon Counting) setup. Time resolved 

fluorescence photon streams are collected from single molecules and a 2D emission delay histogram is 

constructed by correlating the observed fluorescence emission delays in the photon stream at a known 

waiting time (Δt). A 2D Inverse Laplace transform (2D ILT) then yields a 2D fluorescence lifetime 

correlation spectra where species are represented by peaks corresponding to their fluorescence lifetimes. 

The exchange dynamics are observed through time-correlation functions (tcf) for forward and reverse 

transitions, which appear in opposite quadrants of the 2D spectrum(18) and therefore allow the forward 

and reverse conformational transitions to be measured independently. The violation of time-reversal 

symmetry within the reaction cycle is observed from the reciprocal tcf,(19) (where, reciprocal refers to 

the pair of forward and reverse tcf), which are equivalent for reversible transitions (obey time-reversal 

symmetry) and are not equivalent for irreversible transitions (violate time-reversal symmetry). The 

extent to which time-reversal symmetry is violated is a measure of entropy production rate in the 

cycle.(13) Using this approach, we are able to experimentally characterize the nonequilibrium 

thermodynamics and kinetics of portions of the bR reaction cycle and quantify the stability of the cycle 

when subject to kinetic perturbation. 

 

4.2 Materials and methods 

Purified and lyophilized wt-bR and bR-D96N extracted from Halobacterium salinarum were 

purchased from Halotek biomaterials (Halotek, Germany). The sample was loaded into UV-treated 8-

well chambers (Lab-Tek, ThermoFisher, USA) for single-molecule experiments. Single-molecule 

fluorescence experiments were carried out on a commercial Leica SP8x microscope (Leica 

Microsystems GmbH, Germany). Pulsed excitation light at 532 nm was provided by a Fianium 
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Supercontinuum Laser operating at 40 MHz with an average power of ~ 6 μW at the back-focal-plane. 

Excitation and collection of fluorescence emission was carried out through a 100X oil-immersion 

objective. Fluorescence signal was passed through a band-pass filter (Semrock, USA) and was detected 

by photon avalanche photodiodes (PicoQuant, Germany) equipped with a picoHarp300 (PicoQuant, 

Germany) time-correlated single-photon-counting (TCSPC) system. Data processing and analysis was 

performed using in-house MATLAB code. 

 

4.2.1. Sample preparation: 

A 1 μM solution of membrane-bound bacteriorhodopsin (bR) was prepared in phosphate buffer 

(100 mM ionic strength, pH = 6). This solution was vortexed and sonicated for 5 minutes in cold water 

to disperse the purple membrane. The dispersed suspension was centrifuged for 5 minutes at 10K rpm. 

The supernatant was extracted, and the sonication/centrifuge procedure was repeated 3 times. The third-

degree supernatant (~ 1 nM bR) was used for experiments. An 8-well chamber (LabTek, Australia) was 

UV treated for > 8 hrs prior to use. The bR solution was then added to the chamber and kept at ambient 

light for 10-15 minutes. Membrane bound bR adsorb to the glass surface and are immobilized.  
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Figure 4.1. Single-molecule spectroscopy of Bacteriorhodopsin. Crystal structure of ground state bR 

showing a) the protein and b) the retinal chromophore and the amino acids involved in the H+ transport chain of 

the reaction cycle (PDB: 1KBG). c) Photo-induced reaction cycle of bR, which involves 6 intermediates in 

addition to the ground state (gs). The subscripts on the labels denote the absorption maximum of the retinal 

chromophore for the given conformation. d) Absorption spectrum of retinal embedded in bR shows strong 

absorption at λ=568 nm at pH=6. e) The fluorescence lifetime histogram measured from a single protein shows 

multi-component relaxation following 532 nm excitation. A 1D-ILT of the lifetime histogram reveals three 

relaxation times of τ1’~0.08 ns, τ2’~1.0 ns, and τ3’~5.0 ns (inset). f) sm-2D-FLCS spectrum measured at a waiting 

time of Δt=10 μs. 
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4.2.2. SM-2D-FLCS: 

Single-molecule dispersion and immobilization of bR was confirmed by confocal microscopy and 

fluorescence time traces (Figure.4.2.a-c). Emission from bR showed diffraction limited detection spots 

(Figure. 4.2.a, b) and single-step photo-physics (Figure. 4.2.c) expected for single molecules. 

Excitation at 532 nm overlaps with the absorption spectrum of the retinal chromophore (in ground state, 

K, L, and N intermediate states) embedded in the protein scaffold. The excitation laser both initiates the 

catalytic cycle and probes transient intermediates formed during the reaction cycle. Fluorescence 

relaxation from a single bR protein shows multi-component relaxation (Figure. 4.2.d). The emission 

delay times extracted from a real-time photon stream (Figure. 4.3.a) can be binned into a 1D histogram 

which are used to estimate a relaxation spectrum through an inverse Laplace transformation (Figure. 

4.3.b). For a two-state system where each state has a distinct fluorescence lifetime the 1D fluorescence 

lifetime spectrum will show a peak at the relaxation rate of each state. 2D-FLCS spectra are computed 

by generating a 2D photon histogram of photon pairs separated by a systematic waiting time Δt (Figure. 

4.3.a). A 2D inverse Laplace transformation of the histogram gives a 2D-FLCS spectrum for a given Δt 

(Figure.4.3.c). For a two-state system that undergoes chemical exchange at a well-defined timescale, 

the 2D-FLCS spectrum will contain diagonal peaks corresponding to species that did not exchange 

within Δt and cross-peaks corresponding to species that did exchange within Δt (Figure. 4.3.c). 

Monitoring the kinetics of the cross-peaks provides direct access to the forward and reverse exchange 

times. 
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Figure 4.2. Single-molecule imaging and photo-physics. (a) Confocal image of single 

Bacteriorhodopsin proteins immobilized on a glass surface. (b) Diffraction-limited cross-section of fluorescence 

signal measured in confocal image. (c) Single-molecule fluorescence trace showing single-step photo-physics. (d) 

Fluorescence lifetime histogram from single wt-bR protein showing multicomponent relaxation. 
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Figure 4.3. Experimental procedure for measuring sm-2D-FLCS data. (a) Excitation pulse train and 

photon stream measured with resolved photon emission time tem (standard TCSPC measurement in Time-Tagged-

Time-Resolved mode). (b) 1D histogram of photon emission time and the fluorescence lifetime spectrum computed 

by a 1D ILT for a simple two state system. (c) 2D histogram of photon emission measured at a set waiting time Δt 

and 2D-FLCS spectra computed by a 2D ILT. At early waiting times (Δt < exchange time) peaks are only measured 

along the diagonal, indicating species that remained in their initial state during the waiting time. At later times 

(Δt > exchange time), cross-peaks arise as species that were in an initial state exchange to the other state during 

the waiting time. 
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4.3 Results 

We first characterize the directional flux through portions of the cycle by monitoring the transition 

kinetics between several intermediates. The endogenous retinal chromophore serves as the photo-trigger 

for the reaction cycle as well as a probe of the intermediates during the cycle. Limitations in the 

experiment prevent transitions between each intermediate to be directly measured. Instead, portions of 

the reaction cycle are characterized through select intermediates to which our experiments are sensitive. 

The cycle of bR involves six known intermediate structures that exist for timescales ranging between 

μs to ms (K, L, M1, M2, N, O, Figure.4.1.c).(11, 12) In the ground state structure, the retinal 

chromophore has an absorption maximum at λmax = 568 nm (Figure.4.1.d). Fluorescence emission from 

a single monomeric bR protein, confirmed by diffraction limited emission spots observed in confocal 

microscopy and single-step photo-physics (Figure. 4.2.a-c), shows multi-component relaxation 

following a 532 nm excitation (Figure.4.1.e, Figure. 4.2.d). An inverse Laplace transform (ILT)(17) of 

the cumulative photon histogram measured from more than 100 single protein molecules (Figure.4.1.e) 

gives a 1D fluorescence lifetime spectrum that contains three distinct relaxation peaks (Figure.4.1.e, 

inset). We do not anticipate signal from the M1, M2, and O intermediates due to low absorption at the 

532 nm excitation.(11, 12) Furthermore, fluorescence from the ground state structure is unlikely due to 

the ultrafast isomerization reaction that occurs in the excited state.(20) Therefore, the signals arise from 

the K intermediate, the L intermediate, and the N intermediate. 

The occupancies of the K, L, and N conformational states of bR was determined from 1D emission 

lifetime spectra. The relative amplitude of each state in the spectrum is proportional to the number of 

time steps in the experiment spent in each state. The occupancies of each state depend on temperature 

and change slightly over the temperature change used in this study (Figure 4.4). 
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Figure 4.4. Temperature dependence of bR state occupation. (a) 1D fluorescence emission time spectrum 

and (b) relative state occupancies of bR as a function of temperature. 

 

The 2D-FLCS spectrum generated from a 2D-ILT of the photon histogram(17) calculated at a 

waiting time of Δt = 10 μs shows three distinct diagonal peaks (Figure.4.1.f). The cross-peaks between 

the signals at τ’ ~ 0.08 ns and τ’ 1.0 ns indicate rapid exchange between the two states represented by 

these signals. However, no cross-peaks are observed between the diagonal signal at τ’ ~ 5.0 ns and the 

other two states. This is consistent with ensemble experiments which have measured the formation time 

of the N intermediate to be on the ms timescale.(11, 12) Furthermore, the 1D relaxation spectrum 

(Figure. 4.4) shows the peaks at  τ’ ~ 0.08 ns, τ’ ~ 1.0 ns are in a 1:3 ratio, consistent with the 

populations of the K and L intermediates.(21)  From these observations we can assign the diagonal 

peaks at τ’ ~ 0.08 ns, τ’ ~ 1.0 ns, and τ’ ~ 5.0 ns to the K state, the L intermediate, and the N intermediates, 

respectively (Figure. 4.1.c,f). 
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Figure 4.5. Microscopic irreversibility of bR catalytic cycle. a) sm-2D-FLCS spectra of bR shown for waiting 

times ranging from 0.01 to 50 ms. Exchange kinetics at 291 K for waiting times Δt=0.01–200 ms between b) K 

intermediate to L intermediate and c) L intermediate to N intermediate. Forward transitions, represented by solid 

symbols and solid lines, are measured from the upper quadrant of the 2D spectra. Reverse transitions, represented 

by open symbols and dashed lines, are measured from the lower quadrant of the 2D spectra. The forward (kij) 

and reverse (kji) transition rates are measured by fitting the cross-correlation functions to exponential growth 

functions (solid and dashed lines). The experiments were performed at T=291 K. 

To characterize the kinetics of exchange between different intermediates of bR reaction cycle, we 

measure kinetic traces for variable waiting times Δ𝑡 ranging from 0.01 to 200 ms (Figure.4.5.a) at 

temperature of 291 K. The time-dependent amplitudes of the spectrum are given by the tcfs,(14, 15) 
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𝐶௜௝(𝛥𝑡) =

ൻ𝑆௜(𝑡)𝑆௝(𝑡 + 𝛥𝜏)ൿ

ൻ𝑆௜(𝑡)𝑆௝(𝑡 + ∞)ൿ
 

4.15 

and 

 
𝐶௝௜(𝛥𝑡) =

ൻ𝑆௝(𝑡)𝑆௜(𝑡 + 𝛥𝜏)ൿ

ൻ𝑆௝(𝑡)𝑆௜(𝑡 + ∞)ൿ
 

4.16 

where Si and Sj are the instantaneous probabilities of observing the system in states i and j, at given 

times respectively, measured in our experiment through unique fluorescence lifetimes τi and τj of each 

state. The equivalency of Eq. 4.1 and Eq. 4.2 under the condition of microscopic reversibility is given 

by detailed balance and time-reversal symmetry.(19) The characteristic decay rate of the tcf for the i to 

j transition, rij, is related to the transition probability by(19) 

 𝑟௜௝ = 𝑝௜𝑘௜௝(𝑖/𝑗 ; 𝛥𝜏) 4.17 

and 

 𝑟௝௜ = 𝑝௝𝑘௝௜(𝑗/𝑖 ; 𝛥𝜏) = 𝑝௜𝑘௜௝(𝑗/𝑖 ; −𝛥𝜏) 

 

4.18 

where pi is the average occupancy of state i, and kij is the probability of observing a transition from 

state i to j within time Δ𝑡. Experimentally measured decay rate, rij, and state occupancy pi allows for 

the transition probability kij to be determined and an elementary rate law to be defined. Under conditions 

of microscopic reversibility, the forward and reverse transition probabilities are equivalent, reflecting 

detailed balance and time-reversal symmetry of the reaction process. The 2D spectra for a reversible 

process are therefore symmetric along the diagonal, as the reciprocal cross-correlation functions are 

identical (defined by Eq.4.1 and 4.2). In contrast, for microscopically irreversible transitions, time-

reversal symmetry of the reaction process is violated, and the equivalency of cross-correlation functions 

Eq. 4.3 and Eq. 4.4 is broken. The resulting 2D spectra are asymmetric along the diagonal, indicating 

the presence of nonequilibrium fluxes through a given transition.(19, 22) 

The cross-peak dynamics between the K intermediate and the L intermediate show rapid forward 

(Figure.4.5.b, solid symbols) and reverse reactions (Figure.4.5.b, open symbols), with the exchange 



94 

 

rates being of the same order of magnitude (kKL = 6.9x104 s-1 and kLK = 6.6x104 s-1). The near equivalency 

of the exchange rates suggests rapid equilibration of the transition. At Δ𝑡  = 0.20 ms, a cross-peak 

emerges between the L and N intermediates that is asymmetric (no cross-peak for the reverse transition) 

(Figure.4.5.a), indicating a microscopically irreversible step in the reaction cycle. The forward 

transition occurs on a timescale of ~ 0.50 ms (kLN = 2.0x103 s-1), while the reverse transition occurs on 

a timescale over 200 ms (kNL = 5.0 s-1) (Figure.4.5.c). 

Chemically, the L-N transition corresponds to the reprotonation of the Asp96 residue on the 

cytoplasmic side of the protein (M intermediate) and formation of a Grotthuss-like H+ wire between the 

Asp96 residue and the Schiff base of retinal.(23, 24) Proton uptake and reprotonation of the retinal 

Schiff base (formation of N intermediate) from the cytoplasmic side is thought to be the switch step of 

the photo-cycle.(25, 26) The properties of the measured tcf demonstrate that the reprotonation of Asp96 

is microscopically irreversible and has non-zero entropy production associated with the transition. The 

presence of microscopically irreversible transitions implies that nonequilibrium transitions are inherent 

to the protein’s reaction cycle and are required to maintain stable fluxes through portions of the cycle. 

 

4.4 Discussion 

We analyze the nonequilibrium thermodynamic properties of the bR reaction cycle as a function of 

temperature. The temperature-dependent occupancy of the K, L, and N states are shown in Figure.4.6. 

The kij and kji for an elementary transition are given by Arrhenius expressions, 

 

𝑘௜௝ = 𝑎𝑒
൭
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಩
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and 
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4.20 

where a is a pre-exponential factor, 𝛥𝐺௜௝
ற  and 𝛥𝐺௝௜

ற are the Gibbs free energy of activation for the 

forward and reverse transitions, respectively, and 𝛥𝐺௧௥௔௡௦ is the Gibbs free energy of the transition. 
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Assuming the entropic contribution is temperature independent over the range studied, the temperature 

dependence of kij and kji for a given transition in the cycle will be identical on the condition that 

𝛥𝐻௧௥௔௡௦ = 0 and different when 𝛥𝐻௧௥௔௡௦  ≠ 0. Arrhenius plots for the K-L transitions and the L-N 

transitions are shown in Figure.4.3.a, b. The kKL and kLK for the K-L transitions show identical 

temperature dependence (Figure.4.6.a), indicating that the 𝛥𝐻௧௥௔௡௦ = 0 for the transition. In contrast, 

the kLN and kNL for the L-N transitions (Figure.4.6.b) are significantly different at low temperature, but 

converge at high temperature, suggesting that 𝛥𝐻௧௥௔௡௦  ≠ 0 and the irreversibility of the transition 

needed to maintain a net forward flux through the cycle diminishes with increasing temperature. 

 

 

Figure 4.6. Thermal stability of the bR reaction cycle. Arrhenius plots for the a) K-L and b) L-N transition 

rates. The kij and kji values are shown in green and blue, respectively. c) The affinity A of the K-L transition plotted 

vs T-1. As the transition is microscopically reversible, the A value is ~0 kJmol-1 at all temperatures measured. d) 

The A of the L-N transition plotted vs T-1. The microscopically irreversible transition has an A value of ~10 kJmol-

1 at 291 K that decreases linearly towards 0 kJmol-1 with increasing temperature. The temperature dependencies 

of A are fit to the Gibbs-Helmholtz equation [red line, Equation (6)]. 
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The affinity A of a nonequilibrium process quantifies the thermodynamic driving force. de Donder 

demonstrated that A is related to 𝛥𝐺଴for a chemical reaction.(27) 

 𝐴 = −𝛥𝐺௧௥௔௡௦
଴  4.21 

Using Eq. 4.3-4.6, we can rewrite A for a given transition in terms of kij and kji, and the state occupancies, 

 
𝐴 = 𝑁𝑘஻𝑇 𝑙𝑛 ቆ

𝑝௜ ⋅ 𝑘௜௝

𝑝௝ ⋅ 𝑘௝௜
ቇ 

4.22 

where the 𝛥𝐺଴ values are given by 𝛥𝐺 − 𝑁𝐾௕𝑇 𝑙𝑜𝑔(𝑄). Plots of A for the K-L and L-N transitions are 

shown in Figure.4.6.c, d. The A for the K-L transition, and by extension the 𝛥𝐺௧௥௔௡௦, is 0 kJ mol-1 at all 

temperatures (Figure.4.6.c). In contrast, A for the L-N transition is ~ 10 kJ mol-1 at 291 K and decreases 

rapidly towards 0 kJ mol-1 with increasing temperature (Figure. 4.6.d). According to Eq. 4.7, the 

temperature dependence of A is given by the Gibbs-Helmholtz equation. 

 𝛥𝐺௧௥௔௡௦(𝑇ଶ)

𝑇ଶ
−

𝛥𝐺௧௥௔௡௦(𝑇ଵ)

𝑇ଵ
= 𝛥𝐺௧௥௔௡௦ ൬

1

𝑇ଶ
−

1

𝑇ଵ
൰ 

4.23 

We find that the experimental data for A as a function of T is adequately fit with Eq. 4.9, yielding 

𝛥𝐻௧௥௔௡௦ ~ 0 kJ mol-1 and 𝛥𝐻௧௥௔௡௦ ~ -30 kJ mol-1 for the K-L and L-N transitions, respectively 

(Figure.4.6.c, d).  

The thermodynamics of a nonequilibrium process can be quantified by the rate of entropy 

production rate, 𝜎,  given by (28), 

 
𝜎 =

𝐽 ⋅ 𝐴

𝑇
 

4.24 

where J is the net flux defined for an elementary transition as the difference in forward and reverse 

reaction rates, rij – rji. Therefore, experimental measurements of the forward and reverse reaction rates 

(rij and rji) and rate constants (kij and kji) are sufficient to determine 𝜎 of a nonequilibrium chemical 

process. For K-L and L-N transitions, 𝜎  is shown as a function of temperature (Figure.4.7.a). As 

expected, the K-L transition shows negligible 𝜎௄௅. In contrast, the L-N transition shows significant 

𝜎௅ே, expected for an irreversible transition, that decreases exponentially with increasing temperature. 
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Figure 4.7. Entropy production rate and variance of flux. a) Entropy production for the K-L and L-N 

transitions computed from Equation (7). The entropy production rate σ associated with the reversible K-L 

transition is 0 kJmol-1K-1s-1 at all temperatures measured, while the irreversible L-N transition has significant 

entropy production rate (~50 kJmol-1K-1s-1) that decreases exponentially with increasing temperature. 

 

4.4.1. Exchange Kinetics of D96N Mutant.  

The L to N transition is observed to consist of an irreversible M1-M2 transition in wt-bR. The 

D96N mutant protein changes the aspartic acid residue at the D96 site, which is responsible for the 

proton uptake step, to a asparagine residue that hinders proton uptake (Figure.4.8.a). The D96N mutant 

has previously been observed to have a reversible switch step, with the M1-M2 and thus effectively the 

L-N transition being significantly hindered [1-2]. Sm-2D-FLCS exchange experiments confirm the 

reversible nature of the L to N transition in the D96N mutant, without the forward transition timescale 
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being significantly hindered. 

 

Figure 4.8. Exchange dynamics of D96N mutant. (a) Chemical structure of reprotonation site at Asp96 

residue and the structure of the D96N mutant. (b) Chemical exchange from L to N (solid symbols) and N to L 

states (open symbols), showing near reversible exchange in the mutant protein. 

4.4.2. Influence of continuous laser illumination on the photocycle.  

Bulk experiments using laser excitation has convincingly demonstrated that the photocycle 

mechanism of bR is not impacted by excitation [9]. Following photon absorption, a small amount of 

energy is dissipated as heat as the excited chromophore vibrationally relaxes. For low quantum-yield 

chromophores, however, the absence of fluorescence necessarily means that all the energy contained in 

the photon absorption must be thermally dissipated, leading to significant local heating. To demonstrate 

that this is not a concern in the bR experiments, we measured how the transition rates responded to 

small changes in external temperature (~18 oC to 30oC). As expected for an unperturbed system, the 

transition rates showed a strong dependence on changes to external temperature and nearly perfect 

Arrhenius behavior (Figure 4.6.a,b). Such a clear trend would not be expected if the transition rates of 

the photocycle were strongly influenced from photon absorption during the probe process. This leads 

us to conclude that the dissipated energy from the probe does not interfere with the bacteriorhodopsin 

photocycle. 
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4.4.3. Lapping effect in the photocycle. 

 We can rule out the lapping effect in the photocycle using sm-2D-FLCS experiments on bR-D96N 

mutant, which replaces the Asp96 residue responsible for proton uptake with Asn residue. This mutation 

is known to significantly hinder the L to N transition time (specifically, the M-N transition time), which 

contains the switch step responsible for the directional pumping action [10]. Hindering M to N with the 

D96N mutation causes this transition to become reversible. Our sm-2D-FLCS experiments show that 

the forward and reverse transition times for the L-N and N-L transitions are on the order of ~200 ms 

and 260 ms, respectively. The data is consistent with bulk experiments showing the reversibility of the 

switch step in the D96N mutant protein. Our results demonstrate that the reversibility is due to the 

destabilization of the N state hindering the L-N transition, while the reverse N-L transition is only 

slightly modulated. In the case of the D96N mutant the forward and reverse reaction times are 

comparable. Here, the only contribution to the N-L correlation function is through the direct reverse 

transition between the states and not through the lapping effect. The consistency between the timescale 

for the reverse transition rate from N-L in the wt-bR and the D96N mutant confirms that the lapping 

effect does not significantly contribute to the observed kinetics. 

 

4.5 Conclusion 

The mechanism by which biological machinery overcomes randomizing thermal forces to achieve 

directional action are not comprehensively understood, with key questions regarding microscopic 

reversibility and the applicability of equilibrium thermodynamics still remaining. The results presented 

here demonstrate that microscopic irreversibility is the fundamental operating principle of directional 

H+ transport by bacteriorhodopsin. Therefore, equilibrium notions of detailed balance and time-reversal 

symmetry often invoked for chemically driven pumps are not applicable to the function of optically 

driven pump proteins. Similarly, the thermal destabilization of the reaction cycle of bacteriorhodopsin 

is likely unique to pumps that operate through a power-stroke mechanism in which the nonequilibrium 

nature of the cycle is inherent to select conformational transitions of the protein.  
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Chapter 5. Protein-Bath Coupling at Intermediate 

Timescales 

5.1 Introduction. 

 Diffusive barrier-crossing processes are central to the reaction kinetics of proteins. Early work 

by Frauenfelder and colleagues (1, 2) on the binding kinetics of carbon monoxide to myoglobin revealed 

that large scale conformational dynamics of the protein were strongly coupled to the fluctuations of the 

bath. From this work emerged a framework for understanding protein motions based on a rugged free 

energy landscape and a hierarchy of dynamic timescales. (3-9). Slow global conformational motions 

(ms-s) require a significant rearrangement of solvent molecules surrounding the protein and are 

therefore coupled to the viscosity of the bath (4). In contrast, fast librational motions of sidechains (ps-

ns) require little to no rearrangement of surrounding molecules and are therefore largely uncoupled 

from the bath (4, 9). Less is known about protein-solvent coupling at intermediate timescales. 

In this work, we study the microsecond chemical reaction occurring in the chromophore pocket 

of enhanced green fluorescent protein (eGFP) using single-molecule spectroscopy. The crystal structure 

of eGFP and chromophore pocket are shown in Figure 5.1.a (10). At equilibrium, the chromophore 

pocket undergoes constant rearrangements of the local hydrogen bonding network driven by the 

dihedral rotation of the Glu222 residue (Figure 5.1.b). The internal reaction results in a change in the 

fluorescence lifetime of the endogenous chromophore without a significant change in fluorescence 

intensity. Previous work using fluorescence lifetime correlation spectroscopy (FLCS) resolved the 

exchange times between the two states to be on the order of μ𝑠 (11). Here, we are interested in studying 

the internal reaction kinetics as a function of solvent viscosity. 
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Section 5.2 Methods 

5.2.1. Sample preparation  

eGFP (Biovision Inc., United States) was labeled using a biotin labeling kit (Roche, Switzerland) and 

purified. A solution of biotin-labeled eGFP (~0.5 mM) was incubated on a strepdavidin coated coverslip 

(Microsurface Inc, United States) for 60 minutes. Following incubation, the coverslip was rinsed with 

DI water to remove unbound eGFP. The coverslip was then mounted to a microscope slide and solvated 

with a buffer solution (PBS, pH 7.45, Thermofisher, United States). For viscosity dependent studies, 

mixtures of PBS buffer mixed with glycerol (Sigma Aldrich, United States) at volume ratios ranging 

from 0% to 30% by volume.  

 

Figure 5.1. Structure and internal reaction of eGFP. (a) Crystal structure of eGFP (top) with the 

chromophore pocket highlighted (bottom). (b) Internal reaction between two bright conformations of the 

chromophore pocket. Dihedral rotation of the Glu222 residue drives a rearrangement of the local hydrogen 

bonding network around the chromophore.  
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5.2.2. Single-molecule spectroscopy 

Single-molecule imaging was carried out on a commercial Leica SP8 system (Leica, Germany). 

Photon-counting was performed by a SPAD detector equipped with TCSPC unit (PicoQuant, Germany). 

From the single-molecule photon stream containing roughly 5x106 photons, a series of 2D-FLCS 

spectra were computed using a 2D-inverse Laplace transformation (2D-ILT). The entire data analysis 

process is outlined in detail elsewhere.(12) 

5.3 Results 

We use single-molecule 2D-FLCS (sm-2D-FLCS) (13-15) to resolve the forward and reverse 

exchange times, tf and tr, as the solvent composition is systematically changed from PBS buffer only to 

30% glycerol-PBS buffer mixtures. The eGFP molecules are immobilized sparsely on a glass substrate 

using biotin-streptavidin linkage. The experimental details of this approach are reported in detail 

elsewhere (16, 17). Briefly, a time-resolved fluorescence photon stream is collected from isolated eGFP 

proteins using 488 nm excitation. From the single-molecule photon stream containing ~ 5x106 photons, 

a fluorescence emission histogram shows two component relaxation (Figure.5.2.a), consistent with two 

bright conformations of eGFP. A series of 2D fluorescence lifetime histograms are generated correlating 

photons recorded at the beginning and the end of a systematically varied waiting time, Δ𝑡, (13, 14, 18) 

which can range from ms to s. A 2D fluorescence emission rate spectrum is then computed at each Δ𝑡 

by a 2D inverse Laplace transformation from the lifetime histogram(18). The signal amplitudes in the 

2D spectrum are given by time-correlation functions (TCFs) 

 𝐶௜௝(𝛥𝑡) = ൻ𝑆௜(𝑡) ⋅ 𝑆௝(𝑡 + 𝛥𝑡)ൿ 25 



106 

 

where S is the probability of the system being found in state i or j. The autocorrelation functions (i = j) 

appear on the diagonal of the spectrum, and cross-correlation functions (i ≠ j) indicating chemical 

exchange between two species appear as cross-peaks. This experimental approach has proven 

productive in studying complex equilibrium (13, 14, 19, 20)  and nonequilibrium (15) conformational 

transitions of biological macromolecules. 

 

Figure 5.2. eGFP single-molecule fluorescence lifetime data. (a) Fluorescence emission delay 

histogram for eGFP (red data), shown with the instrument response function (grey data). (b) Corresponding 1D-

ILT of the relaxation data, showing two peaks at t1 ~ 1.8 and t2 ~ 3.2 ns, corresponding to the two conformations 

of the chromophore pocket. 

Sm-2D-FLCS spectra of eGFP as a function of Δ𝑡 are shown in Figure 5.3.a. At Dt = 0.005 

ms, the 2D-spectrum shows two peaks along the diagonal at t1 ~ 1.8 and t2 ~ 3.2 ns, corresponding to 

the two conformations of the chromophore pocket (Figure 5.1.b). There are also two weak cross-peaks, 

indicating exchange between these conformations has occurred within Δ𝑡. As Δ𝑡 increases, the cross-

peak amplitudes grow until saturating near Δ𝑡 = 0.05 ms. Plotting the amplitude of the cross-peaks as 

a function of Δ𝑡 shows an exponential growth with a time constant of roughly 𝜏௥௫௡ = 5 ms for eGFP 

in buffer (Figure 5.3.b, c - grey data). Note, the forward and reverse exchange between the two 

conformations appear in the upper-left and lower-right quadrant of the spectra, respectively. Therefore, 

the forward and reverse reaction times (𝜏௙ and 𝜏௥) are independently resolved. However, as the two 
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cross-peaks are given by reciprocal TCFs in Eq. 1, the two functions are identical on the condition of 

microscopic reversibility.(18) Thus, for an equilibrium reaction the 2D-spectra are expected to be 

symmetric along the diagonal of the 2D spectra. This is indeed observed for the eGFP reaction 

(Figure.5.4). 

 

 

Figure 5.3. Reaction kinetics of eGFP chromophore pocket. (a) sm-2D-FLCS spectra series ranging 

from 𝛥𝑡 of 0.005 ms to 5 ms. Forward exchange between the two bright states is observed as signal in the upper-

left quadrant of the spectrum (highlighted in solid box), and reverse exchange is observed as signal in the lower-

right quadrant of the spectrum (highlighted in dashed box). Exchange dynamics extracted from sm-2D-FLCS 

spectra cross-peak amplitudes for (b) forward and (c) reverse exchange as a function of solvent viscosity. The h0 

value is given by the viscosity of PBS buffer at 20oC. The exchange times decrease as the solvent viscosity 

increases, consistent with the internal reaction coordinate being coupled to the fluctuations in the bath.  

 

We next study the reaction kinetics of eGFP as a function of solvent viscosity. Glycerol-buffer 

mixtures are used to systematically increase the viscosity of the solvent from 0.8 mPa·s (buffer only) 
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to 6.4 mPa·s (30% glycerol-buffer by volume). Figure 5.3.b and 2c show the exchange TCFs between 

the two conformations of eGFP’s chromophore pocket as a function of solvent viscosity. This clearly 

shows that the exchange times increase as the solvent viscosity increases, indicating that the ms 

exchange dynamics are coupled to the environment. Figure.5.5 shows the 𝜏௥௫௡, determined by fitting 

the experimental data to exponential growth functions, as a function of normalized solvent viscosity 
ఎ

ఎబ
, 

where 𝜂଴ is the viscosity of PBS buffer at 20oC. The forward and reverse 𝜏௥௫௡ times are shown in solid 

and open symbols, respectively. 

 

 

Figure 5.4. Forward and reverse exchange dynamics of eGFP in buffer. The forward and reverse 

reaction kinetics are extracted from opposite regions of the 2D spectrum. Under conditions of microscopic 

reversibility, the signal amplitudes are equivalent and the 2D spectrum is symmetric along the diagonal. As 

expected for equilibrium dynamics, the forward and reverse reaction kinetics are equivalent for the reaction 

occurring in the eGFP chromophore pocket. 

 

5.4 Discussion 

Typically, thermally activated barrier-crossing processes in the overdamped limit are described 

by Kramers’ reaction rate theory (7, 21, 22). While it has not been demonstrated that the interior of a 

protein can be modelled as a thermal bath, this still provides a reasonable starting point to which we 

can compare the observed solvent-dependent friction effects (7). In the high friction regime, Kramers’ 
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theory predicts t scales with  , where  is the friction of the solvent. Assuming a linear relationship 

between  and solvent viscosity 𝜂  (Stokes’ law), this gives a scaling of 𝜏 ∝ 𝜂 . Expected Kramers’ 

scaling is shown as a dashed line in Figure.5.5. Clearly, the observed dependence of the exchange time 

on the solvent viscosity deviates significantly from expected behavior at high viscosities, instead 

showing a power-law dependence of 𝜂ఈ  with a = 0.5. Similar non-Kramers’ kinetics have been 

observed in a range of protein dynamic processes, including folding kinetics (23, 24) and side-chain 

fluctuations (21). Indeed, in these experiments, a similar power-law scaling of exchange time with 

solvent viscosity was observed (23-25), where exchange times deviate significantly from Kramers’ 

theory at high viscosity. These studies motivated the introduction of a friction term arising from the 

protein, termed ‘internal friction’, which serves to decrease the effective viscosity of the bath. The 

microscopic origins are considered to be fast, liberational motions of sidechains that contribute to the 

barrier-crossing processes but are not coupled to the bath (23-27). 

The molecular origin of internal friction has been attributed to the rough and hierarchical free-

energy landscape typically associated with a protein (6, 10, 26, 27). It is common to consider motions 

along such a free-energy landscape as being partitioned into tiers (6): tier 0 transitions represent global 

conformational motions, tier 1 transitions represent intermediate motions within a given conformation, 

such as the rearrangement in the chromophore pocket of eGFP, and tier 2 motions. Tier 1 barrier 

crossings are thermally activated and are therefore expected to be coupled to the dynamics of the 

environment. However, in the high-viscosity regime, the system spends increasing amounts of time 

relaxing in local free-energy basins corresponding to tier 2 motions, which have been shown to be 

independent of solvent viscosity (4, 9). Deviations from Kramers’ theory are therefore expected in the 

high viscosity regime, as the reaction time becomes more strongly governed by local fluctuations. A 

central assumption in Kramers’ theory is that the bath fluctuations are Markovian, i.e., uncorrelated in 

time. However, in complex environments such as interior protein, relevant fluctuations may be 

correlated, and hence non-Markovian on the time scale of the reaction process. Work by Grote and 

Hynes (28) extended Kramers’ rate theory to include non-Markovian fluctuations and suggested 
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pronounced deviations from Kramers’ theory at high solvent viscosity, consistent with our observations. 

 

Figure 5.5. Deviation of protein reaction from Kramers’ theory. Exchange times for forward (solid 

symbols) and reverse (open symbols) for the isomerization reaction in chromophore pocket of eGFP as a function 

of solvent viscosity. The dashed line shows the scaling expected from Kramers’ theory. The exchange time deviates 

significantly at high viscosities, consistent with the picture of internal friction contributing to the reaction 

dynamics. The red line shows a power-law fit to the data.  

5.5 Conclusions 

In this work, we observe coupling between the microsecond reaction occurring in the 

chromophore pocket of eGFP and the surrounding solvent. The coupling is characterized by a power-

law dependence of reaction time with solvent viscosity, with a scaling exponent of 0.5. The stark 

deviation from Kramers’ behavior suggest weak coupling between the interior of the protein and the 

bath. The resulting picture is consistent with a rugged, hierarchical free-energy surface for protein 

motions where the coupling strength of the reactive process to the bath is proportional to the net 

displacement on the free energy surface, with weakly coupled local fluctuations and strongly coupled 

long-range motions. 
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Chapter 6: Conclusions 

6.1. General conclusions 

In conclusion, this thesis provides a comprehensive insight into the microsecond to millisecond 

conformational changes of proteins and their impact on protein function. The use of single molecule 

multidimensional fluorescence spectroscopy (sm-2DFLCS) and the development of a fast and robust 

2D Inverse Laplace Transformation algorithm (2D-ILT) allows for the resolution of distinct 

conformations of protein molecules based on different fluorescence lifetimes. The results of the study 

demonstrate that the conformational changes of proteins are crucial for their function and the 

quantification of these motions provides insight into their operating principles and mechanisms. The 

study also highlights the importance of considering the coupling between the protein's internal reaction 

coordinate and the surrounding solvent in understanding protein dynamics. The information obtained 

from these studies provides valuable insight into the operating principles and mechanisms behind the 

biological functions of proteins and advances our understanding of protein dynamics. 

The study has successfully demonstrated that Single-molecule 2D-FLCS is a powerful tool for 

investigating the dynamics of biological macromolecules. The challenge of computing inverse Laplace 

transforms, which may have hindered its widespread use, has been overcome by presenting a fast and 

robust method based on singular-valued decomposition and Tikhonov regularization adopted from 

NMR spectroscopy. The approach allows for the efficient inversion of large, noisy datasets, common in 

single-molecule spectroscopy, while preserving high spectral resolution. Monte Carlo simulations of 

artificial photon streams confirmed the robustness of the technique in terms of spectral resolution, noise 

tolerance, and computational efficiency. This provides an alternative and easily implementable method 

beyond typical maximum entropy methods for performing Laplace inversions of single-molecule 

fluorescence data. The preliminaries for using this technique are presented in Chapter 2 and the stepwise 

implementation as well as detailed explanation of the core concepts are presented in Chapter 3. 

Through Chapter 4, this thesis provides new insights into the mechanisms behind directional action 
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of biological machinery, particularly in the case of bacteriorhodopsin. Our findings demonstrate that 

microscopic irreversibility is a crucial operating principle for directional H+ transport in this optically 

driven pump protein. The results challenge the commonly held view of detailed balance and time-

reversal symmetry in chemically driven pumps and highlight the uniqueness of the thermal 

destabilization of bacteriorhodopsin's reaction cycle, which is inherent to its power-stroke mechanism. 

This study sheds light on the complex interplay between thermodynamics and protein function and 

opens up new avenues for further investigation. 

The results of 2D-FLCS analysis of EGFP in Chapter 5 indicate a strong coupling between the 

reaction within the chromophore pocket of eGFP and its surrounding solvent. The observed power-law 

dependence of reaction time with solvent viscosity, with a scaling exponent of 0.5, is a deviation from 

Kramers’ behavior and suggests a weak coupling between the interior of the protein and the bath. Our 

findings support the hypothesis of a rugged, hierarchical free-energy surface for protein motions, where 

the coupling strength of the reactive process to the bath is proportional to the net displacement on the 

free energy surface, with weakly coupled local fluctuations and strongly coupled long-range motions. 

6.2. Future Outlook 

The logical steps forward from this study is to further develop the experimental setup such that one 

can excite at multiple wavelengths. This will enable us to observe the complete photocycle of 

bacteriorhodopsin and improve the quality of current findings. In this technique of 2D-FLCS one 

determines physical quantities using lifetime-lifetime correlations however, in principle the same 

approach can be used to obtain meaningful insights by observing correlations of other photophysical 

properties of a sample such as emission spectra, fluorescence anisotropy, etc. 

In order to further investigate protein bath coupling and to uncover the underlying reason for 

deviation from Kramer behavior, one can introduce point mutations in EGFP outer structure without 

interfering the internal chromophore dynamics. We hypothesize that the residues adjecant to the Glu 

222 residue might have a role in the protein-bath coupling of internal reaction as they are exposed to 

the outside solvent while the Glu 222 is a bridge between them but faces towards the chromophore 
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pocket inside. Thus, we suspect that mutating these residues (L221 and F223) with heavier or lighter 

amino acid side chains of the same type should provide deeper insights for understating the peculiar 

deviation from Kramers behavior. 

Since the techniques allows us to augment data by simply adding the emission delay correlation 

histograms, given that sufficient amount of data is collected, one can investigate the presence and 

abundance of rare conformational states in a system. This technique exploits changes in lifetime of a 

molecule to predict conformational change. Since the main reason for changing lifetime of a molecule 

is change in its surrounding electronic structure, in principle, any process that exposes a fluorophore to 

different environments while undergoing conformational change can be studied using 2D-FLCS. Some 

of the potential experiments involve examining the dynamics of DNA base flipping in case of base-pair 

mismatch and its role in DNA repair mechanism, observing thermodynamics of heat shock proteins and 

their chaperone action at different temperatures. 

The work presented here is an example of how development of new techniques opens up new 

avenues for investigating new and fundamental workings of biological processes. This is especially true 

for the study of single-molecule dynamics, which is crucial for understanding the underlying 

mechanisms of biological processes at the molecular level. The fact that this technique is easily 

implemented, robust in terms of spectral resolution, noise tolerance, and computational efficiency 

makes it an attractive alternative for performing Laplace inversions of single-molecule fluorescence 

data. The result of this study shows the potential of obtaining wide range of understanding of biological 

processes by developing novel experimental and analysis techniques. 
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