
ZAUTHLY: A ZERO TRUST OAUTH2 AUTHORIZATION TOOL

By

Matthew Robert Perry

A Project Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in

Computer Science

University of Alaska Fairbanks

May 2022

APPROVED:

Dr. Orion Lawlor, Committee Chair
Dr. Glenn Chappell, Committee Member
Dr. Jon Genetti, Committee Member
Dr. Jon Genetti, Department Chair

Department of Computer Science

Abstract
Controlling authentication and authorization is a pivotal part of managing modern web resources.
Over the past decade, Oauth and OpenID Connect have shown that they are capable and secure
protocols used for secure communication between the Identity Providers (IdP) and requesting
parties that consume them. Zero Trust (ZT) architectures are based on authenticating individual
requests instead of machines or networks. ZT has shown a pathway that enables a more secure
flow of trusted communication. This is done by defining the control systems and their
counterpart the data systems. Zauthly applies ZT principles to Oauth2 flows to create a
middleware service that solely controls the authorization of users. It aims to enable increased
security in existing tools and control flows while it utilizes Google as an IdP to enable
authentication of end users. A Single Sign On (SSO) proxy is used to consume the provided
Oauth2 authorization from Zauthly. Then its users are managed by a simple interface that
communicates with a user database. Zauthly is designed to be deployed in a modular way
drawing inspiration from the microservice architectural style. Its deployment is controlled by
Docker and Docker-Compose to provide enhanced scalability and flexibility. This paper will
explore the design choices of Zauthly, relevant drawbacks, and performance of the tool.

2

Acknowledgements
I would like to thank Dr. Orion Lawlor, Department of Computer Science, University of Alaska
Fairbanks, Dr. Glenn Chappell, Department of Computer Science, University of Alaska
Fairbanks, and Dr. Jon Genetti, Chair of the Department of Computer Science, University of
Alaska Fairbanks, for their guidance and technical knowledge. I would also like to thank my
parents, Micheal Perry Sr. and Pearl Perry, for supporting me throughout my academic career.
Lastly, I would like to thank my girlfriend, Jenna VanDenHeuvel for her support.

3

Table of Contents

Abstract 2

Acknowledgements 3

Table of Contents 4

Introduction 5

Prior Work 6

Motivation for Zauthly 8

Background 8

Design 12

Deployment 18

Performance 19

Future Work For Zauthly 20

Conclusion 20

References 21

Appendix 23
Authorization API 23
Database API 36
Docker-Compose 44
Zauthly Client 45

4

Introduction
The World-Wide Web was first proposed in the paper The World-Wide Web by Berners-Lee et al
in 1994. The web was developed to be a pool of human knowledge which would allow
collaboration of many people across many different regions of the world, to share ideas
(Berners-Lee, 1994). The W3 consortium sought to define the standards for how the web
functioned and it included definitions of Universal Resource Identifiers (URI), Hypertext
Transfer Protocol (HTTP), and Hypertext Markup Language (HTML), all of which remain vital
parts of the web today. HTTP is a protocol for transferring information between clients and
servers. HTTP defines important operation codes GET, PUT and POST as the foundation for
how communication occurs between server and client. These are the building blocks of how web
applications interact with one another.

In 1996, “Authentication systems for secure networks ” (Oppliger, 1996) a book on authentication
in secure networks was published. This book explored the current protocols for authentication
outside of the traditional username and password. This included Kerberos, NetSP, SPX, TESS,
and SESAME. With the increased use of HTTP for sensitive applications, it was clear that a
secure method for transmitting HTTP was required. In 2000, the Internet Engineering Task Force
(ITEF) released a Request For Comment (RFC) on HTTP over TLS. RFC2818, (Rescorla, 2000)
defined the practice of communicating HTTP using Transport Layer Security (TLS). This
became known as HTTPS. This defines the TLS handshake where a client and server would
begin to communicate and share the details of how the secure communication will be handled.
Once the handshake is complete, the session would begin between the two parties on the agreed
upon port and cipher.

Oauth1 is a protocol that was released by the IETF in April of 2010. This is a protocol that
provides a “method for clients to access server resources on behalf of a resource owner” (IETF,
2010). Oauth1 provides the process for end-users to authorize third-party applications and
services to access their server resources without sharing credentials. This standard was published
as RFC5849, which defines important terminology for client, server, protected resource, and
resource owner. Client is an HTTP client capable of making Oauth1 requests. Server is an HTTP
server capable of accepting Oauth1 requests. Protected resources are an access restricted
resource such as a website. The resource owner is an entity capable of accessing and controlling
protected resources to authenticate with a server. Oauth1 also introduces the idea of token based
authentication, which is a token that is uniquely created for a user. The server creates tokens to
represent the user and validate they have completed the authentication process. These tokens are
commonly JSON objects that contain information on subject, token expiration time, and nonce.

In the years following the original paper from the W3 consortium, there have been many changes
to how users and services interact with the web. The landscape has continued to evolve with new

5

protocols and new revisions of old protocols. They all share the same fundamental goal of
increasing security of the web.

Prior Work
The web has continued to evolve over the last twenty years, the modern web is full of
applications that require users to verify their identity and also have permissions for what
resources they can access assigned. The processes are known as authentication and authorization
and many products have been proposed as solutions for these processes. These products include
Microsoft’s Active Directory, Okta’s Cloud Identity and Access Management, Jumpcloud’s
Domainless Enterprise, and Microsoft’s Azure Cloud Active Directory. This section covers some
basic information about these systems and some potential drawbacks.

Active Directory (AD) was created by Microsoft in 1999 to address the need for authentication
and authorization within enterprise domains. It provides a structure for managing organizational
units, computers, groups, and users. AD is a LAN-native service which is deployed on an
On-Premise Windows server. The server has a tree-like directory structure that provides the
ability to control users' permissions based attributes including groups within organizational units.
Kerberos (Steiner, 1988) was the original protocol used to communicate between Microsoft
systems and is a network authentication service for computing environments. This authentication
is based on a ticket system. It provides more than a user's identity and talks about authentication
of machines and file systems. AD supports the use of a protocol to query the service using
Lightweight Directory Access Protocol (LDAP). LDAP, (IETF, 2006) is defined in the RFC4511
as the method for querying tree-like directory structures. The LDAP protocol relies on utilizing
abstract syntax notation to encode the data that is in the directory structure. This protocol is core
to the way AD is interacted with and information is found about a user or computer. Because AD
service was originally designed as LAN-native, work has been done to enable its use for cloud
based applications. One major update was the support of Security Assertion Markup Language
(SAML) as a way to issue access tokens for authentication flows. SAML (Campbell, 2015) is
defined by RFC7522 and this protocol is used to manage the assertions about users so that an
access token may be provided to a requesting party. The privacy and security concerns around
the protocol shaped a change in SAML to use TLS and a RSA-sha256 signature for data
transmission. The authentication flow for cloud based applications rely on SAML to provide the
user information and access token. The major drawbacks of AD are the LAN-native design and
the blurring of the separation of responsibility between authentication and authorization. AD has
a single point of failure which poses a greater security risk to the enterprise, as the system
controls all users and their permissions for integrated systems and applications.

6

Okta maintains several services that provide SSO, identity management, and authorization. The
company provides a cloud based product that looks to provide authentication and authorization
solutions. As outlined in Okta’s white paper (Okta, 2000), their product is called Cloud
Directory. One of the tools is the management of users and groups in a web interface. The cloud
directory provides two pathways to configure an authorization flow to a login resource. These
pathways include a web interface for simple integration and a developer API. Okta’s Cloud
Directory provides a place to store users and assign permissions for these users. The
authentication and authorization steps are from a user's perspective tightly coupled, as they are
both happening inside the Okta product. Okta explains that the Cloud-native design of the
product is important for a globally available authentication and authorization service. The
security considerations of this project are known as a shared security responsibility model. The
model defines the service, infrastructure, and physical security to be taken care of by Okta. The
customer application and content as well as service settings are handled by the tenant. This
model is a great option for some applications, but an enterprise must accept the risk and cost of
passing part of the security responsibility along to Okta.

Jumpcloud is another cloud based product that is looking to move away from the traditional
approach of AD. In the whitepaper Roadmap to the DOMAINLESS enterprise (Jumpcloud,
2022), they outline the key parts of a modern authentication and authorization protocol that
migrates from AD. Jumpcloud provides services to interface into existing authentication and
authorization flows that are used by legacy AD based applications. The domainless service can
provide flexibility and increased security, by moving from the centralized truth that AD provides,
to the cloud based directory where each user has unique permissions. Jumpcloud currently
provides migration of an AD system to the cloud by supporting SAML based applications. This
product is a pay to use service and is currently only supporting the SAML authentication flow.
Jumpcloud is still in active development to further support additional protocols like Oauth2 in
the future.

Azure Cloud AD outlined in the white paper by Microsoft, Azure Active Directory, Identity and
Access Management, and Windows 10 (Madden, 2016) looks to address the downsides of the
LAN-native AD system by providing the directory service as a cloud service. Azure AD
provides integrations to cloud directory services for traditional LDAP and SAML applications
while expanding the abilities to support OpenID and Oauth2 authentication and authorization.
Identity and Access Management known as IAM is identified as the core of the service that
Azure AD provides. IAM provides a similar role that an AD system does by providing a tree-like
structure of users with the capability of complex policies to manage a user's permissions on a
resource. The Azure Cloud AD looks to provide a Cloud-native AD that can provide traditional
AD services as well as modern authentication and authorization services like Oauth2 and
OpenID. While it provides these additional services, the cost and security risk associated with a
single authentication and authorization solution are the primary drawbacks of its design.

7

Motivation for Zauthly
The primary motivation for the creation of Zauthly is to fill the need for a simple open source
tool that allows developers to easily integrate authentication and authorization into web
applications. It was found that the common tools that already exist rely on a single step to
complete this process. Clients normally can only be configured to accept Oauth2 from a single
IdP like Google. The IdP has the sole control of the configuration of the provided Oauth2 client
and token. This means a developer can not configure properties of the token or client manually.

Drawing inspiration from the National Institute of Standards and Technology (NIST) ZT
architecture, a new step can be added in the flow of authentication and authorization. Users must
prove who they are to an IdP during the authentication step and access will be checked during
the separate authorization process to determine if a user will be granted access to a restricted
resource. Zauthly looks to create a tool that can provide authorization on generic web sources
with an existing IdP and existing SSO client. It can be classified as a middleware tool that fits in
between existing tools in the rich authentication and authorization ecosystem. While being free
and open source, Zauthly looks to provide flexibility and security while not negatively impacting
the user experience.

Background
This section will cover all of the relevant information about the different technologies used when
designing and implementing Zuathly. These include protocols, architectures, libraries, and tools
that made the proof of concept possible.

In October of 2012 Oauth2, (IETF, 2012) was released under RFC6749 standard deprecating
Oauth1. Oauth2 was an extension of the client server authentication flow that allowed users to
authorize third-party applications. The major change in the protocol was extending its flow to
include different authorization grants and tokens. An authorization grant is defined as “a
credential representing the resource owner's authorization (to access its protected resources) used
by the client to obtain an access token”(IETF, 2012). The access token is the replacement for the
traditional username and password based authentication. Oauth2 defines an access token as
“Access tokens are credentials used to access protected resources. An access token is a string
representing an authorization issued to the client.” (IETF, 2012). The full Oauth2 flow is shown
in the figure below.

8

4---------------- -I- +

+■----------
1

+
->

-
+

Resource
Own e r

l--(A)- Authorization Request

- Authorization Grant -

| Client
1
1

l--(C)-
1

1

* Authorization Grant -

---- Access Token -----

+
->

1
-

+

Authorization
Server

+
->

-11

*-- Access Token------

-- Protected Resource -

Resource
Server

Once a Client makes a request for a restricted resource, the Resource Owner provides an
authorization grant. This grant is communicated to the authorization server which then issues an
access token. The access token is consumed by the Resource Server to provide scopes and claims
that are associated with the user. Scopes are broad categories of claims that provide the meta
information about a user. Claims include information like email address, name, address, website,
gender, and picture. There are several claims that are reserved but additional claims can be
defined by developers when deploying authorization servers.

OpenID connect is an extension of the Oauth2 flow that provides identity tokens to the clients
utilizing JSON web tokens (JWT). JWT is a standard way of encrypting a JSON token, this
includes the protocol for how the communication is set up, and which algorithm is used to
encrypt and decrypt it. OpenID provides an identity layer onto the Oauth2 protocol as well as
minor changes to the flow shown in the figure below.

RF
User

(1) AuthN Request

OF

<3} AuthN Response

Userinfo Request

(5) Userinfo Response

The OpenID extension
introduces a new scope category
called profile. The profile scope
was designed to provide all the
general information about a user.
This is a key part of
authorization and can be
provided by an IdP like Google.
Google provides a way to create
an Oauth2 server using the
Google Cloud Platform. The IdP
acts as the authentication server
for the Oauth2 flow. The Oauth2

(4)

9

and OpenlD standards are used heavily in Zauthly to handle the identity from the authentication
step and the permissions in the authorization process.

Zero Trust (ZT) Architecture was proposed in a NIST special publication 800-207 (Rose,
2020), it outlines the general idea of ZT while providing several examples of ZT architectures.
ZT is a cybersecurity paradigm that moves defense from a static perimeter focus, i.e the network,
to the specific users and resources of a system. ZT assumes that there is no implicit trust granted
to assets or users regardless of their physical or network location. This includes asset ownership,
for example the CEO’s computer does not gain the ability to bypass security just because it is
owned by the CEO. ZT further describes the authorization and authentication steps as discrete
functions performed by clearly separate operations. This is to reduce the risk associated with a
system that performs both authentication and authorization like Active Directory.

There are three main logical components of the ZT architecture shown in the figure above, the
Policy Engine (PE), Policy Administrator (PA), and Gateway Portal sometimes called Policy
Enforcement Point (PEP). The PE is responsible for the ultimate decision to grant access to a
resource for a given subject or user. The PA generates any session-specific authentication and
authorization token or credential used by a client to access an enterprise resource. PEP/Gateway
system is responsible for enabling, monitoring, and eventually terminating connections between
a subject and an enterprise resource. The specific architecture example that was used in Zauthly
is the Resource Portal Model (RPM). This model is a “Bring Your Own Device” (BYOD) and
relies on no additional software or hardware to be installed on users computers. It brings more
flexibility to what users are allowed to use to connect to the restricted resource. This does have a
drawback, as with greater flexibility, there is less information that can be fed to the PE that
would enable enhanced control logic. Because of the lack of full system visibility or arbitrary
control of the user's system, RPM does not have the ability to be as secure as other ZT models.

10

Vouch SSO Proxy is an Oauth2 client that can be configured and deployed to act as a cookie
based SSO web proxy. The proxy can be configured to be a standalone tool or to be deployed
alongside a web server. It is designed to be used with Nginx using the auth_request module.

An example flow using Vouch is the following: the incoming web connection hits your
webserver, example.com and is forwarded to Vouch (vouch.yourdomain.com) so it may follow
the pre-configured Oauth2 client server communication. It provides the ability to be configured
to support a generic Oauth2 client and to interface directly with common Oauth2 providers such
as Google, GitHub, Azure AD, and AWS Cognito. It can handle custom scopes and claims as it
reads the scopes provided and can set session cookies with the values of these custom claims.
Nginx then confirms that the cookie is set and provides access. Zauthly will be using the generic
OpenID provider and will be configured to read the custom claims and set the session cookies.

Microservices, (J. Thones, 2015) is defined in the IEEE publication as an architectural style that
focuses on a small application that can be deployed independently, scaled independently, and
tested independently. Another important feature of microservices is they should follow the single
responsibility principle. This is an important distinction which was strongly considered when
designing the architecture of Zauthly.

Flask is a small framework described by Grinberg (Grinberg, 2018) as a micro framework. It is
made up of three main dependencies: routing, debugging and Web Server Gateway Interface
(WSGI). These are provided by Jinja2, a templating engine, and Werkzeug, a WSGI. Flask is

11

example.com
vouch.yourdomain.com

written in Python and is an object oriented approach to a WSGI. Zauthly utilizes the Flask
framework to build the main authorization application because of Flask’s extensive list of open
source libraries. Which provided the ability to speed up development of the tool.

FastAPI is a modern web framework (Ramirez, 2018) for building APIs with Python 3.6 or
greater. Its key functionality is to provide an efficient and performant Asynchronous Server
Gateway Interface (ASGI). The framework uses strong type hinting and function decorators to
automatically generate API documentation by leveraging Swagger-UI. FastAPI was
benchmarked in February of 2021 by TechEmpower and was placed in 11th place for response
time handling 20 queries per request. Zauthly utilizes this framework to design and build the
strongly typed database API.

Pydantic is a Python library (Colvin, 2022) that is used for data modeling and validation using
Python type annotations. Pydantic is able to enforce type hints at runtime which is used to
validate the data. Pydantic is an important part of validating the data that is received in Zauthly’s
Database API. The strict validation enables a guarantee of safety when communicating data to
and from the database.

MongoDB is a document focused database that is NoSQL. The structure of the database is JSON
like documents that are stored in collections. Data can be mapped to objects in application code
and provide flexible query options. Mongodb is a distributed database that provides high
availability and horizontal scalability. Zauthly uses the NoSQL MongoDB driver as the core of
the Database API.

Google Cloud Platform (GCP) is a cloud provider that enables many different applications to be
deployed and was created by Google. The primary use of GCP with Zauthly is providing an API
endpoint for Identity. The Google Oauth2 client creation process enables the creation of a
channel of communication that is used to validate who a user is. The profile of the logged in user
is passed to Zauthly and used to look up the user.

Design
Zauthly’s key components have been designed utilizing two important architecture styles known
as Microservice and Zero Trust (ZT). The ZT architecture was an important design decision that
was motivated by the idea that the system's security could be clearly defined by leveraging this
design. The specific ZT architecture that was drawn for inspiration for Zauthly is the Resource
Portal Model. This model provides a mixture of flexibility and security to Zauthly. The primary
idea that needed to be incorporated was the clear separation of responsibility between the
processes that make up authentication and authorization. To achieve this authentication is
handled by a 3rd party IdP. The IdP used in the proof of concept for Zauthly was Google. By

12

leveraging IdP for authentication, Zauthly does not store sensitive information like passwords.
The IdP provides a token that provides a proof of authentication from Google. The access token
is read and used in the session to complete the additional control logic of Zauthly in the
authorization step. The transmission of the token from Google follows Oauth2 flow by
configuring Zauthly as a client to the Oauth2 server Google. The token is shared and signed by a
predetermined secret, which is configured when setting up the Google Client. The
communication and storage of the token is achieved by utilizing secure sessions. The session is
encrypted and the session encryption key is dynamically created per deployment.

Because Zauthly has a clear separation of responsibilities, designing the components of Zaulthy
naturally fit into the microservices architecture. Each of the system's key components are
designed to be able to be replaced as needed. Additionally the Microservice architecture enables
the ability for potential horizontal scaling. The key components of Zauthly are the Authorization
API, Database, Database API, and Zauthly_client interface. Zauthly’s architecture is shown in
the figure below.

13

Zauthly’s authorization API is written in Python using the Flask web framework. The choice to
use Flask and Python was motivated by the existence of a well documented and complete Oauth2
server framework, called Authlib. Authlib provides generic implementations of important RFCs
for Oauth2, OpenID, and JWT. It is an object oriented approach that provides a skeleton of the
required parts of the server which give the flexibility where the RFC standard for Oauth2 allows.
Authlib provides some integrations for Flask so that secure sessions and requests can be handled
within the server object implicitly. Authlib was key to increasing the ability of Zauthly to meet
the authorization standard that is required for Oauth2 standard flows, which enabled simple
integration of existing tools like Vouch and Google Oauth2 API. The flexibility that Authlib
enabled was the implementation details of how clients, tokens, authorization codes, and
authorization grant types are defined. Zauthly’s Authorization API only supports the
authorization code grant type. This grant type is key to enabling a secure server to server
communication that does not allow a user to manipulate any parts of the authorization process
after a user has logged in. This does come with some drawbacks that Zauthly will not be
compatible with Oauth1 applications as this grant type is not included in the standard. Zauthly
determined that this is an acceptable drawback as the supported grants for Oauth1 include
password based grants which is a pattern that Zauthly is choosing to avoid due to increased risk.
The creation of clients is not to be done by the Authorization API as it is strictly a provider for
Oauth2 clients. The Authorization API has a strict role and only verifies that users are logged in
and communicates the authorization of a user back to the requesting client. This choice is again
limiting the scope of responsibility for the Authorization API as it does not need to manage and
share secrets. Zauthly's Authorization API contains the two important parts of the ZT
architecture, the PE and PA. The PE is defined by the /userinfo endpoint which contains the logic
around what a user permissions are, if a user is a valid user, and if a user is authorized. The PA is
defined by the /authorize endpoint which handles creating the tokens and enabling the
communication between the client and server. Because Flask is a lightweight framework, it does
not perform well on heavy application loads. The performance of Flask is hindered because it is
a Python application. It is not as performant as a web application written in a lower level
language like C. This could be avoided by leveraging the potential ability to scale horizontally if
traffic is high.

The Zauthly Database is used to store the information required to complete Oauth2
authorizations. Zauthly selected MongoDB as the database because the primary storage state of
this database is JSON and the simplicity of NoSQL. It provides no complex database
configuration setup or definitions of relations. The structure is based on collections and the
Database contains four unique collections; Users, Clients, Tokens, and Authorization Codes. The
User collection’s primary key is the id, and the collection maintains the general information
about a user: name, email, and permissions. The Clients collection’s primary key is the id and
contains the information required to verify a client based on Oauth2 standards. This includes the
issue time, client secret, and client unique id. The Tokens collection’s primary key is the token

14

string. The token contains information about what user it belongs to, when it was issued, and
when it expires. The Authorization Codes collection’s primary key is the code and contains
information about when it was created and when it expires. Pydantic models, an example of the
user model is shown below and the complete models can be found in the appendix, are used to
define the data that is stored in the collections. In order to enforce this scheme before it is stored
in the collection, Zauthly uses an abstraction in the form of a Database API to restrict
interactions to the database. A downside of MongoDB is that it does not have the ability to
handle complex queries as the best performance comes from searching by the collections
primary key.

class UserObject(ObjectId):
@classmethod
def__get_validators__(cls):

yield cls.validate

@classmethod
def validate(cls, v):

if not ObjectId.is_valid(v):
raise ValueError("Invalid Object")

return ObjectId(v)

@classmethod
def__modify_schema__(cls, field_schema):

field_schema.update(type="string")

class UserModel(BaseModel):
id: UserObject = Field(default_factory=UserObject, alias="_id")
email: str = Field(...)
name: str = Field(...)
hd: str = Field(...)
permissions: List[str] = Field(...)

class Config:
allow_population_by_field_name = True
arbitrary_types_allowed = True
json_encoders = {ObjectId: str}
schema_extra = {

"example": {
"email": "mperry37@alaska.edu",
"name": "joe bob",
"hd": "mperry.io",
"permissions": ["web", "admin", "chat"],

15

mailto:mperry37@alaska.edu

}
}

class UpdateUserModel(BaseModel):
email: Optional[str]
name: Optional[str]
hd: Optional[str]
permissions: Optional[List[str]]
class Config:

allow_population_by_field_name = True
arbitrary_types_allowed = True
json_encoders = {ObjectId: str}
schema_extra = {

"example": {
"email": "mperry37@alaska.edu",
"name": "joe bob",
"hd": "mperry.io",
"permissions": ["web", "admin", "chat"],

}
}

Zauthly’s database API is written with FastAPI, a Python framework that enables a simple and
fast way to create JSON based API’s. The API is designed to perform some basic CRUD
operations on the four collections. The main reason that FastAPI was selected was the
asynchronous functions that enable reading and writing from a database. The asynchronous
function calls allow the server to be non blocking in the main thread. Additionally FastAPI
provides an automatic documentation generation based on decorators in the code. The design of
the user endpoints are: get a user, get all users, update a user, create a user, and delete a user. The
client endpoints are: get a client, delete a client, and create a client. The user endpoints are shown
in the figure below and the complete definition of end points are included in the appendix.

@app.post("/user/create", response_description="Add new user",
response_model=UserModel)
async def create_user(user: UserModel = Body(...)):

user = jsonable_encoder(user)
new_user = await mongo_users.insert_one(user)
created_user = await db['users'].find_one({"_id": new_user.inserted_id})
return JSONResponse(status_code=status.HTTP_200_OK, content=created_user)

16

mailto:mperry37@alaska.edu

@app.get('/user/list', response_description="List all users", response_model=List[UserModel])
async def list_users():

users = await mongo_users.find().to_list(1000)
return JSONResponse(status_code=status.HTTP_200_OK, content=users)

@app.get("/user/id/{id}", response_description="Get a user", response_model=UserModel)
async def get_user_by_id(id: str):

user = await mongo_users.find_one({"_id": id})
if not user:

return JSONResponse(status_code=status.HTTP_404_NOT_FOUND, content="No user
found")

return JSONResponse(status_code=status.HTTP_200_OK, content=user)

@app.get("/user/{sub}", response_description="Get a user", response_model=UserModel)
async def get_user(sub: str):

user = await mongo_users.find_one({"email": sub})
if not user:

return JSONResponse(status_code=status.HTTP_404_NOT_FOUND, content="No user
found")

return JSONResponse(status_code=status.HTTP_200_OK, content=user)

@app.post('/user/delete', response_description="delete a user", response_model=UserModel)
async def delete_user(user: UserModel = Body(...)):

res = await mongo_users.delete_one({"sub": user["sub"]})
if res.deleted_count >= 1:

return JSONResponse(status_code=status.HTTP_200_OK, content={"success": "true"})
else:

return JSONResponse(status_code=status.HTTP_304_NOT_MODIFIED)

@app.put("/user/update/{id}", response_description="update a users info")
async def update_user(id: str, user : UpdateUserModel = Body(...)):

user = {key: value for key, value in user.dict().items() if value is not None}
if len(user) >= 1:

update_result = await mongo_users.update_one({"_id": id}, {"$set": user})
if update_result.modified_count == 1:

return JSONResponse(status_code=status.HTTP_200_OK)
return JSONResponse(status_code=status.HTTP_404_NOT_FOUND)

Zauthly did not find a reason that a client should be mutated as the primary function is to
validate client metadata and secrets. The token endpoints are: get a token, create a token, and
delete a token. It was determined that tokens should not be updated and a new token should be
issued if the old is invalidated. The authorization endpoints are: get an authorization code, create
an authorization code, and delete an authorization code. Zauthly found that there was no reason
to have mutable authorization codes. By utilizing the API the objects returned can be strictly

17

typed and validated before being sent to the caller. The objects returned from FastAPI endpoints
are in JSON form which is a standard notation that enables simple integration to other systems
besides Python based applications.

The final component of Zauthly is the Zaulthy_client, which is a collection of Python scripts that
enable the creation of clients and administration of the authorization of users. Currently the
system supports granting users any permissions they want but they must be evaluated by the PA
within the Authorization API. The client is deployed as a docker container within the Zauthly
tool. The process of creating a client requires sharing a one time secret securely, and the secret is
printed within a docker container and the responsibility of the secret is passed to the
administrator that can access the docker containers.

Deployment
Zauthly is deployed using containerization. The microservices have been converted to Docker
files to provide flexibility and validation of configuration. By leveraging Docker containers the
system can be deployed on any x86 based machine that can install Docker.

The dependencies are locked to
pension: '3.1'

services:
mongo:

container_name: authz-mongo
image: mongo

| restart: always
environment:

MONGOINITDBROOTUSERNAME: root
MONGOINITDBROOTPASSWORD: example
MONGO_INITDB_DATABASE: authz

expose:
- "27017"

volumes:
- ./data:/data/db

authz:
containername: authz-auth
build:

context: ./
dockerfile: ./authz/Dockerfile

ports:
- "80:80"

restart: unless-stopped
dbpi:

containername: authz-dbapi
build:

context: ./
dockerfile: ./dbapi/Dockerfile

expose:
- "80"

restart: unless-stopped
client:

containername: authz-client
build:

context: ./
dockerfile: ./clienthelper/Dockerfile

volumes:
- ./client_helper/src/:/src/

restart: unless-stopped

ensure the system remains
functional. The project includes
a docker compose file for
container orchestration. The
Docker compose file exposes the
internal Docker network
between the Authorization API
and Database API. The only
externally exposed endpoints are
the Authorization API’s. This
decision was important to
increase the security of Zauthly,
by limiting what parts of the
application are exposed to the
word. With the restriction of
communication between the
Authorization API and Database
API to only the Docker network
Zauthly can bypass the need for
TLS and API verification. This
is because the network security
inside the Docker container is

18

only as secure as the system that is running Docker. If the communication between containers is
compromised then the system running Docker must be compromised, as root is required to attach
to the network. Because the container to container communication does not have any additional
security requirements, simple HTTP can be used to increase the performance. An example of the
deployment configuration file is shown above.

Performance
When introducing additional steps and a database call the performance of the Zauthly proof of
concept was an important metric to show that user’s experience and server throughput is not
greatly affected. The performance tests look to provide a lower and upper bound of the server
response time. The tests were performed with a server that is hosted in the cloud in Oregon and
the requests originating from Alaska. The upper bound test was timing the complete time to log
in and be granted access. This test was performed using Google Chrome’s ability to measure
performance.

Range: 1.10 s - 5.02 s

107 ms ■ Loading
935 ms H Scripting
252 ms ■ Rendering

3926 ms 13 ms H Painting
363 ms System
2257 ms Idle

3926 ms Total

This test was timed from the time login was clicked until the secret page was shown to the user.
The total time including the Google Consent was approximately 4 seconds.
This shows the upper bound of 4 seconds to be granted access.

19

The lower bound of the system was calculated using the internal container to container
communication. This was done over HTTP making 100 requests which were averaged to find the
approximate time for the Database API to respond. Total time for 100 requests was 300
milliseconds, which gives a derived cost per call: 3 milliseconds. This performance metric
represents the best case performance of the container to container communication.

Overall the performance metrics that were measured were encouraging and indicate that the
additional logic of Zauthly does not impact server throughput or user experience.

Future Work For Zauthly
The main future work for the Zauthly project are the important parts to taking this project to a
true open source tool that more people can utilize, including additional configuration options.
Allowing configuration of token life, and encryption methods could provide greater control of
the security aspect of tokens. Additionally a full admin user interface instead of a Docker
container that relies on scripts. Another important feature that should be added into Zauthly is
managing multiple IdPs in one application. Providing more than Google as a login option would
provide greater utility for users of this tool. Lastly, a validation that the system can scale
horizontally would be important as the system in theory should but would need to be tested. This
could be done by providing a load balancer to help distribute traffic evenly to multiple
Authorization API’s.

Conclusion
Zauthly shows that a ZT Oauth2 authentication service is possible and performance is
acceptable. The clear isolation of authentication and authorization follow the Zero Trust
paradigms. Zauthly shows that an Oauth2 flow is still possible if a PE and PA are introduced to
the system. This additional logic has a minimal impact on performance of a similar Oauth2 client
to server interaction. The clear separation of responsibilities also provides a simple path to
microservice deployment. The Authorization API communicates directly to the SSO client
Vouch and a token flow is executed. Zauthly has shown the ability to provide developers a way
to integrate more secure authorization and authentication into the applications they develop. It
has the potential to be applied at large scales given its design and could become a widely used
tool for custom authorization management.

20

References
1. Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. and Secret, A. (1994). The

World-Wide Web. Communications of the ACM, [online] 37(8), pp.76-82. Available at:
< >.https://dl.acm.org/doi/pdf/10.1145/179606.179671

2. Campbell, B., Identity, P., Mortimore, C., Jones, M., Salesforce and Microsoft. (2015).
RFC 7522 - Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0
Client Authentication and Authorization Grants. [online] Available at:
< >.https://datatracker.ietf.org/doc/html/rfc7522

3. Empower. (2021, February 8). TechEmpower framework benchmarks. TechEmpower
Framework Benchmarks. Retrieved March 23, 2022, from

uery&l=zijzen-7&a=2
https://www.techempower.com/benchmarks/#section=data-r20&hw=ph&test=q

4. Flask, F. (2022). Design decisions in flask. Flask Documentation (2.0.x). Retrieved
March 23, 2022, from https://flask.palletsprojects.com/en/2.0.x/design/

5. Grinberg, M. (2018). Flask web development: developing web applications with python. "
O'Reilly Media, Inc."

6. IETF, . 2006. RFC 4511 - Lightweight Directory Access Protocol
(LDAP): The Protocol. [online] Available at:
< >.

Datatracker.ietf.org

https://datatracker.ietf.org/doc/html/rfc4511
7. IETF, . 2010. RFC 5849 - The OAuth 1.0 Protocol. [online] Available

at: < >.
Datatracker.ietf.org

https://datatracker.ietf.org/doc/html/rfc5849
8. IETF, . 2012. RFC 6749 - The OAuth 2.0 Authorization Framework.

[online] Available at: < >.
Datatracker.ietf.org

https://datatracker.ietf.org/doc/html/rfc6749
9. JumpCloud, J. C. (2021). Roadmap to the DOMAINLESS enterprise. JumpCloud.

Retrieved March 23, 2022, from
https://jumpcloud.com/resources/domainless-enterprise-roadmap

10. Madden, J., & TechTarget. (2016). Azure Active Directory, identity and access
management... Retrieved March 24, 2022, from

rectoryandIdentityWhitepaper.pdf
https://info.microsoft.com/rs/157-GQE-382/images/EN-CNTNT-Whitepaper-JMActiveDi

11. Neuman, B. C. and T. Ts'o (1994), "Kerberos: an authentication service for computer
networks," in IEEE Communications Magazine, vol. 32, no. 9, pp. 33-38, Sept. 1994, doi:
10.1109/35.312841.

12. Nginx, N. (2022). If is evil... when used in location context. Web Server Load Balancing
with NGINXPlus. Retrieved March 23, 2022, from
https://www.nginx.com/resources/wiki/start/topics/depth/ifisevil/

13. Okta, O. (2021). Okta Security Technical Whitepaper. Okta. Retrieved March 23, 2022,
from https://www.okta.com/resources/whitepaper/okta-security-technical-white-paper/

21

https://dl.acm.org/doi/pdf/10.1145/179606.179671
https://datatracker.ietf.org/doc/html/rfc7522
https://www.techempower.com/benchmarks/%2523section=data-r20&hw=ph&test=q
https://flask.palletsprojects.com/en/2.0.x/design/
Datatracker.ietf.org
https://datatracker.ietf.org/doc/html/rfc4511
Datatracker.ietf.org
https://datatracker.ietf.org/doc/html/rfc5849
Datatracker.ietf.org
https://datatracker.ietf.org/doc/html/rfc6749
https://jumpcloud.com/resources/domainless-enterprise-roadmap
https://info.microsoft.com/rs/157-GQE-382/images/EN-CNTNT-Whitepaper-JMActiveDi
https://www.nginx.com/resources/wiki/start/topics/depth/ifisevil/
https://www.okta.com/resources/whitepaper/okta-security-technical-white-paper/

14. Oppliger, R. (1996) Authentication systems for secure networks. Boston, Artech House,
1996.

15. Colvin, S., et al. (2022). Overview. pydantic Developers Manual. Retrieved March 23,
2022, from https://pydantic-docs.helpmanual.io/

16. Ramirez, S. (2018). About FastAPI. FASTAPI. Retrieved March 23, 2022, from
https://fastapi.tiangolo.com/

17. Rescorla, E. and RTFM, Inc., (2000). RFC 2818 - HTTP Over TLS. [online]
. Available at: < >.Datatracker.ietf.org https://datatracker.ietf.org/doc/html/rfc2818

18. Rose, S., Borchert, O., Mitchell, S. and Connelly, S., (2020). Zero Trust Architecture.
NIST Special Publication 800-207, [online] Available at:
<https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf>.

19. Thones, J. (2015), "Microservices," in IEEE Software, vol. 32, no. 1, pp. 116-116,
Jan.-Feb. 2015, doi: 10.1109/MS.2015.11.

22

https://pydantic-docs.helpmanual.io/
https://fastapi.tiangolo.com/
Datatracker.ietf.org
https://datatracker.ietf.org/doc/html/rfc2818
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf

Appendix

Github
https://github.com/mattp0/Zero-Trust-Authz

Authorization API
Oauth.py

from authlib.integrations.flask_oauth2 import (
AuthorizationServer,
ResourceProtector,

)
from authlib.oauth2.rfc6749.grants import (

AuthorizationCodeGrant as _AuthorizationCodeGrant,
)
from authlib.oidc.core import UserInfo
from authlib.oidc.core.grants import OpenIDCode as _OpenIDCode
from mongomixin import Oauth2AuthorizationCodeMixin
from helper import (

create_bearer_token_validator,
query_client,
save_token,
create_authz_code,
get_authz_code,
delete_authz_code,
get_user_by_id,
create_revocation_endpoint

)
from model import User
import json
import secrets
import time
from config import DUMMY_JWT_CONFIG, allowed_permission

def create_authorization_code(client, grant_user, request):
data = {

"client_id": client.client_id,
"redirect_uri": request.redirect_uri,
"response_type":request.response_type,
"scope": request.scope,
"grant_user": grant_user.id,

23

https://github.com/mattp0/Zero-Trust-Authz

"nonce": secrets.token_urlsafe(16),
"auth_time": int(time.time())

}
info = json.loads(create_authz_code(data))
item = Oauth2AuthorizationCodeMixin(info)
return item.get_code()

class AuthorizationCodeGrant(_AuthorizationCodeGrant):
def create_authorization_code(self, client, grant_user, request):

return create_authorization_code(client, grant_user, request)

def parse_authorization_code(self, code, client):
info = json.loads(get_authz_code(code))
item = Oauth2AuthorizationCodeMixin(info)
if item and not item.is_expired():

return item

def delete_authorization_code(self, authorization_code):
res = delete_authz_code(authorization_code.get_code())

def authenticate_user(self, authorization_code):
info = json.loads(get_authz_code(authorization_code.get_code()))
user_data = get_user_by_id(info['grant_user'])
user = User(json.loads(user_data))
return user

def exists_nonce(nonce, req):
return True

def generate_user_info(user, scope):
token_user = get_user_by_id(user)
token_user = User(json.loads(token_user))
permissions = token_user.get_permissions()
if allowed_permission not in permissions:

return UserInfo(name=token_user.get_name(), email="bad@bad.com", team="bad")
id_email = str(token_user.get_user_id()) + "@mperry.io"
return UserInfo(name=token_user.get_name(), email=id_email,

team=token_user.get_permissions())

class OpenIDCode(_OpenIDCode):
def exists_nonce(self, nonce, request):

return exists_nonce(nonce, request)

def get_jwt_config(self, grant):
return DUMMY_JWT_CONFIG

24

mailto:bad@bad.com

def generate_user_info(self, user, scope):
return generate_user_info(user.get_user_id(), scope)

authorization = AuthorizationServer(
query_client=query_client,
save_token=save_token,

)
require_oauth = ResourceProtector()

def config_oauth(app):
authorization.init_app(app)

authorization.register_grant(AuthorizationCodeGrant, [
OpenIDCode(require_nonce=False),

])

revocation_cls = create_revocation_endpoint()
authorization.register_endpoint(revocation_cls)
protect resource
bearer_cls = create_bearer_token_validator()
require_oauth.register_token_validator(bearer_cls())

Mongomixin.py

from authlib.common.encoding import json_loads, json_dumps
from authlib.oauth2.rfc6749 import ClientMixin, TokenMixin, AuthorizationCodeMixin
from authlib.oauth2.rfc6749.util import scope_to_list, list_to_scope
import time

class Oauth2ClientMixin(ClientMixin):
"client mixin definition"
def_ init__(self, info : dict):

self.client_id: str = info['_id']
self.client_secret: str = info['client_secret']
self.client_id_issued_at: int = info['client_id_issued_at']
self.client_secret_expires_at: int = info['client_secret_expires_at']
self._client_metadata = info['client_metadata']

#based on requirements for the client mixin from authlib
@property
def client_info(self):

return dict(

25

client_id=self.client_id,
client_secret=self.client_secret,
client_id_issued_at=self.client_id_issued_at,
client_secret_expires_at=self.client_secret_expires_at,
)

@property
def client_metadata(self):

if 'client_metadata' in self. diet :
return self.__diet__['client_metadata']

if self._elient_metadata:
data = self._elient_metadata.replaee("'", "\"")
data = json_loads(data)
self.__diet__['elient_metadata'] = data
return data

return {}

def set_elient_metadata(self, value):
self._elient_metadata = json_dumps(value)

@property
def redireet_uris(self):

return self.elient_metadata.get('redireet_uris', [])

@property
def token_endpoint_auth_method(self):

return self.elient_metadata.get(
'token_endpoint_auth_method',
'elient_seeret_basie'

)

@property
def grant_types(self):

return self.elient_metadata.get('grant_types', [])

@property
def response_types(self):

return self.elient_metadata.get('response_types', [])

@property
def elient_name(self):

return self.elient_metadata.get('elient_name')

@property
def elient_uri(self):

return self.elient_metadata.get('elient_uri')

26

@property
def logo_uri(self):

return self.client_metadata.get('logo_uri')

@property
def scope(self):

return self.client_metadata.get('scope')

@property
def contacts(self):

return self.client_metadata.get('contacts', [])

@property
def tos_uri(self):

return self.client_metadata.get('tos_uri')

@property
def policy_uri(self):

return self.client_metadata.get('policy_uri')

@property
def jwks_uri(self):

return self.client_metadata.get('jwks_uri')

@property
def jwks(self):

return self.client_metadata.get('jwks', [])

@property
def software_id(self):

return self.client_metadata.get('software_id')

@property
def software_version(self):

return self.client_metadata.get('software_version')

def get_client_id(self):
return self.client_id

def get_default_redirect_uri(self):
if self.redirect_uris:

return self,redirect_uris[0]

def get_allowed_scope(self, scope):
if not scope:

return ''

27

allowed = set(self.scope.split())
scopes = scope_to_list(scope)
return list_to_scope([s for s in scopes if s in allowed])

def check_redirect_uri(self, redirect_uri):
return redirect_uri in self.redirect_uris

def has_client_secret(self):
return bool(self.client_secret)

def check_client_secret(self, client_secret):
return self.client_secret == client_secret

def check_token_endpoint_auth_method(self, method):
return self.token_endpoint_auth_method == method

def check_response_type(self, response_type):
return response_type in self.response_types

def check_grant_type(self, grant_type):
return grant_type in self.grant_types

class Oauth2AuthorizationCodeMixin(AuthorizationCodeMixin):
def_ init__(self, info: dict):

self.code:str=info["_id"]
self.client_id:str=info["client_id"]
self.redirect_uri:str=info["redirect_uri"]
self.response_type:str=info["response_type"]
self.scope:str=info["scope"]
self.nonce:str=info["nonce"]
self.auth_time:int=info["auth_time"]

def is_expired(self):
return self.auth_time + 300 < time.time()

def get_redirect_uri(self):
return self.redirect_uri

def get_scope(self):
return self.scope

def get_auth_time(self):
return self.auth_time

def get_nonce(self):

28

return self.nonce

def get_code(self):
return self.code

class Oauth2TokenMixin(TokenMixin):
def_ init__(self, info: diet):

self.id:str=info["_id"]
self.client_id:str=info["client_id"]
self.user_id:str=info["user_id"]
self.token_type:str=info["token_type"]
self.access_token:str=info["access_token"]
self.scope:str=info["scope"]
self.issued_at:int=info["issued_at"]
self.access_token_revoked_at:int=info["access_token_revoked_at"]
self.expires_in:int=info["expires_in"]

def get_id(self):
return self.id

def check_client(self, client):
return self.client_id == client.get_client_id()

def get_scope(self):
return self.scope

def get_expires_in(self):
return self.expires_in

def get_expires_at(self):
return self.issued_at + self.expires_in

def is_revoked(self):
return self.access_token_revoked_at

def is_expired(self):
if not self.expires_in:

return False

expires_at = self.issued_at + self.expires_in
return expires_at < time.time()

App.py

29

import secrets
from flask import Flask, redirect, session, url_for, request, jsonify, render_template
from dotenv import load_dotenv
import os
from flask_dance.contrib.google import make_google_blueprint, google
from authlib.oauth2 import OAuth2Error
from oauth import authorization, require_oauth, generate_user_info, config_oauth
from model import User
from helper import user_exists, create_json_user
import json
from authlib.integrations.flask_oauth2 import current_token
import time
from config import custom_redirect_url

load_dotenv()
app = Flask(_ name__)
client_id = os.getenv(WOGLE_CLIENTJD')
client_secret = os.getenv('GOOGLE_CLIENT_SECRET')
app.secret_key = secrets.token_urlsafe(32)

app.config.from_pyfile("settings.py")
config_oauth(app)
os.environ[,OAUTHLIB_INSECURE_TRANSPORT,]=,1,
os.environ[,OAUTHLIB_RELAX_TOKEN_SCOPE,]=,1'
os.environ[,AUTHLIB_INSECURE_TRANSPORT,]=,1,

blueprint = make_google_blueprint(
client_id=client_id,
client_secret=client_secret,
reprompt_consent=True,
scope=["profile", "email", "openid"],
redirect_url=custom_redirect_url
)

app.register_blueprint(blueprint, url_prefix-’/login")

@app.route('/login')
def login():

return redirect(url_for('google.login'))

@app.route('/logout')
def logout():

if blueprint.token is not None:
token = blueprint.token["access_token"]
resp = google.post(

"https://accounts.google.eom/o/oauth2/revoke",

30

https://accounts.google.eom/o/oauth2/revoke

params={"token": token},
headers={"Content-Type": "application/x-www-form-urlencoded"}

)
del blueprint.token

session.pop('User', None)

return render_template('loggedout.html')

@app.route('/userinfo')
@require_oauth('profile')
def permissions():

return jsonify(generate_user_info(current_token.user_id, current_token.scope))

@app.route('/authorize', methods=['GET', 'POST'])
def authorize():

user_info_endpoint = '/oauth2/v2/userinfo'
if not google.authorized:

session['query_str'] = request.query_string
return redirect(url_for("google.login", next=request.url))

elif request.query_string == b'':
request.query_string = session['query_str']

token_expire_time = blueprint.token['expires_at']
if int(time.time()) >= token_expire_time:

return redirect(url_for("logout"))
session['User'] = google.get(user_info_endpoint).json()
authz_user = user_exists(session['User'])
if authz_user is not None:

user = User(json.loads(authz_user))
else:

user = User(json.loads(create_json_user(session['User'])))
if request.method == 'GET':

try:
_ = authorization.validate_consent_request(end_user=user)

except OAuth2Error as error:
return j sonify(dict(error.get_body()))

return authorization.create_authorization_response(grant_user=user)

@app.route('/revoke', methods=['POST'])
def revoke_token():

return authorization.create_endpoint_response('revocation')

@app.route(7token/’, methods=['POST'])
def token():

return authorization.create_token_response()

if__name__== "__ main__":

31

app.run(host-0.0.0.0', port=8060)

Helper.py

import requests
import json
from config import db_api_url, base_permissions, domain
import time
from mongomixin import Oauth2ClientMixin, Oauth2TokenMixin

def build_user_json(user):
json_user = {

"email": f"{user['email']}",
"name": f"{user['name']}",
"hd": domain,
"permissions": base_permissions

}
return json_user

def create_json_user(user) -> diet:
create_user_endpoint = db_api_url+"/user/create"
json_user = build_user_json(user)
response = requests.post(create_user_endpoint, data=json.dumps(json_user))
if response.status_code == 200:

return response.content
return None

def user_exists(user) -> diet:
user_endpoint = db_api_url + "/user/" + str(user['email'])
response = requests.get(user_endpoint)
if response.status_eode == 200:

return response.content
elif response.status_code == 404:

return None
else:

raise Exception("Unknown Error as occurred")

def get_user_by_id(id) -> dict:
user_endpoint = db_api_url + "/user/id/" + id
response = requests.get(user_endpoint)
if response.status_code == 200:

return response.content

32

elif response.status_code == 404:
return None

else:
raise Exception("Unknown Error as occurred")

def create_authz_code(data):
update_endpoint = db_api_url + "/authcode/create"
response = requests.post(update_endpoint, data=json.dumps(data))
if response.status_code == 200:

return response.content
return None

def get_authz_code(code):
update_endpoint = db_api_url + "/authcode/" + code
response = requests.get(update_endpoint)
if response.status_code == 200:

return response.content
return None

def delete_authz_code(code):
update_endpoint = db_api_url + "/authcode/delete/" + code
response = requests.get(update_endpoint)
if response.status_code == 200:

return True
return False

def query_client(client_id):
client_endpoint = db_api_url + "/client/" + str(client_id)
response = requests.get(client_endpoint)
client = Oauth2ClientMixin(json.loads(response.content))
return client

def save_token(token, request):
client_endpoint = db_api_url + "/token/create"
if request.user:

user_id = request.user.get_user_id()
else:

user_id = None
client = request.client
item ={

"client_id": client.client_id,
"user_id": user_id,
"issued_at": int(time.time()),
"expires_in": 300,
"access_token_revoked_at": 0,
**token

33

}
response = requests.post(client_endpoint, data=json.dumps(item))

def create_query_token_func():
"""Create an ''query_token'' function for revocation, introspection
token endpoints.
....
def query_token(token, _):

client_endpoint = db_api_url + "/token/" + token
response = requests.get(client_endpoint)
return Oauth2TokenMixin(json.loads(response.content))

return query_token

def create_revocation_endpoint():
"""Create a revocation endpoint class
....
from authlib.oauth2.rfc7009 import RevocationEndpoint
query_token = create_query_token_func()

class _RevocationEndpoint(RevocationEndpoint):
def query_token(self, token, token_type_hint):

return query_token(token, token_type_hint)

def revoke_token(self, token, request):
client_endpoint = db_api_url + "/token/update/" + token.get_id()
now = int(time.time())
token.access_token_revoked_at = now
response = requests.post(client_endpoint, data=json.dumps(token))

return _RevocationEndpoint

def create_bearer_token_validator():
"""Create an bearer token validator class
....
from authlib.oauth2.rfc6750 import BearerTokenValidator

class _BearerTokenValidator(BearerTokenValidator):
def authenticate_token(self, token_string):

client_endpoint = db_api_url + "/token/" + token_string
response = requests.get(client_endpoint)
return Oauth2TokenMixin(json.loads(response.content))

34

def request_invalid(self, request):
return False

def token_revoked(self, token):
revoke_time = token.is_revoked()
if revoke_time != 0:

if revoke_time > int(time.time()):
return True

return False

return BearerTokenValidator

Config.py

db_api_url = "http://authz-dbapi"
base_permissions = ["test"]
domain = "mperry.io"
allowed_permission = "web"
custom_redirect_url = "http://auth.mperry.io/authorize"

DUMMY_JWT_CONFIG = {
'key': 'secret-key',
'alg': 'HS256',
'iss': 'http://mperry.io',
'exp': 3600,

}

Dockerfile

FROM python:3.9

WORKDIR /src

COPY ./authz/requirements.txt .

RUN pip install -r requirements.txt

COPY ./authz/src/ .

35

http://authz-dbapi
http://auth.mperry.io/authorize
http://mperry.io'

CMD ["gunicorn", "app:app", "-b", "0.0.0.0:80"]

Database API
App.py

from fastapi import FastAPI, Body, status
from fastapi.responses import JSONResponse
from fastapi.encoders import jsonable_encoder
from fastapi import FastAPI
from typing import List
import motor.motor_asyncio

from model import UpdateTokenModel, UserModel, UpdateUserModel, ClientModel,
AuthCodeModel, TokenModel

app = FastAPI()
client =
motor.motor_asyncio.AsyncIOMotorClient("mongodb://root:example@authz-mongo:27017/?a
uthSource=admin")
db = client.authn
mongo_users = db['users']
mongo_clients = db['clients']
mongo_tokens = db['tokens']
mongo_authcodes = db['authcodes']

@app.post("/user/create", response_description="Add new user",
response_model=UserModel)
async def create_user(user: UserModel = Body(...)):

user = jsonable_encoder(user)
new_user = await mongo_users.insert_one(user)
created_user = await db['users'].find_one({"_id": new_user.inserted_id})
return JSONResponse(status_code=status.HTTP_200_OK, content=created_user)

@app.get('/user/list', response_description="List all users", response_model=List[UserModel])
async def list_users():

users = await mongo_users.find().to_list(1000)
return JSONResponse(status_code=status.HTTP_200_OK, content=users)

@app.get("/user/id/{id}", response_description="Get a user", response_model=UserModel)
async def get_user_by_id(id: str):

user = await mongo_users.find_one({"_id": id})

36

if not user:
return JSONResponse(status_code=status.HTTP_404_NOT_FOUND, content="No user

found")
return JSONResponse(status_code=status.HTTP_200_OK, content=user)

@app.get("/user/{sub}", response_description="Get a user", response_model=UserModel)
async def get_user(sub: str):

user = await mongo_users.find_one({"email": sub})
if not user:

return JSONResponse(status_code=status.HTTP_404_NOT_FOUND, content="No user
found")

return JSONResponse(status_code=status.HTTP_200_OK, content=user)

@app.post('/user/delete', response_description="delete a user", response_model=UserModel)
async def delete_user(user: UserModel = Body(...)):

res = await mongo_users.delete_one({"sub": user["sub"]})
if res.deleted_count >= 1:

return JSONResponse(status_code=status.HTTP_200_OK, content={"success": "true"})
else:

return JSONResponse(status_code=status.HTTP_304_NOT_MODIFIED)

@app.put("/user/update/{id}", response_description="update a users info")
async def update_user(id: str, user : UpdateUserModel = Body(...)):

user = {key: value for key, value in user.dict().items() if value is not None}
if len(user) >= 1:

update_result = await mongo_users.update_one({"_id": id}, {"$set": user})
if update_result.modified_count == 1:

return JSONResponse(status_code=status.HTTP_200_OK)
return JSONResponse(status_code=status.HTTP_404_NOT_FOUND)

@app.post("/client/create", response_description="Add new client",
response_model=ClientModel)
async def create_client(client: ClientModel = Body(...)):

client = jsonable_encoder(client)
new_client = await mongo_clients.insert_one(client)
created_client = await db['clients'].find_one({"_id": new_client.inserted_id})
return JSONResponse(status_code=status.HTTP_200_OK, content=created_client)

@app.get("/client/{id}", response_description="Get a client", response_model=ClientModel)
async def get_client(id: str):

client = await mongo_clients.find_one({"_id": id})
if not client:

return JSONResponse(status_code=status.HTTP_404_NOT_FOUND, content="No client
found")

return JSONResponse(status_code=status.HTTP_200_OK, content=client)

37

@app.post('/client/delete', response_description="delete a client",
response_model=ClientModel)
async def delete_client(client: ClientModel = Body(...)):

res = await mongo_clients.delete_one({"sub": client["sub"]})
if res.deleted_count >= 1:

return JSONResponse(status_code=status.HTTP_200_OK, content={"success": "true"})
else:

return JSONResponse(status_code=status.HTTP_304_NOT_MODIFIED)

@app.post("/token/create", response_description="Add new token",
response_model=TokenModel)
async def create_token(token: TokenModel = Body(...)):

token = jsonable_encoder(token)
new_token = await mongo_tokens.insert_one(token)
created_token = await db['tokens'].find_one({"_id": new_token.inserted_id})
return JSONResponse(status_code=status.HTTP_200_OK, content=created_token)

@app.get("/token/{token_str}", response_description="Get a token",
response_model=TokenModel)
async def get_token(token_str: str):

token = await mongo_tokens.find_one({"access_token": token_str})
if not token:

return JSONResponse(status_code=status.HTTP_400_BAD_REQUEST, content="No
token found")

return JSONResponse(status_code=status.HTTP_200_OK, content=token)

@app.put("/token/update/{id}", response_description="update a tokens info")
async def update_token(id: str, token : UpdateTokenModel = Body(...)):

token = {key: value for key, value in token.dict().items() if value is not None}
if len(token) >= 1:

update_result = await mongo_tokens.update_one({"_id": id}, {"$set": token})
if update_result.modified_count == 1:

return JSONResponse(status_code=status.HTTP_200_OK)
return JSONResponse(status_code=status.HTTP_404_NOT_FOuND)

@app.post('/token/delete', response_description="delete a token",
response_model=TokenModel)
async def delete_token(token: TokenModel = Body(...)):

res = await mongo_tokens.delete_one({"_id": token["_id"]})
if res.deleted_count >= 1:

return JSONResponse(status_code=status.HTTP_200_OK, content={"success": "true"})
else:

return JSONResponse(status_code=status.HTTP_304_NOT_MODIFIED)

@app.post("/authcode/create", response_description="Add new authcode",
response_model=AuthCodeModel)

38

async def create_authcode(authcode: AuthCodeModel = Body(...)):
authcode = jsonable_encoder(authcode)
new_authcode = await mongo_authcodes.insert_one(authcode)
created_authcode = await db['authcodes'].find_one({"_id": new_authcode.inserted_id})
return JSONResponse(status_code=status.HTTP_200_OK, content=created_authcode)

@app.get("/authcode/{code}", response_description="Get a authcode",
response_model=AuthCodeModel)
async def get_authcode(code: str):

authcode = await mongo_authcodes.find_one({"_id": code})
if not authcode:

return JSONResponse(status_code=status.HTTP_400_BAD_REQUEST, content="No
token found")

return JSONResponse(status_code=status.HTTP_200_OK, content=authcode)

@app.get('/authcode/delete/{authcode}', response_description="delete a authcode")
async def delete_authcode(authcode: str):

res = await mongo_authcodes.delete_one({"_id": authcode})
if res.deleted_count >= 1:

return JSONResponse(status_code=status.HTTP_200_OK, content={"success": "true"})
else:

return JSONResponse(status_code=status.HTTP_304_NOT_MODIFIED)

Model.py

from pydantic import BaseModel, Field
from bson import ObjectId
from typing import Optional, List

class UserObject(ObjectId):
@classmethod
def__get_validators__(cls):

yield cls.validate

@classmethod
def validate(cls, v):

if not ObjectId.is_valid(v):
raise ValueError("Invalid Object")

return ObjectId(v)

@classmethod
def__modify_schema__(cls, field_schema):

field_schema.update(type="string")

39

class UserModel(BaseModel):
id: UserObject = Field(default_factory=UserObject, alias="_id")
email: str = Field(...)
name: str = Field(...)
hd: str = Field(...)
permissions: List[str] = Field(...)

class Config:
allow_population_by_field_name = True
arbitrary_types_allowed = True
json_encoders = {ObjectId: str}
schema_extra = {

"example": {
"email": "mperry37@alaska.edu",
"name": "joe bob",
"hd": "mperry.io",
"permissions": ["web", "admin", "chat"],

}
}

class UpdateUserModel(BaseModel):
email: Optional[str]
name: Optional[str]
hd: Optional[str]
permissions: Optional[List[str]]
class Config:

allow_population_by_field_name = True
arbitrary_types_allowed = True
json_encoders = {ObjectId: str}
schema_extra = {

"example": {
"email": "mperry37@alaska.edu",
"name": "joe bob",
"hd": "mperry.io",
"permissions": ["web", "admin", "chat"],

}
}

class ClientObject(ObjectId):
@classmethod
def__get_validators__(cls):

yield cls.validate

@classmethod
def validate(cls, v):

40

mailto:mperry37@alaska.edu
mailto:mperry37@alaska.edu

if not ObjectId.is_valid(v):
raise ValueError("Invalid Object")

return Objectld(v)

@classmethod
def__modify_schema__(cls, field_schema):

field_schema.update(type="string")

class ClientModel(BaseModel):
client_id: Clientobject = Field(default_factory=ClientObject, alias="_id")
client_secret: str = Field(...)
client_id_issued_at: int = Field(...)
client_secret_expires_at: int = Field(...)
client_metadata: str = Field(...)

class Config:
allow_population_by_field_name = True
arbitrary_types_allowed = True
json_encoders = {ObjectId: str}
schema_extra = {

"example": {
"client_secret": "joe bob",
"client_id_issued_at": 45123,
"client_secret_expires_at": 84000,
"client_metadata": "stuff",

}
}

class TokenObject(ObjectId):
@classmethod
def__get_validators__(cls):

yield cls.validate

@classmethod
def validate(cls, v):

if not ObjectId.is_valid(v):
raise ValueError("Invalid Object")

return ObjectId(v)

@classmethod
def__modify_schema__(cls, field_schema):

field_schema.update(type="string")

class TokenModel(BaseModel):
id: TokenObject = Field(default_factory=TokenObject, alias="_id")
client_id: str = Field(...)

41

user_id: str = Field(...)
token_type: str = Field(...)
scope: str = Field(...)
access_token: str = Field(...)
expires_in: int = Field(...)
issued_at: int = Field(...)
access_token_revoked_at: int = Field(...)

class Config:
allow_population_by_field_name = True
arbitrary_types_allowed = True
json_encoders = {ObjectId: str}
schema_extra = {

"example": {
"client_id": "1231232145",
"user_id": "1231232",
"token_type": "Bearer",
"access_token": 'swerasdfwewdasdf,
"scope": "openid profile email",
"issued_at": 12314,
"access_token_revoked_at": 123124,
"expires_in": 0,

}
}

class UpdateTokenModel(BaseModel):
client_id: Optional[str]
user_id: Optional[str]
token_type: Optional[str]
scope: Optional[str]
access_token: Optional[str]
expires_in: Optional[int]
issued_at: Optional[int]
access_token_revoked_at: Optional[int]

class Config:
allow_population_by_field_name = True
arbitrary_types_allowed = True
json_encoders = {ObjectId: str}
schema_extra = {

"example": {
"client_id": "1231232145",
"user_id": "1231232",
"token_type": "Bearer",
"access_token": 'swerasdfwewdasdf,
"scope": "openid profile email",

42

"issued_at": 12314,
"access_token_revoked_at": 123124,
"expires_in": 0,

}
}

class AuthCodeObject(ObjectId):
@classmethod
def__get_validators__(cls):

yield cls.validate

@classmethod
def validate(cls, v):

if not ObjectId.is_valid(v):
raise ValueError("Invalid Object")

return ObjectId(v)

@classmethod
def__modify_schema__(cls, field_schema):

field_schema.update(type="string")

class AuthCodeModel(BaseModel):
code: AuthCodeObject = Field(default_factory=AuthCodeObject, alias="_id")
client_id: str = Field(...)
redirect_uri: str = Field(...)
response_type: str = Field(...)
scope: str = Field(...)
grant_user: str = Field(...)
nonce : str = Field(...)
auth_time: int = Field(...)

class Config:
allow_population_by_field_name = True
arbitrary_types_allowed = True
json_encoders = {ObjectId: str}
schema_extra = {

"example": {
"client_id": "45123",
"redirect_uri": "http://mperry.io",
"response_type": "code",
"scope": "openid profile email",
"grant_user": "21323423245",
"nonce": "1212134",
"auth_time": 12314512312

}
}

43

http://mperry.io

Dockerfile

FROM python:3.9

WORKDIR /src

COPY ./db_api/requirements.txt .

RUN pip install -r requirements.txt

COPY ./db_api/src/ .

CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "80"]

Docker-Compose
Docker-compose.yml

version: '3.1'

services:
mongo:

container_name: authz-mongo
image: mongo
restart: always
environment:
MONGO_INITDB_ROOT_USERNAME: root
MONGO_INITDB_ROOT_PASSWORD: example
MONGO_INITDB_DATABASE: authz

expose:
-"27017"

volumes:
- ./data:/data/db

authz:
container_name: authz-auth
build:

44

context: ./
dockerfile: ./authz/Dockerfile

ports:
- "80:80"

restart: unless-stopped
dbpi:

container_name: authz-dbapi
build:

context: ./
dockerfile: ./db_api/Dockerfile

expose:
- "80"

restart: unless-stopped
client:

container_name: authz-client
build:

context: ./
dockerfile: ./client_helper/Dockerfile

volumes:
- ./client_helper/src/:/src/

restart: unless-stopped

Zauthly Client
Create_client.py

import secrets
import json
import requests
import time
db_api_url = "http://authz-dbapi"

def create_client():
data = {

"client_secret": secrets.token_urlsafe(32),
"client_id_issued_at": int(time.time()),
"client_secret_expires_at": int(time.time()) + int(84_000),
"client_metadata": "{'redirect_uris':

['http://secret.mperry.io/auth'],'token_endpoint_auth_method' :
'client_secret_basic','grant_types': ['authorization_code'],'response_types':
['code'],'client_name': 'The Main Frame','client_uri': 'http://secret.mperry.io','scope': 'openid
profile email'}"

45

http://authz-dbapi
http://secret.mperry.io/auth'%255d,'token_endpoint_auth_method'
http://secret.mperry.io','scope'

}
update_endpoint = db_api_url + "/client/create"
print("preparing to send post request")
print(json.dumps(data))
response = requests.post(update_endpoint, data=json.dumps(data))
if response.status_code == 202 or response.status_code == 200:

return True, response.content
return False, None

if__name__== "__ main__":
print("Creating a client")
res, content = create_client()
print(res, content)

Update_client.py

import json
import requests

db_api_url = "http://authz-dbapi"
new_perms = {

"permissions": ["web"]
}

def update_user(user, new_user):
print(f’testing update user, with info:{user}, to {new_user}")
update_endpoint = db_api_url + "/user/update/" + user["_id"]
response = requests.put(update_endpoint, data=json.dumps(new_user))
if response.status_code == 200:

return True
return False

def user_exists(user):
print("testing user exists")
user_endpoint = db_api_url + "/user/" + str(user['email'])
response = requests.get(user_endpoint)
if response.status_code == 200:

return True, response.content
elif response.status_code == 404:

return False, None

46

http://authz-dbapi

else:
raise Exception("Unknown Error as occurred")

if__name__== "__ main__":
user = {"email": "mperry37@alaska.edu"}
res, content = user_exists(user)
user_info = json.loads(content)
res = update_user(user_info, new_perms)
print(res)

Dockerfile

FROM python:3.9

WORKDIR /src

COPY ./client_helper/requirements.txt .

RUN pip install -r requirements.txt

ENTRYPOINT ["tail", "-f", "/dev/null"]

47

