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Abstract

Wildfires are a natural and essential part of Alaska ecosystems, but excessive wildfires 
pose a risk to the ecosystem's health and diversity, as well as to human life and property. To 

manage wildfires effectively, vegetation/fuel maps play a critical role in identifying high-risk areas 

and allocating resources for prevention, suppression, and recovery efforts. Furthermore, 

vegetation/fuel maps are an important input for fire behavior models, along with weather and 

topography data. By predicting fire behavior, such as spread rate, intensity, and direction, fuel 

models allow fire managers to make informed decisions about wildfire suppression, management, 

and prevention. Traditionally used vegetation/fuel maps in Alaska are inadequate due to a lack of 

detailed information since they are primarily generated using coarser resolution (30m) 

multispectral data. Hyperspectral remote sensing offers an efficient approach for better 

characterization of forest vegetation due to the narrow bandwidth and finer spatial resolution. 

However, the high cost associated with data acquisition remains a significant challenge to the 

widespread application of hyperspectral data. The aim of this research is to create accurate and 

detailed vegetation maps and upscale them for the boreal region of Alaska. The study involves 

hyperspectral data simulation using Airborne Visible InfraRed Imaging Spectrometer - Next 

Generation (AVIRIS-NG) data and publicly available Sentinel-2 multispectral data, ground spectra 

convolved to Sentinel-2 and AVIRIS-NG using the spectral response function of each sensor. 

Simulated data captured the minute details found in the real AVIRIS-NG data and were classified 

to map vegetation. Using the ground data from Bonanza Creek Long-Term Ecological Research 

sites, we compared the new maps with the two existing map products (the LANDFIRE's Existing 

Vegetation Type (EVT) and Alaska Vegetation and Wetland Composite). The maps generated 

using simulated data showed an improvement of 33% in accuracy and are more detailed than 

existing map products. In addition to fuel maps, we performed sub-pixel level mapping to generate 

a needleleaf fraction map, which serves fire management needs since needleleaf species are 

highly flammable. However, validating the sub-pixel product was challenging. To overcome this, 

we devised a novel validation method incorporating high-resolution airborne hyperspectral data 

(1m) and ground data. The study addresses the limitations of traditional fuel/vegetation maps by 

providing a more detailed and accurate representation of vegetation/fuel in Alaska. The methods 

and findings advance fuel and vegetation mapping research in Alaska and offer a novel pathway 

to generate detailed fuel maps for boreal Alaska to aid wildfire management.

iii



Table of Contents

Page
Title Page .....................................................................................................................................

Abstract ....................................................................................................................................... iii

Table of Contents ........................................................................................................................iv

List of Figures .............................................................................................................................vii

List of Tables ...............................................................................................................................ix

Acknowledgement ........................................................................................................................x

Chapter 1 Introduction ..................................................................................................................1

1.1. Remote sensing as a vegetation/fuel mapping tool............................................................4

1.2. Goal and objectives............................................................................................................ 8

1.3. Study area .......................................................................................................................... 9

1.3.1. Climate....................................................................................................................... 10

1.3.2. Geology ..................................................................................................................... 10

1.3.3. Vegetation.................................................................................................................. 11

1.4. References ....................................................................................................................... 13

Chapter 2 Hyperspectral Data Simulation (Sentinel-2 To AVIRIS-NG) for Improved Wildfire

Fuel Mapping, Boreal Alaska ...................................................................................................... 21

2.1. Abstract ............................................................................................................................ 21

2.2. Introduction....................................................................................................................... 22

2.3. Materials and methods ..................................................................................................... 25

2.3.1. Study area ................................................................................................................. 25

2.3.2. Processing workflow .................................................................................................. 26

2.3.3. Field data collection ................................................................................................... 26

2.3.4. Remote sensing data preprocessing ......................................................................... 27

2.3.4.1. Multispectral data preprocessing ........................................................................ 27

2.3.4.2. Hyperspectral data preprocessing ...................................................................... 27

2.3.5. Hyperspectral simulation ........................................................................................... 28

2.3.5.1. Ground spectra normalization ............................................................................. 28

2.3.5.2. Calculation of weighted fractional coefficients .................................................... 29

2.3.5.3. Hyperspectral data simulation............................................................................. 31

2.3.6. Validation ................................................................................................................... 31

2.3.6.1. Visual and statistical analysis.............................................................................. 31

iv



2.3.6.2. Classification ....................................................................................................... 32

2.3.7. Fuel type classification............................................................................................... 33

2.4. Results ............................................................................................................................. 33

2.4.1. Spectral profile comparison ....................................................................................... 34

2.4.2. Visual interpretation ................................................................................................... 35

2.4.3. Statistical analysis ..................................................................................................... 36

2.4.4. Image classification ................................................................................................... 37

2.4.5. Fuel map.................................................................................................................... 40

2.5. Discussion ........................................................................................................................ 41

2.6. Conclusions...................................................................................................................... 43

2.7. Acknowledgments ............................................................................................................ 44

2.8. References ....................................................................................................................... 44

Chapter 3 A Novel Method to Simulate AVIRIS-NG Hyperspectral Image from Sentinel-2

Image for Improved Vegetation/Wildfire Fuel Mapping, Boreal Alaska .....................................50

3.1. Abstract ............................................................................................................................ 50

3.2. Introduction....................................................................................................................... 51

3.3. Materials and methods ..................................................................................................... 53

3.3.1. Field data collection ................................................................................................... 53

3.3.2. Data preprocessing.................................................................................................... 57

3.3.3. Building a spectral library of boreal vegetation and endmember selection .............  57

3.3.4. Simulation of hyperspectral data ............................................................................... 59

3.3.4.1. Ground spectra normalization ............................................................................. 59

3.3.4.2. Weighted fractional coefficient ............................................................................ 59

3.3.4.3. Hyperspectral data simulation............................................................................. 60

3.3.5. Simulated hyperspectral data validation .................................................................... 61

3.3.6. Image classification ................................................................................................... 61

3.3.7. Accuracy assessment................................................................................................ 61

3.4. Results ............................................................................................................................. 62

3.4.1. Spectral and statistical comparison ........................................................................... 62

3.4.2. Visual analysis ........................................................................................................... 64

3.4.3. Image classification ................................................................................................... 66

3.4.4. Process validation...................................................................................................... 68

3.5. Discussion ........................................................................................................................ 70

3.5.1. Comparison with other map products ........................................................................ 70

v



3.6. Conclusions...................................................................................................................... 75

3.7. Acknowledgments ............................................................................................................ 76

3.8. References ....................................................................................................................... 76

Appendix .................................................................................................................................82

Chapter 4 Estimation and Validation of Sub-Pixel Needleleaf Cover Fraction in the Boreal 
Forest of Alaska to Aid Fire Management ...................................................................................88

4.1. Abstract ............................................................................................................................ 88

4.2. Introduction...................................................................................................................... 89

4.3. Materials and methods ..................................................................................................... 91

4.3.1. Study area ................................................................................................................. 91

4.3.2. Field data collection ................................................................................................... 92

4.3.3. Data preprocessing.................................................................................................... 93

4.3.4. Endmember selection ................................................................................................ 95

4.3.5. Spectral unmixing ...................................................................................................... 96

4.3.6. Accuracy assessment................................................................................................ 97

4.3.6.1. Visual assessment using high-resolution multispectral data..............................  97

4.3.6.2. Assessments using 10m X 10m field plots.......................................................... 97

4.3.6.3. Assessment using high-resolution (1 m) HySpex hyperspectral data................  99

4.3.6.4. Comparison of fraction outputs at different spatial scales................................... 99

4.4. Results ........................................................................................................................... 100

4.4.1. Assessment using high-resolution multispectral data.............................................. 101

4.4.2. Assessments using 10m X 10m field plots ............................................................. 102

4.4.3. Assessment using high-resolution (1 m) HySpex hyperspectral data .................... 104

4.4.4. Comparison of fraction outputs at different spatial scales. ..................................... 105

4.5. Discussion ...................................................................................................................... 106

4.6. Conclusions.................................................................................................................... 108

4.7. Acknowledgments .......................................................................................................... 109

4.8. References ..................................................................................................................... 109

Chapter 5 Summary and Conclusions .................................................................................... 114

5.1. Summary ........................................................................................................................ 114

5.2. Conclusions.................................................................................................................... 115

5.3. Broader impacts ............................................................................................................. 117

5.4. Future work and recommendations................................................................................119

5.5. References ..................................................................................................................... 120

vi



List of Figures

Figure 1.1: The total area burned in Alaska .......................................................................... 3

Figure 1.2: The decadal area burned in Alaska .....................................................................3

Figure 1.3: Study sites in Interior Alaska ..............................................................................12

Figure 2.1: The graph at the center shows of AVIRIS-NG and Sentinel-2 bands ...............24

Figure 2.2: Study area: Caribou-Poker Creeks Research Watershed (CPCRW) ............... 25

Figure 2.3: Flowchart showing processing workflow ...........................................................26

Figure 2.4: CIR image of Sentinel-2 ....................................................................................34

Figure 2.5: Comparison of spectral signature ..................................................................... 35

Figure 2.6: Visual analysis of the simulation result ............................................................. 36

Figure 2.7: Band-to-band correlation between simulated hyperspectral and AVIRIS-NG.....37

Figure 2.8: Tree species classification map ........................................................................38

Figure 2.9: Class-wise comparison .....................................................................................38

Figure 2.10: Variation of Accuracy ........................................................................................40

Figure 2.11: Fuel type map ................................................................................................. 41

Figure 3.1: Processing Workflow ..........................................................................................54

Figure 3.2: Vegetation spectra collection ..............................................................................55

Figure 3.3: Study area ..........................................................................................................55

Figure 3.4: Spectral Signature ..............................................................................................63

Figure 3.5: Band-to-band correlation ....................................................................................64

Figure 3 6: A map of the Coefficient of Variation (CoV) ........................................................64

Figure 3.7: Visual comparison ..............................................................................................65

Figure 3.8: Vegetation map ..................................................................................................66

Figure 3.9: F1-score for each class ......................................................................................67

Figure 3.10: IoU score for each class ...................................................................................67

Figure 3.11: A vegetation map ..............................................................................................68

Figure 3.12: A vegetation map ..............................................................................................69

Figure 3.13: LANDFIRE EVT Product .................................................................................71

Figure 3.14: Comparison of simulated classified map ........................................................ 72

Figure 3.15: Comparison of area ........................................................................................ 73

Figure 3.16: Comparison of classified map products ..........................................................74

Figure 3.17: Spectral Signature of all the endmembers ......................................................82

Figure 3.18: Spectral Signature comparison .......................................................................83

vii



Figure 3.19: Spectral Signature ............................................................................................84

Figure 3.20: Visual Analysis of the simulated scene 2 ........................................................85

Figure 3.21: Spectral Signature ............................................................................................86

Figure 3.22: Visual Analysis of the simulated scene 3 ........................................................87

Figure 4.1: Processing workflow ...........................................................................................91

Figure 4.2: Study area: Bonanza Creek Experimental Forest (BCEF) .................................92

Figure 4.3: Ground data collected for validation....................................................................94

Figure 4.4: Endmember spectra............................................................................................95

Figure 4.5: A pixel can contain more than one class.............................................................96

Figure 4.6: Estimating the proportion of each pixel..............................................................98

Figure 4.7: Workflow to validate the fraction cover output ................................................... 99

Figure 4.8: RGB images of fraction cover...........................................................................100

Figure 4.9: Needleleaf fraction cover map..........................................................................101

Figure 4.10: Visual comparison.......................................................................................... 102

Figure 4.11: Comparison.................................................................................................... 103

Figure 4.12: Individual class accuracy assessment............................................................103

Figure 4.13: (a) Random Forest classified map..................................................................104

Figure 4.14: Validation of the MESMA fraction cover map................................................105

viii



List of Tables

Table 2.1: List of bad bands removed from AVIRIS-NG .................................................... 28

Table 2.2: Class-wise total number of pixels surveyed on the ground during fieldwork ......32

Table 2.3: Confusion matrices of classification results for the three datasets ....................39

Table 2.4. Overall accuracies of the classification results for the three datasets ................40

Table 3.1: List of image datasets used in this study ...........................................................56

Table 3.2: List of field data used in this study .....................................................................56

Table 3.3: List of 15 endmembers .......................................................................................59

Table 3.4: Endmembers used in each iteration ..................................................................82

Table 3.5: Misclassified Classes in Simulated Classified Product ......................................85

Table 4.1: List of image datasets used in this study ............................................................93

Table 4.2: List of field data used in this study .....................................................................93

Table 4.3: Bands removed from AVIRIS-NG hyperspectral data ........................................94

Table 4.4: Contingency matrix for McNemar test ...............................................................106

Table 4.5: Contingency matrix for McNemar test ...............................................................106

Table 4.6: Contingency matrix for McNemar test ...............................................................106

ix



Acknowledgements

I want to express my deepest gratitude and appreciation to the following individuals and 
organizations who have played a significant role in the completion of this thesis:

First and foremost, I would like to thank my supervisor, Santosh K. Panda, for his 

unwavering support, invaluable guidance, and insightful feedback. His expertise and dedication 

have been instrumental in shaping the direction of this research. I am truly grateful for his 

patience, encouragement, and the countless hours he has devoted to reviewing and refining my 

work.

I want to sincerely thank the members of my thesis committee, Uma S. Bhatt, Dar A. 

Roberts, Christine F. Waigl, and Randi R. Jandt, for their valuable insights and constructive 

feedback. Their expertise in their respective fields has greatly enriched this study, and their 

feedback has played a crucial role in shaping the research. My committee has been the pillar of 
support for this research.

I want to acknowledge the financial support provided by the Alaska Established Program 

to Stimulate Competitive Research (EPSCoR), AmericaView, and the College of Natural Science 

and Mathematics. This work is supported by the National Science Foundation under the award 

OIA-1757348 and by the State of Alaska and the U.S. Geological Survey under Grant/Cooperative 

Agreement No. G18AP00077. Their funding has been crucial in enabling me to carry out this 
research and pursue my academic goals.

I would like to extend my heartfelt gratitude to the dedicated members of the field crew 

who played a crucial role in the successful execution of this research. Their tireless efforts, 

expertise, and unwavering commitment were instrumental in collecting valuable data and 

overcoming challenges in the field.

I am grateful to the faculty members of the University of Alaska Fairbanks (UAF), whose 
lectures, seminars, and intellectual discussions have broadened my understanding and equipped 

me with the necessary tools to undertake this research endeavor. I want to thank the Alaska 

EPSCoR team for their continuous support throughout this journey and for providing me with a 

friendly platform to share my research. I am also thankful to the UAF Geophysical Institute (GI) 

writing group, as the regular writing sessions greatly helped to achieve my writing goals. I would 

like to express my gratitude to the UAF writing center for their help in reviewing my papers and 

thesis. Furthermore, I would like to thank the UAF International Student and Scholar Services 

(ISSS), especially Reija Shnoro, for always being nice and supportive during my Ph.D. duration. 

x



I am grateful to the GI HR department for efficiently handling all the paperwork and to the 
Graduate School for their support.

I would like to express my gratitude to my colleagues, with a special mention of Chris 

Smith, who has fostered a stimulating academic environment and provided valuable perspectives. 

Their friendship and camaraderie have made this journey more enjoyable and rewarding. I extend 

my sincere thanks to my friends Utsav Soni, Abhisek Maiti, Debvrat Varshney, and Sayantan 

Majumdar for their unwavering support and invaluable brainstorming sessions, which have greatly 

enriched the research. Their contributions have been invaluable, and I am deeply grateful for their 
continuous support.

My heartfelt thanks go to my family for their unconditional love and support, and 

encouragement throughout my studies. Furthermore, I would like to express my heartfelt 

appreciation to Anupma Prakash, Snigdhamayee Mishra, and Rudi Gens for creating a supportive 

and welcoming environment during my time here. I consider myself fortunate to have had the 

privilege of their unwavering support and their continuous motivation and guidance, that have 

played a vital role in my personal and academic growth. Additionally, I want to extend my sincere 

thanks to my friends Brooke Kubby, Cody Dogah, Fahimeh Dehghani, Saurabh Bahuguna, Anjali 

Madhu, and Arpita Shukla for always being there for me as a pillar of moral support.

Finally, I would like to dedicate this work to Utsav Soni, who has been a perpetual source 

of inspiration and unwavering support. His profound impact on my academic journey and personal 

growth cannot be overstated. While Utsav is no longer with us, his memory continues to guide 

and motivate me.

Completing the thesis would not have been possible without the support and contributions 

of the individuals mentioned above. Their guidance, encouragement, and assistance have been 

invaluable, and I am deeply grateful for their involvement in this endeavor.

xi



Chapter 1 Introduction

The Earth's average temperature has increased by approximately 1.1°C since the pre

industrial era and is projected to surpass the 1.5 °C threshold in the next 20 years (IPCC, 2022). 
The warming of the Earth is due to the release of greenhouse gasses, like carbon dioxide, into 

the atmosphere from human activities, such as burning fossil fuels, deforestation, and industrial 

processes (IPCC, 2022). This warming has numerous impacts. One of the most widespread 

impacts is melting of land ice and the subsequent sea level rise which threatens to flood coastal 

cities and communities globally. The warming climate disrupts ecosystems leading to species 

extinction and food chain disruption, which can have far-reaching consequences for biodiversity 

and food security. The warming temperatures have been shown in attribution studies to increase 

the intensity of heat waves and severe weather events, such as hurricanes, droughts, and 

wildfires, that can damage homes, infrastructure, and economies.

The impact of rising temperatures is becoming increasingly visible and catastrophic, 
particularly in the form of wildfires occurring more frequently and with greater intensity across the 

globe (MacCarthy et al., 2022). Globally, 27% of the forest cover degradation is due to wildfire 
(Global Forest Watch, 2023). From 2001 to 2021, wildfires caused a total 119 million hectares 

reduction in tree cover worldwide (Global Forest Watch, 2023). The last two decades (2003

2022), have witnessed several major wildfire events worldwide that have burned vast land areas. 

These wildfire events have been particularly prevalent in the polar region, where the rate of 

warming has been amplified in comparison to other areas of the world, a phenomenon known as 

polar amplification (Manabe and Stouffer, 1980). Studies have shown that the Arctic has been 

warming at a rate approximately twice as fast as the rest of the world (Walsh, 2014). As a result 

of increasing warming, there has been an increase in the prevalence of wildfires in Arctic regions 
in recent decades (Bhatt et al., 2021; McCarty et al., 2021; Zheng et al., 2023). One of the most 

unforgettable Arctic wildfire events in human history occurred in 2003, when catastrophic wildfires 

ravaged the taiga forests of Eastern Siberia, burning more than 22 million hectares of forest. This 

event was likely exacerbated by excessively dry conditions and increased human activities like 

forest clearing and burning (Talucci et al., 2022). With the Arctic warming at an accelerated rate, 

the risk of wildfires in this region is expected to increase further, posing a significant threat to the 
ecosystem.

Alaska, the only state in the United States with an Arctic environment, is particularly 

vulnerable to the effects of polar amplification. Over the past few decades, Alaska has 

experienced a significant rise in temperatures, with an average increase of 0.3 °C per decade 
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between 1976 and 2016 (Bhatt et al., 2021; Partain et al., 2016). Projections suggest that this 
trend will continue, with an expected rise of 1 to 2 °C by 2050 (Chapin et al., 2014). As a 

consequence of the escalating temperatures, the frequency and intensity of lightning strikes in 

Alaska have also shown an upward trend (Bieniek et al., 2020). Recent research by Bieniek et al. 

(2020) revealed a 17 percent increase in lightning occurrences throughout the state over the past 

30 years. Frequent lightning strikes and increasing temperatures stand as the predominant factors 

driving the occurrence and severity of wildfires in Alaska (Box et al., 2019; International Arctic 
Research Center, 2021).

In recent decades, there has been an increase in both the size and frequency of wildfires 

in Alaska (Figure 1.1). The state witnessed its largest wildfire season in 2004, which burned 

around 2.5 million hectares during July and August. The second largest fire year was in 2015, in 

which about 2 million hectares burned in mid-June and mid-July (primarily due to lightning) 

(Partain et al., 2016). The recent year 2022 was the seventh largest fire season recorded in the 

state; a total of 589 fires burned an area of approximately 1.3 million hectares (Alaska Interagency 

Coordination Center, 2022). According to a report published in Western Forester, the major cause 

of the 2022 fire was the intense drought followed by lightning strikes. Between 1940 and 2022, 

wildfires burned 34 million hectares of land in Alaska, causing extensive and devastating damage 

to the state's ecosystems and communities for over eight decades (Figure 1.1). Over the last two 

decades, wildfires have burned approximately 13.14 million hectares in Alaska (Figure 1.2), which 

is roughly thrice the area burned during the previous two decades (1983-2002: 4.16 million ha) 

(Alaska Interagency Coordination Center, 2022; Badola et al., 2022). This trend indicates a 

growing threat of wildfires, as global warming accelerates and creates conditions favorable for 

large and destructive fires. Therefore, it is essential to implement effective fire management 

practices to mitigate wildfire risk.

Effective fire management is crucial for protecting people, property, and the environment 

from the devastating effects of wildfires. Fire managers need a comprehensive understanding of 

the local climate and weather patterns, including seasonal climate variations, the likelihood of 

lightning strikes, and the fuel types to anticipate and mitigate wildfire risks and develop effective 

fire prevention, suppression, and post-fire restoration strategies (National Park Service, 2022). 

However, in Alaska, the fuel maps still lack sufficient details, making it difficult for fire managers 

to manage wildfires effectively (Ziel, 2019). Fire managers need to have access to detailed and 

accurate fuel maps to develop effective management strategies. Therefore, it is crucial to conduct 

further research and investigation in Alaska, to generate more detailed fuel maps, and to aid fire 

management.
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Figure 1.1: The total area burned in Alaska between 1940-2022. Most of the burned area is confined to

the boreal region, interior Alaska. Data source: Fire Perimeters provided by Alaska Interagency 
Coordination Center using Sentinel-2 and Landsat Data.

Figure 1.2: The decadal area burned in Alaska. In recent decades both the number of fires and area 
burned have increased. Data source: Fire Perimeters provided by Alaska Interagency Coordination 

Center.
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Detailed fuel maps play a critical role in forest management practices to minimize the risk 
of both surface and crown fires. Standard fire management techniques to prevent surface fires 
(burns litter, lichens, moss, grasses, tree saplings, and shrubs) include prescribed (controlled) 

burning and removing downed dead trees and branches (slash) from the ground. Crown fires are 

extremely intense fires that burn tree branches and canopy and spread very quickly through the 

tree crowns. Increasing the distance between tree crowns (tree thinning) is a very common pre

fire management practice to check the crown fire spread, especially near developments. Pruning 

lower branches from tree crowns removes “ladder fuels” and thus helps prevent surface fire from 

reaching the crown (USDA, 2023; WWF, 2021). Vegetation and fuel maps are essential in 

developing effective fire management practices, as they provide critical information about the 

types and locations of vegetation and fuel sources in a given area (Government of Canada, 2021; 

Western Fire Chiefs Association, 2022). By using detailed fuel maps, fire and land managers can 

select the most appropriate fire management techniques and strategies, such as tree thinning, 

prescribed burning, creating fire breaks, and removing dead materials to protect communities and 

ecosystems from the devastating effects of wildfires.

To prepare for upcoming fire seasons, land managers rely on fire behavior models to 

predict fire intensity and spread based on input variables such as fuel characteristics, weather 

conditions, and topography. Forest growth and disturbance models such as the Forest Vegetation 

Simulator (Crookston and Dixon, 2005), and the Fire Dynamics Simulator (McGrattan et al., 2013) 

can be used to simulate future forest and disturbance conditions. Fuel maps are an important 

input variable for this type of planning as well as short-term fire behavior modeling during 

incidents. Unfortunately, the current fuel maps in Alaska lack detailed information, creating a 

significant gap in fire preparedness efforts. It is crucial to address this gap to mitigate the risk of 

wildfires in the region and improve our ability to manage future fire events effectively. Alaska has 

a vast expanse; hence, remote sensing technology is ideal for generating detailed fuel maps.

1.1. Remote sensing as a vegetation/fuel mapping tool

Remote sensing is gathering information about an object or feature without direct physical 

contact. It involves using various forms of electromagnetic radiation (EMR) to collect data about 

an object or surface, which is analyzed to obtain information. EMR includes radio waves, 

microwaves, visible light, X-rays, and gamma rays, and can interact with matter in different ways, 

such as being absorbed, reflected, or transmitted (Read & Torrado, 2009). Remote sensing works 

on the principle that different objects emit or reflect different amounts of energy in various 

electromagnetic wavelengths or bands, which is used to detect and discriminate between objects 
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or surface features (Aggarwal, 2004). Devices that detect this reflected or emitted EMR are called 
sensors, and the vehicle used to carry the sensor is called a platform. Remote sensing has many 

applications in various fields, including civil engineering, environmental monitoring, and disaster 

management. It allows repeated imaging of an object or surface at a finer spatial and temporal 

scale, and with different numbers of bands depending on the type of sensor. Sensors may be 

panchromatic, multispectral, or hyperspectral. A panchromatic sensor captures an image in a 

single broad spectral band. Multispectral sensors provide images in a few narrow bands in the 

visible and/or near-infrared (NIR) regions of the electromagnetic spectrum, and their bandwidth 

can range from 10-100 nm per band. Hyperspectral sensors capture images in hundreds of 

narrow and contiguous spectral bands, usually covering the visible to shortwave infrared (VSWIR) 

regions of the electromagnetic spectrum. The bandwidth of each band can be as narrow as 1-5 

nm (Chuvieco & Kasischke 2007)

Multispectral data is freely available and has global coverage (Xie et al., 2008). NASA's 

Landsat program includes a series of Earth-observing satellites collecting multispectral images of 

the earth's surface since the 1970s. The Landsat 1 to 3 satellites collected images during 1972

1983 at 60 m spatial resolution. From Landsat 4 onwards, the data are available at 30 m spatial 

resolution making it the most popular image data for land cover mapping at regional and global 

scale (Wulder et al., 2012). The Arctic Boreal Vulnerability Experiment (ABoVE) land cover 

product is a notable example of a Landsat-derived dataset for the ABoVE core domain (Alaska 

and western Canada). They provide the annual dominant plant functional type maps at 30m 

spatial resolution, generated using Random Forests modeling with clustering and field 
photography (Wang et al., 2019). LANDFIRE (LANDscape Fire and Resource Management 

Planning Tools) is another program that produces maps and data products for the United States 

to support fire and resource management planning to state and federal fire management agencies 
for wildfire mitigation (LANDFIRE, 2016; Reeves et al., 2009; Rollins, 2009). The LANDFIRE 

Existing Vegetation Type (EVT) map product is traditionally used for fire management, fire spread 

modeling, and risk assessment in Alaska. This map product is derived from Landsat image data 

at a spatial resolution of 30 m. According to accuracy assessments conducted at three sites 
(Develice, 2012; Smith et al., 2021), the LANDFIRE EVT 2014 map product has an accuracy 

range of 20% to 45%, which is inadequate for studies requiring detailed analysis of vegetation 

patterns and characteristics. Sentinel is another Earth observation satellite developed by the 
European Space Agency (European Space Agency, 2023) as part of the Copernicus program, a 

European Union initiative to monitor the Earth's environment. Sentinel missions offer global data 

with high spatial resolution of 10m and a revisit time of 5-10 days. Descals et al. (2020) used 
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Sentinel 2A data to map the seasonal patterns in vegetation growth of the entire Arctic region, 
demonstrating the capability of Sentinel missions to study the Earth's surface at regional scale. 

The availability of multispectral data has revolutionized vegetation mapping and monitoring, 

making it possible to study the Earth's surface at a global and regional scale.

Imaging spectroscopy, also known as hyperspectral remote sensing, is a powerful 

technology that uses a high spectral resolution sensor to collect data across a wide range of 

wavelengths, providing detailed information about the physical and chemical properties of an 

object or surface. Imaging spectroscopy works by capturing the reflectance or emission of EMR 

across hundreds of narrow, contiguous spectral bands, which allows for the identification and 

characterization of materials based on their unique spectral signatures (Gupta, 1981; Xie et al., 

2008). In recent years, there has been a substantial expansion in the use of hyperspectral data 

for detailed vegetation mapping due to its increasing availability and significant advancements in 

data processing and analysis techniques (Govender et al., 2019). In Alaska, NASA's Jet 

Propulsion Laboratory provides airborne hyperspectral data collected using the state-of-the-art 

Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor as a part 

of Arctic-Boreal Vulnerability Experiment (ABoVE) airborne campaign (Miller et al., 2018). 
Goddard's LiDAR, Hyperspectral & Thermal Imager (G-LiHT), developed by NASA's Goddard 

Space Flight Center, is another airborne imaging system that offers a comprehensive range of 

data for terrestrial studies. It provides hyperspectral, LiDAR and thermal data, making it a powerful 

tool for researchers seeking to understand and analyze the Earth's surface and vegetation (Cook 

et al., 2013). One of the key advantages of imaging spectroscopy is its ability to differentiate 

between materials with similar visual appearances. For example, it can distinguish between 

different types of vegetation that may look similar in standard RGB imagery. This allows for a 

more detailed and accurate representation of the vegetation in an area and provides higher 

accuracy in discriminating between different tree species compared to traditional vegetation 

mapping methods using multispectral data (Badola et al., 2022; Fassnacht et al., 2016; Govender 

et al., 2019; Modzelewska et al., 2020; Smith et al., 2021). Accurate vegetation maps are crucial 

for proper fire management and planning. Studies have demonstrated the successful use of 

hyperspectral data for classifying forest tree species in tropical and subtropical forests (Badola et 
al., 2021; Clark & Roberts, 2012; Clark et al., 2005; Laurin et al., 2014), in the temperate forests 

(Heinzel & Koch, 2012) and mangrove forest studies (Hati et al., 2020).

Imaging spectroscopy has been used in boreal ecosystem studies (Cristóbal et al., 2021; 
Dalponte et al., 2014; Smith et al., 2021). Ustin & Xiao (2010) conducted a study at the Bonanza 

Creek Experimental Forest (BCEF), a long-term ecological research site located in interior Alaska, 
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that highlighted the potential of hyperspectral data for mapping forest ecosystems in boreal 
regions. The study utilized AVIRIS and a multispectral image data (the Satellite Pour l'Observation 

de la Terre, SPOT) to generate vegetation maps for BCEF. They reported higher accuracy of the 

maps generated using AVIRIS.

Zhang et al. (2020) combined LiDAR and hyperspectral data collected using the SpectIR 

hyperspectral sensor to map five major classes in the BCEF, including major vegetation classes: 

tussock tundra, moss spruce, and mixed forest. They performed Random Forest classification 

and assessed accuracy using an error matrix. They found that maps generated using combined 
data had 93% accuracy, while maps generated using hyperspectral data alone had 92.7% 

accuracy.

Smith et al. (2021) conducted a study on the BCEF using AVIRIS-NG hyperspectral data 

to generate highly detailed vegetation maps. The researchers mapped 20 dominant vegetation 

species with an accuracy of 80%, a significant improvement compared to the 8 dominant species 
mapped with an accuracy of 33% in the LANDFIRE EVT product. The use of AVIRIS-NG 

hyperspectral data allowed to capture fine-scale spectral information and discriminate between 

vegetation species with greater accuracy in BCEF. These studies demonstrate the potential of 

hyperspectral data for mapping boreal vegetation with high accuracy and detail.

Hyperspectral data is immensely valuable for vegetation mapping but the data are not 

widely available. For Alaska, the AVIRIS-NG and G-LiHT hyperspectral data were acquired only 

for limited sites and are not available for regional-scale vegetation and fuel mapping. A few studies 

have addressed the paucity of hyperspectral data by implementing a spectral reconstruction 

approach using multispectral data. Liu et al. (2009) and Tiwari et al. (2016) simulated Hyperion 

data from ALI multispectral data for Land-Use and Land-Cover (LULC) mapping using the 

Universal Pattern Decomposition Method (UPDM), a sensor-independent spectral unmixing 

technique (Zhang et al., 2007). This study aims to assess the performance of UPDM in simulating 

AVIRIS-NG data for the boreal region of Alaska. The simulated data is valuable because it 

provides the same spectral bands as the hyperspectral data collected by the sensor. The 

simulated data can be classified to create a detailed and accurate vegetation map at the pixel 

level, offering detailed insights into the distribution and composition of vegetation in the study 

area.

The maps generated using pixel-based algorithms like Random Forest, Decision Trees, 
Maximum Likelihood etc., classify each pixel of the image into a single class. But in reality, a pixel 

can cover more than one class on the ground hence we can model a pixel based on the 
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proportions of the different classes on ground, known as pixel/spectral unmixing (Adams et al., 
1993). Spectral unmixing has been used in a few forest and wildfire studies to map green 

vegetation, soil, and non-photosynthetic vegetation. Roberts et al. (1998) utilized Multiple 

Endmember Spectral Mixture Analysis (MESMA), a linear spectral unmixing algorithm, to map 

vegetation in the Santa Monica mountains using AVIRIS data. Another study done by Lewis et al. 

(2011) used a similar approach to estimate forest floor consumption due to wildfire in the interior 

of Alaska. Their method involved comparing pre- and post-fire hyperspectral images and was 

effective in estimating forest floor consumption.

Interior Alaska forests are dominated by highly flammable needleleaf species, and 

mapping them is crucial for making informed decisions about wildfire and forest management. 

However, no work has been done in this area, creating an excellent opportunity to test spectral 

unmixing for needleleaf fraction cover mapping. By accurately identifying the needleleaf fraction 

cover, forest managers can better understand the vulnerability of the forest to wildfires and plan 

accordingly. Therefore, exploring the potential of spectral unmixing for needleleaf fraction 

mapping can have significant implications for effective forest management in interior Alaska.

1.2. Goal and objectives

The overarching goal of this dissertation is to develop a novel method to simulate 

hyperspectral data by utilizing Sentinel-2 multispectral data, which will enable us to generate 

accurate vegetation maps for the entire boreal region of Alaska. Additionally, we aim to develop 

a processing workflow to generate needleleaf fraction maps from hyperspectral data to aid wildfire 

management. The approach involves advanced machine learning techniques and state-of-the-art 

algorithms to map vegetation types, and needleleaf fractions with improved accuracy and detail 

to effectively monitor and manage boreal ecosystems in Alaska and mitigate the impacts of 

wildfire.

Research Questions:

Q1: Can high quality hyperspectral data be generated from widely available Sentinel-2 

multispectral data to meet the need for greater spatial and temporal coverage of hyperspectral 

data for vegetation and fuel mapping at local scale in boreal Alaska?

Objectives:

1. Simulation of Hyperspectral image cube from Sentinel-2 data using AVIRIS-NG Spectral 

Response Function (SRF).

2. Validation of simulated data by means of visual interpretation, statistical analysis and by 

comparing spectral signature of tree/shrub species in the region.
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3. Mapping of major tree/shrub classes by performing Random Forest Classification on 
simulated hyperspectral data and classification accuracy assessment.

Q2: How effectively can the simulated Hyperspectral data be used for identification of 

vegetation/fuel classes of the boreal region of Alaska at a regional scale?

Objectives:

1. Implement the Iterative Endmember Selection (IES) algorithm to derive the most 

representative endmember ground spectra for the boreal region of Alaska.

2. Improve upon the simulation algorithm to generate AVIRIS-NG hyperspectral image cube 
at Sentinel-2 scene scale (100 km X 100 km).

3. Derive detailed vegetation maps from the simulated hyperspectral data using a machine 

learning classifier and assess model accuracy and portability across space.

4. Implement the hyperspectral image simulation and vegetation classification algorithms in 

the Google cloud platform for efficient processing and ease of sharing with the research 

community.

5. Make the simulation algorithm, simulated hyperspectral data, and vegetation classification 

products available to land managers and research community for wider usage.

Q3: Can spectral unmixing of a pixel estimate the needleleaf fraction in a mixed boreal forest with 

reasonable accuracy and how do we validate needleleaf fraction estimates?

Objectives:

1. Implement spectral unmixing to estimate the needleleaf fraction in mixed boreal 

vegetation.

2. Assess the influence of spatial resolution of the hyperspectral data on the estimation of 

needleleaf fraction.

3. Validation of needleleaf fraction estimates at different spatial scales.

1.3. Study area

Alaska is situated between 66° 9' 37.8252'' N and 153° 22' 8.9076'' W, bordered by 

Canada to the east and the Arctic and Pacific Oceans to the north and south, respectively. It is 

the largest U.S. state encompassing 1.72 million square kilometers (Miller and Lynch, 2023), 

which comprises a vast and diverse landscape including boreal and temperate forests, tundra, 

coastal wetlands, mountains, and glaciers. This offers researchers unique opportunities to study 

a wide range of ecological processes and systems.
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Boreal forests provide habitat to a wide range of wildlife, including iconic species such as 
grizzly bears, moose, caribou, and salmon (Juday, 2023; Kayes & Mallik, 2020). The state is also 

home to numerous indigenous communities that have relied on the land and its resources for 

millennia, providing a rich cultural context for research and study. Alaska is sparsely populated 

with approximately 730,000 residents (U.S. Census Bureau, 2022). Most of the population is 

concentrated in Anchorage, Fairbanks, and the state capital of Juneau (Brandt, 2009). The 

majority of Alaska's land is managed by the federal government, including the National Park 

Service, the Bureau of Land Management, and the US Forest Service, providing unique research 

and conservation opportunities.

Approximately 60-70% of the land area in Alaska is covered by the boreal forest (interior 
Alaska). As illustrated in Figure 1.1, most of the wildfires occur in this region. In this study, the 

majority of the analysis and ground data collection was conducted at the two major research sites 

located within interior Alaska: Bonanza Creek Experimental Forest (BCEF) and Caribou Poker 
Creek Research Watershed (CPCRW) (Figure 1.3). The National Science Foundation (NSF) 

established Bonanza Creek Long Term Ecological Research (LTER) in 1987 to conduct long-term 

ecological studies in interior Alaska. CPCRW is a site within the Bonanza Creek LTER (65.15 °N 
and 147.50 °W) (Bonanza Creek LTER, 2023). The following paragraphs provide detailed 

information about climate, geology, and vegetation of interior Alaska.

1.3.1. Climate

Interior Alaska lies between the Brooks Range to the north and Alaska Range to the south. 

The Alaska Range acts as a natural barrier blocking coastal air masses from reaching Interior 

Alaska (Bonanza Creek LTER, 2023). This gives rise to a strongly continental climate 

characterized by cold winters, and warm and dry summers in Bonanza creek LTER. The local 

climate in the study area is subarctic and is characterized by extreme weather conditions. 

Maximum summer air temperature can reach 33 °C and minimum winter air temperature recorded 

is -50 °C. The average annual temperature of the study area is -3 °C and average annual 

precipitation is approximately 262 mm. The study area is covered in snow from October to late 
April; thus, the growing season lasts for less than 100 days (Juday, 2023; NEON, 2020; USDA, 

2022).
1.3.2. Geology

Interior Alaska has a diverse and complex geologic history shaped by various geological 

processes: glaciation, volcanic activity, and tectonic activity. The parent material comprises 

Precambrian schist (bedrock), thick loess deposits derived from glaciation, and alluvial deposits 
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in flood plains. The soil is acidic due to the presence of conifer litter and is rich in organic matter 
(histosols) (Bonanza Creek LTER, 2023; Juday, 2023; USDA, 2022). The region's geology plays 

an essential role in shaping its ecology. The lithology and age of rocks, soils, and topography 

influence the distribution and abundance of plant and animal species. Soils are relatively 

immature, ranging from cold, shallow permafrost soils that are poorly drained in the lowlands to 

well-drained, warmer soils in the uplands. Permafrost formation is influenced by slope and aspect, 

with north-facing slopes typically underlain by permafrost, while south-facing slopes have warmer, 

well-drained soils. The region's geology is also crucial in determining the availability of mineral 

resources, including gold, copper, and other metals, which have played a vital role in the region's 

economic development (Gough et al., 2008). The geology of interior Alaska is a complex and 

dynamic system that continues to shape its ecology, economy, and cultural heritage.
1.3.3. Vegetation

The Boreal Forest is primarily composed of deciduous broad-leaved trees, evergreen 

needle-leaved trees, and deciduous needle-leaved trees. Among the needleleaf evergreen 

species, white spruce (Picea glauca) and black spruce (Picea mariana) are the most common. 

Larch (Larix laricina) is the only needleleaf deciduous tree species, and aspen (Populus 
tremuloides), birch (Betula neoalaskana, B. papyrifera), and poplar (Populus balsamifera) are 

major broad-leaved deciduous trees (Brandt, 2009). The vegetation in this region is diverse and 

varies depending on the geologic conditions and disturbance history. Uplands with well-drained 
soils support white spruce and deciduous species such as aspen and birch. In contrast, poorly 

drained flats that are mostly underlain by permafrost develop peaty wetlands and support the 
growth of black spruce in interior Alaska (Kayes & Mallik, 2020; USDA, 2022). The region also 

boasts a variety of shrub species, including lingonberry (Vaccinium vitis-idaea), bog Labrador tea 

(Rhododendron groenlandicum), several willow species (Salix sp.), alder (Alnus viridis), dwarf 

birch (Betula nana), blueberry (Vaccinium ovalifolium), and wild rose (Rosa acicularis). A thick 

layer of moss and lichens dominates the forest floor (Juday, 2023; NEON, 2020). The Boreal 

Forest is an important ecosystem with diverse flora, including tree species, shrubs, and ground 

cover. Its unique geologic conditions give rise to distinct habitats that support different plant 

species. Understanding and protecting this valuable resource is crucial for the preservation of 

biodiversity and the health of our planet.
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Figure 1.3: Study sites in Interior Alaska: Bonanza Creek Experimental Forest (marked in pink) and the 
Caribou-Poker Creek Research Watersheds (marked in green). The inset map displays the boreal region 

of Alaska (highlighted in green).

This thesis is structured around five chapters that provide a comprehensive overview of 
our research on hyperspectral data simulation and vegetation mapping in the Alaskan boreal 

region. Chapter one introduces the thesis and outlines the significance of this work, the study 

area, and research questions and objectives. Chapter two focuses on simulating AVIRIS-NG 

hyperspectral data from widely available Sentinel-2 multispectral data over a test site. We provide 

an in-depth analysis of different validation approaches and discuss their effectiveness in 

assessing the accuracy of the simulated data. In chapter three, we describe the approach to 

scaling up fuel maps and automating the simulation and vegetation classification process for 

generating vegetation maps at the regional scale. We compare the vegetation maps against 

ground data and vegetation products from other agencies. Chapter four presents an approach to 

map needleleaf fractions within each pixel, along with a novel validation method. Finally, in 

chapter five, we summarize the research findings and provide recommendations for future 
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research. Our study contributes to the ongoing efforts to understand and manage the impacts of 
wildfires in Alaska and provides valuable insights and tools for ecologists, land managers, and 
policymakers.
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Chapter 2 Hyperspectral Data Simulation (Sentinel-2 To AVIRIS-NG) for Improved Wildfire Fuel 
Mapping, Boreal Alaska1

1 Badola, A., Panda, S. K., Roberts, D. A., Waigl, C. F., Bhatt, U. S., Smith, C. W., & Jandt, R. R. (2021). 
Hyperspectral Data Simulation (Sentinel-2 to AVIRIS-NG) for Improved Wildfire Fuel Mapping, Boreal 
Alaska. Remote Sensing 2021, Vol. 13, Page 1693, 13(9), 1693. https://doi.org/10.3390/RS13091693

2.1. Abstract

Alaska has witnessed a significant increase in wildfire events in recent decades that have 

been linked to drier and warmer summers. Forest fuel maps play a vital role in wildfire 

management and risk assessment. Freely available multispectral datasets are widely used for 

land use and land cover mapping, but they have limited utility for fuel mapping due to their coarse 

spectral resolution. Hyperspectral datasets have a high spectral resolution, ideal for detailed fuel 

mapping, but they are limited and expensive to acquire. This study simulates hyperspectral data 

from Sentinel-2 multispectral data using the spectral response function of the Airborne 

Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor, and normalized 

ground spectra of gravel, birch, and spruce. We used the Uniform Pattern Decomposition Method 

(UPDM) for spectral unmixing, which is a sensor-independent method, where each pixel is 

expressed as the linear sum of standard reference spectra. The simulated hyperspectral data 

have spectral characteristics of AVIRIS-NG and the reflectance properties of Sentinel-2 data. We 

validated the simulated spectra by visually and statistically comparing it with real AVIRIS-NG data. 

We observed a high correlation between the spectra of tree classes collected from AVIRIS-NG 

and simulated hyper-spectral data. Upon performing species level classification, we achieved a 

classification accuracy of 89% for the simulated hyperspectral data, which is better than the 

accuracy of Sentinel-2 data (77.8%). We generated a fuel map from the simulated hyperspectral 

image using the Random Forest classifier. Our study demonstrated that low-cost and high-quality 

hyperspectral data can be generated from Sentinel-2 data using UPDM for improved land cover 

and vegetation mapping in the boreal forest.
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2.2. Introduction

Wildfires are of great importance when it comes to plant succession, natural regeneration, 

reducing debris accumulation, maintaining ecosystem health, diversity, nutrient cycle, and energy 

flow [1]. Since excess of anything causes harm, increase in wildfire frequency and area burned 

also poses a risk to the ecosystem's health and diversity. Severe wildfires are occurring globally 

every year, causing unprecedented ecological and economic damage. In 2019, a massive fire 

occurred in the Amazon rainforest, which attracted global attention. Again, in 2020, the Amazon 

forest suffered a severe loss from wildfires that burned an area of approximately 20,234 sq. km 

[2]. In the same year, Australia recorded a huge bushfire that burned an area of around 186,155 

sq. km and nearly 3 billion animals were displaced [3]. In 2020, 17,230 sq. km in California burned 

from wildfires that spread over the West Coast of the United States, making 2020 the largest 

wildfire season recorded in California's modern history [4].

Alaska, the northernmost state of the US, has 509,904 sq. km of forested land [5]. Wildfires 

are a natural and essential part of Alaskan ecosystems. Nonetheless, wildfires in Alaska are 

increasing in frequency, area burned, and severity, mirroring the global increase in wildfire events 

[6,7]. In the last two decades (2001-2020: 127,671 sq. km), wildfires in Alaska have burned 2.5 

times more forest than the previous two decades (1981-2000: 57,060 sq. km) [7]. In 2019, Alaska 

had 719 wildfires that burned nearly 10,500 sq. km of forest [8]. making it the 10th largest fire year 
in recorded history. Many of these fires were near major population centers along the Wildland 

Urban Interface (WUI). The societal impacts of WUI fires (i.e., risk to life and property, unhealthy 

air quality, and cost of suppression) can be reduced if fire managers have access to reliable fuel 

maps (that is, boreal vegetation maps) for the development of effective fuel and fire management 

strategies [9,10]. Enhanced fuel mapping is also essential for the strategic planning of wildfire 
mitigation [4].

Remote sensing is a viable approach to map the vegetation of the boreal forests, 
considering the region's remoteness and vastness [11,12,13,14,15]. The Landscape Fire and 

Resource Management Planning Tools Project (LANDFIRE) provides geospatial products to state 

and federal fire suppression agencies for wildfire mitigation [16,17]. The traditional map products 

provided by the LANDFIRE for Alaska's boreal domain lack granularity needed for fire 

management at the fire incident (meter) scale. LANDFIRE products are derived from Landsat 8 

multispectral data, which has few spectral bands and moderate spatial resolution (30 m). 

Additionally, these products have classification accuracies in the range of 20% to 45%, leaving 
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considerable room for improvement [18]. In Alaska, effective management of fuels and active fire 
requires improved fuel maps at the species level.

Advancements in airborne hyperspectral remote sensing provide an efficient approach to 

retrieve essential information for better characterization of forest fuels [14,19,20,21]. A number of 

studies have shown that hyperspectral data is much more effective than multispectral data for 
detailed vegetation mapping at species or stand scales [14,22,23,24,25,26,27,28,29,30]. The 

narrower bandwidths and improved spatial resolution of airborne hyperspectral datasets makes 

them much more effective than multispectral datasets at distinguishing visually similar vegetation 

classes. However, one of the major challenges with airborne hyperspectral technology is the cost 

of data acquisition. Currently, available hyperspectral datasets collected as part of the NASA 

Arctic-Boreal Vulnerability Experiment (ABoVE) and Goddard's LiDAR, Hyperspectral, and 

Thermal Imager (G-LiHT) programs cover only a small portion of the boreal domain. There is a 

need for greater spatial coverage and frequency while providing detailed spectral information 

similar to hyperspectral datasets.

Few studies have attempted to address this need through the simulation of hyperspectral 
data using publicly available multispectral datasets [31,32,33]. Zhang et al. [33] proposed a 

spectral response approach that used the Universal Pattern Decomposition Method (UPDM) for 

hyperspectral simulation from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Moderate 

Resolution Imaging Spectroradiometer (MODIS) data. Liu et al. [31] followed a similar approach 

in which they simulated 106 hyperspectral bands from EO-1 Advance Land Imager (ALI) 

multispectral bands using standard ground spectra of water, vegetation, and soil. They performed 

Land-Use and Land-Cover (LULC) classification using the Spectral Angle Mapper (SAM) classifier 

and obtained an overall accuracy of 87.6% from the simulated hyperspectral data compared to 

86.8% from ALI data. Tiwari et al. [32] used a similar simulation technique to generate a LULC 

map for a site located in northern India. They simulated hyperspectral data from Landsat 8 

Operational Land Imager (OLI) multispectral data using spectra of vegetation, water, and sand as 

the endmembers. Using a SAM classifier, they obtained an overall accuracy of 69.4% from 
simulated hyperspectral data compared to 63.0% accuracy from OLI data.

Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) is the most 

advanced imaging spectrometer developed by NASA's Jet Propulsion Laboratory (JPL). The 

AVIRIS-NG sensor offers a higher signal-to-noise ratio, excellent system calibration, and more 

accurate image geo-rectification [34]. The data are available at wavelengths ranging from 380 to 

2510 nm with a 5 nm bandwidth, at spatial resolutions of a few meters (depending on flying height) 
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(Figure 2.1). Previous studies [31,32] attempted to simulate Hyperion data from EO-1 ALI and 
Landsat 8 OLI multispectral datasets in order to improve LULC classification. The Hyperion 

sensor flew on the EO-1 satellite from 2000 to 2017, and it has 242 spectral bands in the range 

of 400-2500 nm and 30 m spatial resolution [35]. Simulation of AVIRIS-NG data is as yet 
unexplored, and that offers an opportunity to explore AVIRIS-NG data simulation to generate low

cost hyperspectral data for improved vegetation and LULC mapping. Sentinel-2 is the most recent 

multispectral sensor with global coverage and open data access. It has 13 spectral bands (spatial 

resolution: 10 m for visible-near infrared bands, and 20 m for SWIR bands) (Figure 2.1), especially 

the presence of red edge, NIR, and SWIR bands, and higher spatial resolution makes it apt for 

hyperspectral simulation [36,37,38].

The overarching goal of this study is to generate low-cost and high-quality hyperspectral 
data from widely available Sentinel-2 data to meet the need for greater spatial and temporal 

coverage of hyperspectral data for improved vegetation and fuel mapping in the boreal forest. In 

this study, we simulated an AVIRIS-NG hyperspectral dataset from a Sentinel-2 multispectral 

dataset using the UPDM spectral reconstruction approach for the boreal forest of Alaska. Since 

birch (Betula papyrifera: a deciduous species) and spruce (Picea mariana: a coniferous species) 

are the dominant trees at the test site, and accurately distinguishing coniferous and deciduous 

forest is essential for fire behavior modeling, we used the spectra of birch, spruce, and gravel 

(bare ground and rocky areas) as the endmembers for simulation. We visually and statistically 

compared the results of the simulated hyperspectral dataset with the AVIRIS-NG dataset.

Figure 2.1: The graph at the center shows of AVIRIS-NG and Sentinel-2 bands. A reflectance profile of a 
vegetation pixel extracted from AVIRIS-NG (blue line). The columns represent Sentinel-2 bands (cream 

color); numbers at the top of the column are Sentinel-2 band numbers.
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2.3. Materials and methods

2.3.1. Study area

The Caribou-Poker Creeks Research Watershed (CPCRW) is spread over a 104 square 
km area reserved for scientific study, including ecology, meteorology, and hydrological research.

CPCRW is located in interior Alaska, 64 km northeast of Fairbanks (65.15° N, 147.50° W). We 

selected a test site within CPCRW for this study (Figure 2.2), where we had availability of an 

AVIRIS-NG scene. The air temperature varies from winter minima of -50 °C to summer peaks 
reaching 33 °C, with a long-term annual mean temperature of -3 °C. This area is typically under 

snow cover between October and April. The mean annual precipitation is about 262 mm, and 

30% of it is in the form of snowfall [39].

Figure 2.2: Study area: Caribou-Poker Creeks Research Watershed (CPCRW). Right: AVIRIS-NG subset

(R:54, G:36, B:18; date acquired: 21 July 2018); white dots show the field survey locations.
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2.3.2. Processing workflow

Figure 2.3 shows the processing workflow. The input data consists of Sentinel-2 

multispectral imagery, the Spectral Response Function (SRF) of Sentinel-2 and AVIRIS-NG 

sensors, and spectra of birch, spruce, and gravel collected using the Spectral Evolution® PSR + 

3500 hand-held spectroradiometer (Spectral Evolution Inc., Lawrence, MA, USA). The PSR + 

3500 provides reflectance data in the range of 350-2500 nm at 1 nm spectral resolution for a total 
of 2151 channels.

The methodology is divided into four major phases: (1) field data collection, (2) remote 
sensing data preprocessing, (3) hyperspectral simulation, and (4) validation.

Figure 2.3: Flowchart showing processing workflow of hyperspectral simulation and validation.

2.3.3. Field data collection

We collected all field data during the summer of 2019 and 2020. We collected several leaf 

spectra samples for different tree/shrub species using a PSR + 3500 Field Spectroradiometer. 

We collected the field spectra on 17 August 2019 between 11:00 to 14:00 (weather: sunny with 

clear sky; solar noon: 14:06). We collected spectra holding the optic 2 inches away from leaves 
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and collected a minimum of 4 samples for each endmember. We used the mean endmember 
spectra in the simulation [20].

For the image classification, we recorded tree locations from stands where one type of 

tree species was present in clusters or groups. This enabled us to identify near to pure pixels for 

training and testing the image classifier as well as to reduce the background noise. In Figure 2.2, 

the white dots denote the locations of the sample sites. We surveyed sample sites using a Trimble 

Real-Time Kinematic (RTK) Global Positioning System (GPS) unit that offers millimeters 

positional accuracy. The study site (CPCRW) is part of protected state forests. The vegetation 

change at this site due to natural succession takes places at multiple decades to century time 

scales. However, dramatic vegetation change can occur due to wildfires or insect outbreaks. 

During the field survey, we did not observe any evidence of fire or insect outbreak within the study 

area. Also, we are not aware of any report of forest damage or change in the study areas since 

2018 (when the AVIRIS-NG image was collected). So, we are certain that the use of field data 

collected in 2019 and 2020 for image classifier training and classification accuracy assessment 

are reasonable and resulted in accurate and reliable map products.

2.3.4. Remote sensing data preprocessing

2.3.4.1. Multispectral data preprocessing

We used atmospherically corrected Sentinel-2 Level-2A reflectance data available from 

the European Space Agency (ESA) Copernicus Open Access Hub [38] acquired on 24 July 2018. 

Sentinel-2 bands are available in different resolutions. The visible bands (band 2, 3, and 4) and 

the NIR band (band 8) have 10 m resolution, while the vegetation red edge bands (bands 5, 6, 7, 

and 8A) and the SWIR bands (band 11 and 12) have 20 m resolution. We resampled the pixels 

of all the bands with 20 m resolution to the lowest pixel resolution of 10 m to keep the pixel counts 

the same for all bands in the simulation. We removed coastal aerosol, water vapor, and cirrus 

bands from the data, and layer-stacked the remaining bands. From the stacked data, we clipped 

out the study area. Sentinel-2 data preprocessing was performed in the Quantum GIS (QGIS) 

software version 3.4 developed by the QGIS development team [40].

2.3.4.2. Hyperspectral data preprocessing

In this study, we used an AVIRIS-NG level 2 [41,42] product acquired on 21 July 2018, 

which covers a portion of CPCRW. The AVIRIS-NG scene has 425 bands and 5 m spatial 

resolution. Some of these bands were removed since they were from wavelengths dominated by 

water vapor and methane absorption and contained noise due to atmospheric scattering and poor 

radiometric correction. We refer to such bands as bad bands. All the bad bands were removed 
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from the original scene using the ENVI classic software [43]. We manually visualized each band 
and removed the noisy bands, resulting in a 332-band subset. Table 2.1 identifies all the bands 

which we removed from the original AVIRIS-NG data [44]. We used a spatial subset of the 
AVIRIS-NG scene for the study.

Table 2.1: List of bad bands removed from AVIRIS-NG.

Bands Wavelength (nm) Remarks

1-30 376.85-522.09985
Noise due to atmospheric scattering and 

poor sensor radiometric calibration

196-210 1353.55-1423.67 Water vapor absorption bands

288-317 1814.35-1959.60 Water vapor absorption bands

Noise due to poor radiometric calibration
408-425 2415.39-2500.00 and strong water vapor and methane

absorption

2.3.5. Hyperspectral simulation

The process of hyperspectral data simulation is divided into three steps: (1) ground 

spectra normalization, (2) calculation of weighted fractional coefficients, and (3) hyperspectral 

data simulation.

2.3.5.1. Ground spectra normalization

We used ground spectra from multiple locations for all three endmembers: birch, spruce, 

and gravel, and used their mean spectra in the simulation. We normalized each endmember 

spectrum by convolving it with the spectral response function (SRF) of both the multispectral and 

the hyperspectral sensors. The SRF is the probability that the sensor will detect a photon of a 

given frequency and it depends on the central wavelength and the bandwidth of the sensor [45]. 
The Sentinel-2 SRF was obtained from the Sentinel-2 document library [46]. The SRF of AVIRIS- 

NG was not directly available, but the Full Width at Half Maximum (FWHM) values were available. 

We used a Gaussian function to generate the AVIRIS-NG SRF [31], assuming that the peak of 

the Gaussian curve with respect to the central wavelength is at 1 (Equation (2.1)). We used 

Equation (2.2) to determine the bandwidth, ".
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where:
# = gaussian function

4 = band number

% = central wavelength

" = bandwidth

% = wavelength
,-./) = Full Width at Half Maximum values for each band 

Using the above Gaussian function, we constructed the SRF for all the bands of AVIRIS-NG.

2.3.5.2. Calculation of weighted fractional coefficients

In this step, we used the Universal Pattern Decomposition Method (UPDM), a linear 

unmixing method, used to model landcover in proportion to the endmember spectrum present in 

each pixel of the image [31,32,47]. This method uses normalized ground spectra and the 

reflectance from multispectral data to estimate weighted fractional coefficients. This method 

assumes that each pixel of the multispectral data is a linear mixture of normalized ground spectra 

in the image using Equation (2.3):
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where:

4 = Number of bands (1 to <)

= = Number of endmember or class (1 to 3)

5i = Reflectance value of ith pixel in the image

Pij = Field spectra of the jth component, i.e., classes

Cj = Fraction of coefficient of the jth component within the pixel



We can represent the linear unmixing equation for all the pixels in the image in matrix form 
using Equation (2.6): 

where:
R = total pixel reflectance

C = proportion of class

P = normalized ground reflectance 

b = birch 
s = spruce 

g = gravel

n = number of bands

For a multispectral sensor, we can represent Equation (2.4) as:

:8 can be calculated via inversion by applying the least squares method in Equation (2.7):
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We calculated :8 using the multispectral data and Equation (2.8). It is the fraction of each 

endmember in a pixel (i.e., fractional coefficient) in the form of a matrix for the whole image. 58 

is the matrix with reflectance values from Sentinel-2 multispectral data and 88 is a matrix that 

contains the normalized ground spectra (birch, spruce, and gravel).



2.3.5.3. Hyperspectral data simulation

This step requires the fractional coefficient image of the multispectral data and the SRF of 

the hyperspectral sensor as inputs. For a pixel, the proportion occupied by an endmember will be 

the constant at a constant spatial resolution, irrespective of the sensor type. The simulated 

hyperspectral data will have the same spatial resolution as Sentinel-2 data. Therefore, the 

fractional coefficients (:8 ) calculated using the multispectral data (Section 2.3.5.2.) will be the 

same. We also normalized the ground spectra of the three classes using SRF of hyperspectral 

data, as mentioned in Section 2.3.5.1. By using these two matrices, we calculated the simulated 

reflectance values using Equation (2.9):

5; = 8;. :; (2.9)

Since :; = :8, we can replace :; in Equation (9) with value :8 from Equation (2.8):

5; = 8;.(889.88)-1.889. 58 (2.10)

Here, in Equation (2.10), 5; contains the reconstructed band values of the hyperspectral 

data, in the form of a matrix. This matrix was written as a raster file (GeoTiff format).

We performed hyperspectral data simulation in Python 3 [48] using Pandas library [49] to 

handle the data in a data frame format. Further, we used the Numpy library [50] to perform the 

matrix calculations. Finally, we used the GDAL library [51] to work with raster, especially to read 

and write the image data.

2.3.6. Validation

We validated the simulated hyperspectral data using visual interpretation, statistical 

analysis, and by comparing image classification results.

2.3.6.1. Visual and statistical analysis

We observed spectral signatures of different classes collected from AVIRIS-NG data, 

Sentinel-2 data, and simulated hyperspectral data, and further validated them using the field data. 

We compared the reflectance values and visually analyzed the pattern of the spectra. We also 

calculated the Pearson's correlation coefficient to evaluate the relationship between the spectra 

of simulated hyperspectral data and AVIRIS-NG data.

We performed a visual comparison using the Colored Infrared (CIR) image, also known 
as False-Color Composite (FCC) image, generated with bands 97, 56, and 36 as RGB for the 
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AVIRIS-NG and simulated hyperspectral image, and with bands 8, 4, and 3 as RGB for the 
Sentinel-2 image. We considered and analyzed different areas of interest based on how they 

differ visually in terms of the landcover pattern.

We computed the band-to-band correlation between the simulated hyperspectral data and 

the AVIRIS-NG data. This analysis indicated the degree of similarity to AVIRIS-NG bands and 

allows us to identify bands with low correlation values.

2.3.6.2. Classification

We classified the simulated hyperspectral data, AVIRIS-NG hyperspectral data, and 

Sentinel-2 data, and then compared results to validate the simulated hyperspectral data. Due to 

the presence of a large number of bands in both hyperspectral datasets, it was essential to select 

a suitable classifier. We chose a Random Forest (RF) classifier [52] to perform the classification 

due to its ability to deal with many features (bands). Another advantage of using RF was that 

there are only two user-defined parameters: the number of decision trees and the number of 

features per subset. RF produces each decision tree independently, and it splits each node of the 

decision tree using a number of features [53]. We performed RF classification using the 

‘RandomForestClassifier' function of the scikit-learn library [54] in Python 3, and both user-defined 

parameters were kept constant in all three cases. A low number of decision trees tend to create 

a bias in the result when dealing with multidimensional datasets, while with a high number of 

trees, the error gets stabilized. Hence, we took 500 decision trees for training the classifier [53]. 

We obtained the features per subset by calculating the square root of the total number of bands. 

Therefore, in our case, the number of features per subset will be √(332) ≈18. We trained the RF 
classifier using the field survey locations as a guide and performed species-level classification in 

all three cases.

We surveyed vegetation at 29 plots in the field, of which 30% were used for testing the 

classification accuracy while the remaining plots were used to train the classifier. The total number 

of pixels surveyed on the ground for each class are presented in Table 2.2.

Table 2.2: Class-wise total number of pixels surveyed on the ground during fieldwork.

Class Number of Pixels
Spruce 1847
Birch 426

Alder 302

Gravel 129
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When using a machine learning classifier for LULC classification, it is preferable to have 
the same number of pixels in all the classes [55]. In our case, the number of pixels in the training 

and testing datasets for each class was different (Table 2.2), so to balance the pixels in all the 
classes, we applied the Synthetic Minority Oversampling Technique (SMOTE) [56]. SMOTE is an 

oversampling technique that duplicates the classes having fewer samples using the minority data 
population. While it increases the data, it does not add any new information to the machine 

learning model.

For accuracy assessment of the three classification outputs, we calculated confusion 
matrices [57], which indicate how many pixels are correctly identified. From the confusion matrix, 

we can evaluate the accuracy of each class in terms of producer accuracy, user accuracy, and 
kappa value. Producer accuracy identifies how often the real features on the ground are correctly 

shown on the map. Conversely, the user accuracy indicates how often the class on the map will 

be present on the ground.
2.3.7. Fuel type classification

We classified the simulated hyperspectral data using a Random Forest classifier to 

generate a fuel map of the study area. We identified different fuel classes from the ground data 

based on the fuel guide provided by the Alaska Wildland Fire Coordinating Group [58]. We used 

ground data from 58 surveyed field plots in 2019 and 2020 and were able to identify a total of 7 

fuel classes.

2.4. Results

We simulated 332 bands of AVIRIS-NG based on the Sentinel-2 multispectral data and 

performed species-level as well as fuel-level classification. Figure 2.4 shows color infrared (CIR) 

images of the simulated hyperspectral data along with the AVIRIS-NG and Sentinel-2 data at the 

study site. Visual comparison of AVIRIS-NG and simulated hyperspectral data demonstrated high 

spatial and spectral similarity (Figure 2.4). Since these images are in CIR composition, broadleaf 

vegetation appears bright red. The central region of the study site mostly consists of deciduous 

forest and dense canopy. The top and the bottom region of the study site are dark green due to 
the dominance of needle-leaved species (mostly black spruce).
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Figure 2.4: CIR image of Sentinel-2 (R: 8, G: 4, B: 3) data, simulated hyperspectral data
(R: 97, G: 56, B: 36), and AVIRIS-NG data (R: 97, G: 56, B: 36).

2.4.1. Spectral profile comparison

The simulated hyperspectral data capture most of the absorption features and reflectance 

patterns present in the original AVIRIS-NG data. Figure 2.5 shows the comparison between 

spectral profiles of birch vs. spruce. The spectral signatures were selected from the regions where 

clusters of respective species were available on the ground.
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Figure 2.5: Comparison of spectral signature of (a) birch and (b) spruce for the three datasets.

We found correlation coefficients (r) of 0.97 and 0.92 between the reflectance values of 
the simulated hyperspectral data and the AVIRIS-NG data for birch and spruce, respectively. We 

also observed that for both cases, the spectra almost overlapped in the NIR region, while there 

were some minor deviations in the visible and the SWIR regions. The strong positive correlations 

confirm that the simulated hyperspectral data is capturing most of the absorption features and 

reflectance patterns present in the original AVIRIS-NG data.

2.4.2. Visual interpretation

The simulated hyperspectral data match very well with the actual hyperspectral data upon 

visual inspection (Figure 2.6). In Figure 2.6a, a trail can be identified in the middle of the study 

area. In the Sentinel-2 image, the trail was hardly visible, and it was difficult to discriminate 
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between the different vegetation classes, while in the case of the simulated hyperspectral image, 
the vegetation classes were easily differentiable, and the trail is clearly visible (enlarged in yellow 

circle). Indeed, the simulated hyperspectral image conveys a level of detail that looks similar to 

that of the original AVIRIS-NG image. In Figure 2.6b, we highlight a square patch of young alder 

and birch on the ground (in the yellow circle). In the simulated hyperspectral data and AVIRIS NG 

image, the features of the patch are easily distinguishable, but less so in the Sentinel-2 image. A 

third area with patches of low-growing vegetation including moss, cottongrass, tussock, and low 

shrub (blueberry and dwarf birch) was distinguished by the simulated hyperspectral image and 

AVIRIS-NG but not in the Sentinel-2 image (see yellow circle, Figure 2.6c). In the simulated 

hyperspectral image, more features and vegetation classes can be identified, similar to the 

AVIRIS-NG data. In contrast, in Sentinel-2, most of the area is covered by a single class.

Figure 2.6: Visual analysis of the simulation result using CIR image composite for 3 areas: (a) central trail, 
(b) birch and alder patch, and (c) moss, blueberry, and dwarf birch.

2.4.3. Statistical analysis

In the simulated hyperspectral image, most bands showed good correlation with AVIRIS- 
NG, while a few showed a low correlation (Figure 2.7). There was high correlation in the NIR 

region, while correlation was poor in the visible and SWIR ranges.
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Figure 2.7: Band-to-band correlation between simulated hyperspectral and AVIRIS-NG data.

2.4.4. Image classification

Figure 2.8 highlights the results of species-level Random Forest classification. We 

performed the classification with four major classes: black spruce, birch, alder, and gravel. We 

obtained higher classification accuracy for simulated hyperspectral data than Sentinel-2 data. 

Table 2.3 shows the accuracy assessment of the three classification outputs. Since we 

considered only near to pure pixels for both training and testing, all three classes showed good 

classification accuracies. AVIRIS-NG performed the best with 94.6% accuracy and kappa = 0.93, 

followed by the simulated hyperspectral data showing 89% accuracy and a kappa value of 0.85, 

and finally Sentinel-2, with 77.8% accuracy and a 0.70 kappa value (Table 2.4).

For all the classes, the classified AVIRIS-NG dataset gave the best results for the user 

and the producer accuracy (Figure 2.9). Also, there was a substantial improvement in the 

accuracy of all the classes in the case of simulated hyperspectral data results when compared to 

the Sentinel-2 results.

To assess the effects of the different reflectance values on image classification accuracy, 
we reduced the reflectance of the original AVIRIS-NG data by 5% to 25% at an interval of 5% at 

each step and performed image classifications and accuracy assessments. We did not find any 

significant change in classification accuracy (Figure 2.10) due to a reduction in reflectance values. 

Based on these observations, we conclude that (up to 25%) differences in reflectance values 

(between original AVIRIS-NG and simulated hyperspectral data) have little or no impact on overall 

image classification accuracy.
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Figure 2.8: Tree species classification map generated using the Random Forest classifier for the three 
datasets.

Figure 2.9: Class-wise comparison of (a) producer accuracy and (b) user accuracy obtained from the 
classification results for the three datasets.
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Table 2.3: Confusion matrices of classification results for the three datasets.

Sentinel-2 Classification Confusion Matrix (Test Data)

Reference Data

Total

Producer

Accuracy
(%)

Black Spruce Birch Alder Gravel

M
ap

 D
at

a

Black Spruce 642 33 9 22 706 90.9%

Birch 0 488 218 0 706 69.1%

Alder 0 61 543 102 706 76.9%

Gravel 183 0 0 523 706 74.1%

Total 825 582 770 647 2824

User Accuracy (%) 77.8% 83.8% 70.5% 80.8%

Simulated Hyperspectral Classification Confusion Matrix (Test Data)

Black Spruce

Reference Data

Gravel
Total

Producer

AccuracyBirch Alder

M
ap

 D
at

a

Black Spruce 666 0 40 0 706 94.3%

Birch 53 653 0 0 706 92.5%

Alder 0 42 563 101 706 79.7%

Gravel 0 21 53 632 706 89.5%

Total 719 716 656 733 2824

User Accuracy (%) 92.6% 91.2% 85.8% 86.2%

AVIRIS-NG Classification Confusion Matrix (Test Data)

Black Spruce

Reference Data

Gravel
Total

Producer

AccuracyBirch Alder

M
ap

 D
at

a

Black Spruce 688 0 17 1 706 97.5%

Birch 0 679 5 22 706 96.2%

Alder 0 39 667 0 706 94.5%

Gravel 38 0 37 631 706 89.4%

Total 726 718 726 654 2824

User Accuracy (%) 94.8% 94.6% 91.9% 96.5%
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Table 2.4. Overall accuracies of the classification results for the three datasets.

Data Overall Accuracy

Sentinel-2 77.8%

Simulated hyperspectral data 89.0%

AVIRIS-NG data 94.4%

Figure 2.10: Variation of Accuracy with reduction in reflectance values of AVIRIS-NG data.

2.4.5. Fuel map

Upon fuel type classification, we found that the simulated hyperspectral data provided 
65% overall accuracy, while classification accuracy of Sentinel-2 data was 56%. Figure 2.11 

shows the fuel map, where we classified a total of 7 fuel types.
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Figure 2.11: Fuel type map for study area generated using Random Forest classification on the simulated 

hyperspectral dataset.

2.5. Discussion

This study demonstrated the potential of simulated hyperspectral data for the purpose of 
forest fuel mapping. Visual inspection of RGB composites shows that the simulated hyperspectral 

image is similar to AVIRIS-NG image in texture, tone, and shading. The spectral comparison 

shows that the band-to-band correlations vary by wavelength, with highest correlations found in 

the NIR region, moderate in the SWIR region, low in the visible region, and very low along the 
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red-edge region (Figure 2.7). This is likely due to NIR scattering and non-linear mixing. In a study 
by Roberts et al. [19], non-linear mixing results in residual errors along the red-edge. These errors 

are present because plants do not scatter much in the visible region but do scatter in the NIR 

region. Since the NIR dominates the mixture, this results in high NIR correlation, but lower visible 

and SWIR correlation. We can minimize this problem by using field spectra collected at a scale 

that includes multiple scattering [20].

We found that the difference in reflectance values over the near infrared region (700-1400 
nm) is relatively small, and the visual pattern of the spectra is also similar. Notable differences in 

the reflectance values in the SWIR region (1500-1800 nm) were observed. Zhang et al. [47] 

performed a similar simulation in which the simulated spectra showed little to no difference below 

1000 nm, but a notable difference was found above 1000 nm wavelength when compared with 

the original spectra. This difference could be due to the variation in spatial resolution, especially 

in the SWIR region, 20 m for Sentinel-2 vs 5 m for AVIRIS-NG. The pixel resampling also 

contributed to the difference in reflectance value, where we resampled the 20 m pixel size of the 

Sentinel-2 SWIR region to a 5 m pixel size. The atmospheric corrections applied to Sentinel-2 

data and AVIRIS-NG data were different due to the fact that Sentinel-2 data was captured from 

space while AVIRIS-NG data was captured from an aircraft at an altitude of 10.6 km, and that the 

data had different acquisition dates [59]. Therefore, the instantaneous field of view and the 

atmospheric corrections for these sensors are appreciably different, contributing to differences in 
reflectance values [31,60].

Visually, the simulated hyperspectral data appears similar to the AVIRIS-NG data, with 

minute spatial details preserved. The overall observation is that the simulated hyperspectral 

imagery provides an improved spectral resolution from Sentinel-2 imagery. We used three 

endmembers, and yet, areas of different vegetation cover types (moss, blueberry, and dwarf 

birch), which are not distinguishable in Sentinel-2 data, are clearly differentiable in the simulated 

hyperspectral data. In an open forest setting, woody materials such as downed logs, standing 

tree boles, dry grass, and leaf litter, together referred to as non-photosynthetic vegetation (NPV), 

can contribute to the reflectance of an image pixel [19]. In this study, we did not use NPV as an 

endmember. It would be interesting to further experiment with this simulation by adding a NPV 

variable in the UPDM equation as an endmember. Shade is another endmember that could be 

added to the equation, especially when working on the boreal forest where the canopy density is 

low.
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In agreement with Liu et al. [31] and Tiwari et al. [16], we obtained higher classification 
accuracy from simulated hyperspectral data than the Sentinel-2 data (Table 2.4). The majority of 

misclassifications were gravel pixels. Gravel is mostly present on the narrow trails, and the young 

alder and birch patches present along the gravel trails were responsible for the misclassifications. 

Gravel was also misclassified with black spruce due to the open canopy structure, resulting in 

training pixels which included portions of ground reflectance reducing signal purity. In the case of 

Sentinel-2 results, birch was often misclassified with alder because of their spectral similarity, 

while simulated hyperspectral data performed better in discriminating these two species. This 

finding supports the notion that the simulated hyperspectral data can capture the minute spatial 

and spectral details of real hyperspectral data. The strength of this simulated dataset lies in 

providing spectrally enhanced data which can be used for detailed LULC classification. Tiwari et 

al. [32] used the UPDM technique to simulate Hyperion data for land cover classification at a test 

site in northern India, and obtained 6.45% improvement in mapping accuracy over ALI 

multispectral data. Likewise, in this study, we successfully simulated AVIRIS-NG hyperspectral 

data for species-level and fuel-level vegetation mapping at a test site in the boreal forest and 

obtained 11.2% improvement in mapping accuracy over Sentinel-2 data.

When we performed the fuel type classification, the simulated hyperspectral data achieved 

an overall classification accuracy of 65%. Smith et al. [14] carried out a detailed fuel type mapping 

from the original AVIRIS-NG data for the same study site and reported an accuracy of 61%. This 
suggests that simulated hyperspectral data can provide comparable mapping accuracy to real 

AVIRIS-NG data. Overall, these findings suggest that the generation of fuel maps from low-cost 

simulated hyperspectral data using the UPDM is feasible for Alaskan boreal forests.

2.6. Conclusions

The study aimed to simulate hyperspectral data from multispectral data and evaluate its 

utility compared to real hyperspectral data for fire fuel mapping. We found the universal pattern 

decomposition method (UPDM) to be a reliable algorithm for spectral unmixing. This algorithm 

requires ground measured spectra, and SRF from both multispectral and hyperspectral sensors. 

The algorithm is sensor-independent. Using UPDM, we successfully simulated 332 bands of 

AVIRIS-NG data from Sentinel-2 multispectral data. We validated the simulation results through 

visual interpretation, statistical comparison, and image classification. The visual inspection of 

simulated hyperspectral imagery reveals details of the vegetation fuel complex that are significant 

for predicting fire behavior but not discernible in the 30 m resolution multispectral imagery. There 

was a high correlation between the spectral signature of the tree species generated from actual 
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and the simulated hyperspectral data as well as high band-to-band correlation between both of 
the datasets. Finally, the classification results validated the improvement in fuel mapping 

accuracies for each class when compared with Sentinel-2 data. Our simulation results are 

encouraging and offer a path forward to generate a detailed fuel map for the entire boreal domain, 

which would be extremely useful for fire management and fuel treatment.
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Chapter 3 A Novel Method to Simulate AVIRIS-NG Hyperspectral Image from Sentinel-2 Image 
for Improved Vegetation/Wildfire Fuel Mapping, Boreal Alaska2

2 Badola, A., Panda, S. K., Roberts, D. A., Waigl, C. F., Jandt, R. R., & Bhatt, U. S. (2022). A novel method 
to simulate AVIRIS-NG hyperspectral image from Sentinel-2 image for improved vegetation/wildfire fuel 
mapping, boreal Alaska. International Journal of Applied Earth Observation and Geoinformation, 112, 
102891. https://doi.org/10.1016/J.JAG.2022.102891

3.1. Abstract

Detailed vegetation maps are one of the primary inputs for forest and wildfire 

management. Hyperspectral remote sensing is a proven technique for detailed and accurate 

vegetation mapping. However, the availability of recent hyperspectral imagery in Alaska is limited 

because of the logistics and high cost involved in its acquisition. In this study, we simulated 

AVIRIS-NG (Airborne Visible InfraRed Imaging Spectrometer - Next Generation) hyperspectral 

data from widely available Sentinel-2 multispectral data using the Universal Pattern 

Decomposition Method (UPDM). The UPDM is a spectral unmixing technique that uses detailed 

ground spectra of vegetation classes and the Spectral Response Functions of AVIRIS-NG and 

Sentinel-2 sensors to simulate imagery with the same number of bands and spectral resolution 

as an AVIRIS-NG image. We simulated three images (each covering an area of 100 km x 100 
km) from two ecoregions to test portability of the approach. We collected ground spectra of 

vegetation and bare ground during summers (2019-2021) using a PSR+ 3500 hand-held 
spectroradiometer and created a spectral library for this study. The Iterative Endmember 

Selection (IES) algorithm was used to optimize the spectral library and to select the most 

representative endmembers for simulation: birch, spruce, and gravel. We validated the simulated 

hyperspectral imagery by comparing it with available AVIRIS-NG images. The simulated image 

was visually and spectrally similar to the AVIRIS-NG image (RMSE of 0.03 and 0.02 for birch and 

spruce spectra, respectively). We applied the Random Forest image classification model to derive 

detailed vegetation maps from the simulated images. Our vegetation map showed an 

improvement of 33% in the map accuracy compared to the LANDFIRE EVT map. This study 

demonstrated an efficient and cost-effective approach to derive detailed vegetation maps at the 

Sentinel scene scale by simulating hyperspectral images in Google's cloud environment. It offers 

a novel pathway to generate detailed vegetation and fuel maps for the whole boreal region of 

Alaska to aid effective forest and fire management.
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3.2. Introduction

Alaska has an area of approximately 78 million hectares covered with boreal forests 

(Nowacki et al., 2003; U.S. Geological Survey, 2001). These forests extend from the Coast Range 

in the south to the Brooks Range in the north. Wildland fire is a ubiquitous feature of the boreal 

forest and in the past two decades (2001-2020) wildfires burned 12.7 million hectares of forest in 

Alaska (International Arctic Research Center, 2021). Alaska's boreal forest is highly flammable 

because of the dominance of black spruce, which is highly combustible, and its low-lying canopy 

structure, which serves as ladder fuel and promotes crown fires and rapid fire spread. In boreal 

forests, the ground surface is covered with feather moss, lichen, and fine fuels that ignite easily 

in dry conditions (National Park Service, 2021). Fire managers and the research community aim 

to improve fire management by generating and using improved fire spread models, climate and 

fuel inputs. Vegetation/fuel maps are one of the key inputs for fire risk assessment and fire spread 

modeling. Fire managers need accurate vegetation maps to constrain fire spread by locating the 
potential areas of risk, appropriately allocating suppression resources, and applying fuel 

treatments.

Remote sensing of vegetation and forest is a proven approach to mapping vegetation type 
and wildfire fuel distribution (Dudley et al., 2015, Wagner et al., 2018, Xie et al., 2008, Badola et 

al., 2019, Badola et al., 2021a, Smith et al., 2021). Specifically, multispectral sensors onboard 

Landsat, Sentinel 2A and 2B, and Terra/Aqua satellites image the entire globe, and their image 

data are heavily used for vegetation mapping (Dobrinić et al., 2021, Grabska et al., 2019, Mudele 
and Gamba, 2019). In the USA, Landscape Fire and Resource Management Planning Tools 

(LANDFIRE) is a shared program between the U.S. Department of Agriculture and the U.S. 
Department of the Interior (https://landfire.gov/about.php). It provides geospatial products, 

including vegetation and fuel maps, to state and federal fire management agencies for wildfire 

mitigation (Reeves et al., 2009). In Alaska, the LANDFIRE Existing Vegetation Type (EVT) map 

product derived from Landsat image data (9 bands) at 30 m spatial resolution is traditionally used 

for fire management, fire spread modeling, and risk assessment. The accuracy of the LANDFIRE 

EVT 2014 map product ranges between 20% and 45% as per accuracy assessment at three sites 
(Develice, 2012, Smith et al., 2021). The Alaska Center for Conservation Science (ACCS) offers 

the Alaska Vegetation and Wetland Composite (AVWC) map product, also generated from 30 m 

Landsat image data, which includes land cover, wetlands, and deep-water maps for Alaska to 

promote wetlands and deep-water habitat management (Alaska Vegetation and Wetland 
Composite, 2019).
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Imaging spectroscopy or hyperspectral remote sensing provides an opportunity to 

generate improved vegetation and fuel maps. A hyperspectral remote sensing sensor images the 

landscapes in hundreds of narrow contiguous bands, making it more effective for vegetation 

mapping than a multispectral sensor. However, the high dimensionality of the hyperspectral data 

may reduce the map accuracy due to the Hughes phenomenon (Hsu, 2007). Despite the 

constraint posed by high data dimensionality, recent studies (Govender et al., 2019, Badola et al., 

2021a, Smith et al., 2021) have shown that hyperspectral data provides more accurate and 

detailed vegetation/species maps than multispectral data for the boreal region of Alaska. The 

application of hyperspectral data in vegetation mapping is highly effective, but hyperspectral data 

are not readily available. NASA JPL provides airborne hyperspectral data collected using the 

state-of-the-art Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) 

sensor. These data are highly sought for vegetation/tree species mapping (Ahmad et al., 2021, 

Badola et al., 2021a, Clark et al., 2005, Hati et al., 2021, Salas et al., 2020, Singh et al., 2021, 

Smith et al., 2021, Zhang, 2014) due to their narrow bandwidth of 5 nm including a wavelength 

range of 400-2500 nm, meter-scale spatial resolution, and high signal-to-noise ratio. NASA's JPL 
team recently acquired AVIRIS-NG data over select sites in Alaska as part of the Arctic-Boreal 

Vulnerability Experiment (ABoVE) airborne campaign, but these acquisitions cover a fraction of 

Alaska's boreal forest, so the available hyperspectral data is insufficient for any regional scale 

vegetation/fuel mapping. In order to have hyperspectral image data for the whole boreal forest of 

Alaska, we conceived the idea of simulating AVIRIS-NG hyperspectral image data from widely 

available Sentinel-2 image data at Sentinel scene scale (100 km x 100 km) by modifying the 

approach developed by Badola et al. (2021b) and implementing it in Google's cloud environment 

for efficient processing.

Simulation of hyperspectral image data is an emerging research area in the field of remote 

sensing. A few studies have attempted to simulate hyperspectral data from multispectral data and 

ground spectra of vegetation and soil using a spectral reconstruction approach. Liu et al. (2009) 

simulated Hyperion data from ALI multispectral data using the Universal Pattern Decomposition 

Method (UPDM), a sensor-independent spectral unmixing technique (Zhang et al., 2007). The 

UPDM calculates the proportion of each class in a pixel and uses the spectral response function 

of the sensors. This approach was further tested by Tiwari et al. (2016) to simulate Hyperion data 

from ALI data for Land-Use and Land-Cover (LULC) mapping. They successfully simulated 70 

Hyperion bands for a test site in Uttarakhand, India. Using UPDM, Badola et al. (2021b) 

successfully simulated AVIRIS-NG data (332 bands) from Sentinel-2 data for a boreal forest test 

site near Fairbanks, Alaska. They obtained higher classification accuracy from simulated data 
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(89%) than Sentinel 2 data (78%). In this study, our goal was to simulate the AVIRIS-NG data 

from the Sentinel-2 image data at Sentinel-2 scene scale for regional scale vegetation mapping 

and to test the simulation reproducibility across space and time. We had four research objectives:

A. Implement the Iterative Endmember Selection (IES) algorithm to derive the most 

representative endmember ground spectra for the boreal region of Alaska.

B. Improve upon the Badola et al. (2021b) simulation algorithm to generate AVIRIS-NG 
hyperspectral image at Sentinel-2 scene scale (100 km X 100 km).

C. Derive detailed vegetation maps from the simulated hyperspectral data using a machine 

learning classifier and assess model accuracy and portability across space.
D. Implement the hyperspectral image simulation and vegetation classification algorithms in 

the Google cloud platform for efficient processing and ease of sharing with the research 

community.

3.3. Materials and methods

The methodology is divided into three major phases: A) endmember selection, B) 

simulation, C) classification and prediction (Figure 3.1). We obtained endmembers as the output 

from the first phase. These were used as input for the simulation phase to simulate the AVIRIS- 
NG hyperspectral data. We applied a Normalized Differenced Vegetation Index (NDVI) mask and 

added a Digital Elevation Model (DEM) layer to the simulated data and trained a Random Forest 

(RF) model using training data collected from the field. Finally, we applied RF on simulated 

AVIRIS-NG to map vegetation class maps.

3.3.1. Field data collection

This research required extensive fieldwork to collect ground spectra of vegetation for 

hyperspectral data simulation as well as vegetation survey for classification of the simulated 

image. We collected field data (vegetation survey and leaf spectra of all major tree and tall shrub 

species) over three summers (2019 - 2021). We collected a total of 432 leaf spectra (15 - 20 
spectra for each major tree/ tall shrub species) at three sites using a Spectral Evolution® PSR+ 

3500 hand-held spectroradiometer (Spectral Evolution Inc., Lawrence, MA, USA). The PSR+ 

3500 spectroradiometer provides reflectance data in the range of 350-2500 nm at 1 nm interval, 

comprising a total of 2151 channels. We collected leaf spectra by holding the optic at about 10 

cm distance from the target between 11:00 to 16:00 (local time; local solar noon at 13:56) in 

sunny, clear-sky weather. We collected branch scale and leaf scale spectra for trees and canopy
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scale spectra for shrubs (Figure 3.2). We also collected NPV spectra using a contact probe for 
tree bark. We targeted 12 public trails around the Fairbanks city and surveyed vegetation sites 

using a Garmin handheld GPS device that provides 3 m positional accuracy. At each site, we also 

recorded the information about canopy cover, vegetation composition, and understory vegetation 

that helped us in assigning vegetation class to a site. In Figure 3.3, the yellow triangles denote 

the locations of the collected ground data. Table 3.2 represents all the field data used in this study.

Figure 3.1: Processing Workflow (A: Endmember Selection; B: Simulation; C: Classification and 
Prediction).
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SRF: Spectral Response Function
NDVI: Normalized Difference Vegetation Index
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Figure 3.2: Vegetation spectra collection in the field; (a) branch scale spectra for birch using a bare fiber 
optic (b) branch scale spectra for black spruce using a bare fiber optic (c) leaf scale spectra for birch 

using a bare fiber optic (d) NPV spectra for birch bark using a contact probe.

Figure 3.3: Study area: Showing the Sentinel-2 scenes used in this study (R: B8, G: B4, B: B3); yellow 
triangles mark the vegetation survey locations. The star shows the location of Fairbanks, Alaska and the 

rectangle shows the Bonanza Creek Experimental Forest site (BCEF).
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Table 3.1: List of image datasets used in this study.

Data Scene Identifier
Acquisition

Date

Main area 

covered
Sub-ecoregion

Sentinel-2A S2AT06WVS July 22, 2018 Fairbanks
Tanana-Kuskokwim

Lowlands

Sentinel-2B S2BT06WWS July 24, 2018
East of

Fairbanks

Yukon-Tanana
Uplands

Sentinel-2B S2BT06WWU July 01, 2021 Yukon flats
Yukon-Old Crow 

Basin

AVIRIS-NG ang20180723t200207 July 23, 2018 Fairbanks
Tanana-Kuskokwim

Lowlands

AVIRIS-NG ang20170718t202618 July 18, 2017
South East of

Fairbanks

Yukon-Tanana
Uplands

AVIRIS-NG ang20190705t192514 July 05, 2019 Yukon flats
Yukon-Old Crow 

Basin

Table 3.2: List of field data used in this study.
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Data Instrument Location Time of Data
collection

Data 

collected

In-situ 

vegetation 

survey

Vegetation 
spectroscopy

Hand held Garmin 
GPS

PSR +3500 

Spectroradiometer 

GPS

12 public trails
explored around

Fairbanks

University of

Alaska, Fairbanks 
campus

BCEF

University of

Alaska, Fairbanks 
campus

CPCRW

BCEF

Summer, 2021

Summer, 2019

Summer, 2020

Summer, 2021

Summer, 2019 

and 2021

Summer, 2021

Vegetation 
composition, 

canopy cover, 

diameter and 

height

Spectra, 

sample 

location, 

vegetation 
type



The AVIRIS-NG scenes were acquired in 2018. Since we used these scenes to assess 
the spectral quality of simulated hyperspectral data, we used Sentinel scenes closer in date to 

the AVIRIS-NG scene acquisition dates (Table 3.1). In the Interior Alaska boreal forest, vegetation 

change can occur either due to natural succession, insect attack, wildfires, or anthropogenic 

disturbance such as timber harvesting. During fieldwork, we ensured that there was no evidence 

of insect outbreak or any major vegetation change at the study sites since 2018.
3.3.2. Data preprocessing

We used radiometrically and geometrically corrected Sentinel-2A level 1C (Top-of- 
atmosphere reflectance) data available from European Space Agency (ESA) Copernicus Open 

Access Hub (European Space Agency, 2014). Table 3.1 lists the datasets that were used in this 

study, including the sub-ecoregion where they belong (Nowacki et al., 2003). We used the 

Sen2cor processor (Louis et al., 2016) available in ESA's Sentinel Application Platform (SNAP) 

for atmospheric, terrain, and cirrus correction to obtain level 2A surface reflectance data. The size 

of each scene was 100 km x 100 km. Sentinel-2A data has 13 bands, from which we removed 
band 1 (coastal aerosol), band 9 (water vapor), and band 10 (SWIR-Cirrus). The visible bands 
(bands 2, 3, and 4) and NIR band (band 8) have 10 m resolution while the SWIR (bands 11 and 

12) and vegetation red edge bands (bands 5, 6, 7, and 8A) have 20 m spatial resolution. We 

resampled all 20 m bands to 10 m to preserve the best possible spatial resolution and better 
match the 5 m resolution of AVIRIS-NG. We used atmospherically corrected level 2 AVIRIS-NG 

data (NASA JPL, 2018) with 425 bands and 5 m spatial resolution to validate the simulated data. 

We removed bands that contained excessive noise due to atmospheric scattering or are 

dominated by methane and water vapor absorption. We used the ASTER Global Digital Elevation 

Model (GDEM) Version 3 (EarthData, 2021) as an additional feature for image classification. It is 

available at a spatial resolution of 1 arc second (approximately 30 m) (Abrams et al., 2020).

3.3.3. Building a spectral library of boreal vegetation and endmember selection

We collected a total of 432 spectra (15-20 spectra for each species) of trees/shrubs from the 
boreal region of interior Alaska. We created a spectral library of all the collected ground spectra 

using ENVI classic software (Exelis Visual Information Solutions version 5.3, 2010). The PSR+ 

3500 hand-held spectroradiometer also records the latitude, longitude, and elevation, along with 

each target spectrum. We extracted this information from all of the individual spectral files and 

created a separate metadata file for the spectral library. Furthermore, we did all spectral 

processing in the Visualization and Image Processing for Environmental Research (VIPER) Tools 
2 (beta) software (Roberts et al., 2018).
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Library pruning is an important step for creating a spectral library, as it reduces the size of a 

spectral library and provides the ideal spectra for each endmember. There are different library 
pruning techniques such as Endmember Average RMSE (EAR), Minimum Average Spectral 

Angle (MASA), Count-based Endmember Selection (CoB) and Iterative Endmember Selection 
(IES). These techniques rely on the square array (Roberts et al., 1997) that stores the information 

about how an endmember performs when used to unmix other spectra in the same library. The 

square array is an n x n grid of pixels where n is the total number of spectra and n along the row 

denotes the spectrum used for unmixing from other spectra. We can gather information about 

RMSE, shade fraction, and spectral angle from the square array. For more details on the square 

array refer to Roberts et al. (1997). In this study we used the IES (Roth et al., 2012, Schaaf et al., 

2011) method for library pruning. It calculates the kappa coefficient (McHugh, 2012) to create a 

subset of spectra which provides the best class separability. IES classifies the entire spectral 

library using a subset from the original library. Endmembers are iteratively added and removed 

from the subset until kappa no longer improves. IES has been used for different applications. 

Roberts, et al. (2015) used IES to discriminate urban surface materials. IES was implemented to 
map vegetation species (Dudley et al., 2015, Roberts et al., 2015) and for improved burn severity 

mapping (Fernandez-Manso et al., 2016). The IES algorithm was implemented in the VIPER 

Tools 2 (beta) software. We ran IES in fully constrained mode (RMSE and fraction constrained) 

with default parameter settings, i.e., RMSE threshold of 0.025.

After pruning, we got 105 spectra out of 432 for 15 endmember classes (Table 3.3). We used 

the average of the spectra as the endmember for simulation. Hence, we ended up with 15 

endmembers, including one for gravel. We initiated 15 endmembers as input for the simulation 

and compared our simulated product with AVIRIS-NG scene by collecting spectra from the known 

pixel (identified during field work) from both simulated and AVIRIS NG data. We reduced the 

number of endmembers in each iteration, tried different endmembers combinations (Table 3.4) 

for simulation, and simultaneously verified our results until we obtained similar spectra with low 

RMSE values. For the second iteration, we plotted all 15 endmembers (Figure 3.17), and removed 

similar endmember spectra. We ran the simulation model with 9 spectra. In the third iteration, we 

removed five more endmembers (alder, blueberry, larch, white spruce and asphalt). We kept one 

spectrum from each deciduous and coniferous class, gravel, and Non-Photosynthetic Vegetation 

(NPV) spectra (downed trunk). In the fourth iteration, we replaced downed trunk with asphalt and 

ran the simulation. In the fifth iteration, we used NPV spectra from the ECOSTRESS spectral 

library (Meerdink et al., 2019). We found a drastic discrepancy between spectra generated from 

simulated and AVIRIS-NG data in all the iterations. Finally, we used birch, black spruce and gravel 
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for simulation and found similar spectra with low RMSE values for spectra generated from 
simulated and AVIRIS-NG data.

Table 3.3: List of 15 endmembers obtained through Iterative Endmember Selection library pruning 

technique.

Endmembers

Alder Blueberry Balsam poplar

Downed trunk Black spruce Carex
Dwarf birch Green grass Larch

Labrador tea Birch Gravel

Asphalt Wild rose White spruce

3.3.4. Simulation of hyperspectral data

The process of hyperspectral data simulation is divided into three steps: ground spectra 

normalization, weighted fraction coefficients, and hyperspectral data simulation.

3.3.4.1. Ground spectra normalization

We normalized three endmembers (black spruce, birch and gravel) by convolving them 

with the Spectral Response Function (SRF) (European Space Agency, 2017) of both Sentinel and 

AVIRIS-NG sensors. We obtained the SRF for Sentinel-2 data from the Sentinel 2 document 
library. We calculated the AVIRIS-NG SRF from Full Width at Half Maximum (FWHM) using 

Gaussian functions (Badola et al., 2021b; Liu et al., 2009).

3.3.4.2. Weighted fractional coefficient

We used the Universal Pattern Decomposition Method (UPDM) to estimate the proportion 

of each endmember in every pixel of the image (Badola et al., 2021b; Liu et al., 2009, Tiwari et 

al., 2016). UPDM is a linear unmixing method that is structured for satellite data analysis (Zhang 

et al., 2006). It assumes that reflectance at each pixel of an image is a linear mixture of normalized 

endmembers. The equation expressed in matrix form represents the linear unmixing of three 
endmembers (b: birch, s: spruce, g: gravel) (Equation (3.1)).

(3.1)
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Where R is the total pixel reflectance, C is the proportion of class, P is the normalized ground 
reflectance, and n is the band number.

For a multispectral sensor, we can represent Equation (3.1) as.

3.3.4.3. Hyperspectral data simulation

The spatial resolution of the simulated hyperspectral image will be same as in the Sentinel- 

2 image, therefore the fraction of coefficients (:8 ) will remain the same. We normalized ground 

spectra (endmembers) using the SRF of the AVIRIS-NG sensor. Hence, we can calculate 

reflectance values using Equation (3.1) and Equation (3.3). The simulation method is discussed 

in more detail in Badola et al. (2021b). This simulated hyperspectral image has the same number 

of bands as AVIRIS-NG. Here, in Equation (3.4), 5; is the reconstructed reflectance values for 

the simulated hyperspectral image. We write out the simulated hyperspectral image file in GeoTiff 

file format.
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:8 is the fraction of coefficients of each endmember in a pixel in the form of a matrix for the whole 

image. 58 is the matrix with reflectance values from Sentinel 2 multispectral data and 88 is a 

matrix that contains the reflectance values from the normalized endmembers.

:8 can be calculated from Equation (3.2) using reflectance from Sentinel 2 data by applying least 

square method:

We implemented the hyperspectral image simulation in the Google cloud environment 

using Python 3 (Python Core Team, 2015) and a Jupyter notebook. We used the following libraries 

and packages: Pandas to handle the image data in a data frame; Numpy (Harris et al., 2020) to 

perform the matrix calculations; Rasterio (Gillies et al., 2013) to work with images, especially to 

read and write the image data. We implemented the algorithm by dividing a Sentinel scene 

covering an area of 100 km x 100 km into 36 square tiles of 2048 X 2048 pixels.



3.3.5. Simulated hyperspectral data validation

We validated the simulated data using spectral comparison, statistical analysis and visual 

interpretation. For spectral and statistical comparison, we extracted pixel spectra for birch and 

black spruce from AVIRIS-NG image data and the simulated hyperspectral image. These spectra 

were extracted from the pixels identified in the field. We compared the reflectance values and 

absorption peaks and visually analyzed the pattern of the spectra. We also calculated the Root 

Mean Square Error (RMSE) to evaluate the accuracy of the simulated birch and spruce pixel 
spectra.

We performed visual analysis by generating Colored Infrared (CIR) image using bands 

with wavelengths 843 nm, 662 nm, and 557 nm as RGB for the AVIRIS-NG and simulated 

hyperspectral image, and bands with wavelengths 842 nm, 665 nm and 560 nm as RGB for the 

Sentinel-2 image. We inspected and analyzed different areas of interest based on their visual 
appearance.

3.3.6. Image classification

We labeled each survey site to a vegetation class as per Viereck's Alaska Vegetation 

Classification (Viereck et al., 1992). For vegetation classes with similar spectra, we merged the 

classes (e.g., open birch forest and closed birch forest, Figure 3.18). Using an NDVI threshold of 

0.3, we masked out the non-vegetated pixels. We identified 16 vegetation classes, including one 

‘Other' class that represents non-forested open vegetated areas such as grasslands.

We performed image classification using the ‘RandomForestClassifier' function of the 

scikit-learn () in Python 3 with 500 decision trees and (425) ≈ 20 number of features per subset 
(Breiman, 2001, Pedregosa et al., 2011). We divided the survey data into two sets, a training set 

and testing set, and trained the classifier on a simulated hyperspectral scene (S2AT06WVS) that 

had the 16 vegetation classes representative of interior Alaska. The trained model was then used 

to classify two other simulated hyperspectral scenes to assess the model's portability to other 
sites.

3.3.7. Accuracy assessment

We performed the accuracy assessment using F1 scores and Intersection over Union 

(IoU). Each class has a different number of samples. The imbalance in classes can skew the 

results in favor of a more abundant class or classes with a greater number of samples and result 

in biased classification accuracy. In the event of imbalanced classes, classification accuracy is 

not enough to assess the classifier model performance. We used F1 score and IoU measures to 

evaluate the model performance. The F1 score is the harmonic mean of the precision and recall 
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of the model, with value ranging from 0 to 1. IoU (also known as the Jaccard index) measures the 
amount of overlap between the predicted and the actual label. A value of 0 means there is no 

overlap, while 1 denotes complete overlap. An IoU score greater than 0.5 is considered to be a 
good prediction.

We also compared our classified output with two available vegetation map products: 
LANDFIRE EVT (LANDFIRE, 2016) and the Alaska Vegetation and Wetland Composite 

(AKVWC) (Alaska Vegetation and Wetland Composite, 2019). We also compared the percentage 

cover of each species with the USDA Tanana Valley State Forest Pilot Inventory (Pattison et al., 
2018).

3.4. Results

In this section, we present the spectral, statistical, and visual comparison of simulated 

hyperspectral image with AVIRIS-NG and Sentinel 2 image, image classification results, and 

comparison of our classified vegetation map with two other existing products.

3.4.1. Spectral and statistical comparison

Simulated spectra accurately captured the key absorption features that were available in 

AVIRIS-NG data. For spectral and statistical analysis, we removed the 93 bands with noise due 

to atmospheric scattering and poor radiometric correction, and bands dominated by water vapor 

and methane absorption (Badola et al., 2021b). Figure 3.4 shows the comparison of simulated 

and AVIRIS-NG spectra for birch and spruce vegetation. In spectra extracted from simulated data, 

the absorption features were similar to AVIRIS-NG spectra. These absorption features are caused 

by chlorophyll absorption in the red band (around 690 nm), water absorption in the NIR region, 

and lignin and cellulose absorption in the SWIR region. Around 1400 nm wavelength, a dip due 

to water absorption is present in both the spectra generated from simulated and AVIRIS-NG data. 

In both spectra, the difference in the reflectance values over the infrared region (700 nm - 1400 

nm) is relatively small, and their pattern is similar. We achieved an RMSE of 0.03 and 0.02 for 
birch and spruce, respectively.

Figure 3.5 shows the band-to-band correlation between AVIRIS-NG and simulated 

hyperspectral images. A majority of the bands show high correlation, especially in the NIR and 

SWIR region. We also calculated the Coefficient of Variation (CoV = standard deviation/ mean) 

for the pixel difference between AVIRIS-NG and simulated hyperspectral images for 332 bands 

(Figure 3.6). The CoV is another metric to quantify and visualize the similarity between the two 

image data. A lower CoV value suggests higher similarity between the two image data, while a 

higher CoV value suggests less similarity. In our case, the CoV value ranges from 0.2 to 1.3, with 
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higher CoV values along trails and shaded areas where we expect lower simulation accuracy, as 
we did not include shade fraction as one of the end members. Both band-to-band correlation and 

the CoV of pixel differences between AVIRIS-NG and simulated hyperspectral images illustrate 

the quality of simulated hyperspectral image. The band-to-band correlation is higher than 0.6 for 

252 bands, and 98% of the total pixels have a CoV less than 1 suggesting that the simulated 

image satisfactorily captures the spectral details at pixel scale.

Figure 3.4: Spectral Signature of (a) Birch and (b) Spruce.
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Figure 3.5: Band-to-band correlation between AVIRIS-NG and simulated hyperspectral images.

Figure 3.6: A map of the Coefficient of Variation (CoV) for the pixel difference between AVIRIS-NG and 
simulated hyperspectral data.

3.4.2. Visual analysis

The simulated image captures the minute details visible in the AVIRIS-NG image (Figure 

3.7). AVIRIS-NG data were not available for the bottom left side of the area in Figure 3.7 (a) and 

(b), therefore the region is black. Figure 3.7 (a) is an image from Creamer's Field - Migratory 

Waterfowl Refuge area in Fairbanks. The region shown in a yellow circle is an open field that has
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trees planted on the boundary. Simulated data captured the trees on the edges quite well. In 
Figure 3.7 (b), the small patches inside the yellow circle are water bodies. These water bodies 

are accurately captured in the simulated image. In Figure 3.7 (c), we overlaid ground surveyed 

points for birch and spruce on the three images. We can see a clear difference in the image tone 

and color saturation between the coniferous vegetation (spruce) and deciduous vegetation (birch) 

in all three images. The area dominated by birch has brighter pixels, while the area with spruce 

has darker pixels. The simulated image correctly captured this tonal and color differences 

between birch and spruce forests.

Figure 3.7: Visual comparison of the simulated Color Infra-Red image with AVIRIS-NG and Sentinel 2 for 
different areas: (a) open field (b) water bodies (c) Black spruce and paper birch.
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3.4.3. Image classification

We performed vegetation classification on the simulated data according to the Alaska 
vegetation classification given by Viereck et al. (1992). Figure 3.8 highlights the results of 

vegetation mapping using the RF classifier. We used NDVI to mask out non-vegetation pixels. 

There is a separate class for the masked pixels in the legend. Mountains dominate the southern 

part of the scene; some parts of the mountain and high elevation areas are covered with alpine 

vegetation. We did not have any training data for alpine vegetation class. Therefore, we included 

a “Other” class to capture the alpine vegetation and other vegetation (mostly grasses) pixels that 

are not included in the training. The center of the scene is a lowland area. Most of the pixels are 

classified into vegetation classes dominated by black spruce.

Figure 3.8: Vegetation map generated from simulated hyperspectral image (covering an area of 100 km x 
100 km) using Random Forest classifier. The masked pixels shown in black include urban areas, water 

bodies, clouds and cloud shadows.

We had unbalanced test samples; different classes have different numbers of pixels. To 
overcome class imbalance, we calculated the F1 score and IoU shown in Figure 3.9 and Figure 

3.10 respectively. A high F1 score means the class has performed well. “Open black spruce 

forest” and “Open balsam poplar forest” had the lowest F1 score, while most classes performed 

well. Additionally, if the IoU value is 0.5, the class has performed well. In our case, seven classes 

had an IoU value greater than 0.5, 3 classes had an IoU value very close to 0.5, and the remaining 

classes had a value between 0.3 and 0.4.
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Figure 3.9: F1-score for each class.

Open black spruce forest: OBSF; Black spruce woodland: BSW; Closed black spruce forest: CBSF; 
Wetlands: WET; Open paper birch forest: OPBF; Open spruce - paper birch forest: OSPBF; Closed spruce 

- paper birch- quaking aspen forest: CSPBQA; Closed white spruce forest: CWSF; Open quaking aspen 

forest: OQAF; Other: OTH; White spruce woodland: WSW; Closed paper birch-quaking aspen forest: 

CPBQAF; Closed tall alder: CTA; Open balsam poplar forest: OBPF; Open spruce - balsam poplar forest: 

OSBPF; Open paper birch - quaking aspen forest: OPBQAF.

Figure 3.10: IoU score for each class.

For a test site in BCEF, we generated a vegetation map from Sentinel-2 data and 

assessed its accuracy using field validation plots. We did not use these plots for training. Out of 

31 plots (Figure 3.11), 13 plots were correctly mapped with 42% accuracy in the case of Sentinel- 
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2 data, while 20 plots were correctly mapped in the case of simulated classified output, resulting

in an accuracy of 65%.

Figure 3.11: A vegetation map derived from the Sentinel-2 image for a test site within the Bonanza Creek 
Experimental Forest (BCEF); yellow triangles mark the field surveyed plot locations used as validation.

3.4.4. Process validation

To test the simulation method across space, i.e. for different geographic subregions, we 
simulated two more scenes (S2BT06WWS, S2BT06WWU) using the same ground spectra and 

classifier model (trained in scene 1) to predict pixel vegetation class. Scene 2 (S2BT06WWS) 

covers the area east of scene 1, and scene 3 (S2BT06WWU) covers a part of the Yukon flats 

region that lies to the north of Fairbanks. Locations of all three scenes are shown in Figure 3.3. 

Scene 2 (S2BT06WWS) falls under the Yukon-Tanana Uplands sub-ecoregion, and scene 3 

(S2BT06WWU) covers the Yukon-Old Crow Basin sub-ecoregion. We had a smaller set of ground 

data for scene 2 that we used for validating our classified vegetation map output. We did not have 

any ground data for scene 3, so we only performed visual, statistical, and spectral comparison of 

the simulated image generated from scene 3.

We compared spectra collected from simulated image data and AVIRIS-NG image for 

scene 2 and scene 3. Figure 3.19 shows the comparison of the spectra collected from the same 

pixels in both images. We picked two different sites that represent deciduous and coniferous 
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species. The spectra showed a similar pattern and the same absorption features. The RMSE for 
deciduous vegetation (Figure 3.19 (a)) was 0.02, and 0.01 for coniferous vegetation (Figure 3.19 

(b)). We visually compared the simulated data and AVIRIS-NG data. Simulated data has captured 

the trails and built-up area similar to AVIRIS-NG data (see the yellow circle, Figure 3.20 (a)). 

Coniferous and deciduous vegetation are easily distinguishable in simulated data (see the yellow 
circle, Figure 3.20 (b)).

Here we have discussed the classified vegetation map accuracy at select points for an 

area around Twin Bear Chena River to Ridge and Compeau trail east of Fairbanks. We overlaid 

the ground points over the classified map and visually assessed the classified map product 

accuracy (Figure 3.12). In Figure 3.12, points 1, 2, and 5 (from spruce and birch vegetation) are 
over the blue pixels; the blue pixels in the classified map represent open spruce-paper birch class. 

Point 4 has paper birch in the ground; the classifier mapped it as the open paper birch forest. 

Point 6 has white spruce, and the pixels around this point are mapped as the closed white spruce 

forest. Point 3 has black spruce and moss, and the classified map identified the pixels at and 

around this point as open black spruce forest and black spruce woodland. The dark gray pixels 

are wetlands and include all the vegetation growing on marshy areas with seasonal standing 

water. The gray pixels are mostly around the water bodies (shown as black pixels). Wetlands and 

vegetation classes present at all six points are correctly mapped in the classified vegetation map.

Figure 3.12: A vegetation map derived from simulated hyperspectral image for an area around Twin Bear 
Chena River ridge and Compeau trail; ground data points are presented as yellow pentagon. Tree cover 

present at the ground point is listed in the table (bottom right).
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Using our algorithms, one can simulate hyperspectral data and classify it to generate a 
vegetation map in 10 h (system configuration: Intel(R) Xeon(R) Gold 5222 CPU @ 3.80 GHz, 

3801 MHz, 4 cores with 192 GB RAM). Each simulated hyperspectral image requires a minimum 

of 190 GB disk space (scene size: 100 X 100 km; pixel size: 10 m; 425 bands). To overcome the 

dependency on powerful computer systems with large storage, we implemented the entire 

processing in the Google Cloud Platform (GCP system configuration: 16 CPUs and 60 GB RAM). 

3.5. Discussion

We developed a novel approach to efficiently simulate an AVIRIS-NG hyperspectral image 

cube from a Sentinel-2 image and subsequently derive a detailed vegetation map covering an 

area of 100 km x 100 km for the boreal region of Alaska. The simulated images accurately capture 
the minute landscape features present in the original AVIRIS-NG image. The spectral profile from 

the simulated image matches the original AVIRIS-NG image in the pattern but differs in 

reflectance magnitude in the SWIR region. Zhang et al., 2006, Badola et al., 2021 also reported 

a similar difference in reflectance over the SWIR region. Several factors contribute to the spectral 

differences: a) the difference in the spatial resolution of the two datasets, i.e. Sentinel-2 bands 

have a spatial resolution of 10 m and 20 m compared to 5 m for AVIRIS-NG, b) the difference in 

the sensor's altitude and sun and sensor geometry, and c) difference in date and time of 

acquisition. Also, the missing endmember, Non-Photosynthetic Vegetation (NPV), is contributing 

to the reflectance difference. NPV has higher SWIR reflectance (Asner, 1998), and depending on 

the NPV, a vegetation pixel can have lower reflectance in the visible region than in the SWIR 

region. However, when we added NPV to the model, it reduced model performance significantly. 

Hence, one of the major limitations of this model is that it cannot handle NPV as one of the 

endmembers without generating significant errors. However, by excluding NPV, we ended up with 

lower reflectance in the SWIR region. In reality, a pixel can have a significant NPV fraction, but 

this model can only handle distinct endmembers. Also, this model is built for the peak of the 

growing season and might not do well for images acquired during shoulder season; for example, 

when leaves start to senescence at the beginning of the fall season. Despite the above limitation, 

our simulation model can accurately capture the key absorption features and spectral details 
essential for detailed vegetation and landcover mapping, paving the path for on-demand 

hyperspectral data availability for boreal Alaska.

3.5.1. Comparison with other map products

We used 31 field surveyed plots in the Bonanza Creek Experimental Forest site, a Long

Term Ecological Research (BCEF LTER) site in Interior Alaska, to assess the accuracy of 
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LANDFIRE EVT and our vegetation map (Figure 3.13). Out of 31 plots, 10 plots were mapped 
correctly in the LANDFIRE EVT 2016 product, giving a product accuracy of 32%, whereas 20 
plots were mapped correctly in our vegetation map product, giving a product accuracy of 65%. 

Table 3.5 shows the vegetation class present on the 11 plots that were misclassified. The majority 

of these misclassified plots have similar vegetation. Two plots of closed spruce-paper birch

quaking aspen were incorrectly mapped as open spruce-paper birch, while two other plots were 
mapped as open quaking aspen. One wetland plot was incorrectly mapped as Black spruce 

woodland, possibly due to the presence of isolated black spruce and understory vegetation found 

in black spruce woodland. We believe by merging similar classes and retraining the classifier, the 

map accuracy can be further improved.

Figure 3.13: LANDFIRE EVT Product for the Bonanza Creek Experimental Forest (BCEF) site; yellow 
triangles mark the field surveyed plot locations.

Figure 3.14 demonstrates the comparison between our vegetation map and the available 
LANDFIRE EVT and Alaska Vegetation and Wetland Composite (AKVWC) maps. The rectangle, 

square, and circle in Figure 3.14 highlights the locations where we clearly see that the map 

generated using simulated data is more detailed and accurate in comparison to the other two 

maps. The region highlighted under the rectangle is dominated by single birch and aspen class 

in both AKVWC and LANDFIRE EVT maps, while four different birch and aspen vegetation 
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classes are mapped in the simulated classified map: open paper birch forest, open quaking aspen 
forest, open and closed paper birch, and quaking aspen forest. Similarly, the region inside the 

circle is dominated by black spruce and white spruce classes in all three cases, but in the case of 

a simulated classified map, the classes are more detailed. The pixels inside the square are 

mapped as wetlands in the case of AKVWC and simulated classified maps, while in the 

LANDFIRE EVT map, most of these pixels are mapped as black spruce-tamarack fen.

Figure 3.14: Comparison of simulated classified map with Alaska Vegetation and Wetland Composite 
(AKVWC) and LANDFIRE EVT Product.

The U.S. Department of Agriculture completed a Pilot Inventory for Tanana Valley State 
Forest, which is covered by the Sentinel scene used in this study. The survey for the Pilot 

Inventory began in 2014 and was fully implemented between 2016 and 2018. They surveyed 800 

plots (around a 7.3 m radius) to get forest type acreage, extrapolating the observations to the 

entire Tanana Valley State Forest to get total acreage for forest types (Pattison et al., 2018, U.S. 

Forest Service, 2016). Figure 3.15 shows the comparison of forest type acreage estimated from 
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the simulated classified map with estimates from the Pilot Inventory program for five major tree 
species. For all five tree species, the acreage estimates from our vegetation map are comparable 

with the estimates from the Pilot Inventory program, and they follow the same pattern as well: i.e. 

black spruce is the most dominant tree species, followed by birch, with aspen and poplar being 

the least dominant tree species. Therefore, the forest type acreage we obtained from our map is 

comparable to the USDA pilot inventory forest acreage.

Tree Species Area
400

Figure 3.15: Comparison of area covered by different forest type reported by the USDA Tanana valley 

Pilot Inventory program and estimated from our classified map product.

We used a smaller set of ground data over scene 2 (covering the area east of scene 1) to 

assess the quality and accuracy of our vegetation map. These points were not used for training 

the classifier. Figure 3.16 compares the simulated classified map with LANDFIRE EVT and Alaska 
Vegetation and Wetland Composite (AKVWC) maps. In the LANDFIRE EVT map, the black 

spruce point is sitting on a pixel mapped as Western North American Boreal Mesic White Spruce

Hardwood Forest (bright green pixel); in the AKVWC product, the black spruce point is sitting on 
White Spruce or Black Spruce (Open) (purple pixels). In the simulated classified map, the black 

spruce point is correctly mapped as open black spruce forest (dark green pixel). For the wetland 

point, the LANDFIRE EVT product mapped the pixel as Western North American Boreal Black 

Spruce Bog and Dwarf-Tree Peatland (brown pixel) and AKVWC product mapped the pixel in the 
same way it mapped for black spruce, i.e. White Spruce or Black Spruce (Open) (purple pixel), 

while the simulated classified product mapped the area as wetlands (grey pixels). These
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observations suggest that the simulated classified map correctly identified the open black spruce 
forest and wetlands pixels with better accuracy than the two existing maps.

Figure 3.16: Comparison of classified map products; ground data points are presented in magenta color. 
Tree cover present at the ground point is shown on the image in yellow text (a) LANDFIRE EVT Product 

(b) Alaska Vegetation and Wetland Composite (AKVWC) (c) Simulated classified output.

We simulated a third scene (scene 3: S2BT06WWU) from a different ecoregion that covers 
a part of the Yukon Flats region. Figure 3.21 shows the spectral comparison between simulated 

data and AVIRIS-NG data. The simulated data accurately captured the absorption features and 

has a similar reflectance as AVIRIS-NG data: RMSE = 0.02 for deciduous vegetation (Figure 3.5 
(a)) and RMSE = 0.01 for coniferous species (Figure 3.21 (b)).

The hyperspectral simulation of three different Sentinel 2 scenes and their evaluation 

demonstrated that we developed an efficient approach for obtaining on-demand hyperspectral 

data for vegetation/fuel mapping. Our vegetation maps are more detailed and their accuracies are 

on par with or better than the existing vegetation maps. To effectively implement this approach, it 
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is important to collect field spectra on a clear, sunny day. The field spectra collected on hazy days 
or cloudy days can degrade hyperspectral simulation results. We also learned that to process the 

entire Sentinel scene, one needs an expensive system with higher processing power and 

hardware, so a cloud computing platform like Google Cloud Platform (GCP) (Google, 2022) is a 

better alternative for efficient and cost-effective processing. GCP reduces the dependency on an 

expensive local system and the installation of libraries. The only requirements are a browser, a 

good internet connection, and a Google account to run the codes. More importantly, GCP makes 

it easy to share the codes with the research community. A simulated hyperspectral image cube 

covering an area of 100 km x 100 km requires 190 GB of disk space. GCP provides a considerable 
amount of storing capacity at a low cost to store such huge files and their efficient access for 

further processing. The hyperspectral nature of this data (5 nm bandwidth) makes it appropriate 

for generating a detailed vegetation map with improved accuracy for a variety of applications, 

including fire and forest management. Better vegetation/fuel maps are critical for effective fuel 

treatment, i.e. identifying areas for creating fire breaks or fire lines to check the spread of wildfires. 

The simulated hyperspectral image can potentially be used to extract other biophysical attributes 

of vegetation like chlorophyll, moisture, and nitrogen, expanding its applications to other areas of 

vegetation research.

3.6. Conclusions

In this study we developed and implemented a sophisticated workflow to generate 

simulated AVIRIS-NG hyperspectral image data from Sentinel-2 image at Sentinel scene scale 

(100 X100 km) in Google's cloud environment and tested simulation reproducibility across space 

and time. We employed a well-established endmember selection technique to make our method 

more consistent and reproducible across different geographies. By improving the simulation 

algorithm, we were able to turn a 4.5 GB Sentinel 2 data set into a full hyperspectral image cube 

of 190 GB in about 2 hrs. We developed a Random Forest image classification model using 

training signatures from one scene and tested the Random Forest model portability on two other 

scenes from different sub-ecoregions. The Random Forest vegetation classification model 

performed satisfactorily on these two scenes, suggesting that our model can be reliably used for 

improved vegetation mapping in boreal Alaska. The vegetation maps generated from simulated 

data were more detailed and accurate based on the available field data points than the two 

existing vegetation maps, LANDFIRE EVT and Alaska Vegetation and Wetland Composite 
(AKVWC). We assessed the mapping accuracy of the latest LANDFIRE EVT (32%) and our map 

product (65%) using ground survey data and observed an improvement of 33% in accuracy. This 

study developed a novel approach and algorithms to produce hyperspectral image from widely 
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available multispectral images and showed its applicability in mapping vegetation and fuel in the 
boreal forest of Alaska with improved accuracy, which will contribute to effective forest and fire 

management in Alaska.
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Appendix

Table 3.4: Endmembers used in each iteration.

Iterations Endmembers

1st iteration All 15 endmembers

2nd iteration Alder, Downed trunk, blueberry, black spruce, larch, birch, gravel, 
white spruce, asphalt

3rd iteration Downed trunk, black spruce, birch, gravel

4th iteration Asphalt, black spruce, birch, gravel

5th iteration Black spruce, birch, gravel, NPV (from ECOSTRESS spectral library)

6th iteration Black spruce, birch, gravel

Figure 3.17: Spectral Signature of all the endmembers.
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Figure 3.18: Spectral Signature comparison of different vegetation classes for creating training data.

83



Deciduous Vegetation

Figure 3.19: Spectral Signature of (a) deciduous vegetation and (b) coniferous vegetation.
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Figure 3.20: Visual Analysis of the simulated scene 2 using Colored InfraRed image for different areas: 
(a) trails and built-up area (b) coniferous and deciduous species.

Table 3.5: Misclassified Classes in Simulated Classified Product.

Ground data Simulated classified output

Open black spruce (2 plots) Open spruce - balsam poplar

Open spruce- paper birch (1 plot) Black spruce woodland

Open spruce-paper birch (2 plots) Open paper birch

Closed spruce-paper birch- quaking aspen (2 plots) Open spruce - paper birch

Closed spruce- paper birch- quaking aspen (2 plots) Open quaking aspen

Closed spruce- paper birch- quaking aspen (1 plot) Other

Wetlands (1 plot) Black spruce woodland
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Deciduous Vegetation

Figure 3.21: Spectral Signature of (a) deciduous vegetation and (b) coniferous.
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Figure 3.22: Visual Analysis of the simulated scene 3 using Colored InfraRed image for different areas: 
(a) different vegetation types (b) vegetation pattern.
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Chapter 4 Estimation and Validation of Sub-Pixel Needleleaf Cover Fraction in the Boreal Forest 
of Alaska to Aid Fire Management3

3 Badola, A., Panda, S.K., Thompson, D.R., Roberts, D.A., Waigl, C.F., Bhatt, U.S., 2023. Estimation and 
Validation of Sub-Pixel Needleleaf Cover Fraction in the Boreal Forest of Alaska to Aid Fire Management. 
Remote Sens. 2023, Vol. 15, Page 2484 15, 2484. https://doi.org/10.3390/RS15102484

4.1. Abstract

Wildfires, which are a natural part of the boreal ecosystem in Alaska, have recently 

increased in frequency and size. Environmental conditions (high temperature, low precipitation, 

and frequent lightning events) are becoming favorable for severe fire events. Fire releases 

greenhouse gasses such as carbon dioxide into the environment, creating a positive feedback 

loop for warming. Needleleaf species are the dominant vegetation in boreal Alaska and are highly 

flammable. They burn much faster due to the presence of resin, and their low-lying canopy 

structure facilitates the spread of fire from the ground to the canopy. Knowing the needleleaf 

vegetation distribution is crucial for better forest and wildfire management practices. Our study 

focuses on needleleaf fraction mapping using a well-documented spectral unmixing approach: 

multiple endmember spectral mixture analysis (MESMA). We used an AVIRIS-NG image (5 m), 

upscaled it to 10 m and 30 m spatial resolutions, and applied MESMA to all three images to 

assess the impact of spatial resolution on sub-pixel needleleaf fraction estimates. We tested a 

novel method to validate the fraction maps using field data and a high-resolution classified 

hyperspectral image. Our validation method produced needleleaf cover fraction estimates with 

accuracies of 73%, 79%, and 78% for 5 m, 10 m, and 30 m image data, respectively. To determine 

whether these accuracies varied significantly across different spatial scales, we used the 

McNemar statistical test and found no significant differences between the accuracies. The 

findings of this study enhance the toolset available to fire managers to manage wildfire and for 

understanding changes in forest demography in the boreal region of Alaska across the high-to- 

moderate resolution scale.
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4.2. Introduction

Boreal forests in Alaska are found between the Brooks Range in the north and the Alaska 

Range in the south, covering an area of 43 million hectares [1,2]. Evergreen coniferous vegetation 

which mostly include black spruce (Picea mariana) and white spruce (Picea glauca) dominate 

boreal forests, particularly in interior Alaska which is the heartland of wildfires. Climate is the 

primary driver for wildfires in boreal Alaska [3]. Between 1976 and 2016, the annual temperature 

of Alaska increased by 0.3 degrees Celsius per decade and is expected to rise by 1-2 degrees 
Celsius by [4,5,6]. According to Bieniek et al. (2020), lightning has increased by 17% throughout 

Alaska over the last 30 years. These changes are influencing wildfire events and increasing the 

fire frequency, severity and burn acreage [7]. In the last two decades (2003-2022: 12.9 million 

hectares), wildfires in Alaska have burned around twice as many hectares than the previous two 

decades (1983-2002: 6.7 million hectares) [8,9]. Though wildfires are a natural part of the boreal 

ecosystem, recycling soil nutrients and renewing forest health, increasing fire frequency, severity 

and burned acreage have far-reaching environmental and societal impacts. Some of the adverse 

impacts include loss of habitat and subsistence resources, risk to communities at the wildland

urban interface, high cost of fire-fighting and restoration, and disproportionate carbon emissions 

[5,10]. To a large extent, fire spread and intensity are dependent on the vegetation or fuel types. 

Needleleaf vegetation/fuel are more flammable and spread fire more efficiently compared to 

broadleaf vegetation/fuel due to their resin content and low-lying canopy structure that serves as 

a ladder fuel leading to severe crown fires [11]. The maps of the needleleaf vegetation distribution 

are important at all three stages of fire management. Prior to the fire season, they can help land 

managers identify high fire risk areas to employ fuel management practices such as building fire 

breaks, tree thinning, removing dead fuels, etc. During an active fire, these maps can serve as 

input for fire spread modeling and forecasting near real-time fire spread and behavior. Post-fire, 

they can help understand the impacts of fire on the ecosystem, forest recovery and demography.

Remote sensing is a proven approach to map vegetation types or classes. Pixel-level 

mapping is very popular in the remote sensing community, where each pixel is mapped as a 

vegetation class [8,12,13,14,15,16]. In reality, a pixel can contain more than one class; in that 

case, the total pixel reflectance will be the combination of the reflectance from all classes present 

within the pixel. In a boreal landscape, a pixel can contain both needleleaf and broadleaf 

vegetation. However, a pixel-level vegetation product will map the pixel as one class that 

dominates in the pixel. For sub-pixel vegetation mapping, i.e., the estimation of the different 

vegetation fraction in a pixel, one can employ spectral unmixing, also known as spectral mixture 

analysis (SMA), an approach to map a vegetation fraction where the algorithm calculates the 
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proportion of each class within a pixel. SMA considers the spectrum of a single pixel as a weighted 
sum of the constituent spectra of classes or endmembers [17], providing sub-pixel level estimates 

of the vegetation class fraction. Multiple endmember spectral mixture analysis (MESMA) [18] is 

an advanced SMA method that assumes that an image is composed of large numbers of different 

endmembers or classes, but a pixel can be composed of a subset of endmembers. Hence, 

MESMA allows a large number of endmembers across the scene, but each pixel is modeled 

independently with a different number and type of endmembers. MESMA was used to map green 

vegetation, non-photosynthetic vegetation (NPV), and soil in Santa Monica Mountains California, 

USA, using AVIRIS data [18]. Fernandez-Garcia et al. (2021) applied MESMA to Landsat data to 
study habitat diversity over Cantabrian Mountains located in the northwest of the Iberian 

Peninsula [19]. Fernandez-Manso et al. (2016) used MESMA to map the burn severity using 

Landsat images over Sierra del Teleno in Northern Spain using green vegetation (GV), non

photosynthetic vegetation and ash (NPVA), and soil as endmembers [20]. In boreal Alaska, it can 

be challenging to distinguish a needleleaf pixel from a mixed pixel due to the lower spectral 

separability between the classes. This challenge provides an opportunity to test the MESMA 

algorithm for needleleaf mapping in boreal Alaska. Furthermore, there are several existing global 

hyperspectral space missions which pro-vide data at a coarser spatial resolution (30 m or 60 m). 

Examples of these missions include the Earth Surface Mineral Dust Source Investigation (EMIT) 

[21] which has 285 spectral bands (381-2493 nm) and 60 m spatial resolution; the Environmental 

Mapping and Analysis Program (EnMap) [22], which has 228 spectral bands (420-2450 nm) and 
30 m spatial resolution; and the PRecursore IperSpettrale of the application mission (PRISMA) 

[23], which has 220 spectral bands (400-2500 nm) and 30 m spatial resolution. Additionally, a 
new mission called Surface Biology and Geology (SBG) [24] is planned to have 217 spectral 

bands (80-2500 nm) and 30 m spatial resolution. These missions will increase the availability of 

the hyper-spectral data for a variety of applications, including detailed vegetation mapping at the 

regional scale. These global sensors have a coarser spatial resolution compared to aerial 

hyperspectral images such as AVIRIS-NG; therefore, it is also important to evaluate the 

performance of MESMA in mapping major vegetation classes at different spatial resolutions [25]. 

This study focuses on sub-pixel level needleleaf vegetation mapping at different spatial scales 

using AVIRIS-NG data, addressing the following re-search questions:

A. Does MESMA have the potential to estimate the needleleaf fraction in a mixed boreal 

vegetation with reasonable accuracy?

B. Does the spatial resolution of a hyperspectral image influence the estimation of needleleaf 

fraction?
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C. How can we validate spectral unmixing estimations at different spatial scales?

4.3. Materials and methods

The methodology comprises two main components: pixel unmixing and validation, as 

illustrated in Figure 4.1. We collected endmembers (needleleaf, broadleaf, and NPV) from 

hyperspectral imagery (AVIRIS-NG). Then, we performed spectral unmixing and validated the 

results using methods, elaborated in the following sections.

Figure 4.1: Processing workflow for needleleaf and broadleaf fraction mapping and validation. 
4.3.1. Study area

The National Science Foundation (NSF) established the Long-Term Ecological Re-search 

Program (LTER) Network in 1980 to conduct ecological studies and collect long-term datasets to 

analyze environmental change. Bonanza Creek Experimental Forest (BCEF) is one of the LTER 
sites in Alaska. It is located in interior Alaska (64.70 °N, -148.30 °W), approximately 30 km 

southwest of Fairbanks, covering an area of 5053 ha. For this study, we selected a test site within 

BCEF (Figure 4.2), where the AVIRIS-NG scene was available. This region lies between the 

Brooks Range in the north and the Alaska Range in the south, which blocks the coastal air 

masses; hence, the area experiences cold winters as well as warm and dry summers. The study 

area experiences short growing seasons (100 days or less), and the air temperature ranges from
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-50 °C in January to over +33 °C in July, with a long-term average annual temperature of -3 °C. 
The mean annual precipitation is approximately 269 mm, 30% of which is in the form of snowfall 

[1]. The study area includes both upland and lowland regions with a variety of vegetation types 

[26]. The soils are immature, ranging from cold soils with shallow permafrost in the lowlands to 

warm and well-drained soils in the uplands. Lowlands and north-facing slopes are covered by 

moss-dominated black spruce, while aspen, birch, and white spruce mainly grow in uplands and 

south-facing slopes.

Figure 4.2: Study area: Bonanza Creek Experimental Forest (BCEF), located 30 km southwest of
Fairbanks in interior Alaska. Boreal forest area represented in green on inset map. A yellow boundary

delineates the study area within BCEF.

4.3.2. Field data collection

This study required extensive fieldwork to validate the fraction product generated in this 
study. It involved conducting on-site surveys to record the proportion and distribution of various 

species within the study area. Specifically, we collected the percentage cover and count of tree 

species within a plot. We surveyed 40 plots of 10 m x 10 m size during 2019 (Figure 4.3a, b) and 
two plots of ~1000 m2 in size in 2022 (Figure 4.3c) using a Trimble Real-Time Kinematic (RTK) 

Global Positioning System (GPS) unit that offers centimeter-level positional accuracy. In the field, 
we recorded the relative proportion of key vegetation species in 40 (10 m x 10 m) plots. We 
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subdivided the 2022 field plots into smaller plots and recorded the broadleaf and needleleaf tree 
counts. We also noted the tree species that dominate the top canopy. We did not see any 

evidence of forest damage or anthropogenic change such as timber harvesting since 2018 (image 

year), ensuring that the use of image data and field data collected during different times is 

reasonable (Tables 4.1 and 4.2).

Table 4.1: List of image datasets used in this study.

4.3.3. Data preprocessing

We used the atmospherically and radiometrically corrected level-2 AVIRIS-NG data (Table 
4.1) acquired as a part of the Arctic-Boreal Vulnerability Experiment (ABoVE) [27]. The data have 

425 bands, 5 m pixel resolution, and were collected on 23 July 2018. We removed bands with 

excessive noise due to poor radiometric calibration and bands dominated by water vapor and 

methane absorption [28]. Table 4.3 lists the removed bands. For this study, we used a subset of 

the AVIRIS-NG flight line (Table 4.1). All the preprocessing was performed in ENVI classic 5.3 
[29].
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Data Scene Identifier Acquisition
Date

Spatial 
resolution Bands

AVIRIS-
NG ang20180723t200207 23 July 2018 5m 425

SkySat 20190629_002107_ssc10_u
0002 29 June 2019 0.5m 4

HySpex 20210803 BC 3 August 2021 1m 459

Plot Data Instrument Data 
Collection time Data collected

10m x 10m
(40 plots) Trimble RTK-GPS

Summer 2020 

and 2021

Vegetation 
composition, 

canopy cover, 
diameter and height

~1000 m2
(2 plots)

Trimble RTK-GPS and
Garmin Handheld GPS 

device
Summer 2022 Needleleaf tree 

count

Table 4.2: List of field data used in this study.



Table 4.3: Bands removed from AVIRIS-NG hyperspectral data

Bands Wavelength (nm) Remarks

196-210 1353.55-1423.67 Water vapor absorption bands

288-317 1814.35-1959.60 Water vapor absorption bands

408-425 2415.39-2500.00

Noise due to poor radiometric 

calibration and strong water vapor and 

methane absorption

Figure 4.3: Ground data collected for validation: (a) white polygons show the location of 40 (10 m x 10 m) 

plots; (b) a single (10 m x 10 m) plot; (c) a ~1000 m2 plot subdivided into 7 subplots (A-G). The fairly 
dense forest setting made it difficult to set up a 30 m x 30 m square plot in the field.
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4.3.4. Endmember selection

Selecting appropriate endmembers is a critical step in spectral unmixing. In our study area, 

the primary vegetation classes consist of spruce (needleleaf) and birch (broadleaf), which serve 

as two crucial endmembers [8,15]. Additionally, we considered including other endmembers in 

our analysis, such as shrubs (including broadleaf and evergreen shrubs), non-photosynthetic 

vegetation (NPV), and soil. However, we found that the spectral contrast between broadleaf trees 

and shrubs was low, which made it difficult for the algorithm to distinguish between them. Our 

primary goal was to map needleleaf vegetation, which are highly flammable, so we combined the 

broadleaf trees and shrubs into a single class.

When we ran the spectral unmixing algorithm with the combined broadleaf/shrub class, 

needleleaf, NPV, and soil as endmembers, we found that the algorithm could not accurately 

distinguish the soil and NPV due to the low spectral contrast between them and could only map 

one of them. As NPV includes dead branches, leaf litter, and dry vegetation, which are highly 

flammable and important for wildfire management, we decided to drop soil from consideration and 

ultimately selected needleleaf, broadleaf, and NPV as our endmembers. Selecting these 

endmembers allowed us to focus on mapping the highly flammable fuels (needleleaf vegetation 

and NPV) that most impact fire spread. Spectral processing was performed in the Visualization 

and Image Processing for Environmental Research (VIPER) Tools 2 (beta) software as an 

extension of the ENVI software [30]. Figure 4.4 shows the endmember spectra selected for this

Figure 4.4: Endmember spectra of needleleaf, broadleaf and NPV. The graph shows the average spectra 
for all three endmembers used in the spectral unmixing model.
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4.3.5. Spectral unmixing

This study focused on mapping the highly flammable fuels (needleleaf vegetation) at sub

pixel level. We assumed that every pixel in the AVIRIS-NG image could be modeled by a linear 

combination of two types of vegetation (broadleaf and needleleaf) and NPV (Figure 4.5). We 

applied multiple endmember spectral mixture analysis (MESMA) [31] by analyzing all of the 

potential endmember combinations for each pixel, starting with one endmember model: 

Needleleaf, Broadleaf, and NPV, and two endmember models: Needleleaf-Broadleaf, Needleleaf- 

NPV, and Broadleaf-NPV. Upon using the three-endmember model, we found an increase in the 

number of unclassified pixels to 25%, which indicated that the model was not effectively capturing 

the spectral variability in the data. As a result, we decided to use only one and two endmember 

models since the majority of the pixels (over 90%) were modeled by them. We constrained the 

minimum and maximum permitted endmember fractional values between 0.00 and 1.00, and a 

maximum allowable RMSE of 0.025.

AVIRIS-NG (airborne data) Hyperspectral image: 425 bands Image pixel: multiple classes

Figure 4.5: A pixel can contain more than one class at different proportions marked in yellow. Spectral

unmixing approach is used to estimate the proportions of classes within a pixel.

In the MESMA algorithm, the selection of endmembers is critical for the accurate spectral 
unmixing of mixed pixels. However, in some cases, there may be low spectral contrast between 

the different endmember types, which can result in the algorithm picking one endmember and 

adding shade to compensate for brightness. To address this issue and improve the accuracy of 

spectral unmixing, a shade constraint is often applied in MESMA [32]. The shade constraint limits 

the maximum shade fraction in the spectral unmixing process, guiding the algorithm to select a 

bright endmember for bright stands and a dark endmember for dark stands. By doing so, it can 

effectively differentiate between different vegetation types and minimizes the misclassification 

caused by low spectral contrast [33]. In this study, we set the maximum allowable shade fraction
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to 0.30, which means that the algorithm was optimized to select the needleleaf for darker 
vegetation and broadleaf for brighter vegetation.

We evaluated the performance of all endmember models using the RMSE and recorded 

the model with the lowest RMSE for each pixel. The output contained an RMSE band, a band 

with the models, and fraction bands containing broadleaf, needleleaf, and NPV fraction estimates.

Shade normalization [34] is a post-processing step in spectral unmixing algorithms to 

remove the effects of shadows caused by topography or other features in an image. The process 

involves normalizing the estimated fractions of each endmember by dividing them by the sum of 

fractions of all endmembers in a given pixel excluding shade. This normalization ensures that the 

total estimated fraction of all non-shade endmembers in a pixel equals 1. Shade normalization is 

particularly useful in cases where the contrast between endmembers is low, and the spectral 

unmixing algorithm tends to select one endmember over the others [31]. We performed shade 

normalization on the spectral unmixed output to improve the estimated fractions of broadleaf, 

needleleaf and NPV in each pixel. We used VIPER Tools, Version 2 (beta) software [30] as an 
ENVI plugin to run MESMA and Shade normalization. We resampled the 5 m AVIRIS-NG image 

to 10 m and 30 m pixel sizes using cubic resampling in the GDAL warp function [35], and re-ran 

MESMA keeping the same parameters. We used cubic resampling as it determines the pixel value 

through a weighted average of the 16 closest pixels, resulting in a more accurate representation 

of the original data [36].

4.3.6. Accuracy assessment

We used three methods to validate the fraction product: (1) visually using high-resolution 

SkySat image; (2) using 40 (10 m x 10 m) field plots; and (3) using 1 m resolution classified map 
derived from aerial HySpex image.

4.3.6.1. Visual assessment using high-resolution multispectral data

We visually compared the fraction output images with the high-resolution SkySat data (50 

cm pixel resolution) provided by Planet Labs under NASA Commercial Smallsat Data Acquisition 

Program [37]. We analyzed different areas of interest based on the kind of vegetation class and 

compared them from the field photos as well.

4.3.6.2. Assessments using 10m X 10m field plots

We used the percentage cover information available from the 40 field plots (Figure 4.3) 

collected during fieldwork for assessing the performance of sub-pixel output from MESMA. In the 

MESMA output, we summed up the proportion of each pixel falling within the field plot boundary 

(ground data) and evaluated the needleleaf fraction. For this, we vectorized the pixels in the 
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fractional output image using the “Raster pixels to polygons” tool available in QGIS [38]. We then 
clipped field plots from the vectorized/polygon shapefile and obtained the final clipped shapefile, 

as shown in Figure 4.6b. We compared the needleleaf fraction from MESMA output and ground 

data and estimated RMSE. We used the Point Sampling Tool [39] in QGIS to extract the raster 

values (proportions) from the output fraction images using the clipped shapefile (Figure 4.6b).

We also considered the variability due to the positional inaccuracies in the field plot and 

the AVIRIS-NG image by taking a 10 m buffer from the plot centroid (Figure 4.6c). We summed 

up all the pixels whose center was located within the buffer boundary and evaluated the total 

proportion of needleleaf vegetation within the buffer. We compared the needleleaf proportion from 

the fraction output and the field plot data and calculated the RMSE. We also identified the 

dominant species on each field plot and compared it with the class with the highest proportion in 

the fraction images.

Figure 4.6: Estimating the proportion of each pixel within a (a) 10 m x 10 m field plot boundary (red 
polygon) overlaid on the fraction output raster point denotes the centroid of the plot; (b) pixels clipped 

(black boundary) that fall within the plot; and (c) a buffer of 10 m (yellow rectangle) created to include the 

variability of the vegetation around the plot.

To assess the impact of spatial resolution on fraction output, we resampled the AVIRIS- 

NG image to 10 m and 30 m and assigned each pixel in the fraction which outputs the class value 

of the dominant vegetation fraction within the pixel. We categorized 40 plots (10 m x 10 m) into 
three classes, needleleaf, broadleaf and mixed based on the dominant vegetation and then 

calculated the confusion matrix for fraction outputs (spatial resolutions: 5 m, 10 m, and 30 m). We 

then compared the user and producer accuracies evaluated using a confusion matrix for all three 

products as well as for all three classes.
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4.3.6.3. Assessment using high-resolution (1 m) HySpex hyperspectral data

The accuracy assessment of fractional cover is challenging. We devised an approach 

where we used a ~1000 m2 field plot and a 1 m resolution hyperspectral image (459 bands) 

acquired using the HySpex hyperspectral camera from a fixed-wing airplane [40]. Figure 4.7 

shows the general methodology for the proposed fraction map vali-dation. We performed random 

forest classification on the HySpex image using 500 decision trees and 21 features per subset 

(square root of the total number of bands) [41]. We trained our model using pixels from three 

classes, needleleaf, broadleaf, and other, and validated the classified map against ~1000 m2 plot 

data with seven sub-blocks, as shown in Figure 4.3c. For each block, we recorded the needleleaf 

tree counts. We calculated the correlation coefficient for the needleleaf count from ground data 

and the pixels classified as needleleaf on a HySpex classified map. Once we validated the 

HySpex classified map, we generated 500 random points over the classified map and used the 

104 points that fell on the needleleaf class. We then evaluated the needleleaf fraction maps at 5 

m, 10 m and 30 m by comparing the points over a needleleaf class with the corresponding pixel 
in the MESMA outputs.

Figure 4.7: Workflow to validate the fraction cover output from AVIRIS-NG data at 5 m, 10 m, and 30 m 
resolution using 1m classified map derived from HySpex data.

4.3.6.4. Comparison of fraction outputs at different spatial scales.

We compared the fraction outputs at different spatial scales (5m, 10m, and 30m) using 

the McNemar test, a statistical method used to determine whether there is a significant difference 
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between the outputs [42]. The null hypothesis of the McNemar test is that the fraction outputs at 
different spatial scales are not significantly different. We used Equation 4.1 to calculate the I 

score and computed the p-value using the chi2.cdf function from the scipy.stats Python module 

[43] at a significance level of J = 0.05. If the p value is less than 0.05, we reject the null hypothesis, 

i.e., there is a significant difference in the fraction output across different spatial scales.

The test statistics (z score) for McNemar test is given by:

where:
• !: number of pixels where test 1 (fraction output 1) is positive and test 2 (fraction output 2) is 

negative
• #: number of pixels where test 1 (fraction output 1) is negative and test 2 (fraction output 2) is 

positive

4.4. Results

We successfully generated fractional cover maps at 5 m, 10 m, and 30 m spatial resolution 

from the AVIRIS-NG image using the MESMA algorithm. Figure 4.8 shows an RGB image of the 

fractional cover maps (Red: broadleaf; Green: needleleaf; Blue: NPV), and Figure 4.9 shows the 

needleleaf fraction (in white-green shades) for the test site at a 5 m resolution.

Figure 4.8: RGB images of fraction cover generated using MESMA (a) 5 m spatial resolution (b) 10 m 
spatial resolution (c) 30 m spatial resolution.
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Figure 4.9: Needleleaf fraction cover map at 5 m spatial resolution generated using MESMA on AVIRIS- 
NG data.

4.4.1. Assessment using high-resolution multispectral data

We used a very high spatial resolution (50 cm) SkySat image and ground observations to 

visually compare the fractional map cover outputs and found that the MESMA per-formed well in 

capturing the distribution of needleleaf and broadleaf vegetation types. The area dominated by 

grass is unclassified in the fraction map since we did not use an endmember for grass (Figure 

4.10a). In the color infrared (CIR) band combination, the needleleaf pixels are darker in color, and 

in the case of the fractional output map, a similar pattern of the needleleaf vegetation is present 

(in green), highlighted by a white boundary (Figure 4.10b).
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Figure 4.10: Visual comparison of MESMA fraction output using high resolution (50cm) multispectral data 
(SkySat data) (a) unclassified area where grass was present (b) similar pattern of needleleaf stands in 

SkySat image and fraction cover map.

4.4.2. Assessments using 10m X 10m field plots

The graph (Figure 4.11a) shows the comparison between the needleleaf proportion from 

fraction output and the ground observations (RMSE of 0.34). In the second case, we included a 

buffer of 10 m to compensate for positional inaccuracy in image data (RMSE reduced to 0.29) 
(Figure 4.11b).

Upon comparing the dominant species in each of the 40 plots and the fraction map, we 

found that 25 plots have the same dominant species as in the fraction map; hence, a total of 62% 

of plots were correctly mapped. Figure 4.12 shows the producer and user ac-curacy for the 

needleleaf, broadleaf, and other class at different scales using the 40 plots (10 m x 10 m).
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Figure 4.11: Comparison between the needleleaf proportion from fraction output and the ground data: (a) 

without buffer (b) with 10 m buffer.

Figure 4.12: Individual class accuracy assessment of fraction cover maps at different spatial scales by 
assessing producer accuracy (left) and user accuracy (right).
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4.4.3. Assessment using high-resolution (1 m) HySpex hyperspectral data

We generated a 1 m high-resolution classified map product using HySpex data to validate 
the fraction cover. Figure 4.13a shows the random forest classified map with three classes. Since 

we are interested in mapping the needleleaf fraction, we performed this validation for needleleaf 

vegetation. The blue pixels are the needleleaf pixels on the classified map. Figure 4.13b shows 

the correlation graph between the number of needleleaf trees based on the ground observation 

and the number of pixels classified as needleleaf vegetation represented in blue. We found a high 

positive correlation between them, with a coefficient of 0.9 and an r-squared value of 0.8. We 

validated the fraction cover map using random points (needleleaf class) and a classified map 

(validation map). In the case of the 5 m fraction map, 73% of the points were mapped correctly; 

for the 10 m fraction map, 79% of the points were mapped correctly; and for the 30 m spatial 

resolution product, 78% of the points were mapped correctly (Figure 4.14). There was no major 

difference in accuracy for needleleaf vegetation in all three spatial resolution outputs.

Figure 4.13: (a) Random Forest classified map (blue: needleleaf; green: broadleaf; yellow: other) of the 
test site using HySpex Data (1 m spatial resolution). Field plot boundary is shown in yellow, with subplots 

(A-G); (b) shows the correlation between the number of needleleaf trees based on the ground observation 

and the number of pixels classified as needleleaf class on HySpex Data.
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Figure 4.14: Validation of the MESMA fraction cover map (at 5m, 10m, and 30m) using random 
needleleaf pixels from the HySpex classified map.

4.4.4. Comparison of fraction outputs at different spatial scales.

We used the McNemar test to determine whether the fraction output results were 

significantly different from each other. Tables 4.4, Table 4.5 and Table 4.6 show the contingency 

matrices obtained by applying the McNemar test. Conifer fractions at 5 m and 10 m spatial 

resolution showed that 72 points were correctly mapped at both scales, resulting in a z score of 

1.79 and a p value of 0.18 (Table 4.4). A comparison of fractions at 5 m and 30 m spatial 

resolutions, showed that 68 points were mapped correctly at both scales, resulting in a z score of 

0.76 and a p value of 0.38 (Table 4.5). A comparison of fractions at 10 m and 30 m showed an 

agreement for 70 points, resulting in a z score of 0.00 and a p value of 1.00 (Table 4.6). In all 

three cases, the z scores were between -1.96 and 1.96, and the p values were greater than 0.05. 

These results are consistent with the null hypothesis, indicating that there is no significant 

difference in the fraction outputs across different spatial scales.
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Table 4.4: Contingency matrix for McNemar test to compare fraction outputs (5m and 10m).

5m Output (wrong) 5m Output (correct) All

10m Output (wrong) 18 4 22

10m Output (correct) 10 72 82

All 28 76 104

McNemar z score 1.79

results p value 0.18

Table 4.5: Contingency matrix for McNemar test to compare fraction outputs (5m and 30m).

5m Output (wrong) 5m Output (correct) All

30m Output (wrong) 15 8 23

30m Output (correct) 13 68 81

All 28 76 104

McNemar z score 0.76

results p value 0.38

Table 4.6: Contingency matrix for McNemar test to compare fraction outputs (10m and 30m).

10m Output (wrong) 10m Output (correct) All

30m Output (wrong) 11 12 23
30m Output (correct) 11 70 81

All 22 82 104
McNemar z score 0.00

results p value 1.00

4.5. Discussion

Most space-borne hyperspectral data are available at a coarser spatial resolution (10 m 

and 30 m) so there is a need for sub-pixel estimates of the highly flammable fuels to aid in fire 

management. In this study, we tested the potential of MESMA to map the needleleaf fraction in 

the boreal region of Alaska and assessed the impact of spatial resolution on the MESMA output. 

A few studies have applied MESMA for mapping green vegetation, soil, and non-photosynthetic 

vegetation [18,44,45], but this is the first work in which MESMA has been used to map the 

needleleaf fraction in a mixed boreal forest of Alaska. The brightness of the needleleaf and 

broadleaf vegetation is crucial to distinguish between these two classes. In a previous study by 
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Wetherley et al. (2018), the MESMA shade factor was set to 20% to address the variations in 
brightness between trees and turfgrass in the urban environment of Los Angeles, California [33]. 

However, we found that limiting the MESMA shade factor to 30% is more effective to separate 

the needleleaf from broadleaf vegetation.

Validation at the pixel level commonly involves using the pixel value from the centroid of 

the field plot [19]. However, in mixed and highly diverse boreal settings, this method is not suitable. 

Therefore, we calculated the pro-portion of each pixel within a plot and summed up all the 

proportions for the ground-based validation (Figure 4.6). Assessing the fraction map accuracy 

using traditional ground-based methods has several challenges. One of the main challenges was 

accurately aligning the ground plot with the corresponding pixel, which was particularly difficult in 

a dense forest area. Furthermore, a precise estimation of the proportion of different vegetation 

species during the field surveys at the 10-30 m scale was challenging due to the inherent nature 
of the forested areas. Therefore, we approximated the proportion of the different species on the 

ground and performed the validation (Figure 4.11). The approach had limitations and proved 

ineffective for the needleleaf fraction accuracy assessment. Given the limitations of this validation 

method, we developed and tested an alternative approach, which is explained in Section 4.4.3.

For a qualitative assessment, we visually compared the fraction cover output with the 50 
cm resolution SkySat image data and observed that the fraction map captured the patterns of 

needleleaf vegetation distribution reasonably well. Additionally, for quantitative assessment, we 

collected a ~1000 m2 plot, divided it into seven sub-plots (Figure 4.3c), and counted trees by 

species in each subplot. A similar approach was used by Fernandez-Garcia et al. (2021), where 

they used the high-resolution aerial orthophoto in place of field plots to establish plots of 30 m x 

30 m, and subdivided each plot into 100 cells of 3 m x 3 m [19]. However, collecting similar in situ 
plot data in a dense forest setting poses a significant challenge. Due to the unavailability of aerial 

orthophotos, we collected ground data and divided the ~1000 m2 plot into seven subplots, 

counting the trees in each subplot. The trees of the same species were similar in shape and size 

due to belonging the same age group. These data were used to validate the high-resolution 

hyperspectral product (HySpex: 1 m spatial resolution). Assuming that one pixel of HySpex (1 m) 

corresponds to one tree, we computed Pearson's correlation coefficient which was very high (0.9), 

implying that the classified output (validation map) is reliable and can be used to validate the 

fraction output.

We assessed the accuracy of the MESMA output at different spatial resolutions using 

random points and found no major differences in accuracy at different spatial resolutions. This 
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suggests that MESMA can be used for improved sub-pixel cover estimates from the current and 
upcoming global space-borne hyperspectral data of coarser resolution. Roth et al. (2015) 

published a similar study to assess the impact of spatial resolution on the plant functional type 

classification over five different ecosystems in the USA, including three forest ecosystems: the 

Smithsonian Environmental Research Center (Maryland), the Wind River Experimental Forest 

(Washington), and the Sierra National Forest (California), a site with tidal marsh in the Gulf Coast 

(Louisiana), as well as the central coast region of Santa Barbara, the Santa Ynez Mountains, and 

the Santa Ynez Valley (California), which feature diverse habitats ranging from evergreen and 

deciduous shrublands to open grasslands and woodlands. They performed pixel-level 

classification and suggested that the plant functional type classification will be efficient in the 

current and upcoming (30 m and 60 m) coarser resolution hyperspectral data [25]. Similarly, we 

found that there was no significant difference in the fraction outputs at different spatial scales (5 

m, 10 m, and 30 m), suggesting that a spectral unmixing technique (MESMA) is effective in 

estimating the sub-pixel needleleaf fraction from coarser spatial resolution data.

This study presents an effective approach to map and validate the sub-pixel needleleaf 

fraction in a boreal forest to aid fire management. Our validation approach introduces a novel 

methodology that will benefit future research on spectral unmixing validation at the sub-pixel level. 

This intermediate step can serve as a valuable tool for validating very-coarse-resolution orbital 

data from sensors such as EMIT and SBG.

The fraction map provides detailed information on needleleaf vegetation, which is 

essential for fire management in all three stages (pre-fire, active fire, and post-fire). It can help 

land managers and firefighters identify the location of high-risk fuels and employ pre-fire 

management practices: during an active fire, it will help prioritize the area that needs immediate 

attention to reduce the fire spread; post-fire, these maps can also help in studying the forest 

demography changes, especially the forest recovery. While we validated the fraction map in a 

typical boreal ecosystem, this approach can be used to validate the MESMA output in other 

ecosystems. The requirement is for detailed field surveys and high-resolution hyperspectral data 

over the same region.

4.6. Conclusions

Needleleaf vegetation is a high-risk fire fuel and responsible for rapid fire spread and high 

burn intensity. This study presents an effective approach to quantify the needleleaf fraction in 

each pixel of an AVIRIS-NG image using a well-documented pixel unmixing algorithm (MESMA) 

and validating the fraction estimates. We developed an approach to validate a fraction map 
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product using a high-resolution classified map product and needleleaf tree counts from the field. 
We found that MESMA has the potential to map a needleleaf fraction in a mixed boreal forest with 

reasonable accuracy. We applied MESMA on AVIRIS-NG data at different spatial resolutions and 

found no major difference in ac-curacies suggesting that spectral unmixing is effective in 

estimating the needleleaf fraction from coarse-resolution data. Future research should focus on 

the different unmixing techniques and compare their performance. The findings from this study 
supports the applications of the current and upcoming hyperspectral space missions for sub-pixel 

vegetation and landcover mapping for a variety of applications including wildfire management and 

ecosystem monitoring.
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Chapter 5 Summary and Conclusions

5.1. Summary

Wildfires are a natural phenomenon in boreal Alaska. Recently, Alaska has experienced 

increased frequency and size of wildfires, leading to increased burned areas. Efficient fire 

management strategies are crucial for ensuring the safety of the public, protecting property, and 

preserving the environment from the catastrophic consequences of large wildfires. For effective 

wildfire management, a comprehensive understanding of weather parameters, such as the 

likelihood of lightning strikes, seasonal climate variations, and fuel types, is essential to develop 

fire prevention, suppression, and post-fire restoration strategies. However, the existing fuel maps 

in Alaska lack sufficient details and suffer from poor accuracy, posing challenges for fire managers 

in effectively managing wildfires. Therefore, it is crucial to improve the fuel maps. This study aims 

to advance fuel mapping to aid fire management efforts in Alaska by conducting research and 

investigation to produce detailed fuel maps with greater accuracy.

Detailed maps are crucial for accurate and effective wildfire prevention and suppression 
efforts. In Alaska, the LANDFIRE Existing Vegetation Type (EVT) (LANDFIRE, 2016) map product 

derived from Landsat image data (multispectral data) at 30m spatial resolution is traditionally used 

for fire management, fire spread modeling, and risk assessment. The LANDFIRE EVT 2014 map 
product's accuracy ranges between 20% and 45% (Develice, 2012; Smith et al., 2021). 

Hyperspectral data can meet the need to improve fuel maps due to its narrow bandwidth. 

Hyperspectral data is essential for accurate and detailed vegetation mapping in Alaska (Smith et 

al., 2021). However, it is scarce due to the high data acquisition cost, so alternate methods need 

to be developed to create such a map. This research has developed an automated workflow that 

uses 10 m Sentinel scene scale data to generate hyperspectral data and vegetation maps. This 

process resulted in maps with an accuracy that was 33% higher than the LANDFIRE EVT maps, 

as assessed on a test site at BCEF where ground data was available. The study also 

demonstrated that the forest-type acreage estimates for the five major tree species obtained from 

the map follow the same pattern as the estimates from the USDA Pilot Inventory program for 

Tanana Valley State Forest (Pattison et al., 2018; U.S. Forest Service, 2016), with black spruce 

being the most dominant species, followed by birch, aspen, and poplar being the least dominant. 

These highly detailed vegetation/fuel maps are valuable input for fuel models and useful for 

wildfire management and decision-making.
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The study utilized the Universal Pattern Decomposition Method (UPDM) to simulate 
AVIRIS-NG data using remotely sensed Sentinel-2 data. The data were then classified using a 

Random Forest model to generate vegetation/fuel maps. Additionally, the study presents a well- 

designed processing workflow for mapping needleleaf fractions in mixed forest stands since it is 

of high interest to fire managers due to its high flammability. The study employed the spectral 

unmixing algorithm, Multiple Endmember Spectral Mixture Analysis (MESMA), to map needleleaf 

fraction in a test area in interior Alaska. Previous studies have tested MESMA for mapping green 

vegetation, soil, and non-photosynthetic vegetation (Brewer et al., 2017; Powell et al., 2006; 

Roberts et al., 1998). However, this is the first study to test MESMA for mapping needleleaf 

fraction in a mixed boreal forest in Alaska. Also, a comprehensive workflow was devised to 

validate the fraction cover map using high-resolution hyperspectral data (1m) and ground data.

5.2. Conclusions

RQ1: Can high-quality hyperspectral data be generated from widely available Sentinel - 2 data to 

meet the need for greater spatial and temporal coverage of hyperspectral data for vegetation and 

fuel mapping at a local scale in boreal Alaska?

The study demonstrated the reliability of UPDM for spectral unmixing. This sensor

independent algorithm requires ground-measured spectra and spectral response functions from 
multispectral and hyperspectral sensors.

1. By utilizing UPDM, we successfully simulated 332 bands of AVIRIS-NG data from 

Sentinel-2 multispectral data. The resulting hyperspectral data exhibited the spectral 

characteristics of AVIRIS-NG and the spatial resolution of Sentinel-2 data.

2. On visual comparison of simulated, AVIRIS-NG, and Sentinel-2 images, we found that the 

simulated image was able to capture the minute details and features present in the 
AVIRIS-NG image.

3. High band-to-band correlation between simulated and AVIRIS-NG data resulting in a 

strong statistical correlation between the spectral signature extracted from them for the 

major tree species (birch and spruce), with correlation coefficients (r) of 0.97 for birch and 

0.92 for spruce.
4. On performing species-level classification, we were able to achieve an 89% accuracy for 

the simulated hyperspectral data, which surpassed the accuracy of Sentinel-2 data 

(77.8%). Our findings are consistent with previous studies by Liu et al. (2009) and Tiwari 

et al. (2016), who also reported significant improvements in classification accuracy when 

using simulated Hyperion data.
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The results indicate that the simulation process successfully generated hyperspectral data 
that closely resembles an AVIRIS-NG image, which can be used to generate improved vegetation 

and land cover maps for various applications. The ability to generate such data sets is particularly 

valuable in areas where acquiring real hyperspectral imagery is expensive and logistically 

challenging.

RQ2: How effectively can the simulated Hyperspectral data be used for the identification of 

vegetation/fuel classes of the boreal region of Alaska at a regional scale?

This study presents a novel approach for generating hyperspectral images from commonly 

available multispectral images at the Sentinel-2 scene scale (i.e., 100 km x 100 km). The results 

demonstrate the effectiveness of this approach for detailed and improved vegetation and fuel 

mapping at a regional scale in Alaska's boreal forest, contributing to the effort for effective forests 

and fire management in the region.

1. The study identified birch, spruce, and gravel as the most suitable endmembers for the 

study area. We collected ground spectra of 13 major vegetation (including shrubs and 

trees), gravel, and asphalt during summers (2019-2021) using a PSR+ 3500 hand-held 

spectroradiometer and created a spectral library for this study. We employed the Iterative 

Endmember Selection (IES) algorithm to optimize the spectral library and select the most 

representative endmembers for simulation.

2. The approach addresses the paucity of hyperspectral data in Alaska. We automated and 

optimized algorithms so that a 425-band AVIRIS-NG hyperspectral image cube covering 

an area of 100 km x 100 km can be generated in 2 hours.

3. The results showed RMSE of 0.03 and 0.02 for two major vegetation classes, birch and 

spruce, respectively, indicating a high level of spectral similarity between the simulated 
and AVIRIS-NG images.

4. The study developed a Random Forest image classification model using training data from 

one scene and tested its portability on two other scenes from different sub-ecoregions. 

The model performed well in these two scenes, indicating its reliability and reproducibility 

across space in boreal Alaska.

5. As per the assessment using available field data, the vegetation maps generated from 

simulated data were more detailed and accurate compared to the existing maps 
(LANDFIRE EVT and Alaska Vegetation and Wetland Composite (AKVWC)). The 

accuracy of the vegetation map generated using simulated data was 65%, and the 

LANDFIRE EVT map was 32%, suggesting an improvement of 33% in accuracy.
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6. The study presents an automated workflow for the hyperspectral image simulation and 

vegetation classification in Google's cloud platform (GCP system configuration: 16 CPUs 
and 60 GB RAM). By improving and optimizing the simulation and classification 

algorithms, we were able to transform a 4.5 GB Sentinel-2 (100 X100 km) dataset into a 

complete hyperspectral image cube of 190 GB in two hours and generate a vegetation 

map in 6 hours.
RQ3: Can spectral unmixing of a pixel estimate the needleleaf fraction in a mixed boreal forest 

with reasonable accuracy, and how do we validate needleleaf fraction estimates?

The study successfully mapped needleleaf fraction using MESMA, a widely used spectral 
unmixing algorithm. However, validation of the resulting fraction map was a major challenge. To 

address this issue, we proposed a novel approach to validate the needleleaf fraction map.

1. Needleleaf species in mixed boreal forests can be effectively mapped with reasonable 
accuracy by adjusting the brightness parameter in the MESMA algorithm.

2. We developed a novel approach to validate a fraction map product using a high-resolution 

classified map product generated using a 1m spatial resolution HySpex image and field

based needleleaf tree counts.

3. There was no significant difference in the accuracy of needleleaf fraction maps at different 
spatial resolutions (73%, 79%, and 78% for 5 m, 10m, and 30 m spatial resolution images, 

respectively). Hence, the findings suggest that MESMA can potentially be a valuable tool 

for needleleaf fraction mapping at a regional scale using coarser resolution space-borne 

hyperspectral data from current and upcoming missions.

5.3. Broader impacts

The research produces three significant products: simulated hyperspectral data and 

vegetation/fuel maps for the entire boreal region of Alaska and a needleleaf fraction cover map 

for a test site in interior Alaska. These products are important for wildfire management practices 

and extend their impact beyond fire management. Further details on the broader implications and 

knowledge/product sharing are discussed in the following paragraphs.

The availability of Hyperspectral data for Alaska has multiple benefits: monitoring land use 

changes, assessing wildfire impacts, mapping invasive species, and estimating biomass and 

carbon stocks. It paves the way for several other arctic applications, including sea ice extent 

mapping and monitoring permafrost degradation. Additionally, hyperspectral data can aid in 

mineral exploration and mapping, providing valuable information for mining and resource 

extraction industries. The availability of hyperspectral data can lead to a better understanding of
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Alaska's environment and support sustainable development and management of its natural 
resources while advancing scientific research and decision-making.

Vegetation/fuel maps play a critical role as input to fuel models such as the Forest 

Vegetation Simulator and the Fire Dynamics Simulator. These models can be used to simulate 

future forest and fire disturbance conditions based on the fuel type, moisture content, and other 

variables, including topography and climate. The accuracy and reliability of the models depend 

heavily on the quality and resolution of the vegetation/fuel maps. At the wildland-urban interface, 

the detailed maps can assist in identifying areas at a higher risk of fire and determining appropriate 

fire management strategies such as prescribed burns, fuel reduction treatments, and fire 

suppression efforts to reduce the amount of available fuel and minimize the risk of fire spread.

The new vegetation maps can be accessed through the ArcGIS web portal, embedded in 

the story map available at https://tinyurl.com/HySim-storymap. This story map provides essential 

information on the method used for hyperspectral data simulation and classification. To minimize 

access barriers and enhance the self-sufficiency of fire managers, we are sharing Python codes 

on GitHub at https://github.com/abadola21/hysim. These codes will empower fire and land 

managers by equipping them with the knowledge and resources to independently perform 

simulations and generate vegetation maps to make informed decisions. We have also planned to 

organize a workshop, with the help of the Alaska Fire Science Consortium (AFSC), on running 

simulations and classification using Google Colab, an open-source platform. This workshop aims 

to provide fire and land managers with hands-on experience and practical guidance. The 

workshop recording will be publicly available through the published story map, allowing anyone 

to access and benefit from the technology.

The study also involved the collection of ground spectra of 13 major vegetation types, 
including shrubs and trees, and samples of gravel and asphalt, using a PSR+ 3500 hand-held 

spectroradiometer during the summers of 2019 to 2021. The spectral library and the ground data 

that includes vegetation cover and location data for interior Alaska are available at 

https://github.com/abadola21/hysim/tree/main/SpectralLib_GroundData. Ground data and the 

comprehensive spectral library generated from this study are valuable resources for future 

research in the boreal domain of Alaska.

Engaging in discussions with fire and land managers, in collaboration with the AFSC, has 
provided valuable insights into the critical importance of needleleaf fraction mapping for effective 

fire management. These insights have motivated us to develop a reproducible data processing 

workflow for needleleaf fraction mapping in interior Alaska. The needleleaf fraction map and the 
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ground data for this study are available at https://tinyurl.com/ycxnns7t. Needleleaf fraction cover 
maps are particularly useful for modeling fire spread and predicting fire behavior to support 

effective fire suppression strategies. For example, when a wildfire is approaching an area with a 

high needleleaf species, managers may deploy more resources and take more aggressive 

suppression actions, such as creating firebreaks or conducting controlled burns, to prevent the 

fire from spreading. Moreover, needleleaf fraction cover maps can aid in identifying areas with 

high biomass and carbon stocks, which can be used to prioritize conservation efforts and support 

programs aimed at offsetting carbon emissions. The needleleaf fraction maps are also crucial for 

Alaska's forestry industry. The map can be used to identify areas with high potential for timber 

harvesting and aid in forest resource management and planning.

5.4. Future work and recommendations

Hyperspectral data is highly valuable for detailed studies, but its limited availability has 

constrained its use. However, with the advent of simulated hyperspectral data, new possibilities 

for research and collaborations have emerged. In a collaborative effort, we worked with 

researchers from the Indian Institute of Technology, Varanasi, India, to study the chlorophyll 

content in agricultural crops in India. Our methodology was successfully implemented, leading to 

the joint publication of a paper (Verma et al., 2022). The study demonstrated the method's 

potential in simulating AVIRIS-NG data to estimate chlorophyll levels in crops.

The study has shown the advantages of utilizing a pixel unmixing approach and a Random 

Forest classification model for improved vegetation/fuel mapping. However, there is potential to 

enhance the quality of these maps further. One effective strategy is incorporating more training 

data into the classification model, including data from different seasons and regions to capture 

the maximum variability in the spectral signatures over space and time. In addition to increasing 

the diversity and quantity of training data, incorporating more advanced machine learning 

algorithms, such as deep learning algorithms, has the potential to further improve the accuracy 

and precision of vegetation/fuel mapping.

The study demonstrates the potential of MESMA in mapping needleleaf fraction cover 

across varying spatial resolutions, from high to low. As current and upcoming space-borne 

hyperspectral satellite missions (e.g., EMIT, EnMap, PRISMA, and SBG) increase the availability 
of hyperspectral data at coarser resolutions, it creates an opportunity to scale up needleleaf maps 

at a continental scale. A significant contribution of this research is developing a robust validation 

method for needleleaf fraction estimates, which can serve as a valuable tool for validating 

products generated by these hyperspectral space missions. The utilization of MESMA for 
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mapping needleleaf fraction in the study area has shown promising results. However, future 
research should explore different unmixing techniques and compare their performance with 
MESMA.
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