
PERFORMANCE OF GAUSSIAN NAIVE BAYES FOR CLASSIFICATION WITH DEPENDENCIES FROM

ARCHEMEDIAN COPULA

By

Hugh E. Winston, B.S.

A Project Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Statistics

University of Alaska Fairbanks

May 2022

APPROVED:

Dr. Ronald Barry, Committee Chair
Dr. Scott Goddard, Committee Member
Dr. Margaret Short, Committee Member
Dr. John Rhodes, Chair

Department of Mathematics and Statistics



Abstract

Naive Bayes is an application of Bayes theorem in which the likelihood 
function is factored into marginals by making the assumption that the 
variables are independent. Naive Bayes is typically used for classification 
problems in which the goal is to find the class with the largest probability 
given the data on hand. When the data on hand are continuous real 
numbers we can further assume they are class conditionally normally 
distributed, which is a particular version of Naive Bayes called Gaussian 
Naive Bayes. This paper explores when Gaussian Naive Bayes classification 
problems work well vs when they do not. Typically when assumptions 
are not valid, valid conclusions cannot be drawn. However, Naive Bayes 
is known to be robust even when the independence assumption is not 
met. We show using simulations that binary classification accuracy of 
Naive Bayes is much more sensitive to differences in the class conditional 
marginal distributions than the correlation between predictors. Additionally 
we show that Naive Bayes completely fails when predictors are generated 
using a Gumbel copula and compare results with a general Bayes classifier 
and the K-Nearest Neighbors classifier.

1



1 Introduction
Assumptions play an important part in data analysis. In many cases, perhaps 
all, assumptions must be made in order to actually proceed with calculations and 
deductions. These assumption are useful, possibly allowing one to use previously 
devised theory or simplifying a complex aspect of the problem. However, what 
happens when those assumptions are not valid? What can we say about the 
conclusions we reach after assuming a false premise? In traditional logic we 
would have to say that our conclusions are most likely false if the assumptions 
we made to reach them were false. There are however surprising situations 
where an assumption is clearly false but this does not have as big an effect 
on the conclusions as we might think. In problems such as these, making a 
false assumption paradoxically improves the analysis. Naive Bayes is one such 
method.

Naive Bayes is a method for calculating the posterior probability of a response 
given a vector of predictor variables. The method involves assuming the conditional 
distributions for each variable are mutually independent, which is quite a strong 
assumption in that, for many real datasets it will be flat out false. For example, 
in Fisher’s Iris dataset[14] the predictor variables are the lengths and widths of 
an Iris flowers petal and sepal. Clearly the length and width of a flowers petal 
are not independent measurements. It is by this assumption the method gets 
its name.

For a classification problem with K different classes, let Ck be the class of 
the ith observation, where i = 1, 2, ..n and let x = (x1,x2,... xn) be an instance 
vector of predictor variables. Then by Bayes Theorem;

P(Ck |x)= P(Ck)P(x | Ck) 
P (x)

Since P(x) doesn’t depend on Ck, it only serves as a normalizing constant 
in the calculations and is the same for each class. Therefore, in the context of 
classification, it can be ignored and rather than equality we can replace with a 
“proportional to” statement;

P(Ck | x) « P(Ck)P(x | Ck)

If the joint class conditional distributions are known then P(Ck | x) can 
be calculated exactly. Otherwise they need to be estimated or a simplifying 
assumption can be made to make the calculations easier or in certain situations 
even possible, namely that the predictors are mutually conditionally independent. 
Under this assumption the P (x | Ck) can be decomposed as the product of the 
class conditional marginals and, if they are known, P (Ck | x) can be calculated 
using;

n

P(Ck | x) « P(Ck) Y P(Xi | Ck)
i=1

2



A Bayes classifier can be built from this statement by calculating 
P (Ck) nn=1 P(xi I Ck) f°r each dass5 Ck and choosing the largest value as the 
outputted predicted class. Bayes classifiers are known to be optimal if the prior 
and the likelihood can be calculated precisely[2]. Optimality, in this context, is 
to say that the probability of mis-classification is minimized when using a Bayes 
classifier, and therefore the Naive Bayes classifier will definitely be optimal when 
the independence assumption is true and the true prior is knownfl]. A surprising 
result is that the Naive Bayes classifier can still be very accurate even when the 
independence assumption is false[4]. Therefore, in many cases the Naive Bayes 
classifier performs comparatively well compared to other more sophisticated 
classifiers, regardless of whether the assumption is met or not.

Naive Bayes can be used with a wide variety of data types. When the 
predictor variables are continuous and the output variable is discrete, we can 
replace probability statements in Bayes theorem with probability densities;

P (Ck|x)= P (Ck )f (x|Ck) f(x) 
n

P(Ck | x) « P(Ck) Y f (Xi | Ck)
i=1

Therefore Naive Bayes can be used when the class conditional marginal distribution 
of the data are known, or can be reasonable assumed. Deciding the distribution 
of the class conditional marginals gives many different versions of Naive Bayes, 
such as Bernoulli Naive Bayes, Multinomial Naive Bayes, and Gaussian Naive 
Bayes[5]. For the purposes of this paper we will assume the class conditional 
marginals are normally distributed, therefore we will be using Gaussian Naive 
Bayes.

In order to apply Gaussian Naive Bayes, the following parameters need to 
be estimated:

• P(Ck): The probability of each individual class. This can be estimated by 
the maximum likelihood estimator, nk, or provided as a categorical prior 
distribution.

• iik^ The class conditional means, estimated using the class conditional 
sample means for class k and predictor i

• ^2.: The class conditional variances, estimated using the class conditional 
sample variances for class k and predictor i

Then the probability of each class given an instance of the data can then be 
estimated and a Bayes classifier can be built by taking the largest of these;

n nk
C = arg max — I I 

kN

_J_ e-2 ✓ )’

a sf2n
Next we demonstrate that even with a high degree of dependency between 

the predictor variables, Gaussian Naive Bayes can still achieve satisfying prediction 
accuracy.

3



2 Demonstration
In order to demonstrate that Naive Bayes is still able to give satisfying accuracy 
performance in the face of feature dependencies we will use Sir Ronald Fisher’s 
Iris dataset[14]. The data consists of measurements from three species of Iris 
flowers; Iris Setosa, Iris Virginica and Iris Versicolor. For each flower the petal 
length and width and the sepal length and width were measured. Intuitively we 
can reason that these four predictor variables are not conditionally independent 
since usually a flowers petals and sepals widths don’t grow independently from 
their respective lengths. Analytically we can see from the scatterplots that there 
are most likely dependencies and the sample correlation matrices for each class 
are as follows.

I.Setosa s.len s.wid p.len p.wid

s.len 1 0.74 0.26 0.27
s.wid 0.74 1 0.17 0.23
p.len 0.26 0.17 1 0.33
p.wid 0.27 0.23 0.33 1

I.Versacolor s.len s.wid p.len p.wid

s.len 1 0.44 0.72 0.57
s.wid 0.44 1 0.26 0.36
p.len 0.72 0.26 1 0.87
p.wid 0.57 0.36 0.87 1

I.Virginica s.len s.wid p.len p.wid

s.len 1 0.46 0.86 0.33
s.wid 0.46 1 0.40 0.53
p.len 0.86 0.40 1 0.40
p.wid 0.33 0.53 0.40 1

4



Species • setosa • versicolor • virginica

However, in order to use Naive Bayes to classify these flower species based on 
the petal and sepal measurements we must assume that their length and widths 
are independent of each other within each class. Since we will use Gaussian 
Naive Bayes, we also verify that the class conditional features are approximately 
normal using normal probability QQ plots. The plots are shown in the appendix. 
It appears all class conditional features are approximately normal.

The data has 150 observations, 50 from each class. We randomly split the 
data into 120 observation used to train the model, and 30 observations used to 
test accuracy. Results on the test data are as follows.

Reference
Confusion Matrix and Statistics

Prediction setosa versicolor virginica
setosa 15 0 0
versicolor 0 9 2
virginica 0 0 4

Overall Statistics
Accuracy : 0.9333
95% CI : (0.7793, 0.9918)

The model reaches 93% accuracy even with feature dependencies. As we can 
see, even when the independence assumption is not met, the Naive Bayes model 
can still produce satisfying prediction accuracy.

5



3 Dependence Structure from Copulas
In order to create a situation where Naive Bayes must fail we explore the concept 
of a copula, defined next.

Definition 1. A copula is a joint cumulative distribution function such that 
each one of the marginals is uniformly distributed across the interval from zero 
to one.

A copula can be constructed in a number of ways. We discuss a few below.

Theorem. Let X be any continuous random variable with CDF FX (x). Then 
the random variable Y = FX (X) ~ U(0,1).

Proof. Since X is a continuous random variable it’s CDF is also continuous and 
F-1(y) exists. Then for 0 < y < 1,

Fy (y) = P(Y < y) = P(FX (X) < y)

= P (F-^Fx(X)) < F-1(y))

= P (X < F—1(y)) = Fx(F-^y)) = y

Differentiating to obtain the PDF of Y gives fY(y) = I(0 < y < 1), which is the 
PDF of a uniformly distributed random variable across the interval from zero 
to one. □

Now, let X = (X1,X2,... Xn) be a vector of random variables with continuous 
marginals and apply the following transformation to each element of the vector...

U = (F1(X1),F2(X2),..., Fn(Xn))

This results in a random vector of marginally distributed U (0,1) random variables, 
and the joint CDF of such a vector is a copula.

C(u1,u2,...un)=P(X1 < F1-1(u1),X2 < F2-1(u2),..., Xn < Fn-1(un))

Therefore, a copula is nothing more than any joint CDF with uniform marginals 
and, in fact, any joint CDF with continuous marginals can be written as a copula 
due to Sklar’s Theorem[13].

Many useful copulas have been defined and explored as they give one the 
ability to model dependence structure without modeling the marginals. This 
idea is useful in areas such as quantitative financial analysis for risk assessments[15]. 
An especially useful class of copula are the Archimedean copulas because they 
admit an explicit closed form function. Archimedean copulas are defined through 
the use of a generator function with specific properties.

6



Definition 2. A bivariate copula with parameter 0 and generator function 0(t) 
is called Archimedean if it can be written in the form...

C(u, v; 0) = 0-1 (0(u; 0) + 0(v; 0); 0)

The generator function must have the following properties...

1. 0(1) = 0

2. 0(t) is continuous and 0 : [0,1] ^ [0, to)

3. 0(t) is strictly decreasing

4. 0(t) is convex

For this paper we generate data from the bivariate Gumbel copula with dependence 
parameter 0 and generat or function —(ln(t))e. Therefore the CDF is....

C(u,v; 0) = e-((-ln(u))e+(-ln(v))e) ®

The PDF can be calculated by partial differentiation. Data was generated using 
the R. package gumbel[H]. Below we show 1000 randomly generated points from 
a Gumbel copula for 0 = 1,3,5, 7.

7



For 6 = 1 the variables are independent. As the value of 0 increases, the 
strength of the dependence of the two variables increases. Naive Bayes relies 
entirely on the class conditional marginals to be different in order to correctly 
classify the target classes since if they are equal the probability estimates will 
be approximately equal. Therefore, data generated from the copula should force 
the algorithm to fail since each marginal distribution will be the same.

4 Methods
For the purposes of this paper we focus on binary classification, K = 2, and we 
artificially simulate the class conditional features as normally distributed real 
numbers. We show multiple situations where Gaussian Naive Bayes works well, 
with and without class conditional independence. In order to create a situation 
where Gaussian Naive Bayes preforms poorly we use a Gumbel copula.

For the simulation we generate n = 800 points for each of two classes labeled 
“1” and “2” in three different scenarios;

• truly independent predictors within each class

• predictors from a bivariate normal distribution with covariance matrix S

• predictors from a Gumbel copula with dependence parameter 6

In each scenario there are two extreme cases. One where the data points in each 
class are linearly separable, and one where the they have been generated from 
the exact same distribution. In the first case we could achieve perfect accuracy 
trivially and in the second we would expect 50% accuracy, which is to say the 
model does no better than random guessing. Therefore, these two extreme 
cases will not be considered. Outside of those extremes we look at average 
classification accuracy over 1000 iterations for various distances between the 
class centers while the class standard deviations are equal and held fixed. For 
multivariate normal predictors, the correlation coefficients for each class are 
equal. The results are as follows.

8



5 Results

5.1 Independent Predictors
The table below represents average accuracy calculations over 1000 iterations 
at various distances between the class centers given by A^.

A// Average accuracy
0.00 0.52
0.25 0.54
0.5 0.59
0.75 0.64
1.00 0.69
1.25 0.73
1.50 0.77
1.75 0.81
2.00 0.84
2.25 0.87
2.50 0.89
2.75 0.92
3.00 0.93

5.2 Multivariate Normal Predictors
Each of the tables below represents average accuracy calculations over 1000 
iterations at various distances between the class centers given by A// while the 
value of p is held fixed and equal for both classes.

p = 0.2 p = 0.4
A// Average accuracy A// Average accuracy
0.00 0.49 0.00 0.49
0.25 0.54 0.25 0.54
0.5 0.59 0.5 0.59
0.75 0.64 0.75 0.64
1.00 0.68 1.00 0.69
1.25 0.73 1.25 0.73
1.50 0.77 1.50 0.77
1.75 0.81 1.75 0.81
2.00 0.84 2.00 0.84
2.25 0.87 2.25 0.87
2.50 0.89 2.50 0.89
2.75 0.91 2.75 0.92
3.00 0.93 3.00 0.93

9



p = 0.6 p = 0.8
Ay Average accuracy Ay Average accuracy
0.00 0.50 0.00 0.49
0.25 0.54 0.25 0.54
0.5 0.59 0.5 0.59

0.75 0.64 0.75 0.64
1.00 0.69 1.00 0.69
1.25 0.73 1.25 0.73
1.50 0.77 1.50 0.77
1.75 0.81 1.75 0.81
2.00 0.84 2.00 0.84
2.25 0.87 2.25 0.87
2.50 0.89 2.50 0.89
2.75 0.92 2.75 0.92
3.00 0.93 3.00 0.93

p = 0.9 p = 0.99
Ay Average accuracy Ay Average accuracy
0.00 0.50 0.00 0.50
0.25 0.54 0.25 0.54
0.5 0.60 0.5 0.60

0.75 0.65 0.75 0.65
1.00 0.69 1.00 0.69
1.25 0.73 1.25 0.73
1.50 0.77 1.50 0.77
1.75 0.81 1.75 0.81
2.00 0.84 2.00 0.84
2.25 0.87 2.25 0.87
2.50 0.89 2.50 0.89
2.75 0.92 2.75 0.92
3.00 0.93 3.00 0.93

10



5.3 Gumbel Copula Predictors
In this section we generate data from the bivariate Gumbel Copula and use a 
transformation so that that data are marginally standard normal. Then class 
2 is horizontally translated to produce data that is classifiable as seen in the 
image below.

Average Accuracy 0
2 3 4 5 6 7 8 9 10

Naive Bayes 0.50 0.49 0.50 0.50 0.49 0.49 0.50 0.50 0.50
Bayes 0.75 0.84 0.88 .90 0.92 0.93 0.94 0.95 0.95
KNN 0.72 0.82 0.86 0.89 0.91 0.92 0.93 0.94 0.94

11



Simulation Under Copula

model

Bayes

KNN

Naive Bayes

6 Discussion
We can see that the level of class conditional correlation between the predictor 
variables barely makes a difference when determining the average classification 
accuracy using Naive Bayes. Even when the predictors are almost perfectly 
correlated, Naive Bayes can still achieve excellent accuracy results as long as the 
class centers are different. Additionally, we can see that Naive Bayes completely 
breaks down when the class conditional marginal distributions are the same, 
regardless of the dependence structure between the predictors. In order for 
Naive Bayes to have any predictive classification power, the class condition 
marginals must be, at least slightly, distinct. When data is generated from 
a copula Naive Bayes cannot perform at all because by definition each of its 
marginal distributions are the same. Using a general Bayes classifier we can see 
that when the dependance structure is taken into account we get much better 
average accuracy. However the real utility of the Naive Bayes method is that 
one does not need to know the joint distribution in order to build the model. In 
situations where the class conditional marginals are equal, another classification 
method should be considered. We can see that KNN outperforms Naive Bayes 
in these situations.

12



7 Conclusion
Naive Bayes turns out to be a very robust technique given that its main assumption 
is often violated. However in order for Naive Bayes to be able to have predictive 
power, the class conditional marginal distributions cannot be the same. Since 
data generated from a copula produces equal marginals, Naive Bayes is unable to 
be useful in that situation. Ultimately, it is important to evaluate the structure 
of data before or in tandem with deciding what methods one will use to perform 
the analysis.

References
[1] Zhang, Harry. (2004). The Optimality of Naive Bayes. Proceedings of the 

Seventeenth International Florida Artificial Intelligence Research Society 
Conference, FLAIRS 2004. 2.

[2] Domingos, Pedro & Pazzani, Michael. (1998). On the Optimality of the 
Simple Bayesian Classifier Under Zero-One Loss. Machine Learning. 29. 
10.1023/A:1007413511361.

[3] Frank, Eibe & Trigg, Len & Holmes, Geoffrey & Witten, Ian. (2000). 
Naive Bayes for Regression (Technical Note).. Machine Learning. 41. 5-25. 
10.1023/A: 1007670802811.

[4] Rish, Irina. (2001). An Empirical Study of the Naive Bayes Classifier. IJCAI 
2001 Work Empir Methods Artif Intell. 3.

[5] Mccallum, Andrew & Nigam, Kamal. (2001). A Comparison of Event 
Models for Naive Bayes Text Classification. Work Learn Text Categ. 752.

[6] Rennie, Jason & Shih, Lawrence & Teevan, Jaime & Karger, David. (2003). 
Tackling the Poor Assumptions of Naive Bayes Text Classifiers.

[7] Metsis, Vangelis & Androutsopoulos, Ion & Paliouras, Georgios. (2006). 
Spam Filtering with Naive Bayes - Which Naive Bayes?. In CEAS.

[8] RStudio Team (2020). RStudio: Integrated Development for R. RStudio, 
PBC, Boston, MA URL .http://www.rstudio.com/

[9] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag 
New York, 2016.

[10] Majka M (2019). naivebayes: High Performance Implementation of 
the Naive Bayes Algorithm in R. R package version 0.9.7, <URL: 
https: / / CRAN.R- >.project.org/package=naivebayes

[11] C. Dutang (2015), gumbel: package for Gumbel copula.

[12] Max Kuhn (2021). caret: Classification and Regression Training. R package 
version 6.0-90. https://CRAN.R-project.org/package=caret

13

http://www.rstudio.com/
project.org/package=naivebayes
https://CRAN.R-project.org/package=caret


[13] Sklar, A. (1973). Random variables, joint distribution functions, and 
copulas. Kybernetika, 9, 449-460.

[14] Fisher, R.A.. (1936). The Use of Multiple Measurements in Taxonomic 
Problems. Annals of eugenics. 7. 179-188.

[15] Roger B. Nelsen. 2010. An Introduction to Copulas. Springer Publishing 
Company, Incorporated.

14



Appendix
Normal QQ plots:

Setosa: Sepal Length

Setosa: Petal Length

Setosa: Sepal Width

Versicolor: Sepal Width

-2-10 1 2

Versicolor: Petal Width

Versicolor: Sepal Length

15



Virginica: Sepal Length

Virginica: Petal Width

Virginica: Sepal Width

16



Code:

#MV Normal Simulation
#Author: Hugh Winston 
library(MASS) 
library(MBESS) 
library(mvtnorm) 
library(naivebayes) 
library(ggplot2)

options(scipen = 999)#turn off scientific notation

ch <- seq(from=0, to=3, by=0.25)
rho <- .99

for(j in 1:length(ch)){
reps = 1000
history <- rep(NA, reps)

for(i in 1:reps){
n = 400 #data points in each class
mu1 <- c(ch[j], 0) #class 1 center 
rhol <- 0.99
sigl <- matrix(c(1,rho,rho, 1), 2, 2) #class 1 correlation matrix 
sdl <- c(1,1) #class 1 standard deviations
sig1 <- cor2cov(sig1, sd1) #class 1 covariance matrix

mu2 <- c(0, 0)
rho2 <- -0.9
sig2 <- matrix(c(1,-rho,-rho, 1), 2, 2) 
sd2 <- c(1,1)
sig2 <- cor2cov(sig2, sd2)

y <- c(rep("1", n), rep("2", n))

d <- as.data.frame(rbind(mvrnorm(n, mu1, sig1), mvrnorm(n, mu2, sig2))) 
d[3] <- y

g <- ggplot(d, aes(V1, V2)) + 
geom_point(aes(col = V3)) + 
ggtitle("MV Norm")

plot(g)

s <- sample(1:nrow(d), 0.8*nrow(d), replace = F) 
d_train <- d[s, ] 
d_test <- d[-s, ]

1



nb <- naive_bayes(V3 ~ ., data = d_train)
history[i] <- mean(predict(nb, d_test[-3], type = "class") == d_test$V3) 

}
print(mean(history))

}

#Copula Simulation
#Author: Hugh Winston
library(ggplot2)
library(gumbel)
library(naivebayes)
library(caret)
library(class)

reps = 1000 #number of iterations of simulation
thetal = 10 #dependence parameter for class 1
theta2 = 10 #dependence parameter for class 2
history <- rep(NA, reps) #Accuracy output of each run for Naive Bayes
history_KNN <- rep(NA, reps) #Accuracy output of each run for K-NN
history_Bayes <- rep(NA, reps) #Accuracy output of each run for general Bayes

for(i in 1:reps){

n = 800

xl <- rgumbel(n/2, thetal) #
tl <- qnorm(x1[ , 1])
t2 <- qnorm(x1[ , 2])

x2 <- rgumbel(n/2, theta2)
t3 <- -qnorm(x2[ , 1])
t4 <- qnorm(x2[ , 2])

F1 <- c(t1, t3)
F2 <- c(t2, t4)

y <- c(rep("1", n/2), rep("2", n/2)) #Balanced classes, therefore P(C) =0.5
d <- data.frame(y = y, F1 = F1, F2 = F2)

# g <- ggplot(d, aes(x = F1, y = F2)) +
# geom_point(aes(color = y)) +
# ggtitle("Gumbel Coplula")
# plot(g)
# h <- ggplot(d, aes(x = F1)) +
# geom_histogram()
# plot(h)

s <- sample(1:nrow(d), 0.8*nrow(d), replace = F)
d_train <- d[s, ]
d_test <- d[-s, ]

2



nb <- naive_bayes(y ~ ., data = d_train) #NB model with all predictors assumed normal dist

exact <- data.frame(one = NA, two = NA) #set up blank df

for(j in 1:n){
evidence <- (0.5)*dgumbel(pnorm(d[j, 2]), pnorm(d[j, 3]), alpha=theta1) + (0.5)*dgumbel(pnorm(-d[j
exact[j, 1] <- ((0.5)*dgumbel(pnorm(d[j, 2]), pnorm(d[j, 3]), alpha=theta1)) / evidence
exact[j, 2] <- ((0.5)*dgumbel(pnorm(-d[j, 2]), pnorm(d[j, 3]), alpha=theta2)) / evidence

}

history[i] <- mean(predict(nb, d_test[-1], type = "class") == d_test$y)
history_KNN[i] <- mean(knn(d_train[-1], d_test[-1], as.factor(d_train[[1]]), k = 5) == d_test[[1]]) 
history_Bayes[i] <- mean(as.numeric(exact[-s, 1] > exact[-s, 2]) == as.numeric(d_test[[1]] == 1)) 

}
mean(history)
mean(history_KNN)
mean(history_Bayes)
#######################################
#for ploting outside the main loop
g <- ggplot(d, aes(x = F1, y = F2)) +

geom_point(aes(color = y)) +
ggtitle("Gumbel Coplula")

plot(g)
h <- ggplot(d, aes(x = F1)) +

geom_histogram()
plot(h)
#######################################
#for testing outside the main loop
exact <- data.frame(one = NA, two = NA)

for(j in 1:n){
evidence <- (0.5)*dgumbel(pnorm(d[j, 2]), pnorm(d[j, 3]), alpha=theta1) + (0.5)*dgumbel(pnorm(-d[j, 2
exact[j, 1] <- ((0.5)*dgumbel(pnorm(d[j, 2]), pnorm(d[j, 3]), alpha=theta1)) / evidence
exact[j, 2] <- ((0.5)*dgumbel(pnorm(-d[j, 2]), pnorm(d[j, 3]), alpha=theta2)) / evidence

}

mean(as.numeric(exact[-s, 1] > exact[-s, 2]) == as.numeric(d_test[[1]] == 1))
###################################################3
#results
t <- 2:10 #values of theta
n <- c(.5, .49, .5, .5, .49, .49, .5, .5, .5) #NB accuracy results
k <- c(.72, .82, .86, .89, .91, .92, .93, .94, .94) #KNN accuracy results
b <- c(.75, .84, .88, .9, .92, .93, .94, .95, .95) #General Bayes accuracy results

v <- data.frame(t=rep(t, 3), data=c(n,k,b), model=c(rep("Naive Bayes", 9), rep("KNN", 9), rep("Bayes",

g <- ggplot(v, aes(t, data)) +
geom_point(aes(col=model)) +
geom_line(aes(col model)) +
coord_cartesian( :lim c(2, 10), ylim = c(0.48, 1)) +
labs(x = "\u03F4", y = "Accuracy")

plot(g)

3



#Independent Predictors Simulation
#Author: Hugh Winston
library(ggplot2)
library(naivebayes)

reps = 1000
history <- rep(NA, reps)

for(i in 1:reps){
n = 800
#With 2 classes and 2 predictors there are 4 conditional distributions. For Gaussian NB, each 
#one needs a mean and var.
d_mu = 0
d_sig = 3
#Class 1
x_11_true <- c(0, 1)
x_21_true <- c(d_mu, 1 + d_sig) 
#Class 2
x_12_true <- c(0, 1 + d_sig)
x_22_true <- c(0, 1)

#create 4 different normal dists with set parameters
x_11 <- rnorm(n/2, mean = x_11_true[1], sd = x_11_true[2])
x_12 <- rnorm(n/2, mean = x_12_true[1], sd = x_12_true[2])
x_21 <- rnorm(n/2, mean = x_21_true[1], sd = x_21_true[2])
x_22 <- rnorm(n/2, mean = x_22_true[1], sd = x_22_true[2])
#two features that are a combination of two dists
F1 <- c(x_11, x_12)
F2 <- c(x_21, x_22)
#balanced in each class for each feature
y <- c(rep("1", n/2), rep("2", n/2))

d <- data.frame(y = y, F1 = F1, F2 = F2)
#train test split 80/20
train <- sample(1:n, 0.8*n, replace = F)
d_train <- d[train, ] 
d_test <- d[-train, ]

#naive bayes model
nb <- naive_bayes(y ~ ., data = d_train)
history[i] <- mean(predict(nb, d_test[-1], type = "class") == d_test$y)

}
mean(history)

#plot F1 vs F2 to verify clustering
g <- ggplot(d, aes(x = F1, y = F2)) + 

geom_point(aes(col = y))
plot(g)

#custom naive bayes model
class1 <- d_train[d_train$y == "1", ] 

4



class2 <- d_train[d_train$y == "2", ]

p_class1 <- nrow(classl) / nrow(d_train)
p_class2 <- nrow(class2) / nrow(d_train)

#calculate dist parameters
c1_m <- apply(class1[-1], 2, "mean")
c1_v <- apply(class1[-1], 2, "var")
c2_m <- apply(class2[-1], 2, "mean")
c2_v <- apply(class2[-1], 2, "var")

#predict class on the test set assuming normal dist conditional on class 
preds <- c()
for(i in 1:nrow(d_test)){

t1 <- p_class1 *
dnorm(d_test[i, 2], mean = c1_m[[1]], sd = sqrt(c1_v[[1]])) *
dnorm(d_test[i, 3], mean = c1_m[[2]], sd = sqrt(c1_v[[2]]))

t2 <- p_class2 *
dnorm(d_test[i, 2], mean = c2_m[[1]], sd = sqrt(c2_v[[1]])) *
dnorm(d_test[i, 3], mean = c2_m[[2]], sd = sqrt(c2_v[[2]]))

if(t1 < t2) {
preds[i] <- "2"

}
else{
preds[i] <- "1"

}
}
#test set accuracy
mean(preds == d_test[1])

#Naive Bayes on Iris dataset
#Author: Hugh Winston
library(datasets)
library(ggplot2)
library(ggpubr)
library(naivebayes)
library(caret)

i <- iris
plot(i[-5])

g <— ggplot(i, aes(x = Sepal.Length, y = Sepal.Width)) + 
geom_point(aes(color = Species))

h <- ggplot(i, aes(x = Sepal.Length, y = Petal.Length)) + 
geom_point(aes(color = Species))

k <- ggplot(i, aes(x = Petal.Length, y = Petal.Width)) + 
geom_point(aes(color = Species))

j <- ggplot(i, aes(x = Petal.Width, y = Sepal.Width)) + 
geom_point(aes(color = Species))

l <- ggplot(i, aes(x = Petal.Width, y = Sepal.Length)) +

5



geom_point(aes(color = Species)) 
plot(g) 
plot(h) 
plot(k) 
plot(j) 
plot(l)
ggarrange(g, h, k, j, l, common.legend = T)

set <- cor(i[1:50, -5]) 
vers <- cor(i[50:100, -5]) 
virg <- cor(i[100:150, -5])

qqnorm(i[1:50, 1])
qqnorm(i[1:50, 2])
qqnorm(i[1:50, 3])
qqnorm(i[1:50, 4])
qqnorm(i[50:100, 1])
qqnorm(i[50:100, 2])
qqnorm(i[50:100, 3])
qqnorm(i[50:100, 4])
qqnorm(i[100:150, 1])
qqnorm(i[100:150, 2])
qqnorm(i[100:150, 3])
qqnorm(i[100:150, 4])

s <- sample(1:nrow(i), 0.8*nrow(i), replace = F) 
i_train <- i[s, ] 
i_test <- i[-s, ]

nb <- naive_bayes(Species ~ ., data = i_train) 
summary(nb)
mean(predict(nb, i_test[-5], type = "class") == i_test$Species)
mean(predict(nb, i_train[-5], type = "class") == i_train$Species)

cm <- confusionMatrix(predict(nb, i_test[-5], type = "class"), i_test$Species) 
cm

6


