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Abstract

A reachable set is the set of all possible states produced by applying a set of inputs,
initial states, and parameters. The fundamental problem of reachability is checking
if a set of states is reached provided a set of inputs, initial states, and parameters,
typically, in a finite time. In the engineering field, reachability analysis is used to
test the guarantees of the operation’s safety of a system. In the present work, the
reachability analysis of nonlinear control affine systems is studied by means of the
Chen-Fliess series. Different perspectives for addressing the reachability problem,
such as interval arithmetic, mixed-monotonicity, and optimization, are used in this
dissertation. The first two provide, in general, an overestimation of the reachable
set that is not guaranteed to be the smallest. To improve these methods and obtain
the minimum bounding box of the reachable set, the derivative-based optimization
of Chen-Fliess series is developed. To achieve this, the closed form of the Gâteaux
and Fréchet derivatives of Chen-Fliess series and several other tools from analysis are
obtained. To provide a representation of these tools practically and systematically, an
abstract algebraic derivative acting on words of a monoid is defined. Three nonconvex
optimization algorithms are implemented for Chen-Fliess series. The problem of
computing an inner approximation of the reachable set via Chen-Fliess series is also
solved by means of convex analysis tools. Furthermore, a method for the computation
of the backward reachable set of an output set is also provided. In this case, different
from forward reachability analysis, the feasibility problem represents a challenge and
requires using the Positivestellensatz. Examples and simulations are provided for
every method presented. The application of control barrier functions via Chen-Fliess
series is outlined. Finally, the future work and conclusions are stated in the last
chapter.



A la memoria de mi padre Juvenal Pérez.

A mi querida madre Socorro Avellaneda.

A mi hermano Raúl Pérez y a mi sobrina Romina Michiq Pérez.

ii



Acknowledgements

I want to thank my father, who taught me that youth is about achieving goals, and

my mom, for teaching me about persistence, discipline, and dedication. Thanks to

the talented painter Romina Michiq for her artistic brilliance and scientific inquisitive

mind, to my brother Raul for sharing his taste for the subtle things in life and nur-

turing the library with books in philosophy and literature. Thanks to Erin Smith for

being such a fantastic human being and having the ability to make a day bright and

cozy regardless of the season, location, and time; I am grateful our paths crossed.

I would like to express my deepest gratitude to Dr. Luis A. Duffaut Espinosa

for providing and financing such an invaluable opportunity and for his guidance and

career advice, to Dr. W. Steven Gray for being open to listening to my ideas, providing

valuable feedback, and being prompt to help, to Dr. Kurush Ebrahimi-Fard for his

time to listen to my ideas and for providing relevant literature on my research topic.

Thanks to Dr. Taylor Dupuy for allowing me to present my work at the unQVNTs

seminar, for taking his time to link my work with other algebraic perspectives, and for

providing valuable feedback and insight, to Dr. Eric Hernandez for his career advice,

for his natural and engaging discussion on my research topic, for being prompt to

help, and to Dr. Hamid Ossareh for his participation.

I’d like to express my gratitude to Dr. Safwan Wshah for delivering engaging

lectures on machine learning and for his willingness to provide assistance. I also

thank Dr. Mads Almasalkhi for his enjoyable lectures on convex optimization and

system theory. Also, I appreciate Dr. Eva Cosoroaba for being invested in growing

my background on the fundamentals of electromagnetism.

Thanks to my friends at UVM, Dr. Sarnaduti Brahma for always sharing a plate

iii



of abundant and delicious Indian food every weekend without missing one, Danial

Waleed for always being helpful as well as Hani Mavalizadeh, and Dr. Mustafa Matar

for his friendship.

In Peru, thanks to Dr. Alfredo Poirier from the mathematics department at

PUCP for taking the time to read these notes and provide interesting future lines of

research in the algebraic topology direction, and to Jorge Mayta from the mathematics

department at UNI for always helping me with iThenticate whenever I needed it for

my publications.

Last, I would like to thank NASA for supporting my work under the cooperative

agreement VT-80NSSC20M0213, and the Broad Agency Announcement Program and

the Cold Regions Research and Engineering Laboratory (ERDC-CRREL) under Con-

tract No. W913E521C0003.

iv



Table of Contents
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1.1 Hamilton-Jacobi . . . . . . . . . . . . . . . . . . . . 5
1.3.1.2 Mixed-Monotonicity . . . . . . . . . . . . . . . . . . 7
1.3.1.3 Set-based Methods . . . . . . . . . . . . . . . . . . . 7

1.3.2 Chen-Fliess Series . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 13
2.1 Formal Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Formal Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 The Shuffle Set and Product . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Chen-Fliess Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Convex Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Mixed-Monotonicity of State Space Models . . . . . . . . . . . . . . . 25
2.7 Algebraic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Chen-Fliess Reachability via Interval Arithmetic 33
3.1 Interval Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Iterated Integrals over Intervals . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 The Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Reachable Set and Iterative Integrals . . . . . . . . . . . . . . 37
3.2.3 Boxes Using Interval Arithmetics . . . . . . . . . . . . . . . . 40

3.3 Chen-Fliess Series over Intervals . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 The Closed-form . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Input-Output Mixed Monotonicity 49
4.1 The Chen-Fliess Series of the Sum of Two Inputs . . . . . . . . . . . 50

4.1.1 Extended Iterative Integral . . . . . . . . . . . . . . . . . . . . 50
4.1.2 The Closed-Form . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 A Decomposition Function for Chen-Fliess Series . . . . . . . . . . . 55

v



4.2.1 Positive and Negative Parts of a Chen-Fliess Series . . . . . . 55
4.2.2 Partial Order over the Set of Functions . . . . . . . . . . . . . 57
4.2.3 The Decomposition Function . . . . . . . . . . . . . . . . . . . 58

4.3 Overestimation of Reachable Sets . . . . . . . . . . . . . . . . . . . . 60

5 Chen-Fliess Calculus and Minimum Bounding Box 63
5.1 Derivatives of Chen-Fliess series . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 The Fréchet Derivative . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 The Gâteaux Derivative . . . . . . . . . . . . . . . . . . . . . 67
5.1.3 The Gradient of Chen-Fliess series . . . . . . . . . . . . . . . 72

5.2 First-Order Approximation of Chen-Fliess Series . . . . . . . . . . . . 75
5.2.1 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . . 78

5.3 The Gradient Descent Algorithm . . . . . . . . . . . . . . . . . . . . 81
5.4 Independence of the Optimization Order . . . . . . . . . . . . . . . . 82
5.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Calculus Over Power Series 94
6.1 Differential Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1.2 Combinatorial Properties . . . . . . . . . . . . . . . . . . . . . 96

6.2 Chen-Fliess Series over Differential Languages . . . . . . . . . . . . . 106
6.2.1 Link Between Analysis and Algebra . . . . . . . . . . . . . . . 107

6.3 Second Order Derivatives of Chen-Fliess series . . . . . . . . . . . . . 110
6.3.1 Partial Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.2 Second-Order Partial Derivation . . . . . . . . . . . . . . . . . 112
6.3.3 The Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.4 Approximation of Chen-Fliess Series . . . . . . . . . . . . . . 118

7 Minimum Bounding Box via Second-Order Optimization 123
7.1 Minimum Bounding Box via Newton . . . . . . . . . . . . . . . . . . 124
7.2 Minimum Bounding Box via Trust Regions . . . . . . . . . . . . . . . 126
7.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Backward and Inner Approximation of Reachable Sets 138
8.1 Pre-Image and Backward Reachable Sets . . . . . . . . . . . . . . . . 139
8.2 Backward Reachable Set Computation via Chen-Fliess Series . . . . . 143
8.3 Inner approximation of Reachable Sets via Chen-Fliess Series . . . . . 146
8.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 149

vi



9 Vector Field Perturbation 153
9.1 Perturbed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.2 Extended Iterative Lie Derivative . . . . . . . . . . . . . . . . . . . . 154
9.3 The Fréchet Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10 Conclusion and Further Research 160
10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
10.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

vii



Chapter 1

Introduction

1.1 Motivation

As technology and industry advance, systems become more complex and aspects such

as stability, controllability, liveness, and safety become more difficult to analyze. In

many situations, for the correct operation of the system, the output is only allowed

to lie in a certain region of the output space called safety region. A way to verify the

compliance of these operating constraints is by computing the output generated by

the inputs and checking if the set lies inside the safety region. In another scenario,

the unsafety outputs are known and the set of inputs that generated them need to be

identified. For example, in civilian air traffic control [66,67], the aircraft have to keep

a safe distance from each other to avoid accidents. With the distance known, the

pilots adjust the inputs such as the acceleration and the angle of the steering wheel

to remain in the safety region. An example regarding the energy field is the safe

operation of a power system [36]. In [69], the dynamics of Type-4 wind turbines are

analyzed to the electric disturbances that occur between a wind power plant and an
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electric grid. For this, the set of all currents and voltages output of the turbines are

computed and checked whether or not lie in the safe region to guarantee the stability

of the electric grid.

The set of outputs of a control system as a response to a set of inputs and initial

conditions is called a reachable set, and the study of them is called reachability analysis

which has its origins in model-checking and system verification in which the goal is to

provide a systematic way of verifying if the reachable set or the input set is contained

in a particular safety or unsafety set instead of simulating each possible outcome. In

general, and for the type of systems considered in this manuscript, input and initial

condition sets with infinite elements generate a set of infinite outcomes. This work is

concerned with three categories of reachability analysis. In forward reachability, the

focus is on the reachable set at a fixed time, while in backward reachability is on the

input set at a fixed time. In tube reachability, the verification must be satisfied for a

given time horizon.

Computing the actual reachable set has been proved undecidable even for sim-

ple cases like linear systems with inputs constrained to affine subspaces [23], and

some methods such as the ones that rely on the Minkowski sum of polyhedra easily

become burdensome for high-dimensional systems. Because of this, alternatives to

the reachable set are preferred to compute, such as overapproximations, which are

bigger sets that contain the reachable set, but they are easier to compute. For the

same reason, underapproximations are also used. A particular overapproximating set

is a box, also known as a bounding box. In particular, it is preferred to have the

smallest bounding box called minimum bounding box (MBB) as it provides the most

accurate box representation of the reachable set. In the literature, there are ways
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to compute overapproximations of the reachable set of a control system for a given

set of inputs and initial conditions when the output is equal to the state. For lin-

ear systems having zonotopes as initial conditions and the input sets, the Minkowski

sum provides a method to compute their overapproximating set [3]. This extends

naturally to non-linear systems by linearizing the dynamics. A second approach for

non-linear systems is mixed-monotonicity (MM), which makes use of an auxiliary

dynamical system and the preservation of a partial order to obtain a bounding box

of the reachable set [15, 74]. A third approach computes the reachable set by inter-

preting the non-linear system with disturbances as a differential game whose solution

leads to the Hamilton-Jacobi-Bellman equation [26,48]. The Koopman operator pro-

vides another method of linearization of systems used to obtain an overapproximation

of the reachable set of polynomial systems [65]. Finally, neural networks combined

with mixed-monotonicity are also employed to compute overapproximations of the

reachable set [72].

1.2 Problem Description

This manuscript deals with the computation of reachable sets of non-linear control

affine systems using Chen-Fliess series. Figure 1.1 shows an input-output representa-

tion of a system where a set of inputs enter the system and produce a set of outputs.

In the literature, a set of states and parameters also enter the system but in the

present work, only a set of inputs is considered. In reachability analysis, the goal

is to compute the actual reachable set but in many cases, this is computationally

expensive and an overestimation is preferred as long as it is faster computationally.
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Figure 1.1: Reachable Set (green) and Overestimation (orange).

The computation of two types of reachable sets is addressed in this work: the for-

ward and backward reachable. The use of them depends on the particular application.

If the output of the system is compact, the minimum bounding box can be written

in terms of two corners of the box. These two corners are formed by the maxima and

the minima of the coordinates. Since the output is represented by the Chen-Fliess

series, the problem translates into the problem of optimization of Chen-Fliess series

as shown in (1.1) where U is a box. Figure 1.2 explains this idea.

min
u∈U

Fc[u](t), (1.1)

The backward reachable set of an output set at a fixed time is the set of input

functions such that when they are applied to the system, all outputs lie inside the

assumed output set. Equation (1.2) describes the optimization problem.

min
u∈B

ui

s.t. Fc[u](t) ∈ U .
(1.2)

Assuming constant inputs, both (1.1) and (1.2) are non-convex optimization prob-

lems. The feasibility of the backward-reachability problem is non-trivial and its anal-
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Figure 1.2: The graph shows the output reachable set of a non-linear affine system and its
minimum bounding box (MBB).

ysis uses the Positivestellensatz.

1.3 Literature Review

1.3.1 Reachability Analysis

In the current section, three main techniques of reachability analysis are described.

These are the Hamilton-Jacobi, mixed-monotonicity, and set-based methods.

1.3.1.1 Hamilton-Jacobi

This method analyzes the reachability of general non-linear systems (not necessar-

ily control affine) and hybrid systems with inputs and disturbances. Consider the

problem of computing the backward reachable set of a target set. In this case, the
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problem is modeled as a differential game [34]. The use of game theory in control

theory can be traced back to [42]. The game is a game of kind for which the goal is

to reach the target set at the determined time. Player 1 is the controller, and Player

2 is the disturbance. The goal is Boolean and described as an indicator function of

the target region [63]. This is transformed into a game of degree by using the level

set method [45]. The backward reachable set is given by the solution of the game

by dynamical programming which is obtained from the Hamilton-Jacobi-Isaacs PDE

as formulated originally in [66,67] to address the problem of air traffic management.

The problem of computing the forward reachable set is performed in a similar man-

ner but with a change in the direction of the time variable, and the reachable tube is

computed by first minimizing the objective function over the time horizon.

In [7], the authors provide a big picture of the method, and in [12] an updated

review is given. According to [12], the computation of the reachable set by the

Hamilton-Jacobi method is intractable for systems of dimension 5 or higher with

exponential complexity. A way to overcome this drawback is to decouple the system

into self-contained subsystems that are possibly coupled through common states,

controls, and disturbances. Then, compute the reachable set of the subsystems and

recombine them to construct the whole system. Other types of decompositions are

proposed in the literature [13, 37,38,46].

Currently, there are two main toolboxes for reachability analysis. The Level Set

Toolbox (toolboxLS) [47] in MATLAB solves PDEs with the level set method and the

Berkeley Efficiency API in C++ for Level Set methods (BEACLS), which is designed

for fast computation.
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1.3.1.2 Mixed-Monotonicity

This method has its roots in monotone dynamical systems [62] which are systems

whose flow preserves the partial order of the state space. The property is characterized

in terms of the partial derivatives of the vector field. The most important aspect of

this type of systems is that most solutions converge to the equilibrium [39]. This

definition was extended to control systems in [2].

A mixed-monotone system is decomposed into a non-increasing and a non-decreasing

part [28]. In [14], a characterization of this property is given in terms of the mono-

tonicity of the vector field and this is bounded by the decomposition function to

obtain an overestimation of the one-step reachable set. In [74], a relationship be-

tween the definitions of mixed-monotonicity was provided and new criteria was given

to prove that a system is mixed-monotone in terms of the bounded variation of the

vector field. A decomposition is tight among all the decompositions if it provides the

smallest representation of the system. A tight decomposition for discrete systems was

given in [73] and for continuous systems in [15] where the reachable set is overapprox-

imated by the dynamics of the embedding system. This associated system is written

in terms of the decomposition function and its realization provides the northeast and

southwest points of the overapproximating box.

1.3.1.3 Set-based Methods

Another important tool to perform reachability is set-based methods. Different types

of sets have different advantages in the computation of reachable sets. Examples of

these sets are boxes, intervals, polytopes, ellipsoids and zonotopes. In [3] reachable

sets are computed for linear systems using set-based methods. Also, the complexity
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of the operations for specific sets depends on their representation. For example, the

hyperplane representation of a polytope requires a different amount of real numbers

to represent than its vertex representation. An important operation for set-based

reachability analysis is the Minkowski sum which is computationally expensive for

polytopes [5]. Because of the good scalability of the state space models and cheap

computation, zonotopes are preferred [27].

A way to overapproximate reachable sets is by using support functions [24,32,43].

Given a compact convex set, a finite number of vectors and their associated support

functions are only necessary to provide the overapproximation. In the case of linear

systems, if the set of inputs is closed and convex, then the corresponding reachable

set also preserves these properties. Thus, reachable sets of non-linear systems can be

computed by linearizing the system and using the Taylor polynomial along with set

operations. In the literature, TIRA [44] and CORA [4] are two of the most popular

toolboxes used to compute reachable sets with a set-based approach. The first is

based on intervals, and the second on zonotopes, polytopes, and intervals.

1.3.2 Chen-Fliess Series

A Chen-Fliess series is a weighted sum of iterated integrals whose coefficients belong to

a real coordinate domain. An iterated integral of a vector function at a particular time

is defined recursively as the nested integral of the first coordinate function times the

integral of the remaining coordinate functions. Because of this combinatoric nature,

the Chen-Fliess series is indexed by words from formal languages. The mathematical

structure that defines these words and their rules of formation is called a monoid.

A Chen-Fliess series provides an input-output representation of nonlinear affine
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control systems under certain conditions [21, 22, 35]. Applications of this methodol-

ogy include data-driven identification [68], interconnected systems representation [31],

and control [18]. Although the behavior of a Chen-Fliess series is intrinsically local,

its advantage lies in that under a proper setup, its coefficients are learned online.

That is, the Chen-Fliess series does not necessarily rely on a state-space model repre-

sentation of the system [68]. This is useful since systems in the engineering field are,

each time, more complex and challenging to represent. A more detailed account of

the concepts associated with Chen-Fliess series are provided in [29]. In the present

manuscript, Chen-Fliess series are used to present another methodology to compute

overestimations of reachable sets of non-linear control affine systems.

1.4 Contribution

In Chapter 3, interval arithmetics is used to compute the overestimation of the output

reachable sets of nonlinear control affine systems represented by the input-output

Chen-Fliess formalism and whose inputs lie in a box. Specifically, this box is the

cartesian product of an interval with itself as many times as the dimension of the

input vector function. To obtain the overestimation of the output reachable set, first,

the arithmetic product of intervals is defined and the closed form of an arbitrary

power of an interval is obtained. Then, the closed form of the overestimation of

the output reachable set of a single iterative integral is calculated. The relationship

between the output reachable set of an iterative integral and its associated state-

space representation is described. Next, all the overestimating boxes of the output

reachable set corresponding to the iterative integrals associated with a Chen-Fliess
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series are added up to obtain the overestimating box of the output reachable set.

Simulations and an example in which this straightforward methodology computes

the actual reachable set and not an overestimation are provided.

In Chapter 4, the notion of mixed-monotonicity (MM) of systems whose outputs

are described by a Chen-Fliess series is extended introducing the notion of input-

output mixed-monotonicity (IOMM). In the state-space version, this definition relies

on a decomposition function of the vector field that is defined in an extended do-

main and has monotone characteristics. In the input-output case, a way of obtaining

this function is by expressing the Chen-Fliess series of a sum of two input functions

in terms of the sum of two series. A partial order is defined to provide the mono-

tone behavior of the new decomposition function. It is shown that any convergent

Chen-Fliess series is input-output mixed-monotone. Next, the overestimating box

is obtained using the decomposition function on each orthant of the input domain.

Examples and simulations are provided.

In Chapter 5, the minimum bounding box of output reachable sets of systems

represented by Chen-Fliess series is calculated by performing first-order optimization

of Chen-Fliess series. For this, the closed form of the Fréchet and Gâteaux derivatives

and the gradient are obtained. A proof of the mean value theorem by algebraic means

is given. Specifically, the closed form of the derivative of the sum of two inputs is used

instead of the proof from the books by the chain rule. The gradient descent algorithm

is implemented for Chen-Fliess series, allowing the optimization and computation of

the minimum bounding box. Examples and numerical simulations are provided.

In Chapter 6, three contributions are presented. First, the concept of differential

languages is introduced. This is inspired by differential fields in [16] with the pur-
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pose of making the derivatives of Chen-Fliess series easy to represent. Second, the

second-order Gâteaux derivative of a Chen-Fliess series is used to provide a finer ap-

proximation by its Taylor series. The closed form of the Hessian is obtained and differs

slightly from the one for real functions on real coordinate domains. The second-order

optimality conditions follow naturally from this. The third contribution consists of

using the Hessian along with the Newton algorithm to optimize a Chen-Fliess series to

obtain the minimum bounding box of the output reachable set. Then the trust region

optimization algorithm is used to overcome the ill-posed cases. Examples and simula-

tions are provided showing the efficiency of the trust regions method on Chen-Fliess

series. The examples and simulations are presented in Chapter 7.

In Chapter 8, a discussion on the backward reachable set of an output set is

presented. The goal is to describe two possible approaches to output backward reach-

ability. Then assuming the convexity of the output set, an inner approximation of

the output reachable set is obtained. Both problems are expressed and solved as

optimization problems.

As a summary, a list of the contributions is given:

1. Different approaches for the computation of the forward reachable set using

Chen-Fliess series:

• Interval arithmetics: appears in [56].

• Gradient descent: appears in [54].

• Newton: appears in [55].

• Trust regions: appears in [58].

2. Inner and backward reachable set using Chen-Fliess series: appears in [59].
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3. Chen-Fliess calculus:

• Gâteaux derivative: the closed-form is obtained and proved in [54].

• Fréchet derivative: the closed-form is obtained and proved in the Transac-

tions on System and Control Letters Journal [57].

• Hessian: the closed-form is obtained in [55].

• Differential monoids: introduced in [55].
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Chapter 2

Preliminaries

In this section, Chen-Flies series are presented as a tool that provides an input-

output representation of a type of nonlinear systems. Its definition is given in terms

of iterated integrals indexed by words. Because of this, concepts of formal language

theory such as words and formal power series along with the results that guarantee

the Chen-Fliess series’s convergence to the system’s output are presented. Then,

the theory of mixed-monotonicity is presented as a tool to approximate the set of

outputs of a system as a result of a set of inputs and initial conditions acting on the

system. This approximation is given in terms of an embedded system whose trajectory

preserves certain partial order with respect to the inputs and initial conditions of the

original system.

2.1 Formal Languages

Formal languages have applications in many fields such as the automata, programming

languages, linguistic and logic fields. The objective of this section is to introduce the
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monoid structure, which describes what a word from an alphabet is. In the literature,

Chen-Fliess series are represented by means of formal languages. In the present work,

these concepts are also used to represent the differential tools of Chen-Fliess series.

In principle, formal languages help index series of iterative integrals in a much more

informative manner than just enumerating the elements of the series with the naturals,

for example. This is mainly because of the structure of the iterative integral. This

is will be clear when the Chen-Fliess series is defined. The first concept of formal

language is the alphabet.

Definition 1 An alphabet is a finite set of symbols, and its elements are called letters.

In this manuscript, by convention, the alphabet is denoted X = {x0, x1, · · · , xm} for

an m ∈ N. With an alphabet, one can form words.

Definition 2 A word over an alphabet is a finite string of zero or more letters. The

word consisting of zero letters is called the empty word.

In general, a word over X has the form η = xik
· · ·xi1 . Naturally, two words are

the same if they have the same number of non-empty letters and all their letters are

the same, this is, η = xi1 · · ·xir and ν = xj1 · · ·xjs are such that η = ν if and only if

r = s and xik
= xjk

for k ∈ {1, · · · , r}. A useful characteristic of a word is its length.

Definition 3 Consider the alphabet X = {x0, · · · , xm} for an m ∈ N. The length of

the word | · | is equal to the number of letters that compose the word. For the word

η = xi1 · · ·xik
, the length is |η| = k.

The number of times the letter xi appears in the word η is denoted |η|xi
, the

empty word is denoted ∅ and has zero length |∅| = 0. The symbol Xk denotes the set
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of all words of length k, X∗ is the set of words of any length, and X+ denotes the set

of all words with positive length.

Definition 4 Any subset of X∗ is called language.

To formalize the formation of words, the concatenation operation on words is

defined. This operation is associative, noncommutative, and the empty word works

as the neutral element.

Definition 5 The concatenation product on X∗ is the associative mapping C : X∗ ×

X∗ → X∗

(η, ξ) 7→ ηξ

The successive concatenation of a word is denoted as the power of the word ηk = η · · · η

where η appears k times. With all the previous definitions, the following structure

can be establish.

Definition 6 A free monoid refers to triplet (X∗, C, ∅).

In the present section, the concept of monoid was introduced. This set the foun-

dations for studying real functions from a monoid which can also be represented as

series.

2.2 Formal Power Series

In the previous section concepts from formal language were given. In the present

section, those concepts are used to define formal power series.
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Definition 7 Consider the alphabet X, a formal power series c is a function that

maps the set of all words to a real coordinate domain c : X∗ → Rℓ. Denoting the

image of the function c as (c, η), the function is represented as the formal sum

c =
∑

η∈X∗
(c, η)η

If the coefficients of a power series c lie in a real coordinate domain with dimension

ℓ ≥ 1, the power series of the coordinates are called the component series of c ∈

Rℓ⟨⟨X⟩⟩ and are denoted

ci =
∑

η∈X∗
(c, η)iη,

where the i-th coordinate of (c, η) ∈ Rℓ is denoted (c, η)i. The set of all formal power

series over the alphabet X is denoted Rℓ⟨⟨X⟩⟩. The next definition helps define a

particular class of formal power series. The set of words in the series with associated

non-zero coefficients is called the support of the power series.

Definition 8 The support of a power series c is the set of words whose image under

c is non-zero. This is,

supp(c) := {η ∈ X∗ : (c, η) ̸= 0}.

A formal power series c with finite support is called a polynomial and the set of all

polynomials is denoted Rℓ⟨X⟩. A couple of characteristics of a power series are its

order and degree defined next.

Definition 9 The order of a power series c is the smallest length of its words. This
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is,

ord(c) =


min{|η| : η ∈ supp(c)} , c ̸= 0,

∞ , c = 0

A proper series c is such that ord(c) > 0.

Definition 10 The degree of a polynomial is given by the biggest length of the word

deg(p) =


max{|η| : η ∈ supp(p)} , p ̸= 0

−∞ , p = 0

Finally, another important concept used in the definition of a differential monoid,

introduced in this dissertation, as seen later, is given next.

Definition 11 Consider the language L ⊂ X∗. The characteristic series char(L) of

L is equal to the formal sum of its elements. This is,

char(L) =
∑
ν∈L

ν.

As seen in the following sections, a Chen-Fliess series is associated to a formal

power series. In the present section, formal power series were defined among other

concepts that describe them. Next, an important set and operation for the whole

present work is addressed.

17



2.3 The Shuffle Set and Product

In this section, useful tools on monoid are presented. These are the shuffle set and

product. These objects possess, intrinsically, a combinatorial nature. The shuffle set

is the set of all possible ways two words can be shuffled. In the same way as shuffling

a deck of cards, but instead of having two parts of the deck, one has two words. The

second concept is the shuffle product of two words and provides a polynomial whose

monomials are the outcomes of the shuffle. Both definitions are extended to formal

power series, and the product makes R⟨⟨X⟩⟩ an algebra and an integral domain.

Definition 12 The shuffle of two words η, ξ ∈ X∗ is defined to be the language

Sη,ξ = {ν ∈ X∗ : ν = η1ξ1η2ξ2 · · · ηnξn, ηi, ξi ∈ X∗,

η = η1η2 · · · ηn, ξ = ξ1ξ2 · · · ξn, n ≥ 1}.

In particular, Sη,∅ = {η} and S∅,ξ = {ξ}. Notice that this is a set, and as a set,

all elements appear only once. For example, consider the language X = {x}, then

Sx,x = {x2}.

Definition 13 The shuffle product of two words is

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) ⊔⊔ ξ)

where xi, xj ∈ X, η, ξ ∈ X∗ and with η ⊔⊔ ∅ = ∅ ⊔⊔ η = η.

It is easy to notice that the shuffle product and the shuffle set are related through

the support function by the identity Sη,ξ = supp(η ⊔⊔ ξ).
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Given the set of all words of length n with a fixed number of letters in the alphabet,

this is, L = {η ∈ Xn s.t. |η|x0 = n0, . . . , |η|xm = nm}, a helpful way to represent its

characteristic polynomial is by means of the shuffle product as

char(L) = xn0
0 ⊔⊔ · · · ⊔⊔ xnm

n , (2.1)

Moreover,

char(Xn) =
∑

n0+···+nm=n

xn0
0 ⊔⊔ · · · ⊔⊔ xnm

n .

It is seen later that there is an important relationship between the shuffle product

and the product of iterated integrals. In the next section, Chen-Fliess series are

presented.

2.4 Chen-Fliess Series

The purpose of the current section is to introduce the concept of Chen-Fliess series.

These are weighted sums of iterated integrals. First, the domain of the input functions

is specified. Then, the definitions are given along with Fliess’ representation theorem

of nonlinear control affine systems.

Consider p ∈ N such that p ≥ 1 and t0, t1 ∈ R such that t0 < t1. The input vector

functions u : [t0, t1]→ Rm, where u(t) = (u1(t), · · · , um(t)), considered in this section

are Lebesgue measurable. The norm in this input space is ∥u∥p = max{∥ui∥p : 1 ≤

i ≤ m}, where ∥ui∥p is the usual Lp-norm of the measurable real-valued coordinate

function, ui, defined on [t0, t1]. Let Lm
p [t0, t1] denote the set of all measurable functions

defined on [t0, t1] having a finite ∥·∥p norm and define the closed ball of radius R as
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the set Bm
p (R)[t0, t1] := {u ∈ Lm

p [t0, t1] : ∥u∥p ≤ R}. Denote C[t0, t1] as the subset of

continuous functions in Lm
1 [t0, t1].

Definition 14 An iterated integral is defined inductively for each word η = xiη̄ ∈ X∗

as the map Eη : Lm
1 [t0, t1]→ C[t0, t1] by setting E∅[u] = 1 and letting

Exiη̄[u](t, t0) =
∫ t

t0
ui(τ)Eη̄[u](τ, t0) dτ, (2.2)

where xi ∈ X, η̄ ∈ X∗, and u0 = 1.

Definition 15 [21,22]A Chen-Fliess series, is a causal m-input, ℓ-output operator,

Fc, associated with a formal power series c ∈ Rℓ⟨⟨X⟩⟩ such that

y(t) = Fc[u](t) =
∑

η∈X∗
(c, η) Eη[u](t, t0).s (2.3)

It is assumed hereafter without loss of generality that t0 = 0, which allows denoting

Eη[u](t, t0) as Eη[u](t). Consider |z| := maxi |zi| when z ∈ Rℓ.

Definition 16 A Chen-Fliess series is locally convergent if there exists K, M ≥ 0

reals such that

|(c, η)| ≤ KM |η| |η|!, ∀η ∈ X∗.

The set of all locally convergent series is denoted Rℓ
LC⟨⟨X⟩⟩.

In this case (2.3) converges absolutely and uniformly for sufficiently small R, T > 0

and is a well defined mapping from Bm
p (R)[t0, t0 + T ] into Bℓ

q(S)[t0, t0 + T ], where

the numbers p, q ∈ [1, +∞] are conjugate exponents, i.e., 1/p + 1/q = 1 [30].
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Definition 17 A Chen-Fliess series is globally convergent if there exists K, M ≥ 0

reals such that

|(c, η)| ≤ KM |η|, ∀η ∈ X∗.

The set of all globally convergent series is denoted Rℓ
GC⟨⟨X⟩⟩.

In this case, (2.3) converges on the extended space Lm
p,e(t0) into C[t0,∞), where

Lm
p,e(t0) := ⋃

T >0 Lm
p [t0, t0 + T ]. Thus, (2.3) is well-defined for all times. A deeper

discussion of the convergence of Chen-Fliess series is presented in [70].

Definition 18 Given a locally convergent Chen-Fliess series Fc defined on Bm
p (R)[t0, t0+

T ] and having finite Lie Hankel rank. The series Fc is realizable by a system of the

form

ż(t) = g0(z(t)) +
m∑

i=1
gi(z(t)) ui(t), z(t0) = z0, (2.4a)

yj(t) = hj(z(t)), j = 1, 2, . . . , ℓ, (2.4b)

if yj(t) = Fcj
[u](t) = hj(z(t)), t ∈ [t0, t0 + T ], j = 1, 2, . . . , ℓ where each gi is analytic

on some neighborhood W of z0 ∈ Rn, and each hj is an analytic function on W

such that (2.4a) has a well defined solution z(t), t ∈ [t0, t0 + T ] for any given input

u ∈ Bm
p (R)[t0, t0 + T ].

Theorem 1 [61,64] Given a realizable Chen-Fliess series Fc of the system in (2.4),

then for any η = xik
· · ·xi1 ∈ X∗ the coefficients of the corresponding Chen-Fliess
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series can be written as

(cj, η) = Lgηhj(z0) := Lgi1
· · ·Lgik

hj(z0), (2.5)

where Lgi
hj is the Lie derivative of hj with respect to gi [21,35,50].

In [68], it is shown that a Chen-Fliess series can be defined independently of a

state space model and thus can be used for data-driven analysis and control.

Definition 19 The Chen series of the input vector u ∈ Bp(R)[0, t] refers to the

following object

P [u](t) =
∑

η∈X∗
Eη[u](t)η

It is also known [21,29] that the Chen-Fliess series can be written as

Fc[u](t)=(c, P [u](t))=
 ∑

η∈X∗
(c, η)η,

∑
η∈X∗

Eη[u](t)η
 . (2.6)

The following is an important result linking the shuffle product and the iterated

integral.

Lemma 1 For any η, ξ ∈ X∗

Eη[u](t)Eξ[u](t) = Eη ⊔⊔ ξ[u](t).
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2.5 Convex Analysis

In the current section, basic concepts of convex analysis are presented. The goal is to

provide the tools to understand that a compact and convex set in a real coordinate

domain can be described in terms of the half-spaces of all its support hyperplanes.

The convexity of functions is desirable in optimization problems since, in this case, a

local optimum is, in fact, the global optimum. In the present dissertation, Chen-Fliess

series are optimized, and even when restricting the input vector function to a constant

vector, the Chen-Fliess series is not a convex function, in general. This is the reason

the focus of this section is on convex sets and not on functions. The second reason

is that, later, the inner approximation of a set is obtained via Chen-Fliess series for

convex sets. The content is based on [11,33].

Definition 20 A set S ⊂ Rn is convex if for all x, y ∈ S, αx + (1 − α)y ∈ S for

α ∈ [0, 1].

Definition 21 A convex combination of elements x1, · · · , xk in Rn is an element of

the form

k∑
i=1

αixi where
k∑

i=1
αi = 1 and αi ≥ 0 for i = 1, · · · , k.

A way to generate convex sets is by taking the convex combinations of the elements

of a set. This is the convex hull of a set, which, alternatively, can be defined as follows

Definition 22 Consider a nonempty set C ⊂ Rn. The convex hull co C is the

intersection of all convex sets containing C.
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The following fundamental result characterizes the elements of the convex hull of

a set in terms of the original set.

Theorem 2 (C. Caratheodory) Any x ∈ co S ⊂ Rn can be represented as a con-

vex combination of n + 1 elements of S.

The extreme points of a set are the ones that cannot be written in terms of the

convex combination of two other points. An alternative definition is given next.

Definition 23 Consider C ⊂ Rn convex. An element x ∈ C is an extreme point of

C if C \ {x} is convex.

Another fundamental result states that knowing the extreme points of a certain

set is enough to reconstruct the original set exactly.

Theorem 3 (H. Minkowski) Consider C ⊂ Rn compact and convex, then C =

co(ext C).

The next tool is used later to provide a description of a convex set.

Definition 24 An affine hyperplane Hs,r supports the set C when C is entirely con-

tained in one of the two closed half-spaces determined by Hs,r. This is,

s · y ≤ r, for all y ∈ C.

the hyperplane supports C at x ∈ C if, additionally, x ∈ Hs,r which means that

s · x = r.

The following result is known as the supporting hyperplane theorem.
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Theorem 4 Consider the convex set S ⊂ Rn, and x ∈ ∂C, there exists a hyperplane

supporting C at x.

The next definitions appear in [32, 43] and are used to characterize the inner-

approximation of the a of sets.

Definition 25 The support function of a compact convex set A ⊂ Rn is the function

is defined as σA : Rn → R

σA(v) = max
x∈A

x · v.

Definition 26 The support vectors of a compact convex set A ⊂ Rn are defined as

νA(v) = arg max
x∈A

x · v.

The supporting hyperplane theorem represents a convex set in terms of the half-

spaces. This is called the dual representation of a convex set. In general, the sup-

porting hyperplanes for this representation are not finite. If only a finite amount of

these hyperplanes are taken, then an overestimation of the set is provided.

2.6 Mixed-Monotonicity of State Space

Models

In section 1.3, mixed-monotonicity was briefly explained. In the current section,

a more detailed account is provided. First, a partial order is specified, then the
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decomposition function of a vector field is defined, and with this a system associated

with the original dynamics is used to compute an overestimation of a reachable set.

Definition 27 A partial order is a relation that satisfies the properties of reflexivity,

transitivity, and antisymmetry.

A natural partial order is provided next.

Definition 28 Let ≤ be the componentwise partial order on Rn. This is, for x =

(x1, · · · , xn) and y = (y1, · · · , yn) ∈ Rn, x ≤ y if and only if xi ≤ yi for i ∈ {1, · · · , n}.

Consider the vectors x, x̂, y, ŷ ∈ Rn and the concatenated vectors (x, x̂) and (y, ŷ)

in R2n.

Definition 29 The southeast (SE) partial order ≤SE on R2n is defined as (x, x̂) ≤SE

(y, ŷ) if and only if x ≤ y and ŷ ≤ x̂.

This is equivalently written in terms of the componentwise partial order as (x, x̂) ≤SE

(y, ŷ) if and only if (x,−x̂) ≤ (y,−ŷ).

Definition 30 Consider a, b ∈ Rn, an extended hyper-rectangle is defined as the set

[a, b] := {x ∈ Rn : a ≤ x ≤ b} ⊂ Rn.

Another way used to define a hyper-rectangle in Rn is by considering a single

point a = (b, b̂) in R2n that is the concatenation of the vectors b, b̂ ∈ Rn and setting

JaK := [b, b̂]. The southeast partial order in R2n helps represent a partial order

relation on the set of hyper-rectangles in Rn. To observe this, consider the nested

hyper-rectangles [a, b] ⊂ [c, d] ⊂ Rn where c ≤ a and b ≤ d. This inclusion relation of
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Figure 2.1: The hyper-rectangles [(3, 2), (5, 3)] and [(1, 1), (6, 4)] in R2 satisfy
((1, 1), (6, 4)) ≤SE ((3, 2), (5, 3)) in R4.

hyper-rectangles in Rn is equivalently written as (c, d) ≤SE (a, b) in R2n. Figure 2.1

illustrates the SE order as defined in this section.

Consider the hyper-rectangles X ⊂ Rn and U ⊂ Rm and the locally Lipschitz con-

tinuous function in each argument f : X × U → Rn. The continuous-time dynamical

system is defined
ẋ(t) = f(x(t), u(t))

x(0) = x0,

(2.7)

where x0 ∈ X and u : [0, T ] → U . Given an input function u(t) and an initial

condition x0, the trajectory function ϕ(t, u, x0) of (2.7) satisfies the dynamical system

and represents the state of the system at time t. Next, the set of states reached at a

certain time by the dynamics is defined.

Definition 31 Consider the system described by (2.7). The reachable set of the sys-

tem subject to a set of inputs U = [u, u] and a set of initial states X0 = [x, x] is the

27



set

Reach(X0,U)(T ) :=
{

ϕ(T, u, x0) ∈ Rn : for some u : [0, t]→ U , x0 ∈ X0

}
.

The next definition generalizes the concept of monotone system by embedding the

vector field of the dynamics into the diagonal of a new function called decomposition

function. This function has monotone properties in each argument.

Definition 32 [15] Let d : X × U × X × U → Rn be a locally Lipschitz continuous

function. The function d is said to be the decomposition function of (2.7) if the

following holds:

i. For all x ∈ X and all u ∈ U , d(x, u, x, u) = f(x, u).

ii. For all i, j ∈ {1, · · · , n} with i ̸= j, ∂di

∂xj
(x, u, x̂, û) ≥ 0 for all x, x̂ ∈ X and for

all u, û ∈ U whenever the derivative exists.

iii. For all i, j ∈ {1, · · · , n},

∂di

∂x̂j

(x, u, x̂, û) ≤ 0

for all x, x̂ ∈ X and for all u, û ∈ U whenever the derivative exists.

iv. For all i ∈ {1, · · · , n} and all k ∈ {1, · · · , m},

∂di

∂uk

(x, u, x̂, û) ≥ 0,
∂di

∂ûk

(x, u, x̂, û) ≤ 0

for all x, x̂ ∈ X and for all u, û ∈ U whenever the derivative exists.
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The system (2.7) is said to be mixed-monotone if there exists a decomposition function

of its vector field. The definition suggests that the decomposition function of a system

is not unique. In fact, a system may have several decompositions. The next theorem

provides one decomposition function of any vector field described in (2.7).

Theorem 5 [15] Given an arbitrary system of the form (2.7). The system is mixed-

monotone with respect to the following decomposition function d:

di(x, u, x̂, û) =



min
y∈[x,x̂]
yi=xi

z∈[u,û]

fi(y, z), x ≤ x̂, u ≤ û,

max
y∈[x̂,x]
yi=xi

z∈[û,u]

fi(y, z), x̂ ≤ x, û ≤ u.

(2.8)

The decomposition function is used to compute an overapproximation of a reach-

able set of the system (2.7) by making it the vector field of system called embedding

system.

Definition 33 Consider the mixed-monotone system (2.7) with decomposition func-

tion d, the embedding system is defined as

ẋ

˙̂x

 = ε(x, u, x̂, û) :=

d(x, u, x̂, û)

d(x̂, û, x, u)

 , (2.9)

where (x, x̂) ∈ X × X ⊂ R2n and input (u, û) ∈ U × U ⊂ R2m.

The following definition helps establish
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Definition 34 [1] A tight decomposition function D of (2.7) is such that for any

decomposition d, it follows that that

d(x, w, x̂, ŵ) ≤ D(x, w, x̂, ŵ),

D(x̂, ŵ, x, w) ≤ d(x̂, ŵ, x, w)

for x ≤ x̂ and w ≤ ŵ.

The decomposition provided in Theorem 5 is the tightest in the sense that any

other decomposition function generates no smaller hyper-rectangle that contains the

true reachable set [15]. It is important to highlight that obtaining a closed-form of

(2.8) is nontrivial and in general, requires solving a non-convex optimization problem.

Let Φε(t, (x0, x̂0), (u, û)) denote the state trajectory of (2.9) at time t when the

initial state is (x0, x̂0) ∈ X × X and the inputs are u, û : [0,∞[→ U = [u, u]. When

the inputs are of the form u(t) = u and û(t) = u, the state trajectory of (2.9) is

denoted Φe(t, (x0, x̂0), (u, u)). The trajectory Φε preserves the south-east order [15].

The next theorem relates the embedding system with the reachable sets of system

(2.7).

Theorem 6 [15] Assume system (2.7) is mixed-monotone with respect to d. Con-

sider X0 = [x, x] ⊂ X a hyperrectangle of initial states and the input functions

u1 : [0,∞[→ U , u2 : [0,∞[→ U , satisfying u1(t) ≤ u2(t) for all t ≥ 0, then

Reach([x, x], [u, u])(t) ⊂ JΦe(t, (x, x), (u, u))K

for all t ≥ 0.
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2.7 Algebraic Geometry

In this section, two essential results in the field of algebraic geometry are presented.

This content is based on [10, 52]. In a sense, algebraic geometry concerns the rela-

tionship between algebraic and geometric properties of polynomials or a set of these.

The geometric part comes from the zeroes of the polynomials, and the algebraic part

comes from the generating structure. It is also the background for the modern study

of elliptic curves [60].

Consider k a closed field, k[x1, · · · , xn] is the set of polynomials in the x1, · · · , xn

variables with coefficients in k. An affine algebraic set is the set of zeroes of a set of

polynomials. When an affine algebraic set is irreducible, meaning it is not composed

of the union of affine algebraic sets, it is called an affine variety. An ideal is a subset

of a ring that forms a group under the addition, and it absorbs the ring under the

multiplication.

Theorem 7 (Nullstellensatz) Consider k an algebraically closed field and let I ⊂

k[x1, · · · , xn] be an ideal satisfying V (I) = ∅. Then 1 ∈ I or equivalently, I =

k[x1, · · · , xn].

Here, V (I) = ∅ means that the set of points that make all polynomials of the ideal

equal to zero is the empty set. Then, this theorem provides a criterion for the existence

of solutions of systems of polynomial equations. Similarly, the next theorem provides

a criterion for the existence of points that make a system of polynomial equations

non-negative.
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Theorem 8 (Positivstellensatz) [10] Let R be a real closed field. Let

F = {fj ∈ R[X1, · · · , Xn] : j = 1, · · · , s},

G = {gk ∈ R[X1, · · · , Xn] : k = 1, · · · , t},

H = {hl ∈ R[X1, · · · , Xn] : l = 1, · · · , u}

be families of polynomials. Denote by P the cone generated by the elements of F , M

the multiplicative monoid generated by the elements of G and I the ideal generated by

the elements of H. Then the following properties are equivalent:

• The set

{x ∈ Rn : fj(x) ≥ 0, j = 1, · · · , s,

gk(x) ̸= 0, k = 1, · · · , t,

hl(x) = 0, l = 1, · · · , u}

is empty.

• There exists f ∈ P, g ∈M and h ∈ I such that f + g2 + h = 0.

Examples of these powerful theorems are provided in [52].
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Chapter 3

Chen-Fliess Reachability via Inter-

val Arithmetic

This chapter is based on [56] where an over-approximation of the output reachable

set of a nonlinear control affine system (2.4) represented by a Chen-Fliess series is

provided. Here, the input is assumed to lie inside a box determined by the cartesian

product of one compact interval with itself. To compute this over-approximation,

first, the reachable set of a single iterated integral is obtained by using interval arith-

metics, specifically the power of an interval. To extend it to Chen-Fliess series,

the result for each iterated integral is added up and multiplied by its corresponding

weight. The advantage of this method is its closed-form, fast computation and good

accuracy for short periods of time. If the time is large enough the approximation

loses accuracy. Examples are provided and compared with the mixed-monotonicity

approach described in Section 2.6. It is possible that the over-approximation via

interval arithmetics coincides with the real reachable set but this is not guaranteed

in general. Additionally, the relation between the input-output reachable set of an
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iterated integral and the reachable set of its state-space representation is discussed.

3.1 Interval Arithmetic

An interval is a set in R defined as [a, b] = {x ∈ R : a ≤ x ≤ b} for a, b ∈ R. It

is a box over R according to section 2.6. In order to shorten the notation, the box

[a, b]× · · · × [a, b] are defined by two vectors each with the same coordinates, this is,

[a, b] = [(a1, · · · , an), (b1, · · · , bn)] ⊂ Rn with ai = a and bi = b for all i ∈ {1, · · · , n}.

Following [49], the product of intervals is defined.

Definition 35 Given the intervals I1 = [a1, b1] ⊂ R and I2 = [a2, b2] ⊂ R, the

product I1 · I2 is defined as the interval
[
I, I

]
, where

I = min
y1∈[a1,b1]
y2∈[a2,b2]

y1y2, I = max
y1∈[a1,b1]
y2∈[a2,b2]

y1y2.

Observe that by simple inspection the product of [a1, b1] and [a2, b2], with a1, a2, b1, b2 ∈

R, is written as

[a1, b1] · [a2, b2] = [min{a1a2, a1b2, b1a2, b1b2}, max{a1a2, a1b2, b1a2, b1b2}].

In particular, when the intervals are the same I1 = I2 = [a, b] ⊂ R, the product

[a, b] · [a, b] is denoted as a power of intervals [a, b]2. In general, the product of n times

the same interval [a, b] is denoted [a, b] · · · [a, b]︸ ︷︷ ︸
n

= [a, b]n.

Example 1 Consider the intervals [−2, 1] and [1, 3]. From Definition 35, the product

[−2, 1] · [1, 3] = [−6, 3], because min{−2,−6, 1, 3} = −6 and max{−2,−6, 1, 3} = 3.
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Also, the second power of the interval [−2, 1] is [−2, 1]2 = [−2, 4].

Another operation used in this manuscript is the product of a real number and a set

Definition 36 Given a set X ⊂ Rn and a number λ ∈ R, the product of X and λ is

defined as λX = {λx : x ∈ X}.

Example 2 Consider the interval [−2, 1] and λ = 3, then 3[−2, 1] = [−6, 3].

In order to distinguish between the reachable set of system (2.7) given by Definition

31 and the reachable set of a Chen-Fliess series, the next definition is provided.

3.2 Iterated Integrals over Intervals

Definition 37 Given the alphabet X = {x0, · · · , xm}, the formal power series c ∈

Rℓ⟨⟨X⟩⟩ and the hyper-rectangle U ⊂ Rm, the reachable set of the Chen-Fliess series

Fc[u](t) taking values in the set of inputs U is the set

Reachc(U)(T ) :=
{

y = Fc[u](T ) ∈ Rℓ : for some u : [0, t]→ U
}

.

Next, a simple example is provided to illustrate this definition and the idea behind

the use of interval arithmetic to compute overestimations of the reachable set of a

Chen-Fliess series.

3.2.1 The Idea

Example 3 Consider the alphabet X = {x0, x1}, the formal power series c = x2
1 ∈

R⟨⟨X⟩⟩ and the interval U = [−2, 1] ⊂ R. The Chen-Fliess series Fc[u](t) is repre-
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sented by only one iterated integral Fc[u](t) = Ex2
1
[u](t). Since the inputs are taken

in the set U = [−2, 1], then

−2 ≤ u(τ) ≤ 1,

−2τ1 ≤
∫ τ1

0
u(τ)dτ ≤ τ1,

which means that
∫ τ1

0 u(τ)dτ ∈ [−2τ1, τ1] and since τ1 > 0, then by Definition 36

[−2τ1, τ1] = [−2, 1]τ1. On the other hand, u(τ1) ∈ [−2, 1], then

u(τ1)
∫ τ1

0
u(τ)dτ ∈ [−2, 1] · [−2, 1]τ1

and

Ex2
1
[u](t) =

∫ t

0
u(τ1)

∫ τ1

0
u(τ)dτdτ1 ∈ [−2, 1]2 t2

2! .

Therefore, Reachc(U)(t) ⊂ [−2, 1]2 t2

2! .

Remark: The challenge to computing reachable sets of more complex Chen-Fliess

series by adding up the reachable sets of the iterated integrals is that in general

min
u∈U

Eη1 [u](t)+min
u∈U

Eη2 [u](t)≤min
u∈U

(Eη1 [u](t)+Eη2 [u](t)),

max
u∈U

(Eη1 [u](t)+Eη2 [u](t))≤max
u∈U

Eη1 [u](t)+max
u∈U

Eη2 [u](t),

which means that the weighted sum of the reachable sets of the iterated integrals is

not equal to the reachable set of the Chen-Fliess series necessarily.
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3.2.2 Reachable Set and Iterative Integrals

To relate both reachable sets in Definition 31 and 37, notice that an arbitrary iterated

integral has a dynamical system associated with it. To observe this, consider the

formal power series consisting of only one word c = η = xi1 · · ·xin ∈ X∗. The

associated Chen-Fliess series of c is the iterated integral Fc[u](t) = Eη[u](t). Define

the following set of functions

w1(t) = Eη[u](t),
...

wn−1(t) = Exin−1 xin
[u](t),

wn(t) = Exin
[u](t).

(3.1)

By differentiating the equations above, the following state-space represented dynam-

ical system is obtained in Rn:

ẇ1(t) = ui1(t)w2(t),

ẇ2(t) = ui2(t)w3(t),
...

ẇn(t) = uin(t)

(3.2)

with initial condition w(0) = w1(0) = · · · = wn(0) = 0. Without loss of generality,

assume that in ̸= 0. Consider the set of initial states W0 = {(0, · · · , 0)} ⊂ Rn.

According to Definition 31, for a box U ⊂ Rn, the reachable set of system (3.2)

is Reach(W0,U)(t) and from Definition 37 the reachable set of the iterated integral
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w1(t) = Eη[u](t) is Reachη(U)(t). Therefore,

Reachη(U)(t) = Proyw1(Reach(W0,U)(t)).

The closed-form of the reachable set of an iterated integral in terms of the interval

defining the input set is given next.

Lemma 2 Consider the input function u : R→ Rm with values in the box [a, b] (i.e.,

ui(t) ∈ [a, b],∀ t ∈ [0, T ] with T > 0). For η = xi1 · · ·xin ∈ X∗, the reachable set of

the iterated integral Eη[u](t) is bounded by

Reachη([a, b])(t) ⊂ [a, b]|η|−|η|x0
t|η|

|η|! ,∀ t ∈ [0, T ].

Proof: As shown by (3.1) and (3.2), there is a dynamical system associated to Eη[u](t).

From Theorem 5, the decomposition function associated to the embedding system of

(3.2) is

dn(a, b) = a, dn(b, a) = b,

dj(wj+1, a, ŵj+1, b) = min
y∈[wj+1,ŵj+1]

z∈[a,b]

zy, if wj+1 ≤ ŵj+1

dj(ŵj+1, b, wj+1, a) = max
y∈[wj+1,ŵj+1]

z∈[a,b]

zy, if ŵj+1 ≤ wj+1

for j ∈ {1, · · · , n− 1}. Therefore, the embedding system corresponding to Eη[u](t) is

ẇ1 = d1(w2, a, ŵ2, b), · · · , ẇn = dn(a, b),

˙̂w1 = d1(ŵ2, b, w2, a), · · · , ˙̂wn = dn(b, a).
(3.3)
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According to Theorem 6, the states w1 and ŵ1 provide the evolution of the south-west

and north-east corners of the overapproximating hyper-rectangle of the reachable set

of (3.3). Given that (3.3) is also a chain of integrators, one can simply start solving

for wn and ŵn, and then solve sequentially for n − 1, . . . , 1. The solution to (3.3) is

then

wn = at, ŵn = bt,

and, for any j = 1, . . . , n− 1,

wj−1 = min
y∈[wj ,ŵj ]

z∈[a,b]

∫ t

0
zy(τ)dτ, ŵj−1 = max

y∈[wj ,ŵj ]
z∈[a,b]

∫ t

0
zy(τ)dτ.

Given the simple solution for wn and ŵn, one can apply the change of variables

x = y/τ i in each wn−i and ŵn−i for i ∈ {1, · · · , n − 1} so that the min and max are

calculated over [a, b]. This together with the monotonicity of the integral operator

gives

wn−1 = min
x∈[a,b]
z∈[a,b]

∫ t

0
τzx(τ)dτ = min

x∈[a,b]
z∈[a,b]

zx
t2

2 ,

ŵn−1 = max
x∈[a,b]
z∈[a,b]

∫ t

0
τzx(τ)dτ = max

x∈[a,b]
z∈[a,b]

zx
t2

2 .
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Continuing the recursion, it follows that

w1 = min
xi∈[a,b]

i∈{1,··· ,r}

x1 · · ·xr
tn

n! ,

ŵ1 = max
xi∈[a,b]

i∈{1,··· ,r}

x1 · · ·xr
tn

n! ,

where r = |η| − |η|x0 . Finally, from Definition 35,

Reachη([a, b])(t) ⊂ [w1, ŵ1] = [a, b]|η|−|η|x0
t|η|

|η|! ,

which completes the proof.

3.2.3 Boxes Using Interval Arithmetics

Since the reachable set of iterated integrals with inputs taking values in a hyper-

rectangle is given in terms of interval products, the following lemma provides the

closed-form of the n-th power of an interval.

Lemma 3 Given the interval I = [a, b] ⊂ R, its n-th power In is given by

In =



[an, bn], a, b > 0, n even

[bn, an], a, b < 0, n even

[min{an−1b, abn−1}, max{|a|, |b|}n], a < 0, b > 0, n even

[an, bn], ab > 0, n odd

[min{an, abn−1}, max{an−1b, bn}], a < 0, b > 0, n odd

(3.4)
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Proof: The lemma is proved by induction. For n = 1, it follows directly that

I1 = [a, b]. For n = 2, one has that

I2 =



[a2, b2], a, b > 0,

[b2, a2], a, b < 0,

[ab, max{|a|, |b|}2], a < 0, b > 0.

Assuming now that (3.4) holds for k odd, it follows that

IkI2 =

[min{ak+2, akb2, bka2, bk+2}, max{ak+2, akb2, bka2, bk+2}], ab > 0,

[min{ak+1b, ak+2, akb2, ak+1}, max{ak+1b, ak+2, akb2, ak+1}], a < 0, b > 0, |a| > |b|,

[min{a2bk, abk+1, bk+2}, max{a2bk, abk+1, bk+2}], a < 0, b > 0, |b| > |a|.

If ab > 0, then

min{ak+2, akb2, bka2, bk+2} = ak+2

and

max{ak+2, akb2, bka2, bk+2} = bk+2.

If a < 0, b > 0 and |a| > |b|, then

min{ak+1b, ak+2, akb2, ak+1} = ak+2
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and

max{ak+1b, ak+2, akb2, ak+1} = ak+1b.

If a < 0, b > 0 and |b| > |a|, then

min{a2bk, abk+1, bk+2} = abk+1

and

max{a2bk, abk+1, bk+2} = bk+2.

Hence, (3.4) holds for k odd. The case for k even follows in a similar manner.

Observe that (3.4) can be written compactly as

In =


[min{an, abn−1}, max{bn, an−1b}], n odd

[min{an, abn−1, an−1b, bn}, max{an, bn}], n even.

In the current section, the closed formula of a box formed by n-th power of an

interval was provided. This is used to provide the closed formula of an overestimation

of the reachable set of a single iterated integral. In the next section, the overestimation

of the reachable set of a Chen-Fliess series is obtained by adding up the result for

each iterated integral.

3.3 Chen-Fliess Series over Intervals

Since a Chen-Fliess series is a sum of weighted iterated integrals with coefficients in

Rℓ, the reachable set obtained in Lemma 2 of each iterated integral is used in the
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next theorem to provide an overapproximation of the reachable set of a Chen-Fliess

series.

Theorem 9 Consider the formal power series c ∈ RLC⟨⟨X⟩⟩ and u : R → Rm be a

function with image in the box [a, b] for all t > 0. The reachable set of the Chen-Fliess

series Fc[u](t) satisfies

Reachc([a, b])(t) ⊂
[
Fc[1](t), Fc[1](t)

]
, ∀t ∈ R,

where

(c, η) = min
{

(c, η)[a, b]|η|−|η|x0

}
, (3.5a)

(c, η) = max
{

(c, η)[a, b]|η|−|η|x0

}
. (3.5b)

Here, 1 as the input of a Chen-Fliess series refers to the vector of m ones. This is,

1 = (1, · · · , 1)T .

Proof: The result follows directly from adding up the reachable set of each iterated

integral provided in Lemma 2. Given the minimum of a sum is not smaller than

the sum of minimums and the maximum of a sum is not greater than the sum of

maximums, it follows that

∑
η∈X∗

min
u∈[a,b]

(c, η)Eη[u](t) ≤ min
u∈[a,b]

Fc[u](t) and max
u∈[a,b]

Fc[u](t) ≤
∑

η∈X∗
max

u∈[a,b]
(c, η)Eη[u](t).
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Then

Fc[u](t) ∈
∑

η∈X∗
(c, η)Reachη([a, b])(t),∀u ∈ [a, b],

where the product of (c, η) ∈ R and the set Reachη([a, b])(t) is as described in Defini-

tion 36. One now has that

Reachc([a, b])(t) ⊂
∑

η∈X∗
(c, η)Reachη([a, b])(t).

The result follows by replacing the expression of the reachable set of each iterated

integral, from Lemma 2, and noticing that

min{(c, η)Reachη([a, b])(t)} = min
{

(c, η)[a, b]|η|−|η|x0

}
Eη[1](t),

max{(c, η)Reachη([a, b])(t)} = max
{

(c, η)[a, b]|η|−|η|x0

}
Eη[1](t).

3.3.1 The Closed-form

Next, explicit expressions of the coefficients of the defining series of Reachc([a, b])(t)

are obtained.

Corollary 1 Letting n = |η| − |η|x0, and defining the function f : R× N→ R as
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i. a, b > 0

f((c, η), n) =


(c, η)an, (c, η) > 0,

(c, η)bn, (c, η) < 0
.

ii. a, b < 0

f((c, η), n) =


(c, η)bn, (c, η) > 0, n even or (c, η) < 0, n odd

(c, η)an, (c, η) > 0, n odd or (c, η) < 0, n even
.

iii. a < 0, b > 0, |a| < |b|

f((c, η), n) =


(c, η)abn−1, (c, η) > 0,

(c, η)bn, (c, η) < 0,

.

iv. a < 0, b > 0, |b| < |a|

f((c, η), n) =


(c, η)an−1b, (c, η) > 0, n even or (c, η) < 0, n odd

(c, η)an, (c, η) > 0, n odd or (c, η) < 0, n even
.

then the coefficients of c̄ and c in Theorem 9 are (c, η) = f((c, η), n) and (c, η) =

−f(−(c, η), n).

Proof: The proof follows by using Lemma 3 and taking into account that the bounds

of Reachc([a, b])(t) switch when multiplying by a negative number.
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3.4 Numerical Simulations

Example 4 To illustrate the proposed Chen-Fliess over-approximation, consider the

following single-input single-output system

ẋ = xu, y = x, x0 = 1. (3.6)

Assume the input u is constrained to the interval U = [1, 2.8]. Using (2.5), one can

compute the coefficients of the Chen-Fliess series. Thus, one has that

Fc[u] = 1 +
∞∑

k=1
Exk

1
[u](t),

where (c, η) = 1 for all η ∈ X∗ which implies that c ∈ RGC⟨⟨X⟩⟩. This is, Fc[u]

converges for all t > 0. Also, from Definition 33, it is not difficult to see that the

embedding system for (3.6) is

ẋ = xu, ˙̂x = x̂û,

with initial set of states equal to (x0, x̂0) = (1, 1). Solving for this embedding system

(Theorem 6) provides the reachable set of (3.6) for inputs in U = [1, 2.8]. On the

other hand, from Theorem 9 and Corollary 1, one has that

(c, η) = 2.8k and (c, η) = 1
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for |η| = k. Therefore,

Reachc([1, 2.8])(t) ⊂ [Fc[1](t), Fc[1](t)] =
1 +

∞∑
k=1

tk

k! , 1 +
∞∑

k=1
2.8k tk

k!

.

Figure 3.1: Comparison of the overestimation of the reachable set of the system in Example
4 with initial state x0 = 1 by the Chen-Fliess series interval arithmetic (CFS-IA) procedure,
for an input in U = [1, 2.8] and word truncation size N = 3 and the Mixed-Monotonicity
(MM) approach.

Example 5 Consider the following MISO Lotka-Volterra system given by

ẋ1 = −x1x2 + x1u1, ẋ2 = x1x2 − x2u2, y = x1 (3.7)

with initial condition x0 = (1/6, 1/6)⊤. The embedding system obtained using Defini-
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Figure 3.2: Comparison of the overestimation of the reachable set of the system in Example
5 with initial state x0 = (1/6, 1/6) by the Chen-Fliess series interval arithmetic (CFS-IA)
procedure, for inputs in U = [−1, 1] and word truncation size N = 3 and the Mixed-
Monotonicity (MM) approach.

tion 33 is

ẋ1 = −x1x̂2 + x1u1, ẋ2 = x2x1 − x2û2,

˙̂x1 = −x̂1x2 + x̂1û1, ˙̂x2 = x̂2x̂1 − x̂2u2.

The reachable set on the initial set (x1,0, x2,0, x̂1,0, x̂2,0) = (1/6, 1/6, 1/6, 1/6) is given

in Figure 3.2 together with the result obtained from the interval arithmetic procedure

from Theorem 9.
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Chapter 4

Input-Output Mixed Monotonicity

This chapter is based on [53] where a Chen-Fliess series as described in (2.3) is shown

to have monotonic properties similar to those presented in Section 2.6. This is done

by extending the property of mixed-monotonicity to Chen-Fliess series and produc-

ing an appropriate decomposition function. First, the closed-form of the Chen-Fliess

series of the sum of two input functions is obtained in terms of the addend func-

tions. For this, an extended Chen-Fliess series taking two input function arguments is

presented. Then, a decomposition function is provided by decomposing an arbitrary

input function as the difference between its positive and negative parts and lifting

the function domain of the extended Chen-Fliess series. This decomposition function

preserves the monotonicity of a partial order in the input function domain. Because

of this monotonic behavior, the decomposition function is capable of providing an

overestimation of the reachable set of the output of a nonlinear control affine system.
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4.1 The Chen-Fliess Series of the Sum

of Two Inputs

Since the procedures regarding the Chen-Fliess series with coefficients in Rℓ can be

performed componentwise, it is assumed hereafter that ℓ = 1 and that all inputs are

defined over the time interval [0, T ] for some T > 0. To extend the Chen-Fliess series

to be able to take two input functions as arguments, two alphabets are considered

instead of only one.

Definition 38 Let the alphabets X = {x0, · · · , xm}, Y = {y1, · · · , ym} and Z = X ∪

Y . A letter morphism is defined as any map ρ : Y 7→ X such that for yi ∈ Y one has

ρ(yi) ∈ X. This mapping is naturally extended to a word monoid homomorphism ρ :

Z∗ 7→ X∗, where for η = zi1 · · · zik
one has that ρ(η) = ρ(zi1) · · · ρ(zi1). In particular,

the monoid homomorphism defined for letters as σX(yi) = xi is called a substitution.

4.1.1 Extended Iterative Integral

The next definition extends the iterated integrals to take two inputs associated with

two different alphabets.

Definition 39 Consider the alphabets X and Y associated to the input functions

u, v ∈ Lm
p [0, T ], respectively. The iterated integral of η ∈ Z∗ for the input (u, v) is
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given by the mapping Eη : Lm
p [0, T ]× Lm

p [0, T ]→ C[0, T ], where E∅[u, v](t) = 1 and

Eziη[u, v](t) :=



∫ t

0
ui(τ)Eη[u, v](τ)dτ, zi ∈ X,

∫ t

0
vi(τ)Eη[u, v](τ)dτ, zi ∈ Y.

(4.1)

Similar to (2.2), (4.1) is linearly extended to polynomials p ∈ R⟨Z⟩ and then to series

c ∈ R⟨⟨Z⟩⟩. Hence,

Fc[u, v](t) =
∑

η∈Z∗
(c, η)Eη[u, v](t) (4.2)

is a well-defined input-output operator.

Define the substitution language of a word η = xi1 · · · xin ∈ X∗ as the following

set of words in the alphabet Z

Iη := {zi1 · · · zin ∈ Z∗ : zij
∈ {xij

, yij
}, j = 1, . . . , n}.

Observe that Iη = supp ((xi1 + yi1) · · · (xin + yin)) and that it is comprised of 2n

elements. Moreover, if η1, η2 ∈ X∗ are such that η1 ̸= η2 then Iη1 ̸= Iη2 . If this were

not the case and η1 ̸= η2 are such that Iη1 = Iη2 , then η1, η2 ∈ Iη1 . Since η1 is the

only word in X∗ that belongs to Iη1 , then η1 = η2, which is a contradiction.

4.1.2 The Closed-Form

The following lemma provides a closed formula for the Chen-Fliess series of the sum

of two inputs in terms of two alphabets which is useful for obtaining a decomposi-

tion of (2.3) for the purpose of studying its mixed-monotonicity. Recall that, from
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Definition 38, σX(ξ) = η for any ξ ∈ Iη.

Lemma 4 Let X and Y be alphabets associated to u, v ∈ Lm
p [t0, t1], respectively.

Given c ∈ R⟨⟨X⟩⟩, the Chen-Fliess series of u + v is written as

Fc[u + v](t) =
∞∑

k=0

∑
ξ∈S

X∗,Y k

(c, σX(ξ))Eξ[u, v](t). (4.3)

Proof: To obtain (4.3), it is first shown that

Eη[u + v](t) = Echar(Iη)[u, v](t) (4.4)

for any η ∈ X∗. This is proved by induction over the length of the word η. Consider

|η| = 1, η = xj and Iη = {xj, yj}. By the linearity of integrals and Definition 39, it

follows that

Exj
[u + v](t) =

∫ t

0
uj(τ) + vj(τ)dτ,

=
∫ t

0
uj(τ)dτ +

∫ t

0
vj(τ)dτ,

= Exj
[u, v](t) + Eyj

[u, v](t),

= Echar(Ixj )[u, v](t).

Now assume that (4.4) holds true for any η′ ∈ X∗ such that |η′| = k, and compute

the expression for η = xiη
′. That is,

Eη[u + v](t) =
∫ t

0
(ui(τ) + vi(τ))Eη′ [u + v](τ)dτ.
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Since |η′| = k and by the induction hypothesis, one has that

Eη[u + v](t) =
∫ t

0
(ui(τ) + vi(τ))Echar(Iη′ )[u, v](τ)dτ,

Hence, using linearity and (2.2) over the alphabet Z, it follows that

Eη[u + v](t) = Exichar(Iη′ )[u, v](t) + Eyichar(Iη′ )[u, v](t)

= Echar(Iη)[u, v](t).

Now, (2.3) can be expressed in terms of (4.1). That is,

Fc[u + v](t) =
∑

η∈X∗
(c, η)Eη[u + v](t)

=
∑

η∈X∗
(c, η)Echar(Iη)[u, v](t)

=
∑

η∈X∗

∑
ξ∈Iη

(c, η)Eξ[u, v](t).

Since η = σX(ξ) for all ξ ∈ Iη and using the inner product in (2.6), it then follows

that

Fc[u + v](t) =
∑

η∈X∗

∑
ξ∈Iη

(c, σX(ξ))Eξ[u, v](t) (4.5)

=
 ∑

η∈X∗

∑
ξ∈Iη

(c, σX(ξ))ξ,
∑

η∈X∗

∑
ξ∈Iη

Eξ[u, v](t)ξ
 . (4.6)
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As observed before, if η1 ̸= η2, then Iη1 and Iη2 are disjoint, which gives

Z∗ =
⋃

η∈X∗
Iη =

⋃
η∈X∗
{ξ : ξ ∈ Iη}.

and

∑
ξ∈Z∗

ξ =
∑

η∈X∗

∑
ξ∈Iη

ξ. (4.7)

Applying (4.7) in (4.6), one has that

Fc[u + v](t) =
∑

ξ∈Z∗
(c, σX(ξ))Eξ[u, v](t) (4.8)

Notice that Z∗ = ⋃∞
k=0 SX∗,Y k , then (4.8) is equal to (4.3) which completes the proof.

When the input functions u and v in (4.2) are related to a common function (e.g.,

u = g(w) and v = h(w) for g and h arbitrary functions), one can write the extended

Chen-Fliess series Fc[g(w), h(w)](t) as

Fc[w](t) = Fc[g(w), h(w)](t)

=
∑

η∈Z∗
(c, η)Eη[g(w), h(w)](t).

In the current section, the closed form of the Chen-Fliess series of the sum of

two inputs was provided. In the next section, this formula provides a decomposition

function of a Chen-Fliess series in the mixed-monotonicity sense.
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4.2 A Decomposition Function for Chen-

Fliess Series

In the mixed-monotonicity approach, the decomposition function of a vector field

is used to provide an overestimation of the reachable set. In the current section, a

decomposition function for Chen-Fliess series is provided by separating the positive

and negative parts. Then, a partial order in the function space is defined and used

to work with the decomposition to obtain the overestimation of the reachable set of

a Chen-Fliess series. When restricted to constant functions and a particular orthant,

this partial order is equivalent to the partial order induced by the respective orthant

cone.

4.2.1 Positive and Negative Parts of a Chen-

Fliess Series

The next theorem provides a decomposition of a Chen-Fliess series in terms of non-

decreasing and non-increasing parts.

Lemma 5 Let u ∈ Lm
p [0, T ] and its corresponding positive and negative parts u+(t) =

max{u(t), 0} and u−(t) = max{−u(t), 0}, respectively. Then, Fc[u] can be decomposed

as

Fc[u](t) = Fc+ [u](t)−Fc− [u](t), (4.9)
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where

Fc+ [u](t) =
∞∑

k=0

∑
η∈X∗

∑
ξ∈S

η,Y k

(c+, ξ)Eξ[u+, u−](t), (4.10a)

Fc− [u](t) =
∞∑

k=0

∑
η∈X∗

∑
ξ∈S

η,Y k

(c−, ξ)Eξ[u+, u−](t). (4.10b)

and c+, c− ∈ R⟨⟨Z⟩⟩ are such that

(c+, ξ) = max{(−1)k(c, σX(ξ)), 0}, (4.11a)

(c−, ξ) = −min{(−1)k(c, σX(ξ)), 0}. (4.11b)

for any ξ ∈ SX∗,Y k .

Proof: First, observe that u = u+ − u−. Then, from Lemma 4, it follows that

Fc[u](t) = Fc[u+ − u−](t)

=
∞∑

k=0

∑
η∈X∗

∑
ξ∈S

η,Y k

(−1)k(c, σX(ξ))Eξ[u+, u−](t). (4.12)

This summation can now be re-written using (4.11a) and (4.11b) as

Fc[u](t) =
∞∑

k=0

∑
η∈X∗

∑
ξ∈S

η,Y k

(c+, ξ)Eξ[u+, u−](t)

−
∞∑

k=0

∑
η∈X∗

∑
ξ∈S

η,Y k

(c−, ξ)Eξ[u+, u−](t),
(4.13)

where (4.10a) and (4.10b) can be directly identified in (4.13). This completes the

56



proof.

This decomposition in terms of the positive and negative parts of the Chen-

Fliess series presented in the current section defines a decomposition in the mixed-

monotonicity sense, as seen later. A decomposition needs a partial order to overes-

timate the reachable set of a Chen-Fliess series in a box. In the next section, the

partial order is defined.

4.2.2 Partial Order over the Set of Functions

The following partial order is useful for establishing monotonicity properties of de-

composition functions of Chen-Fliess series.

Definition 40 Let u1 : R → Rm and u2 : R → Rm. These functions are ordered

u1 ⪯ u2 if and only if u+
1 ≤ u+

2 and u−
1 ≤ u−

2 , where ≤ is the standard order of real

numbers (componentwise).

Example 6 Consider the function u1(t) = sin(t) and u2(t) = 0.5 sin(t). The positive

and negative parts are then u+
2 (t) ≤ u+

1 (t) and u−
2 (t) ≤ u−

1 (t). Therefore u2 ⪯ u1.

The next definition extends the notion of mixed-monotonicity to Chen-Fliess series

according to the partial order in Definition 40.

Definition 41 A Chen-Fliess series Fc[u](t) is Input-Output Mixed-Monotone (IOMM)

if there exists a decomposition function

d[u, û](t) : Lm
p [0, T ]× Lm

p [0, T ]→ C([0, T ])

that satisfies the following:
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Figure 4.1: The graph shows that u+
2 ≤ u+

1 and u−
2 ≤ u−

1 , therefore u1 ⪯ u2.

i. d[u, u](t) = Fc[u](t),

ii. d[u, û](t) is non-decreasing in u,

iii. d[u, û](t) is non-increasing in û,

where the monotonicity of the arguments is in the sense of the partial order ⪯ in

Definition 40.

The partial order acts on the argument of the decomposition function of the Chen-

Fliess series and later it is seen that by restricting the domain of the input the partial

order is preserved for Chen-Fliess series. The decomposition function is provided in

the next section.

4.2.3 The Decomposition Function

The next result provides a closed form of a decomposition function of a Chen-Fliess

series that is used to obtain an overestimation of the reachable set of a system’s

output.
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Theorem 10 Let c ∈ RLC⟨⟨X⟩⟩ and u ∈ Bm
p (R)[0, T ]. Given the Chen-Fliess series

Fc[u](t), the decomposition function

d[u, û](t) := Fc+ [u](t)−Fc− [û](t) (4.14)

satisfies Definition 41, and therefore Fc[u](t) is IOMM.

Proof: Notice first that since

|(c+, ξ)| = max{|(c, σX(ξ))|, 0},

then |(c+, ξ)| = max{|(c, σX(ξ))|, 0} ≤ KM |ξ||ξ|,∀ξ ∈ Z∗. In the same manner

|(c−, ξ)| ≤ min{|(c, σX(ξ))|, 0} and |(c−, ξ)| ≤ KM |ξ||ξ|,∀ξ ∈ Z∗ for K, M associated

with c. Therefore c+, c− ∈ RLC⟨⟨Z⟩⟩ and Fc+ [u](t) and Fc− [u](t) are well-defined

maps. The theorem is now proved by checking directly the properties in Definition 41.

That is, condition i. holds from (4.9) in Theorem 5, where

d[u, û](t)
∣∣∣
û=u

= Fc[u](t).

By fixing û, condition ii. is satisfied since the coefficients of Fc+ [u](t) are non-negative,

and noticing that 0 ≤ Eξ[u+
1 , u−

1 ] ≤ Eξ[u+
2 , u−

2 ] when u1 ⪯ u2 for any ξ ∈ X∗. Similarly,

by fixing u, condition iii. holds since the coefficients of Fc− [u](t) are non-negative.

Hence, Fc[u](t) is IOMM.

A Chen-Fliess series can have several decomposition functions and the one given in

(4.14) is not unique (as is the case for the mixed-monotonicity property). In general
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(4.14) is not the tightest but it is applicable to any Chen-Fliess series. The next

corollary deals with the ordering of the decomposition function (4.14) as a consequence

of the south-east order originating from ⪯.

Corollary 2 Let c ∈ R⟨⟨X⟩⟩ and u ∈ Bm
p (R)[0, T ]. Given the Chen-Fliess se-

ries Fc[u](t) and its decomposition d[u, û], if (u1, û1) ⪯SE (u2, û2), then d[u1, û1] ≤

d[u2, û2].

Proof: From the SE order definition, one has that u1 ⪯ u2 and û2 ⪯ û1. Now, from

the monotonicity of the arguments in the decomposition function given in Theorem 10,

one has that d[u1, û1] ≤ d[u2, û1] ≤ d[u2, û2]. This completes the proof.

In the next section, the partial order and the decomposition function are used

together to provide an overestimation of the reachable set of a Chen-Fliess series.

4.3 Overestimation of Reachable Sets

Next, the points in the box U ⊂ Rm are grouped in subsets of U such that each subset

has a maximum element according to ⪯. For example, for the interval [−1, 1] ⊂ R,

the points û = 1 and u = −1 are not ordered as u+ ≤ û+, but û− ≤ u− then

u ⪯̸ û nor û ⪯̸ u. On the other hand, by grouping the elements in two subsets as

[−1, 1] = [−1, 0] ∪ [0, 1], any two elements in each subset are ordered in the same

subset. Notice the farther from the origin the greater. To see this, take û = −1

and u = −0.5, then u ⪯ û. In general, for an orthant Kν = {x ∈ Rm : 0 ≤ (−1)νixi}

where ν = (ν1, · · · , νm) with νi ∈ {0, 1}, the partial order ⪯ behaves as the partial

order induced by the cone orthant ≤Kν . The next theorem and corollary show that

(4.14) can be used to construct an over-approximation of Reachc(U)(t).
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Figure 4.2: The box [(−1, 1), (1, 1)] defined by the component-wise partial order ≤ is par-
titioned in the box [(0, 0), (1, 1)], [(0, 0), (1,−1)], [(0, 0), (−1,−1)], [(0, 0), (−1, 1)] defined in
terms of the partial order ⪯.

Theorem 11 Consider the Chen-Fliess series Fc[v](t) with v ∈ Lm
p [0, T ] taking val-

ues in the box Uν := [uν , ûν ] ⊂ Kν for some fixed ν with partial order ⪯, then

Reachc(Uν)(t) ⊂
[
d[uν , ûν ](t), d[ûν , uν ](t)

]
.

Proof: First, one has uν ⪯ v(t) ⪯ ûν , which implies (uν , ûν) ⪯SE (v(t), v(t)) ⪯SE

(ûν , uν) for all t. Then, from Corollary 2, it follows that

d[uν , ûν ](t) ≤ Fc[v](t) ≤ d[ûν , uν ](t)

which completes the proof.

Note that any box U = [u, û] ⊂ Rm can be written as U = ⋃
ν∈J

(
U ∩ Kν

)
,

where J = {(ν1, . . . , νm) : νj ∈ {0, 1}, j = 0, . . . m}. Define each part of U in Kν as
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[uν , ûν ] = [u, û] ∩Kν , where uν ⪯ ûν for uν , ûν ∈ Kν .

Corollary 3 Let Fc[v](t) be a Chen-Fliess series with v ∈ Lm
p [0, T ] taking values in

the box U = [u, û] ⊂ Rm, it then follows that

Reachc(U)(t) ⊂
⋃

ν∈J

[
d[uν , ûν ](t), d[ûν , uν ](t)

]
,

where [uν , ûν ] = U ∩Kν for all ν ∈ J .

Proof: The proof follows directly from Theorem 11 and the fact that U = ⋃
ν∈J [uν , ûν ].

In this chapter, a decomposition function of the Chen-Fliess series in the mixed-

monotonicity sense is provided. This decomposition was obtained using the closed

form of the Chen-Fliess series of the sum of two inputs. This representation allows

the separation of the Chen-Fliess series into its positive and negative parts, then the

domain is lifted to obtain the decomposition function. A partial order is defined

that preserves the order of the decomposition function. This is used to provide an

overestimation of the reachable set of a Chen-Fliess series by restricting the input

domain to the orthants of the real coordinate domain and applying the decomposition

in each orthant, and finally adding up each part.
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Chapter 5

Chen-Fliess Calculus and Minimum

Bounding Box

The current chapter is based entirely on [57]. Previously, in Chapter 4, an overesti-

mation of the reachable set of the output of non-linear affine systems was provided

by extending the concepts of mixed-monotonicity to Chen-Fliess series. This overes-

timating box is not the minimum bounding box of the reachable set. In the present

section, the minimum bounding box is computed by optimizing the Chen-Fliess series

of the system, this is, finding the minimum and maximum of Fc[u] for all u taking

values in the box U . The closed form of the Fréchet and Gâteaux derivatives are

obtained for this purpose. In general, this optimization problem is non-convex with

respect to the input function u, and the intersection of the border of Reachc(U) and

the minimum bounding box is non-empty as seen in Figure 1.2 whenever the output

set is compact.
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If the optimal points are interior points u∗, then they satisfy

DFc[u∗][h](t) = 0,∀h ∈ Bm
p (R)[0, T ],

where DFc[u∗][.](t) represents the Fréchet derivative of Fc[u∗](t). To obtain a numer-

ical solution, the Gâteaux derivative along with the Gradient Descent is used. This

recursion is set for some initial condition u0 that has the form

ui+1 = ui − ε∇Fc[ui](t), (5.1)

where ε is the learning parameter and ∇Fc[ui](t) is an appropriate gradient with

respect to u of the Chen-Fliess series Fc[u] for some generating series c ∈ Rℓ
LC⟨⟨X⟩⟩.

The section will first define an appropriate gradient of Fc[u] to be used in (5.1) and

then show that such recursion is well-posed.

In the following sections, the closed-forms of the tools from analysis are developed

to solve the optimization problems.

5.1 Derivatives of Chen-Fliess series

To perform derivative-based optimization, first, the closed form of the derivative of

the Chen-Fliess series needs to be obtained. Since the input domain of the Chen-

Fliess series lies in a Banach space, the involved derivative is the Fréchet derivative, a

functional map that assigns the input perturbation measure to each input perturba-

tion direction. By assuming a particular direction, the Gâteaux derivative is obtained.

It is proved that algebraically, these two have the same closed form. The derivatives
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must satisfy the next definitions.

Definition 42 Given c ∈ R⟨⟨X⟩⟩ and the input functions u ∈ Lm
p [0, t], the Chen-

Fliess operator is Fréchet differentiable at u ∈ Bm
p (R)[0, t] if and only if there exists

DFc[u][.](t) : Bm
p (R)[0, t]→ R such that the following limit is satisfied for all u + h ∈

Bm
p (R)[0, t]:

lim
h→0

1
||h||p

(
Fc[u + h](t)− Fc[u](t)−DFc[u][h](t)

)
= 0.

The concept of the Gâteaux derivative in [25] is extended to Chen-Fliess series in the

next definition.

Definition 43 Given c ∈ R⟨⟨X⟩⟩ and the input functions u, v ∈ Lm
p [0, t], the Chen-

Fliess operator is Gâteaux differentiable at u in the direction of v if and only if there

exists ∂
∂v

Fc[u](t) ∈ R such that the following limit is satisfied:

lim
ε→0

1
ε

(
Fc[u + εv](t)− Fc[u](t)− ∂

∂v
Fc[u](t)ε

)
= 0.

In the next sections, the closed forms of the derivatives are provided.

5.1.1 The Fréchet Derivative

Based on the formula of the Chen-Fliess series of the sum of two inputs in Lemma 4,

the closed form of the Fréchet derivative is provided next.

Theorem 12 [57] Let X and Y be alphabets associated with u, h ∈ Bm
p (R)[0, T ],
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respectively. The Chen-Fliess series is Fréchet differentiable if and only if

lim
h→0

1
||h||p

 ∞∑
k=2

∑
η∈X∗

∑
ξ∈S

η,Y k

(c, σX(ξ))Eξ[u, h](t)

 = 0,

and its Fréchet derivative is expressed as

DFc[u][h](t) =
∑

η∈X∗

∑
ξ∈Sη,Y

(c, σX(ξ))Eξ[u, h](t),

whenever c ∈ RLC⟨⟨X⟩⟩.

Proof: The proof is done by a direct application of Lemma 4 and Definition 42.

Consider δ > 0 and h such that ||h||p < δ, from (4.3), it follows that

Fc[u + h](t) =
∞∑

k=0

∑
η∈X∗

∑
ξ∈S

η,Y k

(c, σX(ξ))Eξ[u, h](t).

For k = 0, one has that

Fc[u](t) =
∑

η∈X∗

∑
ξ∈Sη,Y 0

(c, σX(ξ))Eξ[u, h](t). (5.2)

Note here that Eξ[u, h] = Eξ[u] since ξ ∈ X∗, which is why the left-hand side of (5.2)

does not depend on h. Then, it follows that

Fc[u + h](t)− Fc[u](t)−
∑

η∈X∗

∑
ξ∈Sη,Y

(c, σX(ξ))Eξ[u, h](t) =

∞∑
k=2

∑
η∈X∗

∑
ξ∈S

η,Y k

(c, σX(ξ))Eξ[u, h](t).
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Multiplying by 1/||h||p and taking the limit of h to 0 gives the desired result. Fi-

nally, observe that the generating series of DFc[u][h](t) inherits the local convergent

bounds of the original series c. Therefore, for c ∈ Rℓ
LC⟨⟨X⟩⟩, the Fréchet derivative

DFc[u][h](t) converges, which completes the proof.

The closed form of the input perturbation of the Chen-Fliess series in a particular

direction is obtained next.

5.1.2 The Gâteaux Derivative

The Gâteaux derivative is obtained by assuming a particular direction in the Fréchet

derivative closed formula. As shown next, algebraically, both derivatives are the same.

Corollary 4 [54, 57] Let X and Y be alphabets associated with u, v ∈ Lm
p [t0, t1],

respectively. The Chen-Fliess series is Gâteaux differentiable in the direction of v if

and only if

lim
ε→0

∞∑
k=2

∑
η∈X∗

∑
ξ∈S

η,Y k

(c, σX(ξ))Eξ[u, v](t) εk = 0, (5.3)

and its Gâteaux derivative is expressed as

∂

∂v
Fc[u](t) =

∑
η∈X∗

∑
ξ∈Sη,Y

(c, σX(ξ))Eξ[u, v](t),

whenever c ∈ RLC⟨⟨X⟩⟩.

Proof: The proof follows directly from Theorem 12 by taking the limit in the direction

of h = εv when ε tends to zero.

Some extra operations and notation are needed before presenting some examples
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about computing the Gâteaux derivative of Fc[u](t). Let X and Y be alphabets as in

Definition 38. For η = xi1 · · · xik
∈ Xk, the set of all words formed by the substitution

of r letters in η with letters in Y is denoted by

Ir
η = {ξ ∈ (X ∪ Y )k : σX(ξ) = η, |ξ|Y = r}, (5.4)

where σX is a substitution homomorphism transforming any letter in Y of ξ into its

corresponding letter in X. Furthermore, one can see from (5.4) that

⋃
r+s=k

SXr
η ,Y s

η
=

k⋃
r=0

Ir
η .

Example 7 Let u, v ∈ Bm
p (R)[0, t] be associated with the alphabets X and Y , respec-

tively. Consider the series c comprised of just one word c = η = xi1 · · ·xik
∈ X∗ and

let the substitution homomorphism σY such that σY (xi) = yi for i = 1, . . . , m. The

corresponding Chen-Fliess series for input u is Fc[u](t) = Eη[u](t). In this example,

the objective is to obtain the Gâteaux derivative of Fc[u](t) showing that it satisfies

(5.3). From Lemma 4 and (5.4), the variation between Eη[u + εv](t) and Eη[u](t) is

expressed as

1
ε

(Eη[u + εv](t)− Eη[u](t)) =
k∑

r=1

∑
ξ∈Ir

η

Eξ[u, v](t) εr−1.

To establish (5.3), observe that for every ξ ∈ Iη one has that

|Eξ[u, v](t)| ≤ R|ξ|

|ξ|!
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where R = max{||u[0,t]||p, ||v[0,t]||p, t} [30]. Then, assuming ε < 1 and

M = max
{

R|ξ|

|ξ|! : ξ ∈ Ir
η , 2 ≤ r ≤ k

}
,

the sum in (5.3) is bounded as

∣∣∣∣∣∣
k∑

r=2

∑
ξ∈Ir

η

Eξ[u, v](t)εr−1

∣∣∣∣∣∣ ≤ (2k − (1 + k))Mε.

It is clear now that the limit of the sum of higher order terms when ε goes to zero is

lim
ε→0

k∑
r=2

∑
ξ∈Ir

η

Eξ[u, v](t)εr−1 = 0.

Therefore, the Gâteaux derivative of Fc[u] is

∂

∂v
Eη[u](t) =

∑
ξ∈I1

η

Eξ[u, v](t)

as stated by Corollary 4.

The next example considers computing the Fréchet derivative of the Chen-Fliess

series corresponding to a linear state space system.

Example 8 Consider the system

ẋ = Ax + Bu, x(0) = x0

y = Cx,

(5.5)

and the functions u, v ∈ Bp(R)[0, t]. The Chen-Fliess series is computed using (2.5),

69



and is given by

Fc[u](t) =
∞∑

k=0
CAkx0

tk

k! +
∞∑

k=0
CAkB Exk

0x1 [u](t).

Note the first term on the right-hand side corresponds to the natural response, and

the second term is the forced response. This representation is in agreement with what

a Volterra operator gives for a linear system with analytic Kernels. To compute the

Fréchet derivative, consider δ > 0 and h such that ||h||p < δ. The series is perturbed

as

Fc[u + h](t) =
∞∑

k=0
CAkx0

tk

k! +
∞∑

k=0
CAkB Exk

0x1 [u, h](t)+

∞∑
k=0

CAkB Exk
0y1 [u, h](t).

Since there are no higher order terms, then the condition in Theorem 12 is satisfied,

and the Fréchet derivative is

DFc[u][h](t) =
∞∑

k=0
CAkB Exk

0y1 [u, h](t).

Example 9 Consider the scalar bilinear system

ẋ = xu, y = x, x0 = 1. (5.6)

u ∈ Bp(R)[0, t]. It can be easily checked that the output of the system is

y(u(t)) = exp
(∫ t

0
u(τ)dτ

)
.
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Starting from the Gâteaux derivative of the Chen-Fliess series as given in Corollary

4, one has that

∂

∂v
Fc[u](t) =

∞∑
k=0

∑
ξ∈S

xk
1 ,y1

E [u, v](t)

= lim
ε→0

1
ε

(Fc[u + εv](t)− Fc[u](t))

= lim
ε→0

1
ε

∞∑
k=0

Exk
1
[u + εv](t)− Exk

1
[u](t)

= lim
ε→0

1
ε

∞∑
k=0

1
k!
[
k!Exk

1
[u + εv](t)− k!Exk

1
[u](t)

]
= lim

ε→0

1
ε

∞∑
k=0

1
k!

[
E

x ⊔⊔ k
1

[u + εv](t)−E
x ⊔⊔ k

1
[u](t)

]

= lim
ε→0

1
ε

∞∑
k=0

1
k!
[
Ex1 [u + εv](t)k−Ex1 [u](t)k

]
.

The last expression is equal to

lim
ε→0

1
ε

∞∑
k=0

1
k!

(∫ t

0
u(τ) + εv(τ)dτ

)k

−
(∫ t

0
u(τ)dτ

)k


= lim
ε→0

1
ε

exp
(∫ t

0
u(τ) + εv(τ)dτ

)
− exp

(∫ t

0
u(τ)dτ

)

= lim
ε→0

1
ε

(y(u(t) + εv(t))− y(u(t)))

= dy

dv
.

In the following section, the Gâteaux derivative is used to obtain the gradient.
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5.1.3 The Gradient of Chen-Fliess series

The Gâteaux derivative in Corollary 4 is now used in (5.1) for the purpose of obtaining

the input signal that produces the reachable sets of a Chen-Fliess series characterized

by the generating series c ∈ RLC⟨⟨X⟩⟩. As a reminder, the objective is to find the

minimum bounding box of the reachable set of a Chen-Fliess series such that,

Reachc (U) (t) ⊂ [F (t), F (t)],

where

F (t) = min
u∈U

Fc[u](t) and F (t) = max
u∈U

Fc[u](t),

and U is a box in Rm. Hereafter, the existence of the Gâteaux derivative in Corollary

4 is assumed.

In the following paragraphs, the gradient of a Chen-Fliess series is obtained. It is

used along with a Gradient Descent algorithm to provide a solution to the optimiza-

tion of a Chen-Fliess series on the box U .

The following result is useful in the implementation of line-search optimization

methods.

Corollary 5 [54,57] Let the elementary functions ei : [0, T ]→ Rm, such that e1(t) =

(1, 0, · · · , 0)⊤, . . . , em(t) = (0, 0, · · · , 1)⊤ for all t ∈ [0, T ]. The Gâteaux derivative of
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Fc[u](t) in the direction of ui is

∂

∂ui

Fc[u](t) =
∑

η∈X∗

∑
ξ∈Sη,yi

(c, σX(ξ))Eξ[u, ei](t).

Example 10 Consider η = x0xi ∈ X2 and the associated Chen-Fliess series Fη[u](t) =

Ex0xi
[u](t), the Gâteaux derivative in the direction of v is

∂

∂v
Fc[u](t) = Ex0yi

[u, v](t).

Example 11 Consider η = x1x2 ∈ X2 and the associated Chen-Fliess series Fη[u](t) =

Ex1x2 [u](t), the Gâteaux derivative in the direction of v is

∂

∂v
Fc[u](t) = Ey1x2 [u, v](t) + Ex1y2 [u, v](t).

The gradient of a Chen-Fliess series is therefore naturally defined as∇Fc : Bm
p (R)[t0, t1]→

Bm
q (R)[t0, t1] such that

∇Fc[u](t) =
 ∂

∂u1
Fc[u](t), · · · ,

∂

∂um

Fc[u](t)
T

. (5.7)

The next lemma provides the Gâteaux derivative of a Chen-Fliess series in an arbitrary

constant direction v in terms of (5.7).

Lemma 6 [54,57] Consider the constant vector v = (v1, · · · , vm) ∈ Rm, u ∈ Lm
p [0, t]

and the Chen-Fliess series Fc[u](t), the Gâteaux derivative and the gradient are related
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by

∂

∂v
Fc[u](t) = vT∇Fc[u](t).

Proof: The proof follows directly from Corollary 4 and Sη,Y = ⋃m
i=1 Sη,yi

. That is,

∂

∂v
Fc[u](t) =

∑
η∈X∗

∑
ξ∈Sη,Y

(c, σX(ξ))Eξ[u, v](t),

=
m∑

i=1
vi

 ∑
η∈X∗

∑
ξ∈Sη,yi

(c, σX(ξ))Eξ[u, ei](t)
 ,

= vT∇Fc[u](t).

Example 12 Consider the linear system (5.5) once again with u ∈ Lp[0, t]. The

gradient of Fc[u] is

∇Fc[u](t) =
∞∑

k=0
CAkBExk

0y1 [u, e1](t),

=
∞∑

k=0
CAkBExk+1

0
[u](t),

=
∞∑

k=0
CAkB

tk+1

(k + 1)! .

Note that by integrating (5.5), the output is

y(t) = C exp(−At)x0 +
∫ t

0
C exp A(t− τ)Bu(τ)dτ.
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Taking the derivative with respect to u gives

dy

du
=
∫ t

0
C exp A(t− τ)Bdτ,

which coincides with the expression obtained using (5.7). This is,

dy

du
= ∇Fc[u](t).

In the next section, the approximation of the Chen-Fliess series using derivatives

is addressed. A useful tool to provide an algebraic proof of the mean value theorem

is presented.

5.2 First-Order Approximation of Chen-

Fliess Series

In the current section, the input perturbation of the Chen-Fliess series is approxi-

mated and a tool to proof the mean value theorem is provided. From Lemma 6 and

assuming the conditions of Corollary 4, it is easy to see that

Fc[u + εv] = Fc[u] + vT∇Fc[u](t)ε +
∞∑

k=2

∑
η∈X∗

∑
ξ∈S

η,Y k

(c, σX(ξ))Eξ[u, v](t)εk. (5.8)

As the limit of the higher order terms (rightmost term in (5.8)) is zero, then, for a

small ε > 0, it follows that

Fc[u + εv] ≈ Fc[u] + vT∇Fc[u](t)ε.

75



The following result is a tool to provide an algebraic proof of the mean value theorem.

Lemma 7 [57] Let r ∈ R, c ∈ Rℓ⟨⟨X⟩⟩, and X and Y be alphabets associated to

u ∈ Lm
p [t0, t1] and h ∈ Bm

p (R)[t0, t1], respectively. It follows that

DFc[u + rh][h](t) =
∞∑

k=1

∑
ξ∈S

X∗,Y k

krk−1(c, σX(ξ))Eξ[u, h](t).

Proof: Let ξ = xi1 · · · yij
· · ·xin ∈ SXn−1,Y such that

Jξ = {z1 · · · zj · · · zn ∈ (X ∪ Y )n : zj = yij
, zr ∈ {xir , yir}∀r ̸= j}.

First it is proved that if ξ ∈ SX∗,Y then

Eξ[u + rh, h](t) =
∑
ζ∈Jξ

r|ζ|Y −1Eζ [u, h](t). (5.9)

The proof follows by induction on the length of the word. Consider ξ ∈ SX∗,Y with

|ξ| = 1, ξ = yj, then Jξ = {yj}, then

Eξ[u + rh, h](t) =
∫ t

0
hj(τ)dτ

=
∑
ζ∈Jξ

r|ζ|Y −1Eζ [u, h](t).

Now assume that (5.9) holds true for any ξ′ ∈ X∗, Y such that |ξ′| = k. Computing

the expression for ξ = xiξ
′ gives

Eξ[u+rh, h](t) =
∫ t

0
(ui(τ) + rhi(τ))Eξ′ [u + rh, h](τ)dτ.
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Since |ξ′| = k and by the induction hypothesis, one has that

Eξ[u + rh, h](t) =
∫ t

0
(ui(τ) + rhi(τ))

∑
ζ∈Jξ′

r|ζ|Y −1Eζ [u, h](τ)dτ.

Using linearity and the iterated integral in (4.1) over (X ∪ Y )∗, it follows that

Eξ[u + rh, h](t) =
∑

ζ∈Jξ′

r|xiζ|Y −1Exiζ [u, h](τ) + r|yiζ|Y −1Eyiζ [u, h](τ)dτ

=
∑
ζ∈Jξ

r|ζ|Y −1Eζ [u, h](τ)dτ.

The Fréchet derivative is now expressed in terms of (5.9) as

DFc[u + rh][h](t) =
∑

ξ∈SX∗,Y

(c, σX(ξ))Eξ[u + rh, h](t),

=
∑

ξ∈SX∗,Y

∑
ζ∈Jξ

r|ζ|Y −1(c, σX(ζ))Eζ [u, h](t).

Now it is showed that for each ξ ∈ SX∗,Y , the elements of ζ ∈ Jξ repeat |ζ|Y times

in the series. Assume ξ ∈ SX∗,Y k such that ξ = xi1 · · · yj1 · · ·xim−1 · · · yjk
· · ·xim . Con-

sider the word ξyjr
formed from ξ after substituting all letters in Y except for yjr with

σX(yj1) = xj1 · · ·σX(yjk
) = xjk

. This is, ξyjr
= xi1 · · ·xj1 · · · xim−1 · · · yjr · · ·xjk

· · ·xim .

Then by definition, ξ ∈ Jξjr
for all r ∈ {1, · · · k}. Note that these are the only sets

formed from elements of SX∗,Y . Therefore, ξ ∈ SX∗,Y k appears k times in ⋃ξ∈SX∗,Y
Jξ,

which implies that

DFc[u + rh][h](t)=
∞∑

k=1

∑
ξ∈S

X∗,Y k

krk−1(c, σX(ξ))Eξ[u, h](t).
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This completes the proof.

In the next section, Lemma 7 is used to prove the mean value theorem for Chen-

Fliess series.

5.2.1 The Mean Value Theorem

The local monotonicity of the Chen-Fliess series is expressed in terms of the sign of

the Fréchet derivative. This is done by proving the mean value theorem for Chen-

Fliess series. The next result is an alternative proof of the mean value theorem

by an algebraic avenue using Lemma 4 instead of the classical proof from the book

using the chain rule. This proof forces us to compute the closed form of the Fréchet

derivative of the sum of two input functions which helps obtain the closed form of

higher derivatives of the Chen-Fliess series, in the next chapter.

Theorem 13 [57] Consider the open convex set U ⊂ Lm
p [0, t], u ∈ U and c ∈

RLC⟨⟨X⟩⟩, δ > 0 and h ∈ Bm
p (R)[0, t] such that ||h||p < δ and u + h ∈ U . Then there

exists ε0 ∈ (0, 1) such that

Fc[u + h](t) = Fc[u](t) + DFc[u + ε0h][h](t).

Proof: The theorem is proved by an application of Rolle’s theorem [9] and a continuity

argument. Basically, any continuous function that is zero when evaluated at the two

extreme points of an interval [0, 1] must have a point ε0 ∈ (0, 1) where its derivative

is zero. Define the function ϕ : R→ R as

ϕ(γ) =
∫ γ

0
DFc[u + rh][h](t)dr − (Fc[u + h](t)− Fc[u](t))γ. (5.10)
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Applying Lemmas 6 and 7 to the term inside the integral in (5.10) gives

DFc[u + rh][h](t) = DFc[u][h](t) +
∞∑

k=2

∑
ξ∈S

X∗,Y k

krk−1(c, σX(ξ))Eξ[u, v](t).

Integrating with respect to r, it follows that

∫ γ

0
DFc[u + rh][h](t)dr = DFc[u][h](t)γ +

∞∑
k=2

∑
ξ∈S

X∗,Y k

(c, σX(ξ))Eξ[u, v](t)γk. (5.11)

Using equation (5.8), the second term in the right hand side of (5.10) can also be

written as

(Fc[u + h](t)− Fc[u](t))γ = DFc[u][h](t)γ +
∞∑

k=2

∑
ξ∈S

X∗,Y k

(c, σX(ξ))Eξ[u, h](t)γ.

(5.12)

The fact that ϕ(1) = 0 follows from using (5.11), (5.12) and making γ = 1 in (5.10).

Also, it is easy to see that ϕ(0) = 0. Thus, by the continuity of Fc[u], Rolle’s Theorem

guarantees the existence of ε0 ∈ (0, 1) such that ϕ′(ε0) = 0. This implies that

DFc[u + ε0h][h](t)− (Fc[u + h](t)− Fc[u](t)) = 0.

Solving for Fc[u + h](t) completes the proof.

The procedure of the proof can be used to provide an approximation by means of

the gradient of a Chen-Fliess series.

Corollary 6 [57] Consider the constant vector v ∈ Rm, the function u ∈ Bm
p (R)[0, t]
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and c ∈ RLC⟨⟨X⟩⟩. Then there exists ε0 ∈ (0, ε) such that

Fc[u + εv](t) = Fc[u](t) + vT∇Fc[u + ε0v](t)ε.

Proof: From Theorem 13 and the fact that

DFc[u + rv][v](t) = ∂

∂v
Fc[u + rv](t),

consider the function ϕ : R→ R over interval [0, ε] given by

ϕ(γ) =
∫ γ

0
vT∇Fc[u + rv](t)εdr − (Fc[u + εv](t)− Fc[u](t))γ. (5.13)

The result follows by applying Rolle’s Theorem to (5.13).

Corollary 6 reveals the fact that if vT∇Fc[u](t) < 0, then there exists a neigh-

borhood of u for which the Chen-Fliess series Fc[u](t) decreases in the direccion

of v. More explicitly, taking ε̄ small enough such that u + ε̄v is still inside this

neighborhood of u, from Corollary 6, it follows that there exists an ε̄0 ∈ (0, ε̄) such

that Fc[u + ε̄v] = Fc[u] + vT∇Fc[u + ε̄0v](t)ε. As vT∇Fc[u + ε̄0v](t) < 0, then

Fc[u + ε̄v] < Fc[u].

In the next section, the use of gradient descent algorithm is outlined for Chen-

Fliess series.
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5.3 The Gradient Descent Algorithm

In the following paragraphs, the optimization is performed for each coordinate of the

output separately. This is,

min
u∈U

Fci
[u](t)

The direction of the greatest decrease in equation (5.8) is v = −∇Fc[u](t)/||∇Fc[u](t)||

which is obtained by solving
min vT∇Fc[u](t)

s.t. ||v|| ≤ 1.

The optimal value is then obtained continuing in such direction with an appropriate

choice of ε. Finding an input u such that the gradient is zero reduces to the search

of a fixed-point of the function Φ : Lm
p [t0, t1]→ Lm

p [t0, t1] such that

Φ[u] = u− ε∇Fc[u](t).

Furthermore, if Φ is a contraction, then the sequence

ui+1 = ui − ε∇Fc[ui](t) (5.14)

converges to such fixed point. Based on this recursion, a gradient descent algorithm

on Chen-Fliess series can be formulated as follows:
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Algorithm 1 Gradient Descent
Input: NGD, u0, ε, v, U

Initialization : u0

1: for i = 1 to NGD do

2: ui+1 = ui − ε∇Fc[ui](t),

3: ui+1 ← satU(ui+1)

4: end for

5: return Fc[uNGD
](t)

Here U is a box defined by its lower and upper limits given, respectively, by u ∈ Rm

and u ∈ Rm, and the function satU is defined componentwise as

satU(u) =


u, u > u,

u, u ∈ U ,

u u < u.

Algorithm 1 gives F (t) and F (t), which gives the minimum bounding box.

5.4 Independence of the Optimization Or-

der

In this section, it is proved that the optimal input function of the Chen-Fliess series

in a time interval is equal to the sum of the optimal input functions of any partition

of the convergent time interval.

Theorem 14 Consider c ∈ RLC⟨⟨X⟩⟩, U ⊂ Bm
p (R)[0, t] and a partition {tk}N

k=1 of
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the interval [0, t], then

min
U

Fc[u](t) =
N−1∑
k=1

min
Ui

Fc[u](ti, ti+1)

where Ui ⊂ Bm
p (R)[ti, ti+1].

Proof: Notice that, in general, for u ∈ U ,

N−1∑
k=1

min
Ui

Fc[u](ti, ti+1) ≤ Fc[u](t)

then

N−1∑
k=1

min
Ui

Fc[u](ti, ti+1) ≤ min
U

Fc[u](t). (5.15)

Now consider the u∗(t) := u∗
1(t1, t2)# · · ·#u∗

N(tN−1, tN) where each function ui(ti, ti+1)∗ =

arg minU Fc[u](ti, ti+1) and # is the operator that concatenates paths. To prove that

the equality holds in (5.15), a function u ∈ U has to be found to satisfy the equality.

The candidate is u∗(t). Notice that

N−1∑
k=1

min
Ui

Fc[u](ti, ti+1) = Fc[u∗](t).

since u∗(t) ∈ U , then the theorem is proved.

This result reduces the optimization of Chen-Fliess series over the convergence

time interval to the optimization of Chen-Fliess series over smaller intervals. This

is useful to approximate the optimal input function by optimizing over the set of
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constant functions under the appropriate conditions.

In the next section, examples of the computation of the minimum bounding box

are provided.

5.5 Numerical Simulations

This section presents two examples illustrating how IOMM and the gradient descent

are used to compute overestimations of the reachable sets of dynamical systems. The

results are compared to the overestimating sets using mixed-monotonicity. The first

example considers the single input single output bilinear system seen in Example 9.

The second example then considers the dynamics of a multiple input multiple output

Lotka-Volterra system. In both examples, the formalism for the optimization of Chen-

Fliess series via the gradient descent algorithm provides the minimum bounding box

of the corresponding reachable sets.

Example 13 Consider the bilinear state space system in example 9. This system

was first presented in [20] in the context of interconnection of systems. Assume the

input u is constrained to the interval u ∈ [−1, 1]. From (2.5), the Chen-Fliess series

of the system is

Fc[u] = 1 +
∞∑

k=1
Exk

1
[u](t), (5.16)

where (c, η) = 1 for all η ∈ X∗. Note also that c ∈ RGC⟨⟨X⟩⟩, and thus the output is

well-defined for all times.

For the IOMM approach, the coefficients of the decomposition function are ob-
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tained from (4.11).

(c+, ξ) =


1, |ξ|y1 even

0, |ξ|y1 odd
,

(c−, ξ) =


0, |ξ|y1 even

1, |ξ|y1 odd
.

From (4.10), the decomposition function is given by d[u, û](t) = Fc+ [u](t)−Fc− [u](t),

where

Fc+ [u](t) = 1 +
∑

k even

∞∑
r=0

∑
ξ∈S

xr
1,yk

1

Eξ[u+, u−](t),

Fc− [u](t) =
∑

k odd

∞∑
r=0

∑
ξ∈S

xr
1,yk

1

Eξ[u+, u−](t).

From Corollary 3, the interval [−1, 1] in terms of the component-wise partial order

≤ in section 7 is expressed as the union of [0, 1] and [0,−1] in terms of the partial

order ⪯ in Definition 40. Then, the reachable set satisfies the following inclusion

Reachc([−1, 1])(t) ⊂
[
d[0, 1](t), d[1, 0](t)

]
∪
[
d[0,−1](t), d[−1, 0](t)

]
,

which implies that

Reachc([−1, 1])(t) ⊂
[

min{d[0, 1](t), d[0,−1](t)}, max{d[1, 0](t), d[−1, 0](t)}
]
.

This is depicted in Fig. 5.1, where clearly the magenta and cyan lines lower and upper
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bound the reachable sets of (5.6). As expected, the boundaries created by the IOMM

overapproximations are conservative.

On the other hand, the gradient descent algorithm requires the gradient of (5.16).

From Corollary 4, the Gâteaux derivative of (5.16) is

∂

∂v
Fc[u] =

∞∑
k=0

∑
ξ∈S

xk
1 ,y1

Eξ[u, v](t).

This expression is used in Algorithm 1 to compute the input that produces the maxi-

mum and minimum values of Fc[u](t) over time. One finds the maximum by flipping

the sign of the increment in the gradient descent recursion. Fig. 5.1 shows the result

of the algorithm. For comparison purposes and according to Definition 33 for the

mixed-monotonicity methodology, the embedding system for (5.6) is found to be

ẋ = xu, ˙̂x = x̂û (5.17)

Selecting as the initial set of states equal to (x0, x̂0) = (1, 1) in order to match the con-

ditions for the IOMM and gradient descent methods. From Theorem 6, the reachable

set of (5.6) for inputs in U = [−1, 1] is the solution to the embedding system (5.17).

Fig. 5.1 shows such solutions in relation to the ones obtained from the IOMM and

gradient descent methods. The mixed-monotonicity and the Chen-Fliess series gradi-

ent descent approaches coincide for a step size of ε = 0.1, NGD = 100. A truncation

length of N = 5 for the Chen-Fliess series was used, which gave the same minimum

bounding box as the mixed-monotonicity approach.
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Figure 5.1: Estimation of the reachable set of the system in Example 13 with initial state
x0 = 1 and inputs in U = [−1, 1] by three approaches: mixed-monotonicity (MM), IOMM
with word truncation N = 5, and the optimization of the Chen-Fliess series with the gradient
descent algorithm (CFS-GD) for NGD = 100 iterations, step of ε = 0.1, initial value of
u0 = 0 and same word truncation as in the IOMM method (CFS-IOMM).

Example 14 Consider the following MIMO Lotka-Volterra system given by

ẋ1 = −x1x2 + x1u1, (5.18a)

ẋ2 = x1x2 − x2u2, (5.18b)

y = x (5.18c)

with initial condition x0 = (1/6, 1/6)⊤. The Chen-Fliess series representing the out-
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puts y1 and y2 of the Lotka-Volterra systems are given by

Fc1 [u](t) =0.1667− 0.0278Ex0 [u](t) + 0.1667Ex1 [u](t)+

− 0.0278Ex0x1 [u](t)− 0.0278Ex1x0 [u](t)+

+ 0.1667Ex1x1 [u](t) + 0.0278Ex2x0 [u](t)+

+ 0.0015Ex0x0x0 [u](t) + · · ·

Fc2 [u](t) =0.1667 + 0.0278Ex0 [u](t)− 0.1667Ex2 [u](t)+

− 0.0278Ex0x2 [u](t) + 0.0278Ex1x0 [u](t)+

− 0.0278Ex2x0 [u] + 0.1667Ex2x2 [u](t)+

− 0.0015Ex0x0x0 [u](t) + · · ·

From corollary (4), the Gâteaux derivatives are the following:

∂

∂v
Fc1 [u] =0.1667Ey1 [u, v](t)− 0.0278Ex0y1 [u, v](t)+

− 0.0278Ey1x0 [u, v](t) + 0.1667Ey1x1 [u, v](t)+

+ 0.1667Ex1y1 [u, v](t)(t) + 0.0278Ey2x0 [u, v](t)+

− 0.0278Ex0y1x1 [u, v](t) · · · ,

∂

∂v
Fc2 [u] =− 0.1667Ey2 [u, v](t)− 0.0278Ex0y2 [u, v](t)+

+ 0.0278Ey1x0 [u, v](t)− 0.0278Ey2x0 [u, v](t)+

+ 0.1667Ex2y2 [u, v](t) + 0.1667Ey2x2 [u, v](t)+

+ 0.0278Ex0y2x2 [u, v](t) · · · .

According to the mixed-monotonicity method and Theorem 5, the decomposition func-
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tion of (5.18) is

d1(x, u, x̂, û) = −x1x̂2 + x1u1

d2(x, u, x̂, û) = x2x1 − x2û2.

Thus, from Definition 33, it follows that the embedding system has the form

ẋ1 = d1(x, u, x̂, û), ẋ2 = d2(x, u, x̂, û),

˙̂x1 = d1(x̂, û, x, u), ˙̂x2 = d2(x̂, û, x, u).

The mixed-monotonicity overestimation of the reachable sets using the initial set

Figure 5.2: Estimation of the reachable set of the system in Example 14 with inputs satisfy-
ing −1 ≤ u1(t) ≤ 1, −1 ≤ u2(t) ≤ 1. The three approaches shown are mixed-monotonicity
(MM); gradient descent (GD) with NGD = 100 iterations, ε = (0.1, 1), u0 = (0, 0), and
truncation length N = 5; and IOMM with the same truncation as the gradient descent
method.
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(x1,0, x2,0, x̂1,0, x̂2,0) = (1/6, 1/6, 1/6, 1/6) is given in Fig. 5.2. For the IOMM ap-

proach, the input box [(−1,−1), (1, 1)] defined in terms of the coordinate-wise par-

tial order ≤ was decomposed as the union of boxes [(0, 0), (1, 1)] ∪ [(0, 0), (−1, 1)] ∪

[(0, 0), (−1,−1)] ∪ [(0, 0), (1,−1)] defined in terms of the partial order ⪯. Then

Reachci
([(−1,−1), (1, 1)])(t) ⊂ [Li, Li], for i ∈ {1, 2}

where the bounds of the intervals are given in terms of the decomposition function

(4.11). Thus,

Li = min{dci
[(0, 0), (1, 1)](t), dci

[(0, 0), (−1, 1)](t),

dci
[(0, 0), (−1,−1)](t), dci

[(0, 0), (1,−1)](t)},

Li = max{dci
[(1, 1), (0, 0)](t), dci

[(−1, 1), (0, 0)](t),

dci
[(−1,−1), (0, 0)](t), dci

[(1,−1), (0, 0)](t)},

and from Lemma 5, the Chen-Fliess series decomposition functions are

dc1 [u, û] = Fc+
1
[u](t)−Fc−

1
[û](t)

dc2 [u, û] = Fc+
2
[u](t)−Fc−

2
[û](t)
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with

Fc+
1
[u](t) = 0.1667 + 0.1667Ex1 [u+, u−](t)+

+ 0.0278Ex0y1 [u+, u−](t) + 0.1667Ex1x1 [u+, u−](t)+

+ 0.0278Ex2x0 [u+, u−](t) + 0.0278Ey1x0 [u+, u−](t)+

+ 0.1667Ey1y1 [u+, u−](t) + · · · ,

Fc−
1

[u](t) = 0.0278Ex0 [u+, u−](t) + 0.1667Ey1 [u+, u−](t)+

+ 0.0278Ex0x1 [u+, u−](t) + 0.0278Ex1x0 [u+, u−](t)+

+ 0.1667Ex1y1 [u+, u−](t) + 0.1667Ey1x1 [u+, u−](t)+

+ 0.0278Ey2x0 [u+, u−](t) + · · · ,

Fc+
2
[u](t) = 0.1667 + 0.0278Ex0 [u+, u−](t)+

+ 1.667Ey2 [u+, u−](t) + 0.0278Ex0y2 [u+, u−](t)+

+ 0.0278Ex1x0 [u+, u−](t) + 0.1667Ex2y2 [u+, u−](t)+

+ 0.0278Ey2x0 [u+, u−](t) + · · · ,

Fc−
2

[u](t) = 1.667Ex2 [u+, u−](t) + 0.0278Ex0x2 [u+, u−](t)+

+ 0.0278Ex2x0 [u+, u−](t) + 0.1667Ex2y2 [u+, u−](t)+

+ 0.1667Ex2y2 [u+, u−](t) + 0.0278Ey1x0 [u+, u−](t)+

+ 0.1667Ey2x2 [u+, u−](t) + · · · .

Fig. 5.2 shows an overlaying of overestimations of the reachable sets of (5.18)

obtained using mixed-monotonicity, IOMM, and gradient descent of Chen-Fliess series
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Figure 5.3: Estimation of the reachable set of the system in Example 14 for t = 1.5s with
initial state x0 = (1/6, 1/6) and inputs satisfying −1 ≤ u1(t) ≤ 1, −1 ≤ u2(t) ≤ 1. The
three approaches shown are mixed-monotonicity (MM), gradient descent (CFS-GD), and the
brute force computation of the output reachable set directly from solving the corresponding
ODE. For the gradient descent method NGD = 10000 iterations were used, ε = (0.01, 0.04),
u0 = (0, 0), and the truncation length was N = 8.

up to t = 0.5s. It can be seen that the three approaches are very closed to each other

for small time horizons, then they start to diverge from each other as time passes. In

Fig. 5.3, the true reachable set of system (5.18) for t = 1.5s along with the gradient

descent of Chen-Fliess series and the mixed-monotonicity approach are presented.

The truncation length of N = 8 was selected due to the negligible error between the

solution of (5.18) using standard numerical ODE solvers and the truncated Chen-

Fliess representation at t = 1.5. It can be clearly observed that the gradient descent

of Chen-Fliess series provides the minimum bounding box of the reachable set while

the mixed-monotonicity approach is strictly larger than the minimum bounding box

despite being tight as in Definition 34.
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In the current chapter, the closed form of the derivatives of Chen-Fliess series were

provided. These are the Fréchet, the Gâteaux, and the gradient. Also, an algebraic

proof of the mean value theorem was given. The gradient descent was used to obtain

the minimum bounding box of the reachable set of a Chen-Fliess series. Finally, the

independence of the order of optimization within a time interval partition was proved.
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Chapter 6

Calculus Over Power Series

This chapter is based on [55,58]. The goal is to introduce an algebraic framework for

describing the derivatives of a Chen-Fliess series introduced in Chapter 5 and also the

higher order derivatives. For this, a derivation on the monoid is defined which helps

provide a derivative rule for Chen-Fliess series. With this, the second order derivative

is used together with the trust region optimization algorithm to provide the minimum

bounding box of a reachable set. Hereafter, it is assumed without loss of generality

that ℓ = 1 since all the following formulations can be applied componentwise.

6.1 Differential Monoids

Motivated by the description of differential fields in [16], a differential algebraic struc-

ture based on a monoid structure is presented next. Consider the monoid (X∗,⊙, ∅)

with an alphabet X = {x0, x1, · · · , xm}, associate a differential alphabet to X by

defining the set of letters δX = {δx1, · · · , δxm}, and set Z = X ∪ δX.
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6.1.1 Derivation

The next definition satisfies the Leibniz rule of derivation.

Definition 44 [55, 58] Let η ∈ Z∗ such that |η|X = n1 ≥ 1 and |η|δX = n2 and

consider the language

Lη := {ξ ∈ SXn1−1,δXn2+1 s.t. σX(ξ) = σX(η)}. (6.1)

The derivative of η is δ(η) := char(Lη) ∈ R⟨Z⟩. When n1 = 0, Lη is empty and

δ(η) := 0.

Alternatively, this derivation can be defined in a simpler way as

Definition 45 [19] Let X = {x0, · · · , xm} and define the language δX = {δx1, · · · , δxm}

and Z = X ∪ δX. Consider the mapping δ : Z → {δX, 0}, where δ(xi) = δxi for

i = 1, 2, · · · , m and zero otherwise. Extend the definition of δ to Z∗ by letting it act

as a derivation with respect to the concatenation. Equivalently,

δ(η) = δ(xi)η′ + xiδ(η′), (6.2)

where η = xiη
′ ∈ Z∗.

The derivation can be extended, by linearity, to polynomials p = ∑n
i=1(p, ηi)ηi ∈

R⟨Z⟩. That is, δ(p) := ∑n
i=1(p, ηi)δ(ηi). This operation is included next in a monoid

structure to provide the underlying differential algebraic structure for computing

derivatives of Chen-Fliess series.
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Definition 46 Given the monoid (X∗,⊙, ∅), a differential monoid is defined as the

tuple (Z∗,⊙, ∅, δ) where Z = X ∪ δX.

6.1.2 Combinatorial Properties

This algebraic structure is used in the rest of the document. It is expected that δ

operating on words will satisfy properties related to the traditional derivative opera-

tion.

Example 15 Let η = x0x1 ∈ X2. Note that ξ = x0δx1 is the only element in SX,δX

such that σX(ξ) = σX(η). Then δ(x0x1) = x0δx1. Hence, x0 behaves as a constant

with respect to δ.

Example 16 Let η = x1x2 ∈ X2. One can easily find that Lη = {δx1x2, x1δx2}.

Thus, δ(x1x2) = char(Lη) = δx1x2 + x1δx2, which matches Leibniz’s derivative rule.

These examples can be generalized into the properties shown in the next lemma.

Lemma 8 The derivative operator in Definition 44 satisfies the following properties:

i. δ(η) =
n∑

j=1
xi1 · · ·xij−1δxij

xij+1 · · ·xin , ∀η ∈ Xn,

ii. δ2(η) = 0, for |η|X = 0 or 1,

iii. δ(η ⊔⊔ ξ) = δ(η) ⊔⊔ ξ + η ⊔⊔ δ(ξ), η, ξ ∈ Z∗,

iv. δ(xn1
i1 ⊔⊔ · · · ⊔⊔ xnk

ik
) = ∑k

j=1 xn1
i1 ⊔⊔ · · ·xnj−1

ij
· · · ⊔⊔ xnk

ik
⊔⊔ δxij

where {xi1 , . . . , xik
} ⊆ X.

96



Proof: Property i is shown directly from the definition of δ(η) for η = xi1 · · ·xin ∈ Xn.

Observe that

Lη = {xi1 · · ·xij−1 δxij
xij+1 · · ·xin for j = 1, . . . , n}.

Hence, the result follows since δ(η) = char(Lη). Property ii is checked for |η|X =

0 and 1. The case for |η|X = 0 follows from Definition 44. For |η|X = 1, note

that δ(η) = δxi1 · · · δxin since δxi1 · · · δxin ∈ SX0,δ(X)n is the only element such that

σX(δxi1 · · · δxin) = η. By Definition 44, it follows that δ(δ(η)) = 0, which completes

the proof. Property iii is proved by induction on the k = |η|+ |ξ|. For n = 0, 1, the

result holds true by Definition 44. Assume property iii holds for k − 1 and consider

η = ξiη
′, ξ = xkξ′ ∈ Z∗ and xi, xj ∈ X. From (13) and property i

δ(η ⊔⊔ ξ) = δ(xi(η′
⊔⊔ ξ) + xj(η ⊔⊔ ξ′))

= δ(xi)(η′
⊔⊔ ξ) + xjδ(η′

⊔⊔ ξ) + δ(xj)(η ⊔⊔ ξ′) + xjδ(η ⊔⊔ ξ′).

Using property i and the induction hypothesis, it follows

δ(η ⊔⊔ ξ) = δxi(η′
⊔⊔ ξ) + xi(δ(η′) ⊔⊔ ξ) + xi(η′

⊔⊔ δ(ξ)) + δxj(η ⊔⊔ ξ′)

+ xj(δ(η) ⊔⊔ ξ′) + xj(η ⊔⊔ δ(ξ′))

= δxi(η′
⊔⊔ ξ) + xi(δ(η′) ⊔⊔ ξ) + xi(η′

⊔⊔ (δxjξ
′ + xjδ(ξ′)))

+ δxj(η ⊔⊔ ξ′) + xj(η ⊔⊔ δ(ξ′)) + xj((δxiη
′ + xiδ(η′)) ⊔⊔ η′).
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From the linearity of the shuffle product, the terms are rearranged as follows

δ(η ⊔⊔ ξ) = (δxiη
′) ⊔⊔ ξ + η ⊔⊔ (δxjξ

′) + xiδ(η′) ⊔⊔ ξ + η ⊔⊔ (xjδ(ξ′))

= δ(η) ⊔⊔ ξ + η ⊔⊔ δ(ξ),

which completes the proof. The last property is also proved by induction on the

number of letters k. For k = 1, η = xn1
i1 and from property i, δ(xn1

i1 ) = xn1−1
i1 ⊔⊔ δxi1 .

Assume the induction hypothesis holds for k = r. The result is proved for k = r + 1.

Notice from iii that

δ(xn1
i1 ⊔⊔ · · · ⊔⊔ x

nr+1
ik

) = δ(xn1
i1 ⊔⊔ · · · ⊔⊔ xnr

ik
) ⊔⊔ x

nr+1
ir+1 + xn1

i1 ⊔⊔ · · · ⊔⊔ xnr
ik

⊔⊔ δ(xnr+1
ir+1 ).

Using the induction hypothesis for k = r and the proved case for k = 1 gives

δ(xn1
i1 ⊔⊔ · · · ⊔⊔ x

nr+1
ik

) =
 r∑

j=1
xn1

i1 ⊔⊔ · · · ⊔⊔ x
nj−1
ij

⊔⊔ · · · ⊔⊔ xnr
ir

⊔⊔ δxij

 ⊔⊔ x
nr+1
ir+1

+ xn1
i1 ⊔⊔ · · · ⊔⊔ xnr

ik
⊔⊔ x

nr+1−1
ir+1 ⊔⊔ δxir+1

=
r∑

j=1
xn1

i1 ⊔⊔ · · · ⊔⊔ x
nj−1
ij

⊔⊔ · · · ⊔⊔ xnr
ir

⊔⊔ x
nr+1
ir+1 ⊔⊔ δxij

+ xn1
i1 ⊔⊔ · · · ⊔⊔ xnr

ik
⊔⊔ x

nr+1−1
ir+1 ⊔⊔ δxir+1

=
r+1∑
j=1

xn1
i1 ⊔⊔ · · · ⊔⊔ x

nj−1
ij

⊔⊔ · · · ⊔⊔ xnr
ir

⊔⊔ x
nr+1
ir+1 ⊔⊔ δxij

,
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which completes the proof.

The derivation satisfies the following diagram:

0

ϕ SX0,δX1 SX0,δX2 SX0,δX3 · · ·

SX1,δX0 SX1,δX1 SX1,δX2 SX1,δX3 · · ·

SX2,δX0 SX2,δX1 SX2,δX2 SX2,δX3 · · ·

SX3,δX0 SX3,δX1 SX3,δX2 SX3,δX3 · · ·

... ... ... ...

δ δ
δ

δ δ

δ δ δ

δ δ δ

δ δ δ

It should be noticed in Lemma 8 that property i constitutes Leibniz rule in the

context of formal power series and that the proof of property iii has also appeared

in [19]. The next definition extends (6.1) to multiple applications of the derivative

operation δ.

Definition 47 Let η ∈ Z∗ with |η|X = n1 ≥ 1 and |η|δX = n2. The language to

describe k applications of δ is defined as

Lk
η := {ξ ∈ SXn1−k,δXn2+k s.t. σX(ξ) = σX(η)}.

Example 17 Compute δ2(η) and δ3(η) for η = xi1xi2xi3. Obtaining δ(η) is trivial
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using Lemma 8. Applying δ twice to η gives

δ2(xi1xi2xi3) = 2!(δxi1δxi2xi3 + xi1δxi2δxi3 + δxi1xi2δxi3).

Applying δ once more produces

δ3(xi1xi2xi3) = 3!δxi1δxi2δxi3 .

Observe that the application of δ twice to a word with no letters in the differential

alphabet δX produced 2! copies of every word in L2
η, and a third iteration produced 3!

copies of each element in L3
η. This is generalized in the following lemma.

Lemma 9 Given η ∈ Xn it follows that

δk(η) = k! char(Lk
η). (6.3)

If k > n, then δk(η) = 0.

Proof: The proof is done by induction on k. The case for k = 1 holds true from

Definition 44. Assume the induction hypothesis for k = r and solve the case for r +1.

Taking the derivative and from its linearity, one has that δr+1(η) = r!δ(char(Lr
η)).

Next, the elements of Lr+1
η are counted in the polynomial D := δ(char(Lr

η)). With-

out loss of generality consider ξ ∈ Lr
η such that ξ = δxi1δxi2 · · · δxirxir+1 · · ·xin .

From Lemma 8, δ(ξ) = ∑n
j=r+1 δxi1δxi2 · · · δxirxir+1 · · · δxij

· · ·xin . Each element in

supp(δ(ξ)) ⊂ Lr+1
η repeats r + 1 times in D. To see this, consider the element

ζ = δxi1δxi2 · · · δxirδxir+1xir+2 · · ·xir+n in supp(δ(ξ)). Next, it is shown that ζ ap-

pears in the derivative of other r elements different from ξ in Lr
η. Take ξs ∈ Lr

η for
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s ∈ {1, · · · , r} where

ξs = δxi1 · · · δxis−1xisδxis+1 · · · δxir+1xir+2 · · ·xin .

By the Leibniz rule in property i of Lemma 8, ζ ∈ supp(δ(ξs)) for s ∈ {1, · · · , r}.

These along with ξ are the r + 1 elements, which completes the proof.

The following lemma will be helpful in Section 6.3 for characterizing the Gâteaux

derivative of a Chen-Fliess series.

Lemma 10 The k-th derivative of char(X∗) satisfies

δk(char(X∗)) = k!char(SX∗,δXk). (6.4)

Proof: The proof is performed by induction on k. Consider k = 1 and η = xi1 · · ·xin ∈

Xn for n ∈ N. It is clear that char(Xn) = ∑
η∈Xn η. From properties i and iii in

Lemma 8, one can rewrite δ(char(Xn)) as

δ

 ∑
η∈Xn

η

 = δ

 ∑
n0+···nm=n

xn0
0 ⊔⊔ · · · ⊔⊔ xnm

m


=

m∑
l=1

∑
n0+···nm=n−1

xn0
0 ⊔⊔ · · · ⊔⊔ xnm

m ⊔⊔ δxl

=
m∑

l=1
char(Xn−1) ⊔⊔ δxl

= char(Xn−1) ⊔⊔ δX

= char (SXn−1,δX) ,

which is (6.5) for k = 1. Assume now k > 1 and that the induction hypothesis holds
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true for any integer lesser than k. One has that

δk (char(Xn)) = δ
(
δk−1 (char(Xn))

)
= δ

(
(k − 1)! char

(
SXn−k+1,δXk−1

))
= (k − 1)! δ

(
char(Xn−k+1) ⊔⊔ δXk−1

)
= (k − 1)! δ

(
char(Xn−k+1)

)
⊔⊔ δXk−1

= (k − 1)! char(Xn−k) ⊔⊔ δX ⊔⊔ δXk−1.

Since zk
i ⊔⊔ zn−k

i =
(

n
k

)
zn

i for any zi ∈ Z and

δXk−1 =
∑

n1+···+nm=k−1
δxn1

1 ⊔⊔ · · · ⊔⊔ δxnm
m ,

then δX ⊔⊔ δXk−1 = k δXk. Hence,

δk(char(Xn)) = k!char(SXn−k,δXk). (6.5)

Finally, the linearity of δ provides (6.4), which completes the proof.

An identity for the k-th application of the mapping δ to formal power series is

provided in the next lemma.

Lemma 11 The k-th derivative of c ∈ R⟨⟨X⟩⟩ satisfies

δk(c) = k!
∑

ξ∈S
X∗,δXk

(c, σX(ξ))ξ. (6.6)
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Proof: By the linearity of the derivation and from Lemma 9, it follows

δk(c) =
∑

η∈X∗
(c, η)δk(η)

= k!
∑

η∈X∗
(c, η)char(Lk

η)

= k!
∑

η∈X∗

∑
ξ∈Lk

η

(c, σX(ξ))ξ

= k!
∑

ξ∈S
X∗,δXk

(c, σX(ξ))ξ,

where the last equation comes from the fact that Lk
η1 ∩ Lk

η2 = ∅ for η1 ̸= η2 and⋃
η∈X∗ Lk

η = SX∗,δXk , which concludes the proof.

Example 18 Consider the word x1δx2x3δx4x5 in the set SX∗,δX2. Taking the deriva-

tive operation three times gives

δ3(x1δx2x3δx4x5) = 3!δx1δx2δx3δx4δx5.

The word δx1x2δx3x4x5 ∈ SX∗,δX2, which is different from x1δx2x3δx4x5, also satisfies

δ3(δx1x2δx3x4x5) = 3!δx1δx2δx3δx4δx5.

It is easy to see that there are
(

5
2

)
different words ξ in SX∗,δX2 such that σX(ξ) =

x1x2x3x4x5 and they all satisfy δ3(ξ) = 3!δx1δx2δx3δx4δx5. Adding all of these words
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it follows that

1
3!δ

3
(
δx1δx2x3x4x5 + δx1x2δx3x4x5 + δx1x2x3δx4x5 + δx1x2x3x4δx5

+ x1δx2δx3x4x5 + x1δx2x3δx4x5 + x1δx2x3x4x5 + x1x2δx3δx4x5

+ x1x2δx3x4δx5 + x1x2x3δx4δx5
)

=
(

5
2

)
δx1δx2δx3δx4δx5.

Since for power series, all these words will have the same coefficient (c, x1x2x3x4x5),

then this behavior extends to power series by the linearity of the derivative.

The next lemma will be used in Chapter 7 to present a proof of the mean value

theorem for Chen-Fliess series by algebraic means and provide a second-order approx-

imation for a Chen-Fliess series.

Lemma 12 Let (Z∗,⊙, ∅, δ) be a differential monoid. For k, r ∈ N, it follows that

1
k!δ

k (char (SX∗,δXr)) =
(

r + k

r

)
char

(
SX∗,δXr+k

)
(6.7)

and, for c ∈ R⟨⟨X⟩⟩, one has that

∑
ξ∈SX∗,δXr

1
k! (c, σX(ξ))δk(ξ) =

(
r + k

r

) ∑
ξ∈S

X∗,δXr+k

(c, σX(ξ))ξ. (6.8)

Proof: The proof is done by double induction on r and k. The case for r = 0 and

k ∈ N is proved in Lemma 10. The case for k = 0 and r ∈ N is trivial. Assume that

the result is satisfied for an arbitrary r = p and k = q. First, the result is proved for
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k = q + 1 and r = p. That is,

δ

(
1
q!δ

q (char SX∗,δXp)
)

=
(

p + q

q

)
δ (char (SX∗,δXp+q)) .

From Lemma 10,

1
q!δ

q+1 (char SX∗,δXp) =
(

p + q

q

)
(p + q + 1) (char (SX∗,δXp+q+1))

= (p + q + 1)!
p!q! (char (SX∗,δXp+q+1)) .

Thus, dividing both sides by (q+1) gives the result for q+1. Now the result is proved

for r = p + 1 and k = q. From Lemma 10, one has that

char(SX∗,δXp+1) = 1
(p + 1)!δ

p+1(char(X∗)).

Taking the derivative q times gives

δq (char(SX∗,δXp+1)) = 1
(p + 1)!δ

p+q+1(char(X∗)). (6.9)

Again, from Lemma 10, the right-hand side is expressed as

δp+q+1(char(X∗)) = (p + q + 1)!char(SX∗,δXp+q+1). (6.10)

Replacing (6.10) in (6.9), it follows that

δq (char(SX∗,δXp+1)) = (p + q + 1)!
(p + 1)! δp+q+1char(SX∗,δXp+q+1).
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Thus, (6.7) follows by dividing both sides by q!.

6.2 Chen-Fliess Series over Differential

Languages

In this section, a Chen-Fliess series is characterized in terms of a differential monoid.

Hereafter, all statements assume the underlying differential monoid (Z,⊙, ∅, δ), where

X and δX are alphabets associated with inputs u, v ∈ Bm
p (R)[0, t], and Z = X ∪ δX.

The characterization of the Chen-Fliess series of the sum of two inputs in terms

of the derivation of words is given next.

Lemma 13 Given c ∈ R⟨⟨X⟩⟩, the Chen-Fliess series of the sum of u and v is

written as

Fc[u + v](t) =
∞∑

k=0

∑
ξ∈δk(X∗)

1
k! (c, σX(ξ))Eξ[u, v](t). (6.11)

Proof: The proof follows from Lemma 4 by identifying the alphabet Y associated with

the function v with δX since both are sets of symbols and by using the inner product
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in (2.6). That is,

Fc[u + v](t) =
∞∑

k=0

∑
ξ∈S

X∗,δXk

(c, σX(ξ))Eξ[u, v](t)

=
∞∑

k=0

 ∑
ξ∈S

X∗,δXk

(c, σX(ξ))ξ ,
∑

ξ∈S
X∗,δXk

Eξ[u, v](t)ξ


=

∞∑
k=0

 ∑
η∈X∗

(c, η) 1
k!δ

k(η),
∑

η∈X∗
Eξ[u, v](t) 1

k!δ
k(η)


=

∞∑
k=0

∑
ξ∈δk(X∗)

1
k! (c, σX(ξ))Eξ[u, v](t),

where the third equation comes from Lemma 11.

Notice that from Lemma 13 if the exponential of the derivative of c ∈ Rℓ⟨⟨X⟩⟩ is

defined as

eδ(c) =
∞∑

k=0

1
k!δ

k(c)

then Chen-Fliess series of the sum of two inputs u, v ∈ Lm
p [0, t] is expressed as

Fc[u + v](t) = Feδ(c) [u, v](t).

6.2.1 Link Between Analysis and Algebra

Consider set F := {Fc : c ∈ RLC⟨⟨X⟩⟩} as in [40], and define the sets Fδ := {Fδ(c) :

c ∈ RLC⟨⟨Z⟩⟩} and Fδ2 := {Fδ2(c) : c ∈ RLC⟨⟨Z⟩⟩}. The next theorem establishes the

link between analysis and algebra by relating the Gâteaux derivative of a Chen-Fliess

series to the derivation of a differential monoid.
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Theorem 15 Given c ∈ R⟨⟨X⟩⟩, if

lim
ε→0

∞∑
s=2

∑
ξ∈SX∗,δXτ

1
s! (c, σX(ξ))Eδs(ξ)[u, v](t)εs−1 = 0, (6.12)

for 1 ≤ τ ≤ k − 1, then the k-th order Gâteaux derivative of Fc[u](t) in the direction

of v is written as

∂k

∂vk
Fc[u](t) = k!

∑
ξ∈S

X∗,δXk

(c, σX(ξ))Eξ[u, v](t).

Furthermore, the derivation δ and the Gâteaux derivative satisfy the following com-

mutative diagram

F Fδ Fδ2 · · ·

RLC⟨⟨X⟩⟩ RLC⟨⟨Z⟩⟩ RLC⟨⟨Z⟩⟩ · · ·

∂
∂v

∂
∂v

δ δ

···

Proof: The proof follows by induction on k. The case for k = 1 is proved directly

from Definition 43 and Corollary 4 by identifying the alphabet Y associated with

function v with the alphabet δX. Assume the induction hypothesis holds true for

k = r, the case for k = r+1 will be constructed from Definition 43. Applying Lemma
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13 to the term Eξ[u + εv, v](t), it follows that

∂r

∂vr
Fc[u + εv](t) = r!

∑
ξ∈SX∗,δXr

(c, σX(ξ))Eξ[u + εv, v](t)

= r!
∞∑

s=0

∑
ξ∈SX∗,δXr

1
s! (c, σX(ξ))Eδs(ξ)[u, v](t)εs. (6.13)

Notice that the term for s = 0 in the double sum on the right side of (6.13) is equal

to

∂r

∂vr
Fc[u](t) = r!

∑
ξ∈SX∗,δXr

(c, σX(ξ))Eξ[u, v](t).

Then, moving the s = 0 and s = 1 terms in (6.13) to the left side of the equal sign

and dividing by ε, it follows that

1
ε

 ∂r

∂vr
Fc[u + εv](t)− ∂r

∂vr
Fc[u](t)−r!

∑
ξ∈SX∗,δXr

(c, σX(ξ))Eδ(ξ)[u, v](t)ε


= r!
∞∑

s=2

∑
ξ∈SX∗,δXr

1
s! (c, σX(ξ))Eδs(ξ)[u, v](t)εs−1.

Using (6.12) and the limit when ε tends to zero gives

∂r+1

∂vr+1 Fc[u](t) = r!
∑

ξ∈SX∗,δXr

(c, σX(ξ))Eδ(ξ)[u, v](t). (6.14)

Applying Lemma 12 with k = 1 to (6.14) provides

∂r+1

∂vr+1 Fc[u](t) = (r + 1)!
∑

ξ∈SX∗,δXr+1

(c, σX(ξ))Eξ[u, v](t). (6.15)
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Hence, applying Lemma 11 in (6.15) gives the generating series resulting from δk(c).

That is,

∂k+1

∂vk+1 Fc[u](t) = Fδk+1(c)[u](t),

which shows that the commutative diagram between the Gâteaux derivative and the

derivation δ holds.

In the next section, the derivatives of the second order of a Chen-Fliess series are

characterized using the derivation.

6.3 Second Order Derivatives of Chen-

Fliess series

6.3.1 Partial Derivation

Define first the restriction of δ to a single letter xi ∈ X. That is, let δxi
: Z → Z such

that δxi
(xj) = δxi for xj = xi, δxi

(xj) = 0 for xj ̸= xi, and δxi
(δxj) = δ(x0) = δ(∅) = 0

for any i, j.

Definition 48 Let Zδxi
:= Z \{δxi} be the alphabet where δxi has been removed from

Z, η ∈ Z∗ such that |η|Zδxi
= n1 ≥ 1 and |η|δxi

= n2 and consider the language

Lδxi (η) := {ξ ∈ S
Zxi

n1−1,δx
n2+1
i

s.t. σX(ξ) = σX(η)}.
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The derivative of η relative to xi is

δxi
(η) := char(Lδxi (η)) ∈ R⟨Z⟩.

When |η|xi
= 0, Lδxi (η) is empty and δxi

(η) := 0.

Example 19 Consider the alphabet X = {x0, x1, x2}, η = x0x1x2x1 ∈ X and com-

pute δx1(η). Since Z = {x0, x1, x2, δx1, δx2}, Zδxi
= {x0, x1, x2, δx2} and Lδx1 (η) =

{x0δx1x2x1, x0x1x2δx1}, then δx1(x0x1x2x1) = x0δx1x2x1 + x0x1x2δx1. Similarly,

δx2(η) = x0x1δx2x1.

The following two lemmas characterize the Gâteaux derivative of a Chen-Fliess

series with respect to the canonical directions given by ei : [0, T ] → Rm, such that

e1(t) = (1, 0, · · · , 0)⊤, . . . , em(t) = (0, 0, · · · , 1)⊤.

Lemma 14 Consider c ∈ RLC⟨⟨X⟩⟩, the Gâteaux derivative in the i-th canonical

direction satisfies

∂

∂ui

Fc[u](t) = Fδxi (c)[u](t).

Proof: Similar to Theorem 15, the proof follows by identifying the alphabet Y with

δX which associates yi with δxi and the application of Corollary 5.

Lemma 15 Consider the derivative operators δxi
and δxj

for xi, xj ∈ X. It then

follows that

∑
ξ∈SX∗,δxi

(c, σX(ξ))δxj
(ξ) =

∑
ξ∈SX∗,supp(δxi ⊔⊔ δxj )

(c, σX(ξ))ξ. (6.16)
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Proof: The proof follows the same steps as that of Lemma 11 but taking the δxj

derivative instead of δ and the fact that Lδxj (ξ1) ∩ Lδxj (ξ2) = ∅ for ξ1, ξ2 ∈ SX∗,δxi
and

ξ1 ̸= ξ2, and ⋃ξ∈SX∗,δxi
Lδxj (ξ) = SX∗,supp(xi ⊔⊔ xj).

6.3.2 Second-Order Partial Derivation

The next Lemma shows that the second-order canonical derivatives of a Chen-Fliess

series are expressed in terms of the derivative of words.

Lemma 16 Let c ∈ RLC⟨⟨X⟩⟩ and u ∈ Bm
p (R)[0, T ], if

lim
ε→0

∞∑
k=2

∑
ξ∈SX∗,δxi

1
k! (c, σX(ξ))Eδk

xj
(ξ)[u, ei,j](t)εk−1 = 0, and

lim
ε→0

∞∑
k=2

∑
ξ∈SX∗,δxj

1
k! (c, σX(ξ))Eδk

xi
(ξ)[u, ei,j](t)εk−1 = 0

(6.17)

then

∂2

∂uj∂ui

Fc[u](t) =
∑

ξ∈SX∗,supp(δxi ⊔⊔ δxj )

(c, σX(ξ))Eξ[u, ei,j](t), (6.18)

where ei,j(t) = (0, · · · , 1︸︷︷︸
i−th

, 0, · · · , 1︸︷︷︸
j−th

, · · · , 0).

Proof: The proof is similar to that of Theorem 15, but taking instead the Gâteaux

derivative in the canonical directions. That is,

∂

∂ui

Fc[u + εej](t) =
∑

ξ∈SX∗,δxi

(c, σX(ξ))Eξ[u + εej, ei](t)

=
∞∑

k=0

∑
ξ∈SX∗,δxi

1
k! (c, σX(ξ))Eδk

xj
(ξ)[u, ei,j](t)εk.
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By taking the k = 0 and k = 1 terms to the left of the equal sign and dividing by ε,

one obtains

1
ε

 ∂

∂ui

Fc[u + εej](t)−
∂

∂ui

Fc[u](t)−
∑

ξ∈SX∗,δxi

(c, σX(ξ))Eδxj (ξ)[u, ei,j](t)ε


=
∞∑

k=2

∑
ξ∈SX∗,δxi

1
k! (c, σX(ξ))Eδk

xj
(ξ)[u, ei,j](t)εk−1.

Thus, from (6.17), it follows directly that

∂2

∂uj∂ui

Fc[u](t) =
∑

ξ∈SX∗,δxi

(c, σX(ξ))Eδxj (ξ)[u, ei,j](t).

Finally, (6.18) is obtained from Lemma 15.

Observe that when the second derivatives exist and the condition of Lemma 16

holds, then they satisfy the Schwarz Theorem for the symmetry of second order

differentiation [9], i.e.,

∂2

∂uj∂ui

Fc[u](t) = ∂2

∂ui∂uj

Fc[u](t).

6.3.3 The Hessian

Grouping all the second-order derivatives of a Chen-Fliess series in a matrix arrange-

ment where its components are indexed with respect to all canonical directions gives

then a symmetric matrix. This is presented in the next definition.

Definition 49 Let c ∈ RLC⟨⟨X⟩⟩ and u ∈ Bm
p (R)[0, T ]. The Hessian of Fc[u](t) is

113



given by

∇2Fc[u](t) =


2 ∂2

∂u2
1
Fc[u](t) · · · ∂2

∂u1∂um
Fc[u](t)

... . . . ...
∂2

∂um∂u1
Fc[u](t) · · · 2 ∂2

∂u2
m

Fc[u](t)

 .

The next lemma shows the expression for the Hessian matrix with respect to a con-

stant direction. v = (v1, · · · , vm)T ∈ Rm.

Lemma 17 For c ∈ RLC⟨⟨X⟩⟩, u ∈ Lm
p [0, T ] and v = (v1, · · · , vm)T ∈ Rm, the

second order Gâteaux derivative and the Hessian matrix of Chen-Fliess series’ are

related as

∂2

∂v2 Fc[u](t) = vT∇2Fc[u](t)v.

Proof: Define Im = {1, · · · , m}. For k = 2 in Theorem 15, one has that

∂2

∂v2 Fc[u](t) = 2
∑

ξ∈SX∗,δX2

(c, σX(ξ))Eξ[u, v](t)

= 2
∑

i∈Im

∑
ξ∈S

X∗,δx2
i

v2
i (c, σX(ξ))Eξ[u, ei,j](t)

+
∑

(i,j)∈I2
m

i ̸=j

∑
ξ∈SX∗,{δxiδxj ,δxj δxi}

vivj(c, σX(ξ))Eξ[u, ei,j](t)

= 2
∑

i∈Im

v2
i

∂2

∂u2
i

Fc[u](t) +
∑

(i,j)∈I2
m;

i ̸=j

vivj
∂2

∂uj∂ui

Fc[u](t)

= vT∇2Fc[u](t)v,
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which completes the proof.

In what follows, the Gâteaux derivative of the output y of a system in the direction

of the input function v at time t is denoted Dv[y](t) in contrast to the Gâteaux deriva-

tive of the Chen-Fliess series, Fc[u](t), denoted ∂
∂v

Fc[u](t). The next example shows

that computing the Hessian of a Chen-Fliess series using the differential monoid struc-

ture coincides with the analytic Hessian computation of the corresponding nonlinear

state space system.

Example 20 Consider the bilinear system

ẋ = xu, y = x, x(0) = 1 (6.19)

with input u ∈ Lp[0, t]. Its power series is c = ∑
n≥0 xn

1 ∈ RGC⟨⟨X⟩⟩. Since the

number of inputs is m = 1 and from Lemma 17, the Hessian of the Chen-Fliess

series of (6.19) is obtained by calculating the second-order Gâteaux derivative in the

direction of u1 = 1. That is,

∇2Fc[u](t) = 2!
∑

ξ∈S
X∗,δx2

1

Eξ[u, e1](t) (6.20)

= 2!
∑

ξ∈S
X∗,x2

0

Eξ[u](t). (6.21)

On the other hand, since the output of (6.19) is

y(t) = exp
(∫ t

0
u(τ)dτ

)
,
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one can compute the derivative in the direction of v analytically as

Dv[y](t) = lim
ε→0

1
ε

(y(u + εv)− y(u))

= lim
ε→0

1
ε

 exp
(∫ t

0
u(τ) + εv(τ)dτ

)
− exp

(∫ t

0
u(τ)dτ

)
= lim

ε→0

1
ε

 exp
(∫ t

0
u(τ)dτ

)(
exp

(∫ t

0
εv(τ)dτ

)
− 1

)
= exp

(∫ t

0
u(τ)dτ

) lim
ε→0

1
ε

( ∞∑
k=1

(
ε
∫ t

0 v(τ)dτ
)k

k!

)
= exp

(∫ t

0
u(τ)dτ

) ∫ t

0
v(τ)dτ.

Using the same procedure, it follows that

D2
v2 [y](t) = exp

(∫ t

0
u(τ)dτ

)(∫ t

0
v(τ)dτ

)2
.

Expanding the exponential and re-writing in terms of the shuffle product, the second-

order Gâteaux derivative is

D2
v2 [y](t) =

∞∑
k=0

(∫ t
0 u(τ)dτ

)k

k!

(∫ t

0
v(τ)dτ

)2

=
∞∑

k=0

E
x ⊔⊔ k

1
[u](t)

k!
(
E

δx ⊔⊔ 2
1

[u, v](t)
)

.
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Notice that x ⊔⊔ k
1 = k!xk and δx ⊔⊔ 2

1 = 2!δx1, then

D2
v2 [y](t) = 2

∞∑
k=0

Exk
1
[u](t)Eδx2

1
[u, v](t)

= 2
∞∑

k=0
Exk

1 ⊔⊔ δx2
1
[u, v](t)

= 2!
∑

ξ∈S
X∗,δx2

1

Eξ[u, v](t).

This agrees with (6.20) when δx1 is associated to v = 1.

Example 21 Consider the linear system

ẋ = Ax + Bu, y = x. (6.22)

with input u ∈ Lp[0, t]. The output of (6.22) is

y = eAtx0 +
∫ t

0
eA(t−τ)Bu(τ)dτ.

Computing the derivative analytically gives

Dv[y](t) = lim
ε→0

1
ε

(y(u + εv)− y(u))

=
∫ t

0
eA(t−τ)Bv(τ)dτ.
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The second-order derivative follows similarly

D2
v2 [y](t) = lim

ε→0

1
ε

(
dy

dv
(u + εv)− dy

dv
(u)

)

= lim
ε→0

1
ε

(∫ t

0
eA(t−τ)Bv(τ)dτ −

∫ t

0
eA(t−τ)Bv(τ)dτ

)
= 0.

(6.23)

On the other hand, from Lemma 17 the second-order Gâteaux derivative is

∂2

∂v2 Fc[u](t) = 2!
∑

ξ∈S
X∗,δx2

1

(c, σX(ξ))E [u, v](t).

Observe that for all ξ ∈ SX∗,δx2
1
, then σX(ξ) = η ∈ SX∗,x2

1
and (c, σX(ξ)) = (c, η).

For the linear system and from (2.5), for words η containing two x1 letters, the Lie

derivative Lηx = 0, then (c, η) = 0. Therefore ∂2

∂v2 Fc[u](t) = 0. This implies that the

Hessian is ∇2Fc[u](t) = 0, which is expected from a linear system and coincides with

(6.23).

6.3.4 Approximation of Chen-Fliess Series

Here it is shown that the Chen-Fliess series with a small perturbation in its input can

be written in terms of its gradient and Hessian. This perturbation together with the

second-order mean value theorem for a Chen-Fliess series is essential to ensure the

convergence of the Newton and trust regions methods to be presented in Chapter 7.

The underlying setting for the following lemmas, theorems, and corollaries remain the

same except that the input v related to the alphabet δX is a constant vector v ∈ Rm.

Lemma 18 For c ∈ RLC⟨⟨X⟩⟩, u ∈ Lm
p [0, T ], v = (v1, · · · , vm)T ∈ Rm and ε > 0,
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one has that

Fc[u + εv](t) = Fc[u](t) + vT∇Fc[u](t)ε + 1
2vT∇2Fc[u](t)vε2

+
∞∑

k=3

∑
ξ∈S

X∗,δXk

(c, σX(ξ))Eξ[u, v](t)εk.

Proof: The proof is by construction and follows directly from the application of

Lemmas 13 and 17.

Prior to presenting the second-order mean value theorem the next lemma is

needed.

Lemma 19 Let ρ ∈ R, c ∈ R⟨⟨X⟩⟩, u ∈ Lm
p [0, t], and v ∈ Rm. It follows that

1
2vT∇2Fc[u + ρv](t)v =

∞∑
k=2

∑
ξ∈S

X∗,δXk

(
k

2

)
ρk−2(c, σX(ξ))Eξ[u, v](t). (6.24)

Proof: Applying Lemma 12 for r = 2 and adding up the terms in k, it follows that

∞∑
k=0

∑
ξ∈SX∗,δX2

1
k! (c, σX(ξ))δk(ξ) =

∞∑
k=0

∑
ξ∈S

X∗,δX2+k

(
k + 2

2

)
(c, σX(ξ))ξ. (6.25)

Similar to (6.13), the left side of the equation is the power series of the second deriva-

tive evaluated at u + ρv

∂2

∂v2Fc[u + ρv](t) =
∞∑

k=0

∑
ξ∈SX∗,δX2

1
k!(c, σX(ξ))Eδk(ξ)[u, v](t).
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This expression can be rewritten using Lemma 17 in terms of the Hessian as

1
2vT∇2Fc[u + ρv](t)v =

∞∑
k=0

∑
ξ∈SX∗,δX2

1
k! (c, σX(ξ))Eδk(ξ)[u, v](t).

where the input associated to δk(ξ) is now ρv. Then the CFS of the power series on

the right side of (6.25) is

∞∑
k=0

∑
ξ∈S

X∗,δX2+k

(
k + 2

2

)
ρk(c, σX(ξ))Eξ[u, v](t).

Thus, from (6.25) substituting k + 2 with k, one can obtain (6.24), which completes

the proof.

The next theorem gives the second-order mean value theorem for a CFS which is

proved algebraically by the developed tools instead of the standard chain rule.

Theorem 16 Let c ∈ RLC⟨⟨X⟩⟩ and ε > 0. Then there exists ε0 ∈ (0, ε) such that

Fc[u + εv] = Fc[u] + vT∇Fc[u](t)ε + 1
ε0

∫ ε0

0

1
2vT∇2Fc[u + rv](t)vε2dr. (6.26)

Proof: The theorem is proved by an application of Rolle’s theorem [9] and the

continuity of the Chen-Fliess series [17]. Any continuous function that is zero when

evaluated at the two extreme points of an interval [0, ε] must have a point ε0 ∈ (0, ε)

where its derivative is zero. Define the function ϕ : R→ R such that

ϕ(γ) =
∫ γ

0

∫ θ

0

1
2vT∇2Fc[u + rv](t)vε2drdθ

− 1
2γ2(Fc[u + εv](t)− Fc[u](t)− vT∇Fc[u](t)ε).

(6.27)
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Applying Lemmas 17 and 19 and by direct integration with respect to r, it follows

that

∫ γ

0

∫ θ

0

1
2vT∇2Fc[u + rv](t)vε2drdθ = 1

4vT∇2Fc[u](t)vε2γ2+

+
∞∑

k=3

∑
ξ∈S

X∗,δXk

1
2(c, σX(ξ))Eξ[u, v](t)ε2γk.

(6.28)

Using Lemma 18, the term 1
2γ2(Fc[u + εv](t) − Fc[u](t) − vT∇Fc[u](t)ε) is equal to

the right hand side of (6.28). Thus, if γ = ε in (6.27) then ϕ(ε) = 0. Also, it is easy

to see that ϕ(0) = 0. Thus, by the continuity of Fc[u], Rolle’s Theorem guarantees

the existence of ε0 ∈ (0, ε) such that the derivative of ϕ at ε0 is zero. That is,

ϕ′(ε0) =
∫ ε0

0

1
2vT∇2Fc[u + rv](t)vε2dr − (Fc[u + εv](t)− Fc[u](t)− vT∇Fc[u](t)ε)ε0

= 0.

Hence, solving for Fc[u + εv] completes the proof.

The next corollary follows form Theorem 16 and gives a condition for the existence

of an input producing a local minimum in a Chen-Fliess series. Define a ball centered

at an input u∗ with radius R as Bm
p (u∗, R)[0, T ] := {u ∈ Lm

p [0, T ] : ∥u− u∗∥p ≤ R}

Corollary 7 Let c ∈ RLC⟨⟨X⟩⟩ and u∗ ∈ Lm
p [0, t] such that vT∇Fc[u∗](t) = 0. If

there exists a neighborhood Bm
p (u∗, R)[0, T ] of u∗ in which

vT∇2Fc[u∗ + rv](t) v > 0,

for all r ∈ R such that u∗ + rv ∈ Bm
p (u∗, R)[0, T ], then u∗ produces a local minimum

in the direction v.

121



Proof: From Theorem 16, u∗ satisfying vT∇Fc[u∗](t) = 0 and u∗+εv ∈ Bm
p (u∗, R)[0, T ]

give

Fc[u∗ + εv]=Fc[u∗] + 1
ε0

∫ ε0

0

1
2vT∇2Fc[u∗ + rv](t)vε2dr

with u∗ +rv ∈ Bm
p (u∗, R)[0, T ],∀r ∈ (0, ε). Hence, it follows that Fc[u∗ + rv] > Fc[u∗]

in the direction of v, which implies that u∗ produces a local minimum Fc[u∗](t) for

t ∈ [0, T ].
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Chapter 7

Minimum Bounding Box via Second-

Order Optimization

The problem of computing the minimum bounding box of reachable sets in an input-

output context as described in Definition 37 corresponds to finding the minimum and

maximum of Fc[u](t) for all u taking values in the hyper-rectangle U . In general,

this problem is non-convex. The goal of this section is to find the minimum and

maximum of Fc[u](t) for all u ∈ U in a systematic manner for any system that can be

represented as a Chen-Fliess series. One way of solving this is by extending Newton’s

method for a Chen-Fliess series given an initial condition u0. The algorithm for a

Chen-Fliess series has the form

ui+1 = ui −∇2Fc[ui](t)−1∇Fc[ui](t)T , (7.1)

where ∇Fc[ui](t) and ∇2Fc[ui](t) are the gradient and the Hessian of Fc[ui](t) for the

generating series c ∈ RLC⟨⟨X⟩⟩. The section focuses on showing that a recursion
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Figure 7.1: Output reachable set of a control affine system with a 2 dimensional output and
its minimum bounding box (MBB) in terms of its maximum and minimum outputs.

based on (7.1) is well-posed. Fig. 7.1 outlines the idea for computing the minimum

bounding box of a reachable set for a Chen-Fliess series by noticing that for a system

with ℓ outputs the points (min y1, · · · , min yℓ) and (max y1, · · · , max yℓ) explicitly

define the minimum bounding box of output reachable set.

7.1 Minimum Bounding Box via Newton

The Hessian in Theorem 16 can now be used to obtain the input signal that produces

the MBB of the reachable sets of a CFS characterized by the generating series c ∈

RLC⟨⟨X⟩⟩. As a reminder, the objective is to find

min
u∈U

Fc[u](t) and max
u∈U

Fc[u](t),
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where U is a hyper-rectangle in Rm. Hereafter, the Hessian in Definition 49 is assumed

to exist.

Theorem 17 Consider a constant vector v ∈ Rm, u ∈ Lm
p [0, t], c ∈ RLC⟨⟨X⟩⟩ and

the positive definite Hessian ∇2Fc[u](t) > 0. The decreasing direction v for the input

u is given by

v = −∇2Fc[u](t)−1∇Fc[u](t)T .

Proof: From Lemma 18, Fc[u + v](t) is approximated by

Fc[u](t) + vT∇Fc[u](t) + 1
2vT∇2Fc[u](t)v,

which is a quadratic expression in terms of v with a positive quadratic coefficient.

Then, the minimum is obtained by taking the derivative with respect to v and equat-

ing it to zero. That is,

∇Fc[u](t)T +∇2Fc[u](t)v = 0. (7.2)

Thus, the direction is obtained solving for v in (7.2).

Theorem 17 implies that if ∇2Fc[u](t) > 0, then the sequence of inputs

ui+1 = ui −∇2Fc[ui](t)−1∇Fc[ui](t)T

provides a decreasing sequence Fc[ui](t). Note that this recursion coincides with the

standard Newton’s iteration. Similar to the gradient projection method in [51], to
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satisfy the input constraints at each iteration, a projection into the feasible regions

is applied. Given that the feasible set is a box, such projection is equivalent to a

saturation function. That is, given the box U = [u, u], at each iteration step the new

input is obtained after applying the function satU(ui) = u if ui < u, satU(ui) = u if

ui > u, and satU(ui) = ui otherwise. Thus, Newton’s method for a Chen-Fliess series

is given in Algorithm 2.

Algorithm 2 Newton’s method
Input: R, u0, U

Initialization : u0

1: for i = 1 to R do

2: ui+1 = ui −∇2Fc[ui](t)−1∇Fc[ui](t)T ,

3: ui+1 ← satU(ui+1)

4: end for

5: return Fc[uR](t)

7.2 Minimum Bounding Box via Trust Re-

gions

The underlying assumption in Newton’s method is that the Hessian is positive def-

inite. When this is not the case, the trust regions’ method is an alternative to find

local minima [51]. Here the objective is to adapt such methodology for the case of

a Chen-Fliess series. Specifically, the Cauchy point optimization method is used in

the present work. For simplicity, set gi = ∇Fc[ui](t) and Bi = ∇2Fc[ui](t). First,

the optimization problem is restricted to a region of fixed size where decreasing is
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ensured. That is, the minimization problem becomes

min
||v||≤∆

Fc[ui](t) + vT gi,

whose solution is v = − ∆
||gi||gi. Then, the second step consists in optimizing the step

τ in the direction of decreasing by solving

min
||v||≤∆

Fc[ui](t) + τvT gi + τ 2

2 vT Biv.

The solution to this problem is τi = 1 if gT
i Bigi ≤ 0 and τi = min(||gi||3/(∆gT

i Bigi), 1)

otherwise. Thus, the trust regions’ method for a Chen-Fliess series is given in Algo-

rithm 3.
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Algorithm 3 Trust regions’ method
Input: R, u0, U

Initialization : u0

1: for i = 1 to R do

2: gi ← ∇Fc[ui](t),

3: Bi ← ∇2Fc[ui](t),

4: vi ← − ∆
||gi||gi,

5: if gT
i Bigi ≤ 0 then

6: τi = 1,

7: else

8: τi = min(||gi||3/(∆ig
T
i Bigi), 1),

9: end if

10: vi ← τivi,

11: ui+1 = ui + vi,

12: ui+1 ← satU(ui+1)

13: end for

14: return Fc[uR](t)

7.3 Numerical Simulations

Example 22 Consider the system in Example 20. The reachable set of the system

with input set U := {u ∈ R : −1 ≤ u ≤ 1} is provided in Fig. 7.2 together with

the outcome of Algorithm 2 applied to the Chen-Fliess series corresponding to (6.19).

Fig. 7.2 shows that Algorithm 2 approximates the reachable set up to t = 1 very
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Figure 7.2: Estimation of the minimum bounding box (MBB) of the reachable sets in Ex-
ample 20 with x(0) = 1 using Algorithm 2, u0 = 0, U = {u : −1 ≤ u ≤ 1}, and Chen-Fliess
series truncation N = 3.

well. Also, it is observed that the number of iterations for Newton’s method is faster

(NN ≈ 10) than that of the gradient descent method presented in [54] (NGD ≈ 1000).

Example 23 Consider the bi-steerable car in Fig. 7.3 described by the set of equations

ẋ1 = cos(x3 + x4)u1,

ẋ2 = sin(x3 + x4)u1,

ẋ3 = sin((1− k)α)
(L cos(kα)) ,

ẋ4 = u2

with output y = (x1, x2)T , k = −0.7, α = π/8, L = 1, x0 = (0, 0, 0.1, 0.2), and u1

and u2 the inputs to the system. The outputs of the system as Chen-Fliess series’

are y1(t) = Fc1 [u](t) and y2(t) = Fc2 [u](t), where the coefficients are computed using
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Figure 7.3: Bi-steerable car.

(2.5). Thus,

c1 = 0.95x1 − 0.19x1x1 − 0.29x1x2 − 0.39x1x1x1+

− 0.61x1x1x2 − 0.61x1x2x1 − 0.95x1x2x2 + · · ·

c2 = 0.29x1 + 0.61x1x1 + 0.95x1x2 − 0.12x1x1x1

− 0.19x1x1x2 − 0.19x1x2x1 − 0.29x1x2x2 + · · ·

From Lemma 14 and Theorem 15, the derivatives (δx1(c1), δx2(c1)) and (δx1(c2), δx2(c2))

determine the generating series of gradient of Fc1 [u](t) and Fc2 [u](t), respectively.

From Lemma 11, these are

δx1(c1) = 0.95δx1 − 0.19δx1x1 − 0.19x1δx1

− 0.29δx1x2 − 0.39δx1x1x1 + · · · ,
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δx2(c1) = − 0.29x1δx2 − 0.61x1x1δx2 − 0.61x1δx2x1

− 0.95x1δx2x2 − 0.95x1x2δx2 + · · · ,

δx1(c2) = 0.29δx1 + 0.61δx1x1 + 0.61x1δx1

+ 0.95δx1x2 − 0.12δx1x1x1 + · · · ,

δx2(c2) = 0.95x1δx2 − 0.19x1x1δx2 − 0.19x1δx2x1

− 0.29x1δx2x2 − 0.29x1x2δx2 + · · · .

Using Lemma 16, the second-order derivatives are

δx1x1(c1) = − 0.38δx1δx1 − 0.78δx1δx1x1

− 0.78δx1x1δx1 − 0.78x1δx1δx1 + · · · ,

δx1x2(c1) = − 0.29δx1δx2 − 0.61δx1x1δx2

− 0.61x1δx1δx2 − 0.61δx1δx2x1 + · · · ,

δx2x2(c1) = − 1.90x1δx2δx2 + 0.38x1x1δx2δx2

+ 0.38x1δx2x1δx2 + 0.38x1δx2δx2x1 + · · · ,
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δx1x1(c2) = 1.22δx1δx1 − 0.24δx1δx1x1

− 0.24δx1x1δx1 − 0.24x1δx1δx1 + · · · ,

δx1x2(c2) = 0.95δx1δx2 − 0.19δx1x1δx2

− 0.19x1δx1δx2 − 0.19δx1δx2x1 + · · · ,

δx2x2(c2) = − 0.58x1δx2δx2 − 1.22x1x1δx2δx2

− 1.22x1δx2x1δx2 − 1.22x1δx2δx2x1 + · · · .

According to Lemma 17, these are the power series that determine the Hessian of the

Chen-Fliess series. Fig. 7.4 shows the result of applying Algorithm 3 to compute the

minimum bounding box of the reachable set at different points in time. It is clear from

the plots at t = 0.5, 1 and 1.5 seconds that the computed over-approximations are in-

deed the minimum bounding box of the true reachable sets. Furhermore, Fig. 7.5

compares the trust regions method against the gradient descent method for the compu-

tation of minimum bounding boxes of the system in Example 23. The gradient descent

method in [53] produced the black dashed box in Fig. 7.5 with 10 iterations whereas

the trust regions method converged to the true minimum bounding box with the same

number of iterations. To match the true minimum bounding box, the gradient descent

method needed approximately 100 iterations.
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Figure 7.4: Reachable sets and minimum bounding boxes in Example 23 for U = {(u1, u2) :
0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1} and truncation N = 8.

Example 24 Consider the Lotka-Volterra system described by the set of equations

ẋ1 = − x1x2 + x1u1,

ẋ2 = x1x2 − x2u2,

with output y = (x1, x2)T , initial condition x0 = (1/3, 2/3)⊤ and inputs u1 and u2.

Similarly to the previous example, the outputs of the system are described as Chen-

Fliess series by y1(t) = Fc1 [u](t) and y2(t) = Fc2 [u](t). The corresponding coefficients

are computed from (2.5). Thus, one has that

c1 = 0.33− 0.22x0 + 0.33x1 + 0.07x0x0 − 0.22x0x1

+ 0.22x0x2 − 0.22x1x0 + 0.33x1x1 + · · · ,
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Figure 7.5: Minimum bounding box and reachable sets (RS) in Example 23 at t = 1.5s with
U = {(u1, u2) : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1} and truncation N = 8. The trust regions method
(TR) needed 10 iterations to converge to the minimum bounding box. The gradient descent
method (GD) in [53] with 10 iterations and a step size of 0.01 gives the black dashed box.
Both methods were initialized with (u1, u2) = (0.5, 0.5).

c2 = 0.66 + 0.22x0 − 0.66x2 − 0.07x0x0 + 0.22x0x1

− 0.22x0x2 − 0.22x2x0 + 0.66x2x2 + · · · .

The generating series of the derivatives determining the gradient of Fc1 [u](t) and

Fc2 [u](t), respectively are computed according to Lemma 11. These are

δx1(c1) = 0.33δx1 − 0.22x0δx1 − 0.22δx1x0

+ 0.33δx1x1 + 0.33x1δx1 + · · · ,
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δx2(c1) = 0.22x0δx2 − 0.22x0x0δx2 + 0.22x0x1δx2

− 0.07x0δx2x0 + 0.22x0δx2x1 + · · · ,

δx1(c2) = 0.22x0δx1 − 0.07x0δx1x0 + 0.22x0δx1x1

+ 0.22x0x1δx1 − 0.22x0δx1x2 + · · · ,

δx2(c2) = − 0.66δx2 − 0.22x0δx2 − 0.22δx2x0

+ 0.66δx2x2 + 0.66x2δx2 + 0.22x0x0δx2 + · · · .

The second-order derivatives are computed using Lemma 16. These are

δx1x1(c1) = 0.66δx1δx1 − 0.44x0δx1δx1 − 0.44δx1δx1x0

+ 0.66δx1δx1x1 + 0.66δx1x1δx1 + · · · ,

δx2x1(c1) = 0.22x0δx1δx2 + 0.22x0δx2δx1

+ 0.22δx1x0δx2 − 0.14x0x0δx1δx2 + · · · ,

δx2x2(c1) = − 0.44δx2δx2 + 1.03x0x0δx2δx2

− 0.44x0x1δx2δx2 + 0.44x0δx2x0δx2 + · · · ,
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Figure 7.6: Reachable sets and minimum bounding box in Example 24 for U = {(u1, u2) :
0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1} and a Chen-Flies series truncation of N = 8. On the right side,
the graph displays the minimum bounding boxes at three different times: t = 0.3s, t = 0.6s
and t = 0.9s. The trust region size used was ∆ = 1.

δx1x1(c2) = 0.44x0δx1δx1 + 0.29x0x0δx1δx1

− 0.14x0δx1δx1x0 + 0.44x0δx1δx1x1 + · · · ,

δx2x1(c2) = − 0.22x0δx1δx2 − 0.22x0δx2δx1

− 0.22δx2x0δx1 + 0.14x0x0δx1δ2 + · · · ,

δx2x2(c2) = 1.33δx2δx2 + 0.44x0δx2δx2 + 0.44δx2x0δx2

+ 0.44δx2δx2x0 − 1.33δx2δx2x2 + · · · .

136



Figure 7.7: Minimum bounding box and reachable set (RS) in Example 24 at the time
t = 0.9s with U = {−1 ≤ u1 ≤ 1,−1 ≤ u2 ≤ 1} and a Chen-Fliess series truncation of
N = 8. The trust region algorithm (TR) needed 140 iterations while the dashed box gives
the minimum bounding box using the gradient descent with 140 iterations. One will need
490 iterations to a fixed step size of ε = 0.01 over the same number of iterations. The actual
minimum bounding box is obtained through gradient descent with a step size of ε = 0.1 and
490 iterations.

From Lemma 17, these determine the Hessian of system. Fig. 7.6 shows the result

of Algorithm 3 to compute the minimum bounding box of the reachable at different

points in time (t = 0.3, 0.6 and 0.9 seconds). Fig. 7.7 compares the trust region

method against the gradient descent method for the computation of the minimum

bounding box of the system in Example 24. The gradient descent method produced the

dashed box in Fig. 7.7 with the same number of iterations the trust regions method

took to obtain the true minimum bounding box. To match the true minimum bounding

box, the gradient descent method needed 490 iterations.
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Chapter 8

Backward and Inner Approximation

of Reachable Sets

The problem of computing the minimum bounding box of the input-output backward

reachable set given the output box [y, y] of the Chen-Fliess series Fc[u](t) can be

reduced to finding the minimum and maximum of u of all u ∈ Bm
p (R)[0, T ] subject to

Fc[u](t) and lying inside the box [y, y]. This is a non-convex optimization problem,

and this section provides a methodology for solving it. The idea for such a method

revolves around setting a gradient descent recursion for some initial condition u0 that

has the form

ui(k) = ui(k)− εei, (8.1)

where ε is the learning parameter and ei is an appropriate gradient with respect to

ui, which is the i-th coordinate of the input u.
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8.1 Pre-Image and Backward Reachable

Sets

Here, finding the backward reachable set of (2.4) using a Chen-Fliess series represen-

tation is stated as an optimization problem. It is important to notice that this prob-

lem lies in the realm of infinite dimensional analysis and is in general non-tractable.

Therefore, the problem is solved using a numerical method based on the Gâteaux

directional derivative [25].

The definition of a backward reachable set for system in state-space representation

can be written as

Definition 50 The state backward reachable set at a fixed time t of (2.4) subject to

a set of states taking values in Z ⊂ Rn and a set of initial states Z0 ⊂ Rn is

Pre(Z0,Z)(t) :=
{

z ∈ Z0 : ∃u ∈ Lm
p [0, t], ϕ(t, u, z0) ∈ Z

}

where ϕ(τ, u, z0) for τ ∈ [0, T ] represents the trajectory of the state z satisfying (2.4a).

Before getting into the details, observe that Definition 50 does not consider an

output equation. The following definition is a mild extension of the definition of the

state backward reachable set.

Definition 51 The backward reachable set at a fixed time t of (2.4) subject to a set

of outputs taking values in Y ⊂ Rℓ and a set of initial states Z0 ⊂ Rn is

Pre(Z0,Y)(t) :=
{

z ∈ Z0 : ∃u ∈ Lm
p [0, t], h(ϕ(t, u, z0)) ∈ Y

}
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where ϕ(τ, u, z0) for τ ∈ [0, t] represents the trajectory of the state z satisfying (2.4a).

This is extended to the backward reachable set of a Chen-Fliess series providing an

input-output framework. For the next definition, consider for any c ∈ Rℓ⟨⟨X⟩⟩, the

power series c′ ∈ Rℓ⟨⟨X⟩⟩ such that c′ = c− (c, ∅).

Definition 52 Given the alphabet X = {x0, · · · , xm}, the formal power series c ∈

Rℓ⟨⟨X⟩⟩ and Y ⊂ Rm, the input-output backward reachable set of the Chen-Fliess

series Fc[u](t) with outputs taking values in Y is the set

Prec(Y0,Y)(t) =
{

y0 ∈ Y0 : ∃u ∈ Lm
p [0, t], y0 + Fc′ [u](t) ∈ Y

}
.

In the case that the backward reachable set at t0 > 0 of a given Chen-Fliess series with

final output set Y at tf needs to be obtained, the following set is more appropriate:

Prec(y0,Y)(t0, tf ) =
{

y ∈ Rℓ : ∃u ∈ Lm
p [0, t], Fc[u](t0, tf ) ∈ Y , Fc[u](0, t0) = y

}
.

In many branches of the analysis of systems such as control, path planning, and

viability, the knowledge of the set of inputs that steer the Chen-Fliess series to a

given output set is sought. For Chen-Fliess series, this set is equal to the pre-image

of the given output set.

Definition 53 Given the alphabet X = {x0, · · · , xm}, the formal power series c ∈

Rℓ⟨⟨X⟩⟩ and the output set Y ⊂ Rm, the pre-image of the Chen-Fliess series Fc[u](t)

with outputs taking values in Y is the set

F −1
c (Y)(t) = {u ∈ Bm

p (R)[0, T ] : Fc[u](t) ∈ Y}.
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The next result relates the state backward reachable set definition from the output

perspective with the definition via Chen-Fliess series.

Theorem 18 Consider the nonlinear affine control system in (2.4), given the output

set Y ⊂ Rℓ and the initial state set Z0 ⊂ Rn and the initial output set Y0 = h(Z0), the

output backward reachable set of the system in Definition 51 is equal to the backward

reachable set of Chen-Fliess series in Definition 52. This is, h(Pre(Z0,Y)(t)) =

Prec(Y0,Y)(t).

Proof: The proof follows straightforwardly from the fact that the Chen-Fliess series

represents the output of the system in Bm
p (R)[0, T ].

y ∈ h(Pre(Z0,Y)(t)) ⇐⇒ ∃z0 ∈ Z0, ∃u ∈ Lm
p [0, t], y = h(ϕ(t, u, z0)), y0 = h(z0)

⇐⇒ ∃u ∈ Lm
p [0, t], y0 = h(z0), y = y0 + Fc[u](t)

⇐⇒ y ∈ Prec(Y0,Y)(t).

For computational matters, Theorem 18 implies that the output backward reachable

set can be computed using the Chen-Fliess series of the system. Naturally, the min-

imum bounding box of the output backward reachable set is equal to the minimum

bounding box of the backward reachable using Chen-Fliess series.

The definition of an output reachable set in Definition 37 is extended to take a

set of initial outputs.

Definition 54 Given the alphabet X = {x0, · · · , xm}, the formal power series c ∈

Rℓ⟨⟨X⟩⟩, the set U ⊂ Bm
p (R)[0, T ] and the set of initial outputs Y0, the reachable set
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Figure 8.1: Pre-image set of a control affine system with a 2 dimensional input and its
minimum bounding box in terms of its maximum and minimum inputs.

of the Chen-Fliess series Fc[u](t) with inputs taking values in U and initial outputs

y0 ∈ Y0 is the set

Reachc(U ,Y0)(t) :=
{

y = y0 + Fc′ [u](t) ∈ Rℓ : ∀u ∈ U , ∀y0 ∈ Y0

}

The next result characterizes the reachable set of a Chen-Fliess series at any time in

terms of the initial output set, the Minkowski sum and the reachable set of the power

series without the drifting element.

Theorem 19 For any c ∈ Rℓ⟨⟨X⟩⟩, the reachable set satisfies

Reachc(U ,Y0)(t) = Y0 ⊕ Reachc′(U , 0)(t)
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Proof: The proof follows by definition

y ∈ Reachc(U ,Y0)(t) ⇐⇒ ∃u ∈ U ,∃y0 ∈ Y0, y = y0 + Fc′ [u](t)

⇐⇒ y ∈ Y0 ⊕ Reachc′(U , 0)(t)

Given the linear control system

ẋ = Ax + Bu, x(0) = x0,

the solution is given by

x(t) = exp(−At)x0 +
∫ t

0
exp(A(t− τ))Bu(τ)dτ

then the reachable set o the linear system for x0 ∈ X0 and u ∈ U is

Reach(U ,X0) = Reach(X0, 0)⊕ Reach(0,U). (8.2)

8.2 Backward Reachable Set Computa-

tion via Chen-Fliess Series

Theorem 19 extends the well-known result in (8.2) to the Chen-Fliess series setting.

In what follows, the focus is on the computation of the minimum bounding box of

the pre-image set in Definition 53. For the sake of space, denote B = Bm
p (R)[0, T ].
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The idea to compute the minimum bounding box is to reduce the calculations to

only two points. Figure 8.1 illustrates the idea of the computation of the minimum

bounding box of the pre-image set by the optimization of the coordinates of the input.

Equivalently, the following problems are solved:

min
u∈B

ui

s.t. Fc[u](t) ∈ [y, y]
and

max
u∈B

ui

s.t. Fc[u](t) ∈ [y, y].
(8.3)

call the solution of each problem ui and ui respectively and form the vector u =

(u1, · · · , um) and u = (u1, · · · , um) then the minimum bounding box of the backward

reachable set is [u, u]. Notice that the problem of the feasibility of (8.3) is not trivial

since the constraints are a set of polynomial inequalities. To tackle this problem the

Positivstellensatz in Theorem (8) can be used.

Formally, the problem in (8.3) having a solution follows from the Karush-Kuhn-

Tucker conditions, where the critical points of the Lagrangian function are the can-

didates for optimal points. Here, the Lagrangian expressions of interest are

L(λ, u) = ui+
ℓ∑

j=1
λ1

j(yi − Fci
[u](t)) + λ2

j(Fci
[u](t)− y

i
),

λ1
j(yi − Fci

[u](t)) = 0,

λ2
j(yi
− Fci

[u](t)) = 0,

Fci
[u](t)− yi ≤ 0,

y
i
− Fci

[u](t) ≤ 0,

λk
j ≥ 0,∀k ∈ {1, 2}
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for all j ∈ {1, · · · , m}. The optimal points (λ∗, u) are characterized by the set of

Gâteaux partial differential equations:

∂

∂λ
L(λ∗, u∗) = 0,

∂

∂u
L(λ∗, u∗) = 0.

(8.4)

Obtaining a closed-form of the solution of (8.4) is challenging even for real value

functions over real coordinate domains. In recent efforts [19], the critical points

characterizing the optimal values of the unconstrained optimization of a Chen-Fliess

series are found analytically for simple cases. Here, the problem in (8.3) is solved

numerically through a variation of the gradient descent method known as projected

gradient descent [51]. Similar to [54–57], the constraint is enforced by projecting the

solution at each iteration on the boundary of the constrained sets in the problem.

This projection constitutes the difference between the method used here and the one

used in [54], where in the latter the input updates were only projected over the pre-

defined input constraint set. Define the set P = F −1
c ([y, y])(t) := {u ∈ Bm

p (R)[0, T ] :

Fc[u](t) ∈ [y, y]}. Using Definition 53, the projected gradient descent method for

the minimization of the i-th input coordinate is described in Algorithm 4 where

ProjP(u) := minz∈P ||z − u||.
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Algorithm 4 Projected Gradient Descent
Input: NGD, u0, ε, P

1: Initialization : u0

2: for j = 1 to NGD do

3: uj+1
i = uj

i − εei,

4: uj+1
i ← ProjP(uj+1

i )

5: end for

6: return uNGD
i

8.3 Inner approximation of Reachable

Sets via Chen-Fliess Series

In this section, a method for computing the inner approximation of a reachable set of

a nonlinear affine control system in (2.4) using Chen-Fliess series is povided. Similar

to [53], the approach here is based on the optimization of a Chen-Fliess series and

follows along the lines of that in [43], where the method for inner approximation of the

reachable set is applied to linear systems. By using the Chen-Fliess series framework,

inner approximations can be obtained for a broader class of systems but with the

condition that the reachable sets must be convex. Furthermore, the method in [43]

computes inner approximations of the so-called viability set by using a support vector

function.

Figure 8.2 shows the reachable set overapproximated by taking a sample of support

vectors equal to the canonical basis of R2, i.e., (e1, e2). This results in the box
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Figure 8.2: Inner-approximation of the reachable set of a control affine system with a 2
dimensional output and its minimum bounding box in terms of its maximum and minimum
inputs.

Y = [min y, max y], which can also be expressed as

Y = {y ∈ R2 : y · v ≤ σY(v), v ∈ {e1, e2,−e1,−e2}}.

The points defining the inner-approximation of the reachable set are the solutions to

the following optimization problems:

arg min
u∈U

Fci
[u](t) and arg max

u∈U
Fci

[u](t) (8.5)
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Figure 8.2 shows these points explicitly and labeled as

A1 = (Fc1 [u∗
1](t), Fc2 [u∗

1](t)),

A2 = (Fc1 [u∗
2](t), Fc2 [u∗

2](t)),

A3 = (Fc1 [u∗
3](t), Fc2 [u∗

3](t)),

A4 = (Fc1 [u∗
4](t), Fc2 [u∗

4](t)),

where

u∗
1 = arg max

u∈U
Fc1 [u](t), u∗

2 = arg min
u∈U

Fc2 [u](t),

u∗
3 = arg max

u∈U
Fc2 [u](t), u∗

4 = arg min
u∈U

Fc1 [u](t).

Hence, the inner-approximation is given by the convex hull

IReachc(U)(t) = conv(A1, A2, A3, A4).

In [43] the same set was written as

IReachc(U)(t) = conv({ue : e ∈ {e1, e2,−e1,−e2}}),

where vY(e) = arg maxy∈Y y · e and ue ∈ vY(e). Here, to obtain the reachable set
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inner-approximation, one computes

ui = arg min
u∈U

Fci
[u](t)

ui = arg max
u∈U

Fci
[u](t)

Ai = (Fc1 [ui](t), Fc2 [ui](t))

A
i = (Fc1 [ui](t), Fc2 [ui](t))

for i ∈ {1, · · · , ℓ}, which yields the reachable set inner-approximation as

IReachc(U)(t) = conv(A1, · · · , Aℓ, A
1
, · · · , A

ℓ).

8.4 Numerical Simulations

This section presents two examples illustrating how Algorithms 4 is used to compute

the MBB of the pre-image and how to compute the inner-approximation of reachable

sets. The results are compared to the pre-image and reachable set computed using

exhaustive evaluations. The first example considers a multiple input multiple output

Lotka-Volterra system to compute the minimum bounding box of the pre-image of

an output set, and in the second example, the Lorenz attractor is used to illustrate

the computation of the inner-approximation of the reachable set.
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Example 25 Consider the following MISO Lotka-Volterra system given by

ẋ1 = −x1x2 + x1u1,

ẋ2 = x1x2 − x2u2,

y = x

with initial condition x0 = (1/6, 1/6)⊤. The generating series of y1 and y2 are com-

Figure 8.3: Estimation of the minimum bounding box of the pre-image (Pre-IMG) of the out-
put set Y = [(−2,−2), (2, 2)] of the system in Example 25 with initial state x0 = (1/6, 1/6),
output set , and truncation length N = 8.

puted

c1 = 0.33− 0.22x0 + 0.33x1 + 0.07x0x0 − 0.22x0x1 · · ·

c2 = 0.66 + 0.22x0 − 0.66x2 − 0.07x0x0 + 0.22x0x1 + · · ·
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and its derivatives

δ(c1) = 0.33δx1 − 0.22x0δx1 + 0.22x0δx2 + · · ·

δ(c2) = 0.66δx2 + 0.22x0δx1 − 0.22x0δx2 + · · ·

Algorithm 4 is used to compute the minimum bounding box of the pre-image as in

Definition 53 of the output set Y = {y ∈ R2 : −2 ≤ y1 ≤ 2,−2 ≤ y2 ≤ 2}.

From Figure 8.3, it is clear that the pre-image is contained in the computed

minimum bounding box.

Example 26 Consider the Lorenz attractor

ẋ1 = u1(x2 − x1),

ẋ2 = x1(u2 − x3)− x2,

ẋ3 = x1x2 − x3,

y = (x1, x2)T .

(8.6)

Assume the input u is constrained u1 ∈ [0, 1], u2 ∈ [0, 1] and the initial state is

x0 = (0.1, 0.2, 0.3). From (2.5), the generating series of y1 and y2 are

c1 = 0.1 + 0.1x0 − 0.23x1x0 − 0.1x1x1 + 0.1x1x2 + · · ·

c2 = 0.2− 0.23x0 + 0.1x2 + 0.258x0x0 − 0.03x0x1 + · · ·

To perform the optimization, the derivatives of the generating series as in Definition
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45 are calculated to obtain the Gâteaux derivative

δ(c1) = −0.23δx1x0 − 0.1δx1x1 − 0.1x1δx1 + · · ·

δ(c2) = 0.1δx2 − 0.03x0δx1 − 0.1x0δx2 + 0.1δx2x1 + · · ·

Figure 8.4 shows the minimum bounding box and inner-approximation of the reachable

set at time t = 0.5s. It is clear from the plot that the inner-approximation is contained

inside the reachable set.

Figure 8.4: On the left, the reachable set (RS) of the system in Example 26 over a time
horizon of t ∈ [0, 0.8] is shown. On the right the estimation of the inner-approximation
(UA) of the reachable set with inputs 0 ≤ u1 ≤ 1 and 0 ≤ u2 ≤ 1, and truncation length
N = 6. The minimum bounding box is also shown.
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Chapter 9

Vector Field Perturbation

In the present chapter, the problem of quantifying the effect of the perturbation of the

vector field on the output which is represented by the Chen-Fliess series is addressed.

To accomplish this, the definition of the iterative Lie derivative is extended to be

able to take words from two languages, the original and a differential language. Then

the closed-form of the Chen-Fliess series of the output associated with the nonlinear

system with the perturbed vector field is obtained. With this, the Gâteaux and

Fréchet derivatives are computed in a similar way as in [57].

9.1 Perturbed System

Consider the nonlinear system in (2.4) with perturbed vector fields

ż = g0(z) + e0(z) +
m∑

i=1
(gi(z) + ei(z))ui

y = h(z)
(9.1)
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where the functions ei(z) represent the vector field perturbation. The iterative Lie

derivative as defined in (2.5) does not distinguish between the original vector field

and the perturbation. Consider the following example.

Example 27 Take the iterated Lie derivative of the output of (9.1) associated with

the word x0. This is,

Lx0h(z) = ∂

∂z
h(z) · (g0(z) + e0(z)) (9.2)

the expressions ∂
∂z

h(z)·g0(z) and ∂
∂z

h(z)·e0(z) cannot be written in the notation of the

iterative Lie derivative. To overcome this, consider the language Y = {y0, y1, · · · , ym}

and Z = X ∪ Y . Now associate Z with the original vector field gi and Y with the

perturbation field ei. Then (9.2) becomes

Lx0h(z) = ∂

∂z
h(z) · (g0(z) + e0(z))

= Lz0h(z) + Ly0h(z)

which is written in terms of Lie derivatives of the languages Z and Y .

9.2 Extended Iterative Lie Derivative

To extend the idea described in Example 27, the definition of iterative Lie derivative

in (2.5) is extended to take two languages.

Definition 55 Consider the alphabets X and δX associated to the vector fields g, e,

respectively. The extended iterative Lie derivative of η ∈ Z∗ of the vector field (g, e)
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is given by the mapping Lη : Lm
p [0, T ]→ C[0, T ], where L∅h(t) = 1 and

Lziηh :=



∂

∂z
Lηh · gi, zi ∈ X,

∂

∂z
Lηh · ei, zi ∈ δX.

(9.3)

The following lemma provides a closed-form of the Chen-Fliess series of the per-

turbed system in (9.1) in terms of two alphabets. This expression is later used to

describe the derivatives of the Chen-Fliess series with respect to a vector field per-

turbation. From Definition 38, σX(ξ) = η for any ξ ∈ Iη.

Lemma 20 Let X, Y and δY be alphabets associated to g + e, g, e ∈ Lm
p [t0, t1],

respectively. Given c ∈ R⟨⟨X⟩⟩ associated with the original nonlinear system (2.4),

the Chen-Fliess series of the output in (9.1), with power series c⊕ d, is written as

Fc⊕d[u](t) =
∞∑

k=0

∑
ξ∈S

Y ∗,δY k

Lξh|z0EσX(ξ)[u](t). (9.4)

Proof: To obtain (9.4), it is first shown that

Lηh = Lchar(Iη)h (9.5)

for any η ∈ X∗. This is proved by induction over the length of the word η. Consider

|η| = 1, η = xj, then Iη = {yj, δyj}. From the linearity of the derivative and
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Definition 55, it follows that

Lxj
h = ∂

∂z
h · (gj + ej),

= ∂

∂z
h · gj + ∂

∂z
h · ej,

= Lyj
h + Lδyj

h,

= Lchar(Ixj )h.

Now assume that (9.5) holds true for any η′ ∈ X∗ such that |η′| = k, and compute

the expression for η = xiη
′. That is,

Lηh = ∂

∂z
Lη′h · (gi + ei).

Since |η′| = k and by the induction hypothesis, one has that

Lηh = ∂

∂z
Lchar(Iη′ )h · (gi + ei),

Hence, using linearity of the inner product · and (2.5) over the alphabet Y ∪ δY , it

follows that

Lηh = Lxichar(Iη′ )h + Lδxichar(Iη′ )h

= Lchar(Iη)h.
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Now, (2.3) can be expressed in terms of (9.3). That is,

Fc⊕d[u](t) =
∑

η∈X∗
Lηh|z0Eη[u](t),

=
∑

η∈X∗
Lchar(Iη)h|z0Eη[u](t),

=
∑

η∈X∗

∑
ξ∈Iη

Lξh|z0Eη[u](t).

Since η = σX(ξ) for all ξ ∈ Iη, it then follows that

Fc⊕d[u](t) =
∑

η∈X∗

∑
ξ∈Iη

Lξh|z0EσX(ξ)[u](t). (9.6)

Observe that if η1 ̸= η2 then Iη1 and Iη2 are disjoint, then

Z∗ =
⋃

η∈X∗
Iη =

⋃
η∈X∗
{ξ : ξ ∈ Iη}. (9.7)

and

∑
ξ∈Z∗

ξ =
∑

η∈X∗

∑
ξ∈Iη

ξ (9.8)

Applying (9.8) in (9.6), one has that

Fc⊕d[u](t) =
∑

ξ∈Z∗
Lξh|z0EσX(ξ)[u](t). (9.9)

Finally, ∑ξ∈Z∗ ξ = ∑∞
k=0

∑
ξ∈S

X∗,δXk
ξ. Hence, (9.9) is equal to (9.4). This completes

the proof.
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9.3 The Fréchet Derivative

Next, (9.4) is used to provide the functional derivative that quantifies the vector field

perturbation.

Theorem 20 Let X, Y and δY be alphabets associated with g + e, g, e ∈ Lm
p [t0, t1],

respectively. The Chen-Fliess series is Fréchet differentiable with respect to the vector

field if and only if

lim
e→0

1
∥e∥p

 ∞∑
k=2

∑
ξ∈S

Y,δY k

Lξh|z0EσX(ξ)[u](t)

 = 0,

and its Fréchet derivative is expressed as

DFc[u][g, e](t) =
∑

η∈X∗

∑
ξ∈Sη,δX

Lξh|z0EσX(ξ)[u](t),

whenever c ∈ Rℓ
LC⟨⟨X⟩⟩.

Proof: The proof follows by a direct application of Lemma 20 and Definition 42.

Consider δ > 0 and h such that ∥h∥p < δ, from (9.4), it follows that

Fc⊕d[u](t) =
∞∑

k=0

∑
ξ∈S

Y,δY k

Lξh|z0EσX(ξ)[u](t).

For k = 0, one has that

Fc[u](t) =
∑

ξ∈SY ∗,δY 0

Lξh|z0EσX(ξ)[u](t). (9.10)
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Note here that Lξh|z0 = Lξh|z0 since ξ ∈ Y ∗, which is why the left-hand side of (9.10)

does not depend on the perturbation e. Then, it follows that

Fc⊕d[u](t)− Fc[u](t)−
∑

ξ∈SY ∗,δY

Lξh|z0EσX(ξ)[u](t) =
∞∑

k=2

∑
ξ∈S

Y,δY k

Lξh|z0EσX(ξ)[u](t).

Multiplying by 1/ ∥e∥p and taking the limit of e to 0 gives the desired result. Fi-

nally, observe that the generating series of DFc[u][g, e](t) inherits the local convergent

bounds of the original series c. Therefore, for c ∈ RLC⟨⟨X⟩⟩, the Fréchet derivative

DFc[u][g, e](t) is convergent and well-posed, which completes the proof.

In this chapter, the vector field perturbation of Chen-Fliess series is measured.

A closed form of this is obtained by extending the definition of Lie derivative to be

able to read words from two languages where letters from one language are associated

with the original vector field and the letters from the new language are associated

with the perturbation of the vector field.
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Chapter 10

Conclusion and Further Research

10.1 Conclusion

This work provides a closed form of an overapproximation of the reachable set of the

output of a non-linear affine system represented by the Chen-Fliess operator. For this,

interval arithmetic was used to compute an overestimation of the reachable set of an

iterated integral, then the result was obtained by adding up all the overestimating

sets of the defining reachable set. The advantage of this method is its closed form

which makes computation faster than solving a non-convex optimization problem.

Also, the examples show very good accuracy for short-time horizons, but as the time

horizon gets larger, the accuracy decreases, which can be improved by increasing the

order of the approximation.

Two methodologies of computing overestimation of the reachable set of systems

represented in an input-output manner by the Chen-Fliess series formalism are pro-

vided. First, the input-output mixed-monotonicity method extended the notion of

mixed-monotonicity into the Chen-Fliess series framework. Then, to obtain the min-
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imum bounding box of output reachable sets, an optimization routine was provided

for Chen-Fliess series and the gradient descent method that essentially found the

input functions producing the system’s maximum/minimum outputs. This second

approach required finding a closed form of the Fréchet, Gâteaux derivative and the

gradient in the Chen-Fliess framework along with a condition for its existence. It was

shown theoretically that the reachable set obtained by optimizing the Chen-Fliess

series is the minimum bounding box containing the reachable set. If the interval of

time is partitioned, it was proved that the order in which the optimization is per-

formed over each subinterval of time does not affect the result. This is important to

approximate the optimal value of the Chen-Fliess series by dividing the interval of

time into smaller pieces. Illustrative examples were provided in the last section, and

the results were compared against reachable set overestimations computed using the

mixed-monotonicity procedure.

The framework of differential languages to formalize the computation of Chen-

Fliess series derivatives and provide an algebraic method to obtain such Chen-Fliess

series derivatives is introduced. A closed-form of the Hessian for a Chen-Fliess se-

ries was presented, and Newton’s and trust regions optimization algorithms for the

computation of the minimum bounding box of reachable sets for systems represented

by Chen-Fliess series were developed. To ensure the algorithm works appropriately,

the second-order mean value theorem was introduced in the Chen-Fliess series con-

text using differential-algebraic means instead of the classical chain rule approach.

Illustrative examples of three control affine systems were provided in the last sec-

tion showing that the over-approximations obtained from the algorithms are indeed

minimum bounding boxes.
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It was shown that the minimum bounding boxes are computed with fewer iter-

ations than the gradient descent approach. The notion of input-output backward

reachable set and output reachable set pre-image for systems represented by a Chen-

Fliess series. Two algorithms are developed for computing such sets. The first algo-

rithm computes the minimum bounding box of the pre-image set whereas the second

algorithm computes an inner approximation of output reachable sets. Two exam-

ples were presented with the purpose of illustrating the computation of the minimum

bounding box of the pre-image and the inner approximation of output reachable sets.

Finally, the measurement of the perturbation of the Chen-Fliess series with respect

to the vector field is addressed. The closed form of the Fréchet derivative is obtained

for this by extending the definition of the iterative Lie derivative to be able to read

two languages.

10.2 Further Research

In the present section, the problem of collision avoidance using Chen-Fliess series

is outlined. The idea is similar to the original ideas of the control barrier functions

techniques [6,41,71]. For the sake of simplicity, the object to avoid can be represented

as a circle of radius r and center c. Also, assume that the task is to avoid the obstacle

with the least energy. The set-up of the problem is the following:

min
u∈B

uT u

s.t. ḣ(t) ≥ −α(h(t))
(10.1)
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to include the Chen-Fliess series, the function h(t) = ||Fc[u](t)− c||2− r is considered

instead where the object to avoid is the circle ||x− c||2 ≤ r. This problem is related

to control barrier functions. Since equation (10.1) is an optimization problem and in

the present dissertation, the tools to optimize Chen-Fliess series were provided, this

is a natural future research direction.
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