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Abstract

Effective public health interventions must balance an array of interconnected chal-
lenges, and decisions must be made based on scientific evidence from existing infor-
mation. Building evidence requires extrapolating from limited data using models.
But when data are insufficient, it is important to recognize the limitations of model
predictions and diagnose how they can be improved. This dissertation shows how
principles from Bayesian Experimental Design can be applied to surveillance and
control efforts to allow researchers to get more out of their data and direct limited
resources to best effect. We argue a Bayesian perspective on data gathering, where
design decisions are made to maximize utility on average over a joint distribution of
beliefs and outcomes, is better suited to the epidemiological setting where observa-
tional studies are the norm. We illustrate these ideas using a range of models and
topics across epidemiology.

We focus first on Chagas disease, where in Guatemala an endemic vector continues
to cause a high rate of domiciliary infestation in rural communities, and shortages
of insecticides and resources for critical house improvements hamper control efforts.
Using an adaptive sampling and geospatial modeling framework, we show that in-
terpolating from a traditional design goal of minimizing prediction uncertainty to
targeting houses of high risk can satisfy competing objectives, namely, to efficiently
identify houses in need of treatment while mitigating sampling bias. We next focus
on tick surveillance in the southeastern United States. By framing tick collection
surveys as a design problem over time and space, we show optimal survey design can
yield greater information compared to random or convenience sampling. Finally, we
shift attention from experimental design to the closely related concept of practical
identifiability. We propose a novel method to quantify practical identifiability which
reflects the average amount of posterior shrinkage that would occur in a Bayesian
analysis, without requiring computationally expensive techniques like Markov Chain
Monte Carlo. With this method, we demonstrate the limits of using epidemiological
models to derive standard statistics such as the basic reproductive number early in
an outbreak.
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Chapter 1

Introduction

Advancing wellbeing through the mitigation of infectious diseases is one of science’s

great contributions to humanity. Distilling scientific evidence into decisions is essen-

tial for coherent public health policy, and models are essential for this process. Models

take data, extract patterns, and make predictions. Often, this process is treated as

a one-way street. As more data come in, model predictions are updated and inform

future action. It is less common to “complete the loop” and consider how actions

based on models could impact future data [1, 2]. This dissertation explores model-

based experimental design as a tool for directing surveillance and control efforts in a

statistically principled way.

In epidemiology, reconciling data and theory is rarely possible with carefully con-

trolled experiments. Noisy data are measured from heterogeneous populations and

disparate sources, and building models incorporating all of the processes behind these

data would be impossible. Instead, allowing uncertainty, i.e. a range of plausible be-

haviors, in a model frees us from the need to find a model with the perfect level of

complexity [3]. Rather than matching the data exactly, a useful model should en-

code a range of dynamics that are constrained to a tractable level. Richard Levins
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famously referred to this as “sacrificing precision to realism and generality” [4].

The Coronavirus Disease 2019 (COVID-19) pandemic has led to an explosion of

activity applying models to data [5]. These models have often updated predictions

in near real-time using multiple data streams [6], and have directly informed policy

recommendations [7, 8]. Formal theories for strategically looping from predictions,

decisions, and feedback on objectives have been proposed and successfully employed

by collaborative teams across the world [9, 10]. However, COVID-19 also showed

these efforts take time, and there have been many other examples where a lack of

coordination within and between modelers and empiricists contributed to confusion

and public distrust [11, 12]. Ecology also has a long history of feedback between

theories and decision making, where a variety of models have been used to directly

guide land management and agriculture, and to combat wildlife diseases [13, 14].

But here, too, successfully establishing prolonged feedback between modelers, data

gatherers, and policy makers sometimes takes years of fine-tuning how modeling tools

should be used for best effect [15].

Overall, direct feedback between modelers, empiricists, and policy makers remains

somewhat rare [1, 16]. A 2016 survey of PubMed found a small fraction of biomedical

papers employing ODEs inferred parameters using data, and just a fraction of these

formally considered the limitations of available data for reliable inference [17]. Model-

informed experimental design is one avenue where theoretical and computational

scientists can integrate more closely with empiricists and feel closer to the systems

they study. Employing modeling expertise also allows greater creativity in the design

variables considered, which serves to enrich the research of empiricists as well. In

particular, while experimental design studies typically use simple statistical models
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for optimizing sample size or treatment groups, a model with more heterogeneous

structure leads to more specificity in what can be manipulated or controlled.

In Bayesian experimental design (BED), the utility of design inputs is averaged

over a joint distribution of beliefs and outcomes. This makes BED particularly ap-

plicable in fields like epidemiology, where observational studies are the norm and

decisions must be robust with respect to uncertainty in the underlying system. Fol-

lowing an introduction covering a review of the modeling frameworks used in this

work, the basics of Bayesian inference, and some standard BED theory, we illustrate

these ideas using a range of models and topics across epidemiology.

1.1 Nonlinear modeling

It will be useful to conceptualize the models used throughout this dissertation in

terms of two components, a latent process and observation process, which respectively

measure the underlying, hypothesized dynamics of the system in question, and the

noisy, perturbed data we obtain when measuring this latent system. We write these

components as

y ∼ g(µ, σ) (1.1)

µ = f(γ; d), (1.2)

where f is a deterministic function tying parameters γ and design points d to latent

dynamics µ, and g is a stochastic function tying noisy data y to the latent dynamics,
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optionally with additional noise parameters σ.1 The model inputs d are called the

design, and represent the factors that may be controlled during data collection. In

observational settings these may include measurement times and/or locations, while

treatment groups or other covariates can be manipulated directly in experimental

settings. The latent parameters γ in contrast represent those inputs which we do

not know, or do not have control over. When fitting models to data, these values

therefore must be estimated or fixed to settings well-established in the literature [19].

It is assumed we are generically interested in estimating a p-dimensional vector of

unknown parameters θ ⊆ (γ⊤, σ⊤)⊤.

A model is said to be nonlinear if either g or f is nonlinear in θ. For mechanistic

modeling, this usually arises from nonlinearity of f in γ (Figure 1.1), but this need

not always be the case, as we will see in the following example. A key motivation for

making the distinction between f and g is to acknowledge that g may be a source of

model complexity in its own right, and that accounting for complex factors in g can

interact with factors in f in unexpected ways [11, 20].

1.1.1 Example: mixed-effects models

Generalized linear models (GLMs) are a class of models in which µ is a linear function

of parameters β. The latent output µ is called the linear predictor, while β is a vector

of regression coefficients. To transform µ to an appropriate domain for the data, a

nonlinear link function is used. The observation process g therefore transforms µ

through the link function before assigning an appropriate distribution to the data.

For example, counts data are positive and integral, so if the domain of µ is R, a
1(1.1) and (1.2) can also usually be written in nonlinear regression format, y = µ + ε, where ε is

a random variable drawn from a distribution parameterized by µ and σ [18].
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latent process

observation process

Figure 1.1: Nonlinear models separated into a latent process and observational process.
Right: output from a latent process is shown as a function of γ at three design points
d = (d1, d2, d3). A model is “fit” to three data points (blue circles) by finding γ for which
f(γ; di) and yi are “close” for all i.

suitable observation process would be g(µ) = Poisson(exp(µ)). Link functions are

commonly defined moving from the data to µ in the GLM literature, so the link

function here would be the natural logarithm.

A more general family of models are Generalized Linear Mixed-effect Models

(GLMMs), which may be written in standard form as

y ∼ g(µ) (1.3)

µ = Xβ + Zu, (1.4)

where X and Z are design matrices and β and u are parameters to be estimated [21].

The parameters β are the so-called “fixed-effects” which are traditionally used to cap-

ture relationships between y and external covariates such as environmental variables,

while u are the so-called “random-effects” which traditionally capture differences be-

tween assigned groups or other “clusters” determined by Z. Statistically, the key
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difference between the fixed and random effects is we are interested in understanding

(i.e. modeling) the structure between and within groups of the random effects, as

facilitated by some additional hyperparameters ϕ which constrain the behavior of u

[22].2 In addition to giving a quantitative understanding of the variability between

groups, modeling u hierarchically in this way can have beneficial effects, such as

helping to eliminate heteroscedasticity in the response through pooling information

between smaller groups [24], and allowing predictions for unmeasured groups which

were not in Z [25]. GLMMs will appear in Chapters 2 and 3.

1.1.2 Example: the Ross-MacDonald model for Malaria

transmission

While the flexibility of GLMMs allows for a surprisingly diverse range of complex

dynamics, they are rarely used to try and capture why these dynamics may occur.

Another important class of nonlinear models are compartmental models, which assign

mechanisms at a population level through a series of ordinary differential equations

(ODEs) [18]. By assigning system constituents to compartments assumed to have the

same behavior on average, epidemiologically meaningful processes can be formally

expressed while remaining at a tractable level of abstraction. Models developed this

way tend to be more interpretable, and make it easy to consider the effect of different

control measures through manipulating specific parameters [26].3 Compartmental
2Because both β and u are “modeled” in Bayesian statistics by placing priors on them, the

only difference between fixed and random effects is in how their priors are defined. This has lead
some Bayesians to label the fixed vs. random dichotomy as misleading, preferring terms for u like
“hierarchical effects” [23] or “richly parameterized” [21].

3Such mechanistic models are also more efficient in achieving a given level of complexity: the
GLMMs used in this work have 100s of parameters, that are highly constrained by ϕ to avoid
overfitting. The SIR model of Chapter 4 has 2-4.
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models will appear in Chapter 4.

As an example, consider the canonical compartmental model for disease transmis-

sion between hosts and mosquitoes, the Ross-MacDonald model [27]. We divide hosts

into two compartments, SH and IH , which represent individuals who are susceptible

to the disease or infectious. We similarly divide vectors into compartments SV and

IV . We further assume the system is closed, so that both hosts and vectors have

constant population sizes NH = IH + SH and NV = IV + SV . This means we only

need to track changes to the infectious compartments.

Changes to these compartments are defined with ODEs as a function of time t.

The key mechanisms assumed by the model are that susceptible hosts may become

infectious when bitten by an infected mosquito (the “probability” of biting a suscep-

tible host is SH/NH), while mosquitoes become infected when biting infectious hosts

(probability IH/NH). The full model equations are

d

dt
IH = kpIV

NH − IH

NH

− αIH (1.5)

d

dt
IV = kq(NV − IV ) IH

NH

− δIV , (1.6)

where k is the biting rate of mosquitoes, p and q are respectively the probabilities

of infection for hosts/vectors following exposure, α is the rate at which hosts recover

from illness, and δ is the death rate for vectors.

Integrating (1.5) and (1.6) over t, together with some initial conditions IH(0) and

IV (0), gives a solution to the system over time, IH(t) and IV (t). These values are

referred to as the state variables, and are the latent dynamics we wish to learn about.

Assuming data are only collected for infectious hosts at some discrete timepoints,

7



Figure 1.2: Example output from the Ross-MacDonald model equations with noisy data.
Left: the number of infectious hosts are in orange and infectious vectors are pink. Parameter
settings were k = 1/4, p = q = 1/5, α = 1/7, δ = 1/5, NH = 100, and NV = 104. Right:
inference for the biting rate k according the information matrix (light blue) and the posterior
distribution under prior P (k) ∼ Exponential(1) (dark blue).

adopting the notation of (1.1) and (1.2), we have d = (t1, . . . , tn)⊤ and µi = IH(ti).

For the observation process, we may assume for example that m individuals are

selected randomly for testing each day, so that yi is the number of hosts who tested

positive at day ti. A simple model for this would be

yi ∼ Binomial(m, µi/NH).

Some example output from a typical parametrization of the model along with noisy

data is shown in Figure 1.2.

1.2 Likelihood-based inference

For a particular design input and instance of parameters hypothesized to have gen-

erated the data, the latent and observation processes together produce a probability
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density P (y | θ, d) called a likelihood, which gives the probability that a particular

dataset y arose from f and g under a particular parameterization θ and design d.4

Given data, we naturally are interested in inferring the plausibility of different param-

eter combinations—we wish to find parameters with high likelihood. Even though

P (y | θ, d) is a density in y, for parameter inference both y and d are of secondary

interest and so a convention is to write L(θ) = P (y | θ, d). The quantity maximizing

the likelihood,

θ̂MLE = argmax
Θ

L(θ), (1.7)

is the maximum likelihood estimator. Note that, because the likelihood depends on

the random variable y, θ̂MLE is itself a random variable from which we can derive

uncertainty in our estimates. In the frequentist tradition, the distribution of θ̂MLE re-

flects the long-run frequency from repeating our experiment: supposing we repeatedly

sampled datasets under identical conditions and maximized the likelihood function

of each, a histogram of these estimates will converge to match the density of our

estimator.

In practice, of course, we do not have the ability to infinitely repeat our exper-

iment, and so the distribution of θ̂MLE must be approximated from the particular

dataset we have at hand. One option here is to use some form of bootstrapping, where

the data are repeatedly resampled as a surrogate for the actual sampling distribution,

and the parameters are fit to each. However, this becomes complicated or impossible
4Letting Θ be some established domain of viable parameter settings, the space of all likelihoods

{P (y | θ, d) : θ ∈ Θ} forms a topological structure called a model manifold. Although rarely refer-
enced directly, the global structure of this manifold is the fundamental property under consideration
in this work; namely, experimental design seeks to maximize the geodesic distance between points
on the manifold though manipulating d, while identifiability measures the length of these distances,
pulled back to the intrinsic geometry of Θ, for a given d [28].
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when observations are correlated, like in a time series. Another option is to proceed

using the so-called asymptotic theory, which, under certain conditions,5 guarantees

certain properties of the maximum likelihood estimator as the amount and/or pre-

cision of data grows to infinity. Here we emphasize two such properties, consistency

and efficiency, which respectively imply that with sufficient data, the maximum like-

lihood estimator converges to the (unknown) value θ∗ which created the data, and

that it becomes asymptotically normally distributed,6

θ̂MLE
d−→ N(θ∗, I(θ∗)−1). (1.8)

In short, to obtain an approximate distribution for θ̂MLE, we need 1) the value

θMLE maximizing L for our particular dataset, and 2) an expression for the infor-

mation matrix I, into which we may plug θMLE as a proxy for θ∗. The information

matrix is a local measure of curvature, i.e. sensitivity of L to changes in θ, and has

typical element

[I(θ)]ij = − Ey|θ

[
∂2

∂θi∂θj

logL(θ)
]

. (1.9)

Importantly for this work, the information matrix is also the key quantity in clas-

sical approaches to both experimental design and practical identifiability. It will be

discussed more in Chapter 4.

An advantage of the asymptotic theory is that the information matrix is relatively

easy to derive, which can allow a more formal understanding of how uncertainty arises
5Notably for mechanistic modeling, these conditions include that the latent process f is injective

in γ, and that the likelihood function is compact, that is, creating a simpler model by taking a
parameter to its boundary limit must have lower likelihood than the full model.

6In some disciplines it is more common to define the covariance as (√nrepI(θ∗))−1, where nrep
is the number of independent replications of the data, assuming these replications are not already
accounted for in the likelihood.
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in the model. However, a limitation is that with nonlinear models, (1.8) only provides

a lower bound on the true level of uncertainty. When models are highly nonlinear

and data are limited, this bound can severely underestimate the actual variability of

the estimator [29]. An alternative which is well-suited to such settings is Bayesian

inference.

In the Bayesian paradigm, inferences about θ given y are not expressed in the

language of estimators. Instead, uncertainty is encoded though the posterior distri-

bution P (θ | y, d) ∝ L(θ)P (θ), which expresses movement away from a distribution

of prior beliefs P (θ) towards the likelihood. There are several aspects of Bayesian in-

ference which makes it philosophically appealing in an epidemiological setting. First,

the frequentist concept of uncertainty as long-run variability feels incongruous when

modelings things like an epidemic, which cannot be repeated under identical condi-

tions. Bayesian posteriors are not based on this concept of long-run frequency [19].

Second, building up complex hierarchical structures is made very natural through

prior distributions. For example, in GLMMs it is relatively easy to write down the

distribution of random effects given their hyperparameters as P (u | ϕ) = N(0, Σ(ϕ)),

so that the conceptually tricky “full” likelihood P (y | u, ϕ) can be factorized to give a

posterior proportional to P (y | u)P (u | ϕ)P (ϕ). Third, priors may be used to incor-

porate outside information about mechanistic parameters without having to commit

to fixing the parameter to a single value. For example, there may be an established

range of recovery times in the clinical literature which can be used to place informative

priors on the host recovery rate α in the Ross-MacDonald model.

Estimates for the biting rate k using the information matrix and Bayesian methods

are compared in Figure 1.2. As the posterior P (k | y) makes clear, the biting rate is
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rather poorly constrained by the data: there is a clear peak around the true value,

but fat tails indicate the data can be similarly replicated with a large range of k.

However, the local curvature measured from the information matrix does not capture

this effect, severely underestimating uncertainty from the full likelihood.

1.3 Bayesian experimental design

We are now prepared to introduce how the design of experiments can be based on

Bayesian principles. Experimental design is a form of decision analysis in which

investigators seek an effective choice of design d among a space of available options

D. The return associated with a decision d is called the utility, which will depend

on the (unknown) future data collected as a result of d, as well as the (probably

unknown) latent dynamics which create this data. The joint distribution of data

and dynamics is P (y, θ). Thus, a sensible way to proceed is to make the decision

maximizing the average return over joint outcomes [30],

U(d) =
∫
Y

∫
Θ

U(d, y, θ)P (y, θ)dθdy

=
∫ ∫

U(d, y, θ)P (y | θ, d)P (θ)dθdy, (1.10)

where U(d, y, θ) is the utility provided by y created under the conditions provided

by d and θ. In classical experimental design, utility is typically a function of the

information matrix, and thus defined in terms of a function U(d, θ) with the expec-

tation over P (y | θ, d) done in (1.9). When θ = θ∗ is assumed known, the design

maximizing U(d, θ∗) is called locally optimal [31]. When θ is unknown, U(d, θ) is

instead averaged over something resembling a prior distribution, although this prior
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is subsequently ignored when evaluating the information matrix. This is referred to

as pseudo-Bayesian or robust experimental design [32].

In BED, utility is a function of the posterior distribution rather than the informa-

tion matrix, and so integrating y out of U(d, y, θ) is usually impossible [33]. However,

a common strategy is to instead express (1.10) as

U(d) =
∫

U(d, y)P (y | d)dy, (1.11)

where U(d, y) instead involves an integral over the posterior. This can avoid the

double integral provided a solution or approximation for U(d, y) exists, and there

is an efficient way to directly obtain samples from the prior-predictive distribution

P (y | d). This is an idea that will be expanded upon in Chapter 3.7

As an example, to measure the distance between the posterior mean having seen

the data and true parameters which generated the data, the following utility function

may be used in (1.10):

U(d, y, θ) = −
∑

p

(θp − E [θp | y, d])2. (1.12)

Letting θ̂ = E [θ | y, d] and noting that ∑p(θp − θ̂p)2 = (θ − θ̂)⊤(θ − θ̂), (1.10) can
7There we will use recent developments in the software R-INLA to both efficiently sample from

the predictive distribution and approximate U(d, y) [34].
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then be simplified as

U(d) =
∫ ∫

U(d, y, θ)P (θ | y, d)P (y | d)dθdy

= −
∫

P (y | d)
∫

(θ − θ̂)⊤(θ − θ̂)︸ ︷︷ ︸
=tr((θ−θ̂)(θ−θ̂)⊤)

P (θ | y, d)dθdy

= −
∫

P (y | d)tr (cov(θ | y, d)) dy,

where for the last line we have used linearity of integration and definition of the co-

variance matrix [35]. Therefore, one viable way to proceed is to use something like

Laplace’s method to compute the posterior covariance, combined with an efficient in-

tegration method for (1.11) such as randomized quasi-Monte Carlo [36]. Note that this

utility function U(d, y) = tr (cov(θ | y, d)) is referred to as the Bayesian A-optimality

criterion. An alternative that takes uncertainty from correlations between the param-

eters into account is Bayesian D-optimality, defined U(d, y) = − log det cov(θ | y, d).

Both of these options will underestimate full posterior uncertainty if the posteriors

are not roughly normal [33].

Perhaps the most widely-used Bayesian criteria to reflect the quality of a design

is the Shannon information gain,

U(d, y, θ) = log P (θ | y, d) − log P (θ). (1.13)

A design maximizing the expectation of (1.13) maximizes the mutual information

between P (y | d) and P (θ), i.e. the information about the data that can be encoded in

the parameters [37]. Integrating out θ then gives U(d, y) = DKL(P (θ | y, d) || P (θ)),

the KL-divergence between the posterior and prior distributions [38, 33].
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1.4 Outline

The rest of this dissertation is as follows. In Chapter 2, we develop a sequential design

framework which adapts to local information and balances conflicting public health

priorities. Because interventions targeting areas with highest perceived risk leads to

preferential sampling bias, there is a tradeoff between sampling for accurate prediction

and sampling to quickly reach those in need. Such biased sampling can therefore lead

to misdiagnosing the remaining number of areas requiring treatment. This tradeoff is

especially relevant for the control of Neglected Tropical Diseases (NTDs) like Chagas

disease, where there is a high incentive to focus only on areas at risk while still

ensuring sufficient disruption throughout the community as a whole. We solve this

problem with an adaptive framework which transitions from prioritizing houses based

on prediction uncertainty to targeting houses with a high risk of infestation, and test

the framework in a simulation study using data from five villages in Guatemala. Due

to the spatial nature of Triatomine infestations in the area, the method fits Bayesian

geostatistical models, which include a random effect u to capture correlations between

nearby houses and make spatially informed predictions. We find the method can

accurately identify the necessary number of infested houses to meet the control target,

while consistently using fewer samples than random designs.

Chapter 3 studies the design of tick surveillance schedules in the southeastern

United States, where a lack of available data has lead to uncertainty in the spa-

tiotemporal distribution of ticks throughout the region. By framing tick collection

surveys as an experimental design problem over time and space, we show careful

survey design can yield greater information compared to random or convenience sam-
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pling. Optimal BED could therefore be used to maximize the efficiency of local vector

control agencies throughout the region, which are currently constrained due to chronic

under-funding and lack of infrastructure. We additionally show how recent advances

in computational software can be used to deploy BED based on complex hierarchical

models incorporating spatial, temporal, and species-level effects.

Chapter 4 shifts attention from BED to the closely related concept of practical

identifiability (PI) issues in mechanistic models of epidemics. While traditionally PI

has been studied using the variance-covariance matrix of an estimator using the in-

formation matrix (1.9), such second-order approximations underestimate uncertainty

in limited data settings, where the distribution of plausible values may be incorrectly

centered or highly skewed. Borrowing from computational and information theoretic

ideas in BED, we propose a novel method of PI which reflects the average amount

of posterior shrinkage that would occur in a Bayesian analysis, without requiring

computationally expensive techniques such as Markov Chain Monte Carlo. Using

this method, we revisit identifiability of the classic Susceptible-Infectious-Recovered

compartmental model, and compare our ability to infer different summary statistics

commonly derived from epidemiological models, such as the basic reproductive num-

ber of final outbreak size. Examining the rate of learning these quantities over time,

we find identifiability of most statistics is limited until after the true underlying out-

break has peaked. We also discuss the relationship of our new method to other ways

of measuring PI, and show the method has attractive properties in both limited and

big data regimes.
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Chapter 2

Spatial epidemiology and adaptive tar-

geted sampling to manage the Chagas dis-

ease vector Triatoma dimidiata

Abstract

Widespread application of insecticide remains the primary form of control for Chagas

disease in Central America, despite only temporarily reducing domestic levels of the

endemic vector Triatoma dimidiata and having little long-term impact. Recently,

an approach emphasizing community feedback and housing improvements has been

shown to yield lasting results. However, the additional resources and personnel re-

quired by such an intervention likely hinders its widespread adoption. One solution

to this problem would be to target only a subset of houses in a community while

still eliminating enough infestations to interrupt disease transfer. Here we develop a

sequential sampling framework that adapts to information specific to a community

as more houses are visited, thereby allowing us to efficiently find homes with domicil-
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iary vectors while minimizing sampling bias. The method fits Bayesian geostatistical

models to make spatially informed predictions, while gradually transitioning from

prioritizing houses based on prediction uncertainty to targeting houses with a high

risk of infestation. A key feature of the method is the use of a single exploration

parameter, α, to control the rate of transition between these two design targets. In a

simulation study using empirical data from five villages in southeastern Guatemala,

we test our method using a range of values for α, and find it can consistently select

fewer homes than random sampling, while still bringing the village infestation rate

below a given threshold. We further find that when additional socioeconomic infor-

mation is available, much larger savings are possible, but that meeting the target

infestation rate is less consistent, particularly among the less exploratory strategies.

Our results suggest new options for implementing long-term T. dimidiata control.

Author summary

Effective public health interventions for the control and elimination of neglected trop-

ical diseases require an efficient use of resources while still causing long-term disease

reduction at the community level. To use resources to best effect, areas most in need

of control efforts must be identified. However, strategies for correctly identifying these

areas are rarely known due to the complex environmental, biological, and cultural fac-

tors shaping disease spread. In turn, incorrect prioritization of control targets can

cause the intervention to have no lasting effect. We address this tradeoff between

efficiency and efficacy by adapting control priorities throughout an intervention, tar-

geting areas of high uncertainty during the initial stages while shifting to areas of

greatest risk at later stages. In the context of controlling Triatoma dimidiata, the
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primary vector of Chagas disease in several countries in Latin America, our methods

provide a means of targeting only a subset of homes for insecticide and housing im-

provements, while still reducing a village’s overall infestation rate below the critical

threshold.

2.1 Introduction

Chagas disease is a vector-borne neglected tropical disease (NTD) endemic to all

countries in Latin America [1]. It is the most serious parasitic disease in the region,

with a 2005 estimate of disease burden 5 to 10 times greater than malaria [2], and

is mainly a threat to people living in poverty [3, 4]. The disease, which can lead

to potentially fatal cardiovascular or gastrointestinal issues, is caused by the para-

site Trypanosoma cruzi and transmitted by insects in the Triatominae subfamily [5].

Control initiatives for Chagas primarily focus on disrupting the transmission pathway

to humans by reducing domestic Triatomine infestation levels, which is the primary

mode of infection [6, 7]. A common control target is to reduce the proportion of

infested households in a community to below 5% [8, 9], and it has been shown that

reduction past 8% is sufficient to eliminate T. cruzi seroprevalence in children aged

6 months to 15 years [10].

In Central America, the prevalence of Chagas disease has declined significantly

since the 1980s, thanks in part to the near-elimination of the invasive vector Rhodnius

prolixus. However, the species-complex Triatoma dimidiata still poses a significant

health risk to millions of people in many areas [11]. Unlike the invasive R. prolixus, T.

dimidiata is endemic to Central America, living in peridomestic and sylvatic as well as

domestic environments [12]. Unfortunately, efforts to control domestic T. dimidiata
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populations are complicated by the resilience of T. dimidiata to traditional methods

of vector control. Domestic populations of the insect can rebound within several

months of insecticide spraying [13, 14, 15], and continuing to spray houses which

report reinfestation appears to have little long-term effect [16]. Control measures

for T. dimidiata are further complicated due to its significant variation in habitat,

morphology, feeding patterns, and genetics [17, 18, 19], all of which interact to cause

variation in its vulnerability to insecticides [20] and the domiciliary risk factors asso-

ciated with its presence [9, 21]. Further, the sustainability of a given control strategy

depends critically on cultural practices in the area [22, 23, 24]. Thus, meeting the

goal of long-term T. dimidiata reduction requires adaptive, locale-specific strategies

for surveillance and control [25, 26].

The limitations of insecticide for control of T. dimidiata in Guatemala have led

to the gradual adoption of additional measures, mostly in the departments of Juti-

apa and Chiquimula in southeastern Guatemala, which represent the majority of the

country’s cases reported to the Ministry of Health [27, 11]. A promising multidisci-

plinary approach, often referred to as the EcoHealth approach, applies cost-effective,

locally-tailored house and peridomestic improvements by collaborating with villagers

and health personnel, in conjunction with initial insecticide application [22]. A pilot

study of two villages found the method led to low (< 5%) infestation rates 5 years

after housing improvements [28, 21], and an expansion of the project to five villages

in Chiquimula led to a sustained four-fold reduction in infestation [25]. This sug-

gests house improvements following the EcoHealth approach can effectively prevent

reinfestation in the long term.

Barriers to the widespread adoption of community engagement-based interven-
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tions include frequent shortages in insecticides [25] and the need for research experts

and trained personnel to work with residents and identify infested houses. One pos-

sible solution to these issues is to more efficiently select homes in need of insecticides

and improvements while still meeting necessary control targets. For example, by

treating only a sample of homes such that overall the T. dimidiata infestation rate

in the village goes below 5%, residual dispersal and non-domestic migration will be

limited to homes that were recently improved, or were already unlikely to be suitable

for infestation. Further, the EcoHealth approach’s emphasis on practical improve-

ments and community participation could help ensure that the risk factors identified

from this sample continue to be addressed throughout the entire village. This control

strategy would in turn free up resources to be applied in other communities.

To be successful, such a strategy must balance the incentive to target houses

that are believed to be infested, with the need to correctly identify the infestation

status of unvisited homes. Selecting houses to treat based on perceived infestation

risk will quickly bring the village’s infestation rate closer to the 5% goal, at least in

the short term. However, a diverse range of samples throughout the area and across

combinations of possible risk factors is required to reliably find the remaining infested

houses, and to correctly predict whether the remaining number of infested houses is

below that required to meet the 5% threshold [29, 9]. This was the conclusion in King

et al. (2011), where a subset of households was inspected for Triatomines in villages

across Guatemala using either random sampling or sampling based on pre-defined

risk factors, and was used to predict whether the village infestation rate was below

or above the 5% threshold. The authors found random sampling to consistently have

higher prediction accuracy, noting that sampling based on a fixed set of factors failed
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to explore the ways factors associated with infestation vary among different villages

and regions [9]. In short, the dual objectives of prediction and targeted sampling lead

to a exploration vs. exploitation tradeoff, where the space of houses to target must

be searched to find configurations that are both of minimal sample size, and which

contain enough information to correctly predict that the 5% target has been met.

The quantity and quality of covariate information available for exploration is a

second key factor in the success of an intervention strategy. A number of studies have

identified various socioeconomic factors associated with infested houses, such as the

material and condition of house walls [4, 21, 30]. Therefore, if additional dependent

variables are available prior to selecting houses for treatment, fewer observations may

be needed to make accurate estimates. Another option is to rely only on variables

available remotely, such as elevation. While this sacrifices potentially useful infor-

mation, it may ultimately be more cost effective, since collecting socioeconomic risk

factors for inference and prediction requires additional labor and logistical planning

[31].

Here we aim to address the problem of treating a subset of houses to reduce

T. dimidiata infestation to a target threshold while minimizing the necessary re-

sources. Using 5 villages of varying size and baseline infestation rates in Chiquimula,

Guatemala as a case study, we employ adaptive geostatistical design strategies which

sequentially select houses based on observations from previous iterations, and use

inherent spatial autocorrelation in the observed data to improve prediction and in-

ference.

While historically quite theoretically driven, the principles of geostatistical design

have recently been applied to other problems of survey design and analysis in spatial
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epidemiology [32]. Chipeta et al. (2016) developed an adaptive sampling method

which targets locations with high spatial uncertainty, and applied the approach to a

cross-sectional malaria survey [33, 34]. Adaptive sampling using a similar strategy

based on prediction entropy and spatial exploration was also shown to be effective

for identifying hotspots of lymphatic filariasis [35]. Fronterre et al. (2020) used a

non-adaptive, lattice-like sampling design combined with close pairs of points (pro-

posed first in [36]) to predict whether an area’s disease prevalence exceeds a certain

threshold, and found the method outperformed a current WHO assessment protocol

on a simulated dataset [37].

In this work, we develop a class of adaptive strategies which transition from pri-

oritizing houses based on prediction uncertainty to houses based on percieved risk of

infestation. We compare these strategies to random sampling with empirical data,

and assess their ability to efficiently locate infested houses while correctly predicting

whether the current selection meets the reduction target. Additionally, we examine

the effect of including socioeconomic covariates on the performance of each strategy.

In the context of Chagas vector control with the EcoHealth approach, our methods

address two key questions: 1) how can houses be more efficiently targeted for treat-

ment to sufficiently reduce village-wide vector incidence? and 2) can further efficiency

gains be made by collecting additional socioeconomic information? More generally,

our methods provide a formal, statistical framework for targeted control strategies in

a resource-limited setting, and hence are particularly relevant to the control of NTDs.
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2.2 Methods

2.2.1 Data preparation

Our data come from the follow-up EcoHealth project discussed in the introduction,

which was conducted in the countries Honduras, El Salvador, and Guatemala, between

August and December 2011, and is described in detail in Bustamante et al. (2015) and

Lima-Cordón et al. (2018) [21, 18]. We focus only on the five villages in Chiquimula,

Guatemala, since infestation rates were low in the other countries. These villages lie

along an altitudinal gradient, with a climate ranging from hot and humid to cooler

cloud forest. Villages are surrounded by a mix of banana plantations, shade grown

coffee, and patches of the original forest [18].

All houses with missing factors necessary for our analyses were removed, leaving

between 72% and 83% of the total number of houses recorded in each village (Table

2.3). After processing, there were 172 housing structures in El Amatillo, 147 in El

Cerrón, 251 in El Guayabo, 108 in El Paternito, and 207 in La Prensa, for a total of

885 observations. The village-wide infestation rate was between 15% and 39%.

Each data entry was obtained by two trained personnel using the following pro-

tocol. After the informed consent of the residents, houses were searched for 35-45

minutes by one team member with a flashlight and forceps, searching walls, behind

furniture, and other suitable environments for Triatomine shelter, while another per-

formed interviews and assessed aspects of tidiness in the home [28, 21]. The home’s

geocoordinates were also recorded. These surveys produce a binary response indicat-

ing Triatomine presence in the home, and 26 covariates. A positive response indicates

that adult or juvenile insects, dead insects, or eggs were found. The covariates, listed
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in Table 2.4, include items related to socioeconomic factors, the number and type of

domestic animals, and the house’s structure and cleanliness. We added two more co-

variates based on the house’s geocoordinates. The distance to perimeter is the shortest

distance of the home to the village’s convex hull, plus 50m, while the density is the

number of other houses within 100m. Covariates were checked for multicollinearity,

and all continuous variables were centered and scaled. Additionally, for convenience

in setting priors, the coordinates of the houses were scaled such that the diameter of

the village (maximum distance between any two points) was one.

2.2.2 Hierarchical modeling for geostatistics

Geostatistics is a field which studies spatial autocorrelation in point-referenced data,

and leverages this information for inference and prediction [38]. Geostatistical models

incorporate a spatial phenomena Z = {z(s) ∈ R | s ∈ D} over a domain of possible

locations D , where n = |D | when D is discrete. The closer two points si and sj are

to each other, the more similar the values z(si) and z(sj) will tend to be. This spatial

surface Z is itself a function of possibly unknown spatial parameters, which control

how the covariance between points behaves. Rather than observing Z directly, for

each location s there is typically a measurable response y(s), which is assumed to be

a function of Z and some covariates x(s) = (x1(s), . . . , xp(s))⊤.

Following the general hierarchical framework first outlined in [39], we assume the

response at each s ∈ D follows a generalized linear model with spatially correlated

random effects. In our setting, this amounts to y(s) being a binary variable indicating

the infestation status of a home at position s, which has a probability r(s) of being

infested. The probability r(s), or the risk of having an infestation at location s, will
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then depend on the home’s covariates and the risks of other homes in close proximity.

More formally, the likelihood of y(s) is as follows:

y(s) | r(s) ∼ Bernoulli(r(s)) (2.1)

logit(r(s)) = η(s) = β⊤x(s) + z(s) + ε(s), (2.2)

where β = (β1, . . . , βp)⊤ is a vector of fixed effect coefficients. The spatial surface Z

follows a zero-centered Gaussian distribution with Matérn covariance function (de-

fined in Section 2.5.1) with smoothness parameter ν = 1 [40]. This spatial process has

two parameters σs and ρ, which respectively control the variance and effective range,

here defined as the distance at which the correlation between two points reaches 0.1.

Finally, ε is an independent random effect representing non-spatial latent variabil-

ity at each location, which helps avoid finding spurious spatial correlation [37]. We

assume ε ∼ N(0, σ2
e).

The equations above describe the probability a house is infested, given some pa-

rameters and covariate information. In other words, they specify an assumption about

how our response is generated as a function of these parameters. However, we are

interested in reversing this process: given some finite set S ⊂ D of locations, we

will use the household data from these locations to make inferences about possible

values of the parameters. Following convention, we write y = {y(s) | s ∈ S } as

the observed response, and θ = (β⊤, ρ, σs, σe)⊤ as the parameters to be estimated.

Under the Bayesian paradigm, one treats θ as a random variable and assigns priors

based on domain knowledge or on hypotheses formed prior to data collection. Bayes’
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theorem then gives the posterior distribution P (θ | y), which represents our updated

beliefs about θ given the data we have observed at S . The posterior distribution

can further be used to make predictions at unmeasured locations.

For our analysis, we use weakly-informative N(0, 3.3) priors for β, while for the

spatial range and standard deviation we use the penalized-complexity prior of [41],

set to induce tail probabilities of Pr (ρ < 0.1) = 0.05 and Pr (σs > 3) = 0.1. The

variance for the non-spatial random effects σ2
e follows an inverse-gamma distribution

with location 1 and scale 0.01.

Data preparation and analysis was performed in R version 4.1.0 [42]. For compu-

tational speed and convenience, all statistical models were fit using Integrated Nested

Laplace Approximation (INLA) with the Stochastic Partial Differential Equation

(SPDE) representation for the spatial effects, available from the R-INLA package

[43, 44]. All materials necessary for the analysis are publicly available online [45],

including a brief tutorial on spatial modeling with INLA.

2.2.3 Model comparison and full-village analysis

To verify the suitability of the model outlined above, we compare its performance to

two simpler alternatives. The first removes the correlated spatial random effects Z(s)

while the independent ε(s) effects are removed from the other, but otherwise each

model is the same. Models are evaluated based their deviance information criterion

(DIC) and marginal likelihood (ML), formally defined in Section 2.5.1. Both measure

a model’s goodness-of-fit to the data while penalizing model complexity.

Each village is analyzed separately, using all available data within the village.

Additionally, we consider two sets of covariates to be available. The global covariate
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set contains only variables obtainable from the geocoordinates, namely, the location’s

density and distance to the perimeter, which represents a small amount of covariate

information that is convenient to collect. The other set contains these variables along

with the socio-economic covariates listed in Table 2.4.

2.2.4 Predicting out-of-sample infestation status

Let y0 = {y(s0) | s0 ∈ D\S } indicate the unknown infestation status at unvisited lo-

cations. Given a response y observed at S , the joint posterior predictive distribution

for y0 is then

Pr (ŷ0 | y) =
∫

Pr (ŷ0 | y, θ) P (θ|y)dθ. (2.3)

We are interested in the total count of unvisited locations which are infested, defined

as I0 = ∑
y0. To estimate the distribution Pr (ŷ0 | y), and hence Pr

(
Î0 | y

)
, from

the posterior, we generate 5,000 Monte Carlo samples from P (θ|y), then for each of

these samples θ(i), we draw a sample from Pr
(
ŷ0 | y, θ(i)

)
, resulting in 5,000 samples

from (2.3).

2.2.5 An adaptive sampling strategy for infestation re-

duction

In the present study, our objective is not only to make predictions given data observed

at S ⊂ D , but to choose the set S itself to best control infestation. In this context,

S is referred to as the sampling design. To evaluate the quality of a sampling design,

we specify a design target. In our context, this target is the number of houses selected

for treatment (i.e. the size of S ), subject to the constraint that the true infestation
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rate among unvisited houses is below 5% (i.e. I0/n < 0.05).

One possible strategy for choosing effective sampling designs is adaptive (or se-

quential) sampling. Rather than specifying our set of houses to sample completely

before collecting data at these houses, we sample houses in batches: a collection of

houses is selected, the data is gathered at these houses, a model is fit to the data so

far, and a new batch of houses is chosen based on the model’s predictions. At the end

of this process, the set of houses we have visited becomes our final sampling design.

Implementing our adaptive strategy requires the following [33]: 1) an initial de-

sign S1 from which to fit the first model, 2) a batch size b as the number of new

houses to add to the existing observations each iteration, 3) a utility function U to

rank unobserved houses to target. For our application, we additionally require 4)

a termination condition to predict whether the current design meets the infestation

target.

For the utility function, a natural choice might be to rank a location s0 ∈ D \ S

according to its posterior predicted risk Pr (ŷ(s0) = 1 | y) = E [r(s0) | y]. However,

this strategy has high sampling bias and fails to prioritize locations with potentially

new information, hence ignoring possibly large amounts of the geospatial or covariate

search space.

To better explore this space, we therefore balance this strategy with prioritizing

locations of high uncertainty. Since predictions are generally less reliable with smaller

sample sizes, the proposed utility function transitions smoothly from prioritizing a

location’s variance ν̃(s0), to prioritizing its expected risk r̃(s0), where ν̃(s0) and

r̃(s0) have each been centered and scaled over the unvisited locations. The marginal

posterior risk and variance based on an example sample is shown in Figure 2.5. If
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mi is the current number of locations observed at iteration i of sampling, we rank

locations according to the utility function

U(s0) = t(i; α)r̃(s0) + (1 − t(i; α)) ν̃(s0) (2.4)

where t(i; α) = ((mi − m1)/(n − m1))α is a weighting function interpolating between

0 and 1. The exploration parameter α > 0 controls the speed at which the predicted

risk is prioritized, with α < 1 transitioning to risk-based targeting more quickly and

α > 1 favoring exploration for longer.

We propose a termination condition based on our confidence that the current

design satisfies the reduction target:

Pr
(
Î0 < κn

)
≥ γ, (2.5)

where κ is the desired infestation rate, and γ the desired confidence level. If Si is

the current design, we can compute this probability using draws from Pr
(
Î0 | yi

)
as

described above. We fix κ = 0.05 and γ = 0.95 throughout the manuscript.

Finally, we set the batch size b = 3, and sample the initial design S1 uniformly

at random.

In summary, the adaptive sampling algorithm is as follows.

1. Sample initial design S1 uniformly and set i = 1

2. Fit the posterior distribution P (θ | yi) as described in Section 2.2.2

3. If D \ Si satisfies (2.5), return Si. Otherwise, go to step 4

4. Assign each location s0 ∈ D \ Si a utility U(s0) using (2.4)
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5. Choose the b locations with highest utility and add them to Si

6. Set i = i + 1 and repeat steps 2-6.

2.2.6 Simulation study comparing adaptive and random

sampling

We compare the performance of the adaptive sampling procedure from above using

several values of the exploration parameter α, along with a random sampling pro-

cedure, on each of the five Guatemalan villages. To evaluate each resulting design,

we record the size m of the final design, and the true infestation rate, defined as

the number of truly infested houses not in the design divided by the total number of

houses in the village. For all experiments, we used a batch size b = 3.

For each village, the following experiment is repeated 50 times. An initial set

of 10 locations is chosen at random. Then, adaptive sampling using each of α =

0, 0.15, 0.3, 0.7, 1, 2 is performed, as well as a random procedure which uniformly sam-

ples b new houses each iteration, resulting in 7 final designs to be evaluated. In this

way, we apply each of the different procedures to the same set of randomized initial

samples.

2.3 Results

2.3.1 Full-village analysis

A comparison of the model given in Section 2.2.2 to the two simpler alternatives is

shown in Fig 2.1 for each village. The proposed model had a lower (better) DIC than
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Figure 2.1: Model comparison based on two goodness-of-fit measures and com-
putation time, by village and level of covariate information. The best-performing
model is indicated with a star in each case. “Global only” means only covariates available
from the coordinates are available, and “All” indicates all 28 covariates were used. “Z(s)
removed” refers to the model outlined in Sec. 2.2.2 but with no spatial effects, “ε(s) re-
moved” refers to the independent effects removed, and “Both” refers to the full model. DIC
and ML are defined in Mathematical definitions.

the alternatives in all five villages, except for El Cerrón with the full covariate set,

where the model with the spatial effects removed did slightly better. The spatial-

only model (ε(s) removed) had higher ML in all but 3 cases. However, the two

models including a spatial effect had similar performance according to both measures.

In contrast, in El Guayabo, El Paternito, and La Prensa, these two models had

substantially better performance than the model with spatial effects removed. Fig

2.1 also shows the computation time of the proposed model was considerably faster

than the spatial-only model, while the model with no spatial effects was fastest.

The proposed model, fit to all data in the village, also allowed us to draw inferences

about the nature of T. dimidiata infestation at a local level. Table 2.1 summarizes the

effective range after rescaling back to meters, while Figure 2.2 shows the full posterior
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Village Covariate set Mode & 95% HPDI (meters)

El Amatillo Global only 156 (37-931)
All 150 (62-420)

El Cerrón Global only 728 (4-8201)
All 553 (6-7370)

El Guayabo Global only 774 (334-1910)
All 823 (358-2062)

El Paternito Global only 651 (161-2860)
All 874 (171-3751)

La Prensa Global only 480 (212-1138)
All 508 (205-1281)

Table 2.1: Posterior of the effective range from the full-village analysis. Each
posterior is fit according to the model of Section 2.2.2, using two different sets of covariate
information. The 95% highest posterior density interval (HPDI) is the smallest interval
such that 95% of the posterior mass is contained within it.

distribution. The posterior mode was between 150m and 874m, or between 10% and

40% of the village diameter. Although there was notable variation in the effective

range between the villages, it appears fairly similar between the two covariate sets

for a given village, with a difference in mode between 6m and 223m. In the villages

El Cerrón and El Paternito, the 95% highest posterior density interval (HPDI) for

the effective range was quite large (spanning several kilometers), which suggests the

spatial signal was weakest in these villages.

Examining the coefficients for the fixed effects, we found variation between the

villages in the majority of the covariates in the full covariate set (Fig 2.3). The factors

which consistently had a negative association with infestation, defined here as having

a 50% HPDI fully below 0, were not having rats in the home (5 villages), having

bedroom walls in good condition (4 villages), and not keeping construction materials

around the home (4 villages). The factors with a consistent positive association

were having a kitchen outside the home (4 villages), evidence of bird nests inside (3
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Figure 2.2: Effective range from full-village analysis. The posterior marginal p(ρ | y)
of the effective range, from fitting the model of Section 2.2.2 to all locations in each village.
“Global only” means only covariates available from the coordinates are available, and “All”
indicates all 28 covariates were used.

villages), and keeping chickens outside the home (3 villages).

2.3.2 Simulation study results

The results of the simulation experiment comparing adaptive and random sampling

strategies are shown in Fig 2.4. From the 50 final designs obtained from each group of

strategy × village × covariate set, we calculated the mean and 90% confidence interval

(CI) for the percentage of houses in the final design, and for the true infestation

rate remaining in the village. In all villages and both covariate sets, all adaptive

strategies had a smaller mean design size (final number of sampled houses) than

random. Moreover, when the exploration parameter was less than α = 2, the 90%

CI for the design size was entirely below (i.e. not overlapping) the CI for random

sampling. Comparing the top and bottom rows of Fig 2.4, we further find that, except

for when α = 2 and random sampling was used, having the full covariate set tended

to lead to a smaller design size compared to having the global covariate set.
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Amatillo Cerrón Guayabo Paternito Prensa

-6 -4 -2 0 2 4 -6 -4 -2 0 2 4 -6 -4 -2 0 2 4 -6 -4 -2 0 2 4 -6 -4 -2 0 2 4

Bed hygiene - good
Bedroom clutter - no

Bird nests inside - yes
Chicken coop location - adjacent
Chicken coop location - outside
Condition bedroom wall - good

Condition house wall - good
Construction pile type - none

Construction pile type - wood or metal
Dark main room - no

Density
Dist. perimeter

Firewood location - adjacent
Firewood location - inside

Firewood location - outside
Floor type - other

Grain storage in house - yes
House age - 1 or less

House age - 7 or more
House hygiene - good

Kitchen location - inside
Kitchen location - outside
Land for agriculture - no

Land for agriculture - rented
Material house wall - bajareque

Material house wall - brick or block
Material house wall - palopique

Material roof - vegetal or clay
Num. chickens

Num. dogs
Num. humans

Num. pigs
Sign animals - yes

Sign rats - no
Windows in bedroom - yes

Log odds

Figure 2.3: Fixed effect coefficients from fitting the model of Section 2.2.2 to
all available data in each village. Coefficients are on log odds scale. The blue point is
the posterior mean, the bold orange line is the 50% HPDI, and the thin orange line is the
95% HPDI.

Although the adaptive strategies tended to produce smaller designs, they were also

more likely to produce designs which failed to satisfy the design target of reducing

the true infestation rate below 5%, especially when the exploration parameter α was

too low. This highlights the importance of exploring the design space during early

stages of sampling, in order to mitigate prediction bias. With the global covariate

set, in four villages all adaptive strategies had a 90% confidence interval below the

target threshold, i.e. at least 95% of the designs had a true infestation rate below 5%

in the final sample, while in La Prensa only α ≥ 0.7 gave a CI below the target. With

the full covariate set, the strategies with lower α missed the target threshold more
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Figure 2.4: Results from the simulation experiment for each village and pre-
dictor set. The adaptive sampling procedure for varying α, along with random sampling,
is performed for 50 initial sets of 10 houses. The x-axis is the percentage of houses in the
final sampling design, and the y-axis is the true infestation rate remaining in the village.
Diamonds show means, while cross-hairs show the 90% confidence intervals of the data cor-
responding to each axis. The red line indicates the 5% reduction target.

frequently. The mean infestation rate was above 5% for α ≤ 0.3 in two villages, and

in one village for α = 0.7. Moreover, the CI contained 5% in four villages for α ≤ 1,

and one village for α = 2. The CI was always below 5% with random sampling.

Table 2.2 provides a higher-level perspective of the relative performance of the

adaptive strategies, with results from all villages pooled together. Again, we find

that the accuracy (percentage of designs which met the 5% infestation target) was

lowest for lower values of α, especially with the full covariate effect, and that accuracy

was inversely proportional to the difference in design size compared to random.
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2.4 Discussion

The resilience of NTDs, combined with the resource-limited context in which they

inherently reside, presents unique challenges for their control and elimination. In-

terventions must not only provide effective and long-term disruption of the disease,

but also be logistically feasible to allow widespread application [46]. This leads to a

difficult tradeoff between preserving resources while actually making a difference at

the community level. Because of the complex environmental, ecological, and cultural

aspects of NTDs, a further challenge is the need for spatially and temporally adaptive

solutions for efficient control [47, 26].

We have proposed an algorithm which balances this tradeoff between efficiency and

efficacy in the context of Chagas disease vector control in southeastern Guatemala.

With the goal of reducing a village’s domiciliary Triatomine infestation rate below

the government target of 5%, we consider an experimental design problem where only

a subset of houses are treated for long-term vector elimination using locale-specific

housing improvements. The algorithm uses a combination of adaptive sampling and

Bayesian geostatistical modeling to minimize the number of treated houses while

correctly predicting when the reduction target has been met.

The results from our simulation experiment show adaptive sampling strategies are

universally more efficient than selecting houses at random, and are able to consistently

predict whether the 5% infestation target has been achieved. In the case where only

the spatial coordinates of houses are available, even the least exploratory strategy (i.e.

α = 0) was able to correctly predict the target was met with over 90% accuracy. This

is surprising, as selecting houses based on current perceived risk will intuitively lead
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Exploration Covariate set Accuracy (%) Difference (%)
parameter 5% target 8% target median (95% CI)

α = 0 Global only 91.6 100 4.8 (1.6-11.7)
All 54.4 97.6 19.4 (11.2-37.3)

α = 0.15 Global only 97.6 100 4.8 (2.0-10.6)
All 52.8 97.2 18.9 (11.2-36.1)

α = 0.3 Global only 98.0 100 4.4 (2.0-9.6)
All 57.2 97.2 18.4 (11.2-33.7)

α = 0.7 Global only 99.6 100 4.4 (2.0-7.2)
All 77.2 97.6 14.1 (8.4-19.4)

α = 1 Global only 100 100 4.4 (2.0-7.3)
All 81.2 97.6 10.6 (5.6-15.7)

α = 2 Global only 100 100 2.8 (0-4.1)
All 94.8 100 4.4 (1.8-8.4)

Random Global only 99.2 100 -
All 98.4 100 -

Table 2.2: Performance of adaptive sampling in the simulation study, compared
to random sampling. Accuracy is the percentage of designs which met the control target,
i.e. the out-of-sample infestation rate was below 5% (or 8%). Difference from random is the
percentage of the village in the design, minus the corresponding percentage using random
sampling, calculated for each initial design.

to biased predictions [32]. One possibility for this is that the spatial information alone

leads to minimal shrinkage in the posterior during the initial stages of sampling, which

would cause sampling to be nearly random even when α = 0 (since unvisited locations

will look very similar). A second explanation is that the termination condition we

have used counteracts the effects of targeting perceived risk. In particular, sampling

in this way can lead to higher variance at unvisited locations since we have neglected

to gather relevant information about them, leading to a situation where both the

expectation of Î0 and the probability in (2.5) are low, and hence avoiding terminating

prematurely.

Our second major finding is that including additional socioeconomic covariates
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can significantly reduce the number of sampled houses, but only for the adaptive

sampling strategies. However, this additional information also leads to a greater

opportunity for bias in the adaptive strategies with lower exploration parameter, and

even larger values of the parameter (α = 1, 2) occasionally failed to meet the target,

as did random sampling. While this is not ideal, it is reassuring that even with

no exploration (α = 0), the true infestation rate was below 8% in nearly all of the

final designs (Table 2.2). Since this threshold has been shown to guarantee T. cruzi

elimination throughout Central America [10], a viable strategy could be to set the

target threshold slightly below the level actually desired, thus allowing maximum

sampling efficiency while still meeting the actual target.

While the assumption that detailed socioeconomic information is available for

the whole community beforehand is not necessarily realistic, the efficiency gained by

including these covariates opens up new options for T. dimidiata control. For example,

this information could be collected beforehand by community members or with a

quick survey, thereby reducing the number of homes to search for infestation, which

is more time-consuming to collect and requires trained personnel. Moreover, this

could allow a more thorough search for Triatomine presence, which is a notoriously

noisy measurement [48, 21].

On a practical level, our sampling strategy could compliment the EcoHealth ap-

proach in several ways. If local resources for housing improvements are readily avail-

able, then adaptive sampling could be used to conserve insecticide and the time of

health personnel, while allowing house improvements for all residents who want them.

If such resources are scarce, adaptive sampling could further indicate which homes

are most in need of immediate improvement. Adaptive sampling could also be used to
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more quickly develop a localized improvement strategy, by identifying socioeconomic

variables most associated with infestation risk from a subsample of relevant houses.

It has been previously suggested that adaptive geostatistical sampling based on

prediction variance, followed by targeting areas of higher risk in later stages, could

be a way to accurately identify areas for public health interventions while conserving

resources [33]. Altogether, our results support this idea, while rigorously compar-

ing different balances of prioritizing variance and risk. Our experiments show that

with α sufficiently high, this strategy is robust to different communities and levels

of covariate information. The most preferable setting for α, however, will depend on

the particularities of a given intervention. For example, in the initial stages of an

intervention it may be preferable to visit as many communities as possible, with the

understanding that the control target may fail to be reached in a few communities,

while in later stages a smaller number of remaining areas can be targeted with a

higher level of precision.

2.4.1 Full-village analysis

The results from the full-village analysis, where several models were fit to all avail-

able data in each of the villages, provide further insight into factors associated with

T. dimidiata infestation in southeastern Guatemala. First, the superior explanatory

power of the spatial models emphasizes the spatial nature of infestation, something

not accounted for in previous studies of infestation risk [4, 21]. There are several

possible explanations for the spatial autocorrelation present in this data. One pos-

sibility is a limited migratory range from existing domestic populations, leading to

local clustering following the insect’s dispersal season. Such a dynamic is supported
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by several population genetics studies, which have found insects in nearby houses

and adjacent villages are more related [49, 50], as well as insects from highly-infested

houses and their neighbors following insecticide application [15]. Another explana-

tion is that spatial patterns are due to unmeasured covariates, which are themselves

spatially autocorrelated. While our results show spatial effects remain even after

accounting for a number of socioeconomic variables, environmental factors such as al-

titude, temperature, and precipitation have been shown to be mildly correlated with

T. dimidiata infestation [51, 52].

A second important finding from the full-village analysis is the variation in fixed-

effect coefficients among the five villages. While several covariates, such as the con-

dition of bedroom walls, consistently had a meaningful association with infestation,

many others varied in their explanatory power, and even whether there was a posi-

tive or negative association. Important fixed-effects also varied compared to previous

T. dimidiata studies in different areas. In particular, the distance from the village

perimeter was found to lead to significantly higher infestation rates and vector abun-

dance in Yucatan, Mexico [52]. However, not only was there no correlation (ρ = 0.02)

between village perimeter and infestation overall in our data, but we found the im-

portance of village perimeter as a covariate was negligible using either covariate set,

which shows there is little association between these variables when accounting for

spatial and various covariate effects as well. This could be due to the close proximity

of several of the villages, or to deforestation leading to a disruption of sylvatic popu-

lations in the surrounding environment [53]. Ultimately, these results all add to the

existing evidence that risk factors for T. dimidiata infestation must be considered in

a local context [9, 23].
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2.4.2 Limitations and future work

This study has a few limitations. First, our methods focus on bringing the infesta-

tion rate below 5% among untreated houses, with the logic that uninfested, unvisited

homes already have factors not conducive to T. dimidiata infestation, and that the

EcoHealth approach empowers communities to maintain these factors throughout the

village [22]. However, it is certainly possible for the infestation rate to still rebound.

For example, if a previous insecticide application was recent enough, some households

may not be uninfested due to favorable conditions but rather that the vector pop-

ulation has had insufficient time to fully reestablish. Further, maintaining certain

housing conditions alone may not be enough if changing environmental conditions

alter the relationship between housing conditions and infestation risk. Additional

research would therefore need to confirm the long-term effects of allowing a small

fraction of houses to remain infested after an intervention.

We have also ignored any practical constraints when choosing locations during

sampling, such as the travel time to selected points, or the logistics of centralizing

incoming data after each iteration of sampling. It therefore may be more realistic to

impose a penalty in (2.4) based on distance from current samples, or to increase the

batch size b to allow a more natural sampling schedule. Finally, our decision to lump

all signs of infestation into a single indicator ignores potentially useful information,

including their different implications for disease risk. A recent study in Jutiapa found

a large difference between adult and juvenile infestation rates [53], so it may be

beneficial to separate these variables.

In the simulation study, several parameters of the adaptive sampling procedure

were fixed throughout, such as the batch size b and size of the initial design, to limit
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computational overhead. While our results demonstrate the settings we chose can be

effective across multiple villages, an analysis involving the interaction between these

parameters would provide a more thorough summary of when our procedure works

best, and its robustness to different parameter settings.

The methods developed in this work can be applied in contexts other than Cha-

gas vector control. In particular, adaptive geostatistical sampling using the utility

function (2.4) and termination condition (2.5) can be applied nearly directly to other

NTD control initiatives seeking to efficiently meet a reduction target. For example,

schistosomiasis prevalence in schools has been shown to have spatial autocorrelation,

and covariate information for schools can be acquired through teacher-given surveys

[54]. Adaptive geostatistical sampling could therefore be applied to efficiently target

schools at greater risk.

Our methods could also be applied to other Chagas endemic regions, and extended

to account for more complex ecological data, such as jointly modeling several vector

species and lifestages, or using spatiotemporal models [55] to improve the efficiency

of follow-up surveys and adapt to seasonal effects. It would also be interesting to

investigate the use of additional environmental variables as an alternative to the so-

cioeconomic information, which may provide similar gains in sampling efficiency while

being easier to collect. More generally, our framework could be used for monitoring

multiple, possibly interacting, diseases [56]. This would allow sequential samples to

take into account information both between and among pathogens. Finally, additional

research should go into the development of tools for adaptive, targeted intervention

strategies, and how such software can best be applied for the direct benefit of the

community.
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In conclusion, we have proposed an adaptive strategy for public health inter-

ventions, which transitions from prioritizing areas of greatest uncertainty to those

perceived to be most at risk. This would allow control initiatives to use resources

more efficiently, by targeting areas of greatest need while still benefiting the entire

community. We believe the methods used in this work are well-suited to address the

complex ecological, biological, and social factors inherent to disease spread, and hence

are applicable to a wide range of epidemiological systems.
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2.5 Supplemental information

Table 2.3: Additional information from the 2011 EcoHealth survey.

Village Total number houses Number houses Infestation rate
after preparation (after preparation)

El Amatillo 215 172 15.3%
El Cerrón 205 147 36.7%

El Guayabo 302 251 33.3%
El Paternito 138 108 38.3%
La Prensa 280 207 38.8%

Total 1,140 885 32.3%
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Table 2.4: Socioeconomic variables used for model fitting.

House factors Values/range
Bed hygiene Good, poor
Sign of bird nests inside Yes, no
Location of chicken coop Inside or adjacent to house, outside house, none
Clutter in bedroom Yes, no
Poorly lit bedroom Yes, no
Floor material Dirt, other
Piles of construction material Adobe or clay, wood or metal, none
Firewood location Inside house, directly outside, outside, none
Grain storage in house Yes, no
House age Less than one year, 2-6 years, more than 7 years
House hygiene Good, poor
Kitchen location Inside house, outside, shared or none
Land for agriculture Rented, owned, none
Sign of rats Yes, no
Sign of other small animals Yes, no
Bedroom wall condition Good, deteriorated
Wall condition throughout home Good, deteriorated
Material house wall Adobe, bajareque, palopique, brick or other

Material roof Aluminum or cement, clay or vegetal material,
nylon panels

Windows in bedroom Yes, no
Number residents 1-15
Number chickens 0-60
Number dogs 0-12
Number pigs 0-12

2.5.1 Mathematical definitions

Matérn covariance function

For any pair of points at distance d from each other, the Matérn covariance be-

tween these points is

C(d) = σs

2ν−1Γ(ν)(κd)νKν(κd),
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where Γ is the Gamma function and Kν the modified Bessel function. The parameters

σs and ν are the spatial standard deviation and smoothness, respectively, while κ is

implicitly defined via the effective range ρ =
√

8ν/κ, which is the distance at which

the correlation between points roughly becomes 0.1.

Deviance information criterion and marginal likelihood

Let M denote a statistical model of interest. The deviance information criterion

of M is

D(θ̄) + 2pD,

where D(θ) = −2 log(p(y | θ)) is the deviance, θ̄ the posterior expectation of M, and

pD the effective number of parameters [57].

The marginal likelihood is

p(y | M) =
∫

p(y | M, θ)p(θ | M)dθ.
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Chapter 3

Adapting vector surveillance using Bayesian

Experimental Design: an application to

an ongoing tick monitoring program in

the southeastern United States

Abstract

Objectives: To demonstrate the use of Bayesian Experimental Design (BED) in plan-

ning spatiotemporal surveillance of disease vectors, for maximizing information re-

garding environmental covariates and minimizing uncertainty in high-risk areas. We

illustrate these principles using an ongoing tick surveillance study in South Carolina

parks.

Methods: We implemented a BED workflow based on spatiotemporal models of tick

presence. Following a model comparison study based on two years of initial data, sev-

eral techniques for finding optimal future survey times and locations were compared

56



to random sampling.

Results: Two optimization algorithms found surveys better than all replications of

random sampling, while a space-filling heuristic performed favorably as well. Fur-

ther, optimal surveys of just 20 visits were more effective than repeating the schedule

of 111 visits used in 2021.

Conclusions: BED shows promise as a flexible and rigorous means of survey design for

vector control. Identifying sampling schedules with high expected utility can alleviate

pressure on local agencies by limiting resources necessary for accurate information on

arthropod distributions. For tick surveillance in South Carolina, optimal scheduling

can improve critical public health information with just a handful of collection visits.

3.1 Introduction

Tickborne diseases now make up more than 75% of reported vector-borne infections

in the United States [1]. This sharp increase in the last decade is likely due to an in-

creased awareness in the public health importance of monitoring tickborne pathogens,

as well as the continued geographic expansion of several medically important tick

species [2, 3]. An accurate understanding of the spatial and temporal distribution of

medically important ticks is a crucial first step to informing when and where peo-

ple are at risk, and forms the basis of public health programs for the diagnosis and

prevention of tickborne diseases [4]. However, maps of tick distributions throughout

the US are lacking in spatial and temporal resolution, and often depend on outdated

sources, disparate sampling techniques, or otherwise biased data [5, 6]. Statistical

models are therefore important tools for explaining factors associated with tick pres-

ence and filling gaps in existing distribution maps. However, the reliability of model
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predictions are critically dependent on the amount and quality of input data at an

appropriate spatiotemporal scale [7]. An area with particularly limited knowledge of

current tick distributions is the southeastern US, where local resources for monitoring

and control are scarce and less than 10% of vector control agencies do tick surveillance

of any kind [8, 9].

In addition to learning from existing data, a further use of tick distribution mod-

els is informing future surveillance and control efforts by anticipating the value of

future sampling locations. For example, more fine-grained sampling might follow an

initial surveillance effort focused on a subset of areas of potentially high risk [10].

Though usually such sampling decisions are made in an ad hoc manor, a decision-

theoretic alternative is to assign a score to potential sampling times and locations

and attempt to find visits maximizing some objective function [11]. Deciding future

visits for surveillance or control efforts may then be framed as an optimal experimen-

tal design problem, where a calendar of sampling times and/or locations is chosen to

maximize their information content or increase the impact of vector control measures

[12, 13]. Because observational studies of tick distributions involve a complex web

of interactions between variable environmental conditions, population dynamics, and

uncertain measurement, it is important to employ design criteria which are robust to

uncertainty in model parameters and experimental conditions [14].

Thanks to computational advances in recent decades, Bayesian inference has be-

come popular for model fitting in ecology and epidemiology [15]. The advantages of

Bayesian inference include a complete treatment of model uncertainty through pro-

viding posterior distributions of plausible model parameters and predicted outcomes,

and the ability to incorporate entomological or medical knowledge through prior be-
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liefs. For experimental design, the Bayesian paradigm provides a framework that is

robust to system uncertainty and flexible for tailoring novel design criteria to specific

challenges in public health [16, 17].

Implementing Bayesian Experimental Design (BED) involves three general steps

(Figure 3.1). First, a statistical model is chosen based on its suitability to explain any

existing survey data, resulting in a posterior distribution over model parameters given

initial input. Next, a utility function is developed to score potential future survey

schedules based on the quality of new information. Finally, the space of possible

designs is searched for highly informative survey schedules using optimization. While

an initial dataset is not required for BED, we frame the method for the situation where

preliminary data are available from previous surveillance efforts. This information can

help inform an appropriate choice of model, and more effectively differentiate designs

of high quality [18]. The experimental goal is then to design a future survey which

provides additional value beyond the initial dataset.

In this work, we outline principles for how BED can be incorporated in spatiotem-

poral surveys to maximize the value of vector surveillance and control efforts, and

illustrate their use for an ongoing tick surveillance effort of South Carolina state parks

and other public lands. We compare the ability of different search techniques to find

survey schedules which maximize utility based on two design criteria tailored to dif-

ferent priorities of vector surveillance. In addition to informing future data collection

efforts, we demonstrate how high utility designs can be further analyzed to provide

novel insight into sources of uncertainty in tick distributions.
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1. Model selection and inference 2. Design problem construction 3. Optimization 

compare candidate models based on Deviance
Information Criterion

given candidate survey   , obtain distribution
of future outcomes

for particular outcome                     assign a
score based on given design criterion

attempt to maximize the expected utililty

utility is the weighted average over outcomes

Spatiotemporal design space

DIC = 10.85

DIC = 12.47

initial design

previous survey       provides an initial
dataset 

fit the joint posterior distribution for weighting
future outcomes

candidate design

build model for     , the risk of exposure at site
  and time

optimal design

proposals

best so far

examine the best performing design

Figure 3.1: Implementing Bayesian Experimental Design in spatiotemporal
surveillance. A motivating example with a single environmental covariate is shown, with
the goal of establishing environmental factors associated with tick presence. Top: a small
design space consisting of four possible survey locations (e.g. parks) and four timepoints
(e.g. months). A surveillance schedule consists of arranging points in design space. The
changing values of the environmental covariate x are shown for each survey point, and the
values of x corresponding to a design d is mapped to the 1-dimensional covariate space,
indicated by arrows for each d. Bottom: in step 1, a response yinit and associated x values
from an initial survey yinit are shown in covariate space, two candidate models are com-
pared, and a posterior distribution for the selected model is fit. In step 2, the utility of
some candidate design is defined as an average over future outcomes and the amount of
new information which would be provided by each outcome. Here a Bayesian D-optimality
criterion is used, which scores outcomes based on the volume of confidence ellipsoids ap-
proximating the updated posterior distribution. In step 3, finding an effective design is
treated as an optimization problem over the space of candidate designs. A generic stepwise
procedure is shown, and the best design found after 100 iterations is then examined. In
accordance with BED theory, this design spreads additional points throughout the middle
of covariate space, while putting special attention at the extreme x ≈ 2 which was under
sampled in the initial survey.
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3.2 Methods

3.2.1 Data collection and preparation

Data were from a larger tick surveillance project of South Carolina city and state

parks, beginning in March 2020 to present day. The project also included submis-

sions from South Carolina animal shelters and citizen scientists, though these data

were not used in this study. Here we use data from 2020 and 2021 state and city parks,

with observations spanning 26 counties and 10 calendar months. A scientific collect-

ing permit from the SC Department of Parks, Recreation, & Tourism was secured

for both years, and written permission was granted from the appropriate municipal

government for city parks. The coordinates for each site were selected near the en-

trance to each park in a forested area for consistency. Tick collections were performed

following recommended CDC Ixodidae guidelines [19]. In brief, tick traps consisting

of a 0.61m2 muslin cloth baited with 1.5lb dry ice each were placed in parks along

hiking and nature trails and left in the park for 1.5-2 hours. Additionally, tick drags

were performed along different hiking and nature trails. Tick drags were constructed

with a 1.22m x 1.52m white duck canvas attached to a 1.22m wooden dowel, with

zinc washers as weights on the bottom. Each collection at a park consisted of ten

tick traps and a total of 30 minutes of tick dragging to ensure that the recommended

surface area for host-seeking ticks was surveyed.

Ticks were brought to the Laboratory of Vector-Borne and Zoonotic Diseases at

the University of South Carolina for processing, where they were identified to species,

sex, and life stage. Morphological identifications were conducted with multiple di-

chotomous keys. The response outcome for each visit was then recorded as a binary
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variable indicating presence/absence of nymphs for each species. A. maculatum, I.

brunneus, and I. affinis were found in only 3, 5, and 12 visits, respectively. To im-

prove the quality of model predictions, A. maculatum was therefore removed from

all further analyses, and the Ixodes species were aggregated into a single Ixodes spp.

group. In the original collections data, there were 59 distinct visits in 2020, and 111

visits in 2021. A. americanum was found in 45% of these 170 visits, Ixodes spp. was

found in 24%, and D. variabilis in 8%.

3.2.2 Environmental risk factors

Several meteorological and geographic variables were selected as potential covari-

ates of tick occurrence based on tick ecology and previous modeling studies [20, 21].

Land cover and forest canopy data were obtained from the USGS 2019 National

Land Cover Database [22], while elevation and meteorological variables were obtained

from PRISM [23]. Included meteorological variables were monthly total precipitation,

monthly average of the daily maximum temperature, monthly average of the daily

minimum temperature, average daily minimum temperature in January, and monthly

average of the daily average humidity, calculated from average daily temperature and

average dew point temperature [24]. Since we are interested in making predictions

for future years, 30-year meteorological monthly normals were used, defined as the

value for each month on average over the last 30 years. The continuous covariates

were centered and scaled prior to all statistical analyses, and the monthly minimum

temperature was removed due to multicollinearity.
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3.2.3 Modeling tick distributions using Bayesian regres-

sion

Further information on the model specification and experimental design procedure

is given in the Supplemental Methods (Section 3.6). We used a hierarchical, mixed-

effects framework, where correlations between the observed tick distributions and

various environmental, spatial, and temporal effects are captured [15]. The probabil-

ity of encountering a tick of species j, in a visit to site i during month t, is therefore

a function of the 7 environmental covariates, the survey location, and the month the

visit took place.

To find a model parsimonious with the initial collections data, 28 candidates

were constructed by simplifying different components of the full model. Each of the

environmental, spatial, and temporal components were considered either shared or

different between tick groups, and linear or spline-based functions were considered for

the environmental effects. Models were compared based on the Deviance Information

Criterion, which measures a model’s goodness-of-fit to the data and robustness, while

penalizing model complexity. The best performing model was used in all subsequent

analyses.

3.2.4 Experimental designs for vector surveillance

Because of the limited capacity of vector control agencies and researchers, a reasonable

surveillance strategy should consider the feasibility and convenience of sampling sites

while allowing sufficient diversity to realistically be able to extrapolate to the region

of interest. To maintain this balance, we restricted future sampling to a set of 57
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sites on public land across South Carolina, including all 47 South Carolina state

parks and historic sites, 6 locations within national parks and wildlife refuges, and 4

other natural areas present in the initial survey data. Collection visits were delineated

monthly and could take place in any month, resulting in a space of 684 possible visits

which may be added to a candidate survey.

In BED, potential outcomes resulting from a proposed design d are assigned a

utility, or a score based on the quality of new information provided by that outcome.

The utility of the design is then averaged over the posterior predictive distribution

of possible outcomes (Figure 3.1, step 2). To score potential outcomes, two design

criteria were considered. First was a form of Bayesian D-optimality, which quantifies

uncertainty in the posterior covariance matrix for the environmental effects [25]. A

second criterion was then designed to improve the reliability of prediction maps in

regions where risk of exposure is highest. Here we assigned utility based on the

maximum reduction in standard deviation of risk from the initial dataset among

high-risk visits, where high-risk visits were defined as any point in the map with

expected risk greater than 0.75 for at least one tick species. The maximum rather

than mean reduction in uncertainty was chosen for greater variety compared to the

first criterion, and represents an “all in” approach where a small number of visits are

chosen to target uncertainty at a specific part of the prediction map.

Equipped with a predictive model and utility function, the space of possible de-

signs can be searched to optimize utility (Figure 3.1, step 3). Because Bayesian design

criteria are available in closed form only in the simplest cases, mathematical formulae

are not available and numerical methods are typically used. This design space is far

too vast to test the utility of most designs, therefore specialized search techniques
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are needed to find designs of high quality [16]. We implemented two optimization

algorithms – first was a Simulated Annealing algorithm, a popular stochastic search

technique which incrementally adds and removes visits to a design while avoiding

local minima, and second was an Exchange algorithm which rotates through neigh-

boring months and sites until no neighbors improve utility [12]. We also considered

two heuristics to choose designs based on characteristics suspected to lead to high

utility, while requiring fewer computational resources than optimization. The first

chose visits with the highest predicted variance given the existing collections data,

and the second was a space-filling heuristic which spread visits evenly over time and

prohibited visiting any two parks less than 25km away [26]. We then compared these

four strategies to random sampling for an increasing sample size from 5 to 20 vis-

its, as well as to several convenience sampling schedules which were constructed by

repeating aspects of the initial collections data.

3.3 Results

In the model comparison study, the model with lowest DIC included linear environ-

mental effects shared between species, and both spatial and temporal effects separate

for each species, although several alternative models performed nearly as well (Fig-

ure 3.5). The posterior environmental and temporal effects from the best performing

model are summarized in Figure 3.2. Daily maximum temperature and January min-

imum temperature both had a strong positive association with tick presence, while

precipitation had a strong negative association, as coefficients for these variables had

over 95% of the posterior mass above/below zero. Relative humidity, elevation, and a

Mixed Forest land cover also appear negatively associated with risk. The coefficients
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Figure 3.2: Posterior environmental and temporal effects from the initial survey.
Results are shown for the best-performing model fit to the initial survey data from 2020-
2021. All results are in log-odds scale. (A) Marginal posterior mean for each coefficient
of the environmental variables are shown as points, while 50% and 95% Highest Posterior
Density Intervals are shown as purple bars. (B) Mean temporal trend for each tick group
is given by dashed lines, along with full marginal posterior densities for each month/tick
group.

for land cover had particularly high variance, likely due to less data being available

for any single land cover class. Spatiotemporal prediction maps throughout South

Carolina for each tick group are shown in Figure 3.3. The average predicted risk

for both A. americanum and Ixodes spp. was high in the southeast of the state,

though in different months, while average risk was consistently low for all species in

the northwest. Figure 3.3 also shows there remains considerable model uncertainty in

tick presence throughout much of the state, illustrating the importance of continued

surveillance.
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Figure 3.3: Spatiotemporal mean and standard deviation of risk. Results are
shown for the best-performing model fit to the initial survey data. Posterior marginals for
the probability of tick presence were computed along a 16km grid of locations across South
Carolina, and summarized by the mean (top) and standard deviation (bottom).

Figure 3.4 summarizes the results from the simulation study, with utilities of

the designs produced by each search method compared to random sampling. For

the D-optimality criterion, both of the optimization algorithms and the space-filling

heuristic were able to find designs better than any random sample, and had very

similar performance for all sample sizes, although the space-filling strategy was less

computationally expensive. The variance heuristic performed comparably or worse

than random. The example designs based on the initial schedule also had much lower

utility relative to their larger sampling budget – revisiting all 30 previously visited

sites in June is worse than a schedule of 10 visits found using Exchange, and repeating

all 111 visits from 2021 had lower utility than designs of 20 visits. Results were similar
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for the second criterion of maximum variance reduction in high-risk visits, although

space-filling was less effective than Exchange and Simulated Annealing. For this

criterion, an optimal design of 20 locations was found with expected utility of 0.1,

which amounts to a 30-50% reduction in uncertainty for a particular high-risk visit.

To obtain a sense of what makes certain surveys better than others, the environ-

mental conditions of each possible visit were then projected using Factor Analysis for

Mixed Data (FAMD), a dimension reduction technique for continuous and categorical

data [27]. The associated covariates are embedded within the two most important

dimensions in Figure 3.4C and D, and the third and forth dimensions in Figure 3.6.

For the first criterion, the three successful strategies chose visits which spread covari-

ates throughout the center of the two most important dimensions, while the Variance

heuristic placed points on the edges and far away from the observed data. For the

second criterion the successful designs instead placed many points in the bottom-right

quadrant of space, showing there are particular survey conditions which were critical

for maximizing information regarding certain high-risk sites.

3.4 Discussion

Accurate information regarding the time and place of probable tick encounters is

an essential first step to reducing the burden of tick-borne pathogens. Statistical

modeling allows extrapolating available information to a wider scale, which in turn

enables local vector control agencies to better direct critical resources. However, the

reliability of such model predictions are critically dependent on the nature of available

data. Combining a Bayesian workflow and design of experiments is a principled

approach to getting more out of data from existing surveillance efforts, and directing
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future efforts for the greatest effect. Thanks to advances in software and computing

throughout the last decade, optimal Bayesian survey design is feasible to implement

for a diverse array of researchers throughout epidemiology.
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Figure 3.4: Comparing search methods for effective designs of tick surveillance.
The utility of designs found using different search strategies are compared to 20 replications
of random sampling (light blue distributions) for different sample sizes, and to different con-
venience sampling examples (dashed lines). (A) Results from optimizing the D-optimality
criterion for the environmental covariates. (B) Results using the maximum variance reduc-
tion criterion among high-risk visits. (C-D) The full covariate space from all possible visits
is projected to two dimensions using Factor Analysis for Mixed Data (FAMD) [27]. Filled
gray points are visits which occurred in the initial data, while colored points are designs of
size 10 found with each search method.
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Our results for the application of scheduling monthly tick surveillance in public

natural areas demonstrate large gains in information is possible through carefully

chosen surveys. Even when restricting sampling to a limited number of locations,

efficient survey design can make the difference for learning critical information and

improving the reliability of tick distribution maps. Successful designs can also inform

general practices for surveillance. For example, for the first design criterion based on

environmental covariates, the success of a space-filling strategy shows that spreading

future visits across time and space is more valuable than other intuitive options

such as focusing sampling on specific months which were previously under-sampled.

Because similar environmental conditions will tend to be clustered in time and space,

spreading visits in this way will tend to spread design points across covariate space

as well, which is generally D-optimal for simple logistic regression according to BED

theory [28].

Analysis of the initial survey data during model comparison provides insight into

the current tick patterns in natural areas throughout the southeastern US, while also

demonstrating further data is needed. The top performing models all included a

temporal trend for each tick species, and the posterior marginals for each trend show

strong seasonal patterns (Figures 3.2B and 3.5). These residual trends could indicate

contributions from variables not included in the analysis such as isothermality [20], or

from seasonality in ecological factors such as host availability. Another explanation

for this temporal trend is our use of 30 year normals data, which ignores climatic

differences between the two years in the initial data that could lead to a temporal

offset in risk between years.

The best suited models all included a term for spatial variability for each tick
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species as well, which has previously been deemed important for modeling I. scapularis

density [10]. Overall, the large variance in both the spatial and temporal effects

among top models suggests uncertainty in tick presence is due to a combination of

unmeasured environmental effects, population dynamics, and the variability inherent

to all methods of tick collection in a natural environment [29]. It is also interesting

that the top performing model did not include species-dependent nor non-linear effects

with the environment, as the importance of such non-linear environmental effects are

frequently stressed when modeling tick distributions [20, 30]. This is likely due in

part to the relatively limited geographic range of our data.

Our prediction map (Figure 3.3) of expected probability of tick presence in South

Carolina generally agrees with previously published results, although data at a similar

spatial and temporal scale are limited. For I. scapularis, county level data show 30% of

South Carolina counties had an established tick presence by 2015, most of which were

in the southeast [31], while models calibrated to the same data predicted suitability

in the center of the state as well [20]. County level establishment of A. americanum

follows a similar pattern as I. scapularis [32], although predictions based on that

data indicated all counties were highly suitable [33]. This previous prediction of A.

americanum in the northwest is in contrast with our findings, as the species was never

encountered during initial data collection in the region, and our model predicted low

risk there in all months.

The application of BED for vector surveillance used in this work focused on es-

tablishing tick presence in public natural areas, although we note that the framework

used here can be applied to other metrics such as abundance with minimal changes.

While measuring tick presence or abundance in outdoor recreational areas such as
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state parks is a widely used method for establishing human exposure risk [34, 35],

and for detecting expanding ranges of ticks and tick-borne pathogens [36], the re-

liability of such data for predicting individualized risk of infection is unclear. For

Lyme disease, it has been suggested that private property is the main source of ex-

posure to host-seeking nymphs [37, 38]. The infection status of ticks is also a critical

source of information, although the importance of measuring density of infected ticks

compared to tick prevalence likely depends on the study area. At the county level,

nymph density has been found ineffective for predicting Lyme disease incidence in low

incidence areas, but is comparable to density of infected nymphs in high incidence

counties [39]. Another limitation with our assumed data collection method is that

patterns of tick presence and abundance will vary greatly over the span of a state

park. Thus, establishing the distribution of ticks is ultimately just a single step to

any comprehensive strategy for vector surveillance and control.

The BED procedure illustrated here suggests several avenues for future statis-

tical and computational development. First, additional work is needed to better

understand optimal designs for the types of mixed-effects models used in this and

other studies of species distributions, as research combining BED and mixed-effects

models is generally scarce [12, 18]. Second, specialized optimization strategies for

finding optimal survey schedules should be developed, as spatiotemporal survey de-

sign presents distinct challenges such as incomplete control over the environmental

conditions available among possible visits. Another possibility is to employ adaptive

sampling, where locations are visited in smaller batches and the data collected from

each iteration are able to inform sampling in future batches, although updating data

sequentially leads to additional logistical constraints during surveillance [13, 40]. A
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final avenue for future work is in the choice of design criteria, which may change

depending on the specific goals of the analysis. While we simply restricted designs

to a certain number of visits, researchers with different goals or resource limitations

could employ criteria which account for distance traveled, availability of materials,

or density of human traffic at a particular park and month. Additionally, a general

procedure for design criteria which adapt to the current needs of local vector control

agencies would allow widespread application of experimental design strategies at a

fine-grained spatiotemporal scale.

3.5 Conclusions

In this work, we have outlined Bayesian Experimental Design as a formal approach

to the surveillance of disease vectors. Compared to classical methods of experimental

design, a Bayesian framework provides a natural way to incorporate initial survey

data, while rigorously accounting for remaining uncertainty in model predictions.

We applied a BED workflow to an ongoing tick surveillance study in South Carolina

state parks, and found that surveys optimized to satisfy specific goals were universally

more efficient than simple random sampling. These results demonstrate the promise

of optimal survey design for researchers and vector control agencies to maximize the

impact of the data they collect.
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3.6 Supplemental information

3.6.1 Model specification

To model the distribution of different tick species simultaneously, we use a hierarchical

framework analogous to a mixed-effects model, where environmental factors operate

as “fixed” effects while residual variability within and between sites, months and

tick species operate as “random” effects. Let yijt be a binary variable indicating the

presence of a tick of species j during a visit to site i in month t, and rijt the the

corresponding risk of tick encounter. There are K different covariates capturing the

environment in the model, and xkit indicates the value of each covariate during a visit.

The full model specification is then

yijt ∼ Bernoulli(rijt) (3.1)

logit(rijt) = ηijt =
K∑

k=1
fkj(xkit) + sij + mjt (3.2)

where for each tick species j, sj and mj are hierarchical effects for each visit site and

month, and fkj are (potentially nonlinear) functions of the covariates.

For environmental effects, we consider two possible forms for f . First is the linear

case where fkj(x) = βkjx for all k and j, and βkj have N(0, 5) priors. Second is a

Bayesian analog to a spline model, where each fkj(x) is distributed as a random walk

of order 1 over x with precision τf [41].

We assume site-level effects for each species are independently and identically

distributed, so that sij ∼ N(0, τ−1
s ) with precision τs. For month-level effects, we

assume temporal trends for each species are independently and identically distributed
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AR(1) variables with marginal precision τm and lag correlation ρ [41]. Priors for τf ,

τs, and τm are set to logGamma(1, 0.1), while ρ is distributed such that logit
(

1+ρ
1−ρ

)
∼

N(0, 6.67).

3.6.2 Model comparison study

To find a model best supported by the existing collections data, we test different

variations of the above full model by simplifying different components and testing all

combinations. Each of the environmental, spatial, and temporal effects are considered

as shared between between species (i.e. removing the j in (3.2)), as well as with the

spatial and temporal components removed entirely. Finally, both the linear and

spline forms for each f are considered. For example, a model with linear f , spatial

effect shared between species, and no temporal effect would be ηijt = ∑
k βkjxkit +

si. Combining these simplifications results in 28 candidate models, and models are

compared using DIC [42]. All models are fit in R version 4.2.2 using R-INLA version

23.02.27 [43].

Results from the model comparison study are shown in Figure 3.5. The top

performing model is highlighted, and included linear f shared between species, and

spatial and temporal effects for each species. Thus, the model chosen for this work

has linear predictor

ηijt =
∑

k

βkxkit + sij + mij. (3.3)
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Figure 3.5: Deviance information criterion of different mixed-effects models, fit to the ini-
tial survey data. Each tile indicates a model comprised of the corresponding environmental
and spatiotemporal effects, shared or independent between tick species. “Slope” indicates
a linear f for each environmental variable, and “spline” indicates nonlinear f . The best-
ranked model (lowest DIC) is highlighted in orange.

3.6.3 Bayesian Experimental Design

As covered in the main text, implementing BED involves specifying a utility function

U(d, y), where in this work d = {(i1, t1), . . . , (im, tm)} is a spatiotemporal schedule of

collection visits and y is potential future data for each tick species observed from the

schedule d. We consider two such functions, which represent the value of new data

y for increasing some form of public health information. First is a form of Bayesian

D-optimality,

U1(d, y) = − log det cov(β | yinit, y),
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where β are the linear coefficients of the environmental effects a posteriori fitted to

yinit and y.

A second criterion was then designed to improve the reliability of prediction maps

in regions where risk of exposure is highest. We first extract covariates for a regular

4km grid spanning South Carolina and all 12 months. For each point (i, t) in this set G,

we define a subset of high-risk prediction points H containing (i, t) if E [rijt | yinit] ≥

0.75 for at least one species j. Utility is assigned based on the maximum reduction

in standard deviation of risk from the initial dataset, among these high-risk points in

H,

U2(d, y) = max
(i,t)∈H

{σ(rijt | yinit) − σ(rijt | yinit, y)} ,

where σ(X) =
√

Var(X).

For a utility function U(d, y), the utility of d is then averaged over future out-

comes. For discrete y,

U(d) =
∑

y
U(d, y)P (y | yinit, d), (3.4)

where

P (y | yinit, d) =
∫

P (y | θ, d)P (θ | yinit)dθ

is the posterior predictive distribution for y resulting from d.
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3.6.4 Description of search algorithms

Once a design criteria is chosen, the goal is to find some d with as close to optimal

as possible. An optimal design for criteria U is defined

d∗ = argmax
d

U(d).

In experimental design, optimization over the utility surface U usually presents

two broad challenges. First, calculating U(d) is computationally expensive, requiring

10s of seconds or longer for a single evaluation, which limits the number of search

iterations that are feasible to budget. Second, evaluations of the utility surface are

subject to noise, since the expectation (3.4) must be approximated using Monte Carlo

methods and samples from the posterior predictive distribution. Optimization algo-

rithms therefore must be robust to noise, for example by having enough exploratory

behaviour to avoid (potentially false) local maxima [44]. A third challenge particular

to the surveys we consider is that the design space is discrete, which prohibits the

use of gradient-based optimization methods.

With these constraints in mind, we consider 4 search strategies for finding good

designs. The first two are optimization algorithms that begin with an initial design of

visits chosen uniformly at random, then attempt to incrementally improve the design

until T = 150 utility evaluations have occurred.

Simulated Annealing: this stepwise strategy proposes new designs by randomly

selecting a new visit and randomly removing a current one. If the proposal is accepted,

this design becomes the current one and the process repeats. To avoid local optima,

new proposals with a lower utility are sometimes still accepted. If s = 1, . . . , T is the
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current iteration, the probability of accepting a worse proposal is

p(s, dprop, d) = exp {(log10 U(dprop) − log10 U(d))/T (s)} ,

where T (s) is a decreasing function of s called the cooling schedule.

We use a cooling schedule of T (s) = T0
(
1 − s−1

T −1

)α
, where T0 is the cooling mag-

nitude and α the curvature. We set T0 = 0.2 when optimizing the first criterion U1,

T0 = 0.02 for U2, and α = 1.3 for both.

Exchange: the Exchange strategy attempts to search more systematically than

SA by stepping through “nearby” design points until no steps improve utility [45, 46].

If d is some current design, the algorithm performs the following steps for each visit

(i, t) ∈ d: first the month t is incremented until U does not increase, then t is

decremented until U does not increase, and then the 4 neighbor sites closest to i

are checked. If none of these moves improve utility for any visit in d, the algorithm

terminates and returns d, otherwise, this process continues until T utility evaluations

have taken place.

Since this process is susceptible to terminating early in local optima, we consider

a single run of the algorithm to be 3 independent replications with a different initial

design. The best of these 3 designs is then chosen.

Variance heuristic: this strategy simply chooses visits based on their variance

given the initial data, and is thus completely deterministic. Points are assigned a

rank νit equal to the average of Var(ηijt | yinit) over species j, and then the m top

ranked points are added to d.

Space-filling heuristic: this strategy samples designs randomly, while ensuring

visits are spread across time and space. First, the month of each visit is sampled
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Figure 3.6: Third and fourth dimensions of successful survey designs projected using
Factor Analysis for Mixed Data (FAMD).

without replacement, repeating as necessary if the sample size is greater than 12.

Then, each site is assigned sequentially by sampling each site randomly, but only

accepting sites which are at least 25km away from all sites chosen so far. As a

stochastic strategy, 5 such designs are sampled, and the one with highest utility is

returned.

In the main text, designs of increasing size are considered in increments of 5.

To reduce computation time, the two optimization algorithms build their designs

incrementally. Thus, only 5 visits are optimized at a time for these algorithms, and

these new visits are added to the previous design when evaluating U .
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Chapter 4

Accurately summarizing an outbreak us-

ing epidemiological models takes time

Abstract

Recent outbreaks of Mpox and Ebola, and worrying waves of COVID-19, influenza

and respiratory syncytial virus, have all led to a sharp increase in the use of epi-

demiological models to estimate key epidemiological parameters. The feasibility of

this estimation task is known as the practical identifiability (PI) problem. Here, we

investigate the PI of eight commonly reported statistics of the classic Susceptible-

Infectious-Recovered model using a new measure that shows how much a researcher

can expect to learn in a model-based Bayesian analysis of prevalence data. Our find-

ings show that the basic reproductive number and final outbreak size are often poorly

identified, with learning exceeding that of individual model parameters only in the

early stages of an outbreak. The peak intensity, peak timing, and initial growth

rate are better identified, being in expectation over 20 times more probable having

seen the data by the time the underlying outbreak peaks. We then test PI for a
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variety of true parameter combinations, and find that PI is especially problematic

in slow-growing or less-severe outbreaks. These results add to the growing body of

literature questioning the reliability of inferences from epidemiological models when

limited data are available.

4.1 Introduction

Incredible efforts have been made in recent years to apply epidemiological models to

the empirical data borne out of the COVID-19 pandemic. The LitCovid aggregator

currently contains over 3,000 papers on “epidemic forecasting” and “modelling and

estimating” trends of COVID-19 spread [1]. We are seeing similar waves of models

and forecasts for recent outbreaks of mpox, Ebola, influenza and respiratory syncytial

virus. However, the enormous variability in model predictions, even among works

using the same model and similar data, erodes confidence when interpreting these

efforts for policy decisions [2]. It is clear that uncertainty remains about what we can

expect to learn from these models, and when.

Disease models tackle the difficult challenge of describing complex epidemic pro-

cesses by relating mechanistic processes to population-level observations such as daily

reported cases. Identifying combinations of parameters that plausibly replicate ob-

served data can help summarize the epidemic dynamics. Common statistics include

the basic reproductive number, the average number of new cases someone will cause in

an entirely susceptible population, and the outbreak size, the fraction of the popula-

tion who will eventually have had the disease. Because these indicators are the prod-

uct of interacting social and biological phenomena, they are never available through

direct observation. Fitting epidemiological models to data is one of the best options
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for estimating these important quantities [3].

The classic Susceptible-Infectious-Recovered (SIR) model accounts for a minimal

number of critical mechanisms of disease spread. Infectious individuals infect sus-

ceptible individuals at a rate β and recover at a rate α. These mechanisms can be

tracked through time by a set of ordinary differential equations:

d

dt
S = −βSI ,

d

dt
I = βSI − αI , and d

dt
R = αI .

It is common to consider S, I and R as a fraction of the population in a given state

such that S + I + R = 1 at all times. The initial state of the population might not

be known—especially the susceptible pool S0 ≡ S(t = 0). Focusing on the second

equation, we can see that the epidemic will grow exponentially at a rate βS0 − α

for initial small values of I, resulting in near-exchangeability of the parameters and

causing large uncertainty in individual parameter values early on [4, 5]. Conversely,

when I becomes small after the peak, the infectious population eventually decays

exponentially at a rate α. These observations make clear that data regarding I will

provide information about different parameters, or combinations thereof, at different

points of an outbreak. In general, the amount of information that can be learned

about a given quantity will in general depend on the structure of the model equations,

the timing of observations, and the level of noise in the data [6].

Despite the model’s simplicity, several authors have cautioned that the reliability

of inferences drawn from the SIR model are questionable when based on prevalence

data alone [7]. Due to the structural nature of the SIR equations, these issues are

particularly acute during the early stage of an outbreak, when inferences are critical

for informing timely public health response [8, 5]. Without careful incorporation of
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additional data, these reliability problems can only grow with additional complexity

in the model equations or observational structure [9, 2]. In order to draw meaning-

ful conclusions, researchers are forced to rely on data from one or more epidemic

waves [10], or make strong and potentially controversial assumptions about parame-

ters governing disease spread [11]. A more general understanding of how properties

of epidemiological models affect uncertainty in commonly reported summary statis-

tics would help researchers quantify how much they can expect to learn in empirical

studies, and establish sufficient criteria for reproducibility. Therefore, the goal of this

report is to provide a comprehensive baseline for the reliability of estimates for a num-

ber of commonly reported statistics, with emphasis on the time necessary to predict

these statistics in an emerging epidemic accurately and to illuminate the structural

interactions between data, model dynamics, and summary statistics.

This question of whether quantities estimated from data are reliable, e.g. com-

patible with some hypothetical true parameters θ∗ = (α∗, β∗, S∗
0) which generated

the data, is termed the practical identifiability (PI) problem and has traditionally

been studied using the variance-covariance matrix of an estimator for θ∗ [12]. How-

ever, such second-order approaches underestimate uncertainty in limited data set-

tings, where the distribution of plausible parameters may be skewed [13, 14]. Here we

propose a new measure that allows us to efficiently and directly measure our ability to

learn various epidemiological quantities at all stages of an epidemic. If u = φ(θ) is an

unknown variable to be estimated, our Bayesian interpretation of the identifiability

of u is the expected logarithm of the ratio between posterior and prior probabilities,
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Parameter space Data space

Simulate model with samples from prior:

Simulate model holding    fixed:

Figure 4.1: Intuition behind the proposed practical identifiability method. From
Bayes’ rule, δu may be written either as (4.1) or (4.5), and ultimately reflects the difference
in information between two sets of model dynamics: first the set of dynamics encoded in
the full prior P (θ), and second the dynamics compatible with u∗ as encoded through a
restricted prior P (θ | u∗).

evaluated at u∗ = φ(θ∗):

δu(θ∗) = Ey|θ∗ [log P (u∗ | y)] − log P (u∗) (4.1)

where y | θ∗ are noisy observations of the underlying outbreak, e.g., daily case counts,

and where the expectation is taken over realizations of the observation process. Since

shrinkage in the posterior distribution is facilitated through the global behaviour of

the model likelihood, (4.1) is able to capture uncertainty arising from complex model

fits, such as bimodality in the likelihood surface. As with traditional approaches to PI,

δu is a local measure of information gain, in the sense that changing the true dynamics

θ∗ will in general give different answers [15]. This allows the effect of particular

values of θ∗ to be studied. Intuitively, we can understand (4.1) as comparing two

sets of model dynamics, the first as generated from the full prior P (θ∗), and the
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Phase 1: Exponential growth
Parameter combinations matching
growth rate are identified

Phase 2: Saturation and peak
Combinations not matching peak
timing/intensity eliminated

Phase 3: Exponential decay
Infections decay with recovery rate allowing
slow separation of remaining variables

Figure 4.2: Practical identifiability (PI) of epidemiological summary statistics
over time. (A) Unknown deterministic SIR process based on true parameters θ∗ (orange
line), and single realization of observed data y ∼ P (y | θ∗) (pink dots). (B) Main panels
show PI according to δu over an increasing observation window assuming daily observations.
Insets give an example of how δu is interpreted, showing P (u | y) and P (u) for the single
realization of y from (A), observed up to T = 3 (blue) and T = 8 (pink). The dashed orange
line is the true value to be estimated. True parameters are α∗ = 0.2, β∗ = 1.25, and S∗

0 =
0.6, with I0 = 0.01 assumed known. Prior beliefs are α ∼ U(0.05, 0.85), β ∼ U(0.3, 1.5),
S0 ∼ U(0.1, 0.99).

second as if u∗ were assumed known (Figure 4.1). Note the metric does not require

computationally expensive Bayesian inference methods to compute—a simple Monte

Carlo procedure for estimating (4.1) is provided in Section 4.4.3.

4.2 Results

Figure 4.2 shows the PI of the SIR model parameters, as well as five summary vari-

ables which are commonly calculated in terms of θ (see Table 4.1 for mathematical

definitions), for a typical parametrization θ∗ of the model. Infectious individuals

are assumed to be independently tested at a fixed rate η at daily timepoints, giving
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Table 4.1: Definitions of epidemiological summary statistics.

Name Symbol Formula
Reproductive number R β/α
Outbreak size O 1 − R(0) − S0 exp(−RO)*

Peak intensity P I0 + S0 + [1 − log (S0/R)] /R
Peak timing T Unknown
Growth rate G βS0 − α
*Implicit equation

a likelihood yt ∼ Poisson(ηI(t; θ∗)). We assumed η = 1000 is known throughout,

which leads to limited observational noise to better study PI inherent to the SIR

equations. δu is computed daily for the eight variables, up to a maximum of 30 days

of observation.

The rate of learning for all variables is uneven over time, with each reaching

plateaus of varying length before the peak. The infection rate β is the worst identified.

Gaining information on α appears easier than β and S0 and even exceeds learning

for R and O after around T = 20 days of observation. PI of the peak intensity, peak

timing, and growth rate increase more rapidly at first, with learning for growth rate

happening particularly fast.

These findings illustrate the difficulty of learning key quantities early in an epi-

demic, under real-time conditions where the number of observations increases as the

outbreak goes on. However, the question remains to what extent a lack of early

learning may be attributed simply to a smaller sample size. Therefore we next ex-

amined the PI of several variables over an increasing observation window, but with

the number of evenly distributed observations kept constant. Figure 4.3 shows that

identifiability of β and R is lowest when observations are concentrated prior to the

peak, confirming that the limits of early learning are indeed a structural property of
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Figure 4.3: Practical identifiability of several variables as a function of testing
frequency. Observations are evenly distributed over the interval [0, T ] for increasing days
of observation T . Solid lines are PI calculated using Monte Carlo, while dashed lines indicate
the approximation given by (4.18). The approximation also gives an asymptotic relationship
between δu and a lower bound on the standard error, indicated with secondary axes. Priors
and true parameters are the same as in Figure 4.2.

the SIR equations that cannot be overcome by allocating additional tests early on.

Further, increasing the frequency of testing from 10 observations to 40 did little to

increase PI during this period, but increased PI considerably for wider observation

windows. Figure 4.3 also shows the functional relationship between the asymptotic

limit of δu and the usual standard error for u, as given by (4.18), which can serve as an

alternative interpretation of δu when there is sufficient data. For example, spreading

10 observations over 40 days gives δβ ≈ 1, which for our chosen priors means we can

expect the standard deviation for posteriors P (β | y) to be at least 0.2 (but could be

much larger in reality, since we are far from the asymptotic limit).

To test the sensitivity of these findings to θ∗, we then computed δu over a grid

of values for β∗ and S∗
0 (Figure 4.4). Since slower-growing outbreaks will naturally

contain less information per day [7], information gain was calculated using observa-

tions up until the first day after the epidemic peak. To investigate the factors of a

true outbreak most associated with learning, for each true value of the eight variables
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Figure 4.4: Change in identifiability when the true parameters θ∗ are varied.
δu is calculated using daily observations up to the first day after the true (unobserved)
outbreak has peaked. True parameters tested were all combinations of β∗ = 0.3, 0.5, . . . , 1.5
and S∗

0 = 0.1, 0.3, . . . , 0.9 with α∗ = 0.2 fixed. Pearson correlation between δu and true
outbreak size is given in corners of each panel. Priors are the same as in Figure 4.2.

considered, the correlation between δu for each variable and the true value was com-

puted. The outbreak size of the true epidemic was the most correlated with learning,

followed by true growth rate, illustrating that less-severe outbreaks are harder to

learn.

4.3 Discussion

The analysis presented here makes it clear that some epidemiological variables are

easier to estimate through model dynamics than others, and emphasizes that most

epidemiological summary statistics should be interpreted with caution when data are

limited. Taken together, the rate of learning for all the variables suggests that learning

takes place in three general phases. In phase 1, plausible parameter combinations

quickly concentrate along the surface {θ : βS0 − α = G∗}, as infections increase

exponentially with the initial growth rate. This explains the sharp but modest gain

in information of all variables except for G during this phase. In phase 2, infections

begin to saturate and parameter combinations matching the true peak intensity and

timing become more plausible. However, for β especially, saturating case counts do
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little to further restrict the plausible parameter surface from phase 1. Finally, phase

3 is characterized by gradual information gain for the remaining variables. Since

infections are slowly declining with α during this phase, this growth is explained by

α∗ gradually being identified, which propagates to allow some remaining combinations

on the plausible surface to be eliminated.

Parameters describing the mechanisms of the model—β, α and S0—take a par-

ticularly long time to learn on account of quickly reaching a plateau at low values of

δu. As a result, the SIR model is more effective at forecasting short-term statistics

of the dynamics such as peak timing and intensity, than it is at estimating mecha-

nisms. This result shows how difficult it is to estimate parameters from early data

in the hope of forecasting the impacts of mechanistic interventions such as reducing

β with preventive measures or increasing α with treatment [16]. Importantly, even

though a lack of identifiability implies a wide range of parameters lead to similar

infectious dynamics early on, these plausible dynamics will still respond differently

to interventions targeting specific mechanisms [17]. Thus, low PI simply means that

an intervention’s impact is difficult to forecast ahead of time.

Learning was nearly as difficult for the statistics R and O as for the individual

model parameters, despite the fact that optimistically, these transformations would

combine the information of each parameter they depend on. The failure of these

statistics to resolve closely exchangeable parameter combinations limits their reliabil-

ity for succinctly describing an epidemic. In contrast, the initial growth rate resolves

such combinations to give rapid shrinkage to the correct value, despite encoding sim-

ilar information as R about disease dynamics [18]. This suggests growth rates are a

more reliable “first look” at an outbreak when using prevalence data under the SIR
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model.

When varying the true values θ∗, see Figure 4.4, we find that less-severe outbreaks

are generally harder to learn, despite having more daily observations available before

their peak. The initial susceptible population S0 appears the most poorly identified

across values of θ∗ by the peak, and the expected posterior shrinkage is even slightly

negative for 25% of the tested values. An interesting implication for control measures

is that the more we reduce the severity of true infection dynamics, the harder it

will be to accurately estimate the impacts of interventions. Further, the mode of

intervention matters: variability along the y-axis in Figure 4.4 for similar values of

O∗ shows lowering S∗
0 impacts learning differently than a reduction in β∗.

Previous investigations into the PI of the SIR model have mainly focused on the

PI of α and β under the simplified model where S0 ≈ 1 is known. These works

generally agree that PI of both α and β is limited during phase 1 [4, 5], but that the

majority of information available has been learned by the time the disease has peaked

[9, 19, 20]. Most comparably to the observational design in Figure 4.2, Capaldi et al.

(2012) considered the asymptotic variance of β̂ and α̂ over an increasing timespan,

and found the variance of both estimators decreased rapidly and smoothly just before

and after the peak, respectively [7]. In contrast, the delayed rate of learning of these

parameters in Figure 4.2 paints a more pessimistic picture of PI when exact likelihoods

and prior context is taken into account. This finding supports the idea that previous

PI results based on approximation theory underestimate uncertainty, particularly

during the early stages of an outbreak when the likelihood surface is highly nonlinear

[13, 21].

In this work, we have proposed a novel means of assessing PI which measures the
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expected posterior gain in density at the true value u∗. While comparing densities at a

specific value may seem to ignore uncertainty in the posterior as a whole, we argue δu

is better interpreted as a measure of shrinkage, rather than density, by marginalizing

the global curvature of the likelihood onto a single dimension for u. If the projected

span of high likelihood values is more narrow than the support of P (u), shrinkage will

occur and δu becomes positive. In this sense, (4.1) might be viewed as a quantitative

alternative to the popular profile likelihood method, in which potential plateaus in

the likelihood surface are projected to the space of some parameter θi and examined

graphically [22]. Additionally, as shown in Section 4.4.4, δu may be interpreted in

terms of standard measurements of uncertainty—in the limit of large data and under

certain conditions, δu converges to a form of the usual standard error of the maximum

likelihood estimator, penalized by the prior weight. Therefore, while our measure was

specifically designed to give a more accurate picture of uncertainty in limited data

regimes, it also has asymptotic behavior similar to the coefficient of variation for u.

The Bayesian nature of our method of assessing PI means that estimates of model

parameters and any variables which depend on them are sensitive to prior beliefs.

In this report, our choice of uniform priors represents modest assumptions about

an emerging pathogen: a priori, just over 50% of scenarios result in an outbreak

(i.e. have βS0/α > 1), and outbreaks range from modest to highly severe (70% of

individuals infected at peak). However, for many pathogens, more informative prior

information is frequently available, for example on the recovery rate of a disease [23].

Relative to more realistic prior settings, this may mean α is more difficult to gain

information about than β and S0.

While we have considered only noisy observation of the current infectious popula-
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tion, real data may also come in the form of daily new infections or cumulative case

counts, and may suffer from lags in reporting or preferential sampling [24, 25]. Learn-

ing epidemiological variables from such data will have their own distinct challenges [9].

PI of the SIR model should also be assessed with hierarchical models incorporating

data from multiple sources, such as hospitalizations and isolated clinical experiments

[26]. Yet, our work shows that even in its simplest form, learning parameters and

statistics of SIR dynamics takes time, limiting which inferences, forecasts, and control

policies can be made from early epidemic data.

4.4 Supplemental information

4.4.1 Data availability

Materials necessary to reproduce this analysis are available on GitHub and have been

archived on Zenodo [27]. A Julia package MarginalDivergence.jl has been developed

for efficient computation of our PI measure, including an interface for easy implemen-

tation of user-provided models. The package is currently unregistered.

4.4.2 Likelihood-based estimation of dynamical systems

While the methods considered here can be applied to any statistical process for which

a likelihood exists, we are interested in processes of the form

yi ∼ g(x(ti), σ) (4.2)

ẋ = h(x(t), τ ) (4.3)
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where y = (y1, . . . , yn) are observations at discrete timepoints t1, . . . , tn, and σ, τ are

parameters that are assumed known or are to be estimated. We are interested in our

ability to estimate a p-dimensional vector of unknown parameters θ∗, comprised of

some elements of σ∗, τ ∗, and x(0)∗.

Given θ, (1.1) and (1.2) form a probability distribution P (y | θ) called the likeli-

hood. In the frequentist paradigm, an estimator for θ∗ can be obtained by maximizing

P (y | θ),

θ̂MLE = argmaxθP (y | θ).

A popular way to assess issues of practical identifiability is through the variance-

covariance matrix of θ̂MLE, which can show marginal uncertainty in individual param-

eter estimators and correlations between pairs of estimators. The Cramer-Rao bound

implies that in the limit of decreasing observation uncertainty (i.e. as the amount or

precision of data increases), the variance of an unbiased estimator converges, given

certain regularity conditions, to the inverse of the Fisher Information Matrix I(θ∗),

where

[I(θ)]ij = − Ey|θ

[
∂2

∂θi∂θj

log P (y | θ)
]

. (4.4)

This bound can underestimate variance when measurement noise is not infinites-

imal [14, 21], leading some to question its applicability even for simple nonlinear

models [13, 28]. An alternative is to estimate the distribution of θ̂MLE using Monte

Carlo simulation, by sampling possible data sets y(1), y(2), . . . from P (y | θ∗) and

finding the maximum of each likelihood P (y(j) | θ) using an optimization algorithm

such as gradient descent. The resulting samples θ̂
(j)
MLE can then be inspected graphi-

cally or used to estimate the covariance matrix. This method has the convenience of
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also working with estimates of transformations of the model parameters, without the

need for further approximation [29].

4.4.3 Proposed method of assessing practical identifia-

bility

While using Monte Carlo estimation of Var(θ̂MLE) to assess PI can alleviate the

underestimation issues when using the information matrix, the use of optimization

to obtain a sample of the estimator can lead to dependence on initial conditions or

other hyperparameters of the optimization method used [12]. Again, the inaccuracy

of this method will be most acute when the likelihood surface is flat or multi-modal,

such as when limited data are available.

Rather than relying on optimization, we instead take a sampling-based Bayesian

perspective. From the main text, we have for a variable of interest u = φ(θ), δu(θ∗) =

Ey|θ∗ [log P (u∗ | y)] − log P (u∗), which gives the average amount, over possible future

outbreaks P (y | θ∗), a researcher can expect to learn about the true quantity u∗ in

a Bayesian analysis. A value of δu = c corresponds roughly to an expected gain in

posterior probability ec times greater than the prior.

Equation (4.1) can be rewritten by applying Bayes’ rule, P (u∗ | y)/P (u∗) = P (y |

u∗)/P (y), where the margin P (y | u∗) equals
∫

P (y | θ)P (θ | u∗)dθ and P (θ | u∗)

is the distribution of the epidemiological parameters compatible with a fixed variable

of interest u∗—we give details below. This leads to

δu(θ∗) = Ey|θ∗

[
log P (y | u∗)

P (y)

]
, (4.5)
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which shows δu may be interpreted as the expected difference between two marginal

likelihoods. The first, P (y | u∗), is the evidence under a reduced model where u∗ is

assumed known, and the second is the evidence of the full model.

We approximate δu(θ∗) by generating M paired Monte Carlo samples from P (θ |

u∗) and P (θ), and reusing these samples to obtain M samples from P (y | u∗) and

P (y) for each y ∼ P (y | θ∗), leading to

δu(θ∗) ≈ 1
N

N∑
i=1

[
log

M∑
j=1

P (y(i) | θ̃(j)) − log
M∑

j=1
P (y(i) | θ(j))

]
(4.6)

where θ̃(j) ∼ P (θ | u∗), θ(j) ∼ P (θ), and y(i) ∼ P (y | θ∗). N = 3000 and M = 60, 000

were used for all computations in the main text.

Accuracy of Monte Carlo estimation of δu

The marginal likelihood P (y) is notorious for being inefficient to estimate via Monte

Carlo methods. One easy way to improve the reliability of estimates is to use resam-

pling methods, where a single random number is used to seed an entire sequence of

samples from the target distribution [30]. Here and in the main text, we use systematic

sampling independently on each θi ∈ θ, which amounts to generating independent

random numbers for each i to generate M low-discrepancy samples from P (θ) (or

P (θ | u∗)) [31]. To test our choice of M was large enough with this setup while still

within a reasonable computational budget, we repeated calculations of log P (y) for

increasing values of M , where a y ∼ P (y | θ∗) was sampled with 60 observations

(every half day). θ∗ and P (θ) were the same as in Figure 1 of the main text. We

concluded that even with 60 observations, which gives a likelihood sharper than the

maximum 30 observations used in the main text, a choice of M > 30, 000 was suf-
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Figure 4.5: Speed and accuracy of approximating the log marginal likelihood
log P (y) using M Monte Carlo simulations. The results are averaged over 100 repeti-
tions of the sampling process for each M .

ficient to give a standard error less than 1, or less than 0.5% of the magnitude of

log P (y). The runtime and standard errors from 100 independent computations of

P (y) are shown as a function of M in Figure 4.5.

Practical identifiability for a function of model parameters

We first justify our above claim that the density P (y | u) is the marginal likelihood

for a reduced model with restricted priors P (θ | u). Using the formula for a vector-

to-scalar transformation of θ | y 7→ u | y, we have

P (y | u) = P (y)P (u | y)
P (u)

= P (y)
P (u)

∫
P (θ | y)δ(φ(θ) = u)dθ

= 1
P (u)

∫
P (y | θ)P (θ, u)dθ

=
∫

P (y | θ)P (θ | u)dθ.
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Thus, P (y | u∗) can be approximated using samples from P (θ | u∗), as done in 4.6.

However, the distribution function P (θ | u∗) will generally not be available in closed

form even when P (θ) is.

Simulating from P (θ | u∗) can be accomplished with the following procedure:

let θi ∈ θ be a chosen “pivot” parameter/index and define φ̃(θi | θ−i) = u to be a

univariate function conditional on θ−i, where θ−i indicates the ith element of θ has

been removed. Assume φ̃ is invertible so that φ̃−1(u | θ−i) = θi. Then, assuming

independent priors on the elements of θ, using a change of variables and Bayes’ rule

we have

P (θ−i | u∗) ∝
∏
j ̸=i

P (θj)P (u∗ | θ−i), (4.7)

where

P (u | θ−i) =
∣∣∣∣∣ d

du
φ̃−1(u | θ−i)

∣∣∣∣∣Pθi
(φ̃−1(u∗ | θ−i)). (4.8)

If the priors are not element-wise independent, note that (4.7) can be replaced with

the more general P (θ−i)P (u∗ | θ−i).

Because φ̃ is deterministic (i.e. θi can be uniquely determined given θ−i and u),

samples from P (θ | u∗) can therefore be obtained by first sampling θ
(1)
−i , . . . , θ

(n)
−i from

(4.7) using a standard simulation technique such as Accept-Reject sampling, and then

letting θ
(j)
i = φ̃−1(u∗, θ

(j)
−i ).

The resulting densities for the five transformations in Table 4.1 are shown in Figure

4.6. For example, under the transformation φ(θ) = β
α

=: R, we define φ̃−1(α, S0,R) =

αR and obtain

P (α, S0 | R) ∝ Pα(α)PS0(S0)αPβ (Rα) . (4.9)

So we may sample (α(1), S
(1)
0 ), (α(2), S

(2)
0 ), . . . from (4.9), then let β(i) = R∗α(i) to
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obtain samples from P (α, β, S0 | R∗).

For the final outbreak size, we define O := R(∞)−R(0) to be the total proportion

of individuals who end up in the recovered compartment due to infection. For R(∞)

we have from [32],

R(∞) = 1 − S0 exp (−R(R(∞) − R(0))) , (4.10)

which we may use to solve for β and obtain the inverse function

β = −α

O log 1 − R(0) − O
S0

(4.11)

and derivative

dβ

dO = α

O

(
1
O log 1 − R(0) − O

S0
+ 1

1 − R(0) − O

)
. (4.12)

For the peak intensity P := maxt I(t), to obtain samples from (4.7) we may use

the equation

P = I0 + S0 − α

β
log S0 − α

β

(
1 + log α

β

)
. (4.13)

Although (4.13) yields only implicit solutions for any θi, a closed-form solution for S0

given P can be found using Lambert’s W,

S0 = −R−1W−1(−B), (4.14)
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where B = exp (−R(P − I0) − 1), and derivative

dS0

dP = 1
1 − BeW−1(−B) . (4.15)

Derivation of the necessary equations for the initial growth rate G := βS0 + α is

straightforward.

Finally, the peak timing T does not have a known closed-form solution. Though

more time-consuming, we can still approximate (4.7) by using univariate constrained

optimization to evaluate the unknown φ−1, and adjoint methods to obtain the corre-

sponding derivative.

4.4.4 Asymptotic properties of practical identifiability

The above procedure for estimating δu using simple Monte Carlo becomes inefficient

when the dimension of θ or y become large. In the latter case, the proposed method of

practical identifiability can instead be analyzed using the usual approximation theory

in the limit of large data. The Bernstein-von Mises theorem gives

P (θ | y) ≈ N (θ̂MLE, (ntI(θ̂MLE))−1), (4.16)

where nt is the number of independent replications of the time series of observations,

and N (µ, Σ) is the multivariate normal distribution with mean µ and covariance

matrix Σ. Under certain regularity conditions, θ̂MLE = θ∗.

The information matrix of the model parameters can be separated in terms of the

curvature of latent and observation processes. In the case where data from a single

state variable x is observed, I(θ) = J⊤O(θ)J, where J is the Jacobian of x with

104



respect to θ, Jij = ∂x(ti)/∂θj, and O(θ) is the information of y given x [6]. In the

case of independent Poisson-distributed testing, O(θ) = diag(ηI(t1; θ), . . . , ηI(tn; θ)).

To obtain an approximation for the posterior of a transformation u = φ(θ), we

may again choose a pivot parameter/index θi and introduce a change of variables v =

(θ1, . . . , θi−1, u, θi+1, . . . , θp), and define the vector-valued function f̃ so that f̃(v) = θ.

Letting V be the gradient of f̃ with respect to v, Vkj = ∂
∂vj

f̃k = ∂θk

∂vj
, we have

I(v) = V⊤J⊤O(θ)JV. (4.17)

Combining (4.16) and (4.17), therefore, gives the approximation

δu(θ∗) ≈ 1
2
(
log nt − log I(v∗)−1

ii − log(2π)
)

− log P (u∗). (4.18)

This reveals that, in the limit of sufficient data, δu is related to the local curvature

of the latent and observational processes, just like traditional asymptotic approaches

to PI. For individual model parameters, V is the identity matrix and δu becomes the

logarithm of the usual standard error of the estimator ûMLE, penalized by the prior log-

probability of ûMLE. For parameter transformations, the information of I(θ) is then

summarized further through the curvature induced by the transformation function

φ. (4.18) also gives another way to see that penalizing by the prior density has a

normalizing effect on δu, as transformations which increase the support of P (u) will

also have smaller prior densities, and therefore is analogous to using the coefficient of

variation to allow comparing standard errors between variables.
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Conclusion

This work has presented Bayesian Experimental Design (BED) as a formal approach

to surveillance and control efforts in epidemiology. Across several epidemiological do-

mains spanning vector ecology, neglected tropical disease management, and infectious

disease modeling, we demonstrated the promise of BED for directing decision making

and allowing researchers to get more out of the data they collect. This work also

demonstrates how BED is one avenue in which theoretical and computational scien-

tists can integrate more closely with empiricists and incorporate additional context

from the systems they study into their work.

Compared with classical experimental design frameworks, we have seen how BED

can be highly flexible in terms of how utility is defined and how data are incorpo-

rated to inform beliefs. However, this flexibility can also contribute to BED being

a daunting task to implement in practical applications. As concluded in Chapters 2

and 3, there is a need for software supporting BED, as the technical nature of modern

advances in BED have left them largely inaccessible to a general audience [1]. There-

fore, a broad challenge for the future of BED is the development of software that

helps automate or guide each of the three key steps of BED—model definition and

selection, derivation and approximation of a suitable utility, and optimization—which

would greatly help a wider audience implement BED procedures.
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A second broad challenge for the future of BED in epidemiology is the incorpo-

ration of more realistic observation processes into our models, and an improved un-

derstanding of how additional observational complexity alters optimal design theory.

For infectious disease modeling, this might include a model for preferential sampling

of symptomatic individuals based on prevalence and test availability [2]. This would

contort the space of dynamics compatable with data, and interact with the existing

identifiability issues of SIR models in interesting ways, which in turn will change the

optimal allotment of tests over the course of an outbreak. For an example regarding

Chagas disease, an important observational dynamic which we have ignored is from

missing data, in particular households that do not consent to inspections or treat-

ments [3]. While the fraction of these households was small enough that they could

be reasonably ignored in our application, a more general solution would be to ex-

plicitly model the probability of allowing treatment and only allowing designs which

include consenting households. A similar observational process to incorporate into

future work is a statistical model for how houses are selected during adaptive sam-

pling, which could help correct for the effects of preferential sampling and improve

the accuracy of assessing whether the control target has been met [4].

There are some more technical points which seem more relevant to this work as

a whole than to individual chapters. In Chapter 2, an adaptive design framework

was proposed which weights future locations based on their current marginal risk and

variance. One may have noticed, however, that this does not align with the canonical

definition of utility as an average over the joint distribution P (y, θ), given in (1.10).

A more proper utility here would be to rank batches of new locations based on their

anticipated variance reduction of unsampled locations, as was done in Chapter 3,
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although this would involve an expectation over a posterior predictive distribution

and an optimization step within each iteration of selecting batches, and thus would be

much more computationally intensive [5]. An alternative would be to incorporate the

design goal of meeting the reduction target directly into selecting batches of houses,

for example by choosing new batches which maximize the tail probability given by

the termination condition (2.5). Since this utility would theoretically balance the

tradeoff between sampling bias and efficiency implicitly, it would be interesting to

compare it to our explicit approach of interpolating between the two goals.

As a closing comment, note that for a dissertation on experimental design, a major

limitation is that no data were collected in response to the theoretically optimal

designs which were found in this work. While the designs found here were effective

with respect to the range of possibilities predicted from the underlying model, whether

this aligns with the value ultimately extracted from these designs assumes, among

other things, correct model specification [6]. How optimal designs based on non-

trivial models actually perform in the field is a topic that has been rarely discussed,

and effective means for evaluating BED in practice is a major avenue for future work

[7, 8]. However, the work in this dissertation has been a step towards a more complete

synthesis between theory and data collection.
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