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Abstract 
 
Imaging is an immensely powerful tool in biomedical research. Technological advances in the last half 
century have led to the development of new tools for image analysis, with major strides being made in the 
last 20 years especially with machine and deep learning. However, researchers still often hit a bottleneck 
during the image analysis phase of their projects that often leads to delays and sometimes even limits the 
scope of their studies. In this thesis I demonstrate some of the issues that arise while quantifying images to 
answer a biological question by using a dataset of fly central nervous system images to elucidate 
interactions between different cells. I present an overview of the types of methods that can be used to 
perform this analysis including a discussion of their advantages and disadvantages. Finally, I present steps 
for creating and validating an automated image analysis pipeline that was used to analyze a large section of 
the fly ventral nerve cord, akin to the spinal cord. Automating image quantifying allowed us to maximize 
the size of the dataset analyzed, which revealed subtle patterns in cell-cell interactions that would not have 
been uncovered with manual quantification of a smaller dataset.  
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Chapter 1: Using images to study glial-glial interactions 
 
1.1 Introduction 
 
Humans are visual creatures. When we want to study something, one of our first instincts is to look at it. 

Researchers and medical doctors have been dissecting animals and human cadavers for hundreds of years 

in an attempt to understand the inner workings of the human body. The invention of the compound 

microscope in the mid seventeenth century allowed scientists to magnify tissues and living organisms, 

eventually leading to the revolutionary discovery that large organisms are made of smaller units, called 

cells, a term coined by Hooke when he magnified a piece of cork in the 1660s [1]. The discovery of cells is 

an early example of the crucial role which imaging technology has played in biological research. We have 

made great strides towards visualizing what we cannot see with the naked eye: from magnifying very tiny 

objects, for example imaging subcellular components by using electron microscopes, which use electron 

beams instead of light [2]; distinguishing between items we cannot typically distinguish, e.g. color-coding 

proteins with fluorescent immunohistochemistry, where proteins are tagged with different colored 

fluorophores which emit different colors of light when excited by specific wavelengths [3], [4]; and even 

using non-invasive imaging to visualize the inside of a living organisms, for instance computed 

tomography (CT) [5] and ultrasounds [6]. Furthermore, we often combine different elements: for example 

magnification, tagging, and non-invasive imaging in technologies such as functional magnetic resonance 

imaging (fMRI), which uses blood flow as a proxy to detect activated brain areas in living patients [7]. 

These incredible technologies allow us to collect images and videos containing extensive information, even 

a single patient brain scan contains a wealth of data. Unfortunately analyzing these visual datasets has 

become a bottleneck that significantly slows the progress of many research projects. Though there are 

various software packages for analyzing biomedical images, they often suffer from issues such as a lack of 

generalizability to various applications, a steep learning curve, and a prohibitive financial cost in the case 

of closed-source software. Hence, many labs resort to manual quantification, which comes with its own sets 

of challenges: being very time consuming is often the main issues, however, a high level of area expertise 

is required for analyzing specific types of images, and bias may be a major concern in the case of 

qualitative analyses.  
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The focus of this thesis is how to address some of the main challenges faced by biomedical researchers 

during the image analysis phase of their studies. I analyzed a dataset of fruit fly brain images to explore the 

interactions between different brain cell subtypes. However, many of the same issues arise when analyzing 

other types of biomedical images. First, I discuss the quantification that was the goal of this project, and 

how it would allow for the interrogation of cell-cell interactions. Second, I discuss the different steps that 

were necessary for this quantification and different approaches that can be used to accomplish them. Next, I 

present a published article that includes the final image analysis pipeline, along with its results. Finally, I 

discuss some of the pitfalls of the pipeline, and ways in which it can be improved.  

 

1.2 Drosophila melanogaster as a model for glial-glial interactions 
 

The human central nervous system (CNS) is the epitome of a complex system. It can be subdivided at  

many different scales: containing just two parts at the largest scale, the brain and spinal cord, and billions, 

perhaps trillions, of parts when considering all the pieces present at the subcellular scale: organelles, 

proteins, DNA and RNA molecules, etc. At the cellular level, it is estimated the CNS contains billions of 

individual cells [8], each of which interacts with others creating a vast and dynamic network of interactions 

between these billions of units [9]–[13]. The cells of the CNS can be broadly categorized into two large 

groups: neurons and glia, which can be further subdivided into dozens of neuronal [14]–[16] and glial 

subtypes [17]–[19]. Historically, neurons, which form intricate webs through which they send 

electrochemical messages [9], have received most of the attention from neuroscience researchers, while glia 

were thought to simply provide a supporting role [20]. However, mounting evidence has shown how 

essential glia are to proper brain function: from their extensive interactions with neurons [21]–[23], their 

key roles in development [24]–[27] and injury [28]–[31], and the fact that there is a glial abnormality or 

deficiency contributing to a great number of neurodevelopmental [24], [26], [32], [33], neurodegenerative 

[34]–[36], and even psychiatric conditions [24], [37]–[39]. Hence, the field has shifted to include glia in 

their focus of research. From the perspective of interactions, the field has long focused on neuron-neuron 

interactions, and there is now much attention on neuron-glia interactions[40]. However, though there is 

compelling evidence of glial-glial interactions [41], strongly suggested by the repeated observation of glial 
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tiling [42]–[48], there is still little known about the mechanisms underlying these types of interactions. 

Tiling refers to how glia will cover large areas with minimal overlap into each other’s territory (Fig. 2.1 B-

G), a phenomenon that is conserved among many species: from flies to humans. We hypothesize glia 

would have to communicate with one another to establish their territories. Communication would be 

especially necessary in the case of cells with a branching morphology, or shape, such as astrocytes (Fig. 

2.1F), where the mass of cell does not fully occupy its entire territory, and physics is not enough to explain 

why two cells do not occupy the same region. Hence, studying the underlying mechanism for glial tiling 

can be used to explain a phenomenon that is presumably important to brain function, evidenced by its high 

level of conservation, as well as elucidate glial-glial interactions, an understudied area of neuroscience but 

likely also crucial to proper CNS function given the importance of glia to the overall system.  

As discussed previously, the human CNS is incredibly complicated, that along with ethical and 

practical concerns regarding human experimentation, means the neuroscience community often turns to 

animal models to elucidate how the system functions. With its great balance between complexity and 

simplicity, Drosophila melanogaster, the fruit fly, provides a particularly useful model for the human CNS. 

Like its mammalian counterpart, the fly CNS is composed of an abundance of subunits that interact in such 

a way as to allow for the organism to accomplish a variety tasks: from sensing its environment [49], [50], 

moving [51], and even interacting socially with other organisms through actions such as aggressive fighting 

[52] and courtship dances [53]. Furthermore, at the cellular level the fly also consists of several subtypes of 

neurons [54], [55] and glia [56]. Finally, key to biomedical research: there is a large degree of conservation 

of genes, proteins, pathways, and CNS substructures from the fly to humans, such that what we learn in the 

fly remains relevant and useful to human medicine [57].  

Nonetheless, the fly CNS is much simpler than the human, and even the mouse CNS, another 

common animal model used in biomedical research. First, the simplicity of fly genetics has allowed for the 

development of a whole arsenal of tools that can manipulate individual cell types with exquisite 

spatiotemporal precision (Fig. 2.1G)[58]. Furthermore, the compartmentalization of the fly CNS is 

extremely convenient for researchers to investigate interactions between different cell types. In the 

mammalian CNS, the three main glial subtypes are astrocytes, oligodendrocytes and microglia. Astrocytes 
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interact with synapses, provide neurons with metabolic support, interact with synapses, and guide neuronal 

axons, the part of the neuron that carries the signal to the next neuron, to connect with the appropriate 

partner. Oligodendrocytes wrap axons to increase the speed of signaling and microglia engulf debris in the 

CNS [20]. In mammals, the different glial subtypes are intermixed with the neuronal somas, or cell bodies, 

as well as the synapses. The lack of spatial segregation, along with a smaller number of genetic tools for 

mammalian models, makes it difficult to determine specifically which cells are interacting. In the fly, 

neuronal cell bodies are located in the cortex, while synapses are located in the neuropil (Fig. 2.1A-A’) 

[56]. Additionally, each glial subtype is located only in a specific location in the CNS. Perineurial and 

subperineurial glia envelop the CNS to form the blood-brain barrier. Cortex glia, located in the cortex, 

surround the somas, provide trophic support and engulf debris in the cortex. Astrocytes and ensheathing 

glia are located in the neuropile. Astrocytes interact with synapses and engulf debris during development. 

Ensheathing glia form a barrier between the cortex and neuropile and engulf synaptic fragments after injury 

(Fig. 2.1A-A’)[56]. In addition to compartmentalization, flies exhibit tiling not only between glia of the 

same subtype, but also between glia of different kinds [Fig. 2.1G]. It is this interclass tiling phenomenon 

that we have exploited to interrogate glial-glial interactions.  

Previous work has shown that a cortex-glia specific manipulation, a knockdown or reduction in 

the amount of the 𝑎SNAP or Spz3 proteins, produces a stark morphological change from reticular to 

globular cells (Fig. 2.1I-I’, J-J’). Additionally, there is a breakdown in the spatial segregation normally 

exhibited by fly glia [40]. In control animals, the cortex contains cortex glia as the single glial subtype in 

this region (Fig. 2.1H, I-I”). However, in the presence of globular cortex glia, animals exhibit aberrant 

infiltration into the cortex by astrocytes (Fig. 2.1H, J-J”). The first step in investigating glial-glial 

interactions is to establish the existence of an interaction between two cell types. The observation of the 

aberrant infiltration phenotype led us to a simple strategy: perturb one cell type specifically, in our case 

induce globular cortex glia, and assess the other subtypes for a reaction, aberrant infiltration into the cortex. 

Establishing a relationship between cortex glia globularity and aberrant infiltration by “other glia”, any 

glial subtype that is not cortex glia, allowed us to establish the existence of a cortex-glia-other-glia 
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interaction, since the cohort of animals are genetically identical except for a cortex-glia-specific 

manipulation that produces globular cortex glia in the experimental cohort.  

1.3 Image Quantification 
 
1.3.1 Dataset 
 
The dataset analyzed in this study consists of 83 confocal z-stack images capturing the ventral nerve cord 

of third instar, the latest of three larval stages, Drosophila melanogaster larvae. Confocal microscopes use 

a pinhole to block out-of-focus light, allowing the camera to focus in on a thin slice of the sample [59], a 

virtual slice. By taking images at different coordinates along the z-axis, the slices can be reconstructed into 

a 3-dimensional (3D) representation of the original sample. The result is similar to what is seen on a 

Magnetic Resonance Imaging (MRI) scan. Immunofluorescence was used to label three different cell types 

in different colors for each image: cortex glia, astrocytes and neuronal nuclei. In future studies, we would 

like to expand our focus to include interactions between cortex glia and ensheathing glia, subperineurial 

glia, and perineurial glia as well. However, for this study we began by concentrating on the cortex-glial-

astrocyte interaction. Immunofluorescence works by using antibodies, proteins that recognize other 

proteins, to tag a protein of interest with a fluorophore, a compound which emits a specific wavelength of 

light when excited with light of a different specific wavelength [3]. By staining tissues with antibodies for 

proteins known to be present in certain cell types, we can visualize different cell types in different colors. 

Confocal microscopes house lasers of different wavelengths that are used to image the stained tissue [59]. 

Given that each z-stack contains approximately 30 tri-color slices, the dataset used for this study consists of 

approximately 7,500 single-color images.  

We performed our analysis using digital images, which are essentially arrays in where each 

element represents the signal intensity of a pixel [60]. In the case of a single color or grayscale image, the 

picture would be represented as a 2-dimensional (2D) array where the X and Y dimensions align with the 

physical X and Y dimensions of the image. The Z-coordinate, in the case of a 3D image, and color, in the 

case of a multi-colored image, are represented as additional dimensions. Hence, our dataset, comprised of 

3D tri-color images, was represented as 4-dimensional (4D) arrays with Z, X, Y, and color dimensions. 
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1.3.2 Globularity and Aberrant Infiltration Quantification 
 
The first variable to measure in this glial-glial interaction study is globularity, which refers to the degree of 

change in cortex glial morphology from a reticular shape in control animals, to almost perfect spheres in 

animals exhibiting the strongest cortex glial change (Fig. 2.4A). We found that there was a considerable 

range of phenotypes in our experimental cohort, which we exploited to explore the response of other glia at 

different levels of cortex glial globularity rather at the two extreme morphologies exclusively. We began 

with a qualitative scale of cortex glial globularity, a manual globularity scale (MGS), which we used to 

grade cortex glial morphology with a score of 0-4, with 0 representing a completely normal morphology 

(Fig. 2.4A). The score is assigned based on the percentage of cortex glia that maintain a reticular shape 

(>95% normal cortex glia = 0, 75-95% normal cortex glia = 1, 50-75% normal cortex glia = 2, 10-50% 

normal cortex glia = 3, <10% normal cortex glia = 4). However, the qualitative scale raised concerns – 

mainly subjectivity of the grader and the large variation within each category in the scale. Measuring the 

intraclass correlation coefficient between three different blinded graders demonstrated the robustness of the 

scale, showing little variation between scores for the same image (249 images: ICC(3,k) = 0.983, p < 

0.0001, Fig. S2.4). Unfortunately, large variation with each class remained a concern. We expected a subtle 

globularity-infiltration relationship, due to the large number of variables that can affect morphology in 

cells, which would be difficult to detect given the lack of precision in the MGS. Therefore, I explored 

alternatives for measuring the cortex glial morphological change. I found a strong negative correlation 

between the perimeter of cortex glia and its globularity as measured by the MGS (Fig. 2.4C), which 

allowed for the use the perimeter as a proxy for globularity. The automated morphology index (AMI, 

perimeter/cortex area) is a more sensitive measure that allowed us to identify more subtle patterns among a 

dataset with varying levels of globularity.  

Quantification of aberrant infiltration into the cortex is measured by creating a region of interest 

(ROI) representing the cortex, and measuring the area taken up by astrocyte processes, branch-like 

protrusions, within this ROI (Fig. 2.5B).  
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1.3.3 Segmentation and its challenges 
 
Segmentation is the process of dividing an image into foreground and background, often represented as a 

black-and-white or binary image. It is often a crucial step for performing tasks such as counting objects 

[61], measuring area and volume [62], [63], analyzing shape [64], [65], and even tracking objects in the 

case of video [66]. Likewise, segmentation provides the foundation for the quantification of both cortex 

glial globularity and astrocyte aberrant infiltration. In the case of globularity, once the cortex glia images 

have been segmented, their perimeter can be easily measured using established methods [67] implemented 

by the easy-to-use Python image analysis library scikit-image [68]. Similarly, aberrant infiltration can 

easily be measured by finding the overlap between a segmentation representing the cortex and another 

representing astrocytes.  

Unfortunately, there are many factors that reduce the quality of confocal z-stacks resulting in 

images that are difficult to segment, which hinders the image quantification process. As discussed above, 

the images in this dataset were produced using immunofluorescence, which relies on fluorescently tagged 

antibodies. The quality of the staining produced by this technique can vary widely, even when care is taken 

to adhere to a protocol. Temperature and age of reagents, specificity of antibodies (to what degree they 

recognize only the intended protein), fixing protocol for the tissue, and other factors can all affect the 

fluorescent signal in the stained tissue. For the dataset used in this study, after the tissue was stained, it was 

imaged using a confocal microscope. As is the case with any detector collecting a signal, we expect noise 

will be present throughout the z-stack [69]. Additionally, the quality of the slices degrades as the distance 

increases from the camera due to signal attenuation [70] and convolution [71], caused by increased 

scattering, refraction, and absorption as light travels through thicker sections of the sample, resulting in 

dimmer and blurrier images respectively.  

1.3.4 Segmentation Methods 
 
Scientists and engineers have developed many methods to address the challenges that arise while producing 

accurate segmentations for biomedical images. Perhaps, the least technologically advanced is manual 

segmentation, simply tracing the outline of the intended object. Due to humans’ incredible visual abilities, 
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this method can be very accurate, especially when done by experts. Unfortunately, this is a very expensive 

method in terms of person-hours, and can drastically limit the number of images that can be analyzed.  

 Thresholding methods are another option for segmentation. These methods rely on the assumption 

that foreground pixels will be brighter than background pixels. Hence, a cutoff for pixel intensity is chosen, 

and any pixels with a greater intensity are classified as foreground, while pixels with a lower intensity are 

classified as background [72]. The simplest thresholding method is to manually adjust the threshold until 

the resulting segmentation is satisfactory to the researcher. However, using this method to find an optimal 

threshold can be very tedious. More sophisticated methods apply different algorithms to the distribution of 

pixel intensities to select a threshold automatically, thus removing, or at least reducing, the need for human 

input. [72] group thresholding algorithms into different categories: histogram shape-based methods, which 

use information from the histogram to select the threshold; clustering-based methods, which maximize or 

minimize some discriminant criterion; entropy-based methods, which maximize the entropy of the resulting 

binary image; and object attribute-based methods, which seek to maximize similarities between the original 

and binary image e.g. ensuring edges coincide. Additionally, thresholding methods can be considered local 

or global depending on whether they consider the image in its entirety or only a small neighborhood around 

each single pixel respectively. Though these methods work well for relatively high-quality images, they 

struggle to produce satisfactory results when segmenting noisy, convoluted images. Additionally, it can be 

virtually impossible to select a single thresholding algorithm that performs well on all images in a dataset 

when there is considerable variation in the signal-to-noise ratio and degree of convolution, such as is the 

case in the data analyzed in this study.   

 In the last decades, the use of machine learning has exploded in many fields – image analysis is no 

exception. For the most part, image analysis makes use of supervised learning: where labeled training data 

is used to fit a model that can then be used to make predictions on new data [73]. Random forests, an 

ensemble model consisting of a group of decision trees [73], have proven to provide highly accurate 

segmentation results when used to classify pixels into foreground or background. Ilastik [74] and Labkit 

[75] are two open-source implementations of random forests for use in pixel classification. The user 

“paints” over sections of the image, labeling them as foreground or background. These labeled pixels are 
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then used to train the model such that it can classify rest of the pixels in the image [74] [75]. In our 

experience, classifiers created in this way do provide a highly satisfactory segmentation for the image with 

which they were trained. Unfortunately, as with thresholding methods, machine learning methods often 

lack generalizability to other images in the dataset.  

 Arguably the most sophisticated segmentation methods are those that use deep learning models: 

multi-layered interconnected structures, often artificial neural networks (ANN) [76]. As with other 

supervised learning approaches, ground truth in the form of a set of rigorously produced segmentations is 

used to train the deep models for this application [76]. Though various types of deep models have been 

used for image analysis tasks [77]–[79], convolutional neural networks (CNN) have shown to be 

particularly apt at processing images, producing highly accurate results in the hands of many groups [76] 

[80]–[85]. CNNs use convolutional layers to reduce the dimensionality of the input data while maintaining 

enough information for the ANN to perform an image analysis task [76]. There is even a variation of a 

CNN that was specifically adapted for work with biomedical images: U-NET. The first half of the network 

is a relatively standard CNN, while the second half uses upsampling to increase the resolution of the 

network. The reduction followed by the increase in output results in a U-shaped network. Additionally, the 

network contains skip-connections connecting initial layers to later, non-sequential layers which serves to 

utilize information about both local features, found in earlier layers, as well as more global features, found 

in later layers, in the final output of the network [86]. Additionally, these complex models can be highly 

generalizable if trained with a heterogenous dataset containing images of varying quality. The major 

drawbacks of deep learning methods are the relatively large, labeled datasets needed to train them, the 

computational power needed to fit the models, and the steep learning curve required for users to learn how 

to train these models [76].  

1.3.5 Alternatives to Segmentation  
 
Though some image analysis tasks do require segmentation to be accomplished, other tasks can be done in 

a way that does not require segmentation. In the case of this study, the most logical way of quantifying 

aberrant infiltration does include segmentation, since we are interested in measuring the total area, or 

volume, of astrocyte processes located within the cortex region. Conversely, though we chose to quantify 
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cortex glial globularity by measuring cell perimeter, most easily done after segmentation, I did first 

approach globularity quantification as an image classification problem: first by using the manual 

globularity score and then by attempting to automate the classification process.  

 Both machine learning and deep learning models are widely used to automate classification tasks 

in research. Generally, machine learning algorithms require data to be represented as a vector of features 

[73], which makes feature selection and extraction a crucial step of the process. In the case of images, each 

pixel intensity could be considered a feature. However, that would result in an enormous number of 

features, in our case 1.44X106 for each single-colored slice, which would be impractical and perhaps 

computationally prohibitive to use in training different models. Reducing the number of features in an 

image into a manageable and meaningful set is a challenging task that can be approached broadly in two 

ways: careful and thorough examination of the data to determine important features plus creative use of 

non-deep-learning models, or using deep learning models to function as feature extractors and selectors 

[76]. For example, by reducing dimensionality while maintain important information, the convolutional 

layers in a CNN act as feature extractors and selectors. Both approaches have their share of challenges. 

Feature engineering can be a time-consuming and arduous endeavor, yet, as discussed above, training an 

ANNs is no trivial task.  

Several teams have performed feature extraction and selection using non-deep learning methods, 

followed by classification with a support-vector machine (SVM), which uses hyperplanes to divide the 

feature vectors into different classes [73]. [87] reduce the number of features in fMRI images by limiting 

their focus to specific areas of the brain and performing univariate analysis of the rest of the features to 

determine the features with the greatest predictive power. [88] use a Bag of Features method, similar to a 

Bag of Words method in that the order of the features is not maintained, for feature selection of histology 

images. Speeded-up robust features (SURF) were extracted using the Grid selection method, and k-means 

clustering was used to reduce the number of features. [89] also use a Bag of Words method. They combine 

it with intensity order pooling for classifying human epithelia type 2 cells in a clinical setting. [90] use a 

multiple clustered instance learning (MCIL) method to classify cancer cell images. In multiple instance 

learning (MIL), the training set is composed of images that contain multiple classes, or instances. The 
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authors incorporate a clustering algorithm to extend MIL to MCIL, which performs classification, 

segmentation, and clustering simultaneously. [91] use a dual-tree complex wavelet transform (DT-CWT) 

for feature selection with cancer cell images. DT-CWT is a shift-invariant and orientation sensitive method 

for decomposing a signal into its components, or wavelets. The authors also incorporate directional 

difference and covariance measures into the features considered by the classifier to account for 

morphological variation. 

 Alternatively, other groups chose deep learning models to perform feature extraction. [92] built a 

committee machine combining an adaptive neuro fuzzy inference system (ANFIS) and a feed-forward 

neural networks (FFNN) to classify images of the retina for diagnostic purposes. ANFIS learn a set of if-

then fuzzy rules that are later used to classify observations. FFNN only have connections between 

consecutive layers, and the signal only travels forward. As previously discussed, though ANNs have proved 

successful as feature extractors and feature extractor/classifiers, they require very large, labeled datasets to 

be trained. Such large training sets are often not available in life science research and clinical settings. In 

these cases transfer learning, adapting pre-trained networks to perform a similar but different task, can be 

useful, since they allow for the use of deep learning with a smaller training set [93]. [94] modified a 

convolutional neural network (CNN), pretrained on ImageNet, a large collection of non-medical images, 

for classifying photographs of plant diseases. [95] used a pre-trained network both as purely a feature-

extractor and as a feature-extractor/classifier for histopathology images. [96] used a pre-trained CNN as a 

feature extractor in conjunction with an SVM to classify mammograms for breast cancer diagnosis. 

Similarly, [93] used a pre-trained CNN and an SVM to classify their images, inner ear images used to 

diagnose inflammation and inner ear disorders. Finally, [97] modified a pre-trained CNN for classifying 

images of brain MRIs for diagnostic purposes.  

 For an initial attempt at automating the quantification of cortex glial globularity, I used transfer 

learning to adapt a pre-trained CNN to classify cortex glial globularity according to the manual globularity 

scale (Fig 1.1). As the base, I used MobileNetV2, a CNN specifically engineered to reduce the amount of 

computational power needed for training [98], pre-trained on the ImageNet dataset. I used a training set of 

1221 pre-segmented, manually-scored, single-channel, 2D, cortex glial images. The training set was 
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augmented into 9760 images by using transformations, such as rotating and flipping, as discussed in [94]. I 

split the labeled set into a training (70%), validation (15%), and testing set (15%). Briefly, I used the 

training and validation set to refit either the top layer (Fig. 1.1B-B’) or the top 55 layers of the network 

(Fig. 1.1C-C’), adjusting the model to classify cortex glial images instead of the ImageNet images, and the 

testing set to assess the performance of the model. The top accuracy reached by the model, when adjusting 

the top 55 layers, was ~55% (Fig1.1C, code in Appendix). 

  

Fig. 1.1: 
Quantification of 
Cortex Glia 
Globularity Using 
Transfer Learning to 
Adapt Pretrained 
MobileNetV2.  

Model was trained 
using RMSProp. 
Sparse categorical 
crossentropy was used 
as the loss function. 
(A) Training Data: 
Representative images 
for each cortex glial 
globulariy class. 
Binary images were 
used in training. (B) 
Training Top Layer: 
Base model layers 
were frozen during 
training of top layer. 
(C) Fine-tuning: Top 
55 layers of base 
model were unfrozen 
and trained. (D): 
Adapted Model 
Predictions Examples: 
True label (true), 
model’s prediction 
(pred), and model’s 
calculated probability 
(prob) for the 
prediction. 
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1.3.6 Image Analysis Pipeline Overview 
 
The low accuracy of the CNN prompted me to find an alternative way to quantify cortex glial globularity. I 

found that perimeter is a suitable proxy for globularity. Using perimeter as a globularity measure also has 

the considerable advantage that it provides a much more precise measurement than grouping cortex glial 

morphology into five classes. Hence, my focus shifted from developing a classifier for cortex glial 

globularity to finding a way to accurately segment cortex glia, in addition to finding segmentation 

algorithms for the cortex region and astrocytes to be used for the quantification aberrant infiltration,  

Due to the computational power requirement, the need for large, labeled training data sets, and 

higher level of expertise needed to fit more sophisticated models, I sought to use the simplest models 

possible that would not require a high degree of human input, which would be impractical for quantifying 

the large dataset used in this study. The scikit-image library provides a large collection of functions that 

perform denoising and thresholding using different algorithms. I tried various combinations of denoisers 

and thresholders on a subset of images, and found that though there was no single denoising/thresholding 

combination that segmented all images satisfactorily, I was able to successfully segment all images with 

one of the combinations. The final image analysis pipeline selects the best segmentation algorithm from a 

small number of options, and uses the resulting cortex glia, cortex region and astrocyte segmentations to 

quantify cortex glial globularity and aberrant astrocyte infiltration respectively (Fig. 2.2).  
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Chapter 2: Quantifying glia-glial tiling using automated image analysis in 
Drosophila 

 
2.1 Abstract 
 
Not only do glia form close associations with neurons throughout the central nervous system (CNS), but 

glial cells also interact closely with other glial cells. As these cells mature, they undergo a phenomenon 

known as glial tiling, where they grow to abut one another, often without invading each other’s boundaries. 

Glial tiling occurs throughout the animal kingdom, from fruit flies to humans; however, not much is known 

about the glial-glial interactions that lead to and maintain this tiling. Drosophila provide a strong model to 

investigate glial-glial tiling, where tiling occurs both among individual glial cells of the same subtype, as 

well as between those of different subtypes. Furthermore, the spatial segregation of the CNS allows for the 

unique ability to visualize and manipulate inter-subtype interactions. Previous work in Drosophila has 

suggested an interaction between cortex glia and astrocytes, where astrocytes cross the normal neuropil-

cortex boundary in response to dysfunctional cortex glia. Here, we further explore this interaction by 

implementing an automated pipeline to more fully characterize this astrocyte-cortex-glia relationship. By 

quantifying and correlating the extent of cortex glial dysfunction and aberrant astrocyte infiltration using 

automated analysis, we maximize the size of the quantified dataset to reveal subtle patterns in astrocyte- 

cortex glial interactions. We provide a guide for creating and validating a fully-automated image analysis 

pipeline for exploring these interactions, and implement this pipeline to describe a significant correlation 

between cortex glial dysfunction and aberrant astrocyte infiltration, as well as demonstrate variations in 

their relationship across different regions of the CNS.  

2.2 Introduction 
 
Neurons and glia comprise the majority of the cells in the central nervous system (CNS). We often think of 

neurons as having the main function—signal transmission—whereas glia perform a variety of supportive 

duties. Glia sculpt neurons during development and plasticity [99]–[102], engulf debris in development, 

injury, or disease [103]–[106], provide neurons with key nutrients and metabolic support [100], [107]–

[110], ensheath axons for proper axonal conduction and integrity [111]–[113], maintain the blood brain 

barrier [114]–[117] and buffer ions and neurotransmitters to modulate neuronal activity [46], [118], [119]. 
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Given the wide range of these and additional functions, it is not surprising that glia have been shown to 

play roles in a number of neurological disorders such as Autism, Epilepsy, Schizophrenia, as well as 

neurodegenerative disorders like Alzheimer’s disease [38], [120]–[123]. Thus, elucidating glial function is 

a crucial step in achieving a thorough understanding of the brain.  

In addition to interacting extensively with neurons, glia also form complex physical and signaling 

interactions with each other. One of the ways in which glial-glial interactions manifest is a phenomenon 

known as tiling, where each glial cell grows to fill a space without invading the boundaries of others. Many 

glial cells form almost perfectly tiled domains that exhibit very little overlap between cells; however, the 

exact amount of overlap between these glial domains can vary between species, age, and disease state [43]–

[45]. Tiling can be observed between glia of the same subtype, such as between two or more astrocytes 

[42], [47], [124], microglia [48], oligodendrocyte precursor cells [125], Müller glia [126] as a few 

examples, as well as between glia of different subtypes [40], [117], [127]. Importantly, glial tiling and 

domain organization is highly conserved among species from flies to humans [43], [127]; however, little is 

known about the interactions that lead to and maintain glial tiling in any species. Moreover, the functional 

relevance of this tiling remains almost completely unexplored.  

As a model, Drosophila melanogaster strikes a balance between simplicity and complexity that 

makes it especially suitable for conducting a thorough examination of glia-glial interactions. Despite its 

simplicity, the fly CNS maintains a high degree of complexity, composed of multiple neuronal and glial 

subtypes that share cellular, genetic, and functional conservation with their mammalian counterparts [25], 

[56]. Furthermore, because of the high level of genetic, proteomic, signaling, and cellular conservation 

from flies to mammals, many findings made using Drosophila are applicable to understanding the  

mammalian brain [57]. The elegance of Drosophila genetics has allowed for the development of a vast and 

powerful arsenal of genetic tools that makes this an attractive model for investigating glial tiling [25] [57], 

[58]. Specifically, these tools allow for genetic labeling and manipulation of either single cells or entire 

cell-type populations, as well as applying different genetic alterations to multiple cell types at the same 

time (Fig. 2.1).   
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The spatial organization of the Drosophila CNS makes this a particularly ideal model for studying 

glial-glial tiling (Fig. 2.1A-A’). The Drosophila CNS is subdivided into two main regions, the cortex and 

neuropil, where the cortex comprises the neuronal cell bodies and the neuropil contains the synapses. 

Furthermore, the CNS contains multiple glial cell types that spatially segregate along these regions, and are 

known to tile within and between subtypes. Perineurial glia (PG, Fig. 2.1A’, surface view in Fig. 2.1B), and 

subperineurial glia (SPG, Figure 2.1A’, surface view in Figure 2.1C) wrap the CNS to form the blood-brain 

Fig. 2.1: Drosophila serves as a 
strong model for investigating 
glial tiling.  

(green), astrocytes (red). Examples of tiling boundaries depicted with white arrowheads. (H) astrocyte 
aberrant infiltration (red) into the cortex (gray) upon disruption of CG morphology. (I,J) Images 
corresponding to black inset in (H), showing control (I) and globular (J) cortex glial conditions, where 
astrocytes can be seen infiltrating the cortex in (J”). Cortex glia in green (I’,J’), astrocytes in red (I”,J”), 
neuronal nuclei in blue. 

(A) Schematic of the 
Drosophila melanogaster 
larval central nervous system 
(CNS), subdivided into the 
cortex (gray, containing the 
cell bodies) and the synaptic 
neuropil (white). (A’) Cross-
section of the ventral nerve 
cord (VNC) depicting 
neuronal nuclei (blue) and 
single cell examples of 
different glial subtypes to 
show their distinct spatial 
segregation: Perineurial glia 
(PG, magenta) and 
subperineurial glia (SPG, 
cyan) form a barrier around 
the CNS, cortex glia (CG, 
green) wrap neuronal cell 
bodies, and ensheathing glia 
(EG, brown) and astrocytes 
(red) are associated with the 
neuropil. (B–F) Tiling 
between cells of the same 
glial subtype shown in green 
and red with neuronal nuclei 
shown in blue: PG (B, 
surface view), SPG (C, 
surface view), CG (D), EG 
(E, surface view), astrocytes 
(F). (G) Tiling between 
different glial subtypes: PG 
(magenta), SPG (blue), CG  
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barrier [115], [116] [25], [117] [128]. Cortex glia (CG, Fig. 2.1A’,D) intersperse among the neuronal cell 

bodies in a mesh-like pattern to wrap and support the somas [25], [128], where each cortex glial cell wraps 

50–100 neuronal cell bodies [40], [127], providing metabolic support [108], and debris clearance in the 

cortex [40], [106]. Ensheathing glia (EG, Fig. 2.1A’, surface view in Fig. 2.1E) and astrocyte cell bodies 

are located on the interface between the cortex and neuropil [25], [128], where EG processes form a barrier 

between the two regions [129], and astrocytes extend fine processes into the neuropil (Fig. 2.1A’,F) that 

interact with synapses [102] [46] [118] [124]. Each of these subtypes forms tight boundaries between cells 

of their own kind [40], [124], [127], [129], as well as between different glial subtypes such as astrocytes 

and cortex glia, cortex glia and SPG, or SPG and PG (Fig. 2.1A’,G) [40], [117], [127]. We have previously 

shown that upon morphological disruption of cortex glia caused by the loss of the neurotrophin spätzle 3 

(Spz3) or soluble NSF attachment protein α (αSNAP, part of the vesicular fusion machinery the vesicular 

fusion machinery that leads to Spz3 secretion), neuronal cell bodies lose their physical interactions with 

cortex glia, and astrocytes extend aberrant processes into the cortex (Fig. 2.1H–J) [40]; however, the 

previous report found that this phenomenon occurs, but did not quantify the extent to which it occurs or the 

relationship between the degree of cortex glial morphological disruption and aberrant astrocyte outgrowth.  

In an effort to more fully characterize the tiling relationship between cortex glia and astrocytes, 

and to further establish this model for investigating the disruption of glial-glial tiling, we sought to 

implement an automated analysis of the extent of globular morphological transformation of cortex glia and 

astrocyte infiltration, and assess the relationship between the two characteristics. Here we describe a 

method for creating and validating an automated image analysis pipeline using free, open-source software. 

Using this optimized pipeline, we reveal a significant correlation between the extent of cortex glial 

morphological disruption and aberrant astrocyte infiltration. Additionally, these data allow us to explore 

regional variations in morphology and infiltration throughout the dorsal-ventral axis of the CNS.  

2.3 Materials and Tools 
 
2.3.1 Fly Strains 
 
Drosophila melanogaster crosses were raised at 29◦C on Nutri-fly Molasses Formulation food (Genesee 

Scientific). The following previously made transgenes were used in this study: Wrapper932i-LexA (Driver 
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1) [40], CtxGliaSplit-Gal4 (Driver 2) [40], GMR54H02-Gal4 (BDSC 45784), alrm-Gal4 (with Driver 1) 

[130], alrm-LexA::GAD (with Driver 2) [124], GMR56F03-Gal4 (BDSC 39157), GMR85G01- Gal4 

(BDSC 40436), GMR54C07-Gal4 (BDSC 50472), Mi{PT- GFSTF.0}trolMI04580-GFSTF.0 (BDSC 

60214), repoFLP, UAS- CD8>GFP>RFP [124], UAS-αSNAPRNAi (VDRC 101341), LexAop2-Spz3RNAi 

[40], UAS- CD8::GFP [131], UAS-CD8-mCherry [124], LexAop-rCD2::GFP [132], and LexAop- 

rCD2::RFP [132]. 

2.3.2 Immunohistochemistry and Imaging 

The larval CNS was dissected in the third instar larval stage. The samples were fixed in ice-cold 100% 

methanol for 5 min at room temperature, then rinsed three times with PTX (PBS + 0.1% Triton-X). 

Samples were stained overnight with primary antibodies at 4◦C, rinsed three times with PTX, then stained 

overnight with secondary antibodies at 4◦C. The following primary antibodies were used: chicken anti- 

GFP (1:1000; Aves Labs), rabbit anti-dsRed (1:500; Clontech), rat anti-Elav (1:100; Developmental 

Studies Hybridoma Bank, 7E8A10), rabbit anti-GAT (1:2000) [124], rat anti- CD2 (1:500; Bio-Rad). The 

following secondary antibodies were used: donkey conjugated to DyLight 488 [anti-chicken (103- 005-

155)], Cy3 [anti-rabbit (711-165-152)], and Cy5 [anti-rat (712-175-150)] from Jackson ImmunoResearch. 

After washing three times with PTX, samples were mounted in VectaShield reagent (Vector Laboratories) 

and imaged on an Intelligent Imaging Innovations (3i) spinning disk confocal microscope equipped with a 

Yokogawa CSX-W1. Finally, out-of-focus images from the beginning or end of the stack were removed. A 

total of 3,309 images from 84 three-channel confocal Z-stacks marking astrocytes (red channel), cortex glia 

(green channel), and neuronal cell bodies (blue channel) were analyzed.  

2.3.3 Image Processing and Automated Pipeline Analysis 

This pipeline was specifically designed to take advantage of open-source software that allows for its 

implementation by nearly anyone with access to two-dimensional images. Importantly, it does not require 

access to more expensive three-dimensional imaging capability like light sheet microscopy or specialized 

3D image analysis software licenses, making this tool easy for almost anyone to implement to maximize 

their analyses and reduce unintentional bias that can occur with manual quantification. Briefly, following 
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preprocessing, the images were fed into the pipeline, separated into individual single-channel 2D-images 

and denoised. The images were then thresholded to produce binary images, and simultaneous scoring 

occurred for both globularity and infiltration. Cell perimeter was used as a proxy for quantifying cortex glia 

morphology, while aberrant astrocytic process infiltration was quantified by measuring the overlap between 

the astrocyte channel and the cortex, determined by combining the cortex glial and neuronal channels. 

Finally, the scores produced by pipeline were analyzed to assess the relationship between cortex glia 

morphology and aberrant infiltration by astrocytes (Fig. 2.2). Scikit-image [68] was used for all automated 

image processing and analysis. Manual image quantification for automated score validation was performed 

using FIJI/ImageJ [133].  

Denoising removes noise generated by factors such as light scattering and signal attenuation, and 

aids in generating more accurate binary representations of the raw image (Fig. S2.1). Compared to the 

original image (Fig. S2.1A), unsharp masking with scaling amount 2 and radius 20 produced the optimal 

image to identify astrocyte processes (Fig. S2.1B, red outline), where the sharpened image is produced by 

scaling (multiplying by the scaling amount) the difference between the original image and an image 

Preprocessing: Z-stacks were separated into 2D arrays representing a single plane for each cell type 
(corresponding to a single channel for each). Step 1: Individual channel images were denoised. Step 2: 2D 
arrays were thresholded to produce binary images. Step 3A: The perimeter of cells in the cortex glia (CG) 
channel was measured and normalized to total cortex area producing an automated morphology index (AMI) 
score. Step 3B: CG and neuronal nuclei channels were combined to define the cortex area (ctx). The overlap 
between the ctx and astrocyte (astro) channels was calculated and normalized to the total cortex area to 
produce an automated infiltration score (AIS). Step 4: The relationship between the AMI and AIS was 
analyzed.  

 

Fig. 2.2: Schematic of automated image analysis pipeline for 3-channel confocal Z-stacks. Figure 3 
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generated by adding noise in a radius-parameter- defined distribution [134]. The same parameters were 

used for denoising the cortex glial channel, and the neuronal channel parameters were set to 3 and 20 for 

the scaling and radius, respectively. Other parameter values either failed to identify all astrocyte processes 

(Fig. S2.1B) or added undue noise (Fig. S2.1C) that would interfere with infiltration analysis in further 

steps of the pipeline. Denoised images are only approximations; therefore, to ensure accurate scoring by 

our pipeline, we included validation steps comparing results obtained by manual quantification with those 

obtained in an automated fashion (Fig. 3–5).  

Denoised images were then subjected to thresholding to convert grayscale to binary images, with 

the algorithm-selection process performed separately for each channel. Local algorithms, which consider 

only a pixel’s nearest neighbors [72], were eliminated as possible candidates due to their poor performance, 

as judged by a qualitative comparison of the original and binary image. Second, 68 denoised images of the 

channel in question were binarized with seven global thresholding algorithms, where the image as a whole 

is used to calculate a thresholding limit (Fig. S2.2A) [72]. For each of the sample images, a visual 

comparison of the original and binary image was used to determine the top three algorithms. The top 

algorithm was assigned a score of 3, the second-place algorithm was assigned a score of 2, and the third 

was assigned a score of 1. All other algorithms received a score of 0, and ties in this scoring were allowed. 

The final score for each algorithm was the sum of the scores for all the sample images. No single 

thresholding algorithm yielded satisfactory results for 100% of the sample images. We therefore 

implemented a decision tree into our pipeline to choose among the best thresholding algorithms for each 

channel in each image. We classified unsatisfactory results as those producing blown out images that 

contained superfluous signal or blacked out images where true signal was removed (Fig. S2.2B). First, the 

pipeline determines whether the image produced by Otsu’s method [135] is blown out by exploiting the 

difference in texture between noise and true signal. Neuronal cell bodies have the appearance of distinct  

circles. Noise has the appearance of smaller, more densely and evenly distributed specks. Additionally, in 

blown out images, the majority of the noise being misrepresented as true signal was located in 

approximately the middle third of the image, the section corresponding to the neuropil. We converted all 

contiguous white objects smaller than 75 pixels to black, effectively removing specks, and the middle third 
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of the image was then compared before and after despeckling. If despeckling resulted in a 7% or greater 

reduction in the number of white pixels, the image was determined to be blown out, and the Triangle 

algorithm [136] was used to threshold the image. Conversely, if the pipeline assessed that the binary image 

was blacked out, i.e., less than 2% of pixels were white, the pipeline will choose the Li thresholding 

algorithm [137], [138] instead of Otsu’s method. A similar process was used to implement decision trees 

for selecting thresholding algorithms for the cortex glia and astrocyte channels. For cortex glia, the pipeline 

(A,B) Original images of control (A) and globular CG (B) consisting of three channels: CG (green), 
neuronal nuclei (blue), and astrocytes (red). (C–F) Gray scale images of single channels (C–D’) were 
converted binary images (E–F’). (G–H”) Binary images of neuronal nuclei and CG were then combined 
to define the cortex (G,H). Gaps between the nuclei and CG membranes were filled to produce solid white 
area covering the entire cortex (G’,G”,H’,H”). (I–J”) Comparison of the cortex segmentations obtained 
by the automated pipeline (aqua, I,J) and by manual tracing of the same image (purple, I”,J”), with the 
overlap depicted between the two in black (I’,J’, black).  

 
 

(A,B) Original images of control (A) and globular CG (B) consisting of three channels: CG (green), 
neuronal nuclei (blue), and astrocytes (red). (C–F) Gray scale images of single channels (C–D’) were 
converted binary images (E–F’). (G–H”) Binary images of neuronal nuclei and CG were then combined 
to define the cortex (G,H). Gaps between the nuclei and CG membranes were filled to produce solid white 
area covering the entire cortex (G’,G”,H’,H”). (I–J”) Comparison of the cortex segmentations obtained 
by the automated pipeline (aqua, I,J) and by manual tracing of the same image (purple, I”,J”), with the 
overlap depicted between the two in black (I’,J’, black).  

 

Fig. 2.3: Automated determination of the cortex region. Figure 4 
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chooses between the Otsu and Triangle algorithms. For astrocytes, the pipeline chooses between the Otsu, 

Triangle and Yen [139] algorithms.  

After the pipeline generates binary images for each channel (Fig. 2.3E,F) using its selection of 

optimal algorithms, we perform a segmentation, or detection of the cortex by combining the neuronal 

nuclei and cortex glia binary images and adjusting the result (Fig. 2.3G,H). Merely combining the two 

channels results in a cortex segmentation that is not completely solid (Fig. 2.3G’,H’) due to gaps between 

the visualized neuronal nuclei and the cortex glia membrane, representing the rest of the neuronal cell body 

and cytoplasm. Since aberrant infiltration is quantified as the overlap between the cortex and astrocytes, a 

cortex segmentation with these gaps is likely to result in an undercount of infiltration. Hence, segmentation 

of the cortex was performed in four steps: merge (Fig. 2.3G,H), 1st fill (Fig. 2.3G’,H’), 2nd fill (Fig. 

2.3G”,H”) and a final finetuning step. The sequential fills were executed by our implementation of a 

dilation algorithm [140],  in which a black pixel was turned white if >10% of the neighbors within a 15-

pixel radius were white, followed by Scikit-image’s remove_small_holes function [68], which turns to 

black any contiguous white objects smaller than set radius (5,000 pixels in our pipeline). Since the resulting 

segmentation was slightly larger than the true cortex region, an erosion algorithm— where a white pixel 

was turned to black if any of its immediate neighbors was black [140]—was used to reduce the size of the 

segmented area.  

2.3.4 Automated Cortex Segmentation Validation 
 
The functions used for automatically segmenting the cortex required a total of four parameters to be set: 

neighborhood (n) and threshold for the first fill step (thresh), hole size (hole_size) for the second fill, and 

the number of erosions (erosions) to finetune the segmented region size. In order to optimize values for 

these parameters, we compared the cortex region segmented in an automated fashion (automated, light 

green) to those produced manually (manual, purple) (Fig. 2.3I,J). We used two metrics to determine the 

accuracy of the pipeline (Fig. S2.3): overlap (OL) divided by the manually segmented region (OL/M) and 

OL divided by the automatically detected (A) cortex (OL/A). A high OL/M score indicates that the pipeline 

is capturing a high percentage of the manually segmented region, interpreted as a high true positive rate. A 

high OL/A score indicates that the pipeline is not erroneously capturing areas that were not part of the 
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manual segmentation, and can be thought of as low false positive rate. We used 42 images to test 192 

different combinations of the four ROI-selection parameters (3–4 values per parameter, Fig. S2.3A). We 

chose the parameter set with the highest OL/M and OL/A scores (Supplementary Figure 3B, n = 15, thresh 

= 0.10, hole_size = 5000, erosions = 10, mean OL/M = 88.21%, mean OL/A = 85.46%). OL/M and OL/A 

scores of 100% would indicate a perfect overlap between the manual and automated ROIs. We would 

expect some small amount of error in the manual scores due to difficulty tracing a perfect outline of the 

cortex (given noise in images, limitations in image resolution, etc.). The majority of the scores lie above the 

mean, indicative of a highly accurate automated cortex detection method. 

2.4 Results 
 
2.4.1 Quantification of Cortex Glial Morphology 

While cortex glial morphology is altered upon the loss of Spz3 or αSNAP, there can be variation in the 

degree of cortex glial globularity after genetic manipulation (Fig. 2.4A). We automated the scoring of 

cortex glia morphology by utilizing the perimeter of the cells as a proxy for globularity (Fig. 2.4B). As cells 

become more globular, there is a drastic reduction in their perimeter. The automated morphology index 

(AMI) for each image is calculated as the total perimeter of the cells, normalized by the total area of the 

cortex, and expressed as a percentage of that area.  

As with cortex segmentation validation, we assessed AMI accuracy by comparing automated 

scores with manually obtained scores for the same images. For manual scoring, cortex glia images were 

assigned a manual globularity score (MGS) of 0–4 (Fig. 2.4A). AMI and MGS are significantly negatively 

correlated (Fig. 2.4C, p < 0.0001, r2 = 0.47), where a lower AMI indicates a greater morphological change. 

MGS was validated by comparing scores generated by three different blinded researchers for the same 

images, and finding a very high level of agreement between the scores as calculated by the intraclass 

correlation coefficient [249 images: ICC(3,k) = 0.983, p < 0.0001, Fig. S2.4]. When MGS scores were 

sorted by experimental group, the same patterns were revealed by MGS (Figure 4D) and AMI (Fig. 2.4E, y-

axis flipped for ease of comparison to Fig. 2.4D). The no-RNAi control condition exhibited the lowest 

cortex glia globularity, indicative of normal morphology, followed by a LexA-driven knockdown of Spz3 

(driver 1), and then a Gal4-driven knockdown of αSNAP (driver 2) with the highest globularity scores. 
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These drivers specifically allowed us to explore variable morphological changes, as driver 1 is weaker than 

driver 2, which exhibited the highest variation in morphology. All pairwise comparisons of the groups are 

highly significant for both the manual and automated scores (p < 0.001, pairwise post hoc Dunn’s test), 

indicating that the pipeline is accurate in quantifying morphology.  

2.4.2 Quantification of Infiltration by Astrocyte Processes 

Once the cortex has been segmented, the overlap between the cortex and astrocyte channel is measured in 

pixels and expressed as a percent of the total cortex area (Fig. 2.5A,B). Astrocyte morphology introduces a 

complicating factor in quantifying infiltration, as astrocyte cell bodies are located within the cortex on the 

edge between the cortex and neuropil, as indicated by the circles in Fig. 2.5A (red) and Fig. 2.5B (dark red). 

However, these cell bodies do not constitute aberrant infiltration, and therefore need to be removed from the 

pipeline data to be quantified (outlined in red squares in Fig. 2.5C’). Using the ratio of foreground to 

(A) Cortex glial morphology was manually quantified using a 0–4 range, with 0 being normal mesh-like 
morphology, and 4 being almost completely globular (manual globularity score, MGS). (B) The automated 
morphology index (AMI) was calculated in the pipeline by measuring the perimeter of the cortex glia 
divided by the total area of the cortex. (C–E) AMI and MGS shows a significant negative correlation (C, p 
< 0.0001, r2 = 0.47, dotted line denotes the regression line). As globularity increases after RNAi 
knockdown using driver 1 (weaker) or driver 2 (stronger) (D), the AMI decreases (E, inverted y-axis for 
ease of comparison to MGS). ****p < 0.0001.  

 
 

(A) Cortex glial morphology was manually quantified using a 0–4 range, with 0 being normal mesh-like 
morphology, and 4 being almost completely globular (manual globularity score, MGS). (B) The automated 
morphology index (AMI) was calculated in the pipeline by measuring the perimeter of the cortex glia 
divided by the total area of the cortex. (C–E) AMI and MGS shows a significant negative correlation (C, p 
< 0.0001, r2 = 0.47, dotted line denotes the regression line). As globularity increases after RNAi 
knockdown using driver 1 (weaker) or driver 2 (stronger) (D), the AMI decreases (E, inverted y-axis for 
ease of comparison to MGS). ****p < 0.0001.  

 

Fig. 2.4: Automated morphology index (AMI) significantly correlates with manual scores for cortex 
glial globularity. Figure 5 
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background pixels within the box bounding an object [141], the roundness of an object [142], and area, we 

defined and excluded objects that are cell bodies while preserving aberrant infiltration (Fig. 2.5C–C”’).  

As with automating the morphological assessment of cortex glia, validating automated astrocyte 

infiltration scores is a critical step. By comparing 43 images using both methods, we found a highly 

significant correlation (p < 0.0001, r2 = 0.22) between the manual and automated infiltration scores (MIS and 

AIS, respectively). A correlation between perfectly matching sets of scores would be indicated by a slope of 

1 (Fig. 2.5D dotted line). We found an AIM vs. AIS correlation with slope = 1.424 95% CI [1.076, 1.772] 

(Fig. 2.5D, solid black line surrounded by shaded gray region). There is a single case in which there was a 

discrepancy between the manual and automated scores of ±6 (red dot in Fig. 2.5D). Without this point, which 

represents only 2.22% of the images considered in this validation procedure, the correlation slope is 1.19 

(A) Cross section of the VNC depicting the location of astrocyte cell bodies, as well as the location of 
longitudinal sections shown in (B,C). (B) Images were taken in longitudinal planes. The astrocyte channel 
was then thresholded, and the area of overlap between astrocytes and the cortex region was quantified as 
the infiltration score (IS). (C) Astrocyte cell bodies reside in the cortex under normal conditions (C’), but 
were identified (C”) and excluded from the quantification to identify only aberrant cortex infiltration 
(C”’). (D) Manual vs. automatic (auto) scores significantly correlate (95% confidence interval depicted 
by gray shaded area), with control (gray), driver 1 (green), and driver 2 (blue), (slope = 1.424, 95% CI 
[1.076, 1.772], r2 = 0.22, p < 0.0001, n = 42). Only one point was identified with a difference of greater 
than 6 (red) between manual and automated scores. (E) There is no significant difference between manual 
and automated scores for any of the groups. Pairwise comparison using Kruskal–Wallis test. NS p > 0.5 
(control p = 0.343, driver 1 p = 0.678, driver 2 p = 0.155). p < 0.001 for Kruskal–Wallis test comparing 
three groups with same scoring methodology, followed by Dunn post hoc pairwise comparisons. *p < 0.05, 
**p < 0.01, ****p < 0.001. Control n = 14, KD driver 1 n = 15, KD driver 2 n = 13.  

 
 

(A) Cross section of the VNC depicting the location of astrocyte cell bodies, as well as the location of 
longitudinal sections shown in (B,C). (B) Images were taken in longitudinal planes. The astrocyte channel 
was then thresholded, and the area of overlap between astrocytes and the cortex region was quantified as 
the infiltration score (IS). (C) Astrocyte cell bodies reside in the cortex under normal conditions (C’), but 
were identified (C”) and excluded from the quantification to identify only aberrant cortex infiltration 
(C”’). (D) Manual vs. automatic (auto) scores significantly correlate (95% confidence interval depicted 
by gray shaded area), with control (gray), driver 1 (green), and driver 2 (blue), (slope = 1.424, 95% CI 
[1.076, 1.772], r2 = 0.22, p < 0.0001, n = 42). Only one point was identified with a difference of greater 
than 6 (red) between manual and automated scores. (E) There is no significant difference between manual 
and automated scores for any of the groups. Pairwise comparison using Kruskal–Wallis test. NS p > 0.5 
(control p = 0.343, driver 1 p = 0.678, driver 2 p = 0.155). p < 0.001 for Kruskal–Wallis test comparing 
three groups with same scoring methodology, followed by Dunn post hoc pairwise comparisons. *p < 0.05, 
**p < 0.01, ****p < 0.001. Control n = 14, KD driver 1 n = 15, KD driver 2 n = 13.  

 

Fig. 2.5: Automated quantification of astrocyte infiltration. Figure 6 
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95% CI [0.933, 1.452]. As part of AIS validation, we also examined automated scores for systematic errors 

in scoring, and found there is no experimental group for which the points lie solely on one side of the 

regression line (Fig. 2.5D). Furthermore, scores pooled per experimental group and quantification method 

(Fig. 2.5E) show no significant differences between AIS and MIS (pairwise Kruskal–Wallis comparisons, 

control p = 0.343, driver 1 p = 0.678, driver 2 p = 0.155). Finally, the two scoring methodologies indicate the 

same shifts in aberrant infiltration. Controls have the lowest infiltration, driver 1 shows intermediate 

infiltration, and driver 2 exhibits the greatest infiltration. Significant differences between scores obtained 

using the same methodology are color-coded: gray for manual scoring, blue for automated scoring (Kruskal– 

Wallis test followed by Dunn pairwise comparisons. ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001). Taken together 

these data demonstrate that infiltration scores using the automated pipeline are accurate.  

2.4.3 The Relationship Between Cortex Glial Morphology and Aberrant Astrocyte 
Infiltration  

Scores for all images in the CNS were averaged to determine global scores for each animal for AMI (Fig. 

2.6A) and AIS (Fig. 2.6B). These global scores were used in assessing the relationship between cortex glial 

morphology and astrocyte infiltration (Fig. 2.6C). Correlations between AMI and AIS scores were assessed 

using Spearman’s rank correlation coefficient to allow for the possibility of a non-linear relationship between 

cortex glial globularity and aberrant astrocyte infiltration. Interestingly, not all areas of the CNS appeared to 

be equally affected, with apparent heterogeneity in both AMI and AIS along the dorsoventral axis.  In order 

to explore the possibility of location-dependent heterogeneity in morphology and infiltration, we divided the 

CNS into three zones along the dorsal-ventral axis (Fig. 2.7A), with the ventral surface set to a z-coordinate 

of 0 and the dorsal surface to 100. Differences in AMI and AIS were explored using a sliding window to 

analyze 10% of the total CNS depth at a time (Fig. 2.7B,C). Scores for all images within each 10% window 

belonging to a single stack were averaged to produce a local dorsal-ventral depth score represented as mean 

± SEM. AMI was higher throughout the CNS in the controls compared to either driver knockdown condition 
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(p < 0.0001 for Kruskal–Wallis test comparing all groups, ∗∗∗∗p < 0.0001, ∗∗∗p < 0.001 with Dunn’s 

pairwise comparisons). AMI was lowest in the middle of the VNC, at approximately 40–50% along the 

dorsal-ventral axis. Average AIS was also higher throughout the VNC for knockdown animals; however, the 

inter-group difference in AIS was less pronounced than that of AMI. Driver 1 showed little to no difference 

in infiltration scores in the ventral 20% of the VNC. Additionally, there was only a modest increase in 

infiltration in the top 10–20% nearest the dorsal surface for animals in the driver 1 group. The largest increase 

in infiltration scores for these animals was found in the middle 50–80% of the VNC. In contrast, driver 2 

showed the largest increase in infiltration near the surface of the VNC, at both ventral and dorsal ends, with 

a more subtle increase in the middle of the VNC.  

The correlation between local AMI and AIS was calculated using Spearman’s rank correlation 

coefficient (Fig. 2.7D, ρ = −0.668, p < 0.0001). As cortex glial globularity increases, shown by a lower AMI, 

astrocyte infiltration correspondingly increases, indicated by the strong negative correlation. Significant 

correlations (p < 0.001) among all groups are indicated by the yellow shaded region, which occurs throughout 

the dorsal- ventral axis with the exception of a small section in the middle of the VNC (52–64%, p > 0.05 

from 55 to 60%).  

(A,B) As cortex glial (CG) morphology becomes more impaired, shown by reduced automated morphology 
index (AMI, in A), the automated astrocyte infiltration score (AIS) increases (B). Kruskal–Wallis test 
comparing all groups, followed by Dunn post hoc pairwise comparisons. **p < 0.01, ***p < 0.001, ****p 
< 0.0001. (C) AIS and AMI are significantly correlated, as indicated by Spearman’s rank correlation 
coefficient (ρ = –0.668, p < 0.0001). Scores for individual images of each CNS were grouped and averaged 
by animal. Control n = 27, Driver 1, n = 34, Driver 2 n = 22 animals.  

 
 

(A,B) As cortex glial (CG) morphology becomes more impaired, shown by reduced automated morphology 
index (AMI, in A), the automated astrocyte infiltration score (AIS) increases (B). Kruskal–Wallis test 
comparing all groups, followed by Dunn post hoc pairwise comparisons. **p < 0.01, ***p < 0.001, ****p 
< 0.0001. (C) AIS and AMI are significantly correlated, as indicated by Spearman’s rank correlation 
coefficient (ρ = –0.668, p < 0.0001). Scores for individual images of each CNS were grouped and averaged 
by animal. Control n = 27, Driver 1, n = 34, Driver 2 n = 22 animals.  

 

Fig. 2.6: Astrocyte infiltration significantly correlates with disrupted cortex glial morphology. Figure 7 
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2.5 Discussion  

Glial tiling is a phenomenon that occurs throughout the animal kingdom [43], [48], [124], [125], [143], yet 

we still know relatively little about the formation, maintenance, and function of glial domains. While human 

astrocytes do still assemble into tiled domains, the extent of overlap of their processes is higher than in rodents 

[43], and astrocyte territories in species such as in ferrets can exhibit as much as 50% overlap in some 

astrocyte populations [45]. Interestingly, these tiling domains can also vary within the same species, such as 

in disease states like epilepsy [43] or even during normal aging [29]. Protoplasmic astrocytes in 5 month old 

adult mice show little to no overlap in their domains, yet the overlap increases in both cortical and 

hippocampal astrocytes nearly two- fold by 21 months of age [44]. Exactly what molecular cues regulate 

glial domain tiling and organization, and how and why these change in aging or disease is currently unclear.  

We and others have shown that Drosophila present an exciting model to study the molecular 

underpinnings of glial tiling between either the same or disparate subtypes of glial cells. Rodent models that 

rely on genetic labeling of glial cells with Cre lines [144]–[146] often lack precise single cell genetic 

manipulation and differential control of adjacent cells. Drosophila provide genetic tools to easily target, label, 

and manipulate single cells within the same subtype (Fig. 2.1B–F), as well as multiple different glial subtypes 

A) Cross-section depicting the larval VNC along dorsal-ventral axis, divided into three zones: above the dorsal 
astrocyte cell bodies (1, purple), along the neuropil (2, teal), and ventral to the neuropil (3, pink). The locations 
of astrocyte cell bodies are shown in red, and the stereotyped location of globular cortex glia in green. (B,C) 
A sliding window reveals differences along the dorsal-ventral axis in both CG AMI (B) and astrocyte AIS 
(C), with control (gray), driver 1 (green), and driver 2 (blue) depicted as mean ± SEM. (D) The relationship 
between AMI and AIS is shown along the dorsal-ventral axis as a black line indicating the Spearman’s rank 
correlation coefficient (ρ) for any given coordinate. The yellow shaded area indicates regions where the 
correlation was significant between the two with p < 0.001.  

 
 

A) Cross-section depicting the larval VNC along dorsal-ventral axis, divided into three zones: above the dorsal 
astrocyte cell bodies (1, purple), along the neuropil (2, teal), and ventral to the neuropil (3, pink). The locations 
of astrocyte cell bodies are shown in red, and the stereotyped location of globular cortex glia in green. (B,C) 
A sliding window reveals differences along the dorsal-ventral axis in both CG AMI (B) and astrocyte AIS 
(C), with control (gray), driver 1 (green), and driver 2 (blue) depicted as mean ± SEM. (D) The relationship 
between AMI and AIS is shown along the dorsal-ventral axis as a black line indicating the Spearman’s rank 
correlation coefficient (ρ) for any given coordinate. The yellow shaded area indicates regions where the 
correlation was significant between the two with p < 0.001.  

 

Fig. 2.7: Cortex glia morphology, aberrant astrocyte infiltration, and their relationship vary along the 
dorsal-ventral axis of the ventral nerve cord. Figure 8 
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simultaneously (Fig. 2.1G–J), with a plethora of publicly available tools for genome-wide manipulation. 

Additionally, the domain organization of the Drosophila CNS allows for investigations of glial-glial tiling 

interactions that would be much more difficult in other organisms (Fig. 2.1A). Previous approaches have 

been applied to murine astrocytes to simplify the quantification of astrocyte tiling, such as using the volume 

of sparsely labeled astrocytes by Golgi impregnation, and taking into account the total astrocyte number in a 

given tissue area [44]. Interestingly, these authors found that in young mice, the overlap ratio of astrocytes 

was below 1, suggesting close interactions of other glial subtypes. Our previous findings that astrocytes react 

to cortex glial dysfunction by crossing the neuropil-cortex boundary [40] provided a basis for our current line 

of research. We wanted to build upon these findings to understand the extent of astrocyte reactivity when 

cortex glial morphology and tiling were disrupted; however, manual quantification of glial tiling is 

cumbersome, unfeasible on a large scale, and could miss more subtle differences in tiling variation. Here we 

have presented and validated an automated pipeline using free, open-source software to quantify both glial 

morphology and domain infiltration of adjacent glial subtypes in Drosophila. This tool allows for high- 

throughput quantification that, when combined with the power of genetics in this model system, will open 

the door for large scale, in vivo mechanistic studies of glial tiling.  

The formation of globular cortex glia would be expected to leave neuronal cell bodies without any 

glial contact; however, the ability for glial cells to grow is quite impressive, and the surrounding healthy glia 

do not leave those neurons bare for long. Our previous work identified that upon the loss of Spz3 or αSNAP 

in cortex glia, thin astrocytic processes began to move into the cortex in late larval stages [40]. We have 

created and validated a pipeline to automatically quantify both cortex glia morphology (AMI) and aberrant 

astrocyte infiltration into the cortex (AIS) for over 3,300 images, with accuracy confirmed by comparison 

with manually obtained scores. Using this automated pipeline, we found that the extent of astrocyte 

infiltration strongly correlates with the extent of cortex glial disruption, but importantly, that this correlation 

remains regardless of the high degree of variation in both categories throughout the CNS. The observed 

variation could result from a number of different factors, including but not limited to glial heterogeneity, 

location and positioning of glial cells throughout the CNS, and driver strength. Glial heterogeneity is a current 

focus within the glial field to understand how different cells even within the same subtype (i.e., astrocytes) 
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differ in their molecular composition and functional roles. With the recent advancement of single-cell 

sequencing technologies [147], [148], cellular heterogeneity is becoming more widely understood beyond 

simple morphological differences such as fibrous or protoplasmic astrocytes. Different glial cells of the same 

subtype within a defined brain region can even exhibit molecular variation in signaling factors, receptors, 

transcription factors, and more [149]–[151], meaning that the same genetic perturbations in or near two 

adjacent cells could produce two very different reactions. While the extent of heterogeneity within each 

Drosophila glial subtype is thought to be less than that of mammalian glia, differences within the same 

subtype have been noted, such as the higher distribution of fatty acid binding protein (fabp) and lipid droplets 

in superficial cortex glia [152]. In the current study, we made use of two different driver systems: driver 1 

was used to knock down Spz3 with the LexA system, resulting in a wider range of disrupted cortex glial 

morphology compared to the stronger driver 2, which uses the Gal4 system to knock down αSNAP. These 

differences in strength allowed us to investigate how astrocytes react to mild and more severe perturbations 

in glial tiling and boundary maintenance. Notably, the severity in AMI is more likely to be due to the strength 

of the driver rather than the molecule knocked down, as the Gal4-driven knockdown of Spz3 results in a 

similarly severe morphological disruption as Gal4-driven knockdown of αSNAP [40]; however, we cannot 

definitively rule out molecular differences, as the reduction of αSNAP could lead to restricted release of other 

secreted signaling factors. The differences in the degree of cortex glial disruption with driver 1, regardless of 

the underlying mechanism, allowed us to address the significant correlation between the extent of the globular 

morphology and aberrant astrocyte outgrowth, a result that was further supported with the stronger driver 

system.  

The layout of the CNS is not homogenous throughout the dorsal-ventral axis. The neuropil is offset 

toward the dorsal side of the VNC (Fig. 2.1A’), with many astrocyte cell bodies distributed throughout this 

region. The ventral region of the VNC contains more cortex glia and neuronal cell bodies (zone 3, Fig. 2.7A), 

located farther from the neuropil where astrocyte processes reside. Therefore, if an astrocyte infiltration 

signal originates from cells within the ventral cortex, the signal could take longer to reach the astrocytes or 

never reach it at all. Alternatively, there could be a larger signal arising from the greater number of neuronal 

cell bodies within this region. Likewise, there is more space for astrocytes to grow in this direction. The 
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combination of these factors complicates the investigation of glial tiling, but the ability to automate 

quantification throughout the VNC allowed us to reveal differences in reactivity and correlation in spatial 

segregation along the dorsal-ventral axis that would have been difficult to identify via manual quantification 

alone, and to begin to parse out the cellular reactivity.  

In addition to the dorsal alignment of the neuropil, the location of both astrocyte and cortex glial 

cell bodies is a potential source of AMI and AIS variation along the dorsal-ventral axis. While control 

Drosophila can have up to an average of 60– 80 cortex glial nuclei in the thoracic segments of the VNC, 

those with globular cortex glia average 6–10 nuclei per segment due to a failure to proliferate [40]. Moreover, 

these remaining globular cortex glial cells are located in stereotyped positions from animal to animal at the 

location where the cortex glial nuclei first align during development [40], [153]. This spacing leaves a greater 

distance between the neuropil and the ventral cortex glial cells (zone 3 in Fig. 2.7A) compared to those 

located in the more lateral position in the middle of the dorsal-ventral axis (zone 2 in Fig. 2.7A), and also 

allows for more variability if not all of the cortex glial cells are fully transformed from the mesh-like to 

globular morphology. Interestingly, the dorsal-most neurons of the VNC (zone 1, Fig. 2.7A) are encapsulated 

by cortex glia in the lateral portions, but a specialized type of ensheathing glia wrap the more medial neurons 

in this portion of the VNC [40], [129]. This could account for the greater variation in zone 1, along with the 

intriguing possibility that cortex glial dysfunction disrupts other adjacent glial subtypes beyond astrocytes. 

While it is clear that the aberrant infiltration is due to astrocytes extending processes into the cortex rather 

than a migration of the entire cell [40], astrocyte cell bodies do reside in the cortex along the interface of the 

cortex and neuropil [46]. In order to quantify only those processes that account for true aberrant infiltration, 

we identified characteristics of cell bodies that would allow for their automatic exclusion from the final 

infiltration count. However, slight remnants left behind from the sheer number of astrocyte cell bodies, could 

be artificially increasing infiltration scores in regions surrounding the neuropil (zones 1 and 2, Fig. 2.7A).  

We found that AMI and AIS strongly correlate throughout the majority of the VNC, though our 

analysis revealed that cortex glial morphology, astrocyte infiltration, and their relationship varies along the 

dorsal-ventral axis. Moreover, there was still variation in AIS amongst different animals or regions even with 

strong disruption of cortex glial morphology. While the automated pipeline presented here is designed for 
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general use for anyone with access to simple imaging methods like confocal microscopy, one limitation is 

that glial domains are three- dimensional structures, and two-dimensional imaging can miss fine processes 

between the imaging intervals that could lead to an underestimation of glial territory and infiltration. Future 

development of a pipeline to work with three-dimensional imaging software and imaging techniques such as 

light sheet microscopy will further enhance these studies.  

Identifying the molecular mechanisms that underly the development and maintenance of glial 

boundaries, and how and why glial cells respond to move out of their normal territories, as well as the 

functional consequences of doing so is paramount to furthering our understanding of the nervous system in 

health and disease. We now have a strong genetically tractable system to investigate these issues with an 

optimized tool for quantifying and revealing changes in glial tiling. This work raises a number of intriguing 

questions that we can use these tools to begin to answer: what are the molecular mechanisms involved in 

setting up and/or maintaining glial tiling? How do they change in aging or disease? Do glial tiling cues result 

only from glial-glial interactions or neuron-glial communication as well? Finally, if glia divert their cellular 

resources from their normal positions, such as astrocytes from the neuropil into the cortex, can they still 

maintain their normal functions? The combination of the automated pipeline provided here with the plethora 

of genetic tools available in Drosophila will allow us to begin to unlock the answers.  



 

33 

2.6 Supplementary Material 

A) The original astrocyte image (blue outline) was denoised using different algorithms implement by scikit-
image. B) Six panels resulting from denoising using an unsharp mask with different combinations of 
parameters, radius of 1, 5, or 20 and scaling amount (amt) 1 and 2. The red outline indicates the algorithm 
selected for denoising astrocyte images, as it produced the truest match of the original image. C) Eight 
panels resulting from denoising with denoise, non-local (NL), wavelet, and total-variation (TV) algorithms 
using two parameter combinations per algorithm: default and optimized using a J-invariant algorithm 
(calibrated).  

Fig. S2.1: Examples of denoising algorithms. Figure 9 
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A) The original neuronal cell nuclear image was denoised and binarized by 7 global thresholding 
algorithms implemented by scikit-image. B) Decision tree used to determine the thresholding algorithm 
for each neuron image. Blown out images vastly overestimated the area covered by neurons, such as those 
produced by Isodata, Otsu, Li, and Mean algorithms in (A). Blacked out images are those that vastly 
underestimate the area covered by neurons, such as those produced by Minimum and Yen algorithms in 
(A). Similar decision trees were used to produce binary images for the cortex glia and astrocyte channels.  

 

A) Automated cortex segmentation was produced for 42 images using 192 different parameter sets. The 
overlap (OL) between corresponding automated and manual segmentation was calculated. The average 
OL/manual ROI (OL/M) and OL/automated (OL/A) were used as performance metrics to select the best 
parameter combination (red line) for subsequent analyses. B) OL/Cortex Segmentation scores for the top-
performing parameter combination for the 45 validation images (control: gray, driver 1: green, driver 2: blue).  

 
 

A) Automated cortex segmentation was produced for 42 images using 192 different parameter sets. The 
overlap (OL) between corresponding automated and manual segmentation was calculated. The average 
OL/manual ROI (OL/M) and OL/automated (OL/A) were used as performance metrics to select the best 
parameter combination (red line) for subsequent analyses. B) OL/Cortex Segmentation scores for the top-
performing parameter combination for the 45 validation images (control: gray, driver 1: green, driver 2: blue).  

 

Fig. S2.3: Optimization and validation of automated cortex detection. Figure 11 

Fig. S2.2: Examples of binarization algorithms.  Figure 10  
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Heatmap illustrating the manual globularity score (MGS) for 249 images as determined by three blinded 
quantifiers. There is a high level of agreement between the scorers as indicated by the intraclass 
correlation (ICC(3,k)=0.983, p<0.0001).  

 
 

Fig. S.4: Validation of the manual globularity score, and the ruling out of quantifier 
variability.Heatmap illustrating the manual globularity score (MGS) for 249 images as determined by 
three blinded quantifiers. There is a high level of agreement between the scorers as indicated by the 
intraclass correlation (ICC(3,k)=0.983, p<0.0001).  

 

Fig. S2.4: Validation of the manual globularity score, and the ruling out of quantifier variability. Figure 12 

Heatmap illustrating the manual globularity score (MGS) for 249 images as determined by three blinded 
quantifiers. There is a high level of agreement between the scorers as indicated by the intraclass correlation 
(ICC(3,k)=0.983, p<0.001).  

  

 
 

A) Automated cortex segmentation was produced for 42 images using 192 different parameter sets. The 
overlap (OL) between corresponding automated and manual segmentation was calculated. The average 
OL/manual ROI (OL/M) and OL/automated (OL/A) were used as performance metrics to select the best 
parameter combination (red line) for subsequent analyses. B) OL/Cortex Segmentation scores for the top-
performing parameter combination for the 45 validation images (control: gray, driver 1: green, driver 2: blue).  
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Chapter 3: Conclusion 
 
3.1 Advantages of Image Analysis Pipeline  
 
The greatest advantage of automating image analysis is that it can be used to maximize the size of the 

dataset that is analyzed. Larger datasets can reveal subtle patterns or patterns that apply to a larger portion 

of a system. These patterns can reveal information about the underlying mechanisms that control a system. 

Understanding how the nervous system functions is one of the primary goals of neuroscience research, and 

in the case of biomedical research has vast implications into how we can treat or even prevent disease. In 

the present study of glial-glial interactions, creating an automated pipeline enabled us to analyze a 

substantial portion of the Drosophila VNC, a cross-section equaling approximately one-third of the entire 

organ (Fig. 1A). The fly, like the mammalian, CNS is organized into different substructures, and we know 

that there are differences between the numerous structures – both in terms of which parts are present, e.g. 

which cell subtypes are located in different areas, and how these parts interact with each other [154]–[156]. 

Quantifying a large section of the VNC demonstrated how the cortex-glial-globularity-aberrant-astrocyte-

infiltration relationship varies along the Z-axis, and by extension gives us information about how cortex 

glia and astrocytes might be interacting differently in different areas of the VNC. A thorough validation of 

the pipeline, in addition with results consistent with previous literature, namely that aberrant astrocyte 

infiltration increases in the presence of globular cortex glia [40], demonstrate that the results of the pipeline 

are accurate. Additionally, using open-source software to build the pipeline allows for transparency, 

customizability and wide access. By having full access to all code, users can inspect exactly which 

algorithms are used and how they were implemented, factors that can have a substantial impact on the final 

results, especially since many algorithms and models rely on certain assumptions. Full code-access also 

allows users to make any changes they deem necessary. Finally, the lack of a paywall allows researchers 

with even modest resources to use these tools, and promotes collaboration between groups, an essential 

principle for the advancement of science.  

3.1 Shortcomings of Image Analysis Pipeline 
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Though the pipeline presented in this thesis was certainly useful in elucidating cortex-glial-astrocyte 

interactions, there are several drawbacks to this method. First, the pipeline works in 2D – it analyzes each 

slice separately and uses a smoothing algorithm to examine areas spanning several slices. The system the 

pipeline quantifies is a physical 3D system, however, and the most appropriate way to analyze it is in 3D. 

Additionally, though thresholding methods produced fairly accurate segmentations for the vast majority of 

the slices, it is possible to create more accurate segmentations with more sophisticated methods, namely 

using machine learning and deep learning. Producing highly precise segmentations is especially difficult 

while at the same time especially important in the case of astrocytes, since the parts of the cell in which we 

are most interested are very thin processes that extend into the cortex. These protrusions can be difficult to 

detect even by eye, and can be overestimated or even missed entirely by simple thresholding methods. 

Finally, this pipeline lacks generalizability. It is highly tailored to process images with the type and extent 

of noise, convolution, and signal attenuation present in the dataset analyzed in this study. As discussed 

previously, the quality of confocal images can vary due to many factors, including the type of staining that 

is done. Future studies in glial-glial interactions will include analyzing communication between cortex glia 

and glia other than astrocytes. Visualizing those other glial subtypes will involve using different antibodies 

which will result in images with differing levels of noise, convolution, and signal attenuation different from 

the ones in the current dataset. Adapting the pipeline to analyze those new images is possible, but is a 

difficult and tedious process.  

3.2 Future Directions 
 
As previously mentioned, future glial-glial interaction studies will include examining communication 

between additional glial subtypes. Improvements for the automated image analysis pipeline will include 

increasing its accuracy as well as adapting it to segment these additional cell types. The most significant 

improvement is moving from working in 2D to analyzing images in 3D. Pilot studies using machine and 

deep learning have shown we can obtain highly accurate segmentations for our dataset with both types of 

models, using Labkit to train a random forest model and deep learning to train U-NET. In our work, the 

trained random forest model has shown to be less generalizable than a trained U-NET. Hence, several 

different random forest segmentation models will need to be trained to segment the whole dataset, as 
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opposed to a single CNN per cell type. However, single random forest models do segment an entire Z-stack 

satisfactorily, and working in 3D would mean considering entire Z-stacks rather than single slices, which 

cuts the dataset by a factor of approximately 30. Even if segmentation of each Z-stack requires manual 

selection of the optimal segmentation algorithm from a small number of trained classifiers, the time 

investment required remains practical, as opposed to choosing the optimal algorithm for thousands of single 

slices. It is also possible that the selection process may be optimized exploiting characteristics such as a 

difference in texture, as was done in the original pipeline. Given the increased computing power, size of a 

labeled training dataset, and technical expertise necessary for training a CNN as compared to a random 

forest, the latter option will be explored first.   

Imaging remains one of the most powerful tools in biomedical research, and continuous 

technological improvements allow for ever higher throughput experiments resulting in big and bigger data. 

Unfortunately, researchers often hit a bottleneck when attempting to analyze these large image-based 

datasets. Researchers and engineers are continuously developing new incredible image analysis tools. 

However, there is a need for even more tools and just as importantly for increased and continuous 

collaboration between image analysis experts and biomedical researchers to ensure that we can extract as 

much knowledge as possible from images, thus elucidating how the human body works in such as to 

enhance health and ameliorate disease.   
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Appendix 
 
Code for Training CNN Globularity Classifier 
For code used to conduct these analyses please see the following code repository: 
https://github.com/gabys2006/GlobularityClassifier 
 
Code Salazar et. al, 2022 
For code used to conduct these analyses please see the following code repository: 
https://github.com/gabys2006/TilingGlia  
 
Sample Data 
For a subset of the images that are part of the dataset analyzed in this thesis, please visit the Cell Image 
Library at UC San Diego cellimagelibrary.org/groups/54646  
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