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INFINITELY MANY RADIAL SOLUTIONS FOR A p-LAPLACIAN

PROBLEM WITH INDEFINITE WEIGHT

Alfonso Castro∗

Department of Mathematics, Harvey Mudd College

Claremont, CA 91711, USA

Jorge Cossio, Sigifredo Herrón and Carlos Vélez

Escuela de Matemáticas, Universidad Nacional de Colombia

Apartado Aéreo 3840, Medelĺın, Colombia

(Communicated by Bernhard Ruf)

Abstract. We prove the existence of infinitely many sign changing radial

solutions for a p-Laplacian Dirichlet problem in a ball. Our problem involves a
weight function that is positive at the center of the unit ball and negative in its

boundary. Standard initial value problems-phase plane analysis arguments do

not apply here because solutions to the corresponding initial value problem may
blow up near the boundary due to the fact that our weight function is negative

at the boundary. We overcome this difficulty by connecting the solutions to a

singular initial value problem with those of a regular initial value problem that
vanishes at the boundary.

1. Introduction. We study the quasilinear Dirichlet problem{
∆p u+W (x)g(u) = 0 in B1(0) ⊂ RN ,

u = 0 on ∂B1(0),
(1)

where N ≥ 2, p > 1, ∆pu = div (|∇u|p−2∇u) denotes the p-Laplacian operator, and
B1(0) denotes de unit ball in RN centered at the origin.

We assume that g is a non-decreasing locally Lipschitzian continuous function
and there exists C > 0 such that

|g(s)| ≤ C|s|p−1 for all s ∈ [−1, 1]. (2)

For the sake of simplicity in the calculations we assume that sg(s) > 0 for s 6= 0.
We also assume that there exist q1, q2 ∈ (p− 1,∞) and A1, A2 ∈ (0,∞) such that

lim
s→∞

g(s)

|s|q1−1s
:= A1, and lim

s→−∞

g(s)

|s|q2−1s
:= A2. (3)
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If p ∈ (1, N) we assume that either

(i) q1 <
N(p− 1)

N − p
or (ii) p− 1 < q1, q2 < p∗ − 1, (4)

where p∗ = Np/(N − p). Note that for p ≥ N the assumption q1, q2 ∈ (p − 1,∞)
implies

N +
qi(p−N)

p− 1
≥ p, for i = 1, 2. (5)

Also,

if p < N and q1 < N(p− 1)/(N − p) then N +
q1(p−N)

p− 1
> 0. (6)

Finally, we assume that the weight function W ∈ C1[0, 1] and there exists X ∈ (0, 1)
such that

W (X) = 0, W ′(X) < 0, W > 0 in [0, X), and W < 0 in (X, 1]. (7)

For the sake of simplicity in the presentation we assume W is decreasing in [0, X)
(see Remark 2).

Over the last fifty years the study of radial solutions to elliptic boundary value
problems has been very active going back to papers such as [2] and [4]. Our ap-
proach here is inspired by the methods in [4], where Pohozaev energy and phase
plane arguments applied to the solutions to a related singular ordinary differential
equations are used to prove the existence of solutions to the boundary value prob-
lem by a simple application of the intermediate value theorem (see also [8]). The
main difficulty of the problem we study here is that, because the weight function
W changes sign, some of the solutions to a related initial value problem blow up
preventing the use of continuity properties for such problems. We overcome such a
difficulty by following the arguments in [4] in a region where the solutions to the
initial value problem do not blow up and connecting them to solutions that satisfy
the boundary condition. For examples of applications of problem with indefinite
weight the reader is referred to [9]. For recent results on quasilinear problems with
weight see [1, 5, 11, 14]. For related results on the existence of infinitely many radial
solutions to quasilinear problems see [6, 3, 10].

Our main result is the following theorem.

Theorem 1.1. If (3), (4) and (7) hold, then there exists k0 ∈ N such that for
every k ≥ k0, the problem (1) has a solution with k nodal sets in the unit ball
with u(0) > 0. In particular, the problem (1) has infinitely many radial solutions
satisfying u(0) > 0.

Remark 1. Interchanging q1 and q2 en (4) we have k0 ∈ N such that for k ≥ k0

the problem (1) has a solution with k nodal sets and u(0) < 0. In particular, the
problem (1) has infinitely many radial solutions satisfying u(0) < 0.

This article is organized as follows. In Section 2 we show that all solutions to
(10) below are defined in [0, X] and that for each a ∈ R there exists a unique ζ
such that the solution to (17) below satisfies the boundary condition u(1) = 0, see
Theorem 2.7. In Section 3, we prove that our hypotheses imply if u is a solution to
(10) with large d then u2(r) + (u′(r))2 remains large in an interval [0, T1] ⊂ [0, X]
with T1 > 0 independent of d. In Section 4, we present the phase plane analysis of
the solutions to (10) in [0, X], and in Section 5 we prove our main result.
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2. The initial value problem. The radial solutions to (1) are the solutions to
(∣∣u′∣∣p−2

u′
)′

(r) +
N − 1

r

∣∣u′(r)∣∣p−2
u′(r) +W (r)g

(
u(r)

)
= 0, 0 < r < 1,

u′(0) = 0, u(1) = 0,

(8)
That is, v : B1(0) → R is a radial solution to (1) if and only if the function

u : [0, 1] → R defined by u(
√
x2

1 + · · ·+ x2
N ) := v(x1, . . . , xN ) satisfies (9). Due to

the singularity given by the zeros of u′ the solutions to (8) need not be of class C2.
In fact, regularity theory for quasilinear problems indicates that the solutions to (8)
may only be expected to be in the Holder space C1,µ for some µ ∈ (0, 1), see [7, 12].

It fits our purposes to regard (8) as
(
rN−1

∣∣u′(r)∣∣p−2
u′(r)

)′
+ rN−1W (r)g

(
u(r)

)
= 0, 0 < r < 1,

u′(0) = 0, u(1) = 0.
(9)

Our technique is based on the analysis of the solutions to the initial value problem
(
rN−1

∣∣u′∣∣p−2
u′
)′

+ rN−1W (r)g
(
u(r)

)
= 0, 0 < r < 1,

u(0) = d, u′(0) = 0.
(10)

Throughout this paper we write u(r, d) := u(r) if the dependence of u on d is clear
from the context. Letting Γ(x) = x|x|p−2 one sees that, for each d ∈ R, a continuous
function u satisfies the integral equation

u(r) = d−
∫ r

0

Γ−1

(
s1−N

∫ s

0

tN−1W (t)g(u(t))dt

)
ds (11)

if and only if it is a solution to (10). More generally, for any r0 ∈ [0, 1), a ∈ R, b ∈ R,
a continuous function u satisfies

u(r) = a+

∫ r

r0

Γ−1

(
s1−N

[
rN−1
0 Γ(b)−

∫ s

r0

tN−1W (t)g(u(t))dt

])
ds (12)

if and only if it satisfies
(
rN−1

∣∣u′∣∣p−2
u′
)′

+ rN−1W (r)g
(
u(r)

)
= 0, r0 ≤ r < 1,

u(r0) = a, u′(r0) = b.
(13)

Given d0 ∈ R− {0}, since g is a locally Lipschitzian function, there exists τ > 0
such that for each d ∈ [d0− τ, d0 + τ ], equation (11) has a unique solution ud in the
space of continuous functions defined on [0, τ ]. This and the continuity of the right
hand side in (11) on (d, u), imply that ud continuously depends on d. If τ = 1 such
a solution is a solution to (10). If τ ∈ (0, 1), we obtain a solution on [0, τ1] for some
τ1 > τ by applying the same argument to (12) with a = ud(τ) and b = u′d(τ). The
function ud may be extended to a maximal interval which is either [0, 1] or [0, τ̂(d))
with limt→τ̂(d)− [u2(t) + (u′(t))2] = +∞. We note that, due to hypothesis (2), no

solution to (13) satisfies limt→τ̂(d)− [u2(t) + (u′(t))2] = 0 if (a, b) 6= (0, 0). For a
comprehensive study of existence, uniqueness and continuous dependence, we refer
the reader to [13]. See also [6] for some details in the case W = 1.

In our next lemma we prove that τ̂(d) > X. Since d0 ∈ R−{0} is arbitrary, this
show the existence of a unique solution to (10) on [0, X] that depends continuously
on d.
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From now on we define

G(t) =

∫ t

0

g(s)ds and p′ = p/(p− 1). (14)

Lemma 2.1. For each d ∈ R the solution to (10) is defined in [0, X].

Proof. Let u be a solution to (10) defined in [0, t) with t ≤ X, and

E(r, d) ≡ E(r) :=
p− 1

p
|u′(r)|p +W (r)G

(
u(r)

)
. (15)

Observe |u′|p = | |u′|p−2u′ |p/(p−1) and the function |u′|p−2u′ is differentiable in
(0, t) (see (10)). Moreover, function h(s) = |s|p/(p−1) is differentiable on R and
h′(s) = p

p−1 |s|
p/(p−1)−2s = p

p−1 |s|
(2−p)/(p−1)s for all s 6= 0 and h′(0) = 0. Hence, E

is differentiable on (0, t) and

E ′(r) =

(
p− 1

p
|u′(r)|p−2u′(r)|p/(p−1)

)′
+W ′(r)G(u(r)) +W (r)g(u(r))u′(r)

=
∣∣|u′(r)|p−2u′(r)

∣∣(2−p)/(p−1) |u′(r)|p−2u′(r)
(
|u′(r)|p−2u′(r)

)′
+W ′(r)G(u(r)) +W (r)g(u(r))u′(r)

= |u′(r)|2−p|u′(r)|p−2u′(r)
(
|u′(r)|p−2u′(r)

)′
+W ′(r)G(u(r)) +W (r)g(u(r))u′(r)

= u′(r)

(
−N − 1

r
|u′(r)|p−2u′(r)−W (r)g(u(r))

)
+W ′(r)G(u(r)) +W (r)g(u(r))u′(r) (from (8))

= −N − 1

r
|u′(r)|p +W ′(r)G(u(r))

= −p(N − 1)

(p− 1)r
E(r) +G

(
u(r)

) [p(N − 1)

(p− 1)r
W (r) +W ′(r)

]
(from (15))

≤W ′(r)G(u(r)).

(16)

Hence E decreases on [0, t) which implies |u′(r)|p ≤ p′W (0)G(d) for all r ∈ [0, t).
Thus limr→t− u(r) := u(t) ∈ R and hence, limr→t− u

′(r) := u′(t) ∈ R. Therefore u
may be extended to an interval [0, t + ε0) for some ε0 > 0. Since this is valid for
any t ∈ [0, X] we conclude that the solution to (10) may be extended to [0, X + ε0)
with ε0 depending on d. This proves the lemma.

Remark 2. The assumption W ′(r) ≤ 0 in [0, X] may be eliminated by observing

that
p(N − 1)

(p− 1)r
W (r) +W ′(r) < 0 in an interval of the form [X − δ,X + δ] and that

W ′(r)G(u(r)) ≤ CE(r) for r ∈ [0, X − δ] for some constant C depending only on
W .

For a, ζ ∈ R let us consider
(
rN−1

∣∣u′∣∣p−2
u′
)′

+ rN−1W (r)g
(
u(r)

)
= 0, X < r < 1,

u(X) = a, u′(X) = ζ.
(17)

As mentioned above, due to our assumptions on g, the initial value problem (17)
has a unique solution u = u(a, ζ) on a maximal interval I, which is denoted by
[X,Ra,ζ) := I.
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Lemma 2.2. For a > 0 let

ηa = max

{
2p/(p−1)a

(1−X)X(N−1)/(p−1)
,

(
2‖W‖∞(1−X)g(a)

XN−1

)1/(p−1)
}
. (18)

If u is the solution to (17) with ζ = −ηa then there exists r̂ ∈ I ∩ [0, 1) such that
u(r̂) = 0 and u decreases in [X, r̂].

Proof. Let r > 0 be such that 0 ≤ u(s) ≤ a for every s ∈ [X, r]. The existence
of such an r is guaranteed by the initial conditions in (17) and the fact that ζ =
−ηa < 0. Thus, integrating the differential equation in (17) on [X, r],

rN−1|u′(r)|p−2u′(r)−XN−1|u′(X)|p−2u′(X) = −
∫ r

X

sN−1W (s)g
(
u(s)

)
ds.

Hence, the definition of ηa implies

|u′(r)|p−2u′(r) = −
(
X

r

)N−1

ηp−1
a −

∫ r

X

(s
r

)N−1

W (s)g(u(s))ds

≤ −XN−1ηp−1
a + (1−X)‖W‖∞g(a)

≤ −X
N−1ηp−1

a

2
.

(19)

Thus u decreases in [X, r]. Therefore u is bounded in [X, r], which implies that
[X, r] ⊂ I. Let

r̂ = sup{r ∈ I : 0 ≤ u(s) ≤ a for all s ∈ [X, r]} := supB.

Due to the continuity of u, if r ∈ B then u(r) ≥ 0. Applying again the continuity
of u we have u(r̂) ≥ 0. Since [X, r] ⊂ I for all r ∈ B, we have [X, r̂] ⊆ I. Assuming
that u(r̂) > 0, the continuity of u implies that there exists δ > 0 such that u(s) > 0
for all s ∈ [X, r̂ + δ) contradicting the definition of r̂. Hence u(r̂) = 0.

From (19),

−u′(r) ≥
(
XN−1ηp−1

a

2

)1/(p−1)

for all r ∈ [X, r̂].

Integrating on [X, r̂],

0 = u(r̂) = u(X) +

∫ r̂

X

u′(r)dr ≤ a− (r̂ −X)X(N−1)/(p−1)ηa
21/(p−1)

. (20)

This and the definition of ηa yield

r̂ ≤ X +
21/(p−1)a

X(N−1)/(p−1)ηa
≤ X +

1−X
2

< 1. (21)

Thus, from (21) and (19), r̂ ∈ (X, 1), u(r̂) = 0 and u decreases in (X, r̂) proving
the lemma.

Lemma 2.3 (Comparison principle). Let a, y1, y2 ∈ R. Let u1 satisfy
(
rN−1

∣∣u′1∣∣p−2
u′1

)′
+ rN−1W (r)g

(
u1(r)

)
= 0, X < r < R1 := Ra,y1 ,

u1(X) = a, u′1(X) = y1,
(22)



4810 A. CASTRO, J. COSSIO, S. HERRÓN AND C. VÉLEZ

and u2 satisfy
(
rN−1

∣∣u′2∣∣p−2
u′2

)′
+ rN−1W (r)g

(
u2(r)

)
= 0, X < r < R2 := Ra,y2 ,

u2(X) = a, u′2(X) = y2.
(23)

If y1 < y2, then u1(t) < u2(t) for every t ∈ [X,R1) ∩ [X,R2).

Proof. Assuming to the contrary there exists t ∈ [X,R1) ∩ [X,R2) such that

u1(t) = u2(t) and u1(r) < u2(r) for all r ∈ (X, t). (24)

Then, u′2(t) ≤ u′1(t). Since Γ is an increasing function,

|u′2(t)|p−2u′2(t) ≤ |u′1(t)|p−2u′1(t).

This, (22) and (23) yield

XN−1|y2|p−2y2−
∫ t

X

sN−1W (s)g
(
u2(s)

)
ds

≤ XN−1|y1|p−2y1 −
∫ t

X

sN−1W (s)g
(
u1(s)

)
ds.

(25)

On the other hand, since y1 < y2 and Γ is strictly increasing,

XN−1|y1|p−2y1 < XN−1|y2|p−2y2. (26)

Moreover, since −W ≥ 0 on [X, 1] and g is non-decreasing,

−
∫ t

X

sN−1W (s)g
(
u1(s)

)
ds ≤ −

∫ t

X

sN−1W (s)g
(
u2(s)

)
ds. (27)

Since (25) together with (26) contradict (27) the lemma is proven.

Lemma 2.4. Let r∗ ∈ [X, 1), b > 0 and y ≥ 0. If u satisfies
(
rN−1

∣∣u′∣∣p−2
u′
)′

+ rN−1W (r)g
(
u(r)

)
= 0, r∗ ≤ r < R := Rb,y,

u(r∗) = b, u′(r∗) = y,
(28)

then u′(r) > 0 for all r ∈ [r∗, R).

Proof. Let t ∈ [r∗, R). From (28),

tN−1|u′(t)|p−2u′(t) = rN−1
∗ |u′(r∗)|p−2u′(r∗)−

∫ t

r∗

sN−1W (s)g
(
u(s)

)
ds (29)

= rN−1
∗ yp−1 +

∫ t

r∗

sN−1(−W (s))g
(
u(s)

)
ds.

Since b > 0, if t is close to r∗, g(u(r)) ≈ g(b) > 0 for all r ∈ [r∗, t]. Hence, (29)
implies u′(t) > 0. Now, assume t ∈ [r∗, R) satisfies u′(t) = 0 and u′(r) > 0 for every
r ∈ [r∗, t). Then u(r) ≥ u(r∗) = b. From (29),

0 = tN−1|u′(t)|p−2u′(t) = rN−1
∗ yp−1 +

∫ t

r∗

sN−1(−W (s))g
(
u(s)

)
ds > 0.

This contradiction shows u′(t) > 0 for every t ∈ [r∗, R), proving the lemma.
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From now on let a > 0 and for y > −ηa, let us denote by uy the unique solution
of 

(
rN−1

∣∣u′∣∣p−2
u′
)′

+ rN−1W (r)g
(
u(r)

)
= 0,

u(X) = a, u′(X) = y,
(30)

which is defined on a maximal interval [X,Ry), (Ry := Ra,y).
Let

A := {y ≥ −ηa : uy has a zero ry in (X, 1)} and ζ̂(a) = supA. (31)

Applying Lemma 2.4 with r∗ = X and b = a, we observe A ⊆ (−∞, 0). Thus,

ζ̂(a) ≤ 0 for all a > 0.

Remark 3. From the comparison principle (Lemma 2.3), if y1, y2 ∈ A with y1 < y2

and r1 ≡ ry1 , r2 ≡ ry2 in (X, 1) are the corresponding first zeros of uy1 and uy2 ,
then r1 < r2.

Theorem 2.5. Let a > 0. If u is the solution to (17) with u′(X) = ζ̂(a) then
u(1) = 0 and u is positive in [X, 1).

Proof. Let {yj}j ⊂ A be an increasing sequence converging to ζ̂(a). Let u be the

solution to the initial value problem (30) with y = ζ̂(a) and let uj be the solution to
the initial value problem (30) with y = yj . Let rj ∈ (X, 1) be such that uj(s) > 0
for all s ∈ (X, rj) and uj(rj) = 0. By Lemma 2.3, {rj}j is an increasing sequence
bounded above by 1. This and the continuous dependence of solutions on initial

conditions imply ζ̂(a) ≤ 1. Let τ = lim
j→∞

rj ∈ [X, 1]. By the continuity of u and

Lemma 2.3,

u(τ) = lim
j→∞

u(rj) ≥ lim inf
j→∞

uj(rj) = 0. (32)

Let ε > 0. By the continuous dependence of solutions to initial value problems
on initial conditions, there exists j0 such that if j ≥ j0 then rj ∈ (τ − ε, τ) and
|u′(t)− u′j(t)| < ε for all j ≥ j0 and t ∈ [X, τ − ε]. From

tN−1|u′n(t)|p−2u′n(t) = XN−1|yn|p−2yn −
∫ t

X

sN−1W (s)g
(
un(s)

)
ds,

and the fact that {yj}j is a bounded sequence, there exists M > 0 such that

|u′j(t)| ≤M, |u′(t)| ≤M for all j ≥ j0, t ∈ [X, τ − ε]. (33)

Hence, for j ≥ j0, uj(τ − ε) ≤M(rj − τ + ε) ≤Mε. Thus

u(τ) = a+

∫ τ

X

u′(s)ds = a+

∫ τ−ε

X

u′j(s)ds+

∫ τ−ε

X

(u′(s)− u′j(s))ds

+

∫ τ

τ−ε
u′(s)ds

≤ uj(τ − ε) + ε(τ −X) +Mε

≤ ε(2M + τ −X).

(34)

Since ε > 0 is arbitrary we have u(τ) = 0. Since u(t) > uj(t) for all t ∈ [X, rj ], u is
positive in [X, τ).

By the uniqueness of solutions to initial value problems and the assumption
g(0) = 0, we have u′(τ) < 0. Assuming that τ < 1, there exists ε ∈ (0, 1− τ) such
that u(x) < 0 for x − τ ∈ (0, ε). Let {zj}j be a decreasing sequence converging to
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ζ̂(a) and let vj be the solution to the initial value problem (30) with y = zj . By
continuous dependence of solutions to initial value problems on initial conditions,
there exists j such that vj(τ + ε/2) < 0. Since vj is positive in [X, τ ], there exists
r1 ∈ (τ, τ + ε/2) ⊂ [X, 1) such that vj is positive in [X, r1) and vj(r1) = 0. Hence

zj ∈ A and zj > ζ̂(a) contradicting the definition of ζ̂(a). This contradiction proves
that τ = 1 and, therefore, the theorem.

Theorem 2.6. The function ζ̂ : [0,∞)→ (−∞, 0] defined on (0,+∞) by Theorem

2.5 and by ζ̂(0) = 0 is a decreasing continuous function.

Proof. Let a1 < a2. Let u be the solution to the second order differential equation

in (30) that satisfies the initial condition u(X) = a1, u′(X) = ζ̂(a1) and similarly v

for (a2, ζ̂(a2)). Because a1 < a2, v(r) > u(r) for r near X. This and u(1) = v(1)
imply that there exists σ ∈ (X, 1] such that v(s) > u(s) for all s ∈ (X,σ) and
v(σ) = u(σ). By uniqueness of solutions to initial value problems, v′(σ) < u′(σ).

Assuming that ζ̂(a1) ≤ ζ̂(a2), we have

0 < σN−1(|u′(σ)|p−2u′(σ)− |v′(σ)|p−2v′(σ))

= XN−1(|ζ̂(a1)|p−2ζ̂(a1)

− |ζ̂(a2)|p−2ζ̂(a2))−
∫ σ

X

sN−1W (s)(g(u(s))− g(v(s)))ds

< 0.

(35)

This contradiction proves that ζ̂ is a decreasing function.
Let {an} be a decreasing sequence of non-negative numbers converging to a ≥ 0.

Let ζ̂(an) := ζ̂n, and un be the solution to the second order differential equation

in (30) that satisfies the initial condition un(X) = an, u′n(X) = ζ̂n. Let u be the
solution to the second order differential equation in (30) that satisfies the initial

condition u(X) = a, u′(X) = ζ̂(a). Since {ζ̂n} is an increasing sequence bounded

by ζ̂(a), c = limn→+∞ ζ̂(an) ≤ ζ̂(a). Let w denote the solutions to the second
order differential equation in (30) with w(X) = a and w′(X) = c. By continuous
dependence on initial conditions we have

0 = lim
n→∞

un(1) = w(1). (36)

Therefore c = ζ̂(a). Thus limn→+∞ ζ̂(an) = ζ(a). Similarly, if {an} is an increas-

ing sequence converging to a then limn→+∞ ζ̂(an) = ζ(a). This proves that ζ̂ is
continuous on [0,∞).

Imitating the proofs in Theorem 2.5 and Theorem 2.6 one proves that ζ̂ may be
extended to (−∞,∞). That is we have the following result.

Theorem 2.7. There exists a continuous function ζ̂ : R → R with ζ̂(0) = 0 such

that if u is the solution to (17) with u′(X) = ζ̂(a) then u(1) = 0 and, u is positive
in [X, 1) if a > 0 and u is negative in [X, 1) if a < 0.

3. Energy analysis. If (4) (ii) is satisfied then there exists δ > 0 such that

(δ + 1)(qi + 1) < p∗, i = 1, 2. (37)

We choose ε > 0 such that

ε < min

{
A1[p∗ − (δ + 1)(q1 + 1)]

p∗ + (δ + 1)(q1 + 1)
,
A2[p∗ − (δ + 1)(q2 + 1)]

p∗ + (δ + 1)(q2 + 1)

}
. (38)
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Letting C1 := A1 − ε, C2 := A1 + ε, C3 := A2 − ε, C4 := A2 + ε, by (3) there exists
M > 0 such that

∀ s ≥ 0, C1s
q1+1 −M ≤ sg(s) ≤ C2s

q1+1 +M, (39)

∀ s ≤ 0, C3|s|q2+1 −M ≤ sg(s) ≤ C4|s|q2+1 +M, (40)

∀ s ≥ 0,
C1

q1 + 1
sq1+1 −M ≤ G(s) ≤ C2

q1 + 1
sq1+1 +M, (41)

∀ s ≤ 0,
C3

q2 + 1
|s|q2+1 −M ≤ G(s) ≤ C4

q2 + 1
|s|q2+1 +M, (42)

where G is a primitive of g such that G(0) = 0. Hence there exist D > 0, C̃1, C̃2

such that

C̃1|s|qi+1 ≤ sg(s) ≤ C̃2|s|qi+1 i = 1, 2, for |s| ≥ D. (43)

Note that the monotonicity of g implies G(s) ≥ 0 for all s ∈ R and sg(s) ≥ 0
for all s 6= 0.

Due to the continuity of W at zero, there exists T ∈ (0, X) (see (7)) so that

∀ r ∈ [0, T ], W (r) ≥ W (0)

2
:=

m

2
. (44)

Given d > 0, let u be the solution to (10) defined on [0, X] (see Lemma 2.1 above).
It follows that

− rN−1
∣∣u′(r)∣∣p−2

u′(r) =

∫ r

0

sN−1W (s)g
(
u(s)

)
ds. (45)

Due to d > 0 and the continuity of u, we have u > 0 near r = 0. Since g is an
increasing function, g(0) = 0, (44) and (45) then u′(r) < 0 for r > 0 small. Let

r0 = r0(d) := sup {r > 0 : ∀ s ∈ [0, r], u(s) ≥ d/2} .

Note that, from (45), u′(r) < 0 for all r ∈ (0, r0).

Lemma 3.1. There exist positive constants K0 and K1 independent of d such that

K0 d
p−1−q1

p ≤ r0 ≤ K1 d
p−1−q1

p
for d� 1. (46)

Proof. For d > 2D, let us define τ = τ(d) := min{r0(d), T}. By (43), (44) and the
fact that u′(r) < 0 for r ∈ (0, τ ],

rN−1
∣∣u′(r)∣∣p−1

=

∫ r

0

sN−1W (s)g
(
u(s)

)
ds ≥ mC̃1

2

∫ r

0

sN−1
(
u(s)

)q1
ds

≥ mC̃1

2

(
d

2

)q1 rN
N
≡ K̃1d

q1rN .

Hence, −u′(r) ≥ K̃1
1/(p−1)

d
q1

p−1
r

1
p−1

. Integrating on [0, τ ], we have

d− d/2 ≥ d− u(τ) = −
∫ τ

0

u′(r)dr ≥ p− 1

p
K̃1

1/(p−1)
d

q1
p−1

r
p

p−1
]τ

0

=
p− 1

p
K̃1

1/(p−1)
d

q1
p−1

τ
p

p−1
.

Thus,

τ ≤ K1 d
p−1−q1

p
for d > 2D,
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where K1 = p−1
p K̃1

1/(p−1)
. Therefore τ(d)→ 0 as d→ +∞. Then, for d� 1,

τ ≤ K1 d
p−1−q1

p ≤ T/2.

Hence, τ < T and thus τ = r0. Consequently, for d� 1,

r0 ≤ K1 d
p−1−q1

p
.

On the other hand, for d� 1 and r ∈ [0, r0], using again (43),

rN−1
∣∣u′(r)∣∣p−1

=

∫ r

0

sN−1W (s)g
(
u(s)

)
ds ≤ C̃2‖W‖∞

∫ r

0

sN−1
(
u(s)

)q1
ds

≤ C̃2‖W‖∞dq1
rN

N
≡ K̃0d

q1rN .

As above, integrating on [0, r0] we have d/2 ≤ K̃0
1/(p−1)

d
q1

p−1
r

p
p−1

0 which proves the
first inequality in (46). Hence the lemma has been proved.

Lemma 3.2. There exists C > 0, independent of d, such that for r ∈ [0, r0],

E(r, d) ≥ C dq1+1, for d� 1.

Proof. Without loss of generality we can assume that r0 < T. For every r ∈ [0, r0]
we have

G(u(r)) ≥ C|u(r)|q1+1 −M ( see (41))

≥ C dq1+1 −M ≥ C

2
dq1+1 (d� 1).

Since, E(r, d) ≥W (r)G(u(r)) ≥ mCdq1+1/4, the lemma follows.

Since W is of class C1, there exists T1 ≤ T such that for r ∈ (0, T1],

p′(N − 1)

r
W (r) +W ′(r) > 0, (47)

where p′ = p/(p − 1). Note that by Lemma 3.1 we may assume r0(d) < T1 for
d� 1.

Lemma 3.3. If either p ≥ N or p < N and (i) in (4) hold, then limd→+∞ E(r, d) =
∞ uniformly for r ∈ [0, T1].

Proof. From Lemma 3.2, it follows that limd→+∞ E(r, d) = +∞, uniformly for
r ∈ [0, r0]. Due to (16), (47) and G(t) ≥ 0 for all t ∈ R, we have

E ′(r) +
p′(N − 1)

r
E(r) = G(u)

[p′(N − 1)

r
W (r) +W ′(r)

]
≥ 0, (48)

for every r ∈ (0, T1]. Therefore,
(
rp
′(N−1)E(r)

)′
≥ 0. From Lemmas 3.1 and 3.2,

since N + q1(p−N)/(p− 1) > 0 (see (5) and (6)), we get

E(r) ≥ rp
′(N−1)E(r) ≥ rp

′(N−1)
0 E(r0) ≥ C dN+q1(p−N)/(p−1) → +∞, (49)

as d→ +∞ uniformly for r ∈ [r0, T1], which proves the lemma.
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For u(r, d) := u(r) the solution to (10) we define:

H(r, d) := rE(r, d) +
N − p
p
|u′(r, d)|p−2u′(r, d)u(r, d),

P (r, d) :=

∫ r

0

sN−1

[(
NW (s) + sW ′(s)

)
G
(
u(s)

)
− N − p

p
W (s)g

(
u(s)

)
u(s)

]
ds.

(50)
The quantities in (50) are related by the Pohozaev-type identity (see [3, 4, 11]):

rN−1H(r, d)− tN−1H(t, d)

=

∫ r

t

sN−1
[(
NW (s) + sW ′(s)

)
G(u)− N − p

p
W (s)g(u)u

]
ds .

(51)

Taking t = 0 in equation (51), we have the following Pohozaev identity

rN−1H(r, d) = P (r, d),

equivalently

rN
[
p− 1

p

∣∣u′(r)∣∣p +W (r)G
(
u(r)

)]
+
N − p
p

rN−1
∣∣u′(r)∣∣p−2

u′(r)u(r)

=

∫ r

0

sN−1
[(
NW (s) + sW ′(s)

)
G(u)− N − p

p
W (s)g(u)u

]
ds = P (r, d).

(52)

We recall that r0(d)→ 0 as d→∞. Let δ > 0 be as in (61). By further restricting
T1 we may assume that

N + s
W ′(s)

W (s)
>

N

1 + δ
, for s ∈ [0, T1]. (53)

In this case, W (s) > m/2 > 0 and hence (52) is equivalent to

P (r, d) =

∫ r

0

sN−1W (s)
[(
N + s

W ′(s)

W (s)

)
G(u)− N − p

p
g(u)u

]
ds. (54)

Lemma 3.4. If p < N and (ii) in (4) holds then P (r0, d)→∞ as d→∞.

Proof. Due to (53), G(·) ≥ 0, (41), (43) and u(s) ≥ d/2, we have

(
N + s

W ′(s)

W (s)

)
G(u)− N − p

p
g(u)u

≥
(
d

2

)q1+1 [
NC1

(1 + δ)(q1 + 1)
− N − p

p
C2

]
− CN

1 + δ
·

By (38), the expression inside brackets is positive. Hence, for d� 1,

(
N + s

W ′(s)

W (s)

)
G(u)− N − p

p
g(u)u > 0, for every s ∈ [0, r0].
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Hence, by (46), for d� 1,

P (r0, d) ≥ m

2N

(
d

2

)q1+1 [
NC1

(1 + δ)(q1 + 1)
− N − p

p
C2

]
rN0 −

m

2

C

1 + δ
rN0

≥ mC

2q1+1N

[
NC1

(1 + δ)(q1 + 1)
− N − p

p
C2

]
dq1+1+ N

p (p−1−q1)

− mC̃1

2(1 + δ)
d

N
p (p−1−q1)

= dN [1−(q1+1)/p∗]
(
C − C0d

−(q1+1)
)
≥ CdN [1−(q1+1)/p∗].

This proves the lemma.

Lemma 3.5. If p < N and (ii) in (4) holds then P (r, d)→∞ as d→∞ uniformly
for r ∈ [r0, T1].

Proof. Note that

P (r, d) = P (r0, d) +

∫ r

r0

sN−1W (s)
[(
N + s

W ′(s)

W (s)

)
G(u)− N − p

p
g(u)u

]
ds (55)

= P (r0, d) + I+ + I−,

where

I+ =

∫
{u(s)≥0}

sN−1W (s)
[(
N + s

W ′(s)

W (s)

)
G(u)− N − p

p
g(u)u

]
ds,

and

I− =

∫
{u(s)≤0}

sN−1W (s)
[(
N + s

W ′(s)

W (s)

)
G(u)− N − p

p
g(u)u

]
ds.

Using (39), (41) and arguing as above, we get

I+ ≥
∫
{u(s)≥0}

sN−1W (s)

[
NC1

(1 + δ)(q1 + 1)
− N − p

p
C2

]
uq1+1ds (56)

−
∫
{u(s)≥0}

sN−1W (s)

[
NM

(1 + δ)(q1 + 1)
− N − p

p
M

]
ds

≥ −
∫
{u(s)≥0}

sN−1W (s)

[
NM3

(1 + δ)(q1 + 1)
− N − p

p
M1

]
ds

≥ −
∣∣∣∣ NM3

(1 + δ)(q1 + 1)
− N − p

p
M1

∣∣∣∣ ‖W‖∞ ∫ 1

0

sN−1ds = −C.

In a similar way, using (40) and (42), we have I− ≥ −C. This, (55) and (56) imply
P (r, d)→∞ as d→∞ for every r ∈ [r0, T1].

4. Phase plane analysis. Recall that, given d > 0, the problem (10) has a unique
solution u(r, d) defined for all r ∈ [0, X].

Since g(0) = 0, (u(r, d), u′(r, d)) 6= (0, 0) for all r ∈ [0, X]. Hence there exists a
continuous function φ(r, d), for r ∈ [0, X], such that φ(0, d) = 0,

u(r, d) = ρ(r, d) cosφ(r, d),

u′(r, d) = −ρ(r, d) sinφ(r, d),
(57)

where ρ(r, d) =

√(
u(r, d)

)2
+
(
u′(r, d)

)2
. Moreover, φ(·, d) is differentiable at every

r ∈ [0, X] such that u′(r) 6= 0.
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Differentiating the first equation in (57) with respect to r, for u′(r) 6= 0,

u′(r) = ρ′(r, d) cos
(
φ(r, d)

)
− ρ(r, d) sin

(
φ(r, d)

)
· φ′(r, d). (58)

Let T > 0 and m be as in (44). We recall that our problem has a singularity at
r = 0 (see (8)) and, if u′(r) = 0, u′′(r) may not exist since

u′′(r) = − N − 1

(p− 1)r
u′(r)−

W (r)g
(
u(r)

)
(p− 1)|u′(r)|p−2

. (59)

However, if u′(r) 6= 0 then u′′(r) is defined by (59). Combining (57) and the first
equation in (10), we have

φ′(r, d) =
(u′(r, d))2

ρ2(r, d)
+

W (r)u(r)g(u(r))

(p− 1)ρ2(r, d)|u′(r)|p−2
+

(N − 1)u(r)u′(r)

r(p− 1)ρ2(r, d)
, (60)

for r ∈ (0, X] with u′(r) 6= 0.

Remark 4. (i) By Lemmas 3.3, 3.4 and 3.5, E(r, d) → +∞ as d → +∞ uni-
formly for r ∈ [0, T1], and therefore ρ(r, d) → +∞ as d → +∞ uniformly for
r ∈ [0, T1].

(ii) From (58), if j is a non-negative integer and φ(r1, d) = jπ + π/2 for some
r1 ∈ (0, X] then φ′(r1, d) = 1. Hence φ(r, d) > jπ + π/2 for every r ∈ [r1, X]
(see also [3, p. 756] and Corollary 1 below).

(iii) If u has no zero in (0, T1/2) then u′(t) < 0 for all t ∈ (0, T1/2], which implies
sin(φ(t)) ∈ (0, 1), see (57). Hence φ(t) > 0 for all t ∈ (0, T1/2]. On the other
hand, if u vanishes in r1 ∈ (0, T1/2] then taking r1 as the smallest zero of u
we have φ(r1, d) = π/2. This and (ii) imply φ(T1/2, d) > π/2. Thus in any
case φ(T1/2, d) > 0.

Let k be a positive integer. For x0 > 0, let us define

m̃(x0) = min

{
g(x)

|x|p−2x
: |x| ≥ x0

}
.

Due to the p-superlinearity of g we have m̃(x0) → +∞ as x0 → +∞. For ρ > 0
and η > 0 we define ω(ρ, η) := m̃(ρ sin(η)) sinp(η)/(p − 1). Now we choose ρ0 > 0
and δ ∈ (0, π/4) such that

(i) 0 < δ <
(p− 1)T1

32(N − 1)
, (ii) ω(ρ0, δ) >

4(N − 1)

m(p− 1)T1
,

(iii) m̃(ρ0/2) ≥ 2(p/2)+5k(p− 1)

m
, (iv) 16δ +

8π

mω(ρ0, δ)
≤ T1

2k
.

(61)

Since limd→+∞ ρ(r, d) = ∞ uniformly for r ∈ [0, T1], there exists d0 > 0 such that
if d > d0 then ρ(r, d) ≥ ρ0 for every r ∈ [0, T1].

Lemma 4.1. If T1/2 ≤ r ≤ T1 and φ(r, d) ∈ [ jπ2 − δ,
jπ
2 + δ] with j > 0 an odd

integer, then φ′(r, d) > 1/4.

Proof. From (60),

φ′(r, d) ≥ sin2 φ+
W (r)u(r)g(u)

(p− 1)ρ2(r, d)|u′(r)|p−2
− (N − 1)| cosφ sinφ|

r(p− 1)
.

Taking into account that | sin(φ(r, d))| ≥ cos δ and | cos(φ(r, d))| ≤ sin δ ≤ δ,

φ′(r, d) ≥ cos2 δ +
W (r)u(r)g(u)

(p− 1)ρ2(r, d)|u′(r)|p−2
− 2(N − 1)δ

(p− 1)T1
.
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Since δ < min{π/4, (p− 1)T1/(32(N − 1))}, see (61)-(i),

φ′(r, d) ≥ cos2(π/4) +
W (r)u(r)g(u)

(p− 1)ρ2(r, d)|u′(r)|p−2
− 1

16
≥ 7

16
>

1

4
. (62)

Thus, the lemma is proved.

Lemma 4.2. If T1/2 ≤ r ≤ T1 and φ(r, d) ∈ [ jπ2 + δ, (j+1)π
2 − δ] with j > 0 an

integer, then φ′(r, d) > mω(ρ0, δ)/4.

Proof. We carry out the details of the proof for p ≥ 2. The case 1 < p < 2 follows
similarly. From (60),

φ′(r, d) ≥ W (r)u(r)g(u(r))

(p− 1)ρ2(r, d)|u′(r)|p−2
− (N − 1)

2r(p− 1)

≥ W (r)

p− 1

g(u(r))

|u|p−2u(r, d)

|u(r, d)|p

ρ2(r, d)|u′|p−2
− N − 1

(p− 1)T1
.

Due to | cosφ(r, d)| ≥ sin δ and ω(ρ0, δ) >
4(N−1)
m(p−1)T1

, see (61)-(ii), it follows that

φ′(r, d) >
W (r)

p− 1

g(u(r))

|u|p−2u(r, d)

| cosφ(r, d)|p

| sinφ(r, d)|p−2
− mω(ρ0, δ)

4

≥ W (r)

p− 1

g(u(r))

|u|p−2u(r, d)
sinp δ − mω(ρ0, δ)

4
.

Since |u| = ρ| cosφ| ≥ ρ0 sin δ, g(u)/(|u|p−2u) ≥ m̃(ρ0 sin δ). This and the definition
of ω(ρ0, δ) yield

φ′(r, d) > W (r)ω(ρ0, δ)−
mω(ρ0, δ)

4
≥ mω(ρ0, δ)

4
. (63)

In the latter inequality we have used W (r) ≥ m/2 for any r ∈ [0, T1]. Thus, (63)
proves the lemma.

Lemma 4.3. If T1/2 ≤ r ≤ T1 and φ(r, d) ∈ [jπ − δ, jπ) ∪ (jπ, jπ + δ] for some
positive integer j, then

φ′(r, d) ≥ 8k| sin(φ(r, d))|2−p. (64)

Proof. From δ < π/4, (57), and | cosφ(r, d)| ≥ cos δ, it follows

u2(r) = ρ2(r, d)(1− sin2(δ)) ≥ ρ2(r, d)/2.

This, (61)-(iii), and (60) imply

φ′(r, d) ≥ W (r)u(r)g(u(r))

(p− 1)ρp(r, d)| sin(φ(r, d))|p−2
− (N − 1)| sin(φ(r, d))|

r(p− 1)

≥ W (r)u(r)g(u(r))| sin(φ(r, d))|2−p

2p/2(p− 1)|u(r)|p
− 2(N − 1)| sin(φ(r, d))|

T1(p− 1)

≥
(
W (r)u(r)g(u(r))

2p/2(p− 1)|u(r)|p
− 1

16
| sin(φ(r, d))|p−1

)
| sin(φ(r, d))|2−p

≥ mm̃(ρ0/2)

2(p/2)+2(p− 1)
| sin(φ(r, d))|2−p

≥ 8k| sin(φ(r, d))|2−p,

(65)

which completes the proof of the lemma.
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Corollary 1. Let j be non-negative integer. If r̂ ∈ [T1/2, T1] and φ(r̂, d) = jπ/2
then φ(r, d) > jπ/2 for all r ∈ (r̂, T1].

Proof. For j odd, see Remark 4. The case j even follows from Lemma 4.3.

Proposition 1. For any p > 1, limd→+∞ φ(T1, d) = +∞.

Proof. Let d > d0 and k as in Lemmas 4.1, 4.2 and 4.3. Hence φ(·, d) increases
in [T1/2, T1]. Let r0 ∈ [T1/2, T1]. Since φ(r0, d) > 0, there exists a non-negative
integer j such that either

φ(r0, d) ∈ [jπ/2, jπ/2 + δ], φ(r0, d) ∈ [jπ/2 + δ, (j + 1)π/2− δ], or

φ(r0, d) ∈ [(j + 1)π/2− δ, (j + 1)π/2].
(66)

Suppose j is odd. If φ(r0, d) ∈ [jπ/2, jπ/2 + δ] then by Lemma 4.1 and (61) there
exists r1 ∈ (r0, r0 + 4δ] ⊂ (r0, r0 + T1/(8k)] such that φ(r1, d) = jπ/2 + δ.

By Lemma 4.2 and (61) there is r2 ∈ (r1, r1 + 2π/(mω(ρ0, δ))] ⊂ [r1, r1 + T1/8k]
such that φ(r2, d) = (j + 1)π/2− δ.

By Lemma 4.3, if p ≥ 2, there exists r3 ∈ [r2, r2 + δ/(8k)] such that φ(r3, d) =
(j + 1)π/2. On the other hand, if p ≤ 2, from Lemma 4.3 for r ≥ r2 and φ(r, d) ≤
(j + 1)π/2 we have φ′(r, d)φp−2(r, d) ≥ 8k. Integration on [r2, r] and (61) give

8k(p− 1)(r − r2) ≤
(

(j + 1)π

2

)p−1

−
(

(j + 1)π

2
− δ
)p−1

≤ 2

(
2

(j + 1)π

)2−p

δ.

(67)

Therefore

r − r2 ≤ 2

(
2

(j + 1)π

)2−p
δ

8k(p− 1)

<
T1

8k
.

(68)

Hence there exists r3 ∈ [r2, r2 + T1/(8k)] such that

r3 ∈ [r0, r0 + 3T1/(8k)] ⊂ [r0, r0 + T1/(2k)] and φ(r3, d) = (j + 1)π/2. (69)

If φ(r0, d) ∈ [jπ/2 + δ, (j + 1)π/2 − δ], then placing r0 in the role of r1 we see

that there exists r3 ∈ [(j + 1)π/2 − δ, (j + 1)π/2] that satisfies (69). Similarly if
φ(r0, d) ∈ [(j + 1)π/2− δ, (j + 1)π/2], placing r0 in the role of r2 above we find r3

satisfying (69).
If j in (66) is an even positive integer and φ(r0, d) ∈ [jπ/2, jπ/2 + δ] applying

Lemma 4.3 we see that there is r1 ∈ [r0, r0 +T1/(8k)] such that φ(r1, d) = jπ/2+ δ.
Then applying Lemma 4.2 it follows that there exists r2 ∈ [r1, r1 + 2π/(mω(ρ0, δ))]
such that φ(r2, d) = (j + 1)π/2 − δ. Finally, applying Lemma 4.1 there exists
r3 ∈ [r2, r2 + T1/(8k)] that satisfies (69). That is (69) is satisfied for both j even
and j odd. Thus φ(r, d)− φ(t, d) ≥ π/2 if r − t ≥ T1/(2k), which implies

φ(T1, d) ≥ φ(T1/2) +
kπ

2
>
kπ

2
. (70)

This proves the proposition.

By Proposition 1 given any positive integer k there exists dk such that if d ≥ dk
then φ(T1, d) > kπ/2. Since φ(r, d) is a continuous function, by the intermediate
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value theorem there exists r̂ ∈ (0, T1) so that φ(r̂, d) = kπ/2. By part (ii) of Remark
4,

φ(X, d) ≥ φ(r̂) ≥ kπ/2.

Thus, we have proved:

Proposition 2. limd→+∞ φ(X, d) = +∞.

Now we are ready to prove Theorem 1.1.

5. Proof of Theorem 1.1. Let u(r, d) be the solution to problem
(
rN−1

∣∣u′(r)∣∣p−2
u′(r)

)′
+ rN−1W (r)g

(
u(r)

)
= 0, 0 < r ≤ X,

u′(0) = 0, u(0) = d.
(71)

Let us define a := u(X, d) and let v(r, d) be the solution to problem
(
rN−1

∣∣v′∣∣p−2
v′
)′

+ rN−1W (r)g
(
v(r)

)
= 0, X < r < 1,

v(X) = a, v′(X) = ζ̂,
(72)

where ζ̂ := ζ̂(a) is given by Theorem 2.7. Note that v(1, d) = 0. By Proposition 2
and the continuous dependence of φ(X, d) on d, there exists K such that if k ≥ K

then there exist positive real numbers dk and d̂k such that

dk < d̂k, φ(X, dk) = kπ, and φ(X, d̂k) = kπ + π/2. (73)

Without loss of generality we may assume k to be even. The case k odd follows

similarly. Since k is even, u(X, dk) > 0 and u′(X, dk) = 0. Therefore ζ̂(u(X, dk)) <

0 = u′(X, dk). Also, u′(X, d̂k) < 0 and u(X, d̂k) = 0. Hence,

ζ̂(u(X, d̂k)) = 0 > u′(X, d̂k).

Thus, by the intermediate value theorem there exists d̄k ∈ (dk, d̂k) such that

u′(X, d̄k) = ζ̂(u(X, d̄k)). Let Uk(r) be the function defined by

Uk(r) =

{
u(r, d̄k) r ∈ [0, X],

v(r, d̄k) r ∈ [X, 1],

where v is given by (72). Since u(X, d) = v(X, d), u′(X, d) = v′(X, d), and
v(1, d̄k) = 0, Uk is a radial solution to (1). Thus, the sequence {Uk(r)}k gives
us infinitely many radially symmetric solutions to problem (1), which concludes the

proof of Theorem 1.1. �X
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