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EXISTENCE OF SOLUTIONS

TO A SEMILINEAR ELLIPTIC BOUNDARY VALUE PROBLEM

WITH AUGMENTED MORSE INDEX BIGGER THAN TWO

Alfonso Castro — Ivan Ventura

Abstract. Building on the construction of least energy sign-changing solu-

tions to variational semilinear elliptic boundary value problems introduced
in [5], we prove the existence of a solution with augmented Morse index

at least three when a sublevel of the corresponding action functional has

nontrivial topology. We provide examples where the set of least energy sign
changing solutions is disconnected, hence has nontrivial topology.

1. Introduction

We consider the existence of solutions to the equation

(1.1)

−∆u = f(u) on Ω,

u = 0 on ∂Ω,

where Ω is a bounded subset of Rn, its boundary ∂Ω is Lipschitizian, and f is

a differentiable function.

The solvability of (1.1) has motivated fundamental developments in critical

point theory in the last fifty years. The mountain pass lemma was developed in [2]
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234 A. Castro — I. Ventura

by A. Ambrosetti and P.H. Rabinowitz in order the prove the existence of pos-

itive solutions to (1.1). The saddle point principle proved by P.H. Rabinowitz

in [14] was motivated by the solvability of (1.1) in the presence of resonance.

In [16], Z.-Q. Wang studied connections between mountain passes in order to es-

tablish the existence of solutions to (1.1) given by critical points with augmented

Morse index greater that or equal to two, see Definition 1.1. Refinements of

the arguments in [16] led to the existence of solutions to (1.1) that change sign

exactly once and have Morse index 2, see [5]. This paper builds on the construc-

tions in [5] obtaining solutions with augmented Morse index greater than two,

see Theorem 1.3.

We assume that there exist A > 0 and p ∈ [1, (N + 2)/(N − 2)) such that

(1.2) |f ′(u)| ≤ A(|u|p−1 + 1) for u in R.

Let λ1 < λ2 ≤ . . .→ +∞ denote the eigenvalues of −∆ with Dirichlet boundary

condition in Ω. We also assume the following hypotheses:

(h1) f(0) = 0, f ′(0) < λ1.

(h2) lim
|u|→∞

f(u)/u =∞, i.e. f is superlinear.

(h3) f ′(u) > f(u)/u for all u 6= 0.

(h4) There exist m ∈ (0, 1) and ρ > 0 such that (m/2)uf(u) − F (u) ≥ 0 for

|u| > ρ, where F (u) =
∫ u

0
f(s) ds.

From these hypotheses it follows that there exists a positive constant K such

that

(1.3) αtf(αt) ≥ Kα2/mtf(t) for α ≥ 1 and |t| > ρ.

Let H(Ω) := H denote the Sobolev space of functions vanishing in ∂Ω and

having square integrable first order partial derivatives. The solutions to (1.1)

are the critical points of the functional J : H→ R,

(1.4) J(u) =
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

F (u) dx,

where F (t) =
∫ t

0
f(s) ds. The functional J is of class C2. Its gradient is given

by

(1.5) 〈∇J(u), v〉 =

∫
Ω

(∇u · ∇v − f(u)v) dx,

for all u, v ∈ H, and its Hessian is given by

(1.6) 〈D2J(u)v, w〉 =

∫
Ω

(∇v · ∇w − f ′(u)vw) dx,

for all u, v, w ∈ H.

Definition 1.1. If u is a critical point of J , we will say that u has Morse

index k if D2J(u) has exactly k negative eigenvalues, counting multiplicity; and
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that u has augmented Morse index k if the number of nonpositive eigenvalues of

D2J(u), counting multiplicity, is k. We will denote the Morse index of J at u

by m(J, u) and by m+(J, u) the augmented Morse index of J at u.

Due to the assumptions on f , J satisfies the Palais–Smale condition, i.e. if

{J(uk)}k is a bounded sequence and {∇J(uk)}k converges to 0 then {uk}k has

a converging subsequence, see [5].

Let h(u) = 〈∇J(u), u〉 and

(1.7) N = {u ∈ H : u 6= 0, h(u) = 0}.

From (h3) we have, for all N ,

〈∇h(u), u〉 =

∫
Ω

t(2|∇u|2 − u2f ′(u)− uf(u)) dx(1.8)

=

∫
Ω

(|∇u|2 − u2f ′(u)) dx < 0.

The set N is known as the Nehari manifold of (1.1). It is easily seen that every

nonzero solution to (1.1) belongs to N .

We make extensive use of the properties of J compared to those of the re-

striction of J to N , J|N . In particular we make use of the following result.

Lemma 1.2. For J and N above, we have

(1.9) m(J, u) = m(J|N , u) + 1 and m+(J, u) = m+(J|N , u) + 1,

where J|N denotes the restriction of J to N .

Proof. Let V be a k-dimensional subspace tangent to N at u on which

D2J|N (u) is negative definite. Hence, for any v ∈ V , 〈∇h(u), v〉 = 0. Therefore

0 =

∫
Ω

(2∇u · ∇v − f ′(u)uv − f(u)v) dx(1.10)

=

∫
Ω

(∇u · ∇v − f ′(u)uv) dx.

Thus, for any α, β ∈ R2 \ {(0, 0)} and v ∈ V ,

〈D2J(u)(αv + βu), (αv + βu)〉 = α2

∫
Ω

(|∇v|2 − f ′(u)v2) dx(1.11)

+ β2

∫
Ω

(|∇u|2 − f ′(u)u2) dx+ 2αβ

∫
Ω

(∇v · ∇u− f ′(u)uv) dx

=α2

∫
Ω

(|∇v|2 − f ′(u)v2) dx+ β2

∫
Ω

(|∇u|2 − f ′(u)u2) dx.

Therefore, by (1.8), (1.10) and (1.11), D2J is negative definite in a (k + 1)-

dimensional subspace of H. Thus m(J, u) ≥ k + 1. On the other hand, from the

definition of Morse index, D2J|N (u) is nonnegative definite in a k-dimensional
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subspace of the tangent space to N at u. Since such tangent space is a codimen-

sion 1 subspace of H, m(J, u) ≤ k+1. This proves the first identity in (1.9). The

proof of the second identity follows the same pattern and is left for the reader.�

In [5] it was proven that defining

(1.12) E := {u ∈ N | 〈∇J(u), u+〉 = 0},

there exists w ∈ E such that

(1.13) c = J(w) = min{J(u) : u ∈ E},

w changes sign exactly once, and w satisfies (1.1). All functions w satisfying

(1.13) are solutions to (1.1) that change sign exactly once. Moreover in [4] it

is proven that the Morse index of w is two. Earlier in [7] such a result was

obtained under the additional assumption that w an isolated solution. For the

sake of simplicity in the text, we will call such solutions CCN-solutions and c

the CCN-level, and we will denote

(1.14) W = {u ∈ E : J(u) = J(w)}.

Our main result is:

Theorem 1.3. Let Ω, f,N , E, and w be as above and a ∈ R. Let Ja = {u ∈
E : J(u) < a}. and πk(Ja) the k-th homotopy group of Ja. If Ja is disconnected

or πk(Ja) is nontrivial for some positive integer k, then J has a critical level

c1 ∈ [a,∞) and a critical point with augmented Morse index greater than or

equal to three.

The proof of Theorem 1.3 is in the spirit of Theorem 1 of [8] where the result

was stated in terms for singular homology. A fundamental ingredient in this

proof is that E is connected and πk(E) is trivial for all positive integers k, see

Theorem A.1 in Appendix A.

Remark 1.4. Replacing homotopy groups by singular homology groups in

the statement of Theorem 1.3 leads to the same result and the proofs are very

similar.

Corollary 1.5. Let Ω, f,N , E, and w be as above. If W, defined as in

(1.14), is disconnected then there exist c1 > J(w) and u ∈ E such that ∇J(u) = 0

and J(u) = c1.

Finally, we show that Theorem 1.3 and Corollary 1.5 are not vacuous, by

constructing regions where the level J(w) ⊂ E is disconnected. In fact we have

the following theorem.

Theorem 1.6. Let A1 and A2 be smooth congruent regions with disjoint clo-

sures. Let τ : [1, 2]→ Rn a one-to-one differentiable function such that τ(i) ∈ Ai,
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τ ′(i) is transversal to the boundary of Ai, τ((1, 2)) ∩ ∂(A1 ∪A2) = ∅, ε > 0 and

C = {x ∈ Rn : |x− τ(t)| < ε}. If ε > 0 is sufficiently small Ω = A1 ∪ C ∪ A2 is

symmetric with respect to a hyperplane then {u ∈ E : J(u) = J(w)} is discon-

nected.

In Section 2 we prove some preliminary estimates needed later in the paper.

In Section 3 we prove a deformation lemma on E . Note that, unlike usual defor-

mation lemmas (see [15]), E does not have a differentiable structure. We bypass

this deficiency by making strong use of the fact that J attains a strict maximum

in the radial direction at every point in N . In Section 4 we prove Theorem 1.3.

This proof proceeds much like the proof of Theorem 1 in [8]. In Section 5 we

prove Theorem 1.6 by establishing that CCN-solutions concentrate away from

the handle. Finally in Appendix A we prove that the homotopy groups of E are

trivial.

2. Preliminary results

Using the implicit function theorem, it is easily seen that N is a differentiable

manifold of class C1. Moreover, it is diffeomorphic to the unit sphere in H. In

fact, from (h1)–(h3) it follows that for each u ∈ H \ {0} there exists a unique

positive real number P (u) such that P (u)u ∈ N . In other words, P (u)u is the

intersection of N with {su : s ∈ (0,∞)}.

Lemma 2.1. If A is a bounded subset of N then there exist C1, C2 > 0, and

δ > 0 such that if dist(u,A) < δ, v ∈ A, then

(2.1) Θ(u) :=

∫
Ω

(f ′(u)u2 − uf(u)) dx ≥ C1,

and

(2.2) J(v) ≤ J((1− s)v) + C2s
2 for |s| < δ.

Proof. We argue by contradiction. Suppose there exists a sequence un
such that that lim

n→∞
Θ(un) = 0 and lim

n→∞
dist(un, A) = 0. Let un = vn +wn with

vn ∈ A, and lim
n→∞

wn = 0. Since {un} is bounded, we may assume that {un}
converges to u ∈ Lp+1. Therefore,∫

Ω

uf(u) dx = lim
n→∞

∫
Ω

unf(un) dx = lim
n→∞

‖un‖2 ≥ C2,

where C2 > 0. Hence u 6= 0. Since t2f ′(t)− tf(t) > 0 for t 6= 0, Θ(u) > 0. This

contradicts the assumption lim
n→∞

Θ(un) = 0 and proves (2.1).

In order to prove (2.2) we assume that {vj} is a sequence in A and {sj} is a se-

quence of real numbers converging to zero such that J(vj) ≥ J((1− sj)vj) + js2
j .
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By Taylor’s formula, there exists a sequence {tj} with |tj | ≤ sj such that

(2.3) −2j =
d2

ds2
J((1− s)vj)

∣∣∣∣
s=tj

= 〈D2J((1− s)vj)vj , vj〉,

which contradicts that D2J is bounded on bounded sets. This proves (2.2) and

hence the lemma. �

Lemma 2.2. Let A ⊂ N , C > 1 and δ > 0 be as in Lemma 2.1. There exists

δ1 ∈ (0, δ) such that if ‖v−u‖ < δ1, for some u ∈ A, then |P (v)−1| < C3‖u−v‖.

Proof. Without loss of generality we may assume that δ < 1/2. For w ∈ H
let

(2.4) I(w) :=

∫
Ω

|∇u|2 dx−
∫

Ω

wf(u) dx.

Note that
dI(su)

ds
=

∫
Ω

(2s|∇u|2 − f ′(su)u2 − f(su)u) dx.

Arguing as in the proof of (2.1), we see that there exist δ2 ∈ (0, δ) and C2 > 0

such that dI(su)/ds ≤ −C2 for all s ∈ (1− δ2, 1 + δ2), u ∈ A.

Due to (h3), there exists k > 0 such that if u ∈ N , ‖v−u‖ < δ then |I(αu)−
I(αv)| ≤ k‖u− v‖ for α ∈ (1− δ, 1 + δ). Hence I(αv) ≤ I(αu) + k‖u− v‖. Also,

from (2.1), I(1+(δ2/2)u) ≤ −C2δ2/2+k‖u−v‖ < 0 if ‖u−v‖ < δ1 := C2δ2/(2k).

Hence |P (v)− 1| < k‖u− v‖/C if ‖u− v‖ < δ1. Hence P (v) < 1 + k‖u− v‖/C.

Similarly, P (v) > 1− k‖u− v‖/C, which proves the lemma. �

Lemma 2.3. If {uj}j is a sequence in E such that lim
j→+∞

J(uj) = J(w) then

{∇J(uj)}j converges to zero. Thus, by the (PS) condition, {uj}j has a subse-

quence that converges to a CCN-solution.

Proof. Assuming to the contrary, there exist α > 0 and a subsequence

{ujk}k such that ‖∇J(ujk)‖ ≥ α for all k and dist(ujk ,W) ≥ α, where W is as

in (1.14). Since lim
‖u‖→+∞, u∈E

J(u) = +∞, {ujk}k is bounded. Hence there exists

β ∈ (0, α) such that ‖∇J(u)‖ ≥ α/2 for ‖u− ujk‖ < β.

Let ηk := η denote the solution to

(2.5) η′(t) = − ∇J(η(t))

‖∇J(η(t))‖2
, η(0) = ujk , t ∈ [0, αβ/2].

Let t0(k) := t0 = 2(J(ujk)− J(w)). Hence

(2.6) J(η(t0)) = J(w)− 1

2
t0, ‖η(t0)± − (ujk)±‖ ≤ Ct0,

where C > 0 is a constant independent of k. Let λ± be such that λ±η(t0)± ∈ N .

By Lemma 2.2 and (2.6), |P ((ujk)±) − P (η(t0))| ≤ C|J(ujk) − J(w)|. Since
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ϕ(s) = J(s(λ±η(t0)±)) attains its maximum at s = 1, by (2.6), we have

J(λ+η(t0)+ − λ−η(t0)−) = J(λ+η(t0)+) + J(λ−η(t0)−)

≤ J(η(t0)+) + J(η(t0)−) + Ct20 ≤ J(η(t0)) + Ct20

= J(w)− 1

2
t0 + Ct20 < J(w)

for k large. This is a contradiction since λ+η(t0)+ + λ−η(t0)− ∈ E and J(w) =

min{J(u) : u ∈ E}. This contradiction proves the lemma. �

3. A deformation lemma

In this section we prove a deformation lemma for J on E . Since E is not a

differentiable manifold several technical issues must be overcome as opposed to

the case where the domain is a differentiable manifold (see [15]). In fact we have

the following.

Lemma 3.1. If b ∈ R is not a critical value of J then there exists ε > 0 such

that if K ⊂ {u ∈ E : J(u) < b+ε} is compact then there is a continuous function

σ : [0, 2ε] × K → E such that σ(0, x) = x, J(σ(2ε, x)) < b for any x ∈ K, and

σ(t, x) = x for all t ∈ [0, 2ε] if J(x) < b− 2ε.

Proof. Since J satisfies the (PS) condition there exists ε > 0 such that

[b − 2ε, b + 2ε] contains no critical values of J . Let χ ∈ C∞0 (R) be such that

0 ≤ χ ≤ 1, χ ≡ 1 on [b− ε, b+ ε] and 0 on (−∞, b− 2ε] ∪ [b+ 2ε,∞). Consider

the flow defined for v0 ∈ H by

(3.1)

v̇ = −χ(J(v))
∇J(v)

|∇J(v)|2
,

v(0) = x.

As the vector field −χ(J(u))∇J(u)/|∇J(u)|2 is C1, the flow is continuous. Thus

we may define Ft : H→ H by Ft(x) = v(t) where v solves (3.1).

Next define λ±(t, x) := λ±(t) = P [Ft(x)]±. Thus we have

σ(t, x) = λ+(t)[Ft(x)]+ + λ−(t)[Ft(x)]− and σ(0, x) = x.

If J(x) < b − 2ε we have χ(J(x)) = 0 implying that Ft(x) = x giving that

σ(t, x) = x for all t ∈ [0, 2ε].

Assuming that J(Ft(x)) ≥ b− ε for all s ∈ [0, 2ε], we have

(3.2) J(F2ε(x)) = J(x)−
∫ 2ε

0

〈
∇J(Fs(x)), χ(J(Fs(x)))

∇(J(Fs(x)))

‖∇J(Fs(x))‖2

〉
ds

< b+ ε− 2ε,

which is a contradiction. Thus for each x there exists s ∈ [0, 2ε] such that

J(Fs(x)) < b − ε. Since J(Fs(x)) defines a decreasing function of s, we have
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J(F2ε(x)) < b− ε for all x ∈ K. Applying Lemma 2.2 and (3.2), and using that

λ± is a critical value for the function ϕ(s) = J(s[F2ε(x)]±), we see that

J(σ(2ε, x)) = J(λ+(2ε)[F2ε(x)]+) + J(λ−(2ε)[F2ε(x)]−)

≤ J([F2ε(x)]+) + J([F2ε(x)]−) + Cε2 = J(F2ε(x)) + Cε2 < b− ε+ Cε2 < b

for ε sufficiently small. �

4. Proof of Theorem 1.3

Below is a proof of Theorem 1.3. It follows much of the usual methods seen

in Theorem 1 of [8].

Proof. Let ψ : Sk → Ja be a nonzero element of πk(Ja). Let Bk+1 be the

closed ball of radius 1 in Rk+1 centered at the origin. Define the set

B =
{
ϕ : Bk+1 → E , ϕ is continuous, ϕ(x) = ψ(x) for ‖x‖ = 1

}
.

By Theorem A.1, B is not empty. Since ψ defines a nonzero element of πk(Ja),

(4.1) max
‖x‖≤1

J(ϕ(x)) > a for each ϕ ∈ B.

Let

(4.2) c1 = inf
ϕ∈B

(
max
‖x‖≤1

J(ϕ(x))

)
.

By (4.1), c1 ≥ a. Assume that c1 is not a critical value for the sake of contradic-

tion. Let ε > 0 be as in Lemma 3.1 and such that c1 − 2ε > max
‖x‖=1

J(ψ(x)). Let

ϕ ∈ B be such that max
‖x‖≤1

J(ϕ(x)) < c1 + ε, and ϕ1(x) := σ(2ε, ϕ(x)) with σ as

in Lemma 3.1. Since σ is continuous and σ(t, v) = v for J(v) < c1 − 2ε, ϕ1 ∈ B.

Hence max
‖x‖≤1

J(ϕ1(x)) < c1, which contradicts the definition of c1 and proves that

c1 is a critical value. Let w1 be such that J(w1) = c1 and ∇J(ω1) = 0.

For any u ∈ E , D2J(u) is negative definite in the two dimensional subspace

spanned by {u+, u−}. Assuming that all the critical points of J in E have

augmented Morse index less than three implies that they are nondegenerate

Morse index two critical points. Hence J has finitely many critical points in E
and their Morse index restricted to the Nehari manifold is equal to one (see

Lemma 1.2). Let ε ∈ (0, 1/2) be small enough so that

E1 =
{
αu+ − βu− ∈ N : u = u+ − u− ∈ E , |α− 1| < ε, |β − 1| < ε

}
is an open submanifold of N . Let c2 be such that J(u) < c2 for u critical points

of J and c as in (1.13). By standard Morse theory (see [9]), we have the exact

sequence

· · · → H2(Jc2 ∩ E1)→ H1(Jc2 ∩ E1, Jc ∩ E1)→ H1(Jc ∩ E1)→ H1(Jc2 ∩ E1)→ · · ·
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Since J has no critical point in Jc ∩ E1, H1(Jc ∩ E1) = {0}. This and the fact

that H1(Jc2 ∩ E1, Jc ∩ E1) has at least two generators imply that H2(Jc2 ∩ E1) is

nontrivial. Hence J has an augmented Morse index two critical point in Jc2 ∩E1,

which by Lemma 1.2 is an augmented three Morse index critical point of J . This

proves the theorem. �

5. Proof of Theorem 1.6

Remark 5.1. For the sake of simplicity in the proof we assume N = 2. The

general case, N ≥ 3, follows by bootstrapping arguments based on successive

multiplications by functions of the type |w|rjw, with r1 = (N + 2)/(N − 2)− p,
rj+1 > rj , and lim

j→+∞
= +∞.

Proof. Let ε > 0 be the width of the channel C (see Figure 1). In order to

keep track of the width of the channel we will denote Ω = Ωε, C = Cε, N = Nε,
E = Eε, and W = Wε, see (1.14). Without loss of generality we may assume that

Ωε is invariant under the transformation Φ(x, y) = (−x, y).

Figure 1

Let u1 be a positive solution to (1.1) in A1, u2 a negative solution to (1.1)

in A2. Defining ûε(x) = u1(x) in A1, ûε(x) = 0 for x ∈ C, and ûε(x) = u2(x)

for x ∈ A2, we see that ûε ∈ Eε for any ε > 0 sufficiently small. Using that ui
satisfies (1.1) in Ai and that ûε is identically zero in C, we have

〈∇J(ûε), ûε〉 =

∫
A1∪A2

(|∇ûε|2 − ûεf(ûε)) dx+

∫
C

(|∇ûε|2 − ûεf(ûε)) dx = 0.

Hence ûε ∈ Eε, which yields J(wε) ≤ J(ûε) for ε > 0 sufficiently small. Thus,

there exists a positive constant K1 such that ‖wε‖ ≤ K1 for any wε ∈ Eε. This,

the definition of weak solutions, and hypothesis (h4) give

‖wε‖2 = 2

∫
Ω

F (wε(x)) dx+2K1 ≤ m
∫

Ω

wε(x)f(wε(x)) dx+K2 ≤ m‖wε‖2 +K2,

for some K2 > 0 independent of (wε, ε). Since m < 1 we have ‖wε‖ ≤ K3,

with K3 > 0 independent of (wε, ε). This and the Sobolev embedding theorem

(see [11]) imply ‖f ◦ wε‖2 ≤ K4, again with K4 independent of (wε, ε).
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Let T = max{|x− y| : x, y ∈ Ω}. If T ≤ 1/2, the Green function G(x, y) on

Ω is bounded above by ln(|x− y|). Thus, for any x ∈ Ω we have

|w(x)| =
∫

Ω

G(x, y)f(w(y)) dy ≤
∫

Ω

| ln(|x− y|)||f(w(y))| dy(5.1)

≤
(∫

Ω

ln2(|x− y|) dy
)1/2

‖f ◦ w‖2 := K5.

On the other hand, if T > 1/2, we define W = {(1/2T )(x1, x2) : (x1, x2) ∈ Ω}
and w1,ε(x1, x2) = wε(2Tx1, 2Tx2). Since −∆w1,ε = (1/4T 2)f(w1,ε(x1, x2)) and

max{|x− y| : x, y ∈W} ≤ 1/2, the arguments in (5.1) hold for w1,ε, hence they

hold for w. Thus (5.1) is valid regardless of T .

By a priori estimates for elliptic equations on regions satisfying the uniform

exterior cone condition (see [11, Theorem 8.29]), there exist α ∈ (0, 1) andK6 > 0

such that ‖w‖Cα(Ω) ≤ K6. Hence for each x ∈ C, |w(x)| ≤ K6ε
α. Thus

(5.2) lim
ε→0+

‖w‖L∞(C) = 0.

Let {εj}j is a decreasing sequence of positive numbers converging to zero

and {wj}j a corresponding sequence of CCN-solutions converging in H(A1 ∪
A2). From (5.1), (5.2), and regularity for elliptic boundary value problems we

may assume that {wj}j converges to w ∈ H(A1 ∪ A2). Since (wj)+ ∈ Nε and

lim
j→∞

‖wj‖Cα(Cε) = 0 then w+ 6= 0. Similarly w− 6= 0. Hence w changes sign

in A1 ∪ A2. If w changes sign in A1 then taking z1 as a positive function that

minimizes J on A1 and z2 as a negative function that minimizes J on A2, we

have J(z1 + z2) < J(w). Hence for j sufficiently large J(z1 + z2) < J(wj), which

contradicts that wj is a CCN-solution in Ωεj .

Therefore, for ε > 0 sufficiently small we may assume that for any CCN-

solution,

(5.3)

∫
Ai

u(x, y) dx dy 6= 0, for i = 1, 2.

Let v be a CCN-solution and v̂(x, y) = v(−x, y). Hence û is also a CCN-solution

and

(5.4)

(∫
A1

v(x, y) dx dy

)(∫
A1

v̂(x, y) dx dy

)
< 0.

Suppose for each t ∈ [0, 1] there exists a CCN-solution ut that depends continu-

ously on t and such that u0 = v and u1 = v̂. This and (5.4) imply that, for some

t0 ∈ (0, 1),
∫
A1
ut0(x, y) dx dy = 0. Since this contradicts (5.3), the theorem is

proved. �
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Appendix A. The topology of E

The set E is connected. In fact, let P : H \ {0} → (0,∞) be the continuous

function such that P (u)u ∈ N . If u = u+ − u− and v = v+ − v− are in E , then

P (u+ + t(v − u))(u+ + t(v − u)) + P (u+ + t(v − u))(u+ + t(v − u)) defines a

continuous path E from u and v. In addition to being connected, the set E has

the following property.

Theorem A.1. For any positive integer k, the homotopy group πk(E) is

trivial.

Proof. Let Sk denote the unit sphere in Rk+1, and {ω1, ω2, . . .} denote a

complete orthonormal set in H corresponding to the eigenvales λ1 < λ2 ≤ . . .→
+∞. Since ω1 does not change sign, we may assume ω1(z) > 0 for all z ∈ Ω. Let

φ : Sk → E be a continuous function. By the compactness of φ(Sk), given ε > 0,

there exists a positive integer j > 2 such that |P1(φ(x))− ψ(x)| < ε with P the

orthogonal projection onto the subspace spanned by {ω1, . . . , ωj}.
We let Φ(s, x) = φ(x) + s(P1(φ(x)) − φ(x)). By taking ε sufficiently small,

we see that Φ changes sign for all (s, x) ∈ [0, 1]× Sk. Letting

φ(1, x) =

j∑
i=1

ai(x)ωi,

we define

Φ(s, x) =

j∑
i=1

(2− s)a1(x)ω1 +

j∑
i=2

ai(x)ωi.

Let us see that Φ is a sign changing function, for all (s, x) ∈ [1, 2]×Ω. Without

loss of generality we assume that a1(x) > 0. Since Φ(s, x)(z) ≤ Φ(1, x)(z) for all

z ∈ Ω, Φ(s, x)− 6= 0. Also since Ψ(2, x) is L2-orthogonal to ω1, Φ(s, x)+ 6= 0.

This and Φ(s, x)(z) ≥ Φ(2, x)(z) for all z ∈ Ω imply Φ(s, x)+ 6= 0, which proves

the claim.

Finally, for s ∈ [2, 3] we define Φ(s, x) = (3− s)Φ(2, x) + (s− 2)ωj+1. Since

Φ(s, x) is orthogonal to ω1, Φ is a sign-changing function also for all (s, x) ∈
[2, 3]×Sk. As Φ(3, x) = ωj+1 for all x ∈ Sk, we have proven that φ is homotopic

to a constant function in V = {y ∈ H − {0} : y changes sign}. Since V can

be transformed continuously into E by Q(u+ − u−) = P (u+)u+ + P (−u−)u−,

Q ◦ Φ defines a homotopy in E between φ and a constant function. Hence

πk(E) = {0}. �
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8 (1991), 43–57.

Manuscript received September 9, 2015

accepted January 19, 2016

Alfonso Castro and Ivan Ventura

Department of Mathematics

Harvey Mudd College
Claremont, CA 91711, USA

E-mail address: castro@g.hmc.edu, ibventura@g.hmc.edu

TMNA : Volume 49 – 2017 – No 1


	Existence of solutions to a semilinear elliptic boundary value problem with augmented Morse index bigger than two
	Recommended Citation

	tmp.1696530219.pdf.SIbh9

