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Abstract We consider the elliptic equation−�u+u = 0with nonlinear boundary condition
∂u
∂n = λu + g(λ, x, u), where g(λ,x,s)

s → 0, as |s| → ∞ and g is oscillatory. We provide
sufficient conditions on g for the existence of unbounded sequences of stable solutions,
unstable solutions, and turning points, even in the absence of resonant solutions.

Keywords Resonance · Stability · Instability · Multiplicity · Bifurcation from infinity ·
Sublinear oscillating boundary conditions · Turning points

Mathematics Subject Classification 35B32 · 35B34 · 35B35 · 58J55 · 35J25 · 35J60 ·
35J65

1 Introduction

In this paper we consider solutions to the elliptic problemwith nonlinear boundary conditions

{−�u + u = 0, in �
∂u
∂n = λu + g(λ, x, u), on ∂�

(1.1)

in a bounded and sufficiently smooth domain � ⊂ R
N with N ≥ 2. Roughly speaking,

we assume that the nonlinearity at the boundary satisfies lim|s|→∞ g(λ,x,s)
s = 0, and g is

oscillatory. Our goal is to give conditions on the sublinear oscillatory term g that guarantee
the existence of unbounded sequences of stable solutions, unstable solutions and turning
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points, even in the absence of resonant solutions. For N = 1 the problem (1.1) becomes a
2 × 2 system; in Sect. 4 we work out this case in detail.

Let {σi }∞i=1 denote the sequence of Steklov eigenvalues of the eigenvalue problem{−�� + � = 0, in �
∂�
∂n = σ�, on ∂�.

(1.2)

The Steklov eigenvalues form an increasing sequence of real numbers, {σi }∞i=1. Each eigen-
value has finite multiplicity. The first eigenvalue σ1 is simple and, due to Hopf’s Lemma,
we may assume its eigenfunction �1 to be strictly positive in �. The eigenfunctions corre-
sponding to different eigenvalues are orthogonal in L2(∂�) and we take ‖�1‖L∞(∂�) = 1,
see [4], [5, Chap.3].

Throughout this paper we assume:
(H1) g : R × ∂� × R → R is a Carathéodory function (i.e. g = g(λ, x, s) is measurable

in x ∈ ∂�, and continuous with respect to (λ, s) ∈ R × R), and g is twice differentiable
with respect to s. Moreover, there exist r > N − 1, G1 ∈ Lr (∂�) and continuous functions
� : R → R

+, and U : R → R
+, satisfying

⎧⎨
⎩

‖g(λ, x, s)| ≤ �(λ)G1(x)U (s), ∀(λ, x, s) ∈ R × ∂� × R,

lim sup
|s|→∞

U (s)

|s|α < +∞ for some α < 1.

(H2) The partial derivative gs(λ, ·, ·) ∈ C(∂� × R), where gs := ∂g
∂s , and there exist

ρ < 1 and F1 ∈ Lr (∂�), such that

|g(λ, x, s) − sgs(λ, x, s)|
|s|ρ ≤ F1(x), as λ → σ1 (1.3)

for x ∈ ∂� and s 
 1 sufficiently large.
(H3) The second partial derivative gss(λ, ·, ·) ∈ C(∂� × R) is such that

sup
|s|≥M

∥∥∥∥gss(λ, ·, s)
|s|ρ−α−1

∥∥∥∥
L∞(∂�)

→ 0 as M → ∞ and λ → σ1. (1.4)

Observe that the exponents α, ρ may be negative, since we are interested at the behavior
of g as s → ∞.

As stated in [1, Theorem 3.4], due to (H1) there exists a connected set of positive weak
solutions of (1.1). We denote it by D+ ⊂ R × C(�̄), and recall that for (λ, uλ) ∈ D+

uλ = s�1 + wλ, with wλ = o (|s|) and |σ1 − λ| = o(1) as |s| → ∞. (1.5)

The set D+ is known as a branch bifurcating from infinity in the sense of Rabinowitz, see
[1,13]. By a bootstrap argument, it can be proved that u ∈ Cν(�) for some ν > 0, see [1,
Proposition 2.3].

In Theorem 2, we provide sufficient conditions on g for the existence of unbounded
sequences of stable solutions, unstable solutions, and turning points.

For (λ, uλ) ∈ D+ we say that uλ is a stable solution if there exists a neighborhood of uλ in
C(�̄) such that for initial data u0 in that neighborhood the solution to the parabolic problem⎧⎨

⎩
ut − �u + u = 0, in � × R

+
∂u
∂n = λu + g(λ, x, u), on ∂� × R

+,

u(0, x) = u0(x), in �.

(1.6)
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converges to uλ as t → +∞. On the other handwe say that uλ is unstable if any neighborhood
of uλ contains initial data u0 for which the solution to (1.6) leaves that neighborhood in finite
time. That is, asymptotic stability in the Lyapunov sense.

Definition 1 A solution (λ∗, u∗) of (1.1) in the branch of solutions D+ ⊂ R × C(�̄) is
called a turning point if there is a neighborhoodW of (λ∗, u∗) in R×C(�̄) such that, either
W ∩ D+ ⊂ [λ∗,∞) × C(�̄) or W ∩ D+ ⊂ (−∞, λ∗] × C(�̄).

Our main result is the following Theorem.

Theorem 2 Assume the nonlinearity g satisfies hypotheses (H1), (H2) and (H3).
Assume also that

lim
λ→σ1
s→+∞

∫
∂�

∣∣∣∣ g(λ, x, s�1) − s�1gs(λ, x, s�1)

|s|ρ − g(σ1, x, s�1) − s�1gs(σ1, x, s�1)

|s|ρ
∣∣∣∣ �1 = 0.

(1.7)
Let F : R × C(�̄) → R be defined by

F(λ, u) :=
∫

∂�

ug(λ, ·, u) − u2gs(λ, ·, u)

|u|1+ρ
�

1+ρ
1 . (1.8)

If there exist sequences {sn}, {s′
n} converging to +∞, such that

lim
n→+∞ F(σ1, s

′
n�1) < 0 < lim

n→+∞ F(σ1, sn�1), (1.9)

then

(i) There exists a sequence {(λn, un)} ⊂ D+ of stable solutions to (1.1) and a sequence
{(λ′

n, u
′
n)} ⊂ D+ of unstable solutions such that (λn, ‖un‖L∞(∂�)) → (σ1,∞) and

(λ′
n, ‖u′

n‖L∞(∂�)) → (σ1,∞) as n → ∞.
(ii) There exist a sequence {(λ∗

n, u
∗
n)} ⊂ D+ of turning points such that (λ∗

n, ‖u∗
n‖L∞(∂�)) →

(σ1,∞) as n → ∞.

Our main result, Theorem 2 above, is exemplified by

g(x, s) := sα

[
sin

(∣∣∣∣ s

�1(x)

∣∣∣∣
β
)

+ C

]
with α < 1, β > 0, C ∈ R, for s 
 1. (1.10)

In fact we have:

Corollary 3 Assume that g is given by (1.10). If

β > 0 and α + β < 1,

then, ∀C ∈ R, the unbounded branch of positive solutions of (1.1) contains a sequence of
stable solutions, a sequence of unstable solutions and a sequence of turning points.

The proof of this Corollary follows directly from Theorem 2.
In Figs. 1 and 2 we plot the bifurcation diagram for g as above. Figure3 sketches the

changes of stability of solutions.
In addition to the example provided in (1.10), a wide class of examples of nonlinearities

satisfying the hypotheses of Theorem2may be obtained as follows.Without loss of generality
wemayassume that 12 ≤ �1(x) ≤ 1 for all x ∈ ∂�. Let {t j }be a sequence of positive numbers
with t j+1 ≥ 4t j . Let h : R× (0,∞) → R be an oscillatory differentiable function satisfying
the following hypotheses:
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Fig. 1 Two bifurcation diagrams having infinitely many sub-critical solutions (λ < σ1), super-critical solu-
tions (λ > σ1), stable solutions, unstable solutions, turning points and resonant solutions (λ = σ1)

(A1) ∀λ ∈ R,

∫ t1

0
h(λ, t) dt = 0,

∫ t j+1

t j
h(λ, t) dt = 0, ∀ j ≥ 1,

∣∣∣∣
∫ s

0
h(λ, t) dt

∣∣∣∣ ≤ 1

s
, ∀s 
 1.

(A2)

|h(λ, s)| ≤ 1

s2
, ∀s 
 1, λ ∈ R.

(A3)

|hs(λ, s)| ≤ 1

s3
, ∀s 
 1, λ ∈ R.

(A4) Let h(λ, s) = h(λ, t2n) = 1
t22n

> 0 for all s ∈ [t2n, 2t2n] , n ≥ 1, and λ ∈ R.

(A5) Let h(λ, s) = h(λ, t2n+1) = − 1
t22n+1

< 0 for all s ∈ [
t2n+1, 2t2n+1

]
, n ≥ 1, and

λ ∈ R.

Let

g(λ, s) = s
∫ s

0
h(λ, t) dt. (1.11)

It is readily seen that (A1)–(A3) imply that

|g(λ, s)|
|s|α =

∣∣∣∣s1−α

∫ s

0
h(λ, t) dt

∣∣∣∣ ≤ s−α, for s 
 1, λ ∈ R,

|sg(λ, s) − s2gs(λ, s)|
|s|1+ρ

= ∣∣s2−ρh(λ, s)
∣∣ ≤ s−ρ, for s 
 1, λ ∈ R,
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Fig. 2 Two bifurcation diagrams of stable and unstable solutions, on the left all of them are subcritical, on
the right all of them are supercritical, and none is resonant

and

lim sup
s→∞

|gss(λ, s)|
|s|ρ−α−1 ≤ lim sup

s→∞
(
2|s|α−ρ+1|h| + |s|α−ρ+2|hs |

) ≤ lim sup
s→∞

3|s|α−ρ−1 = 0,

uniformly forλ ∈ R. Therefore (H1)–(H3) holdwithρ ∈ (0, 1), and anyα ∈ [0, 1) satisfying
α < 1 + ρ.

From definition (1.8),

F(λ, s�1) := −s2−ρ

∫
∂�

h(λ, s�1)�3
1 = −s2

∫
∂�

h(λ, s�1)�3
1. (1.12)

Finally choosing sn = 2t2n+1 and s′
n = 2t2n , (A4)–(A5) imply that

F(λ, sn�1) := (2t2n+1)
2
∫

∂�

1

t22n+1

�3
1 = 4

∫
∂�

�3
1, (1.13)

and

F(λ, s′
n�1) := −(2t2n)

2
∫

∂�

1

t22n
�3

1 = −4
∫

∂�

�3
1, (1.14)

therefore (1.9) holds, and consequently all the conditions in Theorem 2 hold.
Our result is sharp in that if condition (1.9) fails, all solutions in D+ may be either stable

or unstable for s big enough, see [2, Theorem 3.4]. Our result proves the existence of
infinitely many turning points, even in the absence of resonant solutions, (i.e. solutions
for λ = σ 1), see Fig. 2. There it can be seen that the unbounded sequence of turning points
given by Theorem 2 can be either subcritical (i.e. for values of the parameter λ < σ1),
see Fig. 2 left, or supercritical (i.e. for λ > σ1), see Fig. 2 right, or may have a sequence
of subcritical solutions as well as a sequence of supercritical solutions, see Fig. 1. Let us
mention that, in this last case, by connectedness of D+, the branch contains infinitely many
resonant solutions, see Fig. 1.
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Fig. 3 Bifurcation diagram and sketch of the stability of solutions, + for stable solutions and − for unstable
solutions. The symbol ∗ marks turning points and o resonant solutions

The main difference with [3] is the possibility of existence of a branch of exclusively sub-
critical (or exclusively supercritical) solutions, see Figs. 1 versus 2, specifically the resonant
solutions only appear in Fig. 1. Precisely the main ingredient for the proof of the existence
of infinitely many turning points in [3] was the existence of infinitely many subcritical and
supercritical solutions in a connected branch and consequently of infinitely many resonant
solutions.

Related results for the case of a nonlinear reaction in � and homogeneous Dirichlet
boundary conditions were established in [6–8,12]. In [8] the authors work in the unit ball
B ⊂ R

N , with a nonlinear term given by λu + sin(u). They proved that when λ = λ1,

the first eigenvalue with Dirichlet boundary conditions, the problem has infinitely many
solutions for 1 ≤ N ≤ 5 and at most finitely many solutions for N ≥ 6. This case is a limit
case α = 0, β = 1, not covered in this work. To the best of our knowledge, the role of
the dimension has not been observed, in the case of nonlinear boundary conditions. Similar
oscillatory phenomena, sometimes known as snaking bifurcation, can be observed in higher-
order PDE, see [11,14]. We refer the reader to [9,10] for related problems with nonlinear
boundary conditions.

This paper is organized as follows. In Sect. 2 we collect some essentially known results
on Lyapunov stability. Section3 contains the proof of our main result Theorem 2, giving
sufficient conditions for having stable and unstable solutions. Finally Sect. 4 presents the one
dimensional case.
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2 Lyapunov Function and Stability

For λ fixed we consider

I (u) = 1

2

∫
�

(|∇u|2 + u2
) − λ

2

∫
∂�

u2 −
∫

∂�

G(λ, ·, u)

where G(λ, x, s) := ∫ s
0 g(λ, x, t) dt . An elementary calculation shows that if u is a solution

to the parabolic equation (1.6) then d
dt I (u(t)) = − ∫

�
u2t dx ≤ 0, i.e., I is a Lyapunov

function for the parabolic problem (1.6).
Moreover, if uλ is a solution to (1.1), then it is a critical point for I . Furthermore, uλ is

stable if the quadratic form

Quλ (v) =
∫

�

(|∇v|2 + v2
) −

∫
∂�

(
λv2 + gs(λ, ·, uλ)v

2) (2.1)

is positive definite. On the other hand if Quλ is negative definite in one direction then uλ is
unstable. Thus we have:

Lemma 4 If μ1 ≡ μ1(λ, uλ) denotes the principal eigenvalue of the linearized equation{−�ϕ1 + ϕ1 = 0, in �
∂ϕ1
∂n = μ1ϕ1 + gs(λ, x, uλ)ϕ1, on ∂�

(2.2)

then uλ is stable, if μ1 > λ. Also uλ is unstable if μ1 < λ.

Proof Suppose μ1 > λ. The variational characterization of μ1 states that

μ1 := inf
u∈H1(�)

∫
�

(|∇u|2 + u2
) −

∫
∂�

gs(λ, ·, uλ)u
2

∫
∂�

u2
. (2.3)

Therefore, for any u ∈ H1(�) − {0}, we have

0 ≤
∫

�

(|∇u|2 + u2
) −

∫
∂�

(
μ1u

2 + gs(λ, ·, uλ)u
2)

<

∫
�

(|∇u|2 + u2
) −

∫
∂�

(
λu2 + gs(λ, ·, uλ)u

2).
(2.4)

Hence Quλ is positive definite and uλ is stable.
On the other hand, if μ1 < λ, letting ϕ1 denote the eigenfunction corresponding to the

eigenvalue μ1, one obtains

0 =
∫

�

(|∇ϕ1|2 + ϕ2
1

) −
∫

∂�

(
μ1ϕ

2
1 + gs(λ, ·, uλ)ϕ

2
1

)

>

∫
�

(|∇ϕ1|2 + ϕ2
1

) −
∫

∂�

(
λϕ2

1 + gs(λ, ·, uλ)ϕ
2
1

)
.

(2.5)

Thus Quλ is negative definite in the direction of ϕ1, which proves that uλ is unstable. ��

3 Auxiliary Lemmas and Proof of Our Main Result

Let μ1 ≡ μ1(λ, uλ) denote the principal eigenvalue of (2.2), and ϕ1 ≡ ϕ1(λ, uλ) denote the
corresponding eigenfunction normalized it the L∞(∂�) norm. Let us call them the boundary
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Steklov eigenvalue and the boundary Steklov eigenfunction respectively. In the first place we
note that even if α �= ρ, (where ρ has been defined in (H.2)), then the boundary Steklov
eigenvalue μ1 → σ1 and the boundary Steklov eigenfunction ϕ1 → �1 as λ → σ1 and
‖u‖L∞(∂�) → ∞. The following Lemma is a rewriting of Lemma 3.2 in [2]. Its proof is the
same. The only restriction is that ρ < 1. We have the following result.

Lemma 5 Assume g satisfies hypotheses (H1) and (H2), and assume that (λn, un) is a
sequence of solutions of (1.1), satisfying limn→∞ λn = σ1 and limn→∞ ‖un‖L∞(∂�) = ∞.

Let us denote by μ1,n = μ1(λn, un), ϕ1,n = ϕ1(λn, un), the first eigenvalue and eigen-
function defined by (2.2). Then, μ1,n, ϕ1,n, satisfy

μ1,n → σ1 as λn → σ1 and ‖un‖L∞(∂�) → ∞,

ϕ1,n → �1 in H1(�) ∩ Cν(� ) as λn → σ1 and ‖un‖L∞(∂�) → ∞, (3.1)

for some ν ∈ (0, 1).

Remark 6 To adapt the proof of the first part of Lemma 3.2 in [2], notice that (H1) and (H2)
imply

|gs(λ, x, s)|
|s|γ−1 ≤ |s|ρ−γ F1(x) + C |s|α−γ G1(x), as λ → σ1, for s 
 1

for some positive constant C , and where γ = max{ρ, α} < 1. Hence |gs (λ,x,s)|
|s|γ−1 ≤ D1(x)

with D1 ∈ Lr (∂�) (where r > N − 1), for s big enough, x ∈ ∂� and λ → σ1.

In order to analyze the changes in stability, we consider

F+ :=
∫

∂�

lim inf
(λ,s)→(σ1,+∞)

sg(λ, ·, s) − s2gs(λ, ·, s)
|s|1+ρ

�
1+ρ
1 ,

where ρ < 1. Replacing lim inf by lim sup we define the number F+. Assume α = ρ, if

F+ > 0, then any solution in D+ is stable and subcritical,

see [2, Theorem 3.4], and if

F+ < 0, then any solution in D+ is unstable and supercritical,

see [2, Theorem 3.5]. In this paper we consider nonlinearities for which

F+ < 0 < F+,

Unlike the case α = ρ, our assumption α �= ρ allows for the existence of sequences of
stable supercritical solutions and unstable subcritical solutions, which contravenes the above
situations, see Theorem 2.

In order to determine whether a sequence of solutions (λn, un) is stable or unstable, we use
Lemma 4. Let μ1,n = μ1(λn, un) denote the first eigenvalue in (2.2) for (λ, uλ) = (λn, un).
If μ1,n > λn then un is stable. Roughly speaking, the following Lemma shows us that if
F(λn, un) > 0, then μ1,n − λn > 0. Consequently, to study the stability, one must check the
signs of

lim inf
n→∞ F(λn, un) and lim sup

n→∞
F(λn, un), (3.2)

where F is defined by (1.8). This is done in Lemma 7. The following technical Lemma, gives
us the rate at which λn −μ1,n goes to 0, as λn → σ1. Next Lemma is essentially Lemma 3.3
in [2] rewritten for a different rate, we omit the proof.
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Lemma 7 Assume the nonlinearity g satisfies hypotheses (H1) and (H2).
If (λn, un) is a sequence of solutions of (1.1), un > 0, satisfying

lim
n→∞ λn = σ1, and lim

n→∞ ‖un‖L∞(∂�) = ∞, (3.3)

denoting by μ1,n = μ1(λn, un), the first eigenvalue in (2.2), then

F+∫
∂�

�2
1

≤ 1∫
∂�

�2
1

lim inf
n→∞ F(λn, un)

≤ lim inf
n→∞

μ1,n − λn

‖un‖ρ−1
L∞(∂�)

≤ lim sup
n→∞

μ1,n − λn

‖un‖ρ−1
L∞(∂�)

≤ 1∫
∂�

�2
1

lim sup
n→∞

F(λn, un) ≤ F+∫
∂�

�2
1

(3.4)

In order to calculate the limits in (3.4), we take advantage of [3, Proposition 3.2], where
it is proved that if g is such that

|g(λ, x, s)| = O
(|s|α)

as |s| → ∞ for some α < 1,

then, the solutions in D±, can be described as

un = sn�1 + wn, where
∫

∂�

wn�1 = 0 and wn = O(|sn |α) as n → ∞.

We unveil the signs in (3.2) by looking at the signs of lim infn→∞ F(σ1, sn�1) and
lim supn→∞ F(σ1, s′

n�1), for some sequences {sn} and {s′
n} , using the following lemma.

The following technical lemma, a slight variant of [3, Lemma 3.3], allows us to unveil the
signs in (3.2) from

− ∞ < lim
n→+∞ F(σ1, s

′
n�1) < 0 < lim

n→+∞ F(σ1, sn�1) < ∞. (3.5)

With these tools, in Theorem 2, we obtain the existence of unbounded sequences of stable
and unstable solutions of (1.1) in D+.

Lemma 8 Assume that g satisfies hypotheses (H1), (H2), (H3) and (1.7).
If λn → σ1, sn ↑ ∞ and there exists a constant C such that ‖wn‖L∞(∂�) ≤ C |sn |α for

all n → ∞, then

lim inf
n→+∞ F(λn, sn�1 + wn) ≥ lim inf

n→+∞ F(σ1, sn�1),

where F is given by (1.8). Similarly

lim sup
n→+∞

F(λn, sn�1 + wn) ≤ lim sup
n→+∞

F(σ1, sn�1).

Proof For short, let us denote by h = g − sgs . For all (λ, s) ≈ (σ1,+∞) and for any
w ∈ L∞(∂�) such that 1

2�1 >
|w|
s , we have (with a constant C that may change from line

to line)

∫
∂�

|h(λ, ·, s�1 + w) − h(λ, ·, s�1)|�1 ≤ C‖w‖L∞(∂�)

∫
∂�

∣∣∣∣∣
∫ 1

0
hs(λ, ·, s�1 + τw) dτ

∣∣∣∣∣
≤ C‖w‖L∞(∂�) sup

τ∈[0,1]
‖hs(λ, ·, s�1 + τw)‖L∞(∂�)
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Taking into account hypothesis (H3) and whenever ‖w‖L∞(∂�) = O(|s|α), we deduce
that∫

∂�

|h(λ, ·, s�1 + w) − h(λ, ·, s�1)|
|s|ρ �1 ≤ C sup

|s|≥M

∥∥∥∥hs(λ, ·, s)
|s|ρ−α

∥∥∥∥
L∞(∂�)

−→ 0 (3.6)

as λ → σ1, M → +∞.

Consequently, for ‖wn‖L∞(∂�) = O(|sn |α)

lim inf
n→+∞

∫
∂�

snh(λn, ·, sn�1 + wn)

|sn |1+ρ
�1

≥ lim
λ→σ1
s→+∞

∫
∂�

sh(λ, ·, s�1 + w) − sh(λ, ·, s�1)

|s|1+ρ
�1 + lim inf

n→+∞

∫
∂�

snh(λn, ·, sn�1)

|sn |1+ρ
�1

= lim inf
n→+∞

∫
∂�

snh(λn, ·, sn�1)

|sn |1+ρ
�1

≥ lim
n→+∞

∫
∂�

snh(λn, ·, sn�1) − snh(σ1, ·, sn�1)

|sn |1+ρ
�1 + lim inf

n→+∞

∫
∂�

snh(σ1, ·, sn�1)

|sn |1+ρ
�1

= lim inf
n→+∞

∫
∂�

snh(σ1, ·, sn�1)

|sn |1+ρ
�1,

where we used firstly (3.6) and secondly hypothesis (1.7).
Now note that the left hand side above can be written as

snh(λn, ·, sn�1 + wn)

|sn |1+ρ
�1 = (sn�1 + wn)h(λn, ·, sn�1 + wn)

|sn�1 + wn |1+ρ

∣∣∣∣�1 + wn

sn

∣∣∣∣
ρ

�1.

Then, (H2) and the fact that �1 + wn/sn → �1 in L∞(∂�) conclude the proof. ��

We are now ready to prove our main result, which states the existence of unbounded
sequences of stable solutions, unbounded sequences of unstable solutions and also unbounded
sequences of turning points.

Proof of Theorem 2 (i) To prove the result, we show that due to (1.9) we can find two
unbounded sequences of solutions {(λn, un)}, {(λ′

n, u
′
n)}, with λn, λ

′
n close enough to σ1,

such that μ1,n := μ1(λn, un) > λn and μ′
1,n := μ1(λ

′
n, u

′
n) < λ′

n , respectively and then we
use Lemma 4 to characterize the stability of the solutions. Below we focus on the stable case
since the unstable one is analogous.

Let us now consider D+, the unbounded connected set of positive solutions of (1.1)
known as a branch bifurcating from infinity, see [1, Theorem 3.4]. Since the projection of
the unbounded branch of positive solutions on span[�1], is an interval [s0,∞), for any s ∈
[s0,∞) there is a solution of (1.1), u = s�1 + w, see (1.5). We choose (λn, un) → (σ1,∞)

on this branch such that

P(un) :=
∫
∂�

un�1∫
∂�

�2
1

= sn, (3.7)

with sn as in (1.9).
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By Lemma 7 we have

lim inf
n→∞

μ1,n − λn

‖un‖ρ−1
L∞(∂�)

≥ 1∫
∂�

�2
1

lim inf
n→∞ F(λn, un) (3.8)

Due to (3.7), we may write un = sn�1+wn . From [3, Proposition 3.2] and hypotheses (H2),
we obtain that wn = O(|sn |α). Applying Lemma 8 and since (1.9) hold, we infer

lim inf
n→∞ F(λn, sn�1 + wn) ≥ lim inf

n→+∞ F(σ1, sn�1) > 0 (3.9)

The inequalities (3.8)–(3.9) imply that μ1,n > λn for λn close enough to σ1. Likewise, it can
be proved that μ′

1,n < λ′
n for λ′

n close enough to σ1, ending this part of the proof.
(ii) Next, we will prove that here exists a sequence {(λ∗

n, u
∗
n)} ⊂ D+ of turning points

such that (λ∗
n, ‖u∗

n‖L∞(∂�)) → (σ1,∞) as n → ∞. To achieve this part of the proof, we use
Leray-Schauder degree theory. Let

Kn := {(λ, u) ∈ D+ : P(u) = s and sn ≤ s ≤ s′
n}.

For each n ∈ N, Kn is a compact set in R × C(�̄), see for instance [3, Proof of Theorem
3.4]. For each n ∈ N fixed, let λmin := min{λ : (λ, u) ∈ Kn}, and likewise λmax. Assume
on the contrary that Kn contains no turning point. In other words, assume that for each
λ ∈ [λmin, λmax] there exist a unique solution uλ ∈ Kn .

For any b ∈ Lq(∂�), q ≥ 1, there exists a unique solution of{−�v + v = 0, in �
∂v
∂n = b, on ∂�.

Moreover ‖v‖W 1,p(�) ≤ C‖b‖Lq (∂�), with p = q N
N−1 . We denote it by T (b) = v and

S(b) := γ T (b), where γ : W 1,p(�) → W 1−1/p,p(∂�) is the trace operator.

The operator S is known as the Neumann-to-Dirichlet operator. If q > N − 1, then the
mapping S maps Lq(∂�) into Cτ (∂�) for some τ ∈ (0, 1), and is continuous and compact,
see for instance [1, Lemma 2.1].

Let H : [λmin, λmax] × C(∂�) → C(∂�) be the homotopy defined by

H(λ, u) := λSu + S(g(λ, ·, u)).

Hence, the fixed points of H(λ, ·) are the solutions to (1.1). Let ε > 0, writing u =
s�1 + w, and taking into account that ‖w‖L∞(∂�) = O(|s|α) with α < 1, we obtain
‖u − s�1‖L∞(∂�) ≤ εs for any s big enough.

Now consider the Leray-Schauder degree of I − H(λ, ·) with respect to zero, in the set

O :=
⋃

s∈[sn ,s′n ]
{u ∈ C(�̄) : ‖u − s�1‖L∞(∂�) ≤ 2εs}.

From the homotopy invariance property, degLS(I − H(λ, ·),O, 0) is well defined and inde-
pendent of λ for λ ∈ [λmin, λmax]. In particular

degLS(I − H(λn, ·),O, 0) = degLS(I − H(λ′
n, ·),O, 0). (3.10)

Since λn < μ1,n by part (i), the linearized operator I − λn S − S[gs(λn, x, un)·] is invertible
and consequently un is an isolated fixed point. Therefore the fixed point index is well defined
and moreover

i (H(λn, ·), un) = degLS(I − λn S − S[gs(λn, x, un)·],O, 0) = (−1)m(λn) = 1
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where m(λn) is sum of the algebraic multiplicities of the eigenvalues of the linearization
strictly smaller than λn and m(λn) = 0 if the linearization has no eigenvalues μi,n of this
kind.

Moreover, from the hypothesis that un is the only solution in Kn for the value of the
parameter λ = λn, we deduce degLS(I − H(λn, ·),O, 0) = i (H(λn, ·), un).

On the other hand

i (H(λ′
n, ·), u′

n) = degLS(I − λ′
n S − S[gs(λ′

n, x, u
′
n)·],O, 0) = −1

and likewise degLS(I − H(λ′
n, ·),O, 0) = i (H(λ′

n, ·), u′
n) = −1 which contradicts (3.10)

and the proof is achieved. ��

4 The Case N = 1

Letting � = (0, 1), we may rewrite equation (1.1) as⎧⎨
⎩

−uxx + u = 0, in (0, 1)
−ux (0) = λu + g(λ, 0, u(0)),
ux (1) = λu + g(λ, 1, u(1)).

(4.1)

The general solution to this differential equation is u(x) = aex + be−x . Therefore, it is a
solution to (4.1) if (λ, a, b) satisfies(−(1 + λ) (1 − λ)

(1 − λ)e −(1 + λ)e−1

) (
a
b

)
=

(
g(λ, 0, a + b)

g(λ, 1, ae + be−1)

)
.

In this case, we only have two Steklov eigenvalues σ1 and σ2. They are given by the values
λ = σ1, λ = σ2 for which the following matrix has zero determinant:(−(1 + λ) (1 − λ)

(1 − λ)e −(1 + λ)e−1

)
.

These two values are given by

σ1 = e − 1

e + 1
< σ2 = 1

σ1
= e + 1

e − 1
.

The eigenfunctions �1 and �2 for this problem are given by

�1(x) = ex + e1−x

1 + e
, �2(x) = ex − e1−x

1 − e
.

Observe that �1(0) = �1(1) = 1 and �2(0) = 1 = −�2(1).
Choose g(λ, x, s) = sα sin(sβ) for any α < 1, β > 0. For any λ �= σ1, σ2, the function

u = aex + be−x is a solution to (4.1) if (λ, a, b) satisfies(
a
b

)
=

(−(1 + λ) (1 − λ)

(1 − λ)e −(1 + λ)e−1

)−1 (
(a + b)α sin((a + b)β)

(ae + be−1)α sin((ae + be−1)β)

)
.

The sublinearity of g as s → ∞ allows us to apply fixed-point arguments in R
2 guaran-

teeing the existence of at least one solution for any λ �= σ1, σ2.
Restricting the analysis to symmetric solutions us(x) = s(ex + e1−x ), with s ∈ R, it is

easy to prove that us(x) is a solution if and only if λ satisfies

λ(s) = σ1 − g(s(e + 1))

s(e + 1)
= σ1 − sin

[[s(e + 1)]β]
[s(e + 1)]1−α

, s > 0. (4.2)

123



J Dyn Diff Equat

−0.1 0 0.1 0.2 0.3
0

0.5

1

1.5

2

2.5

3
x 105 α=0.6, β=0.3,C=0

λ−σ1

s/
(1

+e
)

−0.4 −0.2 0 0.2 0.4
0

0.5

1

1.5

2

2.5

3
x 105 α=0.8, β=0.3,C=0

λ−σ1

Fig. 4 A bifurcation diagram of changing stability solutions, on the left α+β < 1, and on the right α+β > 1
and in both cases λ → σ1

Therefore, (λ(s), us) is an unbounded branch of solutions of (4.1) satisfying
(λ(s), ‖us‖∞) → (σ1,∞) as s → ∞, see Fig. 4.

Next we apply Lemma 4 to elucidate the stability of the bifurcated solutions {(λ(s), us)}.
The eigenvalue of the linearized equation, see (2.2), is given by

μ1
(
(λ(s), us)

) := σ1 − α
sin

[[s(e + 1)]β]
[s(e + 1)]1−α

− [s(e + 1)]α+β−1 cos
[[s(e + 1)]β]

.

If

[s(e + 1)]β =
⎧⎨
⎩

(2k + 1)π
(2k+1)π

2
2kπ

, then μ1
(
λ(s), us

) − λ(s)

⎧⎨
⎩

> 0
= 0
< 0.

Letting

u2k+1(x) := [(2k + 1)π ]1/β

e + 1
(ex + e1−x ) for any k ∈ Z,

we see that (σ1, u2k+1) is an unbounded sequence of stable solutions. Likewise, (σ1, u2k) is
an unbounded sequence of unstable solutions where

u2k(x) := (2kπ)1/β

e + 1
(ex + e1−x ) for any k ∈ Z.

Moreover, defining

λ∗
k := e − 1

e + 1
− (−1)k α

[(k + 1/2)π]1−α
, u∗

k(x) := [(2k + 1)π]1/β

2(e + 1)
(ex + e1−x ),
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Fig. 5 The difference between μ − σ1. On the left α + β < 1, and μ → σ1, on the right α + β > 1 and
μ �→ σ1

(λ∗
k , u

∗
k) is an unbounded sequence of turning points. The branch bifurcating from infinity

contains stable and unstable solutions, and there is an unbounded sequence of turning points.
See Figs. 1, 2 and 3 for a bifurcation diagram when N = 1. In that case, there is no restriction
on the size of β, see Fig. 4.

If α + β ≥ 1 then μ1
(
λ(s), ·, us

)
� σ1 as s → ∞. On the other hand, the eigenvalue

of the linearized equation satisfiesμ1
(
λ(s), ·, us

) → σ1 as s → ∞, whenever α+β < 1,
see Fig. 5.

Moreover, if α + β < 1,

F+ :=
∫

∂�

lim inf
s→+∞

sg − s2gs
|s|1+α+β

�1+α+β

=
∫

∂�

lim inf
s→+∞ −β cos(sβ) �1+α+β = −β

∫
∂�

�1+α+β,

F+ :=
∫

∂�

lim sup
s→+∞

sg − s2gs
|s|1+α+β

�1+α+β

=
∫

∂�

lim sup
s→+∞

−β cos(sβ) �1+α+β = β

∫
∂�

�1+α+β

i.e. F+ < 0 < F+.
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