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Abstract

The quark-gluon plasma (QGP) has been produced by relativistic heavy ion collisions, and

understanding its properties is a primary goal in the field of nuclear physics. This research

first elucidates recent semianalytical developments that improve the estimates of the initial

energy and net conserved-charge densities and enable the calculation of trajectories in the

quantum chromodynamics (QCD) phase diagram for the matter produced by nuclear col-

lisions. A semianalytical model of the initial densities is developed by including the finite

nuclear thickness for parton production. The new maximum energy density is found to have

an analytical upper bound and satisfy an approximate scaling relation. QCD phase diagram

trajectories are extracted from the semianalytical densities using several nuclear equations

of state, and the calculated QGP lifetimes are found to depend significantly on the values

of the model’s parameters. The study next presents a comparison between two solutions of

the relativistic Boltzmann equation (RBE): one, a numerical solution using parton trans-

port; the other, a theoretical solution for a homogeneous gas of massless particles. Parton

transport in Zhang’s parton cascade (ZPC) is found to reproduce the results of a recent ex-

act analytical solution of the RBE with an unexpected effectiveness at high densities when

using new generalized collision schemes. Finally, the work discusses some open questions

related to parton transport in ZPC and suggests some possible directions to uncover their

answers. These future research goals include discovering the cause of an unexpected problem



arising in simulations with three-dimensional (3D) expansion, understanding the theoretical

distribution of the total center-of-mass (CM) energy squared for two-parton collisions, and

studying curved parton motion in the presence of strong electromagnetic fields. Overall, the

results presented in this dissertation improve the theoretical and numerical descriptions of

the QGP and should be useful for future studies.
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Chapter 1

Introduction to Relativistic Heavy Ion

Collisions

1.1 The Quark-Gluon Plasma and Experimental Ob-

servables

Relativistic heavy ion collisions have been used to create the new phase of matter called

the quark-gluon plasma (QGP) [1, 2, 3]. From experiments at the Relativistic Heavy Ion

Collider (RHIC) at Brookhaven National Laboratory (BNL) to the Large Hadron Collider

(LHC) at the European Organization for Nuclear Research (CERN), studying the properties

of the QGP is currently a primary goal in the field of nuclear physics [4, 5, 6, 7, 8]. Besides

the many experimental successes in producing and measuring the QGP’s properties, there

have also been numerous advancements in the field’s theoretical understanding [9] using

tools such as hydrodynamical modelling [10], transport simulations [11], and lattice QCD

calculations [12]. The body of knowledge related to the production of the QGP by nuclear

collisions is constantly growing as new discoveries are made and novel works are produced.

Therefore, the purpose of this research work is to study relativistic heavy ion collisions with

semianalytical and numerical tools in order to produce useful results that will advance the

field’s understanding of the QGP. Experimentally, a plethora of observables may be used

to characterize the hot, dense QCD matter produced during heavy ion collisions, and these

may in general be separated into several distinct classes. For instance, one may classify a

particular observable as being based on the properties of a single particle, a pair or small



group of particles, or of many particles. Importantly, the connections between these ob-

servables and the properties of the QGP, such as its equation of state (EoS) or shear and

bulk viscosities, provide a rich groundwork on which theoretical and experimental research

programs in nuclear physics are based.

When it comes to describing the thermodynamic properties of the QGP, perhaps the

most useful tool is the QCD EoS [13]. In general, an EoS describes the relationship between

thermodynamic variables like the temperature T , chemical potential µ, energy density ϵ,

particle density n, or entropy density s and the pressure P . Final state observables such

as the collective flow and final particle spectra depend on the specific form of the EoS

because the QGP is subjected to large pressure gradients. Since the EoS determines the

speed of sound cs =
√
∂P/∂ϵ in the medium, it has a direct relationship to the experimental

observables that depend on P . On the other hand, the shear viscosity η and its ratio η/s

to the entropy density s, and the bulk viscosity ζ influence the transverse flow patterns of

the partonic system. Notably, this ratio can be found for an anti-de Sitter/conformal field

theory (Ads/CFT) that is dual to QCD, and its value suggests η/s ≥ ℏ/4πkB for a QGP [14].

Here, ℏ is the reduced Planck constant and kB is the Boltzmann constant; they are written

explicitly, but are commonly suppressed for the remainder of this research work since the

choice of units in which c = ℏ = kB = 1 is more natural. The unexpectedly small value of

η/s for the QGP implies that it may be the most perfect fluid yet discovered; for reference,

the same ratio for liquid helium is nearly an order of magnitude larger. While the hot QCD

matter produced by heavy ion collisions may be the most perfect fluid, it would also be the

tiniest fluid ever observed. If one approximated the volume of the QGP with the volume

of a colliding nuclei, then the QGP would only take up ≈ 10−42 m3. Thus, experimental

observables are limited to those which depend on the partonic matters’ momentum space

variables only, since the produced fireball is so small and fleeting.

Some of the most commonly considered experimental observables include those that can

be measured based on the properties of a single species of final state particles. Perhaps the

2



most basic analysis of heavy ion collisions one can perform is simply to count the number of

produced particles of a certain species. This method commonly is limited to the region of

momentum space in which the produced particles have a relatively small longitudinal (along

the beam axis) momentum pz. Normally, this is caused by the fact that a particle detector

has a ring-like shape surrounding the beam pipe at its center, since other shapes would

interfere with the paths the two nuclei must take to ensure successful collisions. Information

about the conditions at chemical freezeout may be inferred by fitting the ratios of particle

yields to a thermal model [15] in which all particle species are assumed to freeze out at

the same temperature. Rapidity distributions such as the particle number per unit rapidity

dN/dy are also commonly measured and their shape is related to the stopping power of the

colliding nuclei [16]. Information about a particle’s transverse momentum pT can also be

detected experimentally, which means that generating a histogram of dN/dpT for detected

particles typically is quite useful. Specifically, the measured dN/dpT can be fit to a blast-

wave model and an effective temperature, which is often referred to as the slope parameter,

can be extracted [17].

One can also imagine proton-proton (p + p) collisions as A+A collisions with A = 1

and perform a similar analysis to obtain the transverse momentum spectrum of produced

particles. Here, A refers to the nuclear mass number of a colliding nuclei in heavy ion

collisions. The nuclear modification factor RAA is defined as the ratio of dN/dpT for A+A

collisions normalized by the average number of binary nucleon-nucleon (NN) collisions to

dN/dpT for p + p collisions [18]. In A+A collisions, interactions between high-pT final-state

hadrons with the medium lead to RAA < 1 and is referred to as jet-quenching [19]. Another

key feature of the QGP is the suppression of charmonia, or bound states of charm c and

anti-charm c̄ quarks like the J/ψ [20], due to the color screening. In fact with a mass of

mc ≈ 1.3 GeV/c2, which is far larger than the temperatures expected to be achieved during

heavy ion collisions, charm and other heavy flavor production is not expected to follow the

normal thermal models. The suppression of heavy quark flavors can be quantified by RAA,

3



whereas measuring the elliptic flow parameter v2 of open heavy flavor mesons could reveal

the mass dependence of the interactions with the QGP. For example, understanding how

heavy flavor quarks thermalize is still an open question in heavy ion physics [21].

Another set of experimental observables that are measured in heavy ion collisions are

those which depend on two or a few particles. This category of observable can be thought

of as a probability measurement of detecting a particle with a certain property given that

another particle with another (possibly the same) property has already been detected in the

same event. One such theoretically tractable observable is the photon-hadron correlation in

which a direct photon is the trigger particle; this measurement has established the importance

of gluon g degrees of freedom at RHIC [2]. While the photon energy tightly constrains

the energy of the original parton in a hard process, this observable is difficult to measure

experimentally because of the contamination in the photon yield. Among the most numerous

hadrons produced in heavy ion collisions are pions, and the π0 undergoes the electromagnetic

decay π0 → γ + γ with a branching ratio of ≈ 99%. Furthermore, one can also imagine a

charge asymmetry arising in the initial state of a heavy ion collision if the QCD vacuum

fluctuations lead to an asymmetric production of up u and down d quarks with respect

to the reaction plane. As the initial incoming nuclei and the subsequent nuclear remnants

proceed along the beam (z-) axis, the spectator protons induce a strong magnetic field that

could, in principle, separate those quarks with Qu = +2/3 and Qd = −1/3 and induce the

chiral magnetic effect (CME) [22]. Unfortunately, this observable requires the detection of at

least three particles and therefore has a large and unspecific background, which complicates

the analysis of the experimental data.

Various correlations between particles could help us understand the underlying properties

of the QGP. First, one may investigate correlations between two particles, called di-hadron

correlations, in order to study jet energy loss in the medium. Experimentally, one can

measure the difference in the azimuthal angle ϕ in the transverse plane of the trigger particle

(typically chosen to have pT > 5 GeV/c) and an associated particle with a slightly lower

4



pT > 3 GeV/c in hard interactions for which perturbative QCD (pQCD) is valid. Since

hard parton scatterings generally result in back-to-back final state particles in momentum

space, one can define the near-side and far-side particles as corresponding to the high-pT and

lower-pT particles, respectively [23]. The ratio of the far-side particle yield in A+A collisions

to that in p + p collisions given a trigger particle is defined to be IAA. By virtue of being a

conditional measurement, IAA may contain more detailed information about the in-medium

energy loss. On the other hand, one may also measure correlations between one high-pT and

one low-pT particle. The trigger particle will emerge from the medium earlier because it has

a higher momentum and loses only a small fraction of its energy as it does so. Since it has

a smaller momentum, the associated particle should undergo a larger modification by the

QGP; these effects may be studied by calculating multi-particle correlations for several pT

ranges and differentially over the azimuthal ϕ and longitudinal (η-) phase space [24]. Here,

η is the pseudorapidity of a particle and is related to its energy and longitudinal momentum

pz. Finally, one may also measure untriggered angular correlations in which there is no lower

threshold for the pT of detected hadrons. Studies of d2N/dη/dϕ have revealed a structure

along the η-direction that is often called a ridge [25].

Another category of experimental observables is those that depend on many particles

and which reflect the collective behavior of the entire system. The collective flow of particles

may be the single most important observable in heavy ion collisions [1]; it is described by the

Fourier components vn of the azimuthal distribution of the final particles in the momentum

space [26]. Elliptic flow, quantified by v2, is a prominent flow parameter and originates from

the transverse pressure gradients or particle interactions in non-central (b > 0) collisions.

The impact parameter b is commonly used to describe the centrality of A+A collisions; it

refers to the distance between the centers of the colliding nuclei in the transverse direction.

Because the pressure gradients or particle interactions drive the elliptic flow, v2 is highly

sensitive to the QCD EoS and the shear viscosity of the medium. Therefore, the dependence

of v2 on the collision energy
√
sNN could indicate that a transition from hadronic matter to

5



the QGP has occurred [27]. Note that
√
s = A

√
sNN refers to the Mandelstam variable s that

quantifies the total energy of the two colliding nuclei. The anisotropy in the flow coefficients

vn is considered to be a key feature of the QGP formation, and it can be analyzed using

numerical methods [28].

Noether’s theorem states that for every symmetry there exists a corresponding conserved

charge, but the varying initial conditions in heavy ion collisions mean that fluctuations in

conserved charges should be measurable. The net baryon number B, the net electric charge

Q, or the net strangeness S have event-by-event fluctuations that are excellent signals of the

phase transition from hadronic to partonic states [29]. This is understandable since baryons

have B = 1 and mesons have B = 0, while quarks carry B = 1/3 and gluons have B = 0.

The case is similar for the other conserved charges so that event-by-event fluctuations will

be quite different depending on whether a hadron gas or a QGP is formed. Additionally,

one expects fluctuations in the mean of the transverse momentum distribution to indicate

variations in the temperature since ⟨pT⟩ ∝ T . One can imagine temperature fluctuations

to be the relics of quantum fluctuations in the initial state similarly to that of the cosmic

microwave background. While these and other fluctuations are experimentally measurable,

lattice QCD methods [12] allow one to calculate and predict how they should behave which

provides an important link between the data and theory.

1.2 Early Models of the Initial Energy Density

One key variable for studying the QGP’s properties is the energy density ϵ produced during

heavy ion collisions because its time evolution and maximum value affect the trajectory of

the event in the T − µB plane of the QCD phase diagram [30, 31]. The location of the event

trajectory relative to that of the conjectured critical endpoint (CEP) of the first order phase

transition [32, 33] could significantly alter the experimental observables. Thus, a better

understanding of the produced energy density will give insight into the event trajectory’s
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sensitivity to the CEP [32, 34] and could be critically important for the lower collision energies

like those at the Beam Energy Scan (BES) program at RHIC [35, 36, 37, 38]. On the other

hand, the spatial and temporal dependencies of the initial energy density is an essential

input for hydrodynamic models which predict the subsequent evolution of the dense matter

produced by relativistic heavy ion collisions [39, 40, 41]. Among the many methods one can

utilize to estimate the initial produced energy density are one attributed to Bjorken [42] and

a later extension [43].

The method of Bjorken takes the simple approach to estimate the initial energy density

produced by central heavy ion collisions [42]. Note that central collisions refer to collisions

in which the impact parameter b is zero. If one were to look along the beam (z-) axis,

one would see that the circular cross sections of the two nuclei in the transverse plane are

separated by some distance: this distance is the impact parameter b. Under the assumptions

that partons are produced at (z, t) = (0, 0) and do not interact with one another as they

free-stream toward an observation time t, the Bjorken formula gives the time-dependence of

the energy density ϵ as

ϵBj(t) =
1

AT t

dET

dy
. (1.1)

The full transverse overlap area of the two nuclei in central A+A collisions is AT = πR2
A where

RA is the radius of a nucleus with mass number A. The transverse energy per unit rapidity

at mid-rapidity (y ≈ 0) dET/dy in Eq. (1.1) above is often taken from the experimental

observable [44]. The transverse energy ET of a parton is typically defined as E2
T = p2T +m2,

where pT is the momentum in the transverse plane and m is the mass, although other

definitions may also be used [44]. Recall that the natural choice of units in which c = ℏ =

kB = 1 is used throughout this research work and is evident in the above definition of ET.

Whereas the A+A collision starts at t = 0, the Bjorken formula predicts a diverging ϵ as

t → 0. Thus, one must choose a finite initial time τF, which can be defined as the parton

formation time, for Eq. (1.1). In the picture of the Bjorken energy density formula [42],

partons are assumed to be non-interacting after they are produced and become on-shell
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after τF.

In the derivation of Eq. (1.1), not only is it assumed that all the initial partons are

produced at an instant (t = 0) in time, but they are also assumed to be produced at a single

point (z = 0) along the beam axis [42]. In other words, the duration in time dt of the nuclear

crossing and the finite width of the overlap region in the z-direction are ignored. When

the collision energy is large enough, such as for the highest RHIC energy of
√
sNN = 200

GeV, Eq. (1.1) is valid because the crossing time is given by dt = 2RA/ sinh(yCM), which

decreases as
√
sNN increases. The duration time dt defined here is for the hard sphere model

of the nucleus which also has RA = 1.12A1/3 fm. Here, yCM is the rapidity of the projectile

nucleus in the CM frame. Furthermore, the Lorentz contraction of the relativistic nuclei

causes the width of the overlap region also to decrease with increasing
√
sNN. Therefore,

the duration time and the finite thickness of the overlap region may be neglected at high

collision energies when the finite thickness is small compared to the typical τF value, which

means that Eq. (1.1) is valid in the high energy limit.

On the other hand, Eq. (1.1) breaks down [2] for lower collision energies where dt/τF ≳ 1.

For example, dt/τF ≈ 0.5 when using the typical estimation of the parton formation time

of τF = 1 fm/c and occurs for central Au+Au collisions at
√
sNN = 50 GeV. Note that the

above result used A = 197 for gold nuclei in the hard-sphere model. Thus, one expects the

Bjorken energy density formula to become invalid when
√
sNN ≲ 50 GeV for central Au+Au

collisions [43, 45]. Additionally, the Bjorken energy density formula also neglects the effect of

overlap volume’s transverse expansion, which is known to occur even for the lower collision

energies of the BES program at RHIC [37]. Finally, the slowing down of participant nucleons

and secondary partonic and hadronic scatterings are neglected in Eq. (1.1). Nevertheless, the

Bjorken energy density formula [42] still provides a useful estimation of the initial energy

density averaged over the full transverse overlap area of a relativistic heavy ion collision

because it is conveniently concise.

Given the limitations of the Eq. (1.1), a later study extended the Bjorken energy density
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formula by considering the finite time duration dt of the initial energy production [43]. In

that work, the partons contribute to the energy density at mid-rapidity (y ≈ 0) and are

assumed to be produced at times x ∈ [0, dt], but also at z = 0. A relatively straightforward

analysis of the total energy in a narrow volume at time t averaged over AT yields the following

expression for the initial energy density

ϵ(t) =
1

AT

t−τF∫
0

d2ET

dy dx

dx

t− x
. (1.2)

The obvious differences between this result [43] and that of Eq. (1.1) are the differential

production of ET over time and that this result is valid for times when the two nuclei are

still crossing (t ≤ dt+ τF). On the other hand, the Eq. (1.2) is similar to the Bjorken energy

density formula in that it also has ϵ(t < τF) = 0. In fact, Eq. (1.1) may be obtained from

Eq. (1.2) using the substitution d2ET/dy/dx = δ(x)dET/dy. Notably, this extension of the

Bjorken energy density formula allows one to choose a specific time profile for the energy

production [43].

For some relatively simple time profiles, Eq. (1.2) has analytical solutions that lend

themselves to a straightforward comparison with the Bjorken energy density formula [43].

In the case of a uniform production of energy over time, the extension has a maximum energy

density ϵmax that grows as ln(1/τF) which is much slower than the 1/τF behavior of Eq. (1.1)

for low collision energies [43]. This means that the updated estimate of the energy density is

less sensitive to the uncertainty of the formation time; τF is generally taken to have a value

τF ∈ [0.1, 1] fm/c. On the other hand, Eq. (1.2) diverges as 1/τF for higher
√
sNN when

τF/dt ≳ 1 because its analytical result approaches the Bjorken formula there. Therefore,

the recent extension [43] of the Bjorken formula significantly improves the estimation of the

energy density produced by heavy ion collisions at low collision energies. In addition to the

lower ϵmax values, Eq. (1.2) also has a much slower evolution in time of ϵ compared with the

Bjorken formula if one considers the length in time when ϵ > ϵmax/2.
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Because neither the Bjorken energy density formula [42] nor the recent extension [43]

account for the finite longitudinal width along the beam (z-) direction for the initial en-

ergy production, one primary goal of this research is to develop a Bjorken-like formula for

the initial energy production that accounts for the finite nuclear thickness. In Ch. 2, a

semianalytical model is developed which includes both the finite duration time dt and the

finite z-width of the initial energy production. Initially, the same assumptions underlying

Eqs. (1.1) - (1.2) are used [45], but later an implementation of transverse expansion is in-

cluded to make the model more accurate [46]. The behavior of the newest semianalytical

model is compared to the earlier results qualitatively and quantitatively, and several no-

table differences are discussed. After that follows a discussion of the results for extending

the semianalytical model to calculate other net conserved-charge densities such as the net-

baryon density nB. Note that all of these models study the time evolution of the produced

densities in the central spacetime-rapidity region (ηs ≈ 0) in the CM frame for central A+A

collisions, and the results are applied specifically to Au+Au collisions that are relevant to

current experimental nuclear physics research [37, 47, 48]. Finally, recall that subsequent

interactions among the produced particles are neglected for these models. Instead, the ini-

tial production is assumed to originate in the primary NN collisions between the participant

nucleons of the projectile and target nuclei. However, the secondary interactions can be

modeled by transport [49, 50] or hydrodynamic simulations [39, 40].

1.3 The QCD Phase Diagram and Critical Endpoint

Key experimental results from the RHIC and LHC, including the large nuclear suppression

of jets and the patterns of collective flow, indicate that the QGP has indeed been formed

by ultra-relativistic nuclear collisions [17, 51]. While normal nuclear matter has a number

density around ρ0 ≈ 0.17 fm−3 at T = 0 and since the mass of a nucleon is mN ≈ 1 GeV, the

energy density of the strongly interacting medium has been shown to be around two orders of

10



magnitude larger than this. These large energy densities are well beyond the deconfinement

transition near T ≈ 170 MeV as calculated by lattice QCD simulations [12]. Quantum

chromodynamics (QCD) is the fundamental theory of the Standard Model that describes

the strong interactions between the quarks and gluons and is responsible for the structure of

hadrons and also nuclei [51]. Because the underlying QCD gauge symmetry is non-Abelian,

the strongly interacting quarks and gluons are typically confined inside hadrons; however,

the large energy densities and temperatures achieved by heavy ion collisions promote the

transition from bound hadronic states to deconfined partonic ones [1]. One can picture this

transition as the melting of the protons and neutrons in the colliding nuclei into an exotic

phase of matter: this is the QGP [1]. Because the QGP is a system of unbound quarks and

gluons, it can only exist for a short time before the partons must recombine into hadrons

because of the confinement in QCD. Therefore, experimentally studying the QGP is quite

difficult, and its features must be inferred from the behavior of the final state hadrons.

Still though, learning about the QGP’s properties would enable the testing of QCD as the

fundamental theory governing the strong interaction [52]. Better understanding the QGP

could also elucidate the early stages of the universe just after the Big Bang or on the nature

of the matter that exists inside the cores of neutron stars. The field of nuclear physics

is particularly interested in understanding the phase transition from hadronic to partonic

matter in the QCD phase diagram [53] because lattice QCD results [54] show that it is a

smooth crossover at vanishing baryon chemical potential (µB = 0), but calculations at finite

µB are currently intractable [55]. Specifically, the (µB, T ) location of the hypothesized CEP

is of interest because its coordinates will help answer several deep questions about the nature

of thermal QCD matter. For example, one may ask how the QGP’s behavior becomes more

gas-like or liquid like as µB changes at a given T . The answers to this and other questions

motivate the BES program’s search for the CEP at RHIC using Au+Au collisions at a variety

of collision energies [47, 56, 57]. After averaging over many events, the matter created in

a given collision system, which is to say at a given collision energy
√
sNN and centrality b,
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follows a unique trajectory and has a unique freezeout point in the QCD phase diagram [46].

One must consider the average over many events because of the large statistical fluctuations

in the behavior of the formed matter. As the matter follows its event-averaged trajectory,

one can imagine that the temperature T and baryon chemical potential µB have individual

time evolutions, and that together they would determine the matter’s history in the QCD

phase diagram. When
√
sNN reaches a certain value, the trajectory of the matter would

pass near the CEP, and event-by-event fluctuations in certain conserved quantities could

signify the existence of the CEP [58]. For example, analyzing the event-by-event net-proton

cumulant ratios could be helpful in determining the location of the CEP.

The thermodynamic properties of the QGP are difficult to correlate directly with the

experimental measurements because heavy ion collisions produce matter that progresses

through several stages [46]. These stages can be thought of in terms of the semianalytical

model of Ch. 2 as the overlapping stage in the beginning, the expansion stage at intermediate

times, and the freezeout stage at late times [46]. Both hydrodynamic and transport models

have been used to study the evolution of the thermodynamic properties of the QCD matter

that is created by relativistic nuclear collisions [50, 59, 60, 61] On the other hand, the semi-

analtyical models of the initial production have progressively improved the fields’ analytical

understanding of the early time evolution of the energy and net conserved-charge densities

produced by heavy ion collisions [42, 43, 45]. In particular, the finite nuclear thickness of

the initial production must be accounted for in any model because it drastically modifies the

peak energy density ϵmax and the time evolution at low collision energies [45, 46]. Therefore,

one expects the trajectories of the QCD matter to depend significantly on including the finite

nuclear thickness effect, and the results of the BES program in particular should depend on

this fact [46].

Recently, the string melting version of a multiphase transport (AMPT) model was used

to study the temperature T and chemical potentials µ of a parton system using both Boltz-

mann and quantum statistics [61]. As its name suggests, the AMPT model describes the
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matter formed in heavy ion collisions with different stages throughout the evolution [62].

Therefore, its purpose is to model the matter produced during relativistic nuclear collisions

in a comprehensive and self-consistent manner. First, the heavy ion jet interaction generator

(HIJING) [63] is used to generate the initial conditions of the partonic matter for a given

collision system. Second, the partonic interactions are modelled by Zhang’s parton cascade

(ZPC) [64] until the partons freezeout, after which no further parton-parton interactions

occur. Third, the partons recombine into hadrons via a quark coalescence model [62, 65] in

which two nearest partons form mesons and three nearest partons form baryons according to

their individual flavors. Finally, the hadronic interactions are modelled by a relativistic trans-

port (ART) [66] model that accounts for baryon-baryon, baryon-meson, and meson-meson

elastic and inelastic scatterings using the cascade method. Due to its ability to generate an

initial state of partonic matter and then model all further interactions, the AMPT model

is a useful tool for studying the thermodynamic properties of partonic or hadronic matter

formed by relativistic heavy ion collisions.

In a recent work, the evolution trajectories were found to depend on several physical

factors including the finite nuclear thickness [61]. Extracting the evolution of the thermody-

namic properties from the AMPT model is not a simple task, though it is well-defined. For

a given volume V , the energy-momentum tensor Πµν can be calculated according to

Πµν =
1

V

∑
i

pµi p
ν
i

p0i
. (1.3)

Here, the summation runs over all particles in the volume V and the final result is then

averaged over many events. Also, pµ is the energy-momentum four-vector and the Greek

indices take on the values {0, 1, 2, 3} where p0 = E and p1, p2, and p3 are the x, y, and z

components of the three-momentum p⃗, respectively. The energy density ϵ = Π00 and the

spatial components of the pressure are Px = Π11, Py = Π22, and Pz = Π33 in the rest

frame of the volume V [61]. The calculated Πµν and the net conserved-charge densities
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nB, nQ, and nS were used to extract the temperature and chemical potentials µ from two

QGP EoS [61]. After constructing the event-averaged evolution trajectories in the T − µB

plane of the QCD phase diagram, several important features were noted. The location of

the trajectories depends significantly on the EoS in the sense that certain commonly used

simplifying assumptions about the electric charge or strangeness chemical potentials µQ and

µS, respectively, lead to very different results [61]. Specifically, the trajectories moved to

lower µB for Au+Au collisions at all energies when µQ = µS = 0. Additionally, the authors

found that ignoring the finite nuclear thickness effect drastically increased the maximum µB

of a given trajectory and slightly decreased the maximum T [61].

Given that a numerical study has calculated the event trajectories of the matter formed

by relativistic heavy ion collisions, Ch. 3 presents another primary goal of this research

work that is to use the semianalytical model results to calculate similar QCD phase diagram

trajectories. Accomplishing this task would be a useful test of the semianalytical model’s

validity if the resulting trajectories agree with the numerical results from the AMPT calcu-

lations. On the other hand, the successful completion of this goal will improve the analytical

or intuitive understanding of how the initial density production leads to the behavior of the

matter in the QCD phase diagram. To that end, central Au+Au collisions at a variety of

collision energies up to
√
sNN = 200 GeV and parton formation times τF are used to semian-

alytically calculate ϵ(t), and nB(t). Note that the behavior of nQ(t) and nS(t) are described

in Sec. 2.4. A massless parton system is assumed to be formed, and the EoS of an ideal

gas using either Bose-Einstein and Fermi-Dirac statistics or Maxwell-Boltzmann statistics is

used to extract the T , µ, similarly to Ref. [61]. The ideal gas EoS are conformal; therefore,

their applicability is limited since they cannot account for complex behaviors which may be

expected of QCD matter at low temperatures or chemical potentials.

Thus, a more realistic EoS for finite chemical potentials is needed in order to accurately

model the dynamics of a partonic matter at high temperatures and also correctly account for

the hadronic degrees of freedom at low temperatures. Recently, one such lattice QCD-based
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EoS [67] has been constructed using a Taylor series expansion of the pressure P in terms of

the temperature T and three chemical potentials µB, µQ, and µS. Because the lattice QCD

results are only calculated in a limited temperature range, T ∈ [135, 220] MeV, and this is

not wide enough to cover the expected full evolution of the matter produced by heavy ion

collisions, the coefficients of the Taylor expansion were merged with hadron resonance gas

(HRG) [68] model results at low T . In the high-T limit, each Taylor coefficient is imposed

to smoothly merge with its expected value as calculated using the Stefan-Boltzmann limit,

which is a reasonable assumption given that the partonic matter should be non-interacting

at sufficiently high temperatures. This more realistic EoS has also been used to extract

the QCD phase diagram trajectories from the semianalytical densities, and some important

features are found to be qualitatively different from the trajectories extracted from the ideal

gas EoS [46]. Importantly, limitations of the lattice QCD-based EoS at high µB/T prevent

the calculation of observables such as the QGP lifetime for lower collision energies [46].

Specifically, the BES program has recently shown that the matter formed by
√
sNN = 3 GeV

Au+Au collisions does not exhibit parton degrees of freedom [48], but the lattice QCD-based

EoS cannot extract trajectories below
√
sNN ≲ 7.7 GeV [46].

1.4 Parton Transport and the Relativistic Boltzmann

Equation

Since hard and semihard interactions dominate the processes in the matter produced by rel-

ativistic heavy ion collisions, numerical simulations of the strongly interacting medium will

aid in the study of the deconfinement phase transition and the chiral symmetry restoration.

The final state interactions in particular are prime candidates for linking the experimental

observables to predictions from pQCD regarding the space-time evolution of the QCD matter

produced in such collisions. Therefore, the final state interactions and the density distribu-

tion in the phase space may be studied by numerically solving the relativistic Boltzmann
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equation (RBE) for a system of quarks and gluons [64]

pµ∂µfa(x,p, t) =
∑
m

∑
b1,b2,...,bm

∫ m∏
i

d3pbi
(2π)32Ebi

fbi(x,p, t)

×
∑
n

∑
c1,c2,...,cm

∫ n∏
j

d3pcj
(2π)32Ecj

|Mm→n|2

× (2π)4δ4

(
m∑
k=1

pbk −
n∑

l=1

pcl

)

×
[
−

m∑
q=1

δabqδ
3(p− pbq) +

n∑
r=1

δacrδ
3(p− pcr)

]
.

(1.4)

In the above fa(x,p, t) is the single-particle distribution function for a particle of type a

at time t, and the matrix element for multi-parton interactions is written as Mm→n and is

defined according to [64]

⟨c1c2...cn|S|b1b2...bm⟩ =Mm→n(2π)
4δ4

(
m∑
k=1

pbk −
n∑

l=1

pcl

)
. (1.5)

Here, the four dimensional delta function ensures the overall conservation of energy and

momentum using the standard four-vector notation. If one were to consider only two-to-two

interactions, then Eq. (1.4) reduces to the following relatively simple form

pµ∂µf(x,p, t) ∝
∫
σf(x1,p1, t)f(x2,p2, t) (1.6)

where the integration is performed over the momenta of the other three particles. Note that

the integrand of Eq. (1.6) also contains other factors such as a delta function to conserve

the total energy and momentum [62]. The cross section σ is defined as the integral of the

differential cross section that is proportional to the amplitude squared [69]: dσ/dt̂ ∝ |M2→2|2

where t̂ is the standard Mandelstam variable for the momentum transfer.

Using the semiclassical Eqs. (1.4) and (1.6) to study the parton dynamics of a QGP at

high temperatures is justified because the asymptotic freedom of QCD matter at high tem-
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peratures means that the quarks and gluons are weakly interacting. Therefore, final state

observables such as the hadron spectra [70], collective flows [48], and event-by-event fluctu-

ations [47] can be studied with reasonable accuracy by numerically simulating a relativistic

gas of partons. Because the RBE gives the time evolution of the single-particle distribu-

tion function in phase space, it is general enough that it has a wide range of applications

in heavy ion collisions [11] and even in astrophysical phenomenon [71, 72]. Unfortunately,

analytical solutions of even the simplified Eq. (1.6) are quite rare because solving non-

linear integro-differential equations is difficult in general. Therefore, analytical solutions are

more commonly found under further assumptions such as the relaxation time approxima-

tion (RTA) [73, 74]. Despite the theoretical difficulties deriving analytical solutions of the

RBE, one such solution was found nearly a decade ago for a system undergoing Gubser

flow [75, 76]. Furthermore, the exact solution for a system of expanding massless particles

with isotropic scatterings was found more recently [77, 78]. The theoretical results solving

the RBE continue to expand, and the future developments will enable more accurate stud-

ies of the QGP and unveil previously hidden connections between its properties and the

experimental observables.

ZPC is a Monte Carlo program that numerically solves the RBE of Eq. (1.6) by simulating

many two-to-two parton scatterings such as gg → gg using the cascade method [64]. Two

partons will scatter with each other if they approach each other and if their distance of closest

approach is smaller than
√
σ/π. A system of massless gluons has the following differential

scattering cross section according to the leading order QCD calculations

dσgg

dt̂
=

9πα2
s

2ŝ2

(
3− ût̂

ŝ2
− ûŝ

t̂2
− ŝt̂

û2

)
≈ 9πα2

s

2

(
1

t̂2
+

1

û2

)
. (1.7)

Here, αs is the strong coupling constant, and ŝ and û are the other Mandelstam variables. The

right-hand side in the above equation arises after keeping only the leading divergent terms

for a fixed ŝ. Since the scattering angle for identical particles ranges from 0 to π/2, if one
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considers the range 0 to π, the 1/t̂2 and 1/û2 terms in the above equation are redundant [64].

With a medium generated Debye screening mass µ that regulates the singularity of the

total cross section, the differential cross section and the cross section become for two gluon

scattering

dσgg

dt̂
≈ 9πα2

s

2(t̂− µ2)2
, (1.8)

σgg =
9πα2

s

2µ2

1

1 + µ2/ŝ
. (1.9)

Because µ is generated by the medium, it is related to the phase space density, and µ ≈ 1

fm−1 for Au+Au collisions at RHIC is expected [62].

Three built-in geometric initial conditions in ZPC are used to study systems like the

minijet gluon systems produced at RHIC, or systems undergoing Bjorken-like longitudinal

expansion, or systems in a box with periodic boundary conditions [64]. The first geometrical

setup initializes 4000 partons to be uniformly distributed in pseudorapidity η ∈ [−5, 5]

and within a transverse disk of radius 5 fm at t = 0. The partons have their energies

generated from a thermal distribution with a temperature T and are formed after a proper

formation time τ0 = 0.1 fm/c. This initial condition allows the numerical simulation of the

QCD matter that is produced at RHIC energies because the partons are allowed to expand

arbitrarily in the three spatial dimensions. The second geometrical initial condition also

allows partons to expand, but only along the beam (z-) direction, in order to make studies

of the Bjorken flow possible. This initial condition uniformly distributes the partons over

the same pseudorapidity range, but also in a square in the transverse plane with has a user-

defined side length. The simulations in a periodic box initialize all the partons at t = 0

uniformly in a cube with a side length chosen by the user, typically to allow the number

of simulated partons to reach equilibrium. Again, the partons’ energies are often generated

from a thermal distribution, and this last geometric setup is primarily used for testing ZPC,

though it can also be useful for generating results for partonic matter inside a box with
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periodic boundary conditions [64].

The cascade method in ZPC simulates the collisions of many particles not by calculating

and updating the positions and momenta for all N partons at regular steps in time, but

instead by calculating and storing all future interactions then proceeding to the next earliest

collision [64]. Thus, the program would in general need to search throughN(N−1)/2 ≈ N2/2

parton pairs to find the next earliest collision; this is computationally expensive. Therefore,

ZPC also provides a method to decrease the running time of the same event: space-cell

division [64]. Updating a given parton’s next collision partner then only requires the program

to search through the partons in the same and neighboring cells, which drastically reduces

the computational cost to ∝ N × n where n is the average number of partons per cell. The

default setting for the space-cell division is to divide the side-length of the box into ten

for a total of 1000 cells and 4 partons per cell on average (for the typical box simulation

with 4000 partons). For simulations with three- or one-dimensional expansion, the cells

are allowed to expand uniformly in time to maximize the number of partons in the box,

which improves the efficiency [64]. Note that the cell size should be chosen to be larger

than the interaction length
√
σ/π, otherwise the results may be incorrect (different from the

corresponding simulation without space-cell division).

In general, parton cascades suffer from the causality violation which arises due to the

geometric interpretation of the cross section. Thus, one näıvely expects ZPC to be accurate

only in the dilute limit where the interaction length
√
σ/π is much smaller than the mean

free path λ [79]. The dilute limit is mathematically defined as χ ≪ 1 where χ =
√
σ/π/λ

is called the opacity. Techniques like the test particle method, also known as the parton

subdivision method, are useful for reducing the inaccuracies due to causality violation [80].

This can be understood in terms of a transformation in the RBE of Eq. (1.6) in which

f → f × l and σ → σ/l. This transformation decreases the opacity by χ → χ/
√
l, where

l is the subdivision factor [69, 79], but the RBE remains unchanged. Unfortunately, the

parton subdivision method is computationally expensive because the number of particles

19



increases from N → N × l and the number of simulated collisions grows proportionally by

a factor ≈ N2. Recently, a new parton subdivision transformation for massless partons in

a box with periodic boundary conditions was shown to be equivalent to the old subdivision

technique [69]. This new parton subdivision method increases f not by increasing the number

of partons, but by decreasing the volume V → V/l and is much faster since the number of

particles is not changed [69]. The subdivision technique allows one to produce highly accurate

results and can be used to predict the behavior of a dilute QGP.

In a relativistic transport model like ZPC, one is also free to choose the scattering pre-

scription, which leads to different results in general [64, 81]. Recently, it has been shown that

different scattering prescriptions are useful for reducing the causality violation [69], although

the effectiveness also depends on the χ of the medium. A scattering prescription, or collision

scheme, refers to the choice of the collision frame, the collision space-time point, the ordering

frame, and the ordering time [64]. Each two-parton collision occurs in the collision frame and

is ordered in time in the ordering frame, which is chosen to be the CM frame of the parton

gas [64]. The original collision scheme in ZPC chooses the two-parton CM frame as the

collision frame and the position of each parton in the collision frame when the partons are

closest as the collision space-time point [64]. In general, the single collision space-time point

in the collision frame results in two different collision times tc,1 and tc,2 for the partons in the

ordering frame, due to Lorentz transformations [69]. The ordering time and collision times

for both partons are then chosen to be (tc,1+ tc,2)/2 in the original ZPC collision scheme [64].

By changing the collision and ordering times with a generalized collision scheme, one can

in principle reduce the effect of the geometric interpretation of σ so that ZPC would more

accurately model the hot dense matter produced by relativistic heavy ion collision.

Recently, various collision schemes were studied in box simulations using ZPC without

parton subdivision, and a new collision scheme that significantly improves the results com-

pared to the old collision scheme was discovered [69]. Recall that using the parton subdivision

method with a subdivision factor l increases the time needed to simulate an event by a fac-
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tor ≈ l2. Therefore, finding an accurate collision scheme implies that the parton subdivision

method will not need to be used to obtain accurate results in future studies using ZPC [64]

or AMPT [62]. In the new collision scheme, the collision frame and collision space-time point

are the same as in the old collision scheme; however, the ordering time and collision times

for both partons are changed to min(tc,1, tc,2) [69]. This new collision scheme was found

to significantly improve the accuracy of the entire time-evolution of the ⟨pT⟩ and var(pT)

when compared with the subdivision results which are expected to be accurate for a range

of opacities [69]. Note that the momentum distributions for a system of massless particles

following the Maxwell-Boltzmann statistics can be easily calculated, and the results for the

transverse and longitudinal momentum distributions are presented in Appendices B.1 - B.2,

respectively. The collision rate and the shear viscosity to entropy density ratio were also

significantly improved when using the new collision scheme instead of the old one [69]. The

improvement of the new collision scheme results over the old collision scheme results was

established by comparing to the results of the parton subdivision technique that agree with

the theoretical results [69]. This comparison is very useful, but it would also be helpful to

compare ZPC with an exact analytical solution of the RBE to have a more robust conclusion

regarding how effectively ZPC models the entire time evolution of the QGP. While an analyt-

ical solution of the Boltzmann equation for a non-relativistic, non-expanding homogeneous

gas has been known for decades [82], an exact analytical solution for a relativistic, isotrop-

ically expanding gas of massless particles was found only recently [77, 78]. Another key

aspect of this research work that is presented in Ch. 4 is the assessment of parton transport

in ZPC using this new analytical solution of the RBE as a benchmark.

1.5 Future Work in Parton Transport

Studying parton systems in a box with ZPC is in itself useful research, but more useful is

studying the dynamics of the expanding matter produced in heavy ion collisions. Therefore,
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any improvements that have been made to ZPC for box simulations are important in the

sense that they should also make similar improvements for the more realistic conditions

such as those that are used in the AMPT model [62]. While the new collision scheme

described previously works quite well at reducing the artifacts from causality violation for

box simulations [69], it does not do so for setups with three-dimensional expansion. This

unexpected behavior is referred to as the 3D-problem and is discussed further in Ch. 5. Since

parton collisions always occur in the two-parton CM frame, regardless of the geometrical

setup being used, the 3D-problem is surprising. Initial results hint at an underlying issue in

the random number generator (RNG) that causes some partons to be initialized inside the

cross section of another parton. This behavior causes many collisions to occur at very early

times, which is not expected. The need for a more modern RNG that does not suffer from

the known problems of linear congruential pseudo-random generators is apparent [83]. Note

that there is no indication as yet that ZPC itself or all parton cascades suffer from inherent

problems; therefore, a rich variety of results using ZPC or the larger more wide-reaching

AMPT are expected to be forthcoming.

The existence of the 3D-problem indicates that further work needs to be done before ZPC

can be more accurate at high densities for simulating the partonic systems created by heavy

ion collisions. One particularly interesting feature of a QGP is the probability distribution

of the Mandelstam s that describes the CM energy for a pair of partons. Decades ago,

an analytical distribution f(s) was given [84] for a massless relativistic gas whose particles’

energies follow a thermal distribution. For the reader’s reference, a derivation of this and

another f(s) is presented in Appendix B.3. The f(s) distribution is important for studying

the QCD matter because its form determines the average collision energy ⟨√s⟩ of partons in

the medium. Since s is related to the scattering angle that is also related to the differential

cross section, one can imagine that different values of ⟨√s⟩ produce different behaviors in a

simulated QGP. In Ch. 5, a comparison is made between f(s) of Ref. [84] and the numerical

result from ZPC. The two distributions agree incredibly well, which strengthens ones trust
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that ZPC accurately models hot dense QCD matter.

The hypothesized CME [22] has recently garnered much attention from both theorists

and experimentalists in the field of nuclear physics. Experiments performed by the STAR

Collaboration [85] used isobar collisions 96
44Ru+

96
44Ru and 96

40Zr+
96
40Zr to subject the produced

QCD matter to large electromagnetic fields. The magnetic fields generated by the receding

protons in the nuclei would separate the differently charged quarks along the direction of

the magnetic field. The observation of the CME would imply the existence of CP -violating

regions and the approximate chiral symmetry restoration in the QGP [85]. Because the

signal of the CME has a large background, its observation is technically difficult. Therefore,

these isobar collisions are useful for reducing the background noise because the larger Z of

Ruthenium nuclei would produce a notable increase of around 15% in the magnetic field,

but the same A näıvely should produce very similar flow-related background [85]. While

the existence of CP -violating regions in the QGP is an exciting prospect, a blind analysis

of the high-statistical data sets indicates that no difference in the pre-defined CME signal is

observed in the isobar collisions at RHIC [85]. Further research including the study of curved

parton motion in ZPC is ongoing in the search for the CME. The cascade method lets the

simulated partons follow their free-streaming trajectories between collisions; however, the

strong electromagnetic fields that are produced in non-central A+A collisions would induce

the medium’s constituents to follow curved paths. Studying this phenomenon numerically

using ZPC is useful because it would allow the generation of high statistical predictions

regarding the kind and in what way certain experimental observables could be affected by

the electromagnetic fields. A description of recent work implementing curved motion in ZPC

is discussed in Ch. 5, and the initial results are promising.
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Chapter 2

Developing a Semianalytical Model

for the Initial Densities

A method to calculate the initial energy and net-conserved charge densities produced in

heavy ion collisions that takes into account the finite nuclear thickness is presented here.

The details of how this method includes both the finite longitudinal (z-) width and the finite

duration time dt of the initial parton production is discussed in Sec. 2.1. Section 2.2 contains

a brief description of the data based parametrizations of the transverse mass and net-baryon

density per unit rapidity that are used in the model, and a more detailed discussion can be

found in Appendix A. Several qualitative behaviors and quantitative results for the initial

energy density produced in central, Au+Au collisions are presented in Sec. 2.3. These

include a discussion about an analytical upper bound of the maximum energy density and

an approximate scaling relation that the model satisfies. Calculations of the net-conserved

charge densities such as the net-baryon density are presented in Sec. 2.4, as well as the model’s

inherent assumptions regarding the net electric-charge and net strangeness densities. Finally,

Sec. 2.5 contains an explanation of how the effect of transverse flow is incorporated into the

model’s semianalytical densities. The semianalytical model is useful for improving the initial

densities of the matter produced by heavy ion collisions which is a vital part of the nuclear

equation of state (EoS) and is also a key input for hydrodynamic simulations of the quark-

gluon plasma. Because the EoS of the QGP is related to certain experimental observables,

a better understanding of the initial produced densities will lead to better predictions of the

location of the matter’s trajectory in the QCD phase diagram.



2.1 The Finite Nuclear Thickness

The divergence of the initial energy density predicted by two previous analytical models [42,

43] motivates the development of a new model that cures these infinite energy densities [45].

The Bjorken energy density formula of Eq. (1.1) assumes that the initial state partons are

produced at a z-coordinate z0 = 0 and at a time x = 0, i.e., at the space-time point

(z0, x) = (0, 0) [42]. An extension to this model assumes that they are also produced at

z0 = 0, but at any time x ∈ [0, dt] less than the crossing time dt of the two nuclei [43]. The

initial partons in this semianalytical model are assumed to be produced by the primary NN

interactions at any space-time position (z0, x) inside the overlap region of the two nuclei [45].

The effect of the transverse expansion of the overlap volume is initially neglected, but will

be investigated later in Sec. 2.5. This semianalytical model also does not account for the

slowing down of the participant nucleons due to the primary NN collisions; this treatment

is the same as in the previous models [42, 43].

A key difference between this new model and that of the Bjorken energy density formula is

that the overlapping and expanding stages cannot be clearly separated, but instead are mixed

together [46]. The velocity along the z-direction of a produced parton is vz = (z−z0)/(t−x) in

the new semianalytical model, while it is vz = z/t in the Bjorken picture because all partons

are produced at (z0, x) = (0, 0). On the other hand, the two models are similar in that all

secondary parton interactions are ignored because analytically modelling this is too difficult.

The primary benefit of this new semianalytical model is that it analytically accounts for the

finite nuclear thickness of the overlap region for the initial parton production [45, 46]. The

width of the overlap region comes from the thickness in the z-direction of the overlapping

Lorentz-contracted spherical nuclei. Figure 2.1 shows a schematic representation of an A+A

collision and the subsequent overlap of two identical relativistic nuclei traveling along the

z-axis at a speed β = tanh(yCM). As the nuclei pass through each other, the full z-width

of the overlap region first increases from 0 at t = 0 to βdt at t = dt/2, and then decreases

back to 0 at t = dt [45, 46]. The diamond in the t− z plane is referred to as the production
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Figure 2.1: Schematic diagram of a central Au+Au collision for early (a), middle (b), and
late (c) times. The dotted lines represent the boundaries of the overlap region S0, and the
dashed diagonal lines represent the light cone boundaries for partons that can reach z ≈ 0
at time t. The hyperbola represents the boundary of these partons after considering the
formation time tF = τF cosh(y). The dot-dashed lines divide the shaded production region
for each time into different integration areas for the three pieces of the piecewise functions
as described in Table 2.1.

region because it covers the area of primary NN collisions [86, 87]. The production region is

the area surrounded by the four dotted lines in Fig. 2.1.

The goal of this semianalytical model is to estimate the initial energy or net conserved-

charge in a narrow volume z ∈ [−d, d] within the transverse overlap area AT as a function of

time t. It is assumed that the initial partons are produced at a z-coordinate z0 and time x,

i.e., at the space-time point (z0, x), within the production area. Following its production, it

is assumed that each parton propagates with its velocity until it is formed after a formation

time tF [45]. If a parton is produced at time x, its rapidity y must satisfy the following

requirement in order to end up inside the narrow range z ∈ [−d, d] at time t:

−d− z0
t− x

≤ tanh(y) ≤ d− z0
t− x

. (2.1)
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If one takes the limit d→ 0 the parton’s rapidity and its allowed rapidity range become

y → y0 = tanh−1

( −z0
t− x

)
, (2.2)

∆y =
2d cosh2 y

t− x
. (2.3)

Thus, the initial energy density at time t averaged over the full transverse overlap area is

ϵ(t) =
1

2dAT

∫∫
S

dxdz0
d3mT

dxdz0dy0
∆y0 cosh y0

=
1

AT

∫∫
S

dxdz0
t− x

d3mT

dxdz0dy0
cosh3y0.

(2.4)

Here, mT is the transverse mass, and it is the same as the transverse energy ET when the

rapidity is y = 0. The notation for the transverse mass mT in this semianalytical model is

used to differentiate the data-based parametrizations described in Sec. 2.2 for dmT/dy from

dET/dy which was experimentally determined by the PHENIX Collaboration [44]. Note

that the above integral converges for finite values of the parton formation time τF because

the observation time t is larger than the maximum parton production time x = t − τF. In

the case when τF = 0, an analytical upper bound for the maximum energy density ϵmax is

derived in Sec. 2.3.2, which means that the above integral always converges.

One can test the validity of Eq. (2.4) by making some straightforward substitutions

for the initial energy production which result from different physical pictures [45]. For

example, if one neglects the finite time duration and longitudinal width of the initial energy

production and uses the substitution d3mT/dx/dz0/dy → δ(z0)δ(x)dmT/dy, one recovers

the Bjorken energy density formula of Eq. (1.1). On the other hand, if one considers the

finite time duration, but neglects the finite longitudinal width and uses the substitution

d3mT/dx/dz0/dy → δ(z0)d
2mT/dx/dy, one recovers another previously known solution [43]

of Eq. (1.2).

Note that the energy density of Eq. (2.4) is given by an integral over the production
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region S(t) which changes with time, so the integration limits depend on time t [45, 46]. For

a given time t, the production region S(t) can be defined as the set of all space-time points

(z0, x) which satisfy the following conditions. First, (z0, x) must be inside the overlap region

which is depicted in Fig. 2.1 as the diamond-shaped area surrounded by the four dotted

lines. Second, (z0, x) must be below the light cone boundaries that are shown as the two

diagonal dashed lines in Fig. 2.1; this requirement ensures causality. Finally, (z0, x) must

also be below the formation time hyperbola which prevents a parton from contributing to

the energy or net-conserved charge density at time t if the parton’s finite formation time has

not yet occurred. In the CM frame, the formation time of a parton is defined as:

tF = τF cosh(y). (2.5)

In the above, τF is a proper formation time, and it is multiplied by a time-dilation factor

to account for each parton’s rapidity y. If a parton is produced at (z0, x) and would reach

point the (z0 ≈ 0, t) and contribute to the energy density of Eq. (2.4), its formation time

would be τF cosh(y0). Mathematically, the formation time curve is defined by the hyperbola

xF = t−
√
z20 + τ 2F. (2.6)

This formation time hyperbola reduces to the light cone boundary for a proper formation

time of τF = 0, while it is in general a more strict requirement than the light cone boundary

for finite τF.

Since the integration limits of (z0, x) in Eq. (2.4) depend on time, the energy and net-

conserved charge densities are piecewise functions in time [45, 46]. The näıve picture of the

crossing of two nuclei in Fig. 2.1 can be generalized by considering a starting time t1 and an

ending time t2 for the initial production. The diamond production region S0 is bounded by

the lines z0 = ±β(x − t1) and z0 = ±β(x − t2) in this more general case. The integration

limits for this more general case are summarized in Table 2.1, and it is emphasized that for
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t ∈ [0, t1 + τF), the energy or net-conserved charge densities are zero in the picture that this

semianalytical model considers [45, 46]. Time ta is the observation time when the formation

time hyperbola of Eq. (2.6) intersects the two middle vertices of the production region where

(z0, x) = (±βt21/2, tmid):

ta = tmid +

√
τ 2F +

(
βt21
2

)2

. (2.7)

Here, the following definitions are made for clarity:

t21 = t2 − t1, tmid = (t1 + t2)/2. (2.8)

In Table 2.1, the integration limits for each of the three pieces of the energy or net-baryon

density are given. The first piece is defined when t ∈ [t1 + τF, ta), i.e. early times at which

the formation time hyperbola of Eq. (2.6) intersects the lower boundaries of the production

region: z0 = ±β(x − t1). The time at which the formation time hyperbola intersects the

lower or upper boundaries of the diamond-shaped production region are referred to as x1

and x2, respectively, which are given by

xi =
t− β2ti −

√
β2 [(t− ti)2 − τ 2F] + τ 2F
1− β2

,with i = 1, 2. (2.9)

The first piece has two integration areas and can be seen in Fig. 2.1, or Table 2.1: the first

area is triangular for times x < x1 and the second area is for times x1 < x < xF. The z0-

range of the second area is bounded by the z0-coordinates of the formation time hyperbola

of Eq. (2.6), where for a given time x, zF(x) is given by:

zF (x) =

√
(t− x)2 − τ 2F. (2.10)

The second piece is defined when t ∈ [ta, t2+ τF), i.e. middle times when the formation time

hyperbola of Eq. (2.6) intersects the upper boundaries of the diamond-shaped production

region: z0 = ±β(x − t2). The second piece has three integration areas which are shown in
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Piece t-range x-range z0-range

ϵI(t) or nB,I(t) [t1 + τF, ta) [t1, x1) [−β(x− t1), β(x− t1)]
[x1, t− τF] [−z

F
(x), z

F
(x)]

ϵII(t) or nB,II(t) [ta, t2 + τF) [t1, tmid) [−β(x− t1), β(x− t1)]
[tmid, x2) [−β(t2 − x), β(t2 − x)]
[x2, t− τF] [−z

F
(x), z

F
(x)]

ϵIII(t) or nB,III(t) [t2 + τF, ∞) [t1, tmid) [−β(x− t1), β(x− t1)]
[tmid, x2] [−β(t2 − x), β(t2 − x)]

Table 2.1: Piecewise solution of ϵ(t) and nB(t) as functions of the observation time t,
where the integration limits for each piece are written in the format x ∈ [xmin, xmax] and
z0 ∈ [zmin

0 , zmax
0 ] for each part of the production area in the initial production time x and

longitudinal position z0 [45].

Ref. [45] or Table 2.1: the first is the triangular lower half of the diamond, the second is the

trapezoidal upper half of the diamond below x2, and the third is for x2 < x < xF. The third

and final piece is defined when t ∈ [t2+τF,∞) and has two triangular integration areas which

together form the entire diamond. Note that the energy or net-conserved charged density is

higher for a smaller τF when a given
√
sNN, A, and t are chosen because the integration area

gets bigger, except for the late-time densities when t > t2 + τF that do not depend on τF.

Notably, the initial produced densities from this semianalytical model for late times

(t ≥ t2 + τF) are independent of the parton formation time τF. This is understandable

because the integration limits for (z0, x) in Table 2.1 are independent of τF for the third

piece. Also, only partons with y ≈ 0 will contribute to the densities at z ≈ 0 for very late

times because the velocity of partons in this semianalytical model is vz = (z − z0)/(t − x).

This fact is independent of the parton’s space-time production point and implies that the

results of this semianalytical model approach those of the Bjorken formula for very late

times [46].
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2.2 Data Based Parametrizations

To proceed further, only central Au+Au collisions will be considered and the function

d3mT/dx/dz0/dy in Eq. (2.4) will be specified. First, we assume that the initial trans-

verse mass rapidity density of produced partons per production area can be written in the

following factorized form:

d3mT

dxdz0dy
= g(z0, x)

dmT

dy
. (2.11)

Here, the area density function g(z0, x) is normalized so that the volume between the three-

dimensional surface g(z0, x) and the production region S0 in the t − z plane is equal to

one: ∫∫
S0

dxdz0 g(z0, x) = 1. (2.12)

The above equation ensures that dmT/dy represents the initial rapidity density of the trans-

verse mass for all produced partons [45]. Next, the simplifying assumption of a uniform

production of partons throughout the entire production region S0 is assumed:

g(z0, x) =
2

βt221
. (2.13)

With the assumptions of this semianalytical model, specifying the exact functional form

of the transverse mass rapidity density allows the initial energy density of Eq. (2.4) to be

written as

ϵ(t) =
2

ATβt221

∫∫
S

dxdz0
t− x

dmT

dy0
cosh3(y0). (2.14)

Apart from the parameters of this semianalytical model, the solution to Eq. (2.14) requires

one to choose the shape of dmT/dy. Unfortunately, the above integral cannot be solved

analytically for the data-based parametrizations of dmT/dy that are given in Appendix A.1

and A.2. However, in the late-time limit t → ∞, one finds y0 → 0, and Eq. (2.14) recovers

the Bjorken energy density formula of Eq. (1.1). Therefore, the results of this model are

referred to as “semianalytical” because the analytical integral in Eq. (2.14) must be solved
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numerically. With these assumptions on the factorization and uniform production, one only

needs to choose a specific form for the transverse mass rapidity density dmT/dy. Total

energy conservation for the central Au+Au collisions, assuming all incoming nucleons are

participants, leads to ∫
dmT

dy
cosh(y)dy = A

√
sNN. (2.15)

For the produced partons, dmT/dy is assumed to have a Gaussian shape centered at y = 0

with a width σ found through the total energy conservation and with a height parametrized

by results from the string melting version of the AMPT model [62]. For produced hadrons,

dmT/dy has two parts: one part is a single Gaussian for dET/dy, and the second is a

sum of two symmetrically shifted Gaussian profiles for the net-baryon contribution to the

energy mN dNnetB/dy. The various parameters of the hadron dmT/dy are calculated for

each collision energy by ensuring the previously mentioned total energy conservation and

the conservation of net-baryon number. For further details, the reader is invited to consult

Appendix A.

2.3 Initial Energy Densities

In this semi-analytical model, the primary collisions between the two nuclei start at time t1

and end at time t2 [43, 45]. It is clear from Eq. (2.14) and Table 2.1 that the initial energy

density for A+A collisions of a given energy
√
sNN depends only on t1, t2, and τF. For now,

the following choice for t1 and t2 is made

t1 = 0.2dt, t2 = 0.8dt. (2.16)

This choice ensures that the width of the production time distribution is similar to results

from the string melting version of the AMPT model [62]. Because a boosted nucleus is

shaped more like an ellipsoid instead of a uniform disk, the näıve choice of t1 = 0 and t2 = dt
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is less representative of the picture that is considered in this semianalytical model than is

the choice of t1 and t2 of Eq. (2.16) [45].

In the following sections, several characteristics of the initial produced energy density

from this semianalytical model are discussed with references to the previous models where

applicable. First, a comparison between the energy densities ϵparton and ϵhadron is made in

Sec. 2.3.1. Second, ϵmax
parton at τF = 0 is shown to be finite through the derivation of an

analytical upper bound in Sec. 2.3.2. Thereafter, ϵhadron is referred to simply by ϵ. Third, ϵ

is compared to ϵBj and ϵ(t) from Eq. (1.2) with a triangular time profile in Sec. 2.3.3. Finally,

an approximate scaling and A-dependence of ϵmax is discussed in Sec. 2.3.4. An online web

application that performs the semianalytical calculations for the initial energy density ϵhadron

when the user inputs the parameters of the collision system has been made [88].

2.3.1 Comparing ϵparton and ϵhadron

The first set of calculations of the initial energy density with Eq. (2.14) is made using the

transverse mass rapidity density dmT/dy of the initial produced partons that is given in

Appendix A.1. As is discussed there, the peak value of this distribution is parametrized ac-

cording to results of the AMPT model [62, 43]. It is of interest to investigate the uncertainty

of ϵ due to the choice of dmT/dy, which can be significantly different if the distribution is

chosen for initial partons or final hadrons as shown in Fig. A.1. The hadron dmT/dy is de-

rived in Sec. A.2 and is shown by the dashed curves in Fig. A.1 for central Au+Au collisions

at a range of collision energies. Note that both the parton and the hadron dmT/dy satisfy

the total energy conservation condition of Eq. (2.15).

Figure 2.2 shows the results of the initial energy density as a function of time for central

Au+Au collisions at
√
sNN = 3, 7.7, 39, and 200 GeV with two different τF values. The

energy density is zero for t ≤ t1 + τF according to the semianalytical model, and increases

smoothly with time until a maximum value is reached somewhere in the range tmax ∈ [tmid+

τF, t2 + τF] [45]. After the maximum value is reached, ϵ(t) then decreases with time, and the
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Figure 2.2: Energy density using the parton (dashed) or hadron (solid) dmT/dy for central
Au+Au collisions at

√
sNN = 3, 7.7, 39, and 200 GeV with τF = 0.2 and 0.8 fm/c.

late-time densities are the same for different τF values, for the same dmT/dy profile. It is also

clear from Fig. 2.2 that the maximum energy density ϵmax increases as τF decreases, though

the relative increase is smaller for smaller
√
sNN. Additionally, ϵ

max at a given collision energy

at a larger formation time lies on the decreasing part of the ϵ(t) curve for a smaller τF. The

merging of the late time energy densities can be understood by considering the densities

calculated from the uniform time profile in a previous study [43]. In that case, for times

long after the maximum density is reached, the uniform time profile yields densities that

are proportional to ln[(t− t1)/(t− t2)], which is independent of τF. As discussed in Sec. 2.1

with reference to Table 2.1, the late time behavior of this semianalytical model reproduces

the same effect. Coincidentally, this is a characteristic of the semianalytical model, and it
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Figure 2.3: Maximum energy density ϵmax using the parton (dashed) or hadron (solid)
dmT/dy in central, Au+Au collisions as a function of

√
sNN with τF = 0.2 and 0.8 fm/c. The

näıve expectation of ϵoverlap from Eq. (2.17) is also shown for reference.

applies also to the net-conserved charge densities that are calculated in Sec. 2.4.

The maximum values of the produced energy density ϵmax is shown in Figure 2.3 using

the parton or hadron dmT/dy in central, Au+Au collisions as a function of collision energy

with two different τF values. For
√
sNN ∈ [3, 100] GeV, the maximum produced energy

densities are similar for the two dmT/dy distributions. At large collision energies, partons

with y ≈ 0 dominate the energy density near central space-time pseudorapidity ηs ≈ 0

because the production area S0 is small on the scale of the finite τF [45]. Thus, the ϵmax

value for high
√
sNN should depend mostly on the mid-rapidity value dmT/dy(0) that can

be seen in Fig. A.1. The end result is that the hadron ϵmax value is smaller than the parton
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one at larger collision energies. On the other hand, for small
√
sNN, partons with non-zero

rapidity may contribute to the energy density in the central spacetime-rapidity region [45].

Therefore, the energy density will also depend on the width of dmT/dy for smaller
√
sNN.

Figure A.1 shows that the height of the hadron dmT/dy can be larger for lower
√
sNN, while

the width of the profile is similar. Therefore, one expects the maximum energy density using

the hadron dmT/dy to be larger than using the parton dmT/dy at lower
√
sNN.

A simple estimate for the energy density is also shown by the dot-dashed line in Fig. 2.3.

This näıve estimate corresponds to the case when the two boosted nuclei would just overlap

in volume, without interacting [45]. The energy density of this system according to the

hard-sphere model of the nucleus is given by

ϵoverlap =
3
√
sNN

4πr3N
. (2.17)

Here, rN ≈ 1.12 fm is the nucleon radius. Clearly, Eq. (2.17) grows linearly with collision

energy and is independent of the atomic number A of the colliding nuclei. The compression

of the primary A+A collision should actually cause the maximum energy density in the

central spacetime-rapidity region to be larger than ϵoverlap [45]. Figure 2.3 indeed shows

this to be the case except at very small or very large
√
sNN. However, the maximum energy

density using the hadron dmT/dy is larger than ϵoverlap for collision energies near the threshold

√
sNN = E0 = 2mN GeV. The energy density using the parton dmT/dy is smaller than the

expectation of Eq. (2.17). Because the QGP is unlikely to be formed for collisions near the

threshold energy, the hadron dmT/dy should be more valid in that region [45]. On the other

hand, the parton dmT/dy is expected to be more applicable at very high
√
sNN, although

the maximum energy density would be smaller than ϵoverlap. This effect can be understood

as being caused by the finite formation time: note that Fig. 2.5 shows that ϵmax for τF = 0

is always larger than the energy density of Eq. (2.17). In that figure, the τF = 0 result has

a maximum energy density ϵmax ≈ 300 GeV/fm3 when
√
sNN = 50 GeV, while ϵoverlap ≈ 8.5
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GeV/fm3 at the same collision energy.
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Figure 2.4: Maximum energy density ϵmax using the parton (dashed) or the hadron (solid)
dmT/dy in central, Au+Au collisions as a function of τF with

√
sNN = 5, 27, and 62.4 GeV.

The results using τF = 0 fm/c are also shown for reference.

Figure 2.4 shows the formation time dependence of the maximum energy density using the

parton or the hadron dmT/dy for central, Au+Au collisions at
√
sNN = 5, 27, and 62.4 GeV.

There is a clear ordering of ϵmax for both dmT/dy profiles, which can also be inferred from

Fig. 2.3. At lower collision energies, the ϵmax from the parton dmT/dy is slightly smaller than

from the hadron dmT/dy, and this deviation becomes smaller as τF decreases [45]. However,

for
√
sNN ≳ 6 GeV, the parton dmT/dy yields maximum energy densities that are larger than

from the hadron dmT/dy, and this difference is roughly independent of τF as the formation

time decreases below τF < 0.01 fm/c. Notably, ϵmax from both dmT/dy profiles becomes
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mostly flat with τF once a sufficiently small formation time is reached. In fact, the values

at τF = 0 fm/c are also shown in Fig. 2.4 for reference. This fact represents a significant

improvement over previous models which predicted diverging ϵmax as τF → 0 [42, 43]. In the

Bjorken energy density formula, the divergence goes like 1/τF, while the more recent solution

that considers only the finite duration time, but not the finite longitudinal width [43], goes

like ln (1/τF) for small formation times.

2.3.2 Finiteness of ϵmax at τF = 0

In Sec. 2.3.1, the numerical maximum energy density at τF = 0 fm/c for some collision

energies was shown to be finite in this semianalytical model [45]. The symbols shown in

Fig. 2.4 reflect these results and give an idea of how quickly ϵmax approaches these values

as τF decreases. Importantly, ϵmax(τF = 0) is finite for all collision energies, and the
√
sNN

dependence can be observed in Fig. 2.4 for the parton dmT/dy. For central Au+Au collisions

at
√
sNN ≲ 7 GeV, the maximum energy density value at τF = 0 fm/c is similar to the value

at τF = 0.1 fm/c, i.e., they are within about 20% of each other. While these results are

semianalytical in nature because Eq. (2.14) is not known to have an analytical solution, a

proof for the finiteness of ϵmax(τF = 0) would substantiate the numerical results. To that

end, an upper bound for ϵmax(τF = 0) is derived next.

In this semianalytical model, a parton’s rapidity is given by Eq. (2.3), if it contributes to

the density at mid-space-time pseudorapidity ηs ≈ 0 [45]. This fact motivates the following

change of variables to simplify the energy density of Eq. (2.14):

z0 = −r0 sinh(y0), t− x = r0 cosh(y0) (2.18)

The subscript on the parton’s rapidity is suppressed for clarity from now on, so Eq. (2.14)

38



2 10 50
sNN  (GeV)

0.1

1

10

100

m
ax

 (G
eV

/fm
3 )

Using constant tF

High-energy bound

Low-energy bound

Using tF =    F cosh(y)

bound

Figure 2.5: Maximum energy density for central Au+Au collisions as a function of collision
energy at τF = 0, 0.1, 0.3 and 0.9 fm/c in comparison with the upper bound of ϵmax of
Eq. (2.24), where the analytical low- and high-energy bounds are also shown. Dashed curves
represent the ϵmax results when using a constant formation time tF = 0.1, 0.3, and 0.9 fm/c.

can be written as

ϵ(t) =
2

ATβt221

∫∫
S

dmT

dy
cosh2(y) dr0dy

=
2

ATβt221

∫
dmT

dy
cosh2(y)∆r0(y)dy,

(2.19)

where the definition ∆r0(y) ≡ rmax
0 (y)− rmin

0 (y) is also used for brevity [45].

Analysis of the generalized crossing diagram, which is similar to that shown in Fig. 2.1,
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except using t1 and t2 instead of 0 and dt, results in

rmin
0 (y) = 0, rmax

0 (y) ≤ r1(y). (2.20)

This result applies for times t ≤ t2, for a given parton rapidity y if the formation time is

τF = 0 fm/c. Here, r1(y) is the r0 value when a parton passing through the observation

point (0, t) with rapidity y intersects one of the z0 = ±β(x− t1) lines in the general crossing

diagram:

r1(y) =
β(t− t1)

β cosh(y) + | sinh(y)| . (2.21)

Therefore, for times t ≤ t2, ∆r0(y) is given by

∆r0(y) ≤
βt21

β cosh(y) + | sinh(y)| , (2.22)

whereas for times t ≥ t2, one obtains

∆r0(y) =
β cosh(y)t21 − 2| sinh(y)|(t− tmid)

β cosh2(y)− sinh2(y)/β
. (2.23)

It is straightforward to show that this equation satisfies the inequality in Eq. (2.22). First,

realize that t − tmid ≥ t21/2 since t ≥ t2 for this equation. Then, after the denominator is

factored, the resulting term involving cosh(y) − | sinh(y)|/β algebraically cancels with that

in the numerator. These results can be combined with Eq. (2.19), which yields an upper

bound on the produced energy density when τF = 0 fm/c and for the parton dmT/dy

ϵ(t) ≤ 2

ATt21

dmT

dy
(0)

∫
e
− y2

2σ2
cosh2y dy

βcosh y + |sinh y| ≡ ϵbound. (2.24)

For central Au+Au collisions, this upper bound for the energy density is shown as a

function of
√
sNN in Fig. 2.5. At high collision energies, it approaches the ϵmax(τF = 0)

value because the light cone boundaries overlap with the upper boundaries of the diamond
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production region z0 = ±β(x − t2) as β → 1. Therefore, the inequality of Eq. (2.22)

becomes an equality for times t ≤ t2 but not for times t > t2 [45]. The observation that

ϵbound → ϵmax(τF = 0) for large
√
sNN suggests that the maximum energy density for τF = 0

fm/c is reached for a time t ≤ t2. In an earlier study, this was also the case for the triangular

time profile where ϵmax
tri occurs at a time tmax ∈ [tmid + τF, t2 + τF) [43]. There, the time at

which the energy density attains its maximum value is tmax = tmid+τF/2+
√
τF
√
2t21 + τF/2.

An explicit analytical expression for the upper bound in Eq. (2.24) can be found using

the following relation:

1

β cosh(y) + | sinh(y)| ≤
e−|y|

β
. (2.25)

Equation (A.3) then allows the upper bound in Eq. (2.24) to be simplified using the above

inequality to the following:

ϵ(t) ≤ A
√
sNN

2ATβt21

[
2 + erfc

(
σ√
2

)
+ e4σ

2

erfc

(
3σ√
2

)]
. (2.26)

Here, erfc(x) refers to the well-known complementary error function. This result corresponds

to the high energy limit of the upper bound and is shown in Fig. 2.5 where it agrees with ϵbound

when
√
sNN ≳ 4 GeV. However, the relation in Eq. (2.25) is not sufficiently restrictive for

lower collision energies, so the high energy bound does not approach zero near the threshold

energy, as one would expect [45].

For very low
√
sNN, where β ≪ 1, the Gaussian width from Eq. (A.3) yields σ < 0.707

for
√
sNN < 1.96 GeV [45]. Because σ < 1/

√
2 implies that exp(−y2/2/σ2) cosh2(y) ≤ 1, the

upper bound of Eq. (2.24) gives

ϵ(t) ≤ 2

ATt21

dmT

dy
(0)

∫
dy

β cosh(y) + | sinh(y)|

=
8

ATt21
√

1− β2

dmT

dy
(0) tanh−1

(√
1− β

1 + β

)
.

(2.27)

The above result can be considered as the low energy limit of the upper bound and is
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also shown in Fig. 2.5. In that figure, the decrease of ϵmax(τF = 0) as
√
sNN → E0 is

clearly recovered by Eq. (2.27), which visually verifies the analytical result. At very low

collision energies near the threshold, Eq. (2.27) yields ϵbound ∝ β ln(2/β) which approaches

zero. Therefore, the maximum energy density ϵmax will also approach zero near the threshold

collision energy even though the height of the initial transverse mass rapidity density dmT/dy

remains finite as is shown in Fig. A.5.

2.3.3 Comparing ϵhadron to ϵBj and ϵtri
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Figure 2.6: Energy density of produced hadrons in central Au+Au collisions at
√
sNN = 3,

7.7, 39, and 200 GeV for τF = 0.2 and 0.8 fm/c for the semianalytical model of Eq. (2.14),
the Bjorken formula of Eq. (1.1), and the triangular solution of Eq. (2.28) for τF = 0.2 fm/c.

The differences between the ϵparton and ϵhadron and an analytical upper bound have been
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discussed in Sec. 2.3.1 and Sec. 2.3.2, respectively. From now on, ϵhadron will be used, unless

otherwise specified, and the subscript will be excluded for clarity. This choice is made because

the temperature T and chemical potentials µ can be extracted from a nuclear EoS if at least

both the energy density and the net-baryon density are known [46]. Combining the results

of ϵparton(t) with nB(t), which is calculated in Sec. 2.4, is incorrect because the dmT/dy for

initial partons is unrelated to the dNnetB/dy of Eq. (A.5). In the following section, ϵ from

this semianalytical model [45] is compared with that of the Bjorken formula [42], and the

more recent formula in Eq. (1.2) using a triangular time profile [43]. Note that dmT/dy of

Eq. (A.4) is substituted for the dET/dy term in Eqs. (1.1) and (1.2) in order to compare the

results of the three models consistently.

Figure 2.6 shows the results of ϵ(t) in the central spacetime-rapidity region averaged over

the full transverse overlap area for central Au+Au collisions at
√
sNN = 3, 7.7, 39, and 200

GeV. The results are for τF = 0.2 and 0.8 fm/c using the semianalytical model of Eq. (2.14),

and τF = 0.2 fm/c using the Bjorken formula of Eq. (1.1) and the triangular formula of

Eq. (2.28). The large effect of including the finite nuclear thickness on the predicted energy

densities is apparent from Fig. 2.6, especially at lower collision energies. Specifically, the

time of maximum energy density occurs later when including the finite nuclear thickness

effect [45]. This is similar to the effect of including the finite duration time dt but not the

finite z-width for parton production [43]. Because the Bjorken energy density formula of

Eq. (1.1) diverges as t → 0, the time of maximum energy density is tmax = τF. For the

triangular solution, tmax is given in Sec. 2.3.2 and can also be found in Ref. [43].

Also, the energy density of this semianalytical model can decrease more quickly for times

just after tmax than the energy density of the Bjorken formula. This phenomenon is clearly

seen in Fig. 2.6, and is especially evident at lower collision energies such as
√
sNN = 3 or

7.7 GeV. The decrease of the energy density in Eq. (2.14) with time can be understood

analytically since it behaves similarly to the results calculated using the uniform time profile

of Ref. [43]. For that case, the energy density decreases as ln[(t − t1)/(t − t2)] for times

43



t ≥ t2+τF after tmax has been reached [46]. This means that for times t just after t2+τF, the

energy density in this semianalytical model decreases as ln[1/(t − t2)], which is faster than

the 1/t rate of the Bjorken energy density for the same time t. Another way to interpret

this phenomenon is in terms of a simple shift in time from t to t− t2 on account of the finite

nuclear thickness effect [46].

Compared to the triangular solution, the time of ϵmax for this semianalytical model occurs

slightly later in time t, after tmid + τF but earlier than t2 + τF [45] as shown in Fig. 2.6. This

can be understood in terms of the decreasing rate at which the production region S(t) grows

for times t ∈ [tmid + τF, t2 + τF]. Notably, the value of ϵmax in this semianalytical model is

very close to the value of that in the triangular solution, for the same τF and collision energy.

Finally, for late times, ϵtri(t) and ϵ(t) from the semianalytical model of Eq. (2.14) approach

the Bjorken result [43, 45]. Note that the triangular solution is also a piecewise function of

t [43]:

ϵtri(t) =
4

ATt221

dmT

dy
(0)

[
−t+ t1 + τF + (t− t1) ln

(
t− t1
τF

)]
, for t ∈ [t1 + τF, tmid + τF);

=
4

ATt221

dmT

dy
(0)

[
t− t2 − τF + (t− t1) ln

(
t− t1
t− tmid

)
+ (t2 − t) ln

(
t− tmid

τF

)]
,

for t ∈ [tmid + τF, t2 + τF);

=
4

ATt221

dmT

dy
(0)

[
(t− t1) ln

(
t− t1
t− tmid

)
+ (t2 − t) ln

(
t− tmid

t− t2

)]
,

for t ∈ [t2 + τF,∞).

(2.28)

When the finite z-width of the initial parton production is ignored, only partons with y ≈ 0

can enter the central spacetime-rapidity region of ηs ≈ 0. Therefore, dmT/dy(0) is present in

the above triangular solution, because that solution only considers the finite duration time

dt for parton production [43].

As in Fig. 2.3, the maximum energy density ϵmax is extracted, and the values are plotted

as functions of collision energy and formation time in Fig. 2.7 and Fig. 2.8, respectively. First,
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Figure 2.7: Maximum energy density using the hadron dmT/dy in central Au+Au collisions
as a function of

√
sNN for τF = 0.2 and 0.8 fm/c for the semianalytical model of Eq. (2.14),

the Bjorken formula of Eq. (1.1), and the triangular solution of Eq. (2.28).

the
√
sNN-dependence of ϵmax for Au+Au collisions with τF = 0.2 and 0.8 fm/c is shown in

Fig. 2.7, in which the higher of the two curves corresponds to the smaller formation time

for all three solutions. For large collision energies where τF ≫ dt, the semianalytical model

results of Eq. (2.14) and the triangular solution of Eq. (2.28) approach the results of the

Bjorken energy density formula [43, 45]. The näıve expectation that the semianalytical model

results of Eq. (2.14) will differ significantly from the Bjorken ϵmax values when τF/dt ≲ 1 is

depicted in Fig. 2.7. This limit can be thought of as the point at which the Bjorken energy

density formula of Eq. (1.1) begins to break down [45].

In Fig. 2.8, the maximum energy density from Eq. (2.14) is compared to the Bjorken
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Figure 2.8: Maximum energy density using the hadron dmT/dy in central Au+Au collisions
as a function of τF for

√
sNN = 5, 27, and 62.4 GeV for the semianalytical model of Eq. (2.14),

the Bjorken formula of Eq. (1.1), and the triangular solution of Eq. (2.28).

and triangular solution ϵmax for central Au+Au collisions at
√
sNN = 5, 27, and 62.4 GeV

as functions of τF. The flattening of ϵmax as τF → 0 was also observed in Fig. 2.4 and

is more apparent for lower collision energies. When τF is not too small, the results of this

semianalytical model [45] are quite close to the ϵmax of the triangular solution from Eq. (2.29).

On the other hand, the ϵmax
Bj is only sensitive to the value of dmT/dy at mid-rapidity (y = 0),

which grows for low collision energies as shown in Fig. A.1. Therefore, the Bjorken energy

density formula of Eq. (1.1) predicts values that are much larger than the ϵmax of this model

at low collision energies [45]. Note that this behavior also happens when the τF value is

sufficiently small, although for a real QGP, the difference may not matter since the parton
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formation time is expected to be on the order τF ≈ 0.3 - 1 fm/c.

The obvious difference between the two models is that there is a much weaker depen-

dence on τF for the ϵmax values of this semianalytical model, especially at lower collision

energies [45]. The same qualitative features are displayed by the ϵmax from the triangular

solution of Eq. (2.28), and this behavior was already found in the previous study [43]. When

the ϵmax values of Eq. (2.14) are significantly different from those of the triangular solution,

the ratio of the formation time to the duration time is found to be τF/dt ≲ 0.2. Sometimes,

ϵmax from this semianalytical model can be larger than that of the triangular solution for

some moderate collision energies; however, for small
√
sNN, the reverse is true [45]. The ϵ

max

according to the triangular time profile is given in Ref. [43] as:

ϵmax
tri =

2

ATt21

dmT

dy
(0)

[
−1− τF

t21
+

√
τF
t21

√
2 +

τF
t21

+ 2 ln

(
1 +

√
1 + 2t21/τF
2

)]
. (2.29)

It is clear from the last term in the above definition that the triangular ϵmax diverges as

ln(1/τF) at low collision energies, but as 1/τF for high collision energies [43]. This is in

contrast to the Bjorken formula which ϵmax diverges as 1/τF for all collision energies [42].

2.3.4 Scaling and A-dependence of ϵmax

The initial produced energy density of Eq. (2.14) has an approximate scaling property [45].

In the hard sphere model of the nucleus, the z-width of the production region and the

duration time dt of the nuclear crossing are both proportional to A1/3. One also expects

that the mid-rapidity value dmT/dy(0) to be approximately proportional to the number

of participant nucleons Np [45]. In this semianalytical model, it is assumed that all 2A

nucleons participate in the initial production of central A+A collisions; therefore, one also

finds dmT/dy(0) ∝ A [45]. The PHENIX Collaboration also found this result in their

parametrization of the final hadron dET/dy [44]. Equation (A.3) then implies that the

Gaussian width of the dmT/dy profile of produced partons must be independent of A. If this
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were not the case, the proportionality of dmT/dy(0) to A previously mentioned would break

down for the central A+A collisions to which this semianalytical model applies [43, 45].

A scaled time ts and scaled proper formation time τ sF can be defined according to

ts =
t

A1/3
, τ sF =

τF
A1/3

. (2.30)

The approximate conditions that the z-width and dt of the production region are proportional

to A1/3 and dmT/dy(0) ∝ A implies the following facts [45]. First, for a given collision energy,

ϵ(t) from Eq. (2.14) depends on the scaled ts and τ sF only, and second, ϵmax is only a function

of τ sF. Therefore, one finds the following scaling relation of the maximum energy density for

different collision systems (i.e., different A and τF):

ϵmax
AA (τF) = ϵmax

AuAu

(
τAu
F = (197/A)1/3τF

)
. (2.31)

Specifically, one can compare the maximum energy density for central O+O collisions with

τF = 0.30 fm/c with those of central Au+Au collisions with τF = 0.69 fm/c at the same

collision energy: ϵmax
OO (τF = 0.30 fm/c) = ϵmax

AuAu(τF = 0.69 fm/c). Equation (2.31) also

implies that ϵmax
AA (τF = 0) is a function of collision energy only, not depending on A [45].

One can also apply the scaling relation of Eq. (2.31) to p + p collisions [70] even though

collision systems with A = 1 are not technically within the scope of this semianalytical

model [43, 45]. However, if one did use this scaling relationship in such a way, the result is

ϵmax
AA (τF = 0) = ϵmax

pp (τF = 0) for central AA collisions at the same
√
sNN.

The A-dependence of ϵmax for central collisions can be recovered from the τF-dependence

of ϵmax at a given
√
sNN, such as from the results shown in Fig. 2.4, from the scaling relation

of Eq. (2.31). Notably, this scaling is also satisfied by the previous Bjorken formula [42]

of Eq. (1.1) and the triangular solution [43] of Eq. (2.28). Note that the A-dependences

of the maximum energy density in these two previous models will be different from in this

semianalytical model [45] because the τF-dependence is different as shown by Fig. 2.8. This
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means that the ϵmax of this semianalytical model increases very slowly with A since the

τF-dependence is almost flat. The maximum energy densities from the Bjorken formula

of Eq. (1.1) grow quickly with A at small τF. However, for a finite τF, and high enough

collision energy, our semianalytical model recovers the Bjorken ϵmax where ϵmax ∝ A1/3

for a fixed formation time. Finally, note that the upper bound ϵbound of Eq. (2.24) would

be independent of A if the same approximations on the z-width, duration time dt, and

dmT/dy(0) are made [45].

2.4 Initial Net Conserved-Charge Densities

So far, the semianalytical model has been applied only to the initial energy densities for

central Au+Au collisions. The net-baryon density nB(t) can be calculated using the same

method as outlined in the previous section for ϵ(t) [45]. One then obtains the following

equation for the net-baryon density that is similar to Eq. (2.4):

nB(t) =
1

AT

∫∫
S

dxdz0
t− x

d3NnetB

dxdz0dy
cosh2(y). (2.32)

Note that there is one fewer power of cosh y in this equation than in Eq. (2.14) because

that equation involves E = mT cosh(y). The same assumptions regarding the factorization

of d3mT/dx/dz0/dy and the uniform production of partons in Eq. (2.13) is applied to the

above expression of nB(t) [46]. One then obtains d3NnetB/dx/dz0/dy = 2/(βt221)dNnetB/dy.

Therefore, the net-baryon density nB(t) is also given by a piecewise solution of time t, as

shown in Table 2.1.

The net-baryon density nB(t) of Eq. (2.32) is plotted in Fig. 2.9 for central Au+Au

collisions at
√
sNN = 3, 7.7, 39, and 200 GeV with τF = 0.2 and 0.8 fm/c. Similarly to

the energy density ϵ(t) of Eq. (2.14), the net-baryon density starts at zero for t ≤ t1 + τF

and increases smoothly with time until tmax. Note that the tmax for the maximum net-

baryon density is the same as that for the maximum energy density in the semianalytical
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Figure 2.9: Net-baryon density nB(t) in central Au+Au collisions at
√
sNN = 3, 7.7, 39, and

200 GeV for τF = 0.2 and 0.8 fm/c. Note that these results are for t1 = 0.2dt and t2 = 0.8dt.

model [46]. This is expected since the integration limits of Table 2.1 are the same for both

produced densities. After tmax, the net-baryon density decreases and the late-time evolution

is independent of the formation time. Interestingly, the maximum net-baryon density nmax
B

decreases with increasing
√
sNN for most collision energies, except when it increases for some

small to intermediate
√
sNN for a small enough τF [46].

If one would adapt the Bjorken energy density formula to calculate the net-baryon density

by substituting dNnetB/dy for dmT/dy, one would have

nBj
B (t) =

1

AT t

dNnetB

dy
. (2.33)
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It is clear from the t-dependence of the above equation that the same divergent behavior

is expected in nBj
B as occurs in ϵBj. Additionally, the late time evolution of the net-baryon

density from Eq. (2.32) approaches the results of the Bjorken net-baryon formula of Eq. (2.33)

for all formation times [46]. The approach to the Bjorken results also occurs earlier in time

for larger
√
sNN in the same way as does ϵ(t) from the semianalytical model. Finally, the

maximum net-baryon density nmax
B from the results of Eq. (2.32) are lower than the Bjorken

ones at the same τF, but this difference decreases at higher collision energies [46].

While the net-electric chargeQ is carried by the incoming protons, the net-baryon number

B is carried by all the incoming nucleons. In this semianalytical model, it is assumed that

the initial densities are produced by the primary NN collisions and are independent of the

nucleon type [46]. This physically motivated assumption results in the net-electric charge

density nQ being strictly proportional to nB for all times t throughout the evolution:

nQ(t) = nB(t)
Z

A
, (2.34)

where Z and A are the atomic number and mass number of the colliding nuclei, respectively.

Note that the semianalytical model for the initial production so far only applies to symmetric

A+A collisions; however, future studies may warrant a generalization to non-symmetric

and/or non-central collisions [46]. The above relationship for the net-electric charge density

has also been used in other studies [89].

Finally, this semianalytical model is limited to considering nuclei which do not have

valence-level strange s quarks. Therefore, the net-strangeness of the colliding nuclei is

S = 0; and we assume that the production of s and s̄ is symmetric [46]. This final as-

sumption accounts for the phenomenologically relevant constraint of strangeness neutrality

in the semianalytical model:

nS(t) = 0. (2.35)

51



2.5 Transverse Expansion

Until now, the semianalytical model has been used to calculate the initial densities averaged

over the entire transverse overlap area AT. Unfortunately, this framework prevents the

semianalytical model from being able to include the transverse flow phenomenon which has

been observed at RHIC [1]. Therefore, the effect of transverse expansion on the produced

densities of this semianalytical model is investigated by assuming that the radius of the

transverse overlap area RT in central A+A collisions increases with time [46] according to:

RT(t) = RA + βT(t) (t− t1 − τF) . (2.36)

Here, the transverse flow velocity is modeled according to

βT(t) =


0, for t < t1 + τF[
1− e−(t−t1−τF)/tT

]
βT,f , for t ≥ t1 + τF.

(2.37)

The kinetic freezeout parameters, which were obtained by fitting the transverse momentum

spectral shapes for central Au+Au collisions at 7.7 up to 200 GeV and Pb+Pb collisions at

2.76 TeV to a blast-wave model [70, 37, 17], have been used for this parametrization [46].

This data allows us to parametrize the final value of the transverse flow velocity βT,f as

βT,f =

[
ln
(√

sNN/E0

)
64.7 + ln

(√
sNN/E0

)]0.202 . (2.38)

We see that βT,f → 0 as
√
sNN → E0. Note that the kinetic freezeout parameters reported in

Ref. [37] contained various data [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101], which have

also been used here.

After parametrizing βT,f , we assume that tT ∝ 1/nmax to parametrize the timescale for

the transverse flow development tT, where n
max is taken as the parton number density at the

time of ϵmax. Here we assume that parton collisions lead to the transverse flow and that a
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Figure 2.10: (a) Energy density ϵ(t) and (b) net-baryon density nB(t) for central Au+Au
collisions at

√
sNN = 3 and 39 GeV with τF = 0.2 fm/c without transverse expansion and

with transverse expansion with tnormT = 1 and 6 fm/c. Note that these results use the hadron
dmT/dy and t1 = dt/6 and t2 = 5dt/6.

parton’s mean-free-path is inversely proportional to the parton number density [46]. Thus,

a higher Using Boltzmann statistics, the simple relationship n = 4
√

52ϵ3/27/π2 is found for

a massless QGP composed of gluons and three quark flavors, and the following maximum

energy density that assumes a uniform production profile in time [43] is used:

ϵmax
uni =

1

πR2
A(t2 − t1)

dmT

dy
(0) ln

(
1 +

t2 − t1
τF

)
. (2.39)

Note that t1 = 0.264dt and t2 = 0.736dt have been used in the above equation [46]. This

choice ensures that the uniform time profile matches the mean and standard deviation of time
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as the uniform g(z0, x) with t1 = dt/6 and t2 = 5dt/6. In this semianalytical model, choosing

t1 and t2 in this manner ensures that ϵmax = 2ρ0mN and nmax
B = 2ρ0 for the threshold collision

energy
√
sNN = E0 as one would näıvely expect. If the two colliding nuclei fully overlapped

without interacting, the maximum densities would satisfy these conditions. Finally, tT is

normalized to a given value tnormT for a collision energy
√
sNN = 200 GeV and parton proper

formation time τF = 0.3 fm/c.

The effect on the initial densities when tnormT is changed from 1 to 6 fm/c has also been

investigated [46]. In Fig. 2.10, the energy density ϵ(t) and the net-baryon density nB(t)

for Au+Au collisions at
√
sNN = 3 and 39 GeV with τF = 0.2 fm/c are shown. Note

that these results and all future results in this dissertation use t1 = dt/6 and t2 = 5dt/6

for the reason described above [46]. For early times before tmax is reached, the transverse

expansion has essentially no effect on the produced energy density or net-baryon density.

This is understandable since t − t1 − τF is still small compared to the value of tT. Once

the maximum density is reached, the effect of transverse expansion becomes noticeable in

that the peak value may be slightly smaller with transverse expansion than without [46].

This effect is more noticeable for lower collision energies and smaller values of tnormT . In fact,

the case without transverse expansion may be considered as the limiting case of tnormT → ∞

since this would delay the effect of transverse flow until far after the produced densities have

reached zero. Finally, the late time evolution of the energy and net-baryon densities both

behave in the same way after transverse expansion is considered. Namely, they decrease

at a faster rate than their corresponding densities without transverse expansion and the

relative change is the same for both quantities. This is because the transverse flow effect has

been modeled with an expanding area [46] over which the corresponding energy or conserved

charge is averaged over instead of including the effect inside the integrals of Eq. (2.14) or

(2.32).
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Chapter 3

Studying Trajectories in the QCD

Phase Diagram

The thermodynamic properties and QCD phase diagram trajectories of the matter produced

in central Au+Au collisions are presented and studied in this chapter. First, the equation

of state (EoS) for a non-interacting, massless QGP is derived using Boltzmann or quantum

statistics in Sec. 3.1. The temperature T and chemical potentials µ including their peak

values are analyzed for a variety of different collision energies and parton formation times.

Special attention is given to the location of a trajectory to the conjectured QCD critical point,

the crossover line from FRG calculations, and certain constant energy density lines. The

online web application has also been modified to perform the semianalytical calculations of

the trajectories in the QCD phase diagram using the ideal gas EoS with either statistics [88].

Next, a more realistic lattice QCD-based EoS is presented in Sec. 3.2, and a similar analysis

is done, especially comparing the more realistic trajectories to those from the conformal EoS.

Then in Sec. 3.3, the strangeness neutrality in the lattice EoS is assessed, and interesting

qualitative features are discussed relative to the functional renormalization group (FRG)

calculations with Nf = 2+1. Finally, Sec. 3.4 gives a method to calculate the QGP lifetime

for a given trajectory, and it is shown that the lattice EoS is unable to do so for collision

energies below
√
sNN ≲ 7.7 GeV. The QGP lifetime results from the ideal gas EoS indicate

that the QGP formation depends on the EoS, the parton formation time, and the transverse

expansion effect. However, recent results from the STAR Collaboration show that the matter

formed by
√
sNN = 3 GeV Au+Au collisions is dominated by hadron degrees of freedom.



These results provide a useful tool for calculating the trajectory of the hot dense matter in

the QCD phase diagram and should be useful for estimating the necessary collision energy

for a trajectory to pass near the CEP. Until an improved realistic EoS is developed and can

be used, the results of the ideal gas EoS seem to yield reasonably accurate results.

3.1 Trajectories of a Massless QGP for an Ideal Gas

EoS

A previous study considered the thermodynamics of a QGP composed of gluons g and three

quark flavors u, d, and s [61]. In that study, the authors used the current quark masses from

the particle data group (PDG) [102] of mu = 2.16 MeV/c2, md = 4.67 MeV/c2, and ms = 93

MeV/c2. It was also found that there is essentially no difference in the trajectories of the

matter formed by relativistic heavy ion collisions if the quark masses are neglected [46, 61].

Therefore, a massless 3+1 flavor QGP is considered in the following results. The total energy,

net-baryon, net-electric charge, and net-strangeness densities of such a system are found by

summing over the individual partons’ contributions [46, 61]:

ϵ = ϵg +
∑
q

(ϵq + ϵq̄) , nB =
∑
q

Bq (nq − nq̄) ,

nQ =
∑
q

Qq (nq − nq̄) , nS =
∑
q

Sq (nq − nq̄) . (3.1)

Here, Bq, Qq, and Sq refer to the baryon, electric charge, and strangeness numbers of quark

flavor q, respectively. In general, the energy density ϵi and the number density ni for a parton

of flavor i are given by integrals over the momentum phase space with the phase-space density
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and can be written as

ϵi =
1

2π2

∞∫
0

dp p2
√
p2 +m2

i fi(p),

ni =
1

2π2

∞∫
0

dp p2fi(p),

(3.2)

respectively, where mi represents the parton mass. The single-particle distribution function

fi(p) for a parton of flavor i in equilibrium is given by

fi(p) = di

[
exp

(√
p2 +m2

i − µi

T

)
+K

]−1

. (3.3)

The degeneracy factor di in the above equation considers the number of unique spin and

color states for each parton. Gluons have di = 2 × 8 = 16 degenerate states, while quarks

have di = 2 × 3 = 6. Each parton has a chemical potential µi and the temperature T

determines the phase space distribution of partons. The constant K is a factor which defines

the statistics to be used: K = 0 for Boltzmann statistics, K = 1 for Fermi-Dirac statistics,

and K = −1 for Bose-Einstein statistics [46]. The chemical potential for each parton flavor i

is defined simply by the linear combination µi = BiµB +QiµQ +SiµS, where µB, µQ, and µS

are, respectively, the baryon, electric charge, and strangeness chemical potentials [46, 61].

3.1.1 The Ideal Gas EoS with Quantum Statistics

The gluons are bosons, having spin 1, while the quarks and anti-quarks are fermions, having

spin 1/2. Thus, the massless QGP under consideration will use Bose-Einstein statistics for

the gluons and Fermi-Dirac statistics for the quarks and antiquarks. For brevity, these two

statistics will be combined under the term “quantum” statistics in all future discussions as

was done in Ref. [46]. Next, the gluon chemical potential is µg = 0 since it carries no baryon

number, electric charge, or strangeness. Furthermore, the antiquark chemical potential is
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related to the quark chemical potential if the two share the same flavor q according to

µq + µq̄ = 0. With these definitions, one can straightforwardly write down the total energy

density and net-number density of a quark-antiquark pair in quantum statistics as

ϵq + ϵq̄ = −18T 4

π2

[
Li4
(
−e−µq/T

)
+ Li4

(
−eµq/T

)]
=

7π2

20
T 4 +

3µ2
q

2
T 2 +

3µ4
q

4π2
,

nq − nq̄ =
6T 3

π2

[
Li3
(
−e−µq/T

)
− Li3

(
−eµq/T

)]
= µqT

2 +
µ3
q

π2
.

(3.4)

Here, the polylogarithm function of order n, Lin(z), is used in the same manner as Ref. [103].

The right-hand sides of both lines in the equations above are obtained from the corresponding

sum or difference of polylogarithm functions using the following relationship for the Bernoulli

polynomials Bn(x):

Lin(z) = (−1)n−1Lin

(
1

z

)
− (2πi)n

n!
Bn

(
ln(−z)
2πi

+
1

2

)
. (3.5)

Note that the above relationship is valid when z is not in the range (0, 1) and for strictly

positive natural numbers n ∈ N+.

On substituting these expressions into the definitions of the total energy and net-conserved

charge densities of Eq. (3.1), one obtains

ϵ =
19π2

12
T 4 +

(µB + 2µQ)
2 + (µB − µQ)

2 + (µB − µQ − 3µS)
2

6
T 2

+
(µB + 2µQ)

4 + (µB − µQ)
4 + (µB − µQ − 3µS)

4

108π2
,

(3.6)

nB =
µB − µS

3
T 2 +

(µB + 2µQ)
3 + (µB − µQ)

3 + (µB − µQ − 3µS)
3

81π2
, (3.7)

nQ =
2µQ + µS

3
T 2 +

2(µB + 2µQ)
3 − (µB − µQ)

3 − (µB − µQ − 3µS)
3

81π2
, (3.8)

nS = −µB − µQ − 3µS

3
T 2 − (µB − µQ − 3µS)

3

27π2
. (3.9)

Combining the result of Eq. (3.9) with the net-strangeness density nS = 0 from the semian-

alytical model in Sec. 2.4 yields the following relationship for the EoS of an ideal gas with
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quantum statistics [46]

µB − µQ − 3µS = 0. (3.10)

The above result corresponds to the strange quark chemical potential µs = 0 and means that

the three chemical potentials are not mutually independent [46]. Therefore, the system of

equations in Eqs. (3.6) - (3.8) may be simplified to the following set of equations:

ϵ =
19π2

12
T 4 + 3

(µB − 2µS)
2 + µ2

S

2
T 2 + 3

(µB − 2µS)
4 + µ4

S

4π2
, (3.11)

nB =
µB − µS

3
T 2 +

(µB − 2µS)
3 + µ3

S

3π2
, (3.12)

nQ =
2µB − 5µS

3
T 2 +

2(µB − 2µS)
3 − µ3

S

3π2
. (3.13)

The T , µB, µQ, and µS values which are extracted from ϵ, nB, and nQ using Eqs. (3.10) -

(3.13) are referred to as the “full solution” of the conformal quantum EoS [46].

One may further simplify the resulting relations of the ideal gas EoS with quantum

statistics by setting one or both of the µQ, µS to zero [46, 61]. For example, if the electric

charge is ignored by setting µQ = 0 in Eq. (3.10), the strangeness chemical potential is

proportional to the net-baryon chemical potential: µS = µB/3. Under the assumption of a

vanishing µQ, one find the simplified equations

ϵ1 =
19π2

12
T 4 +

µ2
B

3
T 2 +

µ4
B

54π2
, (3.14)

nB,1 =
2µB

9
T 2 +

2µ3
B

81π2
. (3.15)

The above relations are referred to as the “partial-1” solution of the quantum EoS because

only one chemical potential µQ was neglected [46]. In this approximation, the net-electric

charge density of Eq. (3.13) would give nQ = nB/2 ̸= nBZ/A, and is therefore inconsistent

with the semianalytical model result in Sec. 2.4. Note that for the Au+Au collisions that

are considered in this work, the ratio Z/A ≈ 0.4 is reasonably close to 1/2, so the partial-

1 solution of the quantum EoS may be expected to approximate the full solution results
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reasonably well [46]. This discrepancy is a consequence of the choice of µQ and also happens

if one considers Boltzmann statistics as in Sec. 3.1.2.
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Figure 3.1: (a) T (t), (b) µB(t), (c) −µQ(t), and (d) µS(t) of a massless QGP from the full
solution of the quantum EoS with no transverse expansion (solid), and transverse expansion
with tnormT = 1 (dashed) and 6 (dotted) fm/c for central Au+Au collisions at

√
sNN = 3 and

39 GeV with τF = 0.2 fm/c. Note that these results use t1 = dt/6 and t2 = 5dt/6.

One may also ignore both the electric charge and the strangeness by setting µQ = µS = 0

in Eq. (3.10). In this case, one finds the following simplified system of equations which is
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similar to that of Eqs. (3.14) - (3.15):

ϵ2 =
19π2

12
T 4 +

µ2
B

2
T 2 +

µ4
B

36π2
, (3.16)

nB,2 =
µB

3
T 2 +

µ3
B

27π2
. (3.17)

Since both of µQ and µS were set equal to zero, we refer to Eqs. (3.16) - (3.17) as the “partial-

2” solution of the quantum EoS [46]. Note that the the above assumption would violate

Eq. (3.10) from the semianalytical model. In addition, the partial-2 solution of the quantum

EoS yields nQ = 0 and nS = −nB which is inconsistent with the results of the semianalytical

model in Sec. 2.4. The same problems are found by considering Boltzmann statistics in

Sec. 3.1.2. Note that the results of the semianalytical model [46] agree qualitatively with

those of the AMPT model [61].

Figure 3.1 shows the T and µ results that are extracted using the full solution of the

quantum EoS for central Au+Au collisions at
√
sNN = 3 and 39 GeV with τF = 0.2 fm/c,

where the starting and ending times of parton production are t1 = dt/6 and t2 = 5dt/6

as described in Sec. 2.4. Results without transverse expansion are compared to those with

transverse expansion for tnormT = 1 and 6 fm/c. It is clear that the maximum temperature

Tmax increases with collision energy and the maximum net-baryon chemical potential µmax
B

decreases with
√
sNN. The decrease of µmax

B actually happens from
√
sNN = 5 GeV, while

there is slight increase for lower collision energies [46]. Additionally, the maximum magnitude

of the electric charge chemical potential is |µQ|max ≲ 30 MeV, which is on the order of 10%

of Tmax, while the strangeness chemical potential µS appears to be µS ≈ µB/3. These results

for µQ and µS from the full solution of the quantum EoS indicate that the approximations

which led to the partial-1 solution in Eqs. (3.14) - (3.15) are reasonable for an ideal gas of

massless partons [46]. Note that the recent numerical results from the AMPT model for the

ideal gas EoS [61] also show µQ ≈ 0 and µS ≈ µB/3.

The smaller duration time dt at higher collision energies causes the peak values of T
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Figure 3.2: T −µB trajectories of a massless QGP from the full solution of the quantum EoS
for central Au+Au collisions at

√
sNN = 3, 7.7, 39, and 200 GeV with τF = 0.2 fm/c with no

transverse expansion (solid) or transverse expansion with tnormT = 1 (dashed) and 6 (dotted)
fm/c. Also shown are two lines of constant ϵ1 = 0.51 and 1.23 GeV/fm3 as calculated from
Eq. (3.14). Note that these results use t1 = dt/6 and t2 = 5dt/6.

and µ to occur earlier in time in Fig. 3.1. Note that the maximum values occur at tmax

which is the time when the densities of the semianalytical model are maximum [46]. Apart

from the behavior of the maximum values of T and µ with
√
sNN, the time evolution of the

T and µ matches the evolution of the densities from the semianalytical model [46]. The

behavior of Tmax and µmax
B with

√
sNN is the same for results including transverse expansion

or not. This behavior is expected because the transverse expansion effect of Sec. 2.5 affects

the energy density ϵ(t) and net-baryon density nB(t) in the same way. Figure 3.1 shows that

this implementation of transverse expansion changes the T and µ values in the same way as
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it changes the densities of the semianalytical model [46].

The T −µB QCD phase diagram trajectories of a massless QGP from the full solution of

the quantum EoS without transverse expansion and with tnormT = 1 and 6 fm/c for central

Au+Au collisions at
√
sNN = 3, 7.7, 39, and 200 GeV with τF = 0.2 fm/c are shown in

Fig. 3.2. For very early times t ∈ [0, t1 + τF) when the system has densities (ϵ, nB) = (0, 0),

the net-baryon chemical potential and temperature are at (µB, T ) = (0, 0) because of the

vanishing quark masses [46]. While the
√
sNN = 3 GeV trajectory does not pass through the

crossover curve from the FRG calculations with NF = 2 + 1[104], the
√
sNN = 7.7 GeV one

does. In fact, we have shown that the trajectories for collision energies
√
sNN ≳ 4 GeV pass

through the FRG crossover curve [46].

Each trajectory in Fig. 3.2 reaches its endpoint at the time when both ϵmax and nmax
B are

reached, and turns clockwise then returns toward the origin. For very high collision energies,

the outgoing and returning parts of the trajectory are quite close to each other and appear

to overlap at this scale [46]. However, for lower collision energies such as
√
sNN = 3 GeV,

the two parts are clearly distinguishable. One can understand this behavior in terms of the

uniform time profile for density production from Ref. [43] in which both the energy ϵ(t) and

net-baryon density nB(t) have the same evolution up to a proportionality constant [46]. This

means that the time evolution of the semianalytical densities from Ch. 2 should be quite

close for all times. Therefore, the returning of a trajectory should overlap with the outgoing

part because for two points (one on the increasing part and the other on the decreasing

part) in a trajectory with the same energy density, the net-baryon densities will also be very

similar [46]. We have found in Ref. [46] that for
√
sNN ≳ 4.4 GeV, both the outgoing and

returning parts of the trajectory intersect the FRG crossover curve [104]; however, neither

part does so if
√
sNN ≲ 3.6 GeV. Two lines of constant ϵ which intersect the endpoints of the

FRG crossover curve have also been calculated using Eq. (3.14) from the partial-1 solution

of the quantum EoS [46]. These constant energy density curves correspond to ϵ = 0.51 and

1.23 GeV/fm3, and are shown in Fig. 3.2.
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Figure 3.3: T −µB trajectories of a massless QGP from the full solution of the quantum EoS
for central Au+Au collisions at

√
sNN = 3, 7.7, 39, and 200 GeV and τF = 0.2 and 0.8 fm/c.

These results are for transverse expansion with tnormT = 4 fm/c.

Figure 3.2 also shows the relatively small effect of transverse expansion on the resulting

trajectories, and this can be understood in the following way [46]. The implementation of

transverse expansion in the semianalytical model occurs via a time-dependent transverse

area AT(t) which increases according to a timescale tT as is described in Sec. 2.5. For

very early times when t − t1 − τF < tT, transverse flow has not yet significantly developed,

so the transverse expansion should have a very small effect on the densities. Therefore,

the outgoing part of the trajectory which corresponds to early times will be affected only

slightly [46]. For later times when t − t1 − τF > tT, the transverse expansion decreases

the energy density and net-baryon density by the same factor because it occurs outside the
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integrals of Eqs. (2.14) and (2.32). However, the late time evolution of the semianalytical

model’s densities approaches the Bjorken densities and goes like 1/t. Therefore, the late

time densities and corresponding point of the trajectory with transverse expansion at time

t is the same as those without transverse expansion at some later time t′ > t [46]. The final

effect of transverse expansion then is only in changing the turning point or endpoint of a

trajectory because the returning part of a trajectory with transverse expansion will overlap

with one without transverse expansion. Note that the rate at which the matter follows the

trajectory will be faster with transverse expansion than without as is discussed in Sec. 3.3.

The results of the semianalytical model [45, 46] depend on the parton proper formation

time. Figure 3.3 shows how the T − µB trajectories from the full solution of the quantum

EoS depend on τF. For a given collision energy, the trajectory at a smaller formation time

is long with the endpoint being farther away from the origin than for a trajectory with a

larger formation time. Specifically, as τF decreases, the trajectory endpoint moves to a larger

µB and a higher T except at very low energies where the temperature at the endpoint may

decrease [46]. For moderate to high
√
sNN, the trajectory endpoint corresponds to both

ϵmax and nmax
B , but this is not always the case at low collision energies. The outgoing parts

of a trajectory with a given
√
sNN and different formation times sometimes do not overlap

perfectly, this behavior is consistent with the significant dependence of ϵ(t) and nB(t) on τF

for early times as depicted in Fig. 2.6. This same feature does not occur on the returning

parts of a trajectory for a given collision energy because the densities of the semianalytical

model are insensitive to τF at late times [46].

Also shown in Fig. 3.3 is the dependence on
√
sNN of the endpoint of a trajectory for a

given τF. There is a clear separation between the endpoint curves for different τF values at

high collision energies; however this separation decreases [43, 45] and disappears for
√
sNN ≲

3 GeV. The sensitivity of the trajectory endpoint to the formation time can be understood

in terms of the simpler uniform time profile [43], which has maximum values proportional to

ln (1 + t21/τF) [46]. Recall that the energy and net-baryon densities are both maximal at the
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location of the endpoint of a trajectory. It was shown in Ref. [46] that the maximum densities

are inversely proportional to τF because ln(1+t21/τF ) ∼ t21/τF as long as the collision energy

is large enough to ensure that t21/τF ≪ 1. Thus, trajectories at high
√
sNN are quite sensitive

to the value of τF. However, when t21/τF ≫ 1 for lower
√
sNN, the maximum densities scale

approximately as ln(t21/τF ), so they are not as sensitive to the formation time. Together,

these two facts imply that the endpoint is more sensitive to τF at high collision energies than

at low collision energies [46].

For the threshold collision energy E0, the endpoint curves for different formation time

values converge to the same endpoint point [46]. In Ref. [46] when transverse expansion is

neglected, that point is located at (µB, T ) ∼ (900MeV, 60MeV). Figure 3.3 shows that

the point is now located at (µB, T ) ∼ (720MeV, 60MeV) after transverse expansion with

tnormT = 4 fm/c is taken into account. The CEP from the FRG calculations [104] located

at (µB, T ) = (635MeV, 107MeV) is well within the endpoint curve with τF = 0.8 fm/c.

Thus, central Au+Au collisions should be able to produce matter which can access this

CEP location [46]. It was also shown that the region below the
√
sNN = 2 GeV trajectory

is essentially inaccessible to the central Au+Au collisions according to this semianalytical

model [46]. This is understandable since ϵ < mNnB is physically inaccessible, but the ideal

gas EoS with quantum statistics has ϵ < mNnB in the region of the QCD phase diagram

below the
√
sNN = 2 GeV trajectory.

Note that the semianalytical model of Sec. 2.1 should break down for very low collision

energies because the primary collisions would not form a state of matter with partonic

degrees of freedom [46]. The semianalytical model predicts that the trajectories from the

ideal gas EoS start at the origin in the QCD phase diagram and return toward it precisely

because the system is assumed to always be in the parton phase. Additionally, future work

is needed to improve the model to include the energy loss of the participant nucleons and

the interactions between secondary particles, which is currently beyond the scope of the

model [46]. Note that the choice to neglect the secondary particle interactions is made so
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that the resulting equations may be analytically solved while still producing a reasonably

accurate trajectory; however, these effects are considered in the AMPT model calculations of

the collision trajectories [61]. Since, the AMPT model results and those of this semianalytical

model share many of the same qualitative features for the trajectories from the ideal gas EoS,

one expects the effect of secondary particle interactions to be relatively small [46].

The semianalytical model gives ϵmax = 2ρ0mN and nmax
B = 2ρ0 for the threshold collision

energy
√
sNN = E0 which is the näıve expectation [46]. Therefore, the densities of the

Sec. 2.2 and Sec. 2.4 should be accurate for very low collision energies. On the other hand,

the system is expected to freeze out from a parton matter into hadrons, whose behavior can

be described by a hadron resonance gas model. This means that the treatment of the system

as a massless QGP below the phase transition is unreliable. Thus, the trajectories from the

ideal gas EoS that are far below the FRG crossover curve (or the first-order phase transition

line beyond the CEP) should not be trusted [46].

3.1.2 The Ideal Gas EoS with Boltzmann Statistics

The results of Sec. 3.1.1 used quantum statistics in the treatment of a massless QGP with

an ideal gas EoS. Now, the Maxwell-Boltzmann statistics will be used to describe the ther-

modynamics of the same massless QGP. Note that the following equations are simpler than

the equivalent equations that include the finite quark masses [61].

ϵ =
12

π2
T 4

[
4 + 3 cosh

(
µB + 2µQ

3T

)
+ 3 cosh

(
µB − µQ

3T

)
+ 3 cosh

(
µB − µQ − 3µS

3T

)]
,

(3.18)

nB =
4

π2
T 3

[
sinh

(
µB + 2µQ

3T

)
+ sinh

(
µB − µQ

3T

)
+ sinh

(
µB − µQ − 3µS

3T

)]
, (3.19)

nQ =
4

π2
T 3

[
2 sinh

(
µB + 2µQ

3T

)
− sinh

(
µB − µQ

3T

)
− sinh

(
µB − µQ − 3µS

3T

)]
, (3.20)

nS = −12

π2
T 3 sinh

(
µB − µQ − 3µS

3T

)
. (3.21)
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It is clear that the above equation for the net-strangeness density also yields Eq. (3.10) when

one enforces the strangeness neutrality condition of the semianalytical model as discussed in

Sec. 2.5. The above set of equations may be further simplified using Eq. (3.10) and written

as:

ϵ =
12

π2
T 4

[
7 + 3 cosh

(
µB − 2µS

T

)
+ 3 cosh

(µS

T

)]
, (3.22)

nB =
4

π2
T 3

[
sinh

(
µB − 2µS

T

)
+ sinh

(µS

T

)]
, (3.23)

nQ =
4

π2
T 3

[
2 sinh

(
µB − 2µS

T

)
− sinh

(µS

T

)]
. (3.24)

The above equations are referred to as the full solution of the Boltzmann EoS [46].

While Eqs (3.22) - (3.24) are straightforwardly stated, one is also free to simplify them

by ignoring one or both of the electric charge and strangeness chemical potentials. If the

electric charge is ignored by setting µQ = 0 in Eq. (3.10), one discovers the following partial-1

solution of the Boltzmann EoS:

ϵ1 =
12

π2
T 4
[
7 + 6 cosh

(µB

3T

)]
, (3.25)

nB,1 =
8

π2
T 3 sinh

(µB

3T

)
. (3.26)

On the other hand, one may ignore both electric charge and strangeness by using µQ = µS = 0

and find the partial-2 solution of the Boltzmann EoS:

ϵ2 =
12

π2
T 4
[
4 + 9 cosh

(µB

3T

)]
, (3.27)

nB,2 =
12

π2
T 3 sinh

(µB

3T

)
. (3.28)

Figure 3.4 shows the time evolutions of the T and µ extracted using the full solution, the

partial-1 solution, and the partial-2 solution of the Boltzmann ideal gas EoS for a massless
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Figure 3.4: (a) T (t), (b) µB(t), (c) −µQ(t), and (d) µS(t) of a massless QGP from the full
(solid), partial-1 (dashed), and partial-2 (dotted) solutions of the Boltzmann EoS for central
Au+Au collisions at

√
sNN = 3, 7.7, 39, and 200 GeV with τF = 0.2 fm/c and tnormT = 4

fm/c. Note that these results use t1 = dt/6 and t2 = 5dt/6.

QGP from central Au+Au collisions at
√
sNN = 3, 7.7, 39, and 200 GeV with τF = 0.2

fm/c. These results are similar to those shown in Fig. 3.1 for the quantum ideal gas EoS,

except that here only the case of transverse expansion with tnormT = 4 fm/c is considered

since the effect of transverse expansion on the resulting trajectories was shown to be rather
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small there [46]. Notably, the results for the partial-1 solution which makes the simplifying

assumption of µQ = 0 and consequently, µS = µB/3, are very similar to the full solution

results. There is essentially no difference in the time evolution of the temperature for all

collision energies, while there are only very minor deviations in the net-baryon chemical

potential [46]. In fact, the time evolution of µS shows that the net-strangeness density in the

partial-1 solution is similar to the full solution one. This fact further supports the validity

of the assumptions that lead to the partial-1 solutions of Eqs. (3.25) - (3.26) for Boltzmann

statistics or Eqs. (3.14) - (3.15) for quantum statistics. On the other hand, the results from

the partial-2 solution have essentially the same T (t), but significantly smaller µB(t) values.

Additionally, the magnitude of µQ from the full solution of the Boltzmann EoS is slightly

smaller than that of the quantum EoS full solution.

Figure 3.5 shows how the T − µB trajectories of a massless QGP depend on the different

solutions of the Boltzmann EoS for central Au+Au collisions at
√
sNN = 3, 7.7, 39, and

200 GeV with τF = 0.2 fm/c and tnormT = 4 fm/c. It is clear that the trajectories from the

partial-1 solution of the Boltzmann EoS match almost perfectly those of the full solution, and

this behavior is also found for the quantum EoS [46]. Two lines of constant energy density

as calculated from the partial-1 solution of the Boltzmann EoS in Eq. (3.25), which pass

through the endpoints of the FRG crossover curve, are shown. In contrast to similar curves

from the quantum EoS in Fig. 3.2, these exhibit a half-loop structure such that the lower half

of a given constant-ϵ1 line goes toward the origin instead of high µB [46]. This behavior can

be understood by considering the total differential of Eq. (3.25): dϵ1 = ∂T ϵ1dT + ∂µB
ϵ1dµB.

For a constant energy density, the total change in ϵ1 is dϵ1 = 0, and this naturally leads to

the following relation:

dµB

dT
= − ∂T ϵ1

∂µB
ϵ1
. (3.29)

In the above equation, the numerator on the right-hand-side is zero if µB/(3T ) ≈ 4.15, and

this criterion corresponds to the turning point of the constant ϵ1 line for the Boltzmann

EoS [46]. Thus, if one traces a constant ϵ1 line from the high T side at zero net-baryon
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chemical potential where ϵ ≫ mNnB, eventually one will reach a point near the turning

point beyond which ϵ < mNnB. It is not natural for nuclear matter such as the QGP to have

an energy density smaller than mNnB because the baryon number is closely related to the

baryon mass. Therefore, the (µB, T ) points on the lower part of the constant ϵ1 lines of the

Boltzmann EoS do not represent a physical QGP system [46].

0 200 400 600 800 1000 1200

µB (MeV)

0

50

100

150

200

250

300

350

400

T
(M

eV
)

Solid: full
Dashed: partial-1
Dotted: partial-2

Boltzmann EoS, τF = 0.2 fm/c, tnorm
T = 4 fm/c√

sNN = 3 GeV√
sNN = 7.7 GeV√
sNN = 39 GeV√
sNN = 200 GeV

FRG with CEP
ε1 = 0.60 or 1.24 GeV/fm3

Figure 3.5: T−µB trajectories of a massless QGP from the full (solid), partial-1 (dashed), and
partial-2 (dotted) solutions of the Boltzmann EoS for central Au+Au collisions at

√
sNN =

3, 7.7, 39, and 200 GeV with τF = 0.2 fm/c and trmnorm
rmT = 4 fm/c. The FRG crossover

curve with the CEP and two lines of constant ϵ1 = 0.60 and 1.24 GeV/fm3 as calculated
with Eq. (3.25) are also shown for reference.

In Fig. 3.6, the T −µB trajectories from the semianalytical model are compared to those

extracted from the Bjorken energy density formula [42] of Eq. (1.1) and net-baryon density

formula [46] of Eq. (2.33). For high collision energies, the trajectories from the Bjorken
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Figure 3.6: T −µB trajectories of a massless QGP from the full solutions of the ideal gas EoS
with the semianalytical model densities and the quantum EoS with the Bjorken densities
for central Au+Au collisions at

√
sNN = 3, 7.7, 39, and 200 GeV with τF = 0.2 fm/c and

tnormT = 4 fm/c. The FRG crossover curve with the CEP is also shown for reference.

densities are quite close to those extracted from the semianalytical model that includes the

finite nuclear thickness when the same EoS is used. This behavior is expected because the

semianalytical model [45, 46] approaches the Bjorken results at large
√
sNN where dt/τF ≪ 1.

However, for lower collision energies the µmax
B of the Bjorken trajectories is much larger than

the semianalytical model trajectories, and there is only a “returning” part of the trajectory.

These features of the Bjorken trajectories are caused by the maximum energy and net-baryon

densities occurring at the earliest time (t = τF). On the other hand, the densities from the

semianalytical model peak at a later time somewhere in the range t ∈ [ta, t2+ τF) [45]. Also,

note that the late time portion of the Bjorken trajectories overlaps with the returning part of
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the trajectories from the semianalytical model. This behavior is also expected since the two

methods of calculating the produced densities agree at late times [43, 45], and this behavior

is also shown in Fig. 2.6.

At low collision energies, we found a problem in the extraction of the trajectory when

using the Bjorken densities and the quantum EoS [46]; namely, sometimes no solution for the

T −µB trajectory exists for early times. For example, for
√
sNN = 2 GeV and τF = 0.3 fm/c,

no solution could be found before t ≈ 8 fm/c when µmax
B ≈ 1300 MeV and T ≈ 0 MeV [46].

For times just after this, the temperature starts to rise from zero and the net-baryon chemical

potential decreases leading to the trajectory extracted from the semianalytical model’s densi-

ties. It was found that the problem occurs primarily for low energies and/or small formation

times, such that it was not found to occur for
√
sNN ≳ 5 GeV when τF = 0.3 fm/c [46].

Interestingly, the problem does not occur for the Boltzmann EoS [105]. The problem can be

understood using the partial-1 solution of the quantum EoS in Eqs. (3.14) - (3.15). Those

two equations give ϵ1/4/n
1/3
B ≥ (2187π2/128)1/12 ≃ 1.533 where equality corresponds to the

solution at T = 0 MeV [46]. However, the maximum Bjorken energy and net-baryon densi-

ties both depend on the formation time like 1/τF, which means ϵ1/4/n
1/3
B ∝ τ

1/12
F decreases

to the previously mentioned value of 1.533 for finite formation times. If τF were to decrease

further, no (µB, T ) solution can exist [46]. These results only occur because the forms of the

Bjorken energy density and net-baryon density formulas are different from the ones in the

Bjorken hydrodynamic flow picture [42], which has n ∝ 1/τF and ϵ ∝ 1/τ
4/3
F .

Figure 3.6 also shows that the magnitude of the net-baryon chemical potential can be

larger thanmN [46]. It is straightforward to show analytically that using the Bjorken densities

and the partial-1 solution of the quantum EoS in Eqs. (3.14) - (3.15), the net-baryon chemical

does not have an upper limit for the parton phase [46]. For example, consider the peak

Bjorken densities at τF = 0.2 fm/c and
√
sNN = 7.7 GeV, which correspond to the endpoint

of the dashed orange curve in Fig. 3.6. It is easy to see from Eqs. (3.14) - (3.15) that

decreasing τF will cause the endpoint to move to the right, reaching a larger µB, while the
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T/µB ratio decreases [46]. Thus, the maximum net-baryon chemical potential µmax
B for a

Bjorken trajectory at a given collision energy is reached when T = 0 MeV if one considers

all formation times. In that case, the partial-1 solution of the quantum EoS yields

ϵ

nB

=
3

4
µmax
B . (3.30)

However, the Bjorken energy and net-baryon density satisfy the inequality

ϵ

nB

= mN +
dET/dy

dNnetB/dy
≥ mN (3.31)

if one uses the definition of the hadron dmT/dy from Sec. A.2. It is easy to see that combining

these two relations gives

µmax
B ≥ 4mN

3
≃ 1.25 GeV. (3.32)

In Ref. [46], it was shown that the 2 GeV Bjorken trajectory reaches the T = 0 axis when

µB ≈ 1.25 GeV; in Fig. 3.6, the 3 GeV Bjorken trajectory reaches the T = 0 axis near

µB ≈ 1.6 GeV. This is consistent with the expectation that the µmax
B value at T = 0 increases

with
√
sNN for the Bjorken trajectories of the quantum EoS [46].

The two ideal gas EoS are also compared in Fig. 3.6. Specifically, the value of the

maximum temperature Tmax are quite similar for the same collision energy, except for very

low
√
sNN when the Boltzmann EoS predicts larger values than the quantum EoS [46]. These

results are the same as those from the numerical AMPT model calculations [61], and the

Pauli exclusion principle in quantum statistics accounts for this behavior. One may also

wish to understand this analytically, and this can be accomplished by examining the leading

terms of the Taylor expansion of Eq. (3.26):

nB,1 ≃ 8
µBT

2

3π2
+ 4

µ3
B

81π2
. (3.33)

Because the coefficient of each term in the above equation is larger than the corresponding
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coefficient in Eq. (3.15) for the quantum EoS, µB for the quantum EoS will be larger than

for the Boltzmann EoS for the same nB and when the T values are similar[46].

3.2 Trajectories of a Massless QGP for a Lattice QCD-

Based EoS

The T − µB trajectories extracted from an ideal gas EoS for a massless QGP in Sec. 3.1

do not account for interactions among the partons; therefore, they are not accurate if the

temperature of the system is low enough [46]. For lower temperatures, the system is expected

to behave like a hadron-resonance gas [67]. However, when the T of the system is larger

enough and parton degrees of freedom should dominate the matter, other models are needed.

A lattice QCD-based EoS [67, 106] provides another way to relate the energy density ϵ and

net conserved-charge densities n to the temperature T and net-conserved charge chemical

potentials µ. The pressure P in this EoS is first written as a Taylor series expansion in the

three scaled chemical potentials µ/T up to a total power of i+ j + k ≤ 4 [67]:

P

T 4
=
∑
i,j,k

1

i!j!k!
χBQS
ijk

(µB

T

)i (µQ

T

)j (µS

T

)k
. (3.34)

Since all the χBQS
ijk coefficients were calculated on a 483×12 lattice for temperatures in the

range T ∈ [135, 220] MeV, the pressure and all quantities derivable from it using standard

thermodynamic relations are approximately known [106]. Unfortunately, this temperature

range is not nearly wide enough to encompass the complete evolution of the matter which is

produced during relativistic heavy-ion collisions [46]. Therefore, a more complete EoS was

constructed [67] by smoothly merging each of the χBQS
ijk coefficients to the corresponding

results from the hadron resonance gas model [107]. Merging the lattice-QCD results to the

HRG model ones constrains the low T behavior of the EoS. In the high temperature limit,

the new EoS is also constrained because each coefficient is forced to smoothly approach the
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Boltzmann value [67]. The coefficients (except for χBQS
200 ) were fitted to ratios of ninth-degree

polynomials in inverse powers of the scaled temperature T1 = T/(154MeV) according to:

χBQS
ijk =

∑
n a

ijk
n /T n

1∑
n b

ijk
n /T n

1

+ cijk0 . (3.35)

It was found that χBQS
200 had a different function form:

χBQS
200 = e−h1/T2−h2/T 2

2 f3 [1 + tanh (f4T2 + f5)] . (3.36)

In the above equation, T2 = T/(200MeV) is another scaled temperature [67]. All the constant

coefficients an, bn, c0, h1, h2, f3, and f4 in Eqs. (3.35) - (3.36) were published in Ref. [67].

The pressure p above only depends on the parametrizations of the χBQS
ijk with T ; therefore,

the textbook thermodynamic relations can be used to find the densities including the entropy

density s as functions of T and µ:

ϵ

T 4
=

s

T 3
− P

T 4
+
µB

T

nB

T 3
+
µQ

T

nQ

T 3
+
µS

T

nS

T 3
,

nB

T 3
=

1

T 3

∂P

∂µB

∣∣∣∣∣
T,µQ,µS

,

nQ

T 3
=

1

T 3

∂P

∂µQ

∣∣∣∣∣
T,µB,µS

,
nS

T 3
=

1

T 3

∂P

∂µS

∣∣∣∣∣
T,µB,µQ

,
s

T 3
=

1

T 3

∂P

∂T

∣∣∣∣∣
µB,µQ,µS

.

(3.37)

The above set of equations is referred to from now on as the lattice EoS, and several conditions

that are relevant to heavy-ion collision may be implemented. Specifically, the conditions of

the semianalytical model [43, 45] of Eqs. (2.34) - (2.35) in Sec. 2.5 may be implemented.

Then the energy density and net-conserved charge densities of the semianalytical model may

be used as inputs in the lattice EoS above in order to extract the T and µ values of the full

solution of the lattice EoS.

In considering the full solutions of the ideal gas EoS of Sec. 3.1, the resulting equations

for ϵ and nB are relatively easy to comprehend, which makes the numerical extraction of

trajectories a straightforward process [46]. However, the lattice EoS described above does
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Figure 3.7: T (t), µB(t), −µQ(t), and µS(t) of a QGP from the full solution of the lattice
(solid), quantum (dashed), and Boltzmann (dotted) EoS for central Au+Au collisions at√
sNN = 7.7 and 39 GeV with τF = 0.2 fm/c and tnormT = 4 fm/c. Circles represent times

when µB/T > 2.5 for the lattice EoS.

not lend itself to such simple extractions of the T and µ values due to the complicated

behavior of the χBQS
ijk coefficients [67]. Therefore, a new method of extracting the T and

µ values for a given input of ϵ and n is necessary. This method involves calculating the

intersections of constant ϵ and nB contours (for a given time t in the evolution) in the
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T −µB phase diagram [46]. First, all solutions with a temperature T < 70 MeV are rejected

because the energy density of Eq. (3.37) can be negative there, which is unphysical [46].

Additionally, the lattice EoS often yields multiple simultaneous solutions for a given (ϵ, n)

input, which further complicates matters. Specifically, one branch of solutions could occur

at an unexpectedly large value of the net-baryon chemical potential at µB ≳ 2 GeV with

also a large temperature T ≳ 500 MeV [46]. This branch is also neglected since the lattice

QCD calculations have been shown to be invalid at large µB/T values [67]. For low
√
sNN,

the trajectories from the lattice EoS may also form two branches: one with an expected

behavior, and the other with a smaller T and larger µB. The second branch is also rejected

on account of its larger µB/T value, and it may also be located at or below T ≈ 135 MeV

where the lattice QCD calculations of this EoS terminate [106]. These restrictions on the

solutions of the lattice EoS have the consequence that some very low collision energies have

no T and µ solutions whatsoever, while low to intermediate
√
sNN may only have partial

solutions throughout the entire evolution [46]. For example, no T and µ solutions were

found when the densities of
√
sNN = 2 GeV were used as inputs in the lattice EoS. Similarly,

near
√
sNN ≃ 4 GeV, only partial trajectories may be extracted when the densities are in

the vicinity of the ϵmax.

Figure 3.7 shows the time evolution of T , µB, −µQ, and µS of a QGP from the full solution

of the lattice, quantum and Boltzmann EoS for central Au+Au collisions at
√
sNN = 7.7 and

39 GeV with τF = 0.2 fm/c and tnormT = 4 fm/c. The temperatures from the lattice EoS

are slightly larger than that from the ideal gas EoS, which leads to a much longer QGP

lifetime [46]. For low collision energies, no T −µ solution from the lattice EoS can be found,

this is why the 7.7 GeV lattice (T, µ) do not have a complete time evolution. Specifically, the

early times and late times in the 7.7 GeV evolution have no solutions when using the lattice

EoS [46]. Solutions that have µB/T > 2.5 are also indicated in Fig. 3.7 and represent times

when the lattice EoS is expected to break down [67, 108]. Specifically, the entire evolution

of the
√
sNN = 7.7 GeV results have µB/T > 2.5, but only the very early and late times
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Figure 3.8: T −µB trajectories of a massless QGP from the full solution of the lattice (solid),
quantum (dashed), and Boltzmann (dotted) EoS for central Au+Au collisions at
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7.7, 39, and 200 GeV with τF = 0.2 fm/c and tnormT = 4 fm/c. RHIC chemical freezeout data
(error bar markers) and the FRG crossover curve with the CEP and the µB/T = 2.5 line are
also shown for reference.

of the
√
sNN = 39 GeV results do. Also, it is noteworthy is that µB can decrease at early

times in the lattice EoS because the trajectories typically start at a finite (µB, T ). This is

in contrast to the trajectories from the ideal gas EoS which always start at the origin due

to the massless partons [46]. The µS value from the lattice EoS is reasonably close to the

quantum EoS, but the value of µQ in the lattice EoS is significantly larger than that of the

quantum EoS.

The trajectories extracted from the full solution of the lattice EoS and both ideal gas

EoS for central Au+Au collisions at
√
sNN = 3, 7.7, 39, and 200 GeV for τF = 0.2 fm/c and
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tnormT = 4 fm/c are compared in Fig. 3.8. Compared with the quantum EoS, the Tmax from

the lattice EoS is larger for all collision energies, but the µmax
B may be slightly smaller at high

√
sNN and significantly larger at low

√
sNN. In comparing with the Boltzmann EoS, the same

behavior of Tmax is displayed, but the µmax
B is larger for all collision energies. Additionally,

the point at which the T −µB trajectory intersects the FRG crossover curves is at a slightly

smaller µB, and the shift is less noticeable at higher collision energies [46]. More important

is the fact that lattice EoS trajectories bend when they fall below the FRG crossover curve

because of the smooth transition of the lattice EoS to the hadron resonance gas model at

small T .

Chemical freezeout data [37] extracted from grand canonical fits to the particle yields

are also shown in Fig. 3.8. The chemical freezeout points are quite close to the intersection

points of the lattice EoS trajectories with the FRG crossover curve [46]. It was also found

that the trajectories and intersection points depend on the parametrization of dNnetB/dy.

In a previous parametrization of dNnetB/dy, the trajectories appeared to be closer to the

RHIC chemical freezeout data than using the updated dNnetB/dy [46]. For moderate to

high collision energies, which roughly correspond to the region with small µB/T , the lattice

EoS trajectories are expected to be much more realistic than the ideal gas ones. However,

for large µB/T , the lattice EoS breaks down [67], and the trajectories from it should not

be trusted. For example, we have shown [46] that the lattice EoS trajectory at
√
sNN = 5

GeV has no part below the FRG crossover curve, and it only occurs beyond µB/T > 2.5.

Therefore, alternatives such as the ideal gas EoS should be used to calculate trajectories for

the collision energies where the lattice EoS breaks down [46].

3.3 Strangeness Neutrality

The full solutions of the ideal gas equation of state with both quantum and Boltzmann

statistics has µQ ≃ 0 as shown in Figs. 3.1 and 3.4. The approximate equality of the net-
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electric charge chemical potential with zero causes the partial-1 solution that assumes µQ = 0

to have nearly the same T −µB trajectories as the full solutions for either EoS [46]. This fact

leads one naturally to ask why µQ has such a small value. Answering this question begins by

recalling that the semianalytical model has the strangeness neutrality condition nS(t) = 0

built in as shown in Sec. 2.4. The model [46] also predicts that the net-electric charge density

would be half the net-baryon density nQ(t) = nB(t)/2 if both colliding nuclei have Z = A/2.

It is straightforward to verify that these conditions of nS = 0 and nQ = nB/2 result in

µQ = 0 for the ideal gas EoS with either statistics [46]. This implies that the full solution

of the ideal gas EoS should have µQ ≃ 0 because most nuclei have Z ∼ A/2. Recent results

from the AMPT model also have shown that the net-electric charge chemical potential has

µQ ≈ 0 [61]. Notably, this result seems to be independent of the s − s̄ symmetry of the

initial production and nS(t) = 0, both of which the AMPT model does not assume [62]. On

the other hand, the µQ values extracted from the full solution of the lattice EoS are often

significantly larger than those of the ideal gas EoS as is shown in Fig. 3.7.

Figure 3.9 depicts the strangeness neutrality in the full solution of the lattice EoS by

plotting the dependence of the net-strangeness chemical potential µS and the net-electric

charge chemical potential µQ on the net-baryon chemical potential µB for a range of temper-

atures. The results of Fig. 3.9 are for the (Z,A) values of Au nuclei under the conditions of

Eqs. (2.34) and (2.35). The figure shows that µS ≃ µB/3 if the temperature is greater than

T ≳ 160 MeV; but the approximation does not describe the lattice results well for lower

temperatures. The results of the FRG calculations [109] also showed very similar results

to those of Fig. 3.9 except that the FRG method results have a strict ordering of µS(µB)

with T [109]. Specifically, the FRG results at higher T approach the µS = µB/3 line, which

indicates that approximation of the partial-1 solution is applicable to those calculations as

well [46]. On the other hand, the results from the full solution of the lattice EoS in Fig. 3.9

reproduce this ordering of µS for low temperatures below T ≲ 180 MeV. However, no clear

ordering exists for higher temperatures for either µS or µQ. It is also worth nothing that
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Figure 3.9: Net-strangeness chemical potential µS (a) and net-electric charge chemical po-
tential −µQ (b) as functions of the net-baryon chemical potential µB at various temperatures
for the full solution of the lattice EoS under the condition nQ = nBZ/A (for Au) and nS = 0.
The line µS = µB/3 is also shown for reference.

the magnitude of µQ is small in the lattice EoS when µB/T < 2.5 in Fig. 3.9, in fact the

magnitude is not larger than ≈ 60 MeV. Clearly, the assumptions of the partial-1 solution

µQ = 0 and µS = µB/3 do not work nearly as well in the lattice EoS as they do in the

ideal gas EoS [46]. This fact results in the T − µB trajectories of the lattice EoS having

temperatures that differ by ≈ 2% and net-baryon chemical potentials that differ by ≈ 16%

from the corresponding trajectories of the ideal gas EoS[46]. However, the QGP lifetime

which is discussed next does not change much.
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3.4 The Lifetime of a QGP

It is possible to calculate the time when the matter enters the parton phase, the time when

it exits the parton phase, and the QGP lifetime. Together, these are referred to as tstart,

tend, and tQGP = tend − tstart, respectively [46]. This is accomplished by calculating the first

and last times when a T − µB trajectory intersects the FRG crossover curve [104] if the

collision energy is not too low. For very low collision energies where the trajectory does not

intersect the FRG crossover curve, tstart and tend are calculated by finding the times when the

trajectory intersects the line of constant energy density ϵ = 0.51 GeV/fm3 that is shown in

Fig. 3.2 [45]. The starting time and lifetime of the QGP phase are shown in Fig. 3.10 from the

full solutions of the quantum, Boltzmann, and lattice equations of state for central Au+Au

collisions as functions of
√
sNN for τF = 0.2 fm/c and tnormT = 4 fm/c. While the results in

Fig. 3.10 are only for one value of τF, we have shown [45] that tstart at a given energy is

larger for a larger τF as expected and tstart is significantly larger at lower energies mostly due

to the longer crossing time dt. The results without transverse expansion in Ref. [45] show

that the QGP lifetime is shorter for a larger τF because tend and the late-time trajectory

are essentially independent of τF without transverse expansion. Figure 3.10 shows that the

QGP lifetimes from the lattice EoS are larger than those from the ideal gas EoS with either

statistics. This happens primarily because the late-time temperatures in the lattice EoS are

much larger than in the ideal gas EoS, which is shown in Fig. 3.7.

Figure 3.10 shows that transverse expansion has a significant effect on the QGP lifetimes,

especially for large collision energies. Specifically, transverse expansion with tnormT = 4 fm/c

decreases tQGP by more than a factor of 2 for the lattice EoS at
√
sNN = 200 GeV with

τF = 0.2 fm/c. In Ref. [46], several values of tnormT were considered, and it was found that

larger values of tnormT increases the QGP lifetime because the transverse flow develops more

slowly. Note that the tstart values are essentially unaffected by the transverse expansion

effect because transverse expansion takes some time to develop and does not affect the

early densities (and hence the trajectories) very much [46]. Including transverse expansion
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Figure 3.10: The starting time and lifetime of the QGP phase from the full solutions of the
quantum EoS, Boltzmann EoS, and lattice EoS for central Au+Au collisions as functions of√
sNN for τF = 0.2 fm/c without transverse expansion and with tnormT = 4 fm/c.

results in smaller densities at late times, so the tend and the QGP lifetime will decrease.

Therefore, the QGP lifetime depends significantly on the transverse expansion at all collision

energies [46]. Interestingly, the path of a collision trajectory including its position relative

to the CEP does not change much for
√
sNN ≳ 7.7 GeV [46]. We have also shown that tQGP

may be shorter for a smaller τF with transverse expansion if
√
sNN is large enough. [46]. This

counterintuitive behavior is more obvious lattice EoS results, and it is actually a consequence

of smaller formation times leading to higher densities and faster rates of transverse expansion.

This causes the tend value to be smaller and the QGP lifetime to be shorter.

From Fig. 3.10, it is clear that the QGP lifetime does not increase monotonically with the
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collision energy, as one would näıvely expect. For low collision energies between
√
sNN ∈ [3, 5]

GeV, the results from the ideal gas EoS show that tQGP may have a local maximum [46].

However, more work is needed since the lattice results cannot reach very low collision energies

due to the large µB/T value there. Still, the lattice EoS results do suggest a slight increase

in tQGP once the collision energy decreases below
√
sNN ≲ 11.5 GeV [46]. Interestingly,

numerical results from the AMPT model calculations have also observed a similar non-

monotonic dependence on
√
sNN of tQGP when using the Boltzmann EoS [61]. For the ideal

gas EoS results, the QGP lifetime decreases after it reaches the local maximum, before it

starts to increase with
√
sNN. The increases of tQGP for high collision energies may be rather

slow for the lattice EoS results which include transverse expansion [46]. Recently, the STAR

Collaboration showed that the matter produced in Au+Au collisions at
√
sNN = 3 GeV is

most likely dominated by hadronic interactions instead of partonic ones [48]. However, the

results of Figs. 3.10(a)-(b) indicate that the QGP formation in such collisions depends on

more parameters than just the collision energy [46]. For instance, the formation time, the

chosen equation of state, and the rate of transverse expansion have all been shown to affect

the calculated value of tQGP for
√
sNN = 3 GeV collisions. Interestingly, our work has also

shown that the QGP would be formed regardless of these parameters for
√
sNN = 4 GeV

central Au+Au collisions.
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Chapter 4

Assessing the Accuracy of the ZPC

Parton Transport Model

A recent exact analytical solution of the relativistic Boltzmann equation (RBE) provides a

much-needed theoretical result against which numerical studies can be compared. Section 4.1

discusses the exact solution paying special attention to its approach to equilibrium and the

initial condition. The solution is defined for a massless, isotropically expanding gas, but it

is also valid for a non-expanding system. Therefore, we implement the initial condition in

ZPC, and the numerical momentum distributions are compared to the theoretical result in

Sec. 4.2. Several collision schemes are analyzed and found to give varying levels of accuracy

relative to the exact solution. Notably, the universality of the opacity χ is observed such

that results at different temperatures but the same χ are statistically the same. This χ-

universality motivates the parametrization of two generalized collision schemes in Sec. 4.3

that have a mean deviation from the theoretical result of less than 0.3%. The unexpected

excellent agreement between ZPC and the exact solution at high opacities, where the parton

cascade usually suffers from causality violation, is a good sign for future works using ZPC for

parton transport and kinetic theory calculations. Numerical studies of heavy ion collisions

using AMPT will benefit from the knowing that ZPC is robust, after having successfully

passed a wide gamut of tests.



4.1 An Exact Analytical Solution of the Relativistic

Boltzmann Equation

Recently, an exact analytical solution of the RBE was found for a massless gas under two-

body isotropic scatterings in a Friedman-Lemâıtre-Robertson-Walker (FLRW) metric [77,

78]. The exact solution gives the time evolution of the single particle distribution function

as

f(p, τ) = λ exp

(
− u · p
T (τ)κ(τ)

)[
4κ(τ)− 3

κ4(τ)
+
u · p
T (τ)

1− κ(τ)

κ5(τ)

]
. (4.1)

In Eq. (4.1), λ is the fugacity, uµ = (1, 0, 0, 0) is the four-velocity of the co-moving frame,

and pµ is the four-momentum. The temperature depends on the time-dependent scale factor

a(t) according to T (t) = T (0)/a(t), where a(t) controls the spatial expansion and T (0) refers

to the initial temperature. The simplest FLRW metric may be expressed as

ds2 = dt2 − a2(t)
(
dx2 + dy2 + dz2

)
. (4.2)

There is also a scaled time variable

τ =

∫ t̂

t̂0

dt′

a3(t′)
(4.3)

in Eq. (4.1) which accounts for the spatial expansion by scaling the time t by the time-

dependent mean-free path [77]. The expression for τ above uses the definitions t̂ = tσn0 and

t̂0 = t0σn0, for a constant two-parton cross section σ and initial particle number density n0.

The function κ(τ) = 1 − exp (−τ/6) /4 originates in the analytic solution for the evolution

of the moments [77].

The FLRWmetric defined in Eq. (4.2) is homogeneous, and the single particle distribution

function is independent of the spatial coordinates and spherically symmetric in momentum

space [77, 78]. Notationally, it will be written as f(xµ, pµ, t) → f(p, t) for the remainder of
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Figure 4.1: Time evolution of ftheory(p, τ) (dashed) for a non-expanding massless gas from
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this chapter. It is straightforward to find the initial condition of Eq. (4.1) by taking τ = 0

and writing T (0) = T0:

f(p, τ = 0) = λ
256

243

p

T0
exp

(
− 4p

3T0

)
. (4.4)

One may also easily show that the exact solution of Eq. (4.6) approaches a thermal distri-

bution for very late times when τ → ∞ (when this limit can be reached):

feq(p) ≡ f(p, τ → ∞) = λ exp
(
− p

T

)
. (4.5)

The hadron transport program SMASH [110] was recently compared to the exact solution of
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Eq. (4.1) and was found to agree with the approach to equilibrium of the exact solution [111].

Given that the hadron cascade solution of the RBE has been shown to agree with the

exact solution, a logical research goal is to answer the question if the ZPC parton cascade [64]

also agrees with the exact solution of Eq. (4.1), especially at the high densities expected for

a parton matter. Answering this question is a worthwhile pursuit partly because the AMPT

model [62] results depend on the accuracy of the ZPC parton cascade. Therefore, we have

implemented the initial condition of Eq. (4.4) in ZPC for a system of 16000 massless gluons.

Note that the exact solution is also valid when the time-dependent scale factor is a constant

a(t) = 1 [77]. In this case, one may use the standard ZPC simulations in a box with periodic

boundary conditions and isotropic scattering [64] and compare the numerical results to the

analytical ones. The choice of a non-expanding system means that the temperature remains

constant T (τ) = T0. From now on, the subscript for the initial temperature will be omitted

for clarity, thus Eq. (4.1) may be written in the form:

ftheory(p, τ) = exp

(
− p

Tκ(τ)

)[
4κ(τ)− 3

κ4(τ)
+
p

T

1− κ(τ)

κ5(τ)

]
. (4.6)

In the above definition, τ = t̂ = tσn0 because a(t) = 1 and t̂0 = 0 in Eq. (4.3).

Figure 4.1 depicts the initial condition of Eq. (4.4), the equilibrium distribution of

Eq. (4.5), and the exact solution of Eq. (4.6) for several values of τ for a massless ho-

mogeneous gas at T = 0.5 GeV with a fugacity of λ = 1 as a function of the momentum p.

At the initial time τ = 0, the initial condition starts at zero when p = 0. It steeply rises until

a maximum value is reached at pmax = 0.375 GeV, and then it decreases. The decrease of

the initial distribution with p is at first slower than an exponential function, but eventually

it becomes faster than the thermal distribution that is also shown in Fig. 4.1. One can also

easily observe the time evolution of the exact solution’s approach to equilibrium, which is

characterized by an increase in the low-p region and the high-p tail of the distribution with

τ . Additionally, the middle momentum region is characterized by a slight decrease with τ
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of the distribution from the initial condition to the equilibrium value. Note that there are

two stationary points in the exact solution, which give the same value of f regardless of the

value of τ .

4.2 Numerical Results from ZPC

The time evolution of a massless gas of gluons in ZPC depends on the temperature T and

the cross section σ. Equilibrium is reached at different times depending not on these values

separately, but upon a specific combination of these quantities such as the opacity χ [69].

One simple definition of the opacity is the ratio of the interaction length dint to the mean

free path l:

χ =
dint
l

=

√
σ/π

1/(σn)
. (4.7)

If one assumes that such a gluon system may be described by Boltzmann statistics, then the

opacity is given by

χ =
16

π2
T 3

√
σ3

π
. (4.8)

Here, the number density of gluons under Boltzmann statistics is 16T 3/π2, and the term in

the square root originates from the ratio of the interaction length
√
σ/π to the mean free

path 1/(nσ) for a density n [79]. Because the parton collision rate depends on the system

density, ZPC simulations reach equilibrium at different times depending on χ. Therefore, it

will be useful to understand how the time in simulations with one opacity relate to the time

evolution of systems with different opacity. Note that the global time t in ZPC is related to

τ of the exact solution by χ and T only:

τ = t
3

√
16χ2

π
T. (4.9)

The scaled time τ thus provides a useful way to relate the evolution of systems at different

opacities to one another. For example, with T = 0.5 GeV, t = 9.18 fm/c and t = 1.98 fm/c
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correspond to τ = 40 for χ = 1 and χ = 10, respectively. The rest of the results in this

chapter uses a cutoff time for the ZPC simulations which corresponds to τ = 60 since this

time is long enough for the simulations at each opacity to reach equilibrium. Note that the

following results use a constant parton number of Nparton = 16000 per event and statistical

significance is ensured by using 1000 events for any given configuration.
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Figure 4.2: Ratio of the bin-averaged f(p, τ)/feq(p) from the exact solution and ZPC using
the t-minimum scheme for several τ with T = 0.5 GeV and χ = 1 versus p/T .

One key aspect of the ZPC parton cascade is the ability of the user to specify a scattering

prescription [64]. To that end, a generic form for the collision scheme is defined using a single

parameter r, which allows one to smoothly interpolate between the new collision scheme [69]

and the old one [64]. Recall that the parton collision times tc,1 and tc,2 are in general different,
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so there is freedom in assigning a time tc when the collision will actually occur in ZPC.

tc = min(tc,1, tc,2) + r|tc,1 − tc,2| (4.10)

Note that the new collision scheme [69] corresponds to r = 0, and the old scheme [64]

corresponds to r = 0.5 in Eq. (4.10). From now on the new collision scheme will be referred

to as the t-minimum scheme since it uses the minimum of the two parton collision times as

the real collision time in ZPC. Similarly, the old collision scheme will be referred to as the

t-average scheme because it uses the average of the two parton collision times. In Sec. 4.3,

two generalized collision schemes will be introduced, which parametrize r as a function of χ;

they will be called the t-general-1(2) schemes.

The ratio f(p, τ)/feq(p) for ftheory(p, τ) and fZPC(p, τ) using the t-minimum scheme [69]

for χ = 1 and T = 0.5 GeV as a function of p/T is plotted in Fig. 4.2. Note that the

bin-averaged values are actually plotted, and these are calculated using

f(pi, τ) =

b∫
a

f(pi, τ)d
3p/

b∫
a

d3p. (4.11)

Then, each bin-averaged value f(pi, τ) is plotted at the midpoint (a+b)/2 for each momentum

bin where a constant bin width is used. The initial momentum distribution with τ = 0 from

the exact solution is larger than the equilibrium distribution for p/T approximately in the

range ∈ [1.5, 5]. However, for p/T ≲ 1.5 and p/T ≳ 5, the exact solution has a significantly

lower occupation compared with the equilibrium distribution when τ = 0. This behavior

is also shown in Fig. 4.1. For the initial distribution, fZPC(p, 0) agrees almost perfectly

with ftheory(p, 0), and this agreement is expected since the initial momentum distribution

in ZPC is sampled directly from the initial condition of Eq. (4.4). As τ increases, parton

collisions cause the system to approach equilibrium, and the exact solution reproduces this

behavior as expected; by τ = 60, there is essentially no difference between ftheory(p) and
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feq(p). Figure 4.2 shows that the ZPC results agree with the exact solution for early times,

but start to differ at late τ . For example, the exact solution reaches equilibrium near τ = 60,

but the ZPC model results at this time have an overpopulation of partons with p/T ≲ 1.5

and p/T ≳ 5 and a slight underpopulation for the central range of p/T in approximately

[1.5, 5].

The mean deviation MD between the bin-averaged ftheory(p, τ) and numerical fZPC(p, τ)

is calculated to quantify the agreement of ZPC with the exact solution according to

MD(τ) =

√∑
i

[NZPC(pi, τ)−Ntheory(pi, τ)]
2

∑
i

Ntheory(pi, τ)
. (4.12)

This specific measure of the accuracy is chosen because it ensures that the deviation would

be MD = 1/
√
N if it were due only to a Gaussian fluctuation. For the ZPC results presented

in this work, the total parton number for all events in a dataset is N = 1.6 ∗ 107. Thus,

the lower bound on the MD is 1/4000 = 0.025%, and this corresponds to only statistical

deviations between the ZPC results and the exact solution.

The τ -evolution of the MD is plotted in Fig. 4.3 for several χ with T = 0.5 GeV using

the t-minimum collision scheme. At early times in the evolution when τ < 1, the ZPC

model results agree almost perfectly with the exact solution results for all opacities. The

agreement indicates that the deviations between the two models are consistent with Gaussian

fluctuations. Figure 4.3 shows that, at finite χ, the mean deviation increases for later times

when τ > 1 until it reaches a saturation value at approximately τ = 60. For χ = 0.1 and the

subdivision results, there is no noticeable increase with τ , and the MD remains consistent

with statistical fluctuations throughout the entire evolution. This result is in agreement

with previous results which have shown that ZPC does not suffer from causality violation

at low opacities or in the dilute limit [69]. Interestingly, the increase and saturation of MD

depends non-monotonically on χ, which is similar to the behavior of the ratio of the var(pT)

to the theoretical value in the Boltzmann limit as shown in Ref. [69]. At saturation, the MD
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Figure 4.3: The τ -evolution of MD for several χ with T = 0.5 GeV using the t-minimum
collision scheme. The subdivision result for lsub = 106 which reduces the effective opacity to
χeff = 0.001 and the lower bound of 1/

√
N are also shown for reference.

increases from the lowest χ, reaches a maximum value at χ = 5.5, and decreases for χ > 5.5.

Specifically, for χ = 0.1, MD ≈ 0.04%, while for χ = 5.5, MD ≈ 0.44% at τ = 60. The

maximum MD at equilibrium is unexpectedly small at a reasonably large χ since a parton

cascade must suffer from the causality violation when it is not in the dilute limit [69, 79].

Note that the error bars on the MD results of Fig. 4.3 are calculated using the standard

error analysis procedures according to

δMD(τ) =
1∑

iNi,ZPC(τ)

√√√√√√
∑
i

[Ni,ZPC(τ)−Ni,theory(τ)]
2 δN2

i∑
i

[Ni,ZPC(τ)−Ni,theory(τ)]
2 . (4.13)
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For brevity in Eq. (4.13), the total number of partons in the ith momentum bin is written

as Ni,ZPC for the ZPC results and Ni,theory for the exact solution results. Additionally, the

uncertainty of Ni is assumed to be δNi =
√
Ni,theory, though only very small differences

occur if one would use δNi =
√
Ni,ZPC.

4.3 Generalized Collision Schemes to Further Improve

Accuracy
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Figure 4.4: The τ -evolution of MD for the t-average (blue), t-minimum (orange), the t-
general-1 (green) and the t-general-2 (red) collision schemes with T = 0.5 GeV and χ = 1.
The results for parton subdivision with lsub = 106 (black) and the theoretical expectation
for Gaussian fluctuations are also shown for reference.

The mean deviation between the ZPC fZPC(p, τ) and that of the exact solution was shown
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to be unexpectedly small at a relatively large opacity of χ = 5.5 in Sec. 4.2. Therefore, one

may ask whether the agreement between the ZPC results and the exact solution can be

improved using a different collision scheme. To that end, two generalized collision schemes

are found with the goal of improving the MD maximally for each opacity. This goal is

accomplished by testing different values of r in Eq. (4.10) at a given χ in order to find

the optimal roptimal that minimizes the MD in one of two ways. The t-general-1 collision

scheme minimizes the equilibrium value of the MD at each χ separately, then parametrizes

the resulting roptimal values as a function of χ. On the other hand, the t-general-2 collision

scheme minimizes the maximum MD overall all τ in the evolution and parametrizes those

roptimal values.

Figure 4.4 shows the τ -evolution of the mean deviation for the t-average, t-minimum,

and both t-general collision schemes for χ = 1 with T = 0.5 GeV. The results for the

parton subdivision method with lsub = 106 are also shown, and they appear to have no

dependence on τ and remain mostly consistent with the lower bound of 1/
√
N where the

MD is caused by only statistical fluctuations. Note that the faster subdivision scheme for

box calculations is utilized here in which the volume is reduced by V → V/lsub instead of

the original subdivision scheme which increases the parton number. [69]. For the t-average

collision scheme [64], the MD reaches an equilibrium value of ≈ 1.2% which is a factor of

≈ 6.3 times the value for the t-minimum scheme [69]. It is also clear that fine-tuning of the

r parameter in Eq. (4.10) may further reduce the equilibrium value of the MD. Note that

the MD for the t-general-1 scheme has a value of ≈ 0.04% at equilibrium which is quite close

to the expectation of statistical fluctuations, though the earlier τ results are much worse

than those of the t-minimum scheme. The t-general-2 scheme also yields a lower value of the

equilibrium MD, but does not show quite the same improvement at equilibrium as does the

t-general-1 scheme. On the other hand, the maximum value of the MD in the t-general-2

scheme is lower than the maximum MD of the t-general-1 scheme, which may be a desirable

feature. Unfortunately, adjusting the value of r often causes the early-τ results to be much
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worse than when using the t-minimum collision scheme. This behavior has been observed

for a variety of collision schemes.
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Figure 4.5: The equilibrium (solid) and maximum (dashed) values of the T -averaged MD
versus r for several χ. The theoretical expectation for Gaussian fluctuations is also shown
for reference.

Another unexpected feature of the ZPC results is an apparent lack of dependence on

the temperature of the MD for a given χ, which we refer to as the χ-universality. The lack

of significant differences between the entire τ -evolutions of the MD for T = 0.2 GeV and

T = 0.5 GeV motivates the choice to average the MD over the two temperatures. For the

remainder of this section, this T -averaged MD is presented instead of for each temperature

separately. Figure 4.5 shows the dependence of the equilibrium (at τ = 60) and the maximum

(over all τ) value of the MD averaged over T on the r parameter of the collision scheme in
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Eq. (4.10) for several χ. Note that the r = 0 values for the t-minimum scheme [69] are

plotted at the position r = 10−4, and the same non-monotonic behavior of MD with χ is

also observed in Fig. 4.3. As r increases from zero, both the equilibrium and maximum MD

decrease until they reach a minimum value at some optimal roptimal, and the optimal r is

larger for the equilibrium MD results. Initially when r increases from zero, the decrease of

MD may be rather small until r approaches about a factor of 10 times lower than the roptimal.

In this region of slow descent, the MD at equilibrium and its maximum value over all τ have

exactly the same behavior. Then the maximum MD reaches its minimum value with r at

about 60% the roptimal value for the equilibrium MD. Beyond roptimal, both the equilibrium

and maximum values of the MD increase until attaining the same maximum value at r = 0.5

for the t-average collision scheme [64].

It is also apparent from Fig. 4.5 that the value of roptimal increases as χ decreases for

either the equilibrium or maximum values of the T -averaged MD. The previously observed

χ-universality of the MD motivates the parametrizing of roptimal for both the equilibrium and

the maximum MD values as a function of χ only. The uncertainty in roptimal for each χ is

estimated by calculating the full-width of the MD(r) curve at 125% the value of MD(roptimal).

These data are then used in an iterative fitting procedure to obtain a smoothly decreasing

function r(χ): this is referred to as the t-general-1 or -2 collision scheme. In the iterative

procedure, first a function with three unknown coefficients is fit to the individual roptimal(χ)

values of either the equilibrium or maximum MD. Two of the three coefficients are found

to be quite close for the parametrizations of both MD, therefore their average is taken

and used in a second fitting function. The closeness of the two coefficients is assessed by

way of the covariance matrix of the three parameters in each fit which diagonal elements

quantify the square of the uncertainty in each free parameter. The second stage of the fitting

process involves a function with only one free parameter, these are the constant coefficients
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Figure 4.6: The individual T -averaged roptimal values (markers with error bars) and their
parametrizations (dashed) for the equilibrium (blue) and maximum (orange) MD versus χ.

in Eq. (4.14). The parametrizations of r(χ) for both t-general collision schemes are given by

r1(χ) = 873 (15.8 + χ)−3.40, t-general-1 for the equilibrium MD

r2(χ) = 518 (15.8 + χ)−3.40, t-general-2 for the maximum MD.

(4.14)

The specific functional form of r(χ) in Eq. (4.14) ensures that r → 0 as χ → ∞, which is

a trend observed in Fig. 4.5. Equation (4.14) also results in r being always less than one,

which must happen since otherwise Eq. (4.10) would give negative collision times for r > 1,

which would be undesirable.

In Fig. 4.6, the roptimal values for both the equilibrium value and the maximum value of
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the MD are plotted together with their estimated uncertainties for each opacity and their

parametrizations ri(χ) for the two datasets. The two generalized collision schemes defined

with these parametrizations are given in Eq. (4.14) above. The t-general-1 scheme has a

value of r1(0) ≈ 0.044, while the t-general-2 scheme has r2(0) ≈ 0.073. The uncertainties for

each roptimal value increases as χ decreases, and this trend may be viewed in Fig. 4.5 where

the width of each r(χ) curve at 125% of the value of the minimum deviation increases as χ

decreases. This behavior also agrees with the expectation that the collision scheme does not

matter much at low opacity, where the parton cascade method should be accurate and free

from causality violation [69, 79]. In the high-opacity limit, both parametrizations decrease

as a power of χ, and this means that r ≈ 0 will yield the best results in ZPC [69] in the limit

of dense systems.

The ratio of fZPC(p, τ) to the bin-averaged ftheory(p, τ) at equilibrium (τ = 60) is shown

in Fig. 4.7 for several opacities with T = 0.5 GeV. The results using the t-minimum collision

scheme [69] are compared to those of the t-general-1 collision scheme of Eq. (4.14). When

using the t-minimum scheme, fZPC(p, τ) > ftheory(p) at p/T ≲ 1.5 and p/T ≳ 5, but the

reverse is true for p/T approximately in the range [1.5, 5] at all χ. On the other hand, the

t-general-1 scheme decreases the ratio of the ZPC results to the exact solution ftheory(p, τ) for

the same low and high momenta ranges, while it increases the ratio for the middle momenta.

The result is an almost perfectly flat curve consistent with unity for most of the p-range.

Large statistical fluctuations are expected at high momenta since there are far fewer partons

with p≫ T . Notably, the fZPC(p, τ) from the t-general-1 collision scheme are underpopulated

relative to ftheory(p, τ) for p/T ≲ 1, and this behavior is not due to statistical fluctuations.

In Fig. 4.8, the T -averaged MD as a function of χ is plotted and the accuracies of

various collision schemes are compared relative to the exact solution [77, 78]. The t-minimum

scheme [69] significantly reduces the error between fZPC(p, τ) and ftheory(p, τ) at equilibrium

when compared with the t-average scheme [64]. Interestingly, a non-monotonic behavior

in χ of the equilibrium MD also appears when using the t-minimum scheme, whereas the
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Figure 4.7: The ratio fZPC(p, τ)/ftheory(p, τ) versus momentum p at τ = 60 using the t-
minimum (solid) and t-general-1 (dashed) collision schemes for several χ with T = 0.5 GeV.

t-average scheme increases monotonically within χ ∈ [0.1, 40]. A further improvement in the

value of the MD when compared with the t-minimum scheme is obtained when using either

of the two t-general schemes of Eq. (4.14). Except at low χ, where the collision scheme is not

expected to significantly alter the numerical results, both t-general schemes decreases the

value of MD for χ ≥ 1 significantly. The t-general-1 scheme reduces the MD by a factor up

to 5; the t-general-2 scheme by a factor up to 2. Both t-general schemes also display a similar

non-monotonic dependence of the MD on χ. Notably, in the dilute limit when χ ≪ 1, all

collision scheme appear to converge to the same value near the lower bound of 1/
√
N which

is consistent with previous results [69]. Also, when using either of the t-general collision
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schemes, at no point does the error between the ZPC results and the exact solution exceed

0.25%, which is an unexpectedly good agreement for large χ. Given that the initial condition

of Eq. (4.4) is far away from equilibrium as shown by Fig. 4.1, the agreement between the

ZPC model results and the exact solution is a non-trivial verification of the ZPC parton

transport model.
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Figure 4.8: The MD averaged over T for the t-average, the t-minimum, both t-general
collision schemes, and the var(pT) /Theory − 1 compared to that of Ref. [69] versus χ. The
theoretical expectation of Gaussian fluctuations (dotted) is also shown for reference.

Figure 4.8 also shows the same non-monotonic behavior of the error between the var(pT)

and the theoretical thermal equilibrium value for the Boltzmann distribution [69]. Here, the

variance of the pT distribution is defined by var(pT) = ⟨p2T⟩−⟨pT⟩2, and the theoretical value

for the massless parton system under consideration is var(pT) = (8− 9π2/16)T 2. Note that
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the general forms of the ⟨pT⟩ and ⟨p2T⟩ for massive partons are derived in Appendix B.1,

while the theoretical value quoted just now corresponds to the limit m → 0 in Eqs. (B.15)

and (B.16). Note that using the var(pT) as a measure of the agreement between the nu-

merical momentum distribution and the theoretical expectation is rather limiting because

two different functions can have very different shapes but the same var(pT). For complete-

ness however, we have calculated the var(pT) at equilibrium and compared to the previous

results [69]. A good agreement for χ > 1 has been observed within statistical errors. In

the low opacity region, the uncertainty of the previous results [69] are expected to be larger

than that of our results by a factor ≈ 2
√
2. This expectation is based on the fact that

the results in this chapter use four times the number of partons and the same number of

events. Because our error bars of the var(pT) in Fig. 4.8 represent the T -averaged results,

this implies that they account for eight times the number of simulated partons than do the

previous results. Under this simple assumption, even the low χ var(pT) results would be

consistent with each other. In fact, both results have been found to be consistent with the

subdivision results. Overall, the MD of Eq. (4.12) should be a more robust measure of the

accuracy of the ZPC model than the previous var(pT) measure because the MD evaluates

the full momentum distribution.
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Chapter 5

Working on Unsolved Problems in

Parton Transport

In Ch. 4, parton transport in ZPC was assessed with an exact solution of the relativistic

Boltzmann equation and was found to reproduce almost exactly the theoretical results. This

chapter maintains the focus on parton transport in ZPC, but addresses work that has been

done on open problems. The 3D problem, or why a new collision scheme works very well

in box simulations but not in simulations with 3D expansion, is discussed in Sec. 5.1. The

solution to this problem has direct implications on future numerical studies of heavy ion

collisions because ZPC is used to calculate the partonic interactions in the AMPT model.

Therefore, answering whether a new collision scheme can be used to remove the causality

violation in ZPC instead of resorting to the parton subdivision method will mean accurate

results in AMPT can be obtained without altering event-by-event fluctuations and paying

a massive computational overhead. A problem is found in the default random number gen-

erator (RNG) of ZPC for a spherical initial condition with 3D expansion, and using a more

modern RNG removes the problem. Unfortunately, the same issue still occurs in the de-

fault initial condition with 3D expansion. Section 5.2 presents the agreement of numerical

probability density functions of the total CM energy squared s for parton collisions. These

distributions are derived in Appendix B.3, and the agreement ZPC has with them is ex-

cellent. Reproducing theoretical f(s) distributions implies that ZPC correctly models the

distribution of scattering processes that occur in the medium produced by heavy ion colli-

sions. More work is still needed to understand why one of these distributions should describe



the f(s) for collisions of approaching partons. Finally, a method of implementing the effect

of external fields on the partons in ZPC is discussed in Sec. 5.3. Allowing partons’ trajecto-

ries to curve between collisions would enable one to numerically study the chiral magnetic

effect that has recently generated quite a stir in the field of nuclear physics [22, 85, 112].

5.1 The 3D Problem

5.1.1 The Default Initial Condition

Equation (4.10) defines the generic collision scheme for two-to-two parton scattering in ZPC

via the single parameter r ∈ [0, 1]. With this definition, the original scattering prescrip-

tion [64] in ZPC corresponds to r = 0.5, while the new collision scheme [69] corresponds to

r = 0. Note that the results in this section use the differential cross section with forward-

angle scatterings. In Sec. 4.2, the old and new scattering schemes are named as the t-average

and t-minimum schemes, respectively. The t-minimum collision scheme has recently been

used to significantly improve the ZPC results for box simulations [69] by reproducing the

exact subdivision answers for a large factor lsub = 106. Reference [69] utilized the new sub-

division transformation which reduces the box volume by V → V/lsub instead of increasing

the parton number by N → N × lsub. This newer subdivision method, which only works

for simulations with a fixed volume, decreases the computational cost and makes large sub-

division factors feasible. Unfortunately, the t-minimum collision scheme does not work well

at improving the ZPC results for simulations with three-dimensional expansion, which is

unexpected. This failure of the t-minimum scheme for 3D expansion simulations is referred

to as the 3D problem.

Figure 5.1 shows the ratios of the final dN/dpT for the t-average and t-minimum colli-

sion schemes to the subdivision results for the built-in 3D expansion initial condition with

Nparton = 500, T = 0.5 GeV, σ = 2.6 mb, and an initial opacity at mid-pseudorapidity

of χ(η ≈ 0) = 0.48 for 1000 events. Here, the gluon number density in the default initial
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Figure 5.1: The ratios of dN/dpT at freezeout for the 3D expansion initial condition for 500
partons per event at T = 0.5 GeV, σ = 2.6 mb, and an initial opacity at mid-pseudorapidity
of χ(η ≈ 0) = 0.48 for the t-average and t-minimum collision schemes. Note that “-800”
represents the subdivision results at lsub = 800.

condition of ZPC depends on the pseudorapidity η according to

n(η = 0) =
N

πR2
Tτ0∆η

, (5.1)

where RT is the transverse area, τ0 is the parton formation time, and ∆η = 10 is the

total spread in pseudorapidity of the initial partons [64]. Note that the t-average collision

scheme is labelled by “i11”, and the t-minimum collision scheme is labelled by “i20” in the

ZPC program, this is an older notation that refers to the user-defined value of IORD SCH

that sets the collision scheme in ZPC [64]. The ratio of dN/dpT with a subdivision factor of

lsub = 800 for the two collision schemes is consistent with unity over a wide range of pT. This

behavior is consistent with the fact that the collision scheme does not affect the final results
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in ZPC, when the opacity is small enough (after parton subdivision) [79]. Both collision

schemes without subdivision have the same pT-distributions, and their ratio in Fig. 5.1 is also

essentially equal to one over the same range. The ratios of dN/dpT for each non-subdivision

result to the subdivision result is lower by approximately 5% for the smallest pT-bin. As pT

increases, the ratio increases toward one for both collision schemes, and reaches unity near

pT ≈ 0.8 GeV/c. For higher transverse momentum bins, the non-subdivision results have a

slightly higher population than the subdivision results, although the statistical uncertainties

are large enough to almost be consistent with unity. Currently, there is some uncertainty on

whether lsub = 800 is a large enough subdivision factor to guarantee the results are exact,

so more work is needed to investigate this question. However, if the subdivision results

with lsub = 800 can be trusted and yield the exact answer, then Fig. 5.1 clearly shows that

the t-average and t-minimum collision schemes produce almost the same (albeit inaccurate)

results for the default 3D expansion initial condition; this seems to contradict the finding

from the previous ZPC box calculations [69].

For comparison, the results shown in Fig. 5.2 are the same as those of Fig. 5.1 except

that the box initial condition is used with a constant opacity of χ = 0.48, and the simulation

is stopped after t = 24 fm/c. The size of the box is chosen such that its volume equals

that of a system of 500 gluons at T = 0.5 GeV when using Maxwell-Boltzmann statistics,

and this choice ensures that the system will reach equilibrium if the simulation runs for

long enough. The blue line of Fig. 5.2 shows that the t-average and t-minimum collision

schemes with subdivision produce the same pT spectra. Note that the subdivision factor is

significantly larger (lsub = 106) because the box simulations of ZPC can take advantage of

the new parton subdivision method [69]. The results of the two collision schemes without

subdivision are significantly different across the same pT-range, with the t-average scheme

about 13% smaller than the t-minimum scheme at the lowest pT-bin. As pT increases, this

ratio increases toward one and surpasses unity around pT ≈ 0.6 GeV/c before it reaches a

maximum value of approximately 1.04 around pT ≈ 1.3 GeV/c. The t-average to t-minimum
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Figure 5.2: The ratios of dN/dpT at t = 24 fm/c for the box initial condition with 500 partons
per event at T = 0.5 GeV and an opacity of χ = 0.48 for the t-average and t-minimum
collision schemes. Note that “-106” represents the subdivision results at lsub = 106.

dN/dpT ratio then decreases with pT and falls below one around pT ≈ 2.2 GeV/c. This

behavior is clearly quite different from the corresponding result of Fig. 5.1, which shows the

failure of the t-minimum collision scheme to reduce the causality violation problem for the

3D expansion initial condition. The ratios of the results for both collision schemes without

subdivision to the subdivision results are also shown in Fig. 5.2, and it is clear that the

t-minimum scheme produces a final transverse momentum spectrum that is quite close to

the subdivision answer. This is further evidence to support the fact that the t-minimum

scheme is useful for getting much closer to the exact answer for box simulations in ZPC [69].

Since there is not an immediately obvious reason why the t-minimum collision scheme

should fail to reduce the causality violation for ZPC simulations using the 3D expansion

initial condition, one may ask if there is a previously unknown problem with the subroutines
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Figure 5.3: The ratios of dN/dpT at t = 100 fm/c for the 3D expansion initial condition
with or without an effectively infinite box for 4000 partons at T = 0.5 GeV and an initial
opacity at mid-pseudorapidity of χ(η ≈ 0) = 0.48 for the t-average and t-minimum collision
schemes.

which are used for the 3D expansion simulations. One easy way to test this question is to use

the 3D expansion initial condition inside an effectively “infinite” box and compare the results

to the normal 3D expansion results. For the purposes of this test, the side length of the box

is set to 10 ∗ 108 = 109 fm, and the normal 3D expansion simulations are allowed to run

until t = 106 fm/c. These choices ensure that no parton will encounter the edge of the box

before the ending time since the 3D expansion initial condition has a maximum transverse

radius of rT = 5 fm/c and a maximum z-position of z ≈ 7.4 fm/c when a parton formation

time of τ0 = 0.1 fm/c is chosen. The result of this test is depicted in Fig. 5.3 which shows

the ratios of dN/dpT for the two cases just mentioned for both the t-average and t-minimum

collision schemes. The ratio of dN/dpT for either collision scheme from the 3D expansion
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initial condition inside the infinite box to the one without the infinite box is equal to one

over a wide range of pT. Also, the ratios of dN/dpT between the two collision schemes from

either the 3D expansion initial condition inside an infinite box or without an infinite box

are the same. These two facts indicate that there is not a problem with the subroutines in

ZPC which are used for simulations with 3D expansion, since if such problems did exist, one

would expect to observe the ratios of the pT spectra in Fig. 5.3 not being equal to one. Note

that these results with 4000 partons are inconsistent with the orange curve in Fig 5.1 for 500

partons and need further investigation.
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Figure 5.4: The collision number per event for the 3D expansion initial condition with or
without an effectively infinite box for 4000 partons at T = 0.5 GeV and an initial opacity at
mid-pseudorapidity of χ(η ≈ 0) = 0.48 for the t-average and t-minimum collision schemes
versus time t.

Figure 5.4 shows the time-evolution of the collision number per event for the 3D expansion

initial condition with or without the infinite box for 4000 partons at T = 0.5 GeV and an
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initial opacity at mid-pseudorapidity rapidity of χ(η ≈ 0) = 0.48 for the t-average and t-

minimum collision schemes. The collision number per event increases very quickly from t = 0

fm/c in all cases, but the rate of increase slows gradually until it becomes almost flat around

t = 100 fm/c. The results for the t-average collision scheme [64] increase less quickly than

for the t-minimum collision scheme since the collision time is taken as the average of the two

parton collision times tc,1 and tc,2 instead of as the minimum [69]. Clearly the minimum of

two positive values is smaller than the average of two, and this means that the t-minimum

scheme will result in more collisions occurring earlier in time than the t-average scheme.

There is no difference between the collision number per event for either the t-average or the

t-minimum collision schemes for the 3D expansion initial condition with or without an infinite

box. This further supports the idea that a problem with the 3D expansion subroutines in

ZPC does not exist because otherwise one would expect the results inside the infinite box

to differ from the normal 3D expansion results. Since no difference is observed, in fact the

two sets of results are almost identical, we conclude that some aspect of the 3D expansion

initial condition itself must contribute to the 3D problem. These results lack information

for times at and just after the parton formation time τ0, which motivates the investigation

of the early collisions in ZPC simulations using the 3D expansion initial condition.

In Fig. 5.5, the collision rate divided by the value of the subdivision factor for ZPC

simulations using the default 3D expansion initial condition for 500 partons at T = 0.5 GeV

and an initial opacity at mid-pseudorapidity χ(η ≈ 0) = 0.02 is shown as a function of time

for the t-average and t-minimum collision schemes. The parton formation time is τ0 = 0.1

fm/c, so the collision rate must be zero before this time, since no partons will have been

formed. The collision rate apparently increases quite quickly for times just after the parton

formation time, and reaches a peak value around t ≈ 0.15 fm/c for all cases in Fig. 5.5. Note

that the initial zero collision rate at t = 0 fm/c is plotted at t = 0.01 fm/c. After reaching its

peak value, the collision rate decreases smoothly with time and eventually reaches zero after

about ≈ 80 fm/c for all cases. It is also clear that the simulations which use the t-average
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Figure 5.5: The collision rate divided by the subdivision factor dNcoll/dt/lsub without and
with subdivision (lsub = 100) using the default 3D expansion initial condition for 500 partons
at T = 0.5 GeV and χ(η ≈ 0) = 0.02 for the t-average and t-minimum collision schemes
versus time t.

scheme have a lower collision rate just after the parton formation time than the t-minimum

results. This agrees with the expectation that the t-minimum scheme should yield more

collisions earlier in time. The initial opacity was chosen to be rather small (already near

the dilute limit of χ ≪ 1) to ensure that the results without subdivision are expected to

be almost exactly correct. Figure 5.5 shows that after using the subdivision method with

lsub = 100, the collision rate at t = 0.1 fm/c is nearly double that of the same results without

subdivision (labelled as lsub = 1). Since one would expect an almost exact agreement between

the non-subdivision and subdivision results (regardless of the collision scheme) at this small

opacity, these results indicate that there is likely a problem with the implementation of the

parton subdivision method for 3D expansion cases in ZPC. To test this hypothesis, a new

initial condition for ZPC simulations with 3D expansion that uniformly distributes the same
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number of partons inside a sphere is used.

5.1.2 A Spherical Initial Condition
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Figure 5.6: The collision rate divided by the subdivision factor dNcoll/dt/lsub without and
with subdivision (lsub = 100) using the spherical 3D expansion initial condition for 500
partons at T = 0.5 GeV and χ = 0.02 for the t-average and t-minimum collision schemes
versus time t.

The initial radius of the new spherical initial condition for 3D expansion simulations is

chosen to be the same as the initial transverse radius of the default initial condition: namely

R = 5 fm. Inside the sphere, the partons are distributed uniformly in space and the initial

formation time is set to τ0 = 0 fm/c for the spherical initial condition. Figure 5.6 shows

the same results as the previous figure, except using the spherical initial condition. Again,

the collision rate for the t-average scheme is smaller than that of the t-minimum scheme for

the simulations without subdivision at the earliest time. The results that use lsub = 100
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are much larger than those without subdivision by a factor of ≈ 2.5 for the t-minimum

scheme. For times later than t ≳ 0.15 fm/c, all cases have the same value of dNcoll/dt/lsub

within the statistical uncertainties. When taken together, Figs. 5.5 - 5.6 indicate that the

subdivision method for simulations with 3D expansion may have some problem. Because

both the default and the spherical initial conditions produce higher collision rates at very

early times for simulations with subdivision, it would be useful to further investigate this

unexpected behavior.
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Figure 5.7: The probability density of indices for colliding partons before t = 10−4 fm/c
using the default random number generator and a newer built-in one for the spherical initial
condition with 500 partons at T = 0.5 GeV and lsub = 100.

Using the spherical initial condition with 500 partons and a temperature of T = 0.5 GeV

for a subdivision factor of lsub = 100, all the particle record of one event was recorded for

those partons that collide before t = 10−4 fm/c. Such early collisions should be statistically

unlikely if the partons are distributed uniformly throughout the physical space. A strange

correlation between the indices of the partons that collide unexpectedly early is depicted in
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Fig. 5.7 for the simulations using the old random number generator that is provided in ZPC

by default [64]. The probability density of parton indices for collisions that occur earlier

than t = 10−4 fm/c shows that virtually all of these partons have an index of iscat ≳ 44000

or jscat ≲ 6000 where iscat and jscat are the parton indices. This result is strange since

one would expect a uniform distribution of parton indices involved in collisions, assuming

the spatial distribution of partons is actually uniform. In order for a collision to occur so

early in time, the positions of the colliding partons must be quite close (already smaller

than the interaction length
√
σ/π). Since the initial position of partons is determined by

randomly sampling some distribution (which is assumed to be uniform), the result of Fig. 5.7

indicate that the random numbers that correspond to the initial positions should be nearly

the same for partons which differ in index by approximately 45000. These random numbers

were recorded for all such partons involved in early collisions, and it was observed that the

partons’ spatial positions are calculated using random numbers which are always 259200

places apart in the generated sequence of random numbers. This fact indicates that the

original random number generator of ZPC suffers from a pseudo period; in fact the value

of 259200 is exactly one of the parameters used by the linear congruential random number

generator [83, 113].

The discovery of this problem motivates the use of a newer random number generator

for ZPC that does not suffer from the same pseudo period problem. Fortunately, such

modern random number generators are quite common and easy to implement. Figure 5.7

shows that the correlation between the indices of colliding partons for collisions earlier than

t = 10−4 fm/c disappears when using the newer random number generator. In fact, the

event averaged collision number for these early collisions was reduced by a factor of more

than 1300. Therefore, the new random number generator essentially removes the occurrence

of unexpectedly early collisions.

After implementing the new random number generator in ZPC, the collision number per

event at very early times is reduced dramatically as shown by Fig. 5.8. When using the old
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tions with 3D expansion for 500 partons at T = 0.5 GeV and an initial opacity of χ = 0.02
using the old and a modern random number generator for the t-minimum collision scheme
versus time t.

random number generator, a peak in the collision number per event occurs near t = 10−5

fm/c, but does not exist for the results using the new random number generator. These

results are for the spherical initial condition using subdivision, but must also occur for the

default initial condition with subdivision because the problem originates when generating

many pseudo random numbers and is independent of the initial condition. Note that after

a time of about t ≈ 10−3 fm/c, the event average collision number begins to rise for the

simulations regardless of which random number generator is used. These collisions are in-

terpreted as “correct” in the sense that they are the earliest collisions that take place not as

a result of problems in the random number generator.

After implementing the new random number generator that does not suffer from the
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T = 0.5 GeV and χ = 0.02 without subdivision for the t-average and t-minimum and with
subdivision for the t-minimum scheme time t.

pseudo period, the collision rate divided by lsub for the simulations using parton subdivision

with lsub = 100 do not exhibit the uncharacteristically large values. Figure 5.9 shows that

the t-minimum collision scheme now agrees quite well with the subdivision results at the

early times. Again, the earliest collisions happen at a slower rate for the t-average collision

scheme because the collision time for that scheme is larger on average than for the t-minimum

scheme. Notably, the collision rate at late times for all schemes agree with each other and

reach zero around t = 10 fm/c.

Figure 5.10 shows the results of using the new random number generator on the time evo-

lution of the collision rate scaled by the subdivision factor for the t-average and t-minimum

collision schemes without subdivision and with subdivision for the t-minimum scheme for
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Figure 5.10: The collision rate divided by the subdivision factor dNcoll/dt/lsub using the
new random number generator for the default 3D expansion initial condition for 500 partons
at T = 0.5 GeV with an initial opacity at mid-pseudorapidity of χ(η = 0) = 2 without
subdivision for the t-average and t-minimum schemes and with subdivision for the t-minimum
scheme time t.

the default initial condition. The default initial condition has been selected to have the same

opacity at mid-pseudorapidity as the results shown in Fig. 5.9 so that the simulations can

be as similar as possible. Note that the opacity decreases as pseudorapidity increases, so the

collisions that occur in those regions should be even more free of causality violation than

the region at η ≈ 0. While using the new random number generator improves the early

collision rate problem for the spherical initial condition, it fails to do so for the default initial

condition because the rate with subdivision is still too high according to Fig. 5.9. These

results use the moderately high initial opacity at mid-pseudorapidity χ(η = 0) = 2, so they

likely also suffer from the causality violation. Therefore, a better test will be to use the new
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RNG for low opacity calculations in the default initial condition for 3D expansion to extract

the early collision rates. After that, the ratio of the pT spectrum to the subdivision result

should also be checked and compared to the calculations using the old RNG. Unfortunately,

this means that the 3D problem is still unsolved for the default initial condition.

5.2 Comparing f (s) in ZPC to Analytical Distributions

In Sec. B.3.1, the probability density function for any pair of massless particles whose energies

follow a thermal distribution is derived by considering the thermal average of the cross section

⟨σ⟩. That result also relies on the cross section for two such particles depending only on

the Mandelstam ŝ of those particles (σ(ŝ)), and was given in Ref. [84]. To improve the

readability, ŝ is written as s, i.e., the “hat” symbol is suppressed throughout this section.

For clarity, the final result of the derivation in the Appendix is written here

f(s) =
1

64T 2

[(√
s

T

)3

K1

(√
s

T

)
+ 2

(√
s

T

)2

K2

(√
s

T

)]
, (5.2)

The special functions Ki(x) in Eq. (5.2) above are modified Bessel functions of the second

kind. While the derivation of the above result is a useful exercise, a more important task is

comparing Eq. (5.2) to the numerical f(s) for parton pairs in ZPC. The comparison is made

using a system of 4000 massless gluons in a box whose energies follow a Maxwell-Boltzmann

distribution for two different temperatures. The opacity of the system is chosen to be χ = 1,

and a subdivision factor of lsub = 104 is used to ensure that the final results do not suffer

from causality violation. Recall that the subdivision factor decreases the system’s effective

opacity by χ → χ/
√
lsub. For this test, the effective opacity χ = 0.01 ≪ 1 is quite near the

dilute limit.

Figure 5.11(a) shows the comparison of the numerical f(s) for the setup described above

to the analytical result of Eq. (5.2) for T = 0.2 and 0.5 GeV. Note that the theory results

are the bin-averaged values for the same discrete s-bins in the ZPC results. The ratio of
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Figure 5.11: (a) The probability density function f(s) for all parton pairs in ZPC for 4000
partons in a box with an opacity of χ = 1 and a subdivision factor of lsub = 104 compared
to f(s) from the calculation of ⟨σ⟩ for massless particles with Maxwell-Boltzmann statistics,
and (b) the ratio fZPC(s)/ftheory(s) for two temperatures versus s/T 2.

the two bin-averaged results is plotted in Fig. 5.11(b), and the numerical results differ by

less than 5% from the analytical result in any s bin. In fact, the deviation between the two

results is far less than 1% for s bins near the average of ⟨s⟩ = 18T 2 for both temperatures.

The larger deviations of the numerical result relative to the analytical one at large s are a

limitation of the finite statistics in the ZPC result. This agreement indicates that the ZPC

parton cascade correctly reproduces the expected analytical result of the probability density

function of s.

Table 5.1 shows the results of comparing ⟨s⟩ and ⟨√s⟩ /T for the parton pairs, which

have the distributions plotted in Fig. 5.11. The deviations in these measures are small since
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T (GeV) Npairs ⟨s⟩ /T 2 Dev. (%) ⟨√s⟩ /T Dev. (%)
0.2 21907025 17.997 0.015 3.681 0.006
0.5 21900993 17.977 0.125 3.680 0.042

Table 5.1: Comparison of the numerical ⟨s⟩ and ⟨√s⟩ for pairs of massless gluons in a
box whose energies follow a Maxwell-Boltzmann statistics with an opacity of χ = 1 and a
subdivision factor of lsub = 104 at two temperatures to the corresponding analytical results
for f(s) from Eq. (5.2).

the ratio of the numerical result to the analytical one in panel (b) of that figure fluctuates

around unity. For both temperatures, the s values for nearly 2.2 × 107 parton pairs were

recorded, and the deviations expressed as a percentage from the analytical mean values is

presented. The mean s for both temperatures is quite close to the analytical result of 18T 2,

and the percent deviations are far below 1% in both cases. Note that the analytical result of

⟨√s⟩ = 75πT/64 ≈ 3.682T , and the percent deviations of the numerical result to this value

are even smaller than 0.1% in both cases. The results of Fig. 5.11 and Table 5.1 indicate that

the f(s) distribution that is found by calculating the thermal average of the cross section

⟨σ(s)⟩ represents the probability density of s for parton pairs. On the other hand, it would

also be useful to know the distribution of s for pairs of partons which actually collide in

ZPC.

Another probability density function for the Mandelstam s is derived using the thermal

average of the cross section multiplied by the relative velocity between two partons ⟨σvrel⟩

as in Ref. [114, 115]. Here, the relative velocity is defined as

vrel =
√
s (s− 4m2)/(2EaEb), (5.3)

where m is the particle mass, and Ei are the particle energies. For the massless partons

under consideration here, this reduces to vrel = s/(2papb) where pi are the magnitude of

the particle three-momenta. This definition of vrel is the same as in Ref. [114, 116], but

the authors of Ref. [115] use twice this value instead. Again, for clarity, the final result in
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Figure 5.12: (a) The probability density function f(s) for colliding partons in ZPC for 4000
partons in a box with an opacity of χ = 1 and a subdivision factor of lsub = 104 compared to
f(s) from the calculation of ⟨σvrel⟩ for massless particles with Maxwell-Boltzmann statistics,
and (b) the ratio fZPC(s)/ftheory(s) for two temperatures versus s/T 2.

Eq. (B.32) from the derivation in the Appendix is written here

fcoll(s) =
1

32T 2

(√
s

T

)3

K1

(√
s

T

)
(5.4)

Figure 5.11(a) shows the comparison of the numerical f(s) for colliding partons in ZPC

to the analytical result of Eq. (5.4) for T = 0.2 and 0.5 GeV. Again, the comparison has

been made to the bin-averaged analytical results to have a fair comparison to the discrete

s-bins in the ZPC results. The ratio of the two bin-averaged results is plotted in Fig. 5.12(b),

and the numerical results differ by less than 20% from the analytical result in any s bin. In
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T (GeV) Ncol ⟨s⟩ /T 2 %-Error ⟨√s⟩ /T %-Error
0.2 1996602 24.015 0.061 4.420 0.058
0.5 2001404 24.001 0.003 4.418 0.005

Table 5.2: Comparison of the numerical ⟨s⟩ and ⟨√s⟩ for colliding massless gluons in a
box whose energies follow a Maxwell-Boltzmann statistics with an opacity of χ = 1 and a
subdivision factor of lsub = 104 at two temperatures to the corresponding analytical results
for fcoll(s) from Eq. (5.4).

fact, the deviation between the two results is less than about 2% for s bins near the average

of ⟨s⟩ = 24T 2 for both temperatures. The deviations between the numerical result and the

analytical one at large s are still mostly less than 10% for all s bins, while the total number

of collisions is about a factor of ten smaller than the recorded number of parton pairs for the

same events. Again, an excellent agreement between the two independent results indicates

that ZPC correctly reproduces the analytical result of the probability density function of s

as derived from ⟨σvrel⟩.

Table 5.2 shows the results of comparing ⟨s⟩ and ⟨√s⟩ /T for the colliding partons which

have the distributions plotted in Fig. 5.12. For both temperatures, the s of nearly 2.0× 106

collisions was recorded, and the deviations expressed as a percentage from the analytical

mean values is presented. The mean s for both temperatures is quite close to the analytical

result of 24T 2, and the percent deviations are far below 0.1% in both cases. Note that the

analytical result of ⟨√s⟩ = 45πT/32 ≈ 4.418T , and the percent deviations of the numerical

result to this value are even smaller than 0.06% in both cases. The results of Fig. 5.12

and Table 5.2 indicate that the f(s) distribution that is found by calculating the thermal

average of the cross section ⟨σvrel⟩ represents the probability density of s for colliding partons.

However, a direct proof of this relationship has not yet been obtained.

5.3 Curved Parton Motion

The method of the ZPC parton cascade is different from that of a typical simulation of many

particles in which all the particles’ positions are updated at each time step [64]. Instead,
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in ZPC, the simulation moves forward in time from collision to collision, and the particles

are assumed to travel along their individual free-streaming trajectories between successive

collisions. All future collisions are predicted by searching for intersections between these

straight-line paths, and an interaction list is constantly updated as collisions occur. The

default method of ZPC uses this algorithm of the parton cascade; however, allowing partons

to follow curved trajectories would enable one to study the effect of external fields on a parton

system [117, 118]. These include the electromagnetic effects that are important during the

early stages of heavy ion collisions and are related to the chiral magnetic effect [119, 112,

22]. With this in mind, we have modified ZPC to allow partons to follow curved motion

under the influence of external fields. This modification is first described below and then

a comparison of the typical program structure and the modified one is made. Initial tests

have demonstrated that the modified ZPC program gives the same final results such as the

collision number and pT spectrum, which indicates that the new method should correctly

model curved parton motion.

Including curved parton motion in ZPC is no small task since the program has been built

to simulate free streaming particles only [64]. However, we devised a method to implement

curved motion, which uses many of the same tools that are already present in the current

ZPC code. First, a new parameter in the initialization file called icurve has been introduced,

and the new subroutine called recalc intlist may be utilized by setting icurve = 1. Because

ZPC progresses through the simulation from collision to collision instead of at regular time

steps, there is an added difficulty in implementing curved parton motion. The main idea

behind this implementation of curved parton motion is to let the program progress until a

time when the partons’ trajectories should curve enough under the influence of the selected

external fields. Thus, an array of time steps called tstep is introduced which contains the

times at which to apply the external fields to change some or all of the parton’s spacetime

four-vectors and four-momenta. Currently, there are 100 elements in the tstep array, and the

user is free to choose whether tstep should be linearly spaced or logarithmically spaced in
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time from a starting time tstart and a stop time tstop. The stop time of the external fields

effect is currently chosen as tend/2, where tend is the ending time of the individual simulation

and depends on the scaled time τ of Eq. (4.9). Of course, one is free to choose the last time

in tstep to be equal to the program ending time, in which case the partons will always be

affected by the external fields.

Before describing the new recalc intlist subroutine further, the main steps of the ZPC

program that are located in the zpc run subroutine are described first. Note that the term

“particle record” refers to the following information for each parton: the type, the space-time

four vector xµ, the four momentum pµ, the mass m, the pseudorapidity η, the rapidity y,

and the proper time τ . The space-time four vector xµ contains the last interaction time and

the position at that time for each parton. Also, an “operation” refers to either a parton

formation or a collision, either between partons or between a parton and a wall.

1. The particle records of the partons from the previous collision are saved, this enables

fixed time analysis.

2. The type, time, and particle indices of the next operation are determined by the time

of the earliest interaction in the interaction list.

3. The freezeout condition is checked; if it is met the event terminates.

4. The global time t is updated, and the next operation is performed as follows.

(a) For a parton formation: the parton to be formed is assigned to a cell based on its

position.

(b) For a collision with a wall: the involved parton’s current cell is updated, and the

lists of partons in each cell are updated.

(c) For a two-parton collision: both partons’ positions are updated, and the and new

parton four-momenta are determined.
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5. The interaction list is updated for the particles involved in the current operation.

In the outline that follows, top refers to the time of the next operation to be performed

and tistep refers to the next time when the external fields will be applied. Note that the steps

outlined below are inserted between steps 2. and 3. in the normal ZPC code as outlined

above.

1. If top < tistep: the external fields are not applied, and the program continues normally.

2. If top ≥ tistep: the external fields are applied, and the program diverts its normal

procedure as follows.

(a) Set t = tistep.

(b) Reset the entire interaction list.

(c) Apply the external fields to each formed parton and propagate each parton for-

ward in time from its last interaction time to t.

(d) Reassign each formed parton to a cell.

(e) Recalculate a new interaction list using the updated particle records.

3. Return to step 2. in the normal procedure.

The entire interaction list is reset and recalculated at each time tistep in the tstep array.

Therefore, before one can test whether the recalc intlist subroutine is implemented correctly,

it is first necessary to study the effect of the new subroutine on the collision history without

letting the partons experience curved motion. This is accomplished by setting the behavior

of the external fields to propagate each formed parton forward in time to tistep along its

free-streaming trajectory. In this way, the distribution of energy and momenta is unchanged

and the interaction list will be exactly the same. Recall that the external fields are applied

only when the next collision in the normal ZPC procedure would occur after tistep; thus, no

collisions will be skipped.
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icurve T (GeV) χ lsub ⟨Ncoll⟩ σNcoll
/
√
Nevent

0 0.5 1 1 41174.78 22.11
1 0.5 1 1 41135.67 22.25
0 0.5 1 104 40042.54 21.13
1 0.5 1 104 39974.95 17.85
0 0.7 40 1 126927.65 38.33
1 0.7 40 1 126960.27 36.33

Table 5.3: Event averaged collision number and standard errors for 100 events of ZPC
simulations using the t-minimum collision scheme without (icurve = 0) and with (icurve =
1) the recalc intlist subroutine for 4000 partons at T = 0.5 GeV with χ = 1 and lsub = 1 or
104 and for 13000 partons at T = 0.7 GeV with χ = 40 and lsub = 1.

As a first test of the recalc intlist subroutine described above, the collision history is

compared for the ZPC results without and with the new subroutine. Specifically, the event

averaged collision number ⟨Ncoll⟩ is compared for several scenarios without and with the

recalc intlist subroutine enabled. These results have used τ = 20 as the ending time for all

simulations in a box, and the last time when the particle records are updated is at τ = 10

for 100 events of each case. Table 5.3 presents the results for simulations using 4000 partons

with T = 0.5 GeV and an opacity of χ = 1 without and with a parton subdivision factor of

lsub = 104. The results without subdivision (lsub = 1) show that the event averaged collision

number for the simulations with icurve = 1 are statistically the same as for icurve = 0. In

fact, the standard errors of the mean have also been calculated and show that the two sets

of results are completely consistent with each other. When the parton subdivision method

is used, the effective opacity becomes χ → 1/
√
lsub = 0.01, and the results are also almost

exactly the same. Now however, the results are a little farther apart, having a deviation less

than 2σ where σ here refers to the standard error. These deviations are still quite small,

especially considering the low number of events, therefore it is expected that the two datasets

are consistent in the limit of many events. Finally, the results of 13000 partons with T = 0.7

GeV and χ = 40 are also completely consistent with each other when the collision list is

recalculated using the new subroutine or not.

Note that the method of including external fields takes longer to run than the default
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Figure 5.13: (a) The time-evolution of the ⟨pT⟩/T for ZPC simulations in a box without or
with calling the external field routine and (b) the ratio of the ⟨pT⟩ for scenarios without to
those with calling the external field routine 100 events of 4000 partons at T = 0.5 GeV and
an opacity χ = 1 without or with subdivision at lsub = 104 and for 13000 partons at T = 0.7
GeV and χ = 40 without subdivision.

ZPC simulations because the collision list needs to be recalculated many times. For the

results presented in Table 5.3, the running time increases by at most a factor of ≈ 4, which

is not too large. Also, an interesting threshold in the collision number has been observed such

that if the collision number per event is lower than ≈ 16700, then exactly the same number

of collisions occurs independent of the value of icurve. This can be understood in terms of

the calculation of a two-parton scattering event in which the new positions and momenta are

calculated based on the previous particle record information. Without updating the particle

records in the new subroutine, the new momenta are calculated using the position of the
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particle at its last collision time. However, if the particle records are updated periodically, the

partons’ locations will be slightly different and the finite precision inherent in any numerical

calculation gives a fluctuation on the level of ≈ 10−9. These small deviations in the new

positions compound when the number of collisions per event exceeds a threshold and lead

to the discrepancies in the collision history. However, this change of history does not change

the statistical behavior of the ZPC evolution.
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Figure 5.14: (a) The time-evolution of the var(pT) /T
2 for ZPC simulations in a box without

or with calling the external field routine and (b) the ratio of the var(pT) for scenarios without
to those with calling the external field routine for 100 events of 4000 partons at T = 0.5
GeV and an opacity χ = 1 without or with subdivision at lsub = 104 and for 13000 partons
at T = 0.7 GeV and χ = 40 without subdivision.

While the first test of the collision number per event is successful, it will be more beneficial

to compare the time evolution of the pT distribution between the two cases. To that end, the
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τ -evolution of the ⟨pT⟩ for the same simulations of Table 5.3 is shown in Fig. 5.13. Note that

the time τ here is the same scaled time as discussed in Eq. (4.9) of Sec. 4.2. For T = 0.5 and

0.7 GeV, the ending times are tend ≈ 4.6 and 0.3 fm/c, respectively. Figure 5.13(a) shows

that there is essentially no difference between the ⟨pT⟩ for either case of icurve across a wide

range of opacities. This result is expected after considering the success of the previous test

of the collision number per event. Importantly, the ratios of the icurve = 1 to icurve = 0

results for the three effective χ cases are all much smaller than 1% and have been plotted in

Fig. 5.13(b). Especially considering that only 100 events were used, this result is an excellent

indication that recalculating the partons’ spatial coordinates and the collision list does not

change the behavior of the ZPC. This is important evidence that including curved parton

motion via real external fields that affect the parton momenta and spatial coordinates will

not be incorrect in this implementation.

Figure 5.14 shows the time evolution of the variance of the pT spectrum scaled by the

square of the temperature from the same simulations described above, whose results were

presented in Table 5.3 and Fig. 5.13. Whereas the statistical deviations between the simula-

tions with icurve = 1 and those with icurve = 0 were far smaller than 0.5% when measured

by the ⟨pT⟩, the var(pT) has deviations around 1% on average. Note that these results are

obtained using an off-equilibrium initial condition [69] in order to make the approach to

equilibrium observable. The results using the recalc intlist subroutine are completely con-

sistent with the entire time-evolution of the var(pT) from the simulations with icurve = 0.

For each opacity, the var(pT) are statistically the same for both cases of icurve, but the

differences between the two results are noticeable over the entire τ -evolution. This is most

likely caused by the small event number and may be expected because statistical fluctuations

in the var(pT) will be larger than in the ⟨pT⟩ when the same number of events is used. This

is because the variance depends on the square of the deviations from the mean.

Overall, a new subroutine that allows one to implement the effect of external fields

on the partons in ZPC has been created, and future study of curved parton motion in
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ZPC is now possible. The subroutine has been tested using a simple case in which all

the partons positions are updated to the position along their free-streaming trajectories at

specific points in time. This alters the fundamental behavior of ZPC and means that the

interaction list has to be recalculated at each time step. The results using the periodically

recalculated interaction list are shown to be the same as the previous default ZPC results

within statistical uncertainties. The effect of recalculating the collision list on the transverse

momentum spectrum has been shown to be negligible from the dilute limit to high opacities,

which is good evidence that the new subroutine will work as expected for all opacities when

curved parton motion is implemented. While these initial results for the implementation of

external fields in ZPC are promising regarding the eventual goal of studying curved parton

motion, more benchmarks are needed. Before continuing further, the results in this section

will be made more robust by increasing the number of events in each case, and possibly

by adding a few more χ cases. Future test will include implementing a uniform external

field that curves the partons’ trajectories where the final results are known analytically.

Eventually, external electromagnetic fields [117] that are generated by the receding protons

in a heavy ion collision will be used to study the effect of electromagnetic fields on the dense

parton system.
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Chapter 6

Summary and Future Work

The purpose of this research is to use semianalytical and numerical methods to study rela-

tivistic heavy ion collisions so that the properties of the hot dense QCD matter they produce

can be better understood. While the field of nuclear physics encompasses a broad range of

fascinating topics, the many experimental and theoretical studies of the QGP are particularly

exciting. Not only do the properties of the QGP have implications for our knowledge of the

very early universe just microseconds after the Big Bang, but they might also determine the

physics of extreme astrophysical objects such as neutron stars. Therefore, advancements in

cosmology, astrophysics, the Standard Model, and perhaps even beyond are expected natu-

ral consequences of improving our understanding of heavy ion collisions and the quark-gluon

plasma. The results presented in this dissertation represent some recent developments in

semianalytical and numerical calculations of the characteristics of the QGP such as how

its initial energy density or time evolution contribute to its trajectory in the QCD phase

diagram.

First, a semianalytical model of the produced initial energy and net conserved-charge

densities is developed in Ch. 2. By considering the finite width of the overlap region along the

beam axis of the colliding nuclei, a new formula is derived for the initial energy density as a

function of time. Analytically, the result involves calculating an integral over the production

area for a given observation time; however, the chosen form of the initial transverse energy

production per unit rapidity prevents closed form solutions so far. Therefore, the model

is referred to as semianalytical because the previously mentioned definite integral must be

numerically calculated at every time throughout the evolution. In spite of the analytical



limitations, the semianalytical results have been shown to improve the estimates of the

initial energy densities produced during central Au+Au collisions. Whereas previous models

suffered from divergent maximum energy densities at zero parton formation time at all

collision energies, the improved semianalytical model has an analytical upper bound for the

maximum energy density. The existence of this upper bound proves that including the finite

nuclear thickness for the parton production is necessary if one wants to accurately predict

the initial energy densities in heavy ion collisions. This becomes especially important for

the search for the conjectured critical endpoint in the QCD phase diagram. The maximum

energy density of this semianalytical model also has an approximate scaling relation with

the nuclear mass number. This implies that the maximum energy density for a nucleus with

mass number different from that of gold and one parton formation time is exactly equal to

the maximum energy density for a gold nucleus and a different formation time at the same

collision energy.

The semianalytical model may also be applied to calculate the initial produced net

conserved-charge densities such as the net-baryon density. Predicting the time evolution

of the net-baryon density is important for understanding the properties of the dense matter

created in heavy ion collisions. The net-strangeness density is identically zero in the semian-

alytical model because the colliding nuclei carry no net strangeness when strange quark and

strange antiquark productions are assumed to be symmetric. Some studies have used the

choice of setting the strangeness chemical potential to zero, but this choice is inaccurate and

violates the strangeness neutrality in heavy ion collisions. Finally, a transverse flow effect

is included in the semianalytical densities by way of a transverse overlap area that expands

with time. Reasonable parametrizations of the final transverse flow velocity are made based

on RHIC experimental data. Together, these allow the calculation of the energy density

averaged over a growing transverse area and primarily affects the late time densities, though

it also sometimes decreases the maximum values. One example of a future extension to this

semianalytical model is the following. It is assumed that parton production occurs uniformly
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throughout the entire overlap region, which simplifies the integral in Eq. (2.4) considerably.

The same assumption is also used in the calculation of the net-baryon density. This as-

sumption removes complicated dependence on the spatial and temporal parton production

from the integrand, making the equations far more tractable. However, future work could

be devoted to incorporating a non-uniform function for the parton production because this

is a more general picture.

Second, the thermodynamic variables and QCD phase diagram trajectories of a QGP are

extracted from several nuclear equations of state using the semianalytical densities as inputs

in Ch. 3. Assuming a QGP that has densities given by the results of the semianalytical

model, the temperature and chemical potential are extracted first from an ideal gas equation

of state assuming massless partons with either Boltzmann or quantum statistics [46]. The

maximum temperature and net-baryon chemical potential are found to depend significantly

on the collision energy and parton formation time. Their dependence on key parameters of

the semianalytical model has implications on how close a given trajectory passes to the QCD

critical endpoint. Then, a more realistic EoS is used based on lattice QCD results, which

accounts for the low energy expectation that the matter is dominated by hadron degrees

of freedom [67]. The lattice EoS is not accurate for µB/T > 2.5, and it was found that

the thermodynamic variables cannot be extracted for low energy collisions that have large

net-baryon densities. Therefore, the QGP lifetime can only be calculated for low energy

collisions using the less accurate ideal gas EoS [46]. The strangeness neutrality in the lattice

EoS is found to be different from the FRG calculations [109] that have a strict ordering with

T of the µB dependence of µS. The lattice EoS shows a similar ordering, but only for low

T , while in the high T limit it does not converge to µS ≈ µB/3, which is expected from the

FRG results and the ideal gas EoS for massless partons.

There are several relevant directions in which this work can be continued. First, the

lattice QCD based equation of state [67] has some limitations such as not being valid at high

baryon chemical potentials or low temperatures. Recently, a new lattice equation of state has
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been found by re-summing the terms in the Taylor expansion of the pressure and is notably

improved over the previous version [120]. It would be good to use this newer lattice equation

of state to extract the thermodynamic properties from the densities of the semianalytical

model and assess any changes to the trajectories. In particular, the re-summed lattice EoS

might make it possible to extract trajectories at lower collision energies than is currently

possible. This could improve the estimation of the QGP lifetime at these low collision

energies and also check the recent findings of the STAR Collaboration that the QGP is not

formed at 3 GeV Au+Au collisions [48]. Second, the ideal gas equations of state with either

Boltzmann or quantum statistics predict that the trajectories start at and for late times

approach the origin in the QCD phase diagram [46]. This prediction is obviously incorrect

since the normal nuclear matter exists at the finite baryon chemical potential µB ≈ mN

when T = 0. This behavior in the ideal gas EoS is caused by taking the quark masses to be

zero; however, a similar behavior also occurs when including the quark current masses [61].

Since the matter should behave as a hadron resonance gas below the phase transition line,

a useful extension to the current work would be to use a hadron equation of state when the

temperature is small enough. The main difficulty in doing this will be in smoothly merging

the QGP equation of state for high T with the hadron one near the phase transition.

Third, parton transport in ZPC [64] is assessed using an exact analytical solution of the

relativistic Boltzmann equation in Ch. 4. The exact solution [77, 78] for a massless parton gas

under isotropic scatterings gives the time evolution of the momentum distribution f(p, t)

for a given initial condition. Using a new parton collision scheme [69], ZPC is found to

reproduce the exact solution results with an unexpectedly high degree of accuracy throughout

the evolution even at high densities. Then, calculating the mean deviation between the

numerical and theoretical distribution functions enables the optimal collision scheme to be

found for each opacity. These results are combined into two generalized collision schemes,

and they produce an even better agreement with the exact solution, having a mean deviation

not worse than 0.25%. The interesting observation of the universal dependence of the ZPC
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results on the opacity χ rather than on T is also discussed. Overall, improvements to parton

transport in ZPC are useful for numerical studies of the QGP with transport models such

as the AMPT model [62].

Finally, the initial results from work done to address several open questions related to

parton transport in ZPC [64] are discussed in Ch. 5. The new collision scheme [69] that

works well for simulations in a box unexpectedly does not work well for simulations with 3D

expansion. The origin of this problem may be related to an unexpectedly large collision rate

per parton at very early times, just after the initial parton formation time. A new spherical

initial condition is introduced to more easily understand the spatial distribution of partons,

and a clear peak in the collision number is shown to result from a pseudo-period in the

default random number generator (RNG) of ZPC that is based on the linear congruential

method [83]. The poor behavior of the RNG manifests itself when generating many random

numbers for the partons’ positions and momenta; the pseudo-period causes partons with

indices a fixed distance apart to be initialized at almost exactly the same spatial coordinates.

After implementing a modern RNG, the unexpectedly high early collision rate vanishes for

the spherical initial condition, but it does not for the default initial conditions with 3D

expansion evolution. Therefore, further work is needed to improve the ZPC accuracy in 3D

expansion calculations. Second, two analytical distributions [84, 114] for the Mandelstam

s variable are derived in Appendix B.3 assuming the massless partons follow a Boltzmann

distribution. ZPC successfully reproduces both of these distributions; the first by calculating

f(s) of all parton pairs, and the second by calculating f(s) for actual colliding parton pairs.

The agreement of both the numerical ⟨s⟩ and ⟨√s⟩ has an error of less than 0.125%, and the

distributions themselves also have a small deviation from the theoretical results.

Third, ZPC uses the cascade method to simulate the collisions of many particles that

are assumed to be free-streaming between collisions [64]. The large magnetic fields that

are generated by the receding protons in heavy ion collisions would influence the generated

medium, e.g., leading to the chiral magnetic effect [22]. Thus, a new method for letting
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partons’ trajectories curve under the influence of external fields is implemented in ZPC. If a

parton’s trajectory were to change, the entire collision list would need to be recalculated, and

this would need to occur for many times throughout the evolution when the external fields

are active. Therefore, a new subroutine has been included in ZPC that allows the partons

to change their positions under the influence of a user-defined external field. Currently, a

specific external field is not implemented, so each parton propagates forward in time along its

straight line path, but the collision list is recalculated at each time step. Initial results that

compare the collision number in ZPC calculations without the new subroutine and with the

new subroutine indicate that the program models the same dynamical system across the full

range of opacities. A similar result is obtained from analyzing the differences between the

time evolution of the ⟨pT⟩ and var(pT) for both cases. Because the new subroutine produces

the same statistical behavior for many effective opacities, it is expected that the results that

incorporate a field and consequently the curved motion will also be accurate.

Future studies of parton transport with ZPC [64] could focus on answering several ques-

tions. First, the cause of the 3D problem in simulations using the default initial condition

must be discovered. Solving this problem will mean that a proper collision scheme can be

used to reduce the causality violation instead of using the computationally-expensive and

fluctuation-altering parton subdivision method [79]. Second, a proof is needed for why the

f(s) distribution for colliding parton pairs in ZPC is apparently exactly given by the the-

oretical distribution of Appendix B.3. Specifically, it is necessary to understand why the

distribution derived using the thermal average of the cross section and a relative velocity

should give the f(s) of colliding parton pairs in ZPC. Third, more tests are needed to verify

the correct behavior of the new curved motion subroutine in ZPC. Some initial tests should

involve changing the partons’ momenta in a simple way so that the system’s behavior can

be analytically known and compared to the numerical results. Following this verification,

realistic electromagnetic fields [117] can be used to subject the partons to the expected fields

in heavy ion collisions to study related effects such as CME signals [112].
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It is the author’s earnest wish that the research presented in this dissertation is useful

to the field of relativistic heavy ion physics. The semianalytical and numerical studies of

heavy ion collisions presented herein represent only a small fraction of the ongoing work in

nuclear physics. Finally, the author would like to acknowledge the use of the Numpy [121],

Scipy [122], and Matplotlib [123] packages in the Python programming language. The nu-

merical analyses and data presentation in this work could not have been possible without

these valuable open-source tools or the innumerable tutorials that are freely available.
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Appendix A: Constructing

Data-Based Parametrizations of

Initial Energy

A.1 dmT/dy of Initially Produced Partons

The initial dmT/dy of produced partons is parametrized as a Gaussian function of rapidity

y:

dmT

dy
=
dmT

dy
(0)e

− y2

2σ2

, (A.1)

where the notation F (0) is used to represent the value of the function F (y) at y = 0 [45].

The peak value of dmT/dy at different collision energies is then taken from a parametrization

of the results from the string melting version of the AMPT model [43]:

dmT

dy
(0) = 168

(√
sNN

GeV
− 0.930

)0.348

GeV. (A.2)

The requirement of total energy conservation from Eq. (2.15) allows one to determine the

Gaussian width σ:

σ =
√
W0(r2), with r =

A
√
sNN√

2π dmT

dy
(0)

, (A.3)

where W0(x) is the k = 0 branch of the Lambert W function (or the omega function) Wk(x).

Figure A.1 shows the dmT/dy of initial partons as given by Eq. (A.1) for central Au+Au

collisions at several collision energies (solid curves). A monotonic increase of the peak value

and the Gaussian width with the collision energy
√
sNN is observed. Symbols represent the

results of initially produced partons from the string melting version of the AMPT model [43],
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Figure A.1: Transverse mass per unit rapidity for produced initial state partons (solid) and
final state hadrons (dashed) for central Au+Au collisions at

√
sNN = 2, 3, 5, 50, and 200

GeV. Symbols represent the initial parton results from the string melting version of the
AMPT model [43].

which show the same qualitative features. Note that in more realistic calculations such as

those from the HIJING model [63, 124] or the AMPT model [62], a small fraction of the

incoming nucleons are spectators in central collisions. The dmT/dy of final state hadrons is

also shown in Fig. A.1. At
√
sNN = 2 GeV, there is a clear difference between the parton

dmT/dy and the hadron dmT/dy in that a non-monotonic behavior of dmT/dy(0) appears for

the hadron distribution. This is understandable from the net-baryon term in the definition of

the hadron dmT/dy of Eq. (A.4) and the corresponding curve in Fig. A.5. While the hadron

dmT/dy(0) is larger than the parton one at low collision energies, it is smaller for
√
sNN ≳ 6

GeV. In Fig. A.1, the hadron dmT/dy and parton dmT/dy are shown to have similar values
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for collision energies between ≈ 3 and 50 GeV. One can also note the obvious difference in

the widths of the parton and hadron dmT/dy distributions in Fig. A.1. At 2 GeV near the

threshold energy, the hadron dmT/dy has a much higher peak and is much narrower than

the parton dmT/dy because of the slow baryons, while the hadron dmT/dy has a lower peak

at the top RHIC energy consistent with the effect of strong secondary interactions.

A.2 dmT/dy Based on Data of Final State Hadrons

In the PHENIX Collaboration’s data-based parametrization of the transverse energy pseudo-

rapidity density near the central spacetime-rapidity region (η = 0), they define the “trans-

verse energy” ET as ET =
∑

iEi sin θi [44]. Here, θi is the polar angle of particle i and

Ei is defined as Etot
i − mN for baryons, Etot

i + mN for antibaryons, and Etot
i for all other

particles [44]. Note that Etot
i is the total energy of the particle and mN is the nucleon mass.

As a result of the ET definition above, the total transverse energy of hadrons at y = 0 is

given by

dmT

dy
=
dET

dy
+mN

dNnetB

dy
, (A.4)

where NnetB represents the net-baryon number. The hadron dmT/dy function for calculating

the energy density via Eq. (2.14) is determined by assuming that dET/dy is a single Gaussian

and that dNnetB/dy is described by a double-Gaussian [16, 125]:

dET

dy
=
dET

dy
(0) exp

(
− y2

2σ2
1

)
,

dNnetB

dy
= C

{
exp

[
−(y + yB)

2

2σ2
2

]
+ exp

[
−(y − yB)

2

2σ2
2

]}
.

(A.5)

First, regarding dET/dy(0), the PHENIX Collaboration [44] has parametrized the mid-
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Figure A.2: (dET/dη)/(dNch/dη) data at η = 0 compared with the improved parametriza-
tion for collision energies below

√
sNN < 20.7 GeV and the older parametrization from the

PHENIX Collaboration [44].

pseudorapidity data as

dNch

dη
(0) = 0.37Np ln

( √
sNN

1.48GeV

)
,

dET

dη
(0) = 0.365Np ln

( √
sNN

2.35GeV

)
GeV,

(A.6)

where Np is the number of participant nucleons that is taken as 2A for the central collisions

considered by the semianalytical model [45] of Ch. 2. It was found that the dET/dη(0)

parametrization underestimates the (dET/dη)/(dNch/dη) ratio for collision energies less than

√
sNN ≈ 10 GeV [44, 45], and this fact is displayed in Fig. A.2. Since the effect of finite nuclear
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Figure A.3: Individual fit values of y
B
(circles) and σ2 (triangles), their previous parametriza-

tions [45] (dashed), and their updated parametrizations in Eq. (A.8) (solid).

thickness is more important at lower collision energies and the PHENIX Collaboration’s

parametrization of dNch/dη(0) is accurate down to lower energies than that of dET/dη(0),

we have improved the dET/dη(0) parametrization [45]. Specifically, the same dNch/dη(0)

parametrization is chosen as in Ref. [44], but the (dET/dη)/(dNch/dη) function is refit to

the experimental data at low energies. The result of this improved parametrization is

dET

dη
(0) = 0.308Np ln

1.08

(√
sNN

E0

)
GeV, (A.7)

for
√
sNN ≤ 20.7 GeV, where E0 = 2mN is the threshold collision energy [45, 46]. As

is shown in Fig. A.2, this improved low energy parametrization intersects the PHENIX
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parametrization at
√
sNN ≈ 20.7 GeV, above which the PHENIX dET/dη(0) parametrization

is used. Next, the transverse energy rapidity density is related to the transverse energy

pseudorapidity density [44] as dET/dy(0) = 1.25 dET/dη(0).

Second, the following parametrizations for the double Gaussian parameters y
B
and σ2 for

the net-baryon rapidity density profile are taken:

y
B
= 0.599

1− 1

2.18 + ln1.86
(√

sNN

E0

)
 yCM,

σ2 = 0.838

1− 1

5.01 + ln1.61
(√

sNN

E0

)
√ln

(√
sNN

E0

)
.

(A.8)

Recall that E0 = 2mN is the threshold collision energy [46]. These parametrizations have

been obtained using the proton dN/dy data at
√
sNN = 2.65, 3.30, 3.85, and 4.31 GeV [97]

and the net-proton dN/dy data at
√
sNN = 4.87 [94, 126], 8.77 [127], 17.3 [128], 62.4 [129]

and 200 GeV [130] in central Au+Au collisions (with the exception that central Pb+Pb data

are used at 8.77 and 17.3 GeV).

Note that the parametrizations for y
B
and σ2 of Eq. (A.8) for dNnetB/dy are updated

from those given in Ref. [45]. This change was made for two reasons [46]. First, the previous

parametrizations [45] contain a positive power of the collision energy
√
sNN. For example,

y
B
∝ (

√
sNN − E0)

0.196 ln0.392(
√
sNN) was used previously. This functional form will break

down above a certain high energy because y
B
> yCM will eventually cause the energy in

the dNnetB/dy term of Eq. (A.4) to exceed the total energy, which would be unphysical.

Thus, the new forms in Eq. (A.8) are used without positive powers of
√
sNN to remedy this

problem [46]. Second, we have corrected the collision energies for the low energy proton

dN/dy data [97]. Before, the values
√
sNN = 2.4, 3.1, 3.6, and 4.1 GeV were used [45],

and these have been updated to
√
sNN = 2.65, 3.31, 3.85, and 4.31 GeV, respectively. The

updated values are the actual beam kinetic energies after correcting for the energy loss before

reaching the target [97]. We also realized that the net-proton dN/dy data at
√
sNN ≈ 5 GeV
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Figure A.4: Net-proton dN/dy data (circles) for central Au+Au (Pb+Pb) at
√
sNN = 2.65,

4.31, (17.3), 62.4, and 200 GeV in comparison with the scaled net-baryon parametrizations
(curves) using the old yB and σ2 from Ref. [45] (dashed) or the new yB and σ2 in Eq. (A.8)
(solid). Filled circles represent actual data and open circles are reflected data across y = 0.

actually contains data for
√
sNN = 4.70 [93], 4.86 [94], and 4.88 GeV [126]. Therefore, we

combined the data at 4.86 GeV and 4.88 GeV into one data set at
√
sNN = 4.87 GeV. In

addition, the net-proton data at
√
sNN = 8.77 [127] and 62.4 GeV [129] are also used for the

updated parametrizations of Eq. A.8.

In Fig. A.3, the updated individual fit values for y
B
and σ2 are shown in comparison

with their previous parametrizations [45] and the new parametrizations [46]. For collision

energies
√
sNN < 4 GeV, the new parametrizations for y

B
and σ2 match the individual fit

values quite well [46]. On the other hand, the individual fit values for larger collision energies
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Figure A.5: Mid-rapidity (y = 0) values of the transverse mass mT, transverse energy ET,
and mNNnetB rapidity densities as functions of collision energy

√
sNN. The dET/dy from the

PHENIX Collaboration [44] is also shown for reference.

√
sNN > 4 GeV for yB or σ2 make it seem impossible to fit them well with a smooth function.

Instead, the new parametrization provides a smooth fit that is overall closer to the individual

fit values. For example, the new parametrization overestimates the individual yB values at

√
sNN = 8.77 and 17.3 GeV, which leads to an underestimate of dNnetB/dy(0) near these

collision energies.

We further assumed that the net-baryon and net-proton dN/dy distributions have the

same shape. The conservation of the net-baryon number is then imposed according to the

following restriction: ∫
dNnetB

dy
dy = 2A. (A.9)
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The parameter C in Eq. (A.5) is then determined at each collision energy [46]. Finally,

the Gaussian parameter σ1 in Eq. (A.5) is calculated using the conservation of total energy

of Eq. (2.15) at each collision energy. Lastly, the parameter σ1 in Eq. (A.5) is calculated

by applying the conservation of total energy requirement of Eq. (2.15). In Fig. A.4, the

dNnetB/dy shape from both old and new parametrizations is compared with the net-proton

data at several collision energies. Note that the shape of dNnetB/dy is obtained by scaling

the parametrization by various factors for the different collision energies. It is clear that the

dNnetB/dy shape is more sensitive to the yB parameter than σ2 [46]. Both parametrizations

fit well the shape of the data at 2.65 and 4.31 GeV. At
√
sNN = 17.3 GeV, however, the

new parametrization peaks at a higher rapidity than the data, which is consistent with its

overestimate of the individual yB fit value as shown in Fig. A.3. At 62.4 GeV the new

parametrization has relatively lower peak dN/dy values than the data, which is consistent

with its underestimate of the corresponding individual y
B
fit value [46].

Figure A.5 shows the energy dependence of the hadron dmT/dy(0) parametrization in

comparison with that of the dmT/dy(0) for initial partons. The two parametrizations are

quite close when the collision energy is between 3 <
√
sNN < 100 GeV, which includes the

energy range of the Beam Energy Scan program at RHIC [35, 36, 37, 38]. Notice the fast

increase of the hadron dmT/dy(0) when the collision energy decreases towards the threshold

energy E0. This is a combined effect of the vanishing beam rapidity near the threshold energy

and the finite conserved net-baryon number [45]. It is also clear that at very low energies

the net-baryon contribution (dot-dashed curve), coming mostly from the incoming nucleons,

dominates the total transverse energy of final hadrons. The PHENIX Collaboration’s dET/dy

parametrization is also shown for comparison.
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Appendix B: Probability Density

Functions with Maxwell-Boltzmann

Statistics

B.1 Transverse Momentum Distribution fpT(pT)

Several probability density functions that are useful for calculating thermal averages of inter-

est to this research are derived in this section. These results rely on the assumption that the

system under consideration has particle energies that follow the Maxwell-Boltzmann statis-

tics (K = 0 in Eq. (3.3)). For identical particles with chemical potential µ at a temperature

T , the distribution of energies under Maxwell-Boltzmann statistics is given by:

fp(p) = C

[
exp

(√
p2 +m2 − µ

T

)]−1

. (B.10)

Note that the subscript in the above definition is used to distinguish the probability density

functions of the momentum p, the transverse momentum pT or the longitudinal momentum

pz from that of the Mandelstam variable s that is discussed in Sec. B.3. In order for the

fp(p) above to be a probability density function, it must satisfy the normalization condition:∫
d3pfp(p) = 1, where the integration is carried out over the entire three-dimensional mo-

mentum phase-space. Thus, the three-dimensional integral of fp(p) reduces to the following

single integral over p, where the factor 4π originates from the integration over the two angles

in spherical coordinates:

∫
d3pfp(p) = 4πC

∞∫
0

dpp2 exp

−
(√

p2 +m2 − µ
)

T

 . (B.11)



The chemical potential is a constant with respect to p, and it is now written in terms of a

fugacity λ = exp(µ/T ). Then, one may use the substitution p = m sinh(y) to obtain the

well-known result [114, 115]:

∫
d3pfp(p) = 4πCm2TλK2

(m
T

)
. (B.12)

The normalization condition of fp(p) allows one to calculate the constant C in the above

equation.

The probability density function for the transverse momentum fpT(pT) is obtained from

the normalized fp(p). Whereas the result of Eq. (B.12) utilized the spherical polar coordi-

nates (p, θ, ϕ), this step will use the cylindrical coordinates of (pT, pz, ϕ). Note that the polar

angle is θ, and ϕ is the azimuthal angle. Then one may use the substitution pz = ET sinh(y),

where ET =
√
p2T +m2 is the transverse mass, to obtain

fpT(pT) =
1

m2TK2 (m/T )
pT

√
p2T +m2K1

(√
p2T +m2

T

)
(B.13)

The leading term of the function K2(m/T ) is 2T
2/m2 as m→ 0, so the result in the massless

limit becomes

fpT(pT) =
1

2T 3
p2TK1

(pT
T

)
. (B.14)

The mean values of the transverse momentum ⟨pT⟩ and of the square of the transverse

momentum ⟨p2T⟩ are useful quantities for understanding the overall spread, or variance, of

fpT(pT). The variance is defined [69] as var(pT) = ⟨p2T⟩ − ⟨pT⟩2. The mean transverse

momentum is given by

⟨pT⟩ =
1

4πm2TλK2(m/T )

∫
d3pfp(p)pT.

157



Then, using a hyperbolic function, p = m csch(y) yields

⟨pT⟩ =
πm2

4TK2(m/T )

∞∫
0

dy coth(y)csch4(y)e−m coth(y)/T

This integral can be solved using a standard substitution u = coth(y):

⟨pT⟩ =
π

2m2K2(m/T )

(
3T 3 + 3mT 2 +m2T

)
e−m/T . (B.15)

One can easily verify that the result in the limit m→ 0 is the well-known ⟨pT⟩ = 3πT/4 [50].

The result for ⟨p2T⟩ is determined by the substitution pT = m sinh(y)

〈
p2T
〉
=

2m5

3m2TK2(m/T )

∞∫
0

dy cosh(y) sinh4(y)e−m cosh(y)/T .

Next, various identities for the hyperbolic functions, the integral definition of Kn(x), and

the recurrence relation for Kn(x) are used to obtain the following closed form expression for

the mean of p2T:

〈
p2T
〉
=

1

24m2TK2(m/T )

[(
48m3T 2 +m5

)
K1

(m
T

)
+ 8

(
m4T + 24m2T 3

)
K2

(m
T

)]
(B.16)

One can take the massless limit of Eq. (B.16) to find ⟨p2T⟩ = 8T 2. Therefore, the vari-

ance of the pT spectrum for massless partons whose energies follow a Maxwell-Boltzmann

distribution with temperature T is given by [69]

var(pT) =
〈
p2T
〉
− ⟨pT⟩2 =

(
8− 9π2

16

)
T 2. (B.17)
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B.2 Longitudinal Momentum Distribution fpz(pz)

The probability density function for the longitudinal momentum fpz(pz) may be obtained

from fp(p). Here, the substitution pT = pz/ sinh(η) is used and similar procedures as de-

scribed in the previous section enable one to obtain

fpz(pz) =
1

2m2TK2 (m/T )

(
T |pz|

√
m2

p2z
+ 1 + T 2

)
exp

(
−|pz|
T

√
m2

p2z
+ 1

)
. (B.18)

The above result applies to massive particles under the Maxwell-Boltzmann statistics; how-

ever, massless partons are more applicable to this research. Then, one can take the limit

m→ 0 to find

fpz(pz) =
1

4T 3

(
T |pz|+ T 2

)
exp

(
−|pz|
T

)
. (B.19)

Note that the above results also apply to the other components of the momentum, px and

py, due to the symmetry of the three-dimensional momentum space.

B.3 Total Center-of-Mass Energy Squared Distribu-

tion f (s)

The thermal average of a variable w that depends on the two-parton momentum phase-space

is defined to be the following:

⟨w⟩ =
∫
d3pad

3pbfp(pa)fp(pb)w∫
d3pad3pbfp(pa)fp(pb)

. (B.20)

The denominator ensures the correctness even if fp(p) is not normalized. Next, two different

thermal averages are calculated, and a probability density function f(s) is found for each

case.
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B.3.1 Thermal Average ⟨σ⟩

In this first case, the thermal average of the cross section ⟨σ⟩ can be calculated according to

⟨σ⟩ ∝
∫
d3pad

3pbfp(pa)fp(pb)σ(s), (B.21)

where it is assumed that the cross section only depends on s. This six-dimensional integral

over the two-parton momentum phase-space is difficult in general; fortunately, the task is

simplified by applying symmetry arguments. First, one is always free to rotate the coordinate

system so that the momentum of the first parton pa lies along the positive z axis. Therefore,

the three-momentum of particle a has spherical symmetry, and the three integrals over d3pa

reduce to a single integral over dpa. With the first particle along the positive pz axis, one

is still free to rotate the coordinate system so that the momentum of the second particle pb

has a component along only one of the px or py directions. Thus, the three-momentum of

particle b has azimuthal symmetry, and the three integrals over d3pb reduce to two integrals

over dpb and dθ. Here, the angle between the two partons’ three-momenta is written as θ.

The application of the above symmetry arguments reduce the volume element

d3pad
3pb = 4πp2adpa 2πp2bdpb d cos(θ). (B.22)

Next, a change of variables [114] is used to express the magnitudes of the two partons’

momenta and the angle between them in terms of the Mandelstam s and two other variables.

Recall that for massless partons, s = (pµa + pµb )
2 = 2papb (1− cos(θ)) because s is a Lorentz

invariant quantity, depending on the two partons’ four-momenta. This relationship between

s and cos(θ) motivates the choice to change variables from (pa, pb, cos(θ)) to (p+, p−, s) in

the following way:

p1 =
p+ + p−

2
, p2 =

p+ − p−
2

, cos(θ) = 1− 2s

p2+ − p2−
. (B.23)
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The Jacobian for this transformation is J = 1/(p2+−p2−), so the volume element of Eq. (B.22)

becomes

d3pad
3pb =

π2

2

(
p2+ − p2−

)
dp+dp−ds, (B.24)

and the integration limits change from pa > 0, pb > 0, |cos(θ)| ≤ 1 to

s ≥ 0, p+ ≥ √
s, |p−| ≤

√
p2+ − s. (B.25)

The numerator of Eq. (B.21) changes to

⟨σ⟩ ∝ π2

2

∫ ∞

0

ds σ(s)

∫ ∞

√
s

dp+e
−p+/T

∫ √
p2+−s

−
√

p2+−s

dp−
(
p2+ − p2−

)
. (B.26)

After the first integral for p−, we get

⟨σ⟩ ∝ π2

3

∫ ∞

0

ds σ(s)

∫ ∞

√
s

dp+e
−p+/T

√
p2+ − s

(
2p2+ − s

)
. (B.27)

For the second integral for p+ the substitution p+ =
√
s cosh(y) yields the following

⟨σ⟩ ∝ π2

12

∫ ∞

0

ds σ(s)s2
∫ ∞

0

dy (cosh(4y) + 2 cosh(2y)− 3) e−
√
s

T
cosh(y). (B.28)

One then finds

⟨σ⟩ ∝ π2

12

∫ ∞

0

ds σ(s)s2
[
K4

(√
s

T

)
+ 2K2

(√
s

T

)
− 3K0

(√
s

T

)]
(B.29)

Finally, the recurrence relation Kn(x) simplifies the above result into

⟨σ⟩ = 1

64T 5

∫ ∞

0

ds σ(s)

[
s3/2K1

(√
s

T

)
+ 2sTK2

(√
s

T

)]
(B.30)
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One may then directly read the probability density function of s as [84]

f(s) =
1

64T 2

[(√
s

T

)3

K1

(√
s

T

)
+ 2

(√
s

T

)2

K2

(√
s

T

)]
. (B.31)

One then gets

⟨s⟩ =
∞∫
0

ds f(s) s = 18T 2,
〈√

s
〉
=

∞∫
0

ds f(s)
√
s =

75π

64
T. (B.32)

Note that the above results of Eqs. (B.31) - (B.32) have been compared to the corresponding

results for massless partons in ZPC in Sec. 5.2 where there is an excellent agreement between

the numerical results and these analytical ones.

B.3.2 Thermal Average ⟨σvrel⟩

The relative velocity between two colliding partons is given in Eq. (5.3) and has been used

to study the shear viscosity of massless partons under isotropic or non-isotropic two-body

scatterings in AMPT [116]. For massless partons that are often used in the ZPC parton

cascade [64], the relative velocity reduces to vrel = s/(2papb) = 1 − cos(θ). The thermal

average of the cross section ⟨σ⟩ was used to derive an f(s) in Sec. B.3.1, but now a slightly

different thermal average is used to calculate another f(s). For massless partons, the thermal

average of the product of the cross section and the relative velocity is given by

⟨σvrel⟩ ∝
∫
d3pad

3pbfp(pa)fp(pb)σ(s)vrel(θ). (B.33)

The same procedure as is described in Sec. B.3.1 can be used to simplify the numerator of

⟨σvrel⟩ as

⟨σvrel⟩ ∝ π2

∫ ∞

0

ds σ(s)s

∫ ∞

√
s

dp+e
−p+/T

∫ √
p2+−s

−
√

p2+−s

dp−. (B.34)
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Using p+ =
√
s cosh(y), one obtains

⟨σvrel⟩ ∝ π2

∫ ∞

0

ds σ(s)s2
∫ ∞

0

dy (cosh(2y)− 1) e−
√
s cosh(2y)/T , (B.35)

where the well known identity sinh2(x) = [cosh(2x)− 1]/2 has been used to take advantage

of the integral definition of the special functions Kn(x). One then gets

⟨σvrel⟩ =
1

32T 5

∫ ∞

0

ds σ(s)s3/2K1

(√
s

T

)
. (B.36)

Therefore, the probability density function of s is given in the above equation and can be

written as

f(s) =
1

32T 2

(√
s

T

)3

K1

(√
s

T

)
. (B.37)

It is straightforward to verify that Eq. (B.37) satisfies the normalization condition. We also

get

⟨s⟩ =
∞∫
0

ds f(s) s = 24T 2,
〈√

s
〉
=

∞∫
0

ds f(s)
√
s =

45π

32
T. (B.38)

Note that the above results of Eqs. (B.37) - (B.38) are compared to the numerical results

for colliding massless partons in ZPC in Sec. 5.2. An excellent agreement between the

numerical results and these analytical ones suggests that the analytical probability density

of s for massless colliding particles is given by Eq. (B.37). However, more work is needed to

prove this fact.
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