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Abstract—Advanced driver assistance systems (ADAS) are 
increasingly being equipped in modern vehicles to provide 
safety warnings and autonomous functions. Cameras are a key 
component in ADAS which collects critical environmental 
information as inputs. Similar to human vision, cameras suffer 
performance degradation in adverse weather conditions. The 
impacts of precipitation, such as raindrops on camera lenses, 
cause blurring and obstruction of camera vision, which 
subsequently affects ADAS performance. The relationships 
between camera image quality, object detection accuracy, and 
surface wettability of camera lenses are investigated for 
different driving-in rain conditions. The goal is to link camera 
performance with ADAS performance from a practical 
perspective. Moreover, the use of hydrophilic and hydrophobic 
camera lenses is explored to provide insights into material 
selection when designing camera lenses for ADAS. The rain 
characteristics perceived by a moving vehicle at different 
driving speeds are simulated using a patent pending rain 
simulation system implemented into a wind tunnel. It is found 
that droplet characteristics, such as size, shape, and motion, can 
impact the camera image quality and, subsequently, object 
detection accuracy. The results suggest that the use of 
hydrophobic camera lenses promotes better performance over 
hydrophilic lenses in most cases, while object detection 
capability is restored more effectively on the hydrophilic lens 
when a water film layer is formed.  

Keywords-camera; sensor performance; perceived rain 
simulation; autonomous vehicle; object detection; image quality 
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I.  INTRODUCTION 

Advanced driver assistance systems (ADAS) play a critical 
role in reducing the risk of road accidents by alerting drivers or 
performing autonomous tasks [1]. Cameras are one of the most 
common ADAS sensors, as all modern vehicles have cameras 
to perform various driver assistance tasks. In fact, with current 
technologies, it can be said that the camera is considered to be 
the most important sensor on a vehicle [2]. For example, Tesla, 
a leading manufacturer of electric vehicles that are well-known 
for their autopilot functions, has explored the use of only 

cameras, a total of eight cameras in the recent models [3], 
shown in Fig. 1. 

A stereo-vision system can be achieved by using two or 
more cameras, facilitating the possibility of generating a 3-
dimensional (3D) image with depth perception. Whereas when 
only a single camera is used, the mono-vision system results in 
2-dimensional (2D) images. Today, cameras are compact, high 
resolution, and relatively inexpensive compared to other ADAS 
optical sensors (e.g., LiDARs). Many state-of-the-art ADAS 
features rely on camera image input, including lane departure 
warning, parking assist, and traffic sign recognition [2]. 

There has been a growing interest in autonomous vehicle 
(AV) developments, evidenced by various field testing 
announcements made by AV manufacturers. However, to this 
date, the performance of ADAS sensors when driving in 
adverse weather conditions is still not very well understood and 
quantified. This literature gap hinders the development of 
reliable and safe autonomous features for road vehicles. 

In addition, it has been demonstrated that material selection 
is rather important in optical sensor performance. It is common 
for vehicle users to apply coatings on glazing surfaces, such as 
windshields, side windows, and mirrors, to improve visibility. 
Considerations of surface functionalities have a long history. A 
major motivation for tuning surface properties is to provide 
protection and passively mitigate surface contaminants (i.e., 
soiling). It was discussed that coatings would be a big part of 
future AVs, particularly for ADAS sensor applications [4].   

 
Figure 1.  Locations of cameras on a Tesla vehicle. 
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Previously, our research group has investigated the 
degradation of camera focus quality when subjected to 
controlled wind-driven rain, which replicates the perceived 
rainfall conditions of a moving vehicle [5]. This paper is a 
continuation of the work in [5], with the intention to not only 
evaluate the raw camera image quality but also object detection 
accuracy as a step to quantify ADAS, as well as case studies 
with different lens materials.  

The objectives of this paper are to first simulate realistic 
driving-in rain conditions in a controlled environment, then to 
evaluate camera and ADAS performances on relative clarity 
and object detection accuracy using existing metrics and 
algorithms, and lastly to investigate the effects of surface 
wettability of the camera lens on camera performances. The 
proposed studies will contribute to understanding the necessary 
correlations between driving-in rain conditions and the effects 
of lens material selection on ADAS camera performance. It is 
hopeful that this will aid AV developments.  

II. LITERATURE REVIEW 

A. Camera Vision in Rain 

Cameras work in the visible light region, which resembles 
human eye perceptions. Cameras are passive sensors as they 
receive signals without emitting any. They have light sensors 
that convert the reflected light from an image onto a planar view 
through focusing from the lens. Camera vision in rain is highly 
dependent on the camera specifications, such as exposure time, 
depth of field, and algorithms [6]. Parameters can be selected 
for various purposes, such as to reduce or enhance rain effects. 

Camera vision is affected by both falling droplets (in-mid-
air) and adherent droplets (on the camera lens) [7]. Droplets in 
the atmosphere cause contrast attenuation, whereas fast moving 
in-air droplets cause sharp intensity changes. On the other hand, 
camera performance degrades when raindrops impact the lens 
frequently. Droplets that adhere to the lens cause distortions and 
blurriness; the light reflections can also cause the deterioration 
of operational algorithms.   

B. Camera Raw Image Quality 

In ADAS, an optical camera provides the ability to perceive 
environmental information, therefore, it is a major contributor 
to higher autonomy [2]. Through image processing techniques 
and convolutional neural network (CNN) based machine 
learning algorithms, object detection capability can be achieved 
[8]. Degradation in camera perception quality due to adverse 
weather conditions negatively affects the ability to detect 
surrounding objects [9]. In the case of driving in rain, water 
droplet induced degradation in the forms of blurring, glaring, 
and distortion to the ground truth image severely lowers the 
quality of detection. Therefore, maintaining a high level of 
camera image quality is a top priority in ensuring reliable 
ADAS functionalities. 

It can be said that delivering high clarity raw image input is 
the first step in object detection quality. To quantify the quality 
of raw camera image, two types of evaluation metrics are often 
used – full reference and no reference metrics [10]. Full 
reference metrics such as Peak Signal-to-Noise Ratio (PSNR) 
and Structural Similarity Index Measure (SSIM) require a 

reference image as a comparison standard. No reference 
metrics, while only providing estimation, require no reference 
frame. Common no reference assessment metrics evaluate the 
degree of blurring or blocking and spatial and temporal 
information [11]. Although no agreed-upon standards exist in 
real world automotive applications, no reference assessment 
metrics are more logical to deploy due to a lack of controlled 
reference frames when driving outdoors. 

C. Soiling Detection 

In order to enhance camera image quality, some have 
proposed methods to support partial signal degradation using 
soiling detection methods; common strategies include a binary 
algorithm that uses annotations to determine the severity of 
soiling [12] or image processing approaches such as 
background subtraction and watershed techniques [13]. In 
simpler terms, the presence of degraded spots on the camera 
image due to adherent droplets on the camera lens is identified 
and can undergo corrections. 

However, these proposed methods are not able to provide 
extremely precise information for complete restoration, where 
the image processing techniques could only yield around 70 % 
accuracy when compared to the ground truth [13]. The 
background subtraction method also yielded slightly higher 
false positive counts per image, which may lead to a counter-
effect when attempting to enhance the image quality.  

D. Object Detection Quality 

It was debated that a lot of existing work on droplet 
detection is fundamentally interesting, but they are not practical 
from the ADAS sensor application perspective [13]. Ultimately, 
images obtained by the camera cannot provide any useful 
information if the ADAS does not recognize the information 
within the images. Here, object detection comes into play as the 
major input for various ADAS functions. The quality of object 
detection is necessary to be assessed to determine the feasibility 
of real-world implementation. 

Object detection algorithms often employ CNN models. 
One of the most popular open-source object detection models is 
You Only Look Once (YOLO) [14]. The standard evaluation 
metric for object detection algorithms is Intersection-over-
Union (IoU), defined as 

𝐼𝑜𝑈 =
|஺∩஻|

|஺∪஻|
            (1) 

IoU compares the bounding boxes of the ground truth object 
to the prediction bounding boxes, depicted as the overlapping 
area over the union area [2]. In addition to IoU, the metrics of 
precision and recall offer further performance quantification 
[15]. Precision and recalls are defined as: 

        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௥௨௘ ௣௢௦௜௧௜௩௘

்௥௨௘ ௣௢௦௜௧௜௩௘ ା ி௔௟௦௘ ௣௢௦௜௧௜௩௘
          (2) 

          𝑅𝑒𝑐𝑎𝑙𝑙 =
்௥௨௘ ௣௢௦௜௧௜௩௘

்௥௨௘ ௣௢௦௜௧௜௩௘ ା ி௔௟௦௘ ௡௘௚௔௧௜௩௘
             (3) 

Through the effort of numerous individuals across the globe 
over time, multiple variations of YOLO exist in the open 
literature, each with its pros and cons [16]. Studies to compare 
versions of YOLO have been performed by several research 
teams [17, 18]. 
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E. Effects of Material Wettability   

Droplets can be considered as liquid lenses that compound 
onto the camera lens at individual spots, which attenuate light 
paths due to their curvatures [19]. As a result, they affect camera 
performance. Droplet contact time is also a crucial parameter 
that determines the severity and duration of performance 
degradation. Bouncing is often seen on hydrophobic surfaces 
with contact time as low as 10 milliseconds but is rarely 
observed on hydrophilic surfaces, as droplets would spread and 
dissipate kinetic energy [20].  

Criteria for anti-soiling surfaces were established in the 
past; gradually, more attention was turning towards reducing 
the Weber number, and increasing hydrophobicity as these 
surfaces showed better performance in self-cleaning ability, 
owing to the shape and resultant motion of the droplets [21]. 
However, without actual quantification of camera performance 
and the capability of ADAS to interpret the input information, 
huge assumptions remain for optical sensor performance in 
soiling conditions, only relying on the observations from human 
eye perception. 

III. EXPERIMENTAL 

In this study, ADAS camera performance when driving in 
rain is investigated. Perceived rain conditions for a moving 
vehicle are simulated in a wind tunnel. The rain characteristics 
are first measured, and the camera is exposed to the same 
calibrated conditions afterwards. Two camera lenses having 
different wettabilities, hydrophilic and hydrophobic, are 
investigated. Video footage is recorded during each test trial for 
two minutes, and then camera image quality and object 
detection accuracy are quantified on these files. The details of 
the methodology are outlined in the following sections.  

A. Wind Tunnel Setup 

Controlled testing is performed using an open circuit model 
wind tunnel, having a test section size of 40 cm (H) x 50 cm 
(W) x 110 cm (L). A rectangular waterproof container is used 
to protect the camera assembly. The side walls of the test 
section are removed to reduce blockage effects, and a flow-
collector flap is placed at the top of the test section to prevent 
updraft. Improvement of the setup is made compared to the 
previous work by the authors [5]. The container is positioned at 
the center height of the test section on top of a hollow riser 
block, shown in Fig. 2, to eliminate the undesired boundary 
layer effect near the bottom board, as aerodynamics plays a 
significant role in the droplet dynamics.  

B. Driving-in Rain Conditions 

Three driving speeds (50, 75, and 100 km/h) and three rain 
intensities (light, moderate, and heavy rain) are studied, 
resulting in a total of nine test conditions. These conditions 
represent the range of typical driving-in rain scenarios on city, 
sub-urban, and highway roads. Controlled rain conditions are 
simulated using a patent pending (Application Number US 
17/994,886) rain system with vertically dispensed raindrops 
above the test section; the droplets are then deflected by the 
horizontal wind upon entering the wind-stream. 

The author’ previous work [5] already demonstrated the 
perceived concept that driving faster generates higher raindrop  

 
Figure 2.  Experimental setup at the model wind tunnel at Ontario Tech 

University, Canada. 

counts and intensity on the front facing camera; the same 
concept is applied in this study. The rain characteristics are 
measured with the Thies Clima Laser Precipitation Monitor 
(LPM), which is an optical disdrometer. The volume mean 
droplet diameter is measured to be between 0.66 to 1.58 mm for 
all the simulated conditions. 

Despite optical disdrometers being one of the most 
advanced equipment for weather measurements, there are still a 
lot of uncertainties in the recorded data [22]. In the authors’ 
previous study [5], the per-particle-event mode was used. In the 
present study, a per-minute-distribution mode is used to 
eliminate some of the data loss arising from communication in 
cases with higher intensity and droplet counts, which finds a 
better fit with the quantified camera performance.    

As such, using the same previously calibrated rain system 
parameters, some of the intensities measured in this paper 
(Table 1) are different from the ones reported previously [5], 
and might deviate from the actual target intensities. Therefore, 
the dynamic to static intensity ratio is neglected, and each 
driving speed is treated as a separate dataset. The primary scope 
of the paper is to investigate the materials effect on camera 
performance using hydrophilic and hydrophobic lenses; the 
effect of driving speed is not an objective of this paper. 

C. Camera and Lens Materials 

The camera model used in this study is the GoPro Hero7. 
The camera is set with 1920 × 1440 pixels at 60 fps and linear 
view. The camera is placed inside the waterproof container and 
is fixed in angle and position. A 4.5 mm thick, flat and optically 
transparent cover is placed 5.0 mm in front of the camera, which 
acts as the outer protection lens of the device assembly.  

Two different materials are investigated, including a bare 
acrylic (hydrophilic) and a coated acrylic with RainX-Plastic 
(hydrophobic). The wettabilities of the two materials are 
measured using the Sessile drop method [23]. The static water 
contact angles are ~50° and ~90° for the hydrophilic and 
hydrophobic variants, respectively, as shown in Fig. 3. 

 
Figure 3.  Droplet on the (A) hydrophilic lens and (B) hydrophobic lens. 
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TABLE I.  PERCEIVED RAIN INTENSITIES SIMULATED FOR DIFFERENT 
DRIVING-IN-RAIN CONDITIONS 

Rain Category 
Measured Rain Intensities (mm/h) 

50 km/h 75 km/h 100 km/h 

Light 5.0 5.1 12.3 

Moderate 21.0 25.2 96.3 

Heavy 71.3 104.5 270.8 

D. Blurring Index Evaluation 

While full reference image quality assessment metrics are 
possible in this testing environment, a no reference quality 
assessment metric is used in this study as it better applies to 
real-world ADAS implementation. The MSU Blurring Index 
Metric, reported previously [24], estimates the power of 
blurring within a dataset by estimating the color variance in 
neighboring pixels. The Delta variation is used in this study, 
which computes a neighboring radius of 1-pixel. It is noted that 
the index score of a no reference metric is by no means absolute. 
The index score is used as a comparative measure to evaluate 
relative image quality within the dataset. The reason for 
selecting the MSU Blurring Index Metric is largely due to the 
fact that it is not restricted to measuring compression artifacts 
only, but also natural out-of-focus areas. Although this would 
lead to a limitation that only index values generated within a 
similarly structured dataset can be directly compared, however, 
the camera location and surrounding environmental information 
are both constant in this study. Therefore, the said limitation 
does not apply. 

E. Object Detection Evaluation 

To ensure a consistent object detection evaluation, a generic 
stop-sign is used as the realistic target for AV applications. The 
stop sign is placed on the outside of the wind tunnel test section, 
and is securely mounted without vibration. The open-source 
object detection model YOLOv3 is employed together with the 
generic and pretrained COCO dataset [25]. Using the 
unmodified dataset provides a bias-free evaluation platform for 
this study, as any training will induce an intentional 
improvement of the assessment. Since reducing total object 
classification will result in a modification of the detection 
quality, all other object classes in the dataset are hidden from 
view but not removed. Quantitative analysis is performed on the 
stop sign only. 

The overall YOLO detection system consists of three stages: 
image compression or resizing, CNN computation, and 
outputting resultant detection as bounding boxes, classes, and 
confidence levels [26]. Each type of object is considered a class. 
The class confidence score relates to the probability of the 
specific class appearing in a bounding box and how well they 
fit the object.  

In this study, quantitative analysis is performed based on 
several metrics: prediction confidence, IoU, precision, and 
recall. The prediction confidence index is generated by the 
detection algorithm and is then compared to the IoU of the 
ground truth. Fig. 4 shows a graphical representation of IoU. 
The overall prediction quality can be mathematically 
represented as: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ∗ 𝐼𝑜𝑈ீ௥௢௨௡ௗ ்௥௨௧௛     (4) 

 
Figure 4.  Definition of Intersection over Union (IoU). 

Additionally, precision and recall are based on true or false 
and positive or negative detections. The four possible scenarios 
can be arranged in a confusion matrix, shown in Table 2; The 
four possible scenarios can be graphically represented in Fig. 5. 

IV. RESULTS AND DISCUSSIONS 

A. Soiling Behaviors 

Example images from the recorded camera footage when 
using hydrophilic and hydrophobic lenses under 50 km/h light 
rain, 75 km/h moderate rain, and 100 km/h heavy rain 
conditions are presented in Fig. 6. Observations on the post-
impact droplet dynamics are summarized. 

On the hydrophilic lens, the adherent droplets are larger in 
size, and some are irregular in shape. Droplet movements tend 
to be slower and spread due to the high adsorption energy of the 
surface. When rain intensity is heavy enough, a layer of water 
film is formed. On the other hand, the adherent droplets on the 
hydrophobic lens are smaller in size and rounder in shape with 
little to no deformation. In this case, molecular interactions are 
higher due to low surface energy. This non-wetting effect, 
therefore, facilitates the drainage of water.  

All observations align well with the general understanding 
of wettability effect on droplet behaviors [21]. This evidence is 
applied for further analysis and reasoning for the quantified 
camera image quality and object detection accuracy.  

B. Blurring Index 

The blurring index results of all tested conditions are shown 
in Fig. 7. It is observed that as the rain intensity increases, the 
image becomes more blurred. This trend is followed by both 
hydrophobic and hydrophilic lenses. The hydrophobic lens 

TABLE II.  CONFUSION MATRIX DESCRIBING THE FOUR POSSIBLE 
SCENARIOS IN DETECTION 

Ground truth 

Positive prediction True positive False negative 

Negative prediction False negative True negative 

 
Figure 5.  Definitions for (A) true positive, (B) true negative, (C) false 

positive, and (D) false negative. 
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Figure 6.  Example images of hydrophilic lens (left) and hydrophobic lens 
(right) under (A) dry, (B) 50 km/h light rain, (C) 75 km/h moderate rain, (D) 

100 km/h heavy rain conditions. 

shows a steady improvement over the hydrophilic lens for all test 
conditions. This behavior aligns with real life observations that 
the application of commercially available hydrophobic coatings 
reduces droplet adhesion and other random interactions between 
nearby droplets at the glazing surfaces. Whereas hydrophilic 
lens induces irregularly shaped droplets, which results in 
distortion spots on the image. In extreme cases, water film 
formation is observed on the hydrophilic lens, causing 
significantly increased blurriness. The water film acts as a 
natural blurring filter and reduces contrast, or color variance, 
between objects, leading to a lower blurring index score. This 
observation is seen across all simulated driving speeds at 
respective perceived rain intensities. As the perceived rain 
condition worsens, the difference between hydrophilic and 
hydrophobic lenses magnifies, from 8.2% at 50 km/h light rain 
to 47.7% difference at 100 km/h heavy rain condition. 

C. Object Detection 

Object detection quality results repeated similar overall 
trends, demonstrated in Fig. 8. Prediction quality decreases as 
the perceived intensity increases. This is found true for both 
material lenses at various driving speeds with the exception 
being the case of 100 km/h heavy rain condition for the 
hydrophilic lens, where the object detection quality increases to 
a comparable degree with 100 km/h light rain. Due to the high 
rain intensity and high wind speed, a water film is formed and 
stays in a relatively stable state on the hydrophilic lens. It is 
suspected that this phenomenon allows the light beams to travel 
through the layer of water film without significant refraction. 

 
Figure 7.  Blurring index scores for hydrophobic and hydrophilic lenses 

compared with simulated perceived rain intensities at different driving speeds. 

 
Figure 8.  Prediction quality for hydrophobic and hydrophilic lenses 

compared with simulated perceived rain intensities at different driving speeds. 

Compared to the hydrophilic lens, the hydrophobic lens 
shows improvements in detection quality. However, the 
relationship is found to be non-linear. The increase in adherent 
droplet movement speed and the reduction in droplet size both 
contribute to reducing the overall blurriness of the image and 
allowing better detection of environmental information. 
However, a direct vision blockage by the droplets may occur in 
the place of blurring due to the increase in the slope of the droplet 
curvature. The general trend of detection quality decrease aligns 
with the trend of a decrease in the blurring index score. It can be 
said that the object detection quality depends on the camera 
image input clarity. 

Precision represents the correctness of predictions, whereas 
recall represents the capability of a positive detection. Fig. 9 and 
Fig. 10 show the precision and recall metrics of hydrophobic 
and hydrophilic lenses under all tested conditions, respectively. 
It is found that the hydrophobic lens results in very high scores 
in both precision and recall, which are significantly higher than 
those for the hydrophilic lens. This indicates the hydrophilic 
lens encounters far more false positive and false negative 
detections, which explains the result in an overall decrease in 
detection quality. In the case of the hydrophobic lens, an almost 
perfect recall metric score is observed, a dramatic increase over 
the hydrophilic lens. It is suspected that the observation is due 
to hydrophilic cover results in larger droplets that may cause 
reflection, distortion, obstruction, or a combination of the three 
factors. 
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Figure 9.  Precision for hydrophobic and hydrophilic lenses. 

 

Figure 10.  Recall for hydrophobic and hydrophilic lenses. 

V. CONCLUSIONS 

A controlled and realistic method to evaluate and quantify 
ADAS camera performance in various driving-in rain 
conditions is presented. The relationships between camera 
image quality, object detection accuracy, and perceived rain 
conditions are investigated. The proposed study serves as a step 
forward to correlate raw sensor signals with ADAS 
functionality when driving in rain. In addition, the effects of 
surface material properties on optical sensor performance are 
emphasized, which is an important parameter to be considered 
when conducting studies on optical sensors. This piece of 
information related to materials is currently lacking in the open 
literature. In general, camera image and object detection quality 
degrade as rain intensity increases. Hydrophobic lenses show 
more superior performance than hydrophilic lenses with higher 
precision and fewer false detections, except for the single case 
when a water film is formed and restored performance partially. 

A larger database on ADAS and sensor performances is 
certainly desired for AV developments. Several aspects of 
future work are recommended, including investigating more 
realistic targets at different distances from the camera and with 
wider selections of evaluation metrics, further quantification of 
droplet dynamics under a broader range of conditions to aid 
material design and selection, as well as developing 
performance enhancing methods through soiling mitigation and 
training of object detection models in rain.  
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