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Abstract—This paper focuses on the effect of aggressive 
driving behavior on fuel consumption of a vehicle. Different 
from the traditional statistical analysis method, this paper 
adopts the frequency domain analysis method to analyze 
driving aggressiveness and apply a quantitative driving 
aggressiveness evaluation metric. At the same time, the fuel 
consumption impact caused by the driving aggressiveness 
under different driving situations is analyzed. The results are 
demonstrated for two university shuttle bus. Fuel consumption 
rate of each vehicle is determined by using available on-board 
diagnostics (OBD) data including intake air mass flow rate of 
engine and air/fuel equivalence ratio. The experimental results 
show that the degree of influence of driving aggressiveness on 
fuel consumption is not the same in different driving situations. 
The higher the speed of the driving situation, the greater the 
difference in fuel consumption caused by driving 
aggressiveness. 

Keywords-driving behavior; frequency domain analysis; driving 
aggressiveness; driving situations; fuel consumption 

I.  INTRODUCTION  

The University of Alberta manages more than 170 vehicles, 
hereafter referred to as the University of Alberta fleet vehicles. 
These fleet vehicles consume about 205,000 liters of fuel per 
year, and the CO2 greenhouse gas (GHG) emissions released by 
these vehicles is about 564,000 kg each year. To this end, a 
research project under the University of Alberta Energy 
Management and Sustainable Operations (EMSO) aims to 
achieve the goals of operational fuel and cost reduction, GHG 
emission reduction, and campus air quality improvement. This 
paper focuses on characterizing the excess fuel consumption 
caused by a driver's driving behavior.  

The research on driver’s driving behavior (also referred to as 
driving behavior for short) usually consists of three parts as 
shown in Fig.1 [1, 2, 3]. Within the scope of driver self-influence, 
research directions can be divided into three categories, that is, 
(i) finding the optimal driving cycle, (ii) driving behavior 
prediction, and (iii) driving characteristic classification [4, 5, 6]. 
The research on driving characteristic classification can be 

further divided into three categories, including driver emotion 
impact analysis, unsafe behavior analysis, and driving 
aggressiveness analysis [7, 8, 9]. This study focuses on the 
driving aggressiveness (DA) in driving behavior. Traditional 
DA research methods focus on the statistics of acceleration [10]. 
However, statistical methods will ignore the detailed 
performance of driving behavior. These detailed behaviors are 
needed for the analysis of DA in different driving situations. 
Therefore, this paper adopts the frequency domain analysis 
method to analyze the DA under different driving situations [11]. 
In Fig. 1, the focus area of this paper is highlighted in green 
blocks.  

A clustering algorithm, K-means algorithm [12], is applied 
to classify driving situations. According to the characteristics of 
the experimental vehicles, multiple driving situations ranging 
from low-speed crawling driving situations to high-speed urban 
driving situations are divided to study DA in detail. To analyze 
the difference in fuel consumption (FC) at the scale of the whole 
driving cycle, a model that uses mass flow rate of intake air 
(MAF) to estimate fuel consumption rate (FCR) is used [13]. 

 
Fig.1 Classification of driving behavior analysis. Green blocks show the focus 

area of this study. 
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The main contributions from this paper include: (i) real word 
data collection and identification of different driving situations 
of two campus minibuses, (ii) analysis of the DA differences 
under different driving situations, and (iii) investigation of the 
differences in FC caused by differences in DA under different 
driving situations. 

This paper is organized as follows: Section 2 explains the 
vehicle experimental setup. The method of frequency domain 
analysis, driving situations classification algorithm, and models 
to estimate FC are described in Section 3. Section 4 specifically 
shows the driver's DA and FC differences in different driving 
situations and finally Ssection 5 presents the summary and 
conclusions. 

II. VEHICLE EXPERIMENTAL SETUP 

A. Vehicle Selection 

In this paper, two minibuses from the University of Alberta 
fleet vehicles are selected for study. Two minibus vehicles are 
driven by two drivers respectively. The driving path of the 
minibus is fixed. This allows to properly reflect the difference in 
vehicles’ performance (such as FC) caused by the difference in 
the driving behavior of the drivers. The two minibuses transfer 
students between the main campus and Campus Saint-Jean 
(CSJ). By using two similar minibuses (Table 1) to analyze 
driving behavior, the difference caused by vehicles is reduced.  

As shown in Fig. 2, both minibuses travel between the 
University of Alberta (UA) main campus and CSJ campus along 
the same route. Mark 1 in Fig. 2 is the UA main campus and 
Mark 2 in Fig. 2 is the Saint Jean campus. The reason why the 
lines of the GPS route map at the Marks 3 and 4 locations are 
not clear is because the route at Mark 3 will pass through a tunnel, 
and the route at Mark 4 will pass through an iron bridge, High 
Level Bridge of Edmonton. The tunnel and iron bridge made the 
receiving and sending of GPS signals unstable. 

B. Data Collection 

In this study, Freematics One+ on-board diagnostics (OBD) 
data loggers, shown in Fig.3 (c), were used to collect minibus 
vehicle data. The vehicle OBD interface is shown in red box in 
Fig. 3 (a) and the zoomed picture is shown in Fig. 3 (b).  In this 
study, vehicle data for a total of 17 days was collected from the 
two minibuses leading to 83,685 collected data. 

C. Microtrip Database 

The traditional driver behavior analysis is in the driving cycle 
scale, which omits the driver behavior difference in different 
driving situations. Microtrip is a small-scale “driving cycle”, 
which is obtained by slicing driving cycles [14]. A Microtrip is 
defined as a trip between two consecutive time when the vehicle 
speed is zero. Microtrip database for the collected data is shown 
in Fig. 4. According to Microtrip's maximum and average 
vehicle speed, different driving situations can be divided, such 
as creeping situations, urban low-speed driving situations, and 
urban high-speed driving situations, highway driving situations 
[15]. By dividing the Microtrip database to obtain driving 
situations, the differences in driving behavior are analyzed from 
a microscopic perspective.  

 
Fig.2 The GPS route map for minibuses 

TABLE 1 INFORMATION OF UA MINIBUSES  

Vehicle Minibus A Minibus B 

Photo 

  
Makers & 

Model 
Ford E450 Ford E450 

Year 2018 2020 

Rated Power  325 hp 325 hp 

Engine Size 7.3 L V8 7.3 L V8 

III. METHOD FOR ANALYZING DRIVING BEHAVIOR 

A. Determine the Driving Situations 

Each Microtrip has a certain value of average vehicle speed and 
maximum vehicle speed which are the most important driving 
characteristic parameters [16], as shown in Fig. 4. Each point in 
Fig. 4 is a Microtrip. By using the data in Fig. 4, a machine 
learning model is developed to form the sub-Microtrip database. 
Each sub-Microtrip database presents one of driving situations 
from creeping situations to high-speed driving situations. In this 
study, the K-means algorithm is used to determine the sub-
Microtrip database. 

The K-means algorithm is a typical unsupervised learning 
algorithm, which is mainly used to automatically classify similar 
samples into one category. In the clustering algorithm, samples 
are divided into different categories according to the similarity 
among samples. For different similarity calculation methods, 
different clustering results will be obtained. The similarity 
calculation method used in this paper is the Euclidean Distance 
method [17] because Euclidean Distance method is simple to 
calculate and it can speed up the algorithm. 

For using K-means algorithm, firstly, the sample set X in 
Equation (1) and the number of clusters k should be determined. 
Each element in X is called an object. 

 𝑋 =  {𝑋 , 𝑋 , 𝑋 , … 𝑋 }  (1) 

The goal of the K-means algorithm is to gather n objects into 
the specified k clusters according to the similarity between 
objects. For K-means, it is needed to initialize k cluster centers 
as listed in Equation (2). Initialized k cluster centers are usually 
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Fig.3 The minibus cabin showing the OBD port and OBD data logger for data 
collection 

composed of k points which are randomly selected from X. 

 𝐶 =  {𝐶 , 𝐶 , 𝐶 , … 𝐶 }, 1 < 𝑘 ≤ 𝑛 (2) 

Equation (3) is used to calculate the Euclidean distance (dis) 
from each object to each cluster center. 

 
𝑑𝑖𝑠 𝑋𝑖, 𝐶𝑗 =  ∑ 𝑋𝑖𝑡 − 𝐶𝑗𝑡    (3) 

Next, the distance from each object to each cluster center is 
compared, and the object is assigned to the cluster with the 
nearest cluster center. Therefore, k clusters S is determined in 
Equation (4). 

 𝑆 =  {𝑆 , 𝑆 , 𝑆 , … 𝑆 } (4) 

The K-means clustering algorithm uses the center to define 
the characteristics of the cluster. The new cluster center of the 
cluster is the mean value of all objects in the cluster in each 
dimension. The equation to calculate new cluster center (𝐶𝑖𝑛𝑒𝑤) 
is as follows. 

𝐶𝑖𝑛𝑒𝑤 =  
∑ 𝑋𝑖𝑋𝑖∈𝑆𝑖

|𝑆𝑖|
 

(5) 

After obtaining the new cluster center, an interactive process 
is followed to calculate distance from each object to each cluster 
center to determine the new cluster center. Until the value of the 
cluster center does not change, the classification of the data is 
completed. 

For the selection of k value, this paper uses cross-validation 
to select the optimal k according to the loss function [18]. 

 
Fig.4 Microtrip database for UA minibuses 

 𝐽 =  ∑ 𝑚𝑖𝑛 ‖𝑋 − 𝐶 ‖   (6) 

The loss function (J) will eventually have an elbow point. 
According to the elbow point, the best k value is selected. 

By using K-means algorithm, the sub-Microtrip database is 
determined and each cluster of the Microtrip is a driving 
situation. The result is shown in Fig. 5 (a). In Fig. 5 (a), each 
point represents a Microtrip, and points with the same color 
mean they are in the same driving situation. In Microtrip 
Database part, shown in Fig. 5 (b), each figure is composed of 
multiple Microtrip lines, and it is determined as sub-Microtrip 
database (one sub-Microtrip is zoomed for demonstration). In 
each sub-Microtrip database, one Microtrip line is bolded for 
demonstration. 

B. Frequency Domain Analysis 

Microtrip is a signal sequence with a limited time. Since 
OBD receives signals at a frequency of 1Hz, this signal sequence 
can be regarded as a discretized version of continuous time 
driving velocity. Discrete Fourier Transform (DFT) is used to 
analyze Microtrip signal in the frequency domain. DFT maps 
length-N signals into a set of N discrete frequency components. 
The DFT Equation can be seen in Equation (7) 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−𝑗
2𝜋

𝑁𝑁−1
𝑛=0 ,  𝑘 = 0, … , 𝑁 − 1   (7) 

Using Fast Fourier Transform (FFT) can speed up the 
transformation time of DFT and optimize the algorithm.  

Based on DFT and Parseval theorem [19], as shown in 
Equation (8), it is known that the energy of the time-domain 
signal sequence and frequency-domain signal sequence is 
conserved. 

∑ |𝑥(𝑛)| =   ∑ |𝑋(𝑘)|     (8) 

The content |𝑋(𝑘)|  on the right side of Equation (8) is 
Periodogram [20]. The value under the Periodogram area is 
exactly the variance of the signal in the time domain. The 
variance of the time-domain signal is exactly the fluctuation of 
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driving speed, that is, the embodiment of DA. Therefore, the 
DA can be reflected by the |𝑋(𝑘)|  value of the frequency 
domain signal, and this description is quantitative. When 
performing frequency domain analysis, it is first necessary to 
subtract the average velocity of the Microtrip signal. Because 
the zero-mean signal occupies too much energy in the frequency 
domain. At the same time, the zero-mean signal cannot reflect 
the driver's driving performance. Also, DA is not altered by the 
speed mean.  The analysis of DA in different speed ranges can 
be analyzed in different driving situations. Moreover, to analyze 
the Microtrip signal, it is necessary to obtain the second order 
derivative to obtain the jerk trace. Because if the velocity signal 
is directly subjected to frequency analysis, the low-speed 
component signal accounts for too much energy in the 
frequency domain. This makes DA less sensitive. The low-
frequency (LF) components of the velocity signal in the 
frequency domain are usually caused by the driving 
environment, while the high-frequency (HF) speed components 
are caused by the driving behavior, and the limit of this high 
and low frequency is 1Hz [21]. Thus, the numerical expression 
of driver aggressiveness can be shown by Equation (9). 

DA=  
HF

LF+HF
    (9) 

Where HF represents high-frequency energy, and LF 
represents low-frequency energy. Thus, the numerical range of 
DA is between 0 and 1, and the closer it is to 0, the smoother 
the driver is driving, and the closer it is to 1, the more 
aggressively the driver is driving. The flow process of DA on 
the Microtrip database is shown in Fig. 5 for Frequency Domain 
Analysis. 

As shown in Fig. 5 (c), each Microtrip under different 
driving situations was analyzed in the frequency domain. Using 
Equation (9) to calculate the DA value of each Microtrip, the 
DA of different drivers in different driving situations can be 
obtained. 

C. Fuel Consumption Estimation 

The OBD data loggers don’t provide FCR data directly. 
Therefore, engine data including MAF, air-to-fuel ratio at the 
stoichiometric level 𝐴𝐹𝑅 , and the ratio of the actual air/fuel 
ratio (AFR) to stoichiometric level λ  are used to estimate 
vehicle fuel consumption rate. 

FCR(t)= 
MAF(t)

λ( )×AFRstoich
  (10) 

By using Equation (10), FCR data for a driving cycle is 
obtained. To properly assess the driving behavior and its link to 
FCR, all driving data from each driver is used to create 
Microtrips that from a driving cycle. Vehicle data from each 
driver is divided into small pieces to generate Microtrips. At 
same time FCR is also divided into pieces following the same 
segmentation method as Microtrip. Therefore, each Microtrip 
contains information including, velocity, time, and actual FCR 
data. 

FC is an important parameter that reflects the vehicle's 
driving economy. Vehicle fuel consumption is obtained by 
adding up the times of FCR and time interval: 

𝐹𝐶 =   ∑ 𝐹𝐶𝑅(𝑡) × 𝛥𝑡    (11) 

The data recorded by OBD data loggers is used to obtain the 
relatively accurate FC of the experimental driving cycle using 
Equations (10) and (11).  

IV. DRIVING BEHAVIOR FOR MINIMUS DRIVERS 

According to the methods in Section 3.A and Section 3.B, 
the driving behavior of the two minibus drivers at the University 
of Alberta is analyzed.  

Fig. 6 shows driving aggressiveness of drivers A and B in 
different driving situations. In Fig. 6, the x-axis represents the 
magnitude of the DA value. The most aggressive driving occurs  

 

Fig.5 Driving situation division and frequency domain analysis flow
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when the DA is close to 1, and the smoother the driving occurs 
when the DA is close to 0. Each sub-database on the y-axis 
represents different driving situations. Situation 1 with the blue 
color represents low-speed creeping driving situation; Situation 
2 with the orange color represents creeping driving situation; 
Situation 3 with the yellow color represents high-speed creeping 
driving situation; Situation 4 with the purple color represents 
low-speed urban driving situation; Situation 5 with the green 
color represents urban driving situation; Situation 6 with the red 
color represents high-speed urban driving situation. 

For each driving situation, each point represents the DA 
value of the Microtrip under that driving situation. The area plot 
represents the probability density of Microtrip's DA distribution 
under each situation. The boxplot in Fig. 6 shows the upper 
bound, upper quartile, median, lower quartile, and lower bound 
of the data. It can be seen from Fig. 6 that driver B is more 
aggressive than driver A in all situations. Such a difference in 
DA is reflected in fuel consumption, and driver B will consume 
more fuel. As shown in Fig. 7, the lower bound value of fuel 
consumed by driver B is greater than the upper bound value of 
fuel consumed by driver A.The average FC of driver A is 7502 
g and the average FC for driver B is 16304 g. The FC of driver 
B is more than twice that of driver A. 

Fig. 8 shows the difference in fuel consumption of drivers A 
and B under different driving situations. It shows that the 
difference in fuel consumption caused by the driver’s DA is 
different. In situation 2, the average DA value for the drivers A 
and B are 0.31 and 0.76 (0.45 difference), and the difference in 
average FC value is 196 g. However, in the situation 6, the 
average DA value between the drivers A and B is 0.82 and 0.89 
(0.07 difference), but the difference in average FC value is 2904 
g. This shows that in the same situations, the higher the DA 
difference, the larger the FC difference; thus, large DA leads to 
large FC. At the same time, the greater the average speed of the 
driving situation, the greater the excess FC caused by a same DA. 
Moreover, Fig. 9 shows that an aggressive driver drives faster 
than a conservative driver in all driving scenarios. It means that 
the proposed definition, DA, is consistent with the common 
sense. 

V. SUMMARY AND CONCLUSIONS 

This paper uses the frequency domain analysis method to 
determine the driving behavior particularly to quantize driver 
aggressiveness. The method is illustrated for two drivers of the 
University of Alberta shuttle minibuses. Using the clustering 
algorithm, different driving situations are divided into six groups, 
and the driving behaviors of different driving situations are 
analyzed separately. 

Data samples from seventeen days of testing two minibuses 
were used to illustrate DA for two drivers, named Driver A and 
Driver B. It was found that driver B's driving behavior is more 
aggressive in all driving situations. Such a difference in DA 
value is reflected in the fuel consumption, where the average FC 
in a driving cycle scale of driver B is about 5000 g more than 
driver A. When driving situations at higher driving speeds, it 
usually has higher DA. Moreover, even if the driver's DA values 
are close under different driving situations (e.g., Driver B’s 
average DA is 0.86 and 0.89 in situation 5 and situation 6 respec- 

  

 
Fig. 6 Driving aggressiveness of drivers A and B in different driving situations 

 
Fig. 7 Differences in fuel consumption by drivers at the driving cycle scale 
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Fig.8 Differences in fuel consumption by drivers at the driving situation scale  

 

 

Fig.9 Differences in average driving speed by drivers at the driving situation 
scale 

-tively), the average FC is difference (3427 g difference for 
Driver B between situation 5 and situation 6). 

In future research, we will analyze the differences in driver 
behavior of other vehicles in the University of Alberta fleet, and 
create a guideline to assist the fleet drivers to avoid excessively 
high DA. 
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