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Abstract—In this paper, the imitative learning control is
studied to address the problem of high computational cost of
a Nonlinear Model Predictive Controller (NMPC) designed for
controlling the output voltage of a Proton Exchange Membrane
Fuel Cell (PEMFC) stack. The NMPC is already designed with
an embedded Long Short-Term Memory (LSTM) network that
provides the required predictions for solving the optimization
problem. The LSTM-NMPC controller offers the desired per-
formance in voltage tracking and minimizing fuel consumption;
however, its long run-time makes it impractical for real-time
implementation. Therefore, an imitative-based controller is de-
signed to learn the behavior of the LSTM-NMPC and replace
it, resulting in a noticeably lower computational cost while
the desired performance is maintained. The generalization and
adaptability of the imitative-based controller are also studied
in this work. Finally, different simulations are reported for
elaborating the process of designing imitative-based controller
and the associated considerations.

Index Terms—Imitative learning control, Proton-exchange
membrane fuel cell, Model Predictive Control, Data-driven Mod-
eling

I. INTRODUCTION

PEMEFC is a type of fuel-cell power generating system
for mobile and stationary applications. The proton-conducting
polymer electrolyte membrane used in PEMFC enables operat-
ing conditions with lower temperature and pressure comparing
to some other types of fuel cells such as Solid Oxide Fuel
Cell (SOFC) [1]. As it is shown in Figure 1, the hydrogen
is delivered to the anode side and splits into protons and
electrons. The electrons are transferred to the cathode side
through an external circuit which generates the output current
of the system. At the cathode side, oxygen reacts with the
protons permeating through the polymer electrolyte membrane
and forms water molecules. Generated output power and
voltage of the fuel-cell stack are the first variables of interest
which are mainly controlled by the hydrogen fuel flow and
the instantaneous current of the system [2]. The fact that
the system equations of PEMFC are highly non-linear with
several input and output variables makes PEMFC difficult to
be modeled. So far, several methods have been proposed to

control the voltage and power of the fuel cell ranging from
model-based to non-model-based approaches [3].
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Fig. 1: Schematic of PEMFC operation

In our previous work [4], a Long-Short Term Memory
(LSTM) network was designed and embedded inside the
NMPC as the control-oriented model to predict the output
voltage of a 6-kW stationary PEMFC. Embedding a data-based
model inside the NMPC instead of using highly nonlinear
dynamic equations increases the accuracy of the controller
to predict the system behavior [5]. The superiority of the
LSTM-NMPC was shown compared to the linear MPC with
an Auto-Regressive Exogenous (ARX) model as the pre-
dictor. Due to the highly nonlinear essence of the PEMFC
dynamic equations, the linear MPC was not able to predict
the voltage reference. Whereas, due to the inclusion of system
dynamics and accurate data-driven model, the LSTM-NMPC
could capture the nonlinear behavior of the system and follow
the voltage reference with an acceptable mean-squared error
(MSE). The main shortcoming of the LSTM-NMPC was that
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because of the recursive structure of the LSTM cells, the
computational cost increased substantially compared to both
the ARX-MPC and ANN-NMPC methods. Table I compares
the computational cost and reference tracking error between
these three methods. Although the LSTM-NMPC has the least
reference tracking error, its computational cost is far higher
than the ANN-NMPC and ARX-MPC, respectively. As a
result, it deserved to be investigated whether there is a learning
method that can mitigate the LSTM-NMPC computational cost
without sacrificing the tracking accuracy.

Imitation learning is a branch of supervised learning in
which the main agenda is to train an agent to mimic a desired
behavior [6]. If the controller can be replaced by a neural
network model to mimic all the controller interactions, the
computational cost will be reduced while keeping the reference
tracking accuracy unchanged. In other words, Machine Learn-
ing (ML) in the imitation of MPC leads to a unified structure
which guarantees the real-time performance of the system by
reducing the computation time [7]. Using ML in imitation
of MPC is divided into two categories: 1- online imitation,
2- offline imitation. In the offline method, the controller’s
input and output data are collected and used to train a data-
driven model that imitates the behavior of the controller. In
the online imitation method, the controller regularly refers to
the controller subsystem for updates based on the performance
error compared to a predefined threshold [8]. The reason that
the offline imitation technique has been used more than the
online approach is that the main advantage of the offline
method is reducing the computational cost, while the online
method requires more onboard computational cost due to the
simultaneous optimizer online updating [9].

From common ML methods which have been employed in
MPC imitation, Artificial Neural Network (ANN) and Deep
Neural Network (DNN) are more promising. Choosing be-
tween ANN and DNN structures has a direct relation with the
complexity of both the system and controller. DNN is mostly
used in more complex systems containing higher number of
states, inputs, and outputs [10]. The study in reference [11]
indicated that computational cost of an offline imitative DNN
function is approximately 100 times less than online MPC.
Offline imitative method for MPC has been widely used in
the automotive control systems (ACS) and robotics ranging
from the chassis control to the manipulators reference tracking
[12]. To the best of authors’ knowledge, there are only few
studies in literature for using imitative ML on the fuel cell
systems. Authors in [13] combined the imitation learning with
the reinforcement learning method to propose a comprehensive
control technique for stack temperature to tackle the problem
of the coordinated control of the water pump and radiator
of a stationary PEMFC. Performance analysis of PEMFCs
is divided into several categories including dynamic analysis,
durability, stack State of Health (SOH), and estimating the
Remaining Useful Life (RUL) [14]. One of the cardinal fea-
tures of stationary PEMFCs which is used in the performance
analysis is the voltage prediction. The voltage tracking of the
simulated physics-based PEMFC models is done based on an

arbitrary predefined reference which subsumes all the transient
operating ranges [14].

In this paper, to reduce the computational cost of the LSTM-
NMPC while maintaining the reference tracking accuracy,
an imitation-based controller is designed using input and
output data of LSTM-NMPC. The effect of two different
generic voltage references is investigated on the generality
of the resulted imitative-based controller. Furthermore, the
performance of the imitative-based controller and the original
LSTM-NMPC are compared assuming that the plant fuel flow
and air flow actuators are saturated due to aging. It should
be noted that in this research, switching between on and off
modes of the PEMFC is not considered and it is assumed that
the system has reached to its stable operating condition.

The structure of this paper is as follows: Section II briefly
describes the specifications of the PEMFC studied in this
work. Section III is devoted to describing the structure and
process of designing the imitative-based controller. In Section
IV, two problems in the process of designing and implementing
the imitative-based controller are discussed. The first problem
is choosing an appropriate voltage reference for having a
generalized imitative controller. The second problem is related
to the adaptability of the offline imitative-based controller
to new conditions which happen due to the saturation of
fuel and air flow actuators. Finally, the results covering the
aforementioned two problems are reported and discussed in
Section V.

II. FUEL CELL MODEL SPECIFICATIONS

The PEMFC stack model which is used in this paper is
a stationary type with the rated power of 6 kW including a
100 V-dc power generating circuit. The dynamic equations of
the stationary PEMFC stack were derived based on the real
MATLAB-Simscape NetStack-PS6 model [15]. The nominal
voltage and current are 45 V and 133.3 A, respectively. The
total number of cells is equal to 65. Detailed specifications of
the PEMFC stack were provided in our previous work [4].

ITI. IMITATIVE LEARNING CONTROL

For designing the imitative-based controller, a shallow ANN
with one hidden layer containing 10 neurons is used. The
ANN as the imitative learning controller requires data from
the original controller’s block to be trained. In this regard, the
voltage reference which is applied to the LSTM-NMPC block
is used as the input of the ANN. The outputs of the ANN will
be the control effort signals of the actuators which are the
fuel flow rate, air flow rate, and fuel supply pressure. Figure 2
shows the schematic of imitation learning control that is used
in this paper.

One aspect of the learning process of imitative-based con-
troller is the offline learning. In other words, the described
input and output signals are recorded in one dataset which
is used for training the ANN [8]. The trained ANN is then
substituted instead of the LSTM-NMPC block and imitates the
performance of the controller. The advantage of this approach
is the substantial reduction in the running time. However, the

ID 271 — Mechatronics, robotics and controls symposium 2


ID 271 – Mechatronics, robotics and controls symposium

2


TABLE I: Computational cost and reference tracking error of MPC-ARX, NMPC/ANN, NMPC/LSTM for control of PEMFC

Control Method Voltage Reference Type | Run time (s) | RMSE of voltage (v)
Linear MPC/ARX Repeating Sequence Stairs 7.3 1.34
Nonlinear MPC/ANN | Repeating Sequence Stairs 244 0.81
Nonlinear MPC/LSTM | Repeating Sequence Stairs 353.4 0.10
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Fig. 2: Schematic of the imitative learning control

offline framework reduces the adaptability of the imitative-
based controller which will be discussed in the next section.

IV. GENERALIZATION AND ADAPTABILITY OF
IMITATIVE-BASED CONTROLLER

In this section, two problems are studied for developing
an imitative-based controller. The first problem is related to
choosing a proper reference signal for exciting the system and
NMPC controller. This problem is of high importance since the
reference should cover all operating conditions in transient and
steady modes to have a general imitative-based controller that
can successfully replace the original controller. The second
part compares the performance of the NMPC controller and
the imitative-based controller in terms of the run-time and
adaptability. The results will show that the imitative-based
controller runs much faster; however, the major issue of this
controller is adaptability to new conditions. A saturation is
added to the actuators due to aging as the new condition
that the imitative-based controller is not trained for and the
controllers results are compared under the new circumstances.

A. Selecting an appropriate reference signal

The imitative-based controller, similar to any other machine
learning method, relies on the data used for training. In other
words, the designed controller will only be capable of working
in the conditions similar to those in the training dataset.
This fact highlights the importance of collecting a generalized
dataset by applying specific patterns to the reference signal.
The Pseudo Random Sequence (PRS) signal is used first with
a time period of 4 seconds that permits the system to reach the
steady-state mode before the transition to the next reference
step. Figure 3 shows PRS or the step sequence input and the
corresponding three outputs of the controller.
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Fig. 3: Manipulated variables with PRS reference for voltage

The other reference input used for exciting the controller
is the chirp signal which ranges between 0.1 up to 0.5 rad/s.
This signal is also used as it contains all the continuous values
between the maximum and minimum boundaries of the output
voltage. Moreover, a range of frequencies are applied to the
system using this signal. This voltage reference is shown
in Figure 4. The imitation-based controllers based on the
mentioned two datasets were designed individually and applied
to the step sequence and sinusoid references. The results are
reported in section IV.

B. Comparison between adaptability of imitative-based and
original controllers

As mentioned in the previous section, the imitative-based
controller performs well only on the data with the same
characteristics as the training samples. Therefore, although the
imitative-based controller considerably improves the run-time
of the system, any gradual or sudden changes in the system
that are not included in the training data lead to inaccurate
results for imitative-based controller. Whereas, the LSTM-
NMPC shows a better performance since it considers the
measured outputs of the system through the feedback. For
this part, the actuators are presumed to have aged over time
and have less efficiency. Thus, to simulate the aging effect,
the outputs of the actuators are assumed to be limited to 40
percent of their actual capacity. This effect can be applied to
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Fig. 4: Manipulated variables with chirp reference for voltage

the LSTM-NMPC by defining new hard constrains while the
offline imitative-based controller continues to operate with the
same structure and parameters.

V. RESULTS AND DISCUSSIONS

A. Training the imitative-based controller with appropriate
data

As discussed in Section IV, collecting the train data is
crucial for having an appropriate imitative-based controller and
ensure generalization. In this regard, two reference signals, the
PRS and chirp signals, are chosen for exciting the controller.
Accordingly, two imitative-based controllers are designed and
applied to the system. Figure 5 shows the results in response
to the step sequence and sinusoid voltage references.

It can be seen in Figures 5a and 5b that the imitative-based
controller trained with PRS data performs well on the step
sequence reference but is unable to track the sinusoid reference
properly. The Root Mean Squared Errors (RMSE) for these
two diagrams are 0.07 and 0.20, respectively. For the other
case in which the chirp signal has been utilized as the train data
in Figures 5c and 5d, both voltage references are tracked and
the RMSEs are 0.07 and 0.09, respectively. In the latter case,
although the error for the step sequence reference is increased
slightly, the error for the sinusoid reference has dropped
substantially. This result shows that the chirp signal provides
more generality as the resulted imitative-based controller is
able to track both kinds of references. Therefore, for the next
part, the controller trained with the chirp signal is used.

B. LSTM-NMPC and imitative-based controllers for actuator
saturation condition

The imitative-based controller is trained offline in this
work which means that, despite online learning, the imitative
controller’s parameters will not change based on the new
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Fig. 5: Designing imitative-based controller with different
reference signals and testing on step sequence and sinusoid.
(a) train reference: PRS, test reference: step sequence; (b) train
reference: PRS, test reference: sinusoid; (c) train reference:
chirp, test reference: step sequence; (d) train reference: chirp,
test reference: sinusoid
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LSTM-MPC with step sequence reference; (b) LSTM-NMPC
with sinusoid reference; (c) Imitative-based controller with
step sequence reference; (d) Imitative-based controller with
sinusoid reference.

upcoming data. A saturation is added to the fuel flow and
air flow rate actuators due to aging. The imitative-based
controller designed with chirp reference is used for this part
and compared with the LSTM-NMPC performance. Figure 6
shows the results for this part.

Based on these results, the LSTM-NMPC is still able to fol-
low the desired voltage in Figures 6a and 6b. Some distortions
are emerged in both diagrams which results in the RMSEs
equal to 0.08 and 0.14 for the step and sinusoid references,
respectively. However, the imitative-based controller produces
less accurate voltage tracking for both references in Figures 6¢
and 6d. The RMSE is 0.19 for step sequence and 0.22 for the
sinusoid reference, which is worse than the original controller
or LSTM-NMPC. This result highlights the main drawback
of offline learning and the necessity of tuning the data-based
methods in real applications as the system changes. However,
the run-time of the imitative-based controller is still much
less than the LSTM-NMPC. Table II summarizes the results
presented in this paper. The cumulative fuel consumption
which is minimized as one of the objectives of NMPC’s
cost function has been kept unchanged for all the cases. In
addition, the considerable difference in the run time of LSTM-
NMPC and imitative-based controller can be observed. All the
simulations and corresponding run times reported in this paper
were carried out using an Intel Core i7-9700 CPU with 32 GB
installed RAM.

VI. CONCLUSIONS

In this paper, the LSTM-NMPC for controlling the output
voltage of PEMFC was studied to improve its computational
cost by using the imitation learning control methods. First,
the reference signal that entered the LSTM-NMPC controller
and the manipulated variables signal were collected from the
LSTM-NMPC by which a neural network is trained as the
imitative-based controller. Two reference signal types, the
PRS and chirp signals, were used for exciting the LSTM-
NMPC. Based on the generalization criteria, the chirp signal
was chosen. Next, the LSTM-NMPC was replaced with the
trained imitative-based controller and the same performance
with much less running time was achieved. The results show
that the imitative learning controller can mimic NMPC with
an average error less than 0.1 v, while its computational time
was about 50 times less than that of the NMPC.

Furthermore, a change in the system as a result of aging was
considered showing that the offline imitative-based controller
is prone to such changes. The solution for this problem as a
future work is referring back to the LSTM-NMPC for control-
ling the system and updating the imitative-based controller in
an online learning framework; however, this will increase the
onboard computational cost.
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TABLE II: Computational cost, reference tracking error, and cumulative fuel consumption of the designed controllers

Case study Run time (s) | RMSE (V) | Fuel consumption (L)
LSTM-NMPC from [4] on step reference 358 0.1036 27.65
LSTM-NMPC from [4] on sinusoid reference 436 0.0645 27.93
Imitative controller trained with PRBS on step reference 7.1 0.0690 27.56
Imitative controller trained with PRBS on sinusoid reference 8.3 0.2042 27.85
Imitative controller trained with chirp on step reference 7.1 0.0719 27.60
Imitative controller trained with chirp on sinusoid reference 8.5 0.0908 28.05
LSTM-NMPC with actuator saturation on step reference 286 0.0805 26.98
LSTM-NMPC with actuator saturation on sinusoid reference 361 0.1409 27.15
Imitative controller with actuator saturation on step reference 7.6 0.1993 27.68
Imitative controller with actuator saturation on sinusoid reference 8.6 0.2264 28.10
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