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Abstract—The Flux Reconstruction (FR) approach, is used to
study the flow over two-dimensional objects at low Reynolds num-
bers. The Sound Pressure Level (SPL) is computed using a di-
rect acoustic approach at an observer in the near field. The aero-
acoustic shape optimization is performed using the gradient-free
Mesh Adaptive Direct Search (MADS) technique. NACA 4-digit
airfoil is optimized at Re = 10, 000 and M∞ = 0.2 to reduce the
trailing edge noise. The airfoil’s shape is optimized at an appropriate
angle of attack to reduce the SPL while increasing the lift coefficient.
The optimized airfoil is quiet with 0 dB noise and the lift coefficient
is increased by more than 80%.

Keywords-component—gradient-free; optimization; near-field;
aero-acoustic; high-order; noise reduction.

I. INTRODUCTION

According to the World Health Organization (WHO), noise-
induced diseases cause a loss of over one million healthy life
years annually in Western Europe [1]. Previous studies have
examined the adverse effects of noise on the environment and
human health [2], such as wildlife disturbance and habitat
loss [3], and hearing impairment, sleep disruption, stress and
cardiovascular disease [2]. With the expected doubling of air
passengers by 2040 [4], aviation noise impacts need to be
addressed and mitigated.

Accurate aviation noise reduction requires both a precise
noise prediction technique and a suitable optimization strat-
egy. The computational challenges specific to aeroacoustics
include numerical dispersion and dissipation, outflow and
wall boundary conditions, the capacity to model non-linear
phenomena, and the ability to accurately resolve various length
scales [5, 6]. The latest evolution of CAA has been reviewed
thoroughly by different researchers [7, 8, 9]. The advances in
high-order numerical techniques is promising for CAA. These
high-order techniques, such as Spectral Difference (SD) [10],
Spectral Volume (SV) [11], and FR [12], amongst others,

demonstrate great potential for CAA due to their minimal
numerical errors [13] and suitability for modern hardware
architectures [14].

Optimization techniques play a crucial role in various
fields of engineering and science, including fluid dynamics,
aerodynamics, and aero-acoustics, to find the optimal solution
for a problem by minimizing or maximizing an objective
function. These techniques can be classified into gradient-
based and gradient-free methods. Gradient-based optimization
techniques require accurate calculation of the objective func-
tion’s gradient to iteratively find the optimum. For unsteady
problems, gradient-based optimization methods may not be
useful as the objective function will be noisy and non-smooth.
In these cases, gradient-free optimization methods are often
more suitable, as they can handle noisy and complex objec-
tive functions. The combination of gradient-free optimization
techniques and high-performance computing technologies has
led to new possibilities for optimizing fluid dynamics problems
related to noise reduction in aviation and engineering systems.

In this study, the Discontinuous Galerkin (DG) method,
recovered via FR, is used. Moreover, the sound pressure
level at an observer location is computed. Then, the shape
optimization procedure is conducted using the gradient-free
MADS technique to reduce the noise at the observer. The
objective of this study is to investigate the feasibility of
high-order numerical techniques coupled with gradient-free
optimizers for aero-acoustic problems.

II. METHODOLOGY

This section presents an overview of the methodology
employed to solve the unsteady Navier-Stokes equations, fol-
lowed by an explanation of the optimization technique used
in this study.
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A. Governing Equations

The compressible unsteady non-linear Navier-Stokes equa-
tions can be cast in the following general form

∂U

∂t
+∇ · F = 0, (1)

where U is the vector of conserved variables

U =

 ρ
ρui
ρE

 , (2)

where ρ is density, ρui is a component of the momentum, and
ρE is the total energy. The inviscid and viscous Navier-Stokes
fluxes are

Fi,j(U) =

 ρuj
ρuiuj + δijp
uj(ρE + p)

 , (3)

and

Fν,j(U,∇U) =

 0
τij

−qj − uiτij

 , (4)

respectively, where δij is the Kronecker delta. The pressure is
determined via the ideal gas law as

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
, (5)

where γ is the ratio of the specific heat at constant pressure,
cp, to the specific heat at constant volume, cv . The viscous
stress tensor is

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
. (6)

And, the heat flux is

qj = − µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
ukuk

)
, (7)

where µ is the dynamic viscosity and Pr is the Prandtl number.

B. Flux Reconstruction

The FR approach is a high-order accurate numerical method
first introduced by Huynh [12] in 2007. It is appealing due to
its accuracy, generality, robustness, and suitability for modern
hardware architectures [14]. The FR framework is explained
here in multiple dimensions, following Wang’s formulation
[15].

Consider the general form of the hyperbolic conservation
law

∂U

∂t
+∇.F = 0. (8)

In the FR approach, the continuous domain is divided into
a number of elements with a set of discrete solution points
within each element. In this study, the solution and flux
points are located at tensor products of Gauss points. The
discretized governing equations are solved numerically within
each element, Ωk. We assume that Uδk is the approximated
solution to U within element k, and the solution is in the
space of polynomials of degree P or less, i.e., Uδk ∈ PP . This

approximate solution is allowed to be discontinuous across cell
interfaces. Thus, a common Riemann flux must be defined
to replace the normal flux. In this study, a Rusanov/Lax-
Friedrichs flux is used at the interface between elements. By
defining a correction field, Gk ∈ PP , 8 is re-written as

∂Uδk
∂t

+∇ · F
(
U δk
)

+Gk = 0, (9)

which is satisfied within the element Ωk. In this study, the
DG method is recovered via the FR formulation by choosing
nodal basis functions as the weighting function [15], and the
Rusanov and second method of Bassi and Rebay (BR2) are
used for the common inviscid and viscous flux.

C. Mesh Adaptive Direct Search Optimization

The goal of an optimization problem is to find the design
variables that minimize or maximize a scalar quantity, known
as the objective function, F . The design variables, XXX , are the
unknown parameters of the system being optimized and are
used to describe the solution of the optimization problem. The
initial guess, XXX 0, provides a starting point for the optimiza-
tion algorithm to begin its search for the optimal solution.
The quality of the initial guess can significantly impact the
convergence and efficiency of the optimization process. The
optimization problem is terminated when the stopping criteria
is met. The computational cost of the gradient-free optimiza-
tion techniques increases drastically by increasing the number
of design parameters. However, the gradient-free optimization
techniques are relatively robust and flexible design strategies
and an exciting candidate for noisy objective functions since
the sensitivities of the objective function is not required. The
computational cost of gradient-free optimization techniques
can be reduced by implementing the FR method, which results
in more accurate results at a lower computational cost in
comparison to other high-order methods.

III. NUMERICAL EXAMPLE

This section focuses on investigating the aero-acoustic shape
optimization of two-dimensional NACA 4-digit airfoil. The
aerodynamic characteristics of the NACA0012 airfoil have
been extensively studied through experiments [16, 17] and
CFD simulations [18, 19]. The study of airfoil noise dates back
to the 1970s when several experimental studies showed that
discrete tones are emitted from isolated airfoils [20, 21], and
other researchers focused on understanding this phenomenon
[16, 22]. The shape of the airfoil is optimized for noise
reduction of the high-lift devices [23], laminar flow trailing
edge [24], and turbulent flow trailing edge [25]. This study
examines the laminar flow trailing edge and the aero-acoustic
shape optimization of the NACA0012 airfoil at a low Reynolds
number, Re = 10, 000, which is the operating regime for
UAVs.

A. Validation

In this section, the flow over a two-dimensional NACA0012
airfoil is validated. A grid-resolution-independence study is
performed for the time-averaged lift and drag coefficients,
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(b) The vicinity of the airfoil.

Figure. 1: The computational grid for NACA0012 airfoil at
α = 3◦.

and the sound pressure level at an observer located a unit
chord length above the trailing edge. The time-averaged lift
coefficient is compared with reference DNS data [26] to
validate the simulation.

1) Computational Details: The computational grid consists
of 19, 596 quadrangular elements, depicted in Figure 1. The
domain is extended to 5c in the y-direction and to 10c in the
x-direction, where c = 1 is the chord length of the airfoil. The
stretching ratio is kept below 5% everywhere in the domain.
The elements in the wake region are inclined at the angle of
attack to capture the vortices behind the trailing edge. The
computational domain is shown in Figure 1. The Reynolds
number for this study is Re = 10, 000, the inflow Mach
number is M∞ = 0.2, the angle of attack is 3 degrees, and
the Prandtl number is Pr = 0.71. The simulation is run for 60
convective times, and flow statistics are averaged for the last
20 convective times. The second-order Paired Explicit Runge-
Kutta (P-ERK) temporal scheme [27] is used to advance the
solution in time.

Vortices leaving the computational domain can generate
non-physical acoustic wave reflections off the boundaries,
contaminating the solution. Thus, the strength of such vortices
must be decreased to eliminate the acoustic wave reflections
off the boundaries. The addition of artificial diffusion and
variable solution polynomial degrees are used in this study,
shown in Figure 2. Artificial diffusion is applied beyond a
circle with a radius of 2c centered at the trailing edge. Its
magnitude increases to a maximum of 0.01 and a radius

(a) The artificial diffusion.

(b) The polynomial distribution.

Figure. 2: The boundary treatments.

of 8c using a sinusoidal function. The solution polynomial
distribution is shown in Figure 2b, where in the vicinity of the
airfoil P = 3 and it decreases to zero close to the boundaries.

2) Results and Discussion: A different set of variable
polynomial degrees are used to study the independence of the
results to the grid resolution. Three different mesh resolutions
are used with a maximum polynomial degree of P2, P3, and
P4. The time-averaged lift and drag coefficients are computed
along with the sound pressure level at the observer located a
unit chord length above the trailing edge and compared using
three different grid resolutions, shown in Table I. The time-
averaged lift coefficient differs by less than 0.4% when the
highest polynomial degree in the domain is P4 compared to
that of P3, while the time-averaged drag coefficient remains
the same by increasing the grid resolution. The time-averaged
lift coefficient obtained via the P0 − P3 simulation agrees
well with the DNS data [26]. Furthermore, the sound pressure
level difference between P0 − P3 and P1 − P4 simulations
is 0.53 dB or 0.48%. Thus, it is concluded that the grid
resolution for P0−P3 simulation is sufficient for this problem.

The sensitivity of the time-averaged quantities to the averag-
ing window is investigated by choosing two different averaging
windows. The lift and drag coefficients are averaged over
20 and 40 convective time windows, shown in Table II. The
difference between the time-averaged lift and drag coefficients
for both averaging window lengths is negligible. Thus, the
quantities are averaged over a 20 convective time window.
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TABLE. I: Averaged lift and drag coefficients and the sound
pressure level measured at a unit chord distance above the
trailing edge of the baseline NACA0012.

P0− P2 P0− P3 P1− P4
CL 0.0877 0.0886 0.0889
CD 0.0448 0.0447 0.0447
SPL 109.59 dB 110.00 dB 110.53 dB

TABLE. II: Averaging window sensitivity of the time-averaged
quantities.

20 tc 40 tc
CL 0.08857 0.08863
CD 0.04472 0.04473

The time history of lift and drag coefficients are shown
in Figure 3 for the last two convective times. The periodic
behaviour of CL and CD is associated to the periodic vortex
shedding at the trailing edge.
The pressure perturbation at tc = 60 is shown in Figure 6a.
Acoustic waves are generated close to the trailing edge and
propagate everywhere in the domain. There are no visible
acoustic wave reflections off the boundaries, showing the
effectiveness of boundary treatments used in this study. The
amplitude of the pressure perturbations is higher in the wake
region and behind the trailing edge where the vortices are shed
and travel downstream. The addition of artificial viscosity,
as shown in Figure 2a, efficiently dampens the vortices and
consequently reduces the amplitude of acoustic waves far from
the trailing edge.

B. Optimization

In this section, the noise at an observer located at a unit
chord length above the trailing edge is reduced. A total of four
design parameters are chosen. The maximum camber, camax,
the distance of maximum camber from the airfoil leading
edge, xcamax

, maximum thickness of the airfoil tamax, and the
angle of attack, α, are the four design parameters, i.e. XXX =
[camax, xcamax

, tamax, α], depicted in Figure 4. The simulation
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Figure. 3: Time-histories of lift and drag coefficients.
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tamax

Observer Point

Figure. 4: The design variables and the observer point located
at a unit chord length above the trailing edge for the two-
dimensional NACA0012 airfoil.

is first run for 60 convective times for each objective function
evaluation. Then the time-averaged pressure is computed from
20tc to 40tc, p20−40, and then from 40tc to 60tc, p40−60.
If the difference between p20−40 and p40−60 is above one
percent, the simulation is run for 20 more convective times.
The simulation is run long enough so that the difference
between two consecutive time-averaged pressure signal, over
20tc, is below one percent.

1) Results and Discussion: The optimization procedure is
run using a maximum polynomial degree of P3. The maxi-
mum camber range is set to camax ∈ [−10, 10] as a percentage
of the chord, with the distance from the airfoil leading edge
in the range of xcamax

∈ [2, 9] as a tenth of the chord.
The maximum thickness of the airfoil is within the range of
tamax ∈ [8, 16] as a the percentage of the chord. Finally, the
angle of attack varies from −5◦ to 5◦. The objective function
is defined as the sound pressure level at the observer with a
constraint in the mean lift coefficient. A quadratic penalty term
is added to the objective function when the lift coefficient is
less than the baseline design, and a linear term is added when
CL is greater than the baseline design. The objective function
is defined as

F =

{
SPL+ ε1

(
CL − CL,baseline

)2
CL < CL,baseline

SPL− ε2
(
CL − CL,baseline

)
CL ≥ CL,baseline

,

(10)

where the constants ε1 and ε2 are set to 40000 and 4, respec-
tively, to compensate for the order of magnitude difference in
SPL and CL.

This optimization procedure converges after 47 MADS iter-
ations. The design space and the convergence of the objective
function are shown in Figure 5. The optimal airfoil design has
a maximum camber of camax = −0.209 percent of the chord,
at a 5.246 tenth of the chord distance from the leading edge,
with a thickness of tamax = 8.028 percent of the chord, at an
angle of attack of α = 2.786 degrees. The optimized airfoil is
silent with SPL = 0 dB, and CL = 0.1647, an increase of
88%. And, finally, the pressure perturbation and z-component
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Figure. 5: The design space and objective function conver-
gence for P3 optimization of the NACA 4-digit airfoil.

of vorticity are shown in Figure 6 for the baseline and optimum
designs. In the baseline design, the flow is attached to the
airfoil on the pressure side, and flow instability occurs on
the suction side. A periodic vortex shedding takes place as
the flow passes over the trailing edge, resulting in acoustic
wave generation. However, in the optimum design, the flow
instability is eliminated resulting in a quiet airfoil.

IV. CONCLUSIONS

This paper demonstrates the efficacy of using the high-
order flux reconstruction method, direct acoustic computation,
and mesh adaptive direct search optimization technique for
aero-acoustic shape optimization. The results showed that
the approach could eliminate noise while increasing the lift
coefficient by 88% for NACA 4-digit airfoil. These findings
have practical applications in various industries, including
aerospace, automotive, and wind turbine design, where noise
reduction is crucial. In conclusion, this paper illustrates that
MADS is an effective and robust gradient-free method for

(a) The baseline design.

(b) The optimum design.

Figure. 6: The pressure perturbation and vorticity in the z-
direction for the baseline and P3 optimization designs of
NACA0012 airfoil at tc = 60.
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solving complex aero-acoustic problems with high-order accu-
racy. Future work could extend this approach to more complex
geometries, higher dimensions, and higher Reynolds numbers
to explore the optimization technique’s potential limits and
expand its applications.
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