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Abstract—In this paper, we validate a previously proposed high-
order method for simulating unsteady flows for a helicopter rotor
in hover. To demonstrate the performance and efficiency of this
strategy, three cases have been studied. The first case involves a three-
dimensional circular cylinder at the onset of the shear-layer transition
regime with a Reynolds number of Re = 1000 and Mach number of
M = 0.2, while the second case examines the turbulent flow over a
3D SD 7003 airfoil undergoing heaving and pitching motions with a
Reynolds number of Re = 10000 and Mach number of M = 0.1.
These cases aim to illustrate the accuracy and efficiency of the routine
when applied to transitional and turbulent flows. Finally, a hovering
model of the Caradonna and Tung helicopter rotor with a tip Mach
number of Mt = 0.526, Re = 2.358 × 106, an angular velocity
of Ω = 29.9237 radian per second, and blade pitching angle of
θ = 8◦ is studied. This strategy is validated and compared against
numerical and experimental reference data in terms of accuracy
and computational cost, considering functional targets such as lift,
drag, and thrust coefficients of the simulations. Results demonstrate
that the algorithm can track regions of interest, such as boundary
layers and wake regions, and yields a considerable speed-up when
applied to parallel simulations. Qualitative and quantitative results
showed equivalent levels of accuracy with significant speed-up when
applied to parallel simulations. Hence, the proposed algorithm is an
effective and accurate approach for simulating unsteady transitional
and turbulent flows.

Keywords-component—polynomial adaptation; moving and de-
forming domains; dynamic load balancing; high-order

I. INTRODUCTION

With the advent of digital computers, CFD became a vital
instrument for engineers to understand, design and analyse
aerospace products. CFD allows for comprehensive access
compared to an experimental study and also significantly
reduces design costs as it does not require a physical model
or prototype and experimental apparatus. Furthermore, with
the recent development of Micro Air Vehicles (MAVs) and

more flexible airframes, the wind tunnel is becoming more
incapable of providing the required conditions to study an
object experimentally. Aerospace applications benefit from
high-fidelity unsteady solution techniques, such as Large Eddy
Simulation (LES) and Direct Numerical Simulation (DNS).
Recent research has led to the development of high-order
unstructured spatial discretizations suitable for LES and DNS,
such as the Discontinuous Galerkin (DG) [1], Spectral Vol-
ume (SV) [2], Spectral Difference (SD) [3], and Flux Re-
construction (FR) approaches [4]. It has been demonstrated
previously that these methods are particularly appealing for
scale-resolving LES/DNS simulations of unsteady turbulent
flows [5], and that they are particularly well-suited for modern
many-core hardware architectures [6, 7].

In the context of massively separated turbulent flows, such
as slats, flaps, and landing gear, a-priori information about the
flow-field and its related mesh resolution requirements are of-
ten not readily available. Furthermore, resolution requirements
may change as the simulation evolves. Hence, a prohibitively
large number of Degrees of Freedom (DOF) is required to
capture the complex physics governed by the Navier–Stokes
equations, making such simulations inherently computation-
ally expensive. In practice, a relatively large number of DOF is
needed only in regions where higher resolution is required for
an accurate discrete approximation of the solution. Hence, the
number of DOF can be adapted locally in order to minimize
the overall computational cost, yet attaining almost the same
level of accuracy. This can be achieved by locally increasing or
decreasing the solution polynomial degree to adjust resolution
and order of accuracy, a practice which is called polynomial
adaptation or p-adaptation. However, combining polynomial
adaptation with a massively parallel computation can cause
overhead because p-adaptation tends to change the degree
of solution polynomials locally, leaving the computational
domain unbalanced. To maintain parallel efficiency, Dynamic
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Load Balancing (DLB) techniques have been exploited [8, 9].

II. METHODOLOGY

A. Governing Equations

In this paper we solve the ALE form of the Navier-Stokes
equations [10]

∂u

∂t
+∇ · F + u (∇ · vg) = 0, (1)

where vg is the local mesh velocity and u is the vector of
conserved variables

u =

 ρ
ρui

ρE

 , (2)

where ρ is the density, ρui is a component of the momentum,
and ρE is the total energy. The total flux F = Fe−Fv+Fg is
the sum of the inviscid Euler fluxes, the viscous Navier-Stokes
fluxes, and the ALE fluxes, respectively. The Euler fluxes are

Fe,j(u) =

 ρuj

ρuiuj + δijp
uj (ρE + p)

 , (3)

and the pressure is determined from the ideal gas law

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
, (4)

where γ = cp/cv is the ratio of specific heats, cp is the specific
heat at constant pressure, and cv is the specific heat at constant
volume. The viscous fluxes for the Navier-Stokes equations are

Fv,j(u,∇u) =

 0
τij

−qj − uiτij

 , (5)

where the heat flux is

qj = − µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
ukuk

)
, (6)

Pr is the Prandtl number, and µ is the dynamic viscosity. The
viscous stress tensor is given by

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
δij

)
. (7)

To recover the Euler equations these viscous terms are ne-
glected. In the case of a moving mesh the ALE fluxes are
given by

Fg(u,vg) = −vgu. (8)

The additional source term u (∇ · vg) is added to Equation
2 whenever the divergence of the velocity field is not zero,
which is generally the case for mesh deformation other than
solid body translation. For all cases considered in this study,
we take γ = 1.4 and Pr = 0.71.

B. Flux Reconstruction

Following the flux reconstruction approach the solution is
represented by a discrete approximation on each element such
that [11, 12]

u(x, t) ≈ uh(x, t) =

Ne⊕
i=1

uh
i (x, t), (9)

where uh(x, t) is the global piecewise continuous approxima-
tion of the solution and uh

i (x, t) is a continuous representation
of the solution on one of Ne elements in the domain. We take
the approximate solution on each element to be a polynomial
nodal basis representation such that

uh
i (x, t) =

Ns∑
j=1

ui,j(t)ϕs,i,j(x), (10)

where ui,j(t) is the value of the solution at one of Ns solution
nodal basis points on a given element and ϕs,i,j(x) is its
corresponding nodal basis function. This approach ensures the
solution is continuous on each element, but allows the solution
to be discontinuous on the interfaces between elements [11].
We also use a polynomial nodal basis representation to map
the mesh velocities from the element mapping nodes to the
interior of the element as

vh
g,i(x, t) =

Ng∑
j=1

vg,i,j(t)ϕg,i,j(x), (11)

where Ng is the number of mapping points that define the el-
ement and ϕg,i,j(x) is the corresponding nodal basis function
of the mapping points.

Following the flux reconstruction approach [11] and its
extension to simplex element types [12], the physical con-
servation law that must be satisfied in the discrete sense on
each element is

∂uh
i

∂t
+∇ · F h

i + δi + uh
i

(
∇ · vh

g,i

)
= 0, (12)

where F h
i = F h

i (u
h
i ,∇uh

i ) and δi is a correction field on the
element that is in the same polynomial space as the solution.
This correction field is analogous to the divergence of the
penalty functions introduced in the original FR scheme for
tensor product elements [11]. Finally, applying the conserva-
tion law at each of the solution points we obtain

duh
i,j

dt
+
(
∇ · F h

i

)∣∣∣∣
xi,j

+ δi,j +uh
i,j

(
∇ · vh

g,i

)∣∣∣∣
xi,j

= 0, (13)

where xi,j is the corresponding solution point location and,
following the FR formulation

δi,j =
1

|Ωi|
∑
f∈S

∑
l

αi,j,f,l[F̂ ]i,f,lSf , (14)

where |Ωi| is the element volume, f is one of the number
of faces on the element surface S, l is one of the flux points,
αi,j,f,l is a constant lifting coefficient, [F̂ ]i,f,l is the difference
between a common Riemann flux at the flux point and the
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value of the internal flux, and Sf is the area of the face.
Depending on the specification of these lifting coefficients,
a number of different energy stable schemes can be obtained
for general element types, including the Spectral Difference
(SD), Spectral Volume (SV), and Discontinuous Galerkin (DG)
methods. In this study we use lifting coefficients based on the
nodal basis functions to recover the DG method [11]. For more
detail on implementation of FR, please refer to [9, 13].

C. Vorticity-Based Adaptation

This paper explores the utility of a novel non-dimensional
vorticity-based indicator for p-adaptation when solving the
unsteady Navier-Stokes equations. We begin by computing the
maximum non-dimensional vorticity magnitude at any solution
point within an element according to

κi = max
1≤j≤Ns

ωi,j , (15)

where ωi,j is the non-dimensionalized counterpart of vorticity
magnitude

ωi,j =
|ωi,j |∆max,i

U∞
, (16)

where ωi,j is the vorticity at solution point j on element i,
∆max,i is the maximum mesh dimension of the element, Ns

is the number of solution points on the element, and U∞ is the
free-stream velocity. We then define the solution polynomial
degree on any element using Algorithm 1 mentioned in [13],
where ϵ is a constant resolution threshold, ϑ is a constant that
controls the relative threshold for different solution polynomial
degrees and km is the maximum polynomial degree. Follow-
ing this approach, elements with large vorticity magnitudes
relative to the effective mesh resolution are adapted to higher-
degree polynomials, increasing their resolving power.

D. Dynamic Load Balancing

In this study, a load balancing technique is employed using
the repartitioning routine of the ParMETIS Parallel Graph
Partitioning and Sparse Matrix Ordering library developed by
Karypis et al. [14] to circumvent the overhead due to an
imbalanced mesh. Using this approach, the mesh is considered
as a weighted graph, where elements and the computational
burden are its vertices and weight accordingly. The compu-
tational burden varies based on the element type, solution
polynomial degree, number of dimensions, and number of
conserved variables. The compute time for a single element is
used as the reference to define the element weight.

III. NUMERICAL RESULTS

A. 3D Dynamic Stall of a SD 7003 Airfoil

A three-dimensional computational domain, with its origin
at the leading edge, consisting of 56,000 structured hexahedral
elements with high-order solution polynomials in each ele-
ment, moderately refined near the trailing and leading edges,
was used. Riemann invariant boundary conditions were applied
at the far-field, periodic boundary conditions were applied in
the span-wise direction, and a no-slip adiabatic wall boundary

condition was applied at the surface of the airfoil. The domain
extends to 19c upstream, 20c above, below, and downstream
of the airfoil, and 0.4c in the span-wise, where c is the
airfoil chord. Quadratically curved elements were used at
the boundaries to match the airfoil geometry. The mesh was
initially partitioned over 120 processors.

The translation of the coordinates of the center of oscillation
and the pitching function are defined as

x(t) = 0,

y(t) = A cos (2πfet) ,

θ(t) = θ0 + θe cos(2πfet+ ϕe),

(17)

where A is the heaving oscillating amplitude, which is non
dimensionalized by the airfoil chord length, fe is the excitation
frequency which is defined in terms of the reduced frequency
fK = πfec/U∞, θ0 is the mean pitch angle value, θe is
the pitch amplitude, and ϕe is the phase shift between the
heaving and pitching motions. Simulation were carried out at
Re = 10000, M = 0.1, A/c = 0.5, fK = 0.25 resulting in a
period of oscillation of Te = 4π/U∞, θ0 = 8◦, θe = −8.42◦,
and ϕe = 90◦ in order to match the experimental study
of Baik et al. [15] and Ol et al. [16]. The total simulation
time is set to 8Te. This corresponds to ≈ 125tc, where
tc is the time required for the flow to traverse one airfoil
chord. Time integration was with the classical RK4,4 scheme,
with a non-dimensional time step of ∆t∗ = 6.14 × 10−5,
which is a fraction of the oscillation period. A three-level
adaptive simulation was performed to verify the utility of the
adaptation algorithm and load balancing, which was achieved
via the adaptive repartitioning algorithm in ParMETIS [14].
The adaptation parameters Km, ϵ, and ϑ1:5 are set to 3,
2.5 × 10−1, and [0.25, 0.25, 1], respectively. The adaptation
and the DLB routines are called every 100 and 1000 iterations
respectively.

Figure 1 shows the non-dimensional x-component of the ve-
locity profile averaged through the span and four last cycles for
the instant of 2Te/4 at different chord locations. Comparing
these plots confirms that the three-level adaptive simulation
correlates well with the experiment results. Table I shows the
simulation time per one iteration Titr and the speed-up factor
SA = TU/TA for uniform and the three-level adaptive simu-
lations. The speed-up factor is 2.73 which makes the adaptive
simulation even faster than a uniform K = 2 simulation. Table
II shows the scalability of the parallel algorithm for different
numbers of cores, where Nn is the number of nodes, C is the
number of cores, SN = TN/TC is the speed-up factor based
on a one node simulation, Es = SN/C is the efficiency, TN

is the compute time of a parallel simulation on one node, and
TC is the compute time of a parallel simulation on C cores.
These results verify the scalability of the algorithm and the
capability of the DLB to distribute uniform computation load
among processors.

B. Turbulent Flow Over a 3D Circular Cylinder

A three-dimensional computational domain, with its origin
located at the centre of the cylinder, containing a total of
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TABLE. I. Computation time of the dynamic load-balanced
adaptive algorithm for the heaving and pitching SD 7003
airfoil case.

Degree Number of Nodes Number of Cores Titr SA

1 1 40 3.832× 102 -
2 8.629× 102 -
3 1.750× 103 -

1− 3 6.416× 102 2.73

TABLE. II. Scalability metrics of the dynamic load-balanced
adaptive algorithm for the heaving and pitching SD 7003
airfoil case.

Number of nodes Number of cores SN Es

Nn = 1 40 1.000 1.000
Nn = 2 80 1.979 0.989
Nn = 4 160 3.946 0.986
Nn = 8 320 7.669 0.959
Nn = 16 640 13.722 0.861
Nn = 32 1280 24.258 0.758

78176 hexahedral elements with 14 elements in the span-
wise direction was used with Riemann invariant boundary
conditions at the far-field, periodic boundary condition in the
span-wise direction, and a no-slip adiabatic wall boundary
condition at the surface of the cylinder. The domain extends
to 40D above, below, and upstream of the cylinder, 80D
downstream, and 2πD in the span-wise direction, where D is
the cylinder diameter. Initially partitioned over 320 processors,
the mesh is moderately refined near the wall and in the
wake region, and uses quadratically curved elements at the
boundaries to match the cylinder geometry.

Simulations were run at Mach number M = 0.2, for a
total of 400tc, where tc = D/U∞ is the time required for
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Figure. 1. Phase averaged x-component of the velocity profile
at different chord locations at time instant of t = 2Te/4 (solid
lines correspond to this study, and the crosses correspond to
the experiment [15]) for the SD 7003 airfoil case.

TABLE. III. Numerical values of C̄D, St, Titr and SA aver-
aged over the 100 convective times for the circular cylinder
case.

Degree C̄D St Titr SA

1 1.195 0.204 7.42× 102 -
2 1.083 0.208 2.12× 103 -
3 1.008 0.210 4.74× 103 -
4 1.018 0.205 9.75× 103 -
5 1.014 0.205 1.90× 104 -

1− 5 1.055 0.209 4.10× 103 4.63
Pereira 1.064 - - -
Zhao 1.092 0.202 - -

the flow to traverse one cylinder diameter. Time integration
was carried out with a fourth-order twelve-stage optimized
Runge-Kutta scheme [17], and the non-dimensional time step
is set to ∆t∗ = ∆tU∞/D = 8.0 × 10−4. By having more
stages, this Runge-Kutta scheme allows for a larger time step
size which relatively reduces the computational cost. A total
of six simulations were carried out to verify the utility of
the dynamically load-balanced adaptation algorithm, including
five uniform simulations with solution polynomials of degree
K = 1 to K = 5 and a five-level adaptive simulation. The
adaptation parameters Km, ϵ, and ϑ1:5 are set to 5, 1.25 ×
10−1, and [0.25, 0.25, 1, 4, 16] respectively. The adaptation and
the DLB routines are called every 100 and 1000 iterations,
respectively. Simulations were carried out on eight nodes of
the Niagara cluster, each node consists of 2 sockets with 20
Intel Skylake cores (2.4 GHz, AVX512), for a total of 40 cores
per node, and a total of 202 GB of RAM.

Figure 2 shows the contours of the Q-criterion colored by
the velocity magnitude, the polynomial degree distribution,
and the repartitioned mesh for the five-level adaptive simula-
tion (K = 1− 5) for the instant of maximal lift. This verifies
that the adaptation algorithm successfully tracks elements with
large vorticity magnitude relative to their size. We observe that
a relatively fewer number of high-order elements are allocated
to processors near the cylinder and in the wake region, while
processors located farther away from the cylinder and the
wake contain a larger number of lower-order elements. This
illustrates the ability of the DLB algorithm to maintain the
load balance. Table III reports the quantitative values of C̄D,
St, Titr, and SA averaged during 100tc and compares them
against the reference data. These results quantitatively show
agreement within 4.02% in the C̄D value between the adaptive
and uniform K = 5 simulations, while the former is 4.63 times
faster.

C. Caradonna and Tung Rotor in Hover

The geometry is taken from the Caradonna and Tung
experimental study [18] with an aspect ratio of AR = 6, non-
dimensional chord length of c = 1, hub radius of Rh = 0.5c,
and blade root location of Rr = c. A three-dimensional
computational domain containing a total of 6.945×106 hybrid
elements was used. Using a C-topology in the stream-wise di-
rection, the domain extends to 30c upstream, 60c downstream,
and a radius of 30c in the span-wise direction, where c is
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Figure. 2. Contours of Q-criterion (top), polynomial distri-
bution (middle), and dynamically balanced mesh partition
(bottom) for the adaptive computation (K = 1−5) at the times
corresponding to maximal lift for the the circular cylinder case.

the blade chord length. Only one blade is simulated with a
rotational periodic boundary conditions at the symmetry plane.
The mesh is moderately refined near the blade, rotor hub,
and in the wake region. Incompressible Multiple Reference
Frame (MRF) in OpenFOAM was used with pressure inlet
and outlet, slip wall at the far-field and the propeller hub, and
no-slip adiabatic wall boundary condition at the surface of the
blade. Cyclic Arbitrary Mesh Interface (AMI) was used on the
symmetry plane. The domain was divided into two rotational
and static regions, where the former rotates with the blade
angular velocity.

The simulation was run with tip Mach number of Mtip =
0.526, tip Reynolds number of Retip = 2.358× 106, angular
velocity of Ω = 29.9237 radian per second, blade pitching
angle of θ = 8◦, and ambient density of ρ = 1.2389. k −
ω turbulence model was used. The simulation was assumed
steady state with 2000 iterations.

Figure 3 shows the pressure coefficient distribution at differ-
ent radial locations. The discrepancy near the blade root is due
to the blade attachment used in the experimental study. Figure
4 shows the contours of Q-criterion colored by the velocity
magnitude. As mentioned earlier, the presence of a root vortex
due to the lack of blade attachment is responsible for the
discrepancy in pressure distribution at the radial position of
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Figure. 3. Pressure coefficient distribution at different radial
locations of r/R = 0.5, r/R = 0.80, and r/R = 0.89 from
top to bottom for the Caradonna and Tung rotor in hover.

r/R = 0.5. Approximately 400◦ of a tip vortex age is resolved
in the current simulation. Figure 5 shows the tip vortex descent
rates, which is accurately predicted by the current simulation.
Future work will explore high-fidelity simulations of this case.

IV. CONCLUSION

Results demonstrated that the algorithm is capable of
tracking salient turbulent features. Qualitative results showed
equivalent levels of accuracy between the adaptive and high-
order solutions, with a significant reduction in simulation
time. Results from the adaptive simulations also showed good
quantitative agreement with parallel high-order simulations
and reference numerical, experimental, and analytical results.
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Figure. 4. Contours of Q-criterion coloured by velocity mag-
nitude for the Caradonna and Tung rotor in hover.
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Figure. 5. Tip vortex descent for the Caradonna and Tung rotor
in hover.
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