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Jean-Pierre Séhi Glouzon1,2, Jean-Pierre Perreault2 and

Shengrui Wang1,*

1Department of Computer Science, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC J1H 5N4,
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Abstract

Motivation: Comparing ribonucleic acid (RNA) secondary structures of arbitrary size uncovers struc-

tural patterns that can provide a better understanding of RNA functions. However, performing fast

and accurate secondary structure comparisons is challenging when we take into account the RNA

configuration (i.e. linear or circular), the presence of pseudoknot and G-quadruplex (G4) motifs and

the increasing number of secondary structures generated by high-throughput probing techniques. To

address this challenge, we propose the super-n-motifs model based on a latent analysis of enhanced

motifs comprising not only basic motifs but also adjacency relations. The super-n-motifs model com-

putes a vector representation of secondary structures as linear combinations of these motifs.

Results: We demonstrate the accuracy of our model for comparison of secondary structures from

linear and circular RNA while also considering pseudoknot and G4 motifs. We show that the super-

n-motifs representation effectively captures the most important structural features of secondary

structures, as compared to other representations such as ordered tree, arc-annotated and string

representations. Finally, we demonstrate the time efficiency of our model, which is alignment free

and capable of performing large-scale comparisons of 10 000 secondary structures with an effi-

ciency up to 4 orders of magnitude faster than existing approaches.

Availability and Implementation: The super-n-motifs model was implemented in Cþþ. Source

code and Linux binary are freely available at http://jpsglouzon.github.io/supernmotifs/.

Contact: Shengrui.Wang@Usherbrooke.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Exploring the relationships between ribonucleic acids (RNAs) by

comparing their secondary structures provides critical insight into

their functions. In fact, complex molecules such as RNAs can fold

into secondary and tertiary structures to perform various functions

involved in the regulation of translation, transcription, splicing, and

so on (Wan et al., 2011). However, because RNA tertiary structure

is largely determined by its secondary structure (Brion and Westhof,

1997; Tinoco and Bustamante, 1999), RNAs with similar secondary

structures will likely have the same or related functions. Thus, com-

paring RNA secondary structures can significantly contribute to

understanding RNA functions.

In this paper, we consider three important aspects of secondary

structure data in designing our model. We consider the nature of the
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RNA (linear or circular), the presence of functional motifs such as

pseudoknots and RNA G-quadruplexes (G4s) and finally, the grow-

ing number of secondary structures. First, while most RNAs are lin-

ear, recent studies suggest that circular RNA transcripts are

abundant and have a potential role in gene regulation (Jeck et al.,

2013; Kosik, 2013). Many well-known pathogens such as viroids

and the hepatitis delta virus have a circular RNA genome (Flores

et al., 2012). Second, both pseudoknot and G4 motifs are known to

be involved in translation and splicing regulation (Millevoi et al.,

2012; Staple and Butcher, 2005). Pseudoknots are secondary struc-

ture topologies comprising additional base pairs between loops and

are pervasive in many RNA families such as transfer messenger

RNA (tmRNA), ribosomal RNA (rRNA), ribonuclease P RNA

(RNase P), and so on. G4s, on the other hand, are formed by the

stacking of non-canonical interactions of guanines; many such

motifs have been found in the untranslated regions of mRNA

(Huppert et al., 2008). Finally, high-throughput methods for prob-

ing RNAs, such as FragSeq (Underwood et al., 2010) and SHAPE-

Seq (Loughrey et al., 2014), yield a large number of secondary struc-

tures (Bellaousov et al., 2013; Lorenz et al., 2011).

Comparing secondary structures of arbitrary size from linear

and circular RNAs while also considering pseudoknot and G4

motifs is a challenging task. Most of the algorithms for comparing

secondary structures are not capable of handling circular RNAs or

pseudoknots and G-quadruplexes because of their underlying repre-

sentations of secondary structure. Existing algorithms for comparing

secondary structures can be grouped into four categories according

to their representations. The first group, based on an ordered tree

representation of secondary structures, includes RNAdistance

(Lorenz et al., 2011), RNAforester (Schirmer and Giegerich, 2013),

MiGal (Allali and Sagot, 2008) and RNAstrat (Guignon et al., 2005).

The second group, based on the string-encoded representation, includes

RNAdistance and BEAR (Mattei et al., 2014). The third group, based

on the arc-annotated sequence representation, includes Gardenia (Blin

et al., 2010) and Efficient alignment of RNA secondary structures

(ERA) (Zhong and Zhang, 2013). Finally, the fourth group, based on a

representation combining sequence and structure ensemble information

on RNA, called ensemble-based representation, includes LocARNA

(Will et al., 2007) and SPARSE (Will et al., 2015).

The majority of algorithms for comparing secondary structures do

not handle secondary structures from circular RNA. This is because

they are based on representations such as the ordered tree, string-

encoded, arc-annotated sequence and ensemble-based approaches,

which consider a secondary structure as an ordered set of nested base

pairs beginning at the 50 extremity and ending at the 30 extremity of

the RNA. While this is an appropriate way of looking at linear RNAs,

it is not meaningful for circular RNAs because they do not have any

50 and 30 extremities. In fact, the 50 and 30 ends of circular RNA are

joined, resulting in no directionality and, consequently, no intrinsic

base pair ordering. Thus, these representations are not suitable to han-

dle secondary structures from circular RNA. In this context, a mean-

ingful alignment of secondary structures from circular RNA, whether

global or local, can be hard to compute since alignment-based

approaches inherit limitations from their respective structural repre-

sentations. In fact, while it is possible to linearize circular RNA at a

given position in order to compute the structural representation and

perform global or local alignments, choosing the optimal starting pos-

ition to produce the best alignment is not a trivial task. To address

this challenge, specialized tools have been developed in the context of

cyclic sequence alignment (Fernandes et al., 2009; Mosig et al., 2006;

Will and Stadler, 2014). However, there is no such approach specific-

ally designed for aligning or comparing cyclic secondary structures.

Being based on secondary structure representations that consider

only nested base pairs, the algorithms for comparing secondary struc-

tures cannot handle pseudoknots and G4 motifs, which in fact involve

non-nested base interactions. It is important to note that an arc-

annotated sequence representation can support comparison of second-

ary structures with non-nested base pairs but (so far) at a high compu-

tational cost (NP-hard; Schirmer et al., 2014). Thus, algorithms based

on ordered tree, string-encoded and arc-annotated sequence represen-

tations are not appropriate for processing secondary structures of cir-

cular RNA or for handling pseudoknots and G4 motifs. An extensive

survey of secondary structure comparison algorithms and representa-

tions is given in the study by Schirmer et al. (2014).

Alignment-based algorithms for comparing secondary structures

are effective, but they are computationally expensive, rendering

them inappropriate for large-scale secondary structure comparisons.

In general, alignment-based approaches, usually implemented using

dynamic programming (Eddy, 2004), are known to be time-

consuming, especially in the context of sequence analysis (Bonham-

Carter et al., 2013; Vinga, 2014). Advances have therefore been

made toward alignment-free models in order to meet the need to

process the thousands of sequences generated by high-throughput

sequencing techniques (Haubold, 2014; Pinello et al., 2014; Song

et al., 2014). Secondary structures are much more complex than se-

quences because nucleotides at the sequence level are involved in

pairing. This renders secondary structure alignment computationally

more intensive than sequence alignment. It is therefore necessary to

develop alignment-free approaches to efficiently compute similar-

ities between RNA secondary structures.

To address the need for an efficient way of comparing secondary

structures from linear and circular RNA comprising pseudoknots

and G4s, we propose a new model named super-n-motifs, based on

the idea that similar secondary structures share similar combinations

of motifs. Since secondary structures can be decomposed into build-

ing blocks, i.e. basic motifs such as stems or hairpin loops (Hendrix

et al., 2005), the secondary structures can be seen as being formed

by multiple combinations of motifs. It is thus likely that secondary

structures comprising shared or similar combinations of motifs are

similar and belong to the same RNA family. As an example, a trans-

fer RNA (tRNA) has a cloverleaf-shaped secondary structure formed

by the combination of three hairpins and a stem (a hairpin being a

combination of a stem and a loop). A secondary structure that pos-

sesses combinations of motifs similar to those in a tRNA secondary

structure is likely a tRNA.

The super-n-motifs model takes as input given secondary struc-

tures and relies on three consecutive steps to build an effective and

efficient vector-based representation of secondary structures. The

proposed model first computes a bag-of-n-motifs model of second-

ary structures, where “i-motifs,” for 0 � i � n, are built from

(i� 1)-motifs and their neighbor relations from one level of abstrac-

tion to another, with 0-motifs being basic motifs. The value of n is

the highest level of abstraction. Among the basic motifs considered

are pseudoknots, G4s, single-stranded regions or external loops at

the 50 end and single-stranded regions or external loops at the 30

end, and so on. The bag-of-n-motifs model explicitly handles pseu-

doknots and G4 motifs and the nature of the RNA (linear or circu-

lar). For circular RNAs, it simply ignores the external loop motifs at

the 50 and 30 ends in the description of secondary structures from

these RNAs. The n-motifs (Unless otherwise stated, we use the term

“n-motifs” to represent an ensemble of i-motifs for all 0 � i � n,

and use i-motif or 2-motif to represent a motif at a particular level

of abstraction, i or 2 here.) are thus designed to capture local and in-

creasingly global structural features of secondary structures.
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Second, the model computes the relative importance of each gen-

erated i-motif in order to select a reduced set of i-motifs, or features,

for representing secondary structures. We call this the n-motifs rep-

resentation. In fact, since each i-motif is computed from a single sec-

ondary structure, there can be a great number of i-motifs even for a

small value of n. Not all the i-motifs are discriminative features for

representing secondary structures. This step allows the user to

choose the most discriminative ones based on an analysis of their

frequencies of occurrence.

Third, the n-motifs representation obtained at the previous step

is further transformed to obtain the super-n-motifs representation.

This step makes use of singular value decomposition (SVD) to create

feature variables as linear combinations of the i-motifs retained at

Step 2. This latent representation makes it possible to capture some

of the intrinsic similarity between secondary structures even if they

do not share many i-motifs. Moreover, it also reduces the number of

features in the final representation of secondary structures.

Finally, the vector representation of our model greatly facilitates

comparisons between secondary structures. The super-n-motifs

model is efficient because it is vector based and alignment free and

effective because the super-n-motifs representation contains rich in-

formation about each secondary structure, including not only motifs

and relations between motifs but also combinations of them, charac-

terizing the secondary structure as a whole. The contributions of the

super-n-motifs model are summarized in three major points are as

follows:

• It explicitly captures structural information on RNA (linear or

circular) since it relies on a description of secondary structures

by n-motifs, which are hierarchically built, taking neighbor rela-

tions into account (see Section 2.1). The model is general and

considers various basic motifs such as pseudoknots, G4s and

single-stranded regions at both the 50 and 30 ends, in addition to

many other common motifs.
• It allows an effective comparison of secondary structures because

it computes the similarity of secondary structures based on their

most informative structural features, which are the best n-motif

combinations, i.e. the super-n-motifs (see Sections 2.3 and 3.1).
• It yields fast comparisons of secondary structures because it relies

on an alignment-free approach that computes secondary struc-

ture similarities based on vectors in a low-dimensional space (see

Section 3.2).

2 Materials and Methods

In this section, we describe in details the three main steps of the

super-n-motifs model as they are outlined in the previous section,

and we present the comparison metric and a complexity analysis of

the model.

2.1Bag-of-n-motifs model
The bag-of-n-motifs model yields a description of an RNA second-

ary structure in terms of multiple motifs built at different levels of

abstraction. The description is designed to capture local and increas-

ingly global structural features. From a secondary structure, it ex-

tracts basic motifs and their properties: for instance, an internal

loop motif and its property, which is its symmetry or asymmetry; or

a stem motif and its property, corresponding to its number of base

pairs (Supplementary Figure S1 illustrates the motifs and properties

for an arbitrary secondary structure). Motif properties yield specific

structural information about the nature or size of the motifs and do

not consider specific bases. After extracting basic motifs (also called

0-motifs) and their properties, the model computes 1-motifs by con-

sidering the neighbor relations of the 0-motifs. Similarly, it builds 2-

motifs by considering the neighbor relations of the 1-motifs. The

bag-of-n-motifs yields a set of structural features of a secondary

structure that is the union of 0-motifs, 1-motifs, 2-motifs, . . . and n-

motifs. Figure 1 presents a simple example of the bag-of-n-motifs

model computed from a secondary structure composed of a stem of

five base pairs and a hairpin loop with two single-stranded nucleo-

tides. A more complex example of the bag-of-n-motifs model,

derived from a secondary structure of a circular RNA comprising

motifs such as pseudoknots, G-quadruplexes, multiloops, stems, in-

ternal loops and hairpin loops, is illustrated in Supplementary

Figure S2.

To generate the structural description of a secondary structure,

the bag-of-n-motifs model builds a series of nþ 1 undirected graphs

denoted by H ¼ G0;G1; . . . ;Gi; . . . ;Gnð Þ, where G0 is a graph

built from basic motifs and their neighbor relations and every other

Gi is created from Gi�1 by agglomerating nodes in Gi�1 and by ex-

tending neighbor relations. A node of Gi is called an i-motif. The

union of all the sets of i-motifs constitutes the bag-of-n-motifs, i.e.

bag-of-n-motifs ¼ [n
i¼0 node set of Gi. As an example, in Figure 1,

S and H are 0-motifs in G0, while S½H� is a 1-motif in G1. S½H� is

created as an agglomerated motif around S with a surrounding H,

the closest motif to S in G0. Each motif is also associated with a de-

scription of its properties in a dotted square: for instance, S with S 5

in G0 and S½H� with S 5½H 2� in G1. We can formally define the

graph G0 and each Gi, as in the following.

H is initialized by G0, which corresponds to the graph of basic

motifs with their properties. It is an undirected labeled graph defined

as G0 ¼ V0;E0;P0ð Þ, where V0 is the set of vertices corresponding

to basic motifs. Let’s define V0 ¼ v1
0; . . . ; v

j
0; . . . ; v

J
0

n o
, where J is the

total number of basic motifs. E0 is the set of edges, indicating adja-

cency of motifs. Two motifs represented by vj0 2 V0 and vk0 2 V0 are

considered adjacent, i.e. vj0; vk0

� �
2 E0, if they share at least one nu-

cleotide. P0 is a set of J phantom nodes, each of which is attached to

a vertex in V0 to describe the property of the associated motif.

Other elements in the construction of G0 include:

• A set of node labels XM initialized by H; S; I;M;B;E5;E3;P;G4f g
corresponding to basic motifs. XM is enriched subsequently in

the following steps. H stands for hairpin loop, S for stem, I for

Fig. 1. Bag-of-n-motifs model of a secondary structure composed of a hairpin

loop of two single-stranded nucleotides and a stem of five base pairs. It builds

the list of motifs, i.e. the bag-of-n-motifs, from the graph of motifs (G0) corres-

ponding to a stem (S), a stem with 5 base pairs (S 5), a hairpin loop (H), and

a hairpin loop with 2 single-stranded nucleotides (H 2). Then it computes the

list (or bag) of 1-motifs associated with the graph of 1-motifs (G1), by con-

sidering motifs with their neighbors. This yields a hairpin loop and stemmotif

(H½S�) where the neighbor of the hairpin loop is the stem, a two single-

stranded nucleotides hairpin and stem of five base pairs (H 2½S 5�), a stem

and hairpin loop motif (S½H�), and a five-base-pair stem and hairpin loop of

two single-stranded nucleotides (S 5½H 2�). The bag-of-n-motifs model yields

structural features of the secondary structure and comprises all the n-

motifs: fS; H; S 5; H 2;S½H�;S 5½H 2�, H 2½S 5�}.
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internal loop, M for multiloop or multi-branched loop, B for

bulge loop, E5 for single-stranded region or external loop at 50

end, E3 for single-stranded region or external loop at 30 end, P

for pseudoknot and G4 for G-quadruplex.
• A set of property labels XP initialized by f H Mj jB E5j jE3ð Þ nb-of-

single-stranded-nucleotides; Isymmetry; ðSjPÞ nb-of-base-pairs; G4

nb-of-quartetsg: The property associated with motifs H;M;B;E5

and E3 is the number of single-stranded nucleotides. For I, it is

the symmetry. The property for S and P is the number of base

pairs. For G4, it is the number of G-quartets, i.e. the number of

stacked tetrads composed of interacting guanines.
• Two functions f0 and g0 assigning to each vertex vj0 a label from

XM and a label from XP. In particular, pj0 ¼ g0 vj0

� �
allows one

to generate P0, i.e. P0 � g0ðV0Þ. For the model description, the

use of the function f0 is redundant. But it is a useful element in

the software development of the model. For the example shown

in Figure 1, the bag of 0-motifs from G0 is V0 ¼ fS;Hg with the

corresponding property set P0 ¼ fS 5;H 2g.

For any i, 0 < i � n, Gi is built from Gi�1. Similar to G0, Gi is

represented as Gi ¼ Vi;Ei;Pið Þ, where Vi ¼ v1
i ; . . . ; v

j
i; . . . ; v

J
i

n o
rep-

resents the set of vertices that are the i-motifs. We need the following

set function NGi�1
ðÞ to generate an i-motif: for an (i� 1Þ-motif

vji�1 2 Vi�1. vji ¼ NGi�1
vji�1

� �
� vji�1 � � � vki�1 � � �

� �
; vji�1; vki�1

� �
2 Ei�1

n o
.

Here, the bracket notation, “[and]”, represent the neighbor rela-

tions. From this definition of the set function NGi�1
ðÞ, we can see

that the jth i-motif is obtained as an agglomeration of the (i� 1Þ-
motifs around the jth ði� 1Þ-motif. The edge set Ei of Gi is defined

as follows: for two vertices vji 2 Vi and vki 2 Vi, vji; vki

� �
2 Ei if and

only if NGi�1
ðvji�1Þ \NGi�1

ðvki�1Þ 6¼ 1. In other words, there is an

edge between vji and vki if they have at least one ði� 1Þ-motifs in

common. The property set Pi is defined similarly as Pi ¼ giðViÞ,
where the property function giðÞ is defined as follows: for any

vji 2 Vi, pji ¼ gi vji

� �
� gi�1 NGi�1

vji�1

� �� �
¼ gi�1 vli�1

� �
; vli�1 2 NGi�1

�

vji�1

� �
g ¼ fpli�1jvli�1 2 NGi�1

vji�1

� �
g. The set of property labels XP

is then augmented by the new property labels generated at this level,

i.e. XP � XP [ Pi. Similar operations are applied to create the node

labeling function fi and to update the node labels set XM.

Therefore, for each secondary structure in our dataset, a set of

graphs H is created and the union of all the computed bags of i-

motifs results in a bag-of-n-motifs. All the bags-of-n-motifs from the

secondary structures in a dataset provide a possibly very large en-

semble of motifs. From this ensemble of motifs, we will select a set

of most relevant motifs that will be used as features for representing

the secondary structures from our dataset. To alleviate the text,

from now on, the terms “motif,” “i-motif” and “n-motif” will be

used interchangeably, unless specified otherwise.

2.2 n-motifs representation of secondary structure
The n-motifs obtained in the bag-of-n-motifs model can be thought

of as playing a similar role to that of n-grams in n-gram models. If

we arrange all the n-motifs in some order, we can create a matrix

representation of all the secondary structures. We introduce the ma-

trix S 2 R
w�r, where w is the total number of secondary structures in

the dataset, r is the number of unique n-motifs, and each element of

the matrix, sij, is the frequency of occurrence of a unique n-motif j in

the secondary structure i. We denote by si the ith row vector of S,

corresponding to the ith secondary structure, and by zj the jth col-

umn vector of S, corresponding to the jth n-motif. Not all the unique

n-motifs convey the same amount of information. Therefore, it is de-

sirable to select relevant n-motifs to get a refined vector representa-

tion of secondary structures, called the n-motifs representation.

Extracting relevant n-motifs from S leads to a better description

of secondary structures. The method proposed here for selecting

relevant n-motifs is based on an analysis of their frequencies of oc-

currence. We hypothesize that the relevance of an n-motif is propor-

tional to its occurrence frequency. For instance, among important

motifs of a tRNA, the single-stranded region at the 30 end is neces-

sary for the binding of amino acids during the translation process.

Therefore, we would expect a high occurrence of this motif in a

population of secondary structures comprising tRNA. To automat-

ically identify and remove irrelevant n-motifs, i.e. more rarely occur-

ring n-motifs, we utilize the head/tail division rule (Jiang and Liu,

2011). This rule specifies that in the context of a heavy-tailed distri-

bution, the arithmetic mean of the n-motif occurrences yields a nat-

ural division between the head (high-occurrence n-motifs) and the

tail (low-occurrence n-motifs) of the heavy-tailed distribution.

The distribution of n-motifs ranked by decreasing order of total

occurrence follows a heavy-tailed distribution (Supplementary

Figure S2). We denote this distribution by f . With x the rank of an

n-motif zj and f ðxÞ ¼
Pw

i¼1 sij its total occurrence, f satisfies the con-

dition 8x, f xð Þ � f xþ 1ð Þ. f xð Þ � 1 since an n-motif is present in at

least one secondary structure. f follows a heavy-tailed distribution

in two regards. On the one hand, it satisfies the long-tailed distribu-

tion property: limx!þ1f ðxþ yÞ=f xð Þ ¼ 1, with y > 0 (Foss et al.,

2011). In fact, low-ranked n-motifs tend to have an occurrence of

one because they are present in at least one secondary structure. On

the other hand, the long-tailed distribution is a subclass of the

heavy-tailed distribution. Thus, we can apply the head/tail division

rule to extract relevant n-motifs since f follows a heavy-tailed distri-

bution. An n-motif zj is considered relevant if the condition f xð Þ
� fmean is satisfied, where fmean ¼

Pr
j¼1 f xj

� �
� 1=r with r the total

number of n-motifs.

After removing irrelevant n-motifs, it is useful to reduce the ef-

fect of extreme n-motif occurrences arising from large secondary

structures and increase the relative importance of medium n-motif

occurrences specific to groups of structures. In fact, large secondary

structures naturally tend to have many more n-motifs than small sec-

ondary structures. Moreover, while n-motifs specific to groups of

structures bear valuable structural information about those groups,

they are underestimated because the corresponding n-motifs tend to

have medium to low occurrences. To alleviate these effects, we use

the logarithm transformation such that s0ij ¼ logðsij þ 1Þ. s0ij repre-

sents the relative relevance or importance of an n-motif zj to a sec-

ondary structure si. The n-motifs representation of si is defined by

the vector s0i.

The n-motifs representation emphasizes relevant characteristics

of secondary structures. It removes irrelevant (i.e. rare) n-motifs, re-

duces the impact of extremely high occurrences of n-motifs due to

large secondary structures and increases the relative importance of

n-motifs specific to groups of structures. Given that the n-motifs rep-

resentation has, in fact, dependent features, in the next subsection,

we propose to explore the relationships between n-motifs in order to

find the best n-motif combinations characterizing secondary

structures.

2.3 Super-n-motifs representation of secondary

structure
From the previous two steps, we obtain individual n-motifs that cap-

ture geometric properties of RNA secondary structures. However,
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some secondary structures sharing few n-motifs can belong to a

same family. In this subsection, we develop a final vector representa-

tion of an RNA secondary structure by computing n-motif combin-

ations to effectively represent the structure information. Such

combinations should make it possible to capture latent statistical re-

lationships between the n-motifs so as to create non-correlated fea-

tures on which comparisons of secondary structures will be made.

We search for the best linear combinations of n-motifs using SVD

(Golub and Reinsch, 1970).

Let S0 2 R
w�m be the matrix of n-motifs representations, where w

is the total number of secondary structures and m is the total num-

ber of relevant n-motifs. S0 is decomposed by SVD to a product of

matrices, as follows:

S0 ¼ URVT ;

where UTU ¼ 1 with U 2 R
w�w and VTV ¼ 1 with V 2 R

m�m.

Columns of U are the eigenvectors of S0�S0T and are linear combin-

ations of n-motifs. Columns of V are the eigenvectors of S0T�S0 and

are linear combinations of S0 rows representing secondary struc-

tures. R is a w � m diagonal matrix containing the square roots of

the non-zero eigenvalues of S0�S0T or singular values of S0 in decreas-

ing order, i.e. r1;1 > r2;2 > . . . > rr;r > 0. By selecting the first k

largest singular values in R; we obtain a truncated matrix S0k, where

S0k is defined by:

S0 	 S0k ¼ UkRkV
T
k :

S0k yields the best low-rank approximation of S0, such that S0k � S0

(the Frobenius norm) is minimized.

The sum of the first k singular values in Rk represents the largest

amount of information, in terms of variability, possibly retained

using only k variables (features). We consider the matrices

U0
k ¼ UkRk, where Uk is weighted relative to Rk. The space defined

by the k vectors of U0
k is called the super-n-motifs space. The super-

n-motifs space is a low-dimensional space relative to the original

space, since k is typically chosen such that k 
 m. The super-n-

motifs representation of a structure s
0
i is denoted by u0i.

The super-n-motifs gather particular information concerning the

relevant n-motifs and their relationships in order to provide a global

picture of the structural features of the RNA. The super-n-motifs

representation yields a vector representation of a secondary struc-

ture in a low-dimensional space. By comparing these representa-

tions, secondary structure relationships can be explored. The next

subsection presents the comparison of secondary structures in the

super-n-motifs representation.

2.4 Comparison of secondary structures based on the

super-n-motifs representation
The exploration of secondary structure relationships is facilitated

using the super-n-motifs representation. Secondary structures can be

effectively compared by computing the cosine dissimilarity

(Bonham-Carter et al., 2013; Vinga and Almeida, 2003) between

their super-n-motifs representations. Given two secondary struc-

tures, si and sj, and their respective super-n-motifs representations,

u0i and u0j, the cosine dissimilarity between u0i and u0j is defined as:

dcos u0i; u
0
j

� �
¼ 1 � u0i � u0j

� �
= u0iu

0
j

� �

si and sj, are considered similar or close to one another when dcos

u0i; u
0
j

� �
	 0 and dissimilar or far from one another when

dcos u0i; u
0
j

� �
	 2.

2.5 Complexity of the super-n-motifs model
The time complexity of the super-n-motifs model is O w �m�ð
min w;mð ÞÞ, where w is the number of secondary structures and m is

the number of relevant n-motifs. It corresponds to the SVD time

complexity, since our approach is dominated by the SVD computa-

tion. The overall time complexity of the super-n-motifs model is O

wð Þ þO rð Þ þO w�m�min w;mð Þð Þ where:

• O wð Þ is associated with the computation of the bag-of-n-motifs

model on the w structures;
• O rð Þ represents the computation required for the selection of the

m relevant n-motifs out of the total number of n-motifs denoted

by r;
• O w�m�min w;mð Þð Þ represents the time complexity of SVD

(Golub and Van Loan, 1996).

The space complexity of the super-n-motifs model is due largely

to the space required to store the matrix of raw n-motifs, which

is on the order of Oðw�rÞ. In detail, the space complexity of

the super-n-motifs model is O w�rð Þ þO w�mð Þþ O w�wð Þþ
Oðw �mÞ þOðm �mÞ, where:

• O w�rð Þ is associated with the space required to store the matrix

of n-motifs, S.
• O w�mð Þ represents the storage space associated with the matrix

of relevant n-motifs, S0’.
• O w�wð Þ, Oðw �mÞ and Oðm �mÞ are, respectively, the space

taken by the matrices U, R and V associated with SVD.

Typically, r > w, so the space complexity is Oðw�rÞ, correspond-

ing to the space necessary to store the matrix associated with

space S.

3 Results

We evaluated the model’s capacity to perform accurate, efficient

comparisons between secondary structures of various sizes from lin-

ear and circular RNA comprising pseudoknots and G4s. The accur-

acy of RNA secondary structure comparison is expressed in terms of

discriminative power, i.e. the ability to bring secondary structures

from the same family closer together and push secondary structures

from different families farther apart. The efficiency is evaluated in

terms of the time required to compare sets comprising increasing

numbers of secondary structures.

We used the normalized mutual information (NMI) and the f-

measure (FMEAS; Manning et al., 2008) to compute the discrimina-

tive power of secondary structure comparison algorithms, grouped

by their underlying representations, on a medium-sized dataset of

2368 secondary structures from 12 RNA families (Fig. 2 and

Supplementary Figure S4) and a large-sized dataset of 15 287 struc-

tures from 76 RNA families (Fig. 3). These datasets comprise, re-

spectively, 9 and 66 linear RNA families and 3 and 10 circular RNA

families (Andronescu et al., 2008; Garant et al., 2015; Giguère et al.

, 2014; Nawrocki et al., 2015). Supplementary Section 1 provides a

detailed description of these datasets. When the discriminative

power in terms of NMI or FMEAS is close to one, it means that all

the members of each secondary structure family are close to one an-

other and far from other secondary structures. Details on the com-

putation of NMI and FMEAS are provided in Supplementary

Section 2.

For the evaluation on the medium-sized dataset, the approaches

and representations carefully chosen from the survey (Schirmer et al.,

2014) are as follows: the super-n-motifs model based on 5-gram
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(sng), the super-n-motifs model based on the super-n-motifs repre-

sentation with k ¼ 10 super-n-motifs (snm10) and the number of

super-n-motifs automatically determined using the broken stick

model (snmBr; see Supplementary Section 3); RNAdistance with the

full tree (RNAdf) and the coarse-grained tree (RNAdc), and

RNAforester based on the rooted ordered tree (Tree); RNAdistance

with full string (RNAdF) and coarse-grained string (RNAdC), and

BEAR based on the string-encoded representation (String); and

Gardenia based on the arc-annotated sequence (Arc). In addition to

the previously described approaches versions of RNAforester and

BEAR. Algorithm parameters used are described in the

Supplementary Section 3. For the evaluation on the large-sized data-

set, the models compared are sng, snmBr and RNAdF. This latter

was chosen because it is one of the approaches achieving the best

trade-off between efficiency and discriminative power.

We evaluated the efficiency of the secondary-structure compari-

son algorithms by computing the time required to perform all-

against-all comparisons on sets of 56, 104, 506, 1007 and 15 287

secondary structures (Tables 1 and 2), corresponding, respectively,

to 1540, 5356, 127 765, 506 521 and	117 million pairwise com-

parisons. Each of these sets comprises from small (	36 nt) to large

secondary structures (	2900 nt) of linear RNA (see the sets of sec-

ondary structures in Supplementary File S1), corresponding to the

size variability generally found in RNA secondary structures. To

avoid redundancy, it is only necessary to compute ðw2 �wÞ=2 com-

parisons, where w is the total number of secondary structures in a

dataset.

3.1 Analysis of discriminative power
3.1.1 Performance on linear RNA families with high structural

variability

From the results shown in Figure 2 and Supplementary Figure S4,

we can remark that the super-n-motifs model demonstrates compar-

able or superior discriminative power compared to other approaches

on families with high structural variability such as RNaseP, SRP and

HH. In fact, the super-n-motifs model performs better on the

RNaseP family compared to other methods, showing its capability

to identify substructures or local structures shared among the set of

highly variable secondary structures. Indeed, RNaseP structures

from our dataset come from three domains, Archea, Bacteria and

Eukaryotes, and the structures corresponding to these domains are

known to be highly variable while showing a central conserved core

(Evans et al., 2006). Specifically, RNaseP structures exhibit very di-

verse conformations, due to more structural rearrangement than ex-

tended stems or loops, as these structures do not differ much in size,

i.e.	337.66 nt6 26.25 SD (see Supplementary Table S1). The diver-

sity of RNaseP structures can be visualized in Supplementary Figure

S5, where the structures of ASE_00264, ASE_00099 and ASE_

00346 belong, respectively, to the Eukarya, Bacteria and Archea

domains.

The super-n-motifs model also shows comparable discriminative

power on the SRP family compared to the ordered tree-based

Fig. 2. Algorithms’ discriminative power in terms of NMI on RNA secondary

structure families. NMI distribution close to one means high discriminative

power. Algorithms were grouped according to their representations: se-

quence (Seq.) super-n-motifs (snm), ordered tree (Tree), string-encoded

(String) and arc-annotated sequence (Arc). Local* refers to local alignment

version of approaches such as RNAforester and Bear. Families of secondary

structures from linear RNA are HH ribozymes, tRNA, 5S rRNA, RNaseP, signal

recognition particle (SRP), tmRNA, 16S rRNA, 23S rRNA) and structures with

G-quadruplexes motifs (G4). Families of secondary structures from circular

RNA are potato spindle tuber viroid (PSTVd), tomato apical stunt viroid

(TASVd) and tomato chlorotic dwarf viroid (TCDVd).
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approach, RNAdf, and superior discriminative power compared to

all the other approaches. Given that SRP structures in our dataset

are highly variable in terms of size (Rosenblad et al., 2009), this sug-

gests that the super-n-motifs model is much less affected by the size

variability of structures. In fact, the SD relative to the mean size of

structures in the SRP family is very high,	266.30 nt 6 65.46 SD

(Supplementary Table S1).

As for circular permuted structures, the results shown in Figure 2

and Supplementary Figure S4 suggest that the super-n-motifs model

performs very well on the HH family, similar to a coarse-grained ap-

proach such as RNAdc and RNAdC. This shows its capacity to han-

dle circular permuted structures. Structural variability in the HH

family is due to the fact that our dataset comprises hammerhead

(HH) structures of types I and III with a large variability in

size,	61.71 nt 6 24.16 SD (Supplementary Table S1). It is known

that the HH family is comprised of three groups, types I, II and III,

which are circularly permuted forms of HH distinguished by the

open-ended helix that connects the motifs with the flanking se-

quences (Hammann et al., 2012). The structural variability of HH

in our dataset can be seen by examining structures RFA_00660 and

RFA_00407, representing HH of types I and III, in Supplementary

Figure S5.

3.1.2 Performance on linear RNA families with conserved structures

Performance comparison on families of conserved secondary struc-

tures shows that the super-n-motifs model displays high discrimina-

tive power similar to that of the majority of the tested approaches.

Indeed, the super-n-motifs model, as well as RNAdf, RNAdF,

RNAforester, BEAR and Gardenia, generate excellent NMI and

FMEAS results on families with conserved structures such as the

tRNA, 5S, tmRNA, 16S and 23S families (Fig. 2 and Supplementary

Figure S4). The structural conservation of these families can be ex-

plained by the fact that not much size variability for any of these

families is observed in our dataset. In fact, a small SD compared to

the average size of structures is observed for the tRNA, 5S, tmRNA,

16S and 23S families. For each of these families, respectively, we

have average sizes and SDs of	77 nt 6 5.42 SD,	120 nt 6 7.55

SD,	362.46 nt 6 6.72 SD,	1577.35nt 6 110.83 SD and	2908.

09 nt 6 28.38 SD (Supplementary Table S1).

3.1.3 Performance on circular RNA families, G-quadruplexes and

pseudoknots

The super-n-motifs model is designed to handle secondary structures

from circular RNA families seamlessly. In fact, our model shows by

Table 1. Running times (in d: days, m: minutes and s: seconds) on 56, 104, 506 and 1007 secondary structures, corresponding to 1540, 5356,

127 765 and 506 521 pairwise comparisons.

Representation Algorithm Time complexity

for one pair. comp.

56 structures

1540 pair. comp.

104 structures

5356 pair. comp.

506 structures

127765 pair. comp.

1007 structures

506521 pair. comp.

Sequence sng O wm min w;mð Þð Þ 0.12s 0.22s 3s 35s

Super-n-motifs snmBr O wm min w;mð Þð Þ 0.12 s 0.66 s 3 s 4 s

Tree RNAdf O l2d2
� �

4 m 29 s (103 f.) 16 m 24 s (103 f.) 5 h 44 m (103 f.) 14 h 7 m (104 f.)

RNAdc O l2d2
� �

2 s (101 f.) 7 s (101 f.) 2 m17 s (101 f.) 5 m 4 s (101 f.)

RNAforester O l2=r
� �

q2
� �

1 h 31 m (104 f.) 10 h 5 m (105 f.) >1d >1d

String RNAdF O l2
� �

31 s (102 f.) 1 m 47 s (102 f.) 35 m 58 s (103 f.) 1 h 38 m (103 f.)

RNAdC O l2
� �

1 s 4 s 1 m 14 s (101 f.) 3 m 22 s (101 f.)

BEAR Oðl2Þ 2 m 31 s (103 f.) 8 m 34 s (102 f.) 3 h 17 m (103 f.) 7 h 54 m (103 f.)

Arc Gardenia O l4
� �

18 m 52 s (103 f.) 1 h 32 m (104 f.) >1d >1d

ERA O(l3) 8 h 51 m (105 f.) >1d >1d >1d

Ensemble Sparse O(l2) >1d >1d >1d >1d

Note: The algorithms were run on an 8 CPU (1.8 GHz) desktop pc with 5.8 GB of RAM. f. and pair comp. stand for fold and pairwise comparisons. w and m

refer to the number of structures and the number of computed relevant n-motifs. l represents the size of trees or forests, strings or arc-annotated sequences or num-

ber of base pairs representing secondary structures. d is the depth of trees. r and q are, respectively, the number of anchors and the maximum degree of forests.

The best results in each column are shown in bold.

Fig. 3. Discriminative power of sng, snmBr, RNAdF and RNAdC in terms of

NMI and FMEAS on RNA secondary structure families from a large dataset of

15 287 secondary structures belonging to 76 families. The discriminative

power of each model is reported separately according to its performance on

linear and circular RNA families.

Table 2. Running times (in d: days and s: seconds) of sng, snmBr

and RNAdF on the large-sized dataset of 15 287 secondary struc-

tures corresponding to	117 million pairwise comparisons.

Representation Algorithm Time complexity Running times

Sequence sng O wm min w;mð Þð Þ 1697s

Super-n-motifs snmBr O wm min w;mð Þð Þ 179s

String RNAdF O l2
� �

41da

Note: sng and snmBr were run on an 8 CPU (1.8 GHz) desktop pc with

5.8 GB of RAM and RNAdF was run in parallel on a 24 core node of the

super computer Mammouth-mp2. w, m and l refer to the number of struc-

tures, the number of computed relevant n-motifs and the length of the strings

representing the secondary structures. The best result is shown in bold.
aEstimated CPU time, that is, the sum of CPU time consumed by all of the

CPUs.
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far the best discriminative power compared to all other methods, re-

gardless of whether they are based on global or local alignment, on

secondary structures from the 3 circular RNA families of the

medium-sized dataset and the 10 circular families of the large-sized

dataset (Fig. 2, Supplementary Figure S4 and Fig. 3). The clear ad-

vantage of our approach can be explained by the fact that, contrary

to the other methods that assume contiguity of structural features,

our model does not. Indeed, our model defines a secondary structure

as an unordered collection of structural features, the n-motifs.

Consequently, it captures structural features irrespective of their

orders, which is an important property that allows it to effectively

handle not only circular RNA but also RNA with the circularly per-

muted structures found in the HH family.

The results reported in Figure 2 and Supplementary Figure S4

demonstrate that the proposed approach has the capacity to handle

pseudoknots and G4s. In fact, the super-n-motifs model demon-

strates high discriminative power on secondary structures from lin-

ear RNA families comprising pseudoknots, such as RNaseP,

tmRNA, 16S and 23S rRNA (see Supplementary Table S1).

Moreover, our model effectively processes G4s, since it is capable of

discriminating secondary structures that contain a single G4 from

those without any G4s. It is important to note that while all the

other approaches simply ignore these motifs, our model processes

pseudoknots and G4 effectively, thanks to the flexibility of the bag-

of-n-motifs that allows the explicit integration of any kind of motif

(here, pseudoknots and G4 motifs) in the structural description of

secondary structures. Our model makes no distinction between vari-

ous types of pseudoknots, such as the H-type or the three-stemmed

RNA pseudoknot (Staple and Butcher, 2005).

3.1.4 Large-scale performance analysis

A very important advantage of our approach is that it can be used to

handle very large datasets in a very time-efficient way while main-

taining high discriminative power as the number of structures

grows. As shown in Figure 2, it achieves discriminative power com-

parable or superior to that of the tested approaches on linear RNA

and consistently outperforms them on circular RNA in the medium-

sized dataset of 2368 structures with 12 families. On the large-sized

dataset of 15 287 structures with 76 families, we compared our ap-

proach with sng and RNAdF (Fig. 3 and Table 2). RNAdF was

chosen because it is one of the most efficient approaches, combining

good time complexity, Oðl2Þ, and high discriminative power rivaling

that of approaches based on ordered-tree and arc-annotated se-

quences, which have a time complexity of at least Oðl2d2Þ (see

Table 1 and Fig. 2). From Figure 3 and Table 2, it can be seen that

our approach yields discriminative power comparable to that of

RNAdF and superior to that of sng, yet significantly outperforms

them in term of running times. This evaluation shows at least that

our approach is indeed effective and efficient on a large dataset, i.e.

3 min as compared to the equivalent of 41 days for RNAdF.

Currently, a thorough comparative study of different approaches on

large datasets like the one used here is not possible since most com-

peting approaches would need more than 1 month to produce their

results on a single workstation.

3.1.5 Structural information at the coarse-grained and fine-grained

levels

The results in Figure 2 and Supplementary Figure S4 show that the

super-n-motifs model yields consistently high discriminative power

compared to approaches using coarse-grained representation of

structures (in which subsets of nucleotides or base pairs forming

motifs such as stems or hairpin loops are considered as elements of

the representation), for instance, RNAdc and RNAdC, on the HH

family. It performs equally well as, and sometimes better than,

approaches using fine-grained representation (in which each nucleo-

tide or each base pair is considered as an element of the representa-

tion). These approaches include RNAdf, RNAdF, RNAforester,

BEAR and Gardenia (Fig. 2 and Supplementary Figure S4). We ob-

serve that approaches based on fine-grained representation of struc-

tures perform better than approaches based on coarse-grained

representation because the latter often results in a loss of structural

information. Our approach combines the advantages of both fine-

grained and coarse-grained representation and performs well on all

the families. This can be explained by the fact that the structural fea-

tures captured by our model represent coarse-grained features such

as motifs and neighboring motifs, on the one hand, and fine-grained

features such as the number of base pairs in a stem or the number of

string-stranded nucleotides in loops on the other.

3.1.6 Sufficiency of structural information for separating families

We performed a comparison between structure-based and sequence-

based methods to see whether structural information could be suffi-

cient to separate families. We observed that structure-based meth-

ods, including snmBr, yield high discriminative power, while

sequence-based methods like sng consistently have low discrimina-

tive power on most linear RNA families (Fig. 2, Supplementary

Figure S4 and Fig. 3). In fact, for the medium-sized dataset families

such as HH, tRNA, 5S, RNaseP, SRP and tmRNA and the large-

sized dataset families, sng yields low performance, indicating that

most RNAs, based on sequence information, have been assigned to

the wrong family. These results show that, in our context, structural

information is more important than sequence information for distin-

guishing RNA families. It is important to note that sng performs

well on circular RNA, since sng, like snmBr, is insensitive to the

RNA direction by the fact that it captures the unordered statistical

patterns of sequences, the n-grams. Consequently, sng can be a good

candidate to compare circular RNA sequences.

3.2 Efficiency assessment
The efficiency of the super-n-motifs model is shown by Tables 1 and

2. We observed that it is faster, by up to 4 or 5 orders of magnitude,

than all the tested approaches, on data varying from very small-

sized sets of 56 structures, corresponding to 1540 pairwise compari-

sons, to the large-sized set of 15 287 structures corresponding

to	117 million pairwise comparisons. It exhibits a linear running

time: it took 0.15 s, 0.27 s, 4 s, 7s, 12s and 182s, respectively, to

compute all-against-all pairwise comparisons of 56, 104, 506, 1007,

2330 and 15 287 secondary structures of various sizes (from	36

to	2900 nt), corresponding to 1540, 5356, 127 765, 506 521,	2

million,	117 million pairwise comparisons (see Tables 1 and 2 and

Supplementary Table S2). For the large-sized dataset of 15 287

structures, our approach is 4 orders of magnitude faster than

RNAdF, since it took 182 s. (3 min) to compute	117 million com-

parisons from the set of 15 827 secondary structures, a task that

would take	41 days of estimated CPU time for RNAdF (Table 2).

Tables 1 and 2 suggest that the alignment-based methods are

convenient for low or medium-scale analysis but not suitable for

large-scale analysis. RNAforester, Gardenia, ERA and SPARSE are

more suitable for low-scale analysis, since even to compare 506

structures they already require days of computation. It is worth

mentioning that ERA and SPARSE exhibit the highest running

times: 8 h 51 m and more than a day to compare 56 structures
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corresponding to 1540 comparisons. For this reason, we were un-

able to evaluate their respective discriminative power on the

medium-sized datasets requiring computation of	2 million pairwise

comparisons.

The results presented in the previous paragraphs are to be ex-

pected, because the majority of the tested approaches typically use

DP as a foundation to compute alignment. Indeed, it is known that

DP-based approaches are computationally demanding (Bonham-

Carter et al., 2013). Alignment-free approaches scale well and are of

interest in sequence analysis to handle the vast numbers of tran-

scripts generated by high-throughput sequencing methods (Bonham-

Carter et al., 2013; Vinga, 2014; Vinga and Almeida, 2003;). As the

number of validated secondary structures grows, mainly due to

high-throughput probing techniques, an alignment-free approach

such as the super-n-motifs model offers a good alternative to the

existing methods.

4 Discussion

Understanding RNA functions by comparing RNA secondary struc-

tures is challenging for several reasons. On the one hand, secondary

structures are complex due to the nature of RNA, which can take a

linear or a circular configuration and may contain pseudoknots and

G4 motifs. On the other hand, thousands of secondary structures

are generated by high-throughput probing techniques. In this paper,

we proposed the super-n-motifs model and demonstrated its effect-

iveness and efficiency at comparing RNA secondary structures.

Our model computes accurate comparisons of secondary struc-

tures and naturally tends to cluster structures in a way that reflects

known secondary structure families. This is an important property,

because it is expected that members of a family of RNA secondary

structures performing related functions form a natural cluster. This

can be particularly helpful for RNA annotation, structure-based

phylogeny, homology search in databases and identification of new

families in populations of RNA. Since our model efficiently handles

pseudoknots and G4 motifs, it can also help in understanding their

functional roles.

In future work, our approach can be extended to compare RNA

on the basis of sequences and secondary and tertiary structures. In

fact, in addition to pseudoknots and G4 motifs, our model can be

extended to handle other motifs such as sarcin-ricin, kink turn or c-

loop motifs, thus making it possible to combine motifs from the sec-

ondary structures with the tertiary structures. Sequence information

can be incorporated with n-grams as in sng method. Our model can

thus yield a rich and global view of RNA by combining sequence

and structural features.
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Abstract

Motivation: Comparing ribonucleic acid (RNA) secondary structures of arbitrary size uncovers struc-

tural patterns that can provide a better understanding of RNA functions. However, performing fast

and accurate secondary structure comparisons is challenging when we take into account the RNA

configuration (i.e. linear or circular), the presence of pseudoknot and G-quadruplex (G4) motifs and

the increasing number of secondary structures generated by high-throughput probing techniques. To

address this challenge, we propose the super-n-motifs model based on a latent analysis of enhanced

motifs comprising not only basic motifs but also adjacency relations. The super-n-motifs model com-

putes a vector representation of secondary structures as linear combinations of these motifs.

Results: We demonstrate the accuracy of our model for comparison of secondary structures from

linear and circular RNA while also considering pseudoknot and G4 motifs. We show that the super-

n-motifs representation effectively captures the most important structural features of secondary

structures, as compared to other representations such as ordered tree, arc-annotated and string

representations. Finally, we demonstrate the time efficiency of our model, which is alignment free

and capable of performing large-scale comparisons of 10 000 secondary structures with an effi-

ciency up to 4 orders of magnitude faster than existing approaches.

Availability and Implementation: The super-n-motifs model was implemented in Cþþ. Source

code and Linux binary are freely available at http://jpsglouzon.github.io/supernmotifs/.

Contact: Shengrui.Wang@Usherbrooke.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Exploring the relationships between ribonucleic acids (RNAs) by

comparing their secondary structures provides critical insight into

their functions. In fact, complex molecules such as RNAs can fold

into secondary and tertiary structures to perform various functions

involved in the regulation of translation, transcription, splicing, and

so on (Wan et al., 2011). However, because RNA tertiary structure

is largely determined by its secondary structure (Brion and Westhof,

1997; Tinoco and Bustamante, 1999), RNAs with similar secondary

structures will likely have the same or related functions. Thus, com-

paring RNA secondary structures can significantly contribute to

understanding RNA functions.

In this paper, we consider three important aspects of secondary

structure data in designing our model. We consider the nature of the

VC The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1169
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RNA (linear or circular), the presence of functional motifs such as

pseudoknots and RNA G-quadruplexes (G4s) and finally, the grow-

ing number of secondary structures. First, while most RNAs are lin-

ear, recent studies suggest that circular RNA transcripts are

abundant and have a potential role in gene regulation (Jeck et al.,

2013; Kosik, 2013). Many well-known pathogens such as viroids

and the hepatitis delta virus have a circular RNA genome (Flores

et al., 2012). Second, both pseudoknot and G4 motifs are known to

be involved in translation and splicing regulation (Millevoi et al.,

2012; Staple and Butcher, 2005). Pseudoknots are secondary struc-

ture topologies comprising additional base pairs between loops and

are pervasive in many RNA families such as transfer messenger

RNA (tmRNA), ribosomal RNA (rRNA), ribonuclease P RNA

(RNase P), and so on. G4s, on the other hand, are formed by the

stacking of non-canonical interactions of guanines; many such

motifs have been found in the untranslated regions of mRNA

(Huppert et al., 2008). Finally, high-throughput methods for prob-

ing RNAs, such as FragSeq (Underwood et al., 2010) and SHAPE-

Seq (Loughrey et al., 2014), yield a large number of secondary struc-

tures (Bellaousov et al., 2013; Lorenz et al., 2011).

Comparing secondary structures of arbitrary size from linear

and circular RNAs while also considering pseudoknot and G4

motifs is a challenging task. Most of the algorithms for comparing

secondary structures are not capable of handling circular RNAs or

pseudoknots and G-quadruplexes because of their underlying repre-

sentations of secondary structure. Existing algorithms for comparing

secondary structures can be grouped into four categories according

to their representations. The first group, based on an ordered tree

representation of secondary structures, includes RNAdistance

(Lorenz et al., 2011), RNAforester (Schirmer and Giegerich, 2013),

MiGal (Allali and Sagot, 2008) and RNAstrat (Guignon et al., 2005).

The second group, based on the string-encoded representation, includes

RNAdistance and BEAR (Mattei et al., 2014). The third group, based

on the arc-annotated sequence representation, includes Gardenia (Blin

et al., 2010) and Efficient alignment of RNA secondary structures

(ERA) (Zhong and Zhang, 2013). Finally, the fourth group, based on a

representation combining sequence and structure ensemble information

on RNA, called ensemble-based representation, includes LocARNA

(Will et al., 2007) and SPARSE (Will et al., 2015).

The majority of algorithms for comparing secondary structures do

not handle secondary structures from circular RNA. This is because

they are based on representations such as the ordered tree, string-

encoded, arc-annotated sequence and ensemble-based approaches,

which consider a secondary structure as an ordered set of nested base

pairs beginning at the 50 extremity and ending at the 30 extremity of

the RNA. While this is an appropriate way of looking at linear RNAs,

it is not meaningful for circular RNAs because they do not have any

50 and 30 extremities. In fact, the 50 and 30 ends of circular RNA are

joined, resulting in no directionality and, consequently, no intrinsic

base pair ordering. Thus, these representations are not suitable to han-

dle secondary structures from circular RNA. In this context, a mean-

ingful alignment of secondary structures from circular RNA, whether

global or local, can be hard to compute since alignment-based

approaches inherit limitations from their respective structural repre-

sentations. In fact, while it is possible to linearize circular RNA at a

given position in order to compute the structural representation and

perform global or local alignments, choosing the optimal starting pos-

ition to produce the best alignment is not a trivial task. To address

this challenge, specialized tools have been developed in the context of

cyclic sequence alignment (Fernandes et al., 2009; Mosig et al., 2006;

Will and Stadler, 2014). However, there is no such approach specific-

ally designed for aligning or comparing cyclic secondary structures.

Being based on secondary structure representations that consider

only nested base pairs, the algorithms for comparing secondary struc-

tures cannot handle pseudoknots and G4 motifs, which in fact involve

non-nested base interactions. It is important to note that an arc-

annotated sequence representation can support comparison of second-

ary structures with non-nested base pairs but (so far) at a high compu-

tational cost (NP-hard; Schirmer et al., 2014). Thus, algorithms based

on ordered tree, string-encoded and arc-annotated sequence represen-

tations are not appropriate for processing secondary structures of cir-

cular RNA or for handling pseudoknots and G4 motifs. An extensive

survey of secondary structure comparison algorithms and representa-

tions is given in the study by Schirmer et al. (2014).

Alignment-based algorithms for comparing secondary structures

are effective, but they are computationally expensive, rendering

them inappropriate for large-scale secondary structure comparisons.

In general, alignment-based approaches, usually implemented using

dynamic programming (Eddy, 2004), are known to be time-

consuming, especially in the context of sequence analysis (Bonham-

Carter et al., 2013; Vinga, 2014). Advances have therefore been

made toward alignment-free models in order to meet the need to

process the thousands of sequences generated by high-throughput

sequencing techniques (Haubold, 2014; Pinello et al., 2014; Song

et al., 2014). Secondary structures are much more complex than se-

quences because nucleotides at the sequence level are involved in

pairing. This renders secondary structure alignment computationally

more intensive than sequence alignment. It is therefore necessary to

develop alignment-free approaches to efficiently compute similar-

ities between RNA secondary structures.

To address the need for an efficient way of comparing secondary

structures from linear and circular RNA comprising pseudoknots

and G4s, we propose a new model named super-n-motifs, based on

the idea that similar secondary structures share similar combinations

of motifs. Since secondary structures can be decomposed into build-

ing blocks, i.e. basic motifs such as stems or hairpin loops (Hendrix

et al., 2005), the secondary structures can be seen as being formed

by multiple combinations of motifs. It is thus likely that secondary

structures comprising shared or similar combinations of motifs are

similar and belong to the same RNA family. As an example, a trans-

fer RNA (tRNA) has a cloverleaf-shaped secondary structure formed

by the combination of three hairpins and a stem (a hairpin being a

combination of a stem and a loop). A secondary structure that pos-

sesses combinations of motifs similar to those in a tRNA secondary

structure is likely a tRNA.

The super-n-motifs model takes as input given secondary struc-

tures and relies on three consecutive steps to build an effective and

efficient vector-based representation of secondary structures. The

proposed model first computes a bag-of-n-motifs model of second-

ary structures, where “i-motifs,” for 0 � i � n, are built from

(i� 1)-motifs and their neighbor relations from one level of abstrac-

tion to another, with 0-motifs being basic motifs. The value of n is

the highest level of abstraction. Among the basic motifs considered

are pseudoknots, G4s, single-stranded regions or external loops at

the 50 end and single-stranded regions or external loops at the 30

end, and so on. The bag-of-n-motifs model explicitly handles pseu-

doknots and G4 motifs and the nature of the RNA (linear or circu-

lar). For circular RNAs, it simply ignores the external loop motifs at

the 50 and 30 ends in the description of secondary structures from

these RNAs. The n-motifs (Unless otherwise stated, we use the term

“n-motifs” to represent an ensemble of i-motifs for all 0 � i � n,

and use i-motif or 2-motif to represent a motif at a particular level

of abstraction, i or 2 here.) are thus designed to capture local and in-

creasingly global structural features of secondary structures.
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Second, the model computes the relative importance of each gen-

erated i-motif in order to select a reduced set of i-motifs, or features,

for representing secondary structures. We call this the n-motifs rep-

resentation. In fact, since each i-motif is computed from a single sec-

ondary structure, there can be a great number of i-motifs even for a

small value of n. Not all the i-motifs are discriminative features for

representing secondary structures. This step allows the user to

choose the most discriminative ones based on an analysis of their

frequencies of occurrence.

Third, the n-motifs representation obtained at the previous step

is further transformed to obtain the super-n-motifs representation.

This step makes use of singular value decomposition (SVD) to create

feature variables as linear combinations of the i-motifs retained at

Step 2. This latent representation makes it possible to capture some

of the intrinsic similarity between secondary structures even if they

do not share many i-motifs. Moreover, it also reduces the number of

features in the final representation of secondary structures.

Finally, the vector representation of our model greatly facilitates

comparisons between secondary structures. The super-n-motifs

model is efficient because it is vector based and alignment free and

effective because the super-n-motifs representation contains rich in-

formation about each secondary structure, including not only motifs

and relations between motifs but also combinations of them, charac-

terizing the secondary structure as a whole. The contributions of the

super-n-motifs model are summarized in three major points are as

follows:

• It explicitly captures structural information on RNA (linear or

circular) since it relies on a description of secondary structures

by n-motifs, which are hierarchically built, taking neighbor rela-

tions into account (see Section 2.1). The model is general and

considers various basic motifs such as pseudoknots, G4s and

single-stranded regions at both the 50 and 30 ends, in addition to

many other common motifs.
• It allows an effective comparison of secondary structures because

it computes the similarity of secondary structures based on their

most informative structural features, which are the best n-motif

combinations, i.e. the super-n-motifs (see Sections 2.3 and 3.1).
• It yields fast comparisons of secondary structures because it relies

on an alignment-free approach that computes secondary struc-

ture similarities based on vectors in a low-dimensional space (see

Section 3.2).

2 Materials and Methods

In this section, we describe in details the three main steps of the

super-n-motifs model as they are outlined in the previous section,

and we present the comparison metric and a complexity analysis of

the model.

2.1 Bag-of-n-motifs model
The bag-of-n-motifs model yields a description of an RNA second-

ary structure in terms of multiple motifs built at different levels of

abstraction. The description is designed to capture local and increas-

ingly global structural features. From a secondary structure, it ex-

tracts basic motifs and their properties: for instance, an internal

loop motif and its property, which is its symmetry or asymmetry; or

a stem motif and its property, corresponding to its number of base

pairs (Supplementary Figure S1 illustrates the motifs and properties

for an arbitrary secondary structure). Motif properties yield specific

structural information about the nature or size of the motifs and do

not consider specific bases. After extracting basic motifs (also called

0-motifs) and their properties, the model computes 1-motifs by con-

sidering the neighbor relations of the 0-motifs. Similarly, it builds 2-

motifs by considering the neighbor relations of the 1-motifs. The

bag-of-n-motifs yields a set of structural features of a secondary

structure that is the union of 0-motifs, 1-motifs, 2-motifs, . . . and n-

motifs. Figure 1 presents a simple example of the bag-of-n-motifs

model computed from a secondary structure composed of a stem of

five base pairs and a hairpin loop with two single-stranded nucleo-

tides. A more complex example of the bag-of-n-motifs model,

derived from a secondary structure of a circular RNA comprising

motifs such as pseudoknots, G-quadruplexes, multiloops, stems, in-

ternal loops and hairpin loops, is illustrated in Supplementary

Figure S2.

To generate the structural description of a secondary structure,

the bag-of-n-motifs model builds a series of nþ 1 undirected graphs

denoted by H ¼ G0;G1; . . . ;Gi; . . . ;Gnð Þ, where G0 is a graph

built from basic motifs and their neighbor relations and every other

Gi is created from Gi�1 by agglomerating nodes in Gi�1 and by ex-

tending neighbor relations. A node of Gi is called an i-motif. The

union of all the sets of i-motifs constitutes the bag-of-n-motifs, i.e.

bag-of-n-motifs ¼ [n
i¼0 node set of Gi. As an example, in Figure 1,

S and H are 0-motifs in G0, while S½H� is a 1-motif in G1. S½H� is

created as an agglomerated motif around S with a surrounding H,

the closest motif to S in G0. Each motif is also associated with a de-

scription of its properties in a dotted square: for instance, S with S 5

in G0 and S½H� with S 5½H 2� in G1. We can formally define the

graph G0 and each Gi, as in the following.

H is initialized by G0, which corresponds to the graph of basic

motifs with their properties. It is an undirected labeled graph defined

as G0 ¼ V0;E0;P0ð Þ, where V0 is the set of vertices corresponding

to basic motifs. Let’s define V0 ¼ v1
0; . . . ; v

j
0; . . . ; v

J
0

n o
, where J is the

total number of basic motifs. E0 is the set of edges, indicating adja-

cency of motifs. Two motifs represented by vj0 2 V0 and vk0 2 V0 are

considered adjacent, i.e. vj0; vk0

� �
2 E0, if they share at least one nu-

cleotide. P0 is a set of J phantom nodes, each of which is attached to

a vertex in V0 to describe the property of the associated motif.

Other elements in the construction of G0 include:

• A set of node labels XM initialized by H; S; I;M;B;E5;E3;P;G4f g
corresponding to basic motifs. XM is enriched subsequently in

the following steps. H stands for hairpin loop, S for stem, I for

Fig. 1. Bag-of-n-motifs model of a secondary structure composed of a hairpin

loop of two single-stranded nucleotides and a stem of five base pairs. It builds

the list of motifs, i.e. the bag-of-n-motifs, from the graph of motifs (G0) corres-

ponding to a stem (S), a stem with 5 base pairs (S 5), a hairpin loop (H), and

a hairpin loop with 2 single-stranded nucleotides (H 2). Then it computes the

list (or bag) of 1-motifs associated with the graph of 1-motifs (G1), by con-

sidering motifs with their neighbors. This yields a hairpin loop and stem motif

(H½S�) where the neighbor of the hairpin loop is the stem, a two single-

stranded nucleotides hairpin and stem of five base pairs (H 2½S 5�), a stem

and hairpin loop motif (S½H�), and a five-base-pair stem and hairpin loop of

two single-stranded nucleotides (S 5½H 2�). The bag-of-n-motifs model yields

structural features of the secondary structure and comprises all the n-

motifs: fS; H; S 5; H 2;S½H�;S 5½H 2�, H 2½S 5�}.
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internal loop, M for multiloop or multi-branched loop, B for

bulge loop, E5 for single-stranded region or external loop at 50

end, E3 for single-stranded region or external loop at 30 end, P

for pseudoknot and G4 for G-quadruplex.
• A set of property labels XP initialized by f H Mj jB E5j jE3ð Þ nb-of-

single-stranded-nucleotides; Isymmetry; ðSjPÞ nb-of-base-pairs; G4

nb-of-quartetsg: The property associated with motifs H;M;B;E5

and E3 is the number of single-stranded nucleotides. For I, it is

the symmetry. The property for S and P is the number of base

pairs. For G4, it is the number of G-quartets, i.e. the number of

stacked tetrads composed of interacting guanines.
• Two functions f0 and g0 assigning to each vertex vj0 a label from

XM and a label from XP. In particular, pj0 ¼ g0 vj0

� �
allows one

to generate P0, i.e. P0 � g0ðV0Þ. For the model description, the

use of the function f0 is redundant. But it is a useful element in

the software development of the model. For the example shown

in Figure 1, the bag of 0-motifs from G0 is V0 ¼ fS;Hg with the

corresponding property set P0 ¼ fS 5;H 2g.

For any i, 0 < i � n, Gi is built from Gi�1. Similar to G0, Gi is

represented as Gi ¼ Vi;Ei;Pið Þ, where Vi ¼ v1
i ; . . . ; v

j
i; . . . ; v

J
i

n o
rep-

resents the set of vertices that are the i-motifs. We need the following

set function NGi�1
ðÞ to generate an i-motif: for an (i� 1Þ-motif

vji�1 2 Vi�1. vji ¼ NGi�1
vji�1

� �
� vji�1 � � � vki�1 � � �

� �
; vji�1; vki�1

� �
2 Ei�1

n o
.

Here, the bracket notation, “[and]”, represent the neighbor rela-

tions. From this definition of the set function NGi�1
ðÞ, we can see

that the jth i-motif is obtained as an agglomeration of the (i� 1Þ-
motifs around the jth ði� 1Þ-motif. The edge set Ei of Gi is defined

as follows: for two vertices vji 2 Vi and vki 2 Vi, vji; vki

� �
2 Ei if and

only if NGi�1
ðvji�1Þ \NGi�1

ðvki�1Þ 6¼ 1. In other words, there is an

edge between vji and vki if they have at least one ði� 1Þ-motifs in

common. The property set Pi is defined similarly as Pi ¼ giðViÞ,
where the property function giðÞ is defined as follows: for any

vji 2 Vi, pji ¼ gi vji

� �
� gi�1 NGi�1

vji�1

� �� �
¼ gi�1 vli�1

� �
; vli�1 2 NGi�1

�

vji�1

� �
g ¼ fpli�1jvli�1 2 NGi�1

vji�1

� �
g. The set of property labels XP

is then augmented by the new property labels generated at this level,

i.e. XP � XP [ Pi. Similar operations are applied to create the node

labeling function fi and to update the node labels set XM.

Therefore, for each secondary structure in our dataset, a set of

graphs H is created and the union of all the computed bags of i-

motifs results in a bag-of-n-motifs. All the bags-of-n-motifs from the

secondary structures in a dataset provide a possibly very large en-

semble of motifs. From this ensemble of motifs, we will select a set

of most relevant motifs that will be used as features for representing

the secondary structures from our dataset. To alleviate the text,

from now on, the terms “motif,” “i-motif” and “n-motif” will be

used interchangeably, unless specified otherwise.

2.2 n-motifs representation of secondary structure
The n-motifs obtained in the bag-of-n-motifs model can be thought

of as playing a similar role to that of n-grams in n-gram models. If

we arrange all the n-motifs in some order, we can create a matrix

representation of all the secondary structures. We introduce the ma-

trix S 2 R
w�r, where w is the total number of secondary structures in

the dataset, r is the number of unique n-motifs, and each element of

the matrix, sij, is the frequency of occurrence of a unique n-motif j in

the secondary structure i. We denote by si the ith row vector of S,

corresponding to the ith secondary structure, and by zj the jth col-

umn vector of S, corresponding to the jth n-motif. Not all the unique

n-motifs convey the same amount of information. Therefore, it is de-

sirable to select relevant n-motifs to get a refined vector representa-

tion of secondary structures, called the n-motifs representation.

Extracting relevant n-motifs from S leads to a better description

of secondary structures. The method proposed here for selecting

relevant n-motifs is based on an analysis of their frequencies of oc-

currence. We hypothesize that the relevance of an n-motif is propor-

tional to its occurrence frequency. For instance, among important

motifs of a tRNA, the single-stranded region at the 30 end is neces-

sary for the binding of amino acids during the translation process.

Therefore, we would expect a high occurrence of this motif in a

population of secondary structures comprising tRNA. To automat-

ically identify and remove irrelevant n-motifs, i.e. more rarely occur-

ring n-motifs, we utilize the head/tail division rule (Jiang and Liu,

2011). This rule specifies that in the context of a heavy-tailed distri-

bution, the arithmetic mean of the n-motif occurrences yields a nat-

ural division between the head (high-occurrence n-motifs) and the

tail (low-occurrence n-motifs) of the heavy-tailed distribution.

The distribution of n-motifs ranked by decreasing order of total

occurrence follows a heavy-tailed distribution (Supplementary

Figure S2). We denote this distribution by f . With x the rank of an

n-motif zj and f ðxÞ ¼
Pw

i¼1 sij its total occurrence, f satisfies the con-

dition 8x, f xð Þ � f xþ 1ð Þ. f xð Þ � 1 since an n-motif is present in at

least one secondary structure. f follows a heavy-tailed distribution

in two regards. On the one hand, it satisfies the long-tailed distribu-

tion property: limx!þ1f ðxþ yÞ=f xð Þ ¼ 1, with y > 0 (Foss et al.,

2011). In fact, low-ranked n-motifs tend to have an occurrence of

one because they are present in at least one secondary structure. On

the other hand, the long-tailed distribution is a subclass of the

heavy-tailed distribution. Thus, we can apply the head/tail division

rule to extract relevant n-motifs since f follows a heavy-tailed distri-

bution. An n-motif zj is considered relevant if the condition f xð Þ
� fmean is satisfied, where fmean ¼

Pr
j¼1 f xj

� �
� 1=r with r the total

number of n-motifs.

After removing irrelevant n-motifs, it is useful to reduce the ef-

fect of extreme n-motif occurrences arising from large secondary

structures and increase the relative importance of medium n-motif

occurrences specific to groups of structures. In fact, large secondary

structures naturally tend to have many more n-motifs than small sec-

ondary structures. Moreover, while n-motifs specific to groups of

structures bear valuable structural information about those groups,

they are underestimated because the corresponding n-motifs tend to

have medium to low occurrences. To alleviate these effects, we use

the logarithm transformation such that s0ij ¼ logðsij þ 1Þ. s0ij repre-

sents the relative relevance or importance of an n-motif zj to a sec-

ondary structure si. The n-motifs representation of si is defined by

the vector s0i.

The n-motifs representation emphasizes relevant characteristics

of secondary structures. It removes irrelevant (i.e. rare) n-motifs, re-

duces the impact of extremely high occurrences of n-motifs due to

large secondary structures and increases the relative importance of

n-motifs specific to groups of structures. Given that the n-motifs rep-

resentation has, in fact, dependent features, in the next subsection,

we propose to explore the relationships between n-motifs in order to

find the best n-motif combinations characterizing secondary

structures.

2.3 Super-n-motifs representation of secondary

structure
From the previous two steps, we obtain individual n-motifs that cap-

ture geometric properties of RNA secondary structures. However,
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some secondary structures sharing few n-motifs can belong to a

same family. In this subsection, we develop a final vector representa-

tion of an RNA secondary structure by computing n-motif combin-

ations to effectively represent the structure information. Such

combinations should make it possible to capture latent statistical re-

lationships between the n-motifs so as to create non-correlated fea-

tures on which comparisons of secondary structures will be made.

We search for the best linear combinations of n-motifs using SVD

(Golub and Reinsch, 1970).

Let S0 2 R
w�m be the matrix of n-motifs representations, where w

is the total number of secondary structures and m is the total num-

ber of relevant n-motifs. S0 is decomposed by SVD to a product of

matrices, as follows:

S0 ¼ URVT ;

where UTU ¼ 1 with U 2 R
w�w and VTV ¼ 1 with V 2 R

m�m.

Columns of U are the eigenvectors of S0�S0T and are linear combin-

ations of n-motifs. Columns of V are the eigenvectors of S0T�S0 and

are linear combinations of S0 rows representing secondary struc-

tures. R is a w � m diagonal matrix containing the square roots of

the non-zero eigenvalues of S0�S0T or singular values of S0 in decreas-

ing order, i.e. r1;1 > r2;2 > . . . > rr;r > 0. By selecting the first k

largest singular values in R; we obtain a truncated matrix S0k, where

S0k is defined by:

S0 	 S0k ¼ UkRkV
T
k :

S0k yields the best low-rank approximation of S0, such that S0k � S0

(the Frobenius norm) is minimized.

The sum of the first k singular values in Rk represents the largest

amount of information, in terms of variability, possibly retained

using only k variables (features). We consider the matrices

U0
k ¼ UkRk, where Uk is weighted relative to Rk. The space defined

by the k vectors of U0
k is called the super-n-motifs space. The super-

n-motifs space is a low-dimensional space relative to the original

space, since k is typically chosen such that k 
 m. The super-n-

motifs representation of a structure s
0
i is denoted by u0i.

The super-n-motifs gather particular information concerning the

relevant n-motifs and their relationships in order to provide a global

picture of the structural features of the RNA. The super-n-motifs

representation yields a vector representation of a secondary struc-

ture in a low-dimensional space. By comparing these representa-

tions, secondary structure relationships can be explored. The next

subsection presents the comparison of secondary structures in the

super-n-motifs representation.

2.4 Comparison of secondary structures based on the

super-n-motifs representation
The exploration of secondary structure relationships is facilitated

using the super-n-motifs representation. Secondary structures can be

effectively compared by computing the cosine dissimilarity

(Bonham-Carter et al., 2013; Vinga and Almeida, 2003) between

their super-n-motifs representations. Given two secondary struc-

tures, si and sj, and their respective super-n-motifs representations,

u0i and u0j, the cosine dissimilarity between u0i and u0j is defined as:

dcos u0i; u
0
j

� �
¼ 1 � u0i � u0j

� �
= u0iu

0
j

� �

si and sj, are considered similar or close to one another when dcos

u0i; u
0
j

� �
	 0 and dissimilar or far from one another when

dcos u0i; u
0
j

� �
	 2.

2.5 Complexity of the super-n-motifs model
The time complexity of the super-n-motifs model is O w �m�ð
min w;mð ÞÞ, where w is the number of secondary structures and m is

the number of relevant n-motifs. It corresponds to the SVD time

complexity, since our approach is dominated by the SVD computa-

tion. The overall time complexity of the super-n-motifs model is O

wð Þ þO rð Þ þO w�m�min w;mð Þð Þ where:

• O wð Þ is associated with the computation of the bag-of-n-motifs

model on the w structures;
• O rð Þ represents the computation required for the selection of the

m relevant n-motifs out of the total number of n-motifs denoted

by r;
• O w�m�min w;mð Þð Þ represents the time complexity of SVD

(Golub and Van Loan, 1996).

The space complexity of the super-n-motifs model is due largely

to the space required to store the matrix of raw n-motifs, which

is on the order of Oðw�rÞ. In detail, the space complexity of

the super-n-motifs model is O w�rð Þ þO w�mð Þþ O w�wð Þþ
Oðw �mÞ þOðm �mÞ, where:

• O w�rð Þ is associated with the space required to store the matrix

of n-motifs, S.
• O w�mð Þ represents the storage space associated with the matrix

of relevant n-motifs, S0’.
• O w�wð Þ, Oðw �mÞ and Oðm �mÞ are, respectively, the space

taken by the matrices U, R and V associated with SVD.

Typically, r > w, so the space complexity is Oðw�rÞ, correspond-

ing to the space necessary to store the matrix associated with

space S.

3 Results

We evaluated the model’s capacity to perform accurate, efficient

comparisons between secondary structures of various sizes from lin-

ear and circular RNA comprising pseudoknots and G4s. The accur-

acy of RNA secondary structure comparison is expressed in terms of

discriminative power, i.e. the ability to bring secondary structures

from the same family closer together and push secondary structures

from different families farther apart. The efficiency is evaluated in

terms of the time required to compare sets comprising increasing

numbers of secondary structures.

We used the normalized mutual information (NMI) and the f-

measure (FMEAS; Manning et al., 2008) to compute the discrimina-

tive power of secondary structure comparison algorithms, grouped

by their underlying representations, on a medium-sized dataset of

2368 secondary structures from 12 RNA families (Fig. 2 and

Supplementary Figure S4) and a large-sized dataset of 15 287 struc-

tures from 76 RNA families (Fig. 3). These datasets comprise, re-

spectively, 9 and 66 linear RNA families and 3 and 10 circular RNA

families (Andronescu et al., 2008; Garant et al., 2015; Giguère et al.

, 2014; Nawrocki et al., 2015). Supplementary Section 1 provides a

detailed description of these datasets. When the discriminative

power in terms of NMI or FMEAS is close to one, it means that all

the members of each secondary structure family are close to one an-

other and far from other secondary structures. Details on the com-

putation of NMI and FMEAS are provided in Supplementary

Section 2.

For the evaluation on the medium-sized dataset, the approaches

and representations carefully chosen from the survey (Schirmer et al.,

2014) are as follows: the super-n-motifs model based on 5-gram

The super-n-motifs model 1173
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(sng), the super-n-motifs model based on the super-n-motifs repre-

sentation with k ¼ 10 super-n-motifs (snm10) and the number of

super-n-motifs automatically determined using the broken stick

model (snmBr; see Supplementary Section 3); RNAdistance with the

full tree (RNAdf) and the coarse-grained tree (RNAdc), and

RNAforester based on the rooted ordered tree (Tree); RNAdistance

with full string (RNAdF) and coarse-grained string (RNAdC), and

BEAR based on the string-encoded representation (String); and

Gardenia based on the arc-annotated sequence (Arc). In addition to

the previously described approaches versions of RNAforester and

BEAR. Algorithm parameters used are described in the

Supplementary Section 3. For the evaluation on the large-sized data-

set, the models compared are sng, snmBr and RNAdF. This latter

was chosen because it is one of the approaches achieving the best

trade-off between efficiency and discriminative power.

We evaluated the efficiency of the secondary-structure compari-

son algorithms by computing the time required to perform all-

against-all comparisons on sets of 56, 104, 506, 1007 and 15 287

secondary structures (Tables 1 and 2), corresponding, respectively,

to 1540, 5356, 127 765, 506 521 and	117 million pairwise com-

parisons. Each of these sets comprises from small (	36 nt) to large

secondary structures (	2900 nt) of linear RNA (see the sets of sec-

ondary structures in Supplementary File S1), corresponding to the

size variability generally found in RNA secondary structures. To

avoid redundancy, it is only necessary to compute ðw2 �wÞ=2 com-

parisons, where w is the total number of secondary structures in a

dataset.

3.1 Analysis of discriminative power
3.1.1 Performance on linear RNA families with high structural

variability

From the results shown in Figure 2 and Supplementary Figure S4,

we can remark that the super-n-motifs model demonstrates compar-

able or superior discriminative power compared to other approaches

on families with high structural variability such as RNaseP, SRP and

HH. In fact, the super-n-motifs model performs better on the

RNaseP family compared to other methods, showing its capability

to identify substructures or local structures shared among the set of

highly variable secondary structures. Indeed, RNaseP structures

from our dataset come from three domains, Archea, Bacteria and

Eukaryotes, and the structures corresponding to these domains are

known to be highly variable while showing a central conserved core

(Evans et al., 2006). Specifically, RNaseP structures exhibit very di-

verse conformations, due to more structural rearrangement than ex-

tended stems or loops, as these structures do not differ much in size,

i.e.	337.66 nt6 26.25 SD (see Supplementary Table S1). The diver-

sity of RNaseP structures can be visualized in Supplementary Figure

S5, where the structures of ASE_00264, ASE_00099 and ASE_

00346 belong, respectively, to the Eukarya, Bacteria and Archea

domains.

The super-n-motifs model also shows comparable discriminative

power on the SRP family compared to the ordered tree-based

Fig. 2. Algorithms’ discriminative power in terms of NMI on RNA secondary

structure families. NMI distribution close to one means high discriminative

power. Algorithms were grouped according to their representations: se-

quence (Seq.) super-n-motifs (snm), ordered tree (Tree), string-encoded

(String) and arc-annotated sequence (Arc). Local* refers to local alignment

version of approaches such as RNAforester and Bear. Families of secondary

structures from linear RNA are HH ribozymes, tRNA, 5S rRNA, RNaseP, signal

recognition particle (SRP), tmRNA, 16S rRNA, 23S rRNA) and structures with

G-quadruplexes motifs (G4). Families of secondary structures from circular

RNA are potato spindle tuber viroid (PSTVd), tomato apical stunt viroid

(TASVd) and tomato chlorotic dwarf viroid (TCDVd).
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approach, RNAdf, and superior discriminative power compared to

all the other approaches. Given that SRP structures in our dataset

are highly variable in terms of size (Rosenblad et al., 2009), this sug-

gests that the super-n-motifs model is much less affected by the size

variability of structures. In fact, the SD relative to the mean size of

structures in the SRP family is very high,	266.30 nt 6 65.46 SD

(Supplementary Table S1).

As for circular permuted structures, the results shown in Figure 2

and Supplementary Figure S4 suggest that the super-n-motifs model

performs very well on the HH family, similar to a coarse-grained ap-

proach such as RNAdc and RNAdC. This shows its capacity to han-

dle circular permuted structures. Structural variability in the HH

family is due to the fact that our dataset comprises hammerhead

(HH) structures of types I and III with a large variability in

size,	61.71 nt 6 24.16 SD (Supplementary Table S1). It is known

that the HH family is comprised of three groups, types I, II and III,

which are circularly permuted forms of HH distinguished by the

open-ended helix that connects the motifs with the flanking se-

quences (Hammann et al., 2012). The structural variability of HH

in our dataset can be seen by examining structures RFA_00660 and

RFA_00407, representing HH of types I and III, in Supplementary

Figure S5.

3.1.2 Performance on linear RNA families with conserved structures

Performance comparison on families of conserved secondary struc-

tures shows that the super-n-motifs model displays high discrimina-

tive power similar to that of the majority of the tested approaches.

Indeed, the super-n-motifs model, as well as RNAdf, RNAdF,

RNAforester, BEAR and Gardenia, generate excellent NMI and

FMEAS results on families with conserved structures such as the

tRNA, 5S, tmRNA, 16S and 23S families (Fig. 2 and Supplementary

Figure S4). The structural conservation of these families can be ex-

plained by the fact that not much size variability for any of these

families is observed in our dataset. In fact, a small SD compared to

the average size of structures is observed for the tRNA, 5S, tmRNA,

16S and 23S families. For each of these families, respectively, we

have average sizes and SDs of	77 nt 6 5.42 SD,	120 nt 6 7.55

SD,	362.46 nt 6 6.72 SD,	1577.35nt 6 110.83 SD and	2908.

09 nt 6 28.38 SD (Supplementary Table S1).

3.1.3 Performance on circular RNA families, G-quadruplexes and

pseudoknots

The super-n-motifs model is designed to handle secondary structures

from circular RNA families seamlessly. In fact, our model shows by

Table 1. Running times (in d: days, m: minutes and s: seconds) on 56, 104, 506 and 1007 secondary structures, corresponding to 1540, 5356,

127 765 and 506 521 pairwise comparisons.

Representation Algorithm Time complexity

for one pair. comp.

56 structures

1540 pair. comp.

104 structures

5356 pair. comp.

506 structures

127765 pair. comp.

1007 structures

506521 pair. comp.

Sequence sng O wm min w;mð Þð Þ 0.12s 0.22s 3s 35s

Super-n-motifs snmBr O wm min w;mð Þð Þ 0.12 s 0.66 s 3 s 4 s

Tree RNAdf O l2d2
� �

4 m 29 s (103 f.) 16 m 24 s (103 f.) 5 h 44 m (103 f.) 14 h 7 m (104 f.)

RNAdc O l2d2
� �

2 s (101 f.) 7 s (101 f.) 2 m17 s (101 f.) 5 m 4 s (101 f.)

RNAforester O l2=r
� �

q2
� �

1 h 31 m (104 f.) 10 h 5 m (105 f.) >1d >1d

String RNAdF O l2
� �

31 s (102 f.) 1 m 47 s (102 f.) 35 m 58 s (103 f.) 1 h 38 m (103 f.)

RNAdC O l2
� �

1 s 4 s 1 m 14 s (101 f.) 3 m 22 s (101 f.)

BEAR Oðl2Þ 2 m 31 s (103 f.) 8 m 34 s (102 f.) 3 h 17 m (103 f.) 7 h 54 m (103 f.)

Arc Gardenia O l4
� �

18 m 52 s (103 f.) 1 h 32 m (104 f.) >1d >1d

ERA O(l3) 8 h 51 m (105 f.) >1d >1d >1d

Ensemble Sparse O(l2) >1d >1d >1d >1d

Note: The algorithms were run on an 8 CPU (1.8 GHz) desktop pc with 5.8 GB of RAM. f. and pair comp. stand for fold and pairwise comparisons. w and m

refer to the number of structures and the number of computed relevant n-motifs. l represents the size of trees or forests, strings or arc-annotated sequences or num-

ber of base pairs representing secondary structures. d is the depth of trees. r and q are, respectively, the number of anchors and the maximum degree of forests.

The best results in each column are shown in bold.

Fig. 3. Discriminative power of sng, snmBr, RNAdF and RNAdC in terms of

NMI and FMEAS on RNA secondary structure families from a large dataset of

15 287 secondary structures belonging to 76 families. The discriminative

power of each model is reported separately according to its performance on

linear and circular RNA families.

Table 2. Running times (in d: days and s: seconds) of sng, snmBr

and RNAdF on the large-sized dataset of 15 287 secondary struc-

tures corresponding to	117 million pairwise comparisons.

Representation Algorithm Time complexity Running times

Sequence sng O wm min w;mð Þð Þ 1697s

Super-n-motifs snmBr O wm min w;mð Þð Þ 179s

String RNAdF O l2
� �

41da

Note: sng and snmBr were run on an 8 CPU (1.8 GHz) desktop pc with

5.8 GB of RAM and RNAdF was run in parallel on a 24 core node of the

super computer Mammouth-mp2. w, m and l refer to the number of struc-

tures, the number of computed relevant n-motifs and the length of the strings

representing the secondary structures. The best result is shown in bold.
aEstimated CPU time, that is, the sum of CPU time consumed by all of the

CPUs.
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far the best discriminative power compared to all other methods, re-

gardless of whether they are based on global or local alignment, on

secondary structures from the 3 circular RNA families of the

medium-sized dataset and the 10 circular families of the large-sized

dataset (Fig. 2, Supplementary Figure S4 and Fig. 3). The clear ad-

vantage of our approach can be explained by the fact that, contrary

to the other methods that assume contiguity of structural features,

our model does not. Indeed, our model defines a secondary structure

as an unordered collection of structural features, the n-motifs.

Consequently, it captures structural features irrespective of their

orders, which is an important property that allows it to effectively

handle not only circular RNA but also RNA with the circularly per-

muted structures found in the HH family.

The results reported in Figure 2 and Supplementary Figure S4

demonstrate that the proposed approach has the capacity to handle

pseudoknots and G4s. In fact, the super-n-motifs model demon-

strates high discriminative power on secondary structures from lin-

ear RNA families comprising pseudoknots, such as RNaseP,

tmRNA, 16S and 23S rRNA (see Supplementary Table S1).

Moreover, our model effectively processes G4s, since it is capable of

discriminating secondary structures that contain a single G4 from

those without any G4s. It is important to note that while all the

other approaches simply ignore these motifs, our model processes

pseudoknots and G4 effectively, thanks to the flexibility of the bag-

of-n-motifs that allows the explicit integration of any kind of motif

(here, pseudoknots and G4 motifs) in the structural description of

secondary structures. Our model makes no distinction between vari-

ous types of pseudoknots, such as the H-type or the three-stemmed

RNA pseudoknot (Staple and Butcher, 2005).

3.1.4 Large-scale performance analysis

A very important advantage of our approach is that it can be used to

handle very large datasets in a very time-efficient way while main-

taining high discriminative power as the number of structures

grows. As shown in Figure 2, it achieves discriminative power com-

parable or superior to that of the tested approaches on linear RNA

and consistently outperforms them on circular RNA in the medium-

sized dataset of 2368 structures with 12 families. On the large-sized

dataset of 15 287 structures with 76 families, we compared our ap-

proach with sng and RNAdF (Fig. 3 and Table 2). RNAdF was

chosen because it is one of the most efficient approaches, combining

good time complexity, Oðl2Þ, and high discriminative power rivaling

that of approaches based on ordered-tree and arc-annotated se-

quences, which have a time complexity of at least Oðl2d2Þ (see

Table 1 and Fig. 2). From Figure 3 and Table 2, it can be seen that

our approach yields discriminative power comparable to that of

RNAdF and superior to that of sng, yet significantly outperforms

them in term of running times. This evaluation shows at least that

our approach is indeed effective and efficient on a large dataset, i.e.

3 min as compared to the equivalent of 41 days for RNAdF.

Currently, a thorough comparative study of different approaches on

large datasets like the one used here is not possible since most com-

peting approaches would need more than 1 month to produce their

results on a single workstation.

3.1.5 Structural information at the coarse-grained and fine-grained

levels

The results in Figure 2 and Supplementary Figure S4 show that the

super-n-motifs model yields consistently high discriminative power

compared to approaches using coarse-grained representation of

structures (in which subsets of nucleotides or base pairs forming

motifs such as stems or hairpin loops are considered as elements of

the representation), for instance, RNAdc and RNAdC, on the HH

family. It performs equally well as, and sometimes better than,

approaches using fine-grained representation (in which each nucleo-

tide or each base pair is considered as an element of the representa-

tion). These approaches include RNAdf, RNAdF, RNAforester,

BEAR and Gardenia (Fig. 2 and Supplementary Figure S4). We ob-

serve that approaches based on fine-grained representation of struc-

tures perform better than approaches based on coarse-grained

representation because the latter often results in a loss of structural

information. Our approach combines the advantages of both fine-

grained and coarse-grained representation and performs well on all

the families. This can be explained by the fact that the structural fea-

tures captured by our model represent coarse-grained features such

as motifs and neighboring motifs, on the one hand, and fine-grained

features such as the number of base pairs in a stem or the number of

string-stranded nucleotides in loops on the other.

3.1.6 Sufficiency of structural information for separating families

We performed a comparison between structure-based and sequence-

based methods to see whether structural information could be suffi-

cient to separate families. We observed that structure-based meth-

ods, including snmBr, yield high discriminative power, while

sequence-based methods like sng consistently have low discrimina-

tive power on most linear RNA families (Fig. 2, Supplementary

Figure S4 and Fig. 3). In fact, for the medium-sized dataset families

such as HH, tRNA, 5S, RNaseP, SRP and tmRNA and the large-

sized dataset families, sng yields low performance, indicating that

most RNAs, based on sequence information, have been assigned to

the wrong family. These results show that, in our context, structural

information is more important than sequence information for distin-

guishing RNA families. It is important to note that sng performs

well on circular RNA, since sng, like snmBr, is insensitive to the

RNA direction by the fact that it captures the unordered statistical

patterns of sequences, the n-grams. Consequently, sng can be a good

candidate to compare circular RNA sequences.

3.2 Efficiency assessment
The efficiency of the super-n-motifs model is shown by Tables 1 and

2. We observed that it is faster, by up to 4 or 5 orders of magnitude,

than all the tested approaches, on data varying from very small-

sized sets of 56 structures, corresponding to 1540 pairwise compari-

sons, to the large-sized set of 15 287 structures corresponding

to	117 million pairwise comparisons. It exhibits a linear running

time: it took 0.15 s, 0.27 s, 4 s, 7s, 12s and 182s, respectively, to

compute all-against-all pairwise comparisons of 56, 104, 506, 1007,

2330 and 15 287 secondary structures of various sizes (from	36

to	2900 nt), corresponding to 1540, 5356, 127 765, 506 521,	2

million,	117 million pairwise comparisons (see Tables 1 and 2 and

Supplementary Table S2). For the large-sized dataset of 15 287

structures, our approach is 4 orders of magnitude faster than

RNAdF, since it took 182 s. (3 min) to compute	117 million com-

parisons from the set of 15 827 secondary structures, a task that

would take	41 days of estimated CPU time for RNAdF (Table 2).

Tables 1 and 2 suggest that the alignment-based methods are

convenient for low or medium-scale analysis but not suitable for

large-scale analysis. RNAforester, Gardenia, ERA and SPARSE are

more suitable for low-scale analysis, since even to compare 506

structures they already require days of computation. It is worth

mentioning that ERA and SPARSE exhibit the highest running

times: 8 h 51 m and more than a day to compare 56 structures
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corresponding to 1540 comparisons. For this reason, we were un-

able to evaluate their respective discriminative power on the

medium-sized datasets requiring computation of	2 million pairwise

comparisons.

The results presented in the previous paragraphs are to be ex-

pected, because the majority of the tested approaches typically use

DP as a foundation to compute alignment. Indeed, it is known that

DP-based approaches are computationally demanding (Bonham-

Carter et al., 2013). Alignment-free approaches scale well and are of

interest in sequence analysis to handle the vast numbers of tran-

scripts generated by high-throughput sequencing methods (Bonham-

Carter et al., 2013; Vinga, 2014; Vinga and Almeida, 2003;). As the

number of validated secondary structures grows, mainly due to

high-throughput probing techniques, an alignment-free approach

such as the super-n-motifs model offers a good alternative to the

existing methods.

4 Discussion

Understanding RNA functions by comparing RNA secondary struc-

tures is challenging for several reasons. On the one hand, secondary

structures are complex due to the nature of RNA, which can take a

linear or a circular configuration and may contain pseudoknots and

G4 motifs. On the other hand, thousands of secondary structures

are generated by high-throughput probing techniques. In this paper,

we proposed the super-n-motifs model and demonstrated its effect-

iveness and efficiency at comparing RNA secondary structures.

Our model computes accurate comparisons of secondary struc-

tures and naturally tends to cluster structures in a way that reflects

known secondary structure families. This is an important property,

because it is expected that members of a family of RNA secondary

structures performing related functions form a natural cluster. This

can be particularly helpful for RNA annotation, structure-based

phylogeny, homology search in databases and identification of new

families in populations of RNA. Since our model efficiently handles

pseudoknots and G4 motifs, it can also help in understanding their

functional roles.

In future work, our approach can be extended to compare RNA

on the basis of sequences and secondary and tertiary structures. In

fact, in addition to pseudoknots and G4 motifs, our model can be

extended to handle other motifs such as sarcin-ricin, kink turn or c-

loop motifs, thus making it possible to combine motifs from the sec-

ondary structures with the tertiary structures. Sequence information

can be incorporated with n-grams as in sng method. Our model can

thus yield a rich and global view of RNA by combining sequence

and structural features.
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Conflict of Interest: none declared.

References

Allali, J. and Sagot, M.F. (2008) A multiple layer model to compare RNA sec-

ondary structures. Softw. Pract. Exp., 38, 775–792.

Andronescu, M. et al. (2008) RNA STRAND: the RNA secondary structure

and statistical analysis database. BMC Bioinformatics, 9, 340.

Bellaousov, S. et al. (2013) RNAstructure: web servers for RNA secondary

structure prediction and analysis. Nucleic Acids Res., 41, W471–W474.

Blin, G. et al. (2010) Alignments of RNA structures. IEEE/ACM Trans.

Comput. Biol. Bioinformatics, 7, 309–322.

Bonham-Carter, O. et al. (2013) Alignment-free genetic sequence compari-

sons: a review of recent approaches by word analysis. Brief. Bioinformatics,

15, 890–905.

Brion, P. and Westhof, E. (1997) Hierarchy and dynamics of RNA folding.

Annu. Rev. Biophys. Biomol. Struct., 26, 113–137.

Eddy, S.R. (2004) What is dynamic programming? Nat. Biotechnol., 22,

909–910.

Evans, D. et al. (2006) RNase P: interface of the RNA and protein worlds.

Trends Biochem. Sci., 31, 333–341.

Fernandes, F. et al. (2009) CSA: an efficient algorithm to improve circular

DNA multiple alignment. BMC Bioinformatics, 10, 230.

Flores, R. et al. (2012) Viroids and hepatitis delta virus. Semin. Liver Dis., 32,

201–210.

Foss, S. et al. (2011) Heavy-tailed and long-tailed distributions. In: An

Introduction to Heavy-Tailed and Subexponential Distributions SE - 2,

Springer Series in Operations Research and Financial Engineering. Springer,

New York, pp. 7–38.

Garant, J.M. et al. (2015) G4RNA: an RNA G-quadruplex database.

Database, doi: 10.1093/database/bav059.

Giguère, T. et al. (2014) Comprehensive secondary structure elucidation of

four genera of the family Pospiviroidae. PLoS One, 9, e98655.

Golub, G.H. and Van Loan,C.F. (1996) Matrix computations. Phys. Today,

10, 48.

Golub, G.H. and Reinsch, C. (1970) Singular value decomposition and least

squares solutions. Numer. Math., 14, 403–420.

Guignon, V. et al. (2005) An edit distance between RNA stem-loops. In:

Consens, M. and Navarro, G. (eds), String Processing and Information

Retrieval SE 38, Lecture Notes in Computer Science. Springer, Berlin/

Heidelberg, pp. 335–347.

Hammann, C. et al. (2012) The ubiquitous hammerhead ribozyme. RNA, 18,

871–885.

Haubold, B. (2014) Alignment-free phylogenetics and population genetics.

Brief. Bioinformatics, 15, 407–418.

Hendrix, D.K. et al. (2005) RNA structural motifs: building blocks of a modu-

lar biomolecule. Q. Rev. Biophys., 38, 221–243.

Huppert, J.L. et al. (2008) G-quadruplexes: the beginning and end of UTRs.

Nucleic Acids Res., 36, 6260–6268.

Jeck, W.R. et al. (2013) Circular RNAs are abundant, conserved, and associ-

ated with ALU repeats. RNA, 19, 141–157.

Jiang, B. and Liu, X. (2011) Scaling of geographic space from the perspective

of city and field blocks and using volunteered geographic information. Int.

J. Geogr. Inf. Sci., 26, 215–229.

Kosik, K.S. (2013) Circles reshape the RNA world. Nature, 495, 4–6.

Lorenz, R. et al. (2011) ViennaRNA Package 2.0. AlgorithmsMol. Biol., 6, 26.

Loughrey, D. et al. (2014) SHAPE-Seq 2.0: systematic optimization and exten-

sion of high-throughput chemical probing of RNA secondary structure with

next generation sequencing. Nucleic Acids Res., 42, e165–e165.

Manning, C.D. et al. (2008) Introduction to Information Retrieval. J. Am.

Soc. Inf. Sci. Technol., 1, 496.

Mattei, E. et al. (2014) A novel approach to represent and compare RNA sec-

ondary structures. Nucleic Acids Res., 42, 6146–6157.

Millevoi, S. et al. (2012) G-quadruplexes in RNA biology. Wiley Interdiscip.

Rev. RNA, 3, 495–507.

Mosig, A. et al. (2006) Comparative Analysis of Cyclic Sequences: viroids and

other Small Circular RNAs. In: Lecture Notes in Informatics, German

Conference on Bioinformatics, 83, pp. 93–102.

Nawrocki, E.P. et al. (2015) Rfam 12.0: updates to the RNA families data-

base. Nucleic Acids Res., 43, D130–D137.

Pinello, L. et al. (2014) Applications of alignment-free methods in epigenom-

ics. Brief. Bioinformatics, 15, 419–430.

Rosenblad, M.A. et al. (2009) Kinship in the SRP RNA family. RNA Biol., 6,

508–516.

The super-n-motifs model 1177

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/8/1169/2907822 by U
niversite de Sherbrooke user on 11 O

ctober 2023

Deleted Text: <xref ref-type=
Deleted Text:  
Deleted Text: has been
Deleted Text:  &hx2013; 
Deleted Text: None 


Schirmer, S. et al. (2014) Introduction to RNA secondary structure compari-

son. In: Gorodkin, J. and Ruzzo,W.L. (eds), RNA Sequence, Structure, and

Function: Computational and Bioinformatic Methods SE 12, Methods in

Molecular Biology. Humana Press, New York, pp. 247–273.

Schirmer, S. and Giegerich, R. (2013) Forest alignment with affine gaps and

anchors, applied in RNA structure comparison. In: Theoretical Computer

Science, pp. 51–67.

Song, K. et al. (2014) New developments of alignment-free sequence comparison:

measures, statistics and next-generation sequencing. Brief. Bioinformatics, 15,

343–353.

Staple, D.W. and Butcher, S.E. (2005) Pseudoknots: RNA structures with di-

verse functions. PLoS Biol., 3, 0956–0959.

Tinoco, I. and Bustamante,C. (1999) How RNA folds. J. Mol. Biol., 293,

271–281.

Underwood, J.G. et al. (2010) FragSeq: transcriptome-wide RNA structure

probing using high-throughput sequencing. Nat. Methods, 7, 995–1001.

Vinga, S. (2014) Editorial: alignment-free methods in computational biology.

Briefings Bioinformatics, 15, 341–342.

Vinga, S. and Almeida, J. (2003) Alignment-free sequence comparison-a re-

view. Bioinformatics, 19, 513–523.

Wan, Y. et al. (2011) Understanding the transcriptome through RNA struc-

ture. Nat. Rev. Genet., 12, 641–655.

Will, S. et al. (2007) Inferring noncoding RNA families and classes by means of

genome-scale structure-based clustering. PLoS Comput. Biol., 3, 680–691.

Will, S. et al. (2015) SPARSE: quadratic time simultaneous alignment and folding

of RNAs without sequence-based heuristics. Bioinformatics, 31, 2489–2496.

Will, S. and Stadler, P.F. (2014) Algorithms in Bioinformatics. In: Brown, D.

and Morgenstern, B. (eds) Proceedings of 14th International Workshop,

WABI 2014, Wroclaw, Poland, September 8–10, 2014, pp. 135–147

Springer, Berlin/Heidelberg.

Zhong, C. and Zhang, S. (2013) Efficient alignment of RNA secondary struc-

tures using sparse dynamic programming. BMC Bioinformatics, 14, 269.

1178 J.-P.S.Glouzon et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/8/1169/2907822 by U
niversite de Sherbrooke user on 11 O

ctober 2023


	perreault_bioinfo_33_8_2017
	bioinformatics_33_8_1169
	btw773-TF1
	btw773-TF2
	btw773-TF3


