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Abstract

Motivation: G-quadruplex structures in RNA molecules are known to have regulatory impacts in

cells but are difficult to locate in the genome. The minimal requirements for G-quadruplex folding

in RNA (G�3N1-7G�3N1-7G�3N1-7G�3) is being challenged by observations made on specific ex-

amples in recent years. The definition of potential G-quadruplex sequences has major repercus-

sions on the observation of the structure since it introduces a bias. The canonical motif only

describes a sub-population of the reported G-quadruplexes. To address these issues, we propose

an RNA G-quadruplex prediction strategy that does not rely on a motif definition.

Results: We trained an artificial neural network with sequences of experimentally validated

G-quadruplexes from the G4RNA database encoded using an abstract definition of their sequence.

This artificial neural network, G4NN, evaluates the similarity of a given sequence to known G-quad-

ruplexes and reports it as a score. G4NN has a predictive power comparable to the reported G rich-

ness and G/C skewness evaluations that are the current state-of-the-art for the identification of

potential RNA G-quadruplexes. We combined these approaches in the G4RNA screener, a program

designed to manage and evaluate the sequences to identify potential G-quadruplexes.

Availability and implementation: G4RNA screener is available for download at http://gitlabs

cottgroup.med.usherbrooke.ca/J-Michel/g4rna_screener.

Contact: jean-michel.garant@usherbrooke.ca or jean-pierre.perreault@usherbrooke.ca or michelle.

scott@usherbrooke.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ribonucleic acids (RNA) are versatile molecules which can both

serve as a scaffold to transfer information and as a support to drive

reactions or regulatory mechanisms (Kwok, 2016; Sharp, 2009).

While most RNA functions are guided by their sequences, these

polymers adopt three-dimensional structures, adding a supple-

mentary layer of complexity. The structure is a powerful regula-

tory system of RNA since it can control the position, interactions

and accessibility of the sequence it bears (Lai et al., 2013).

Paradoxically, the structure of the RNA is dependent on its se-

quence as well as the presence of interactors and its environmental

context.

Intramolecular G-quadruplexes (G4) are tetrahelical structures

found in nucleic acids. G4 are highly dependent on the guanine (G)

richness of the sequence and the presence of potassium cations in its

vicinity (Agarwala et al., 2015; Rouleau et al., 2017). RNA G4, the

focus of this study, was successfully observed in mammalian cells in ac-

cordance with the fact that potassium is the most abundant metallic ion

in mammalian cells (Biffi et al., 2014). RNA G4 are known to modu-

late different mechanisms; G4 found in mRNA can regulate translation,

localization, polyadenylation, splicing, etc (Agarwala et al., 2015);

while G4 found in miRNA precursors can regulate their processing

(Pandey et al., 2015). These functions are mainly attributed to the high

stability of the G4 and its distinct shape (Agarwala et al., 2015).
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G4 folding is dependent on the RNA sequence, requiring the

stacking of at least two G-quartets. A G-quartet is a planar inter-

action of four guanine (G) residues through Hoogsteen pair bond-

ing. The intramolecular stacking of G-quartets requires four series

of consecutive G. The length of the G series determines the number

of planes the G4 harbors (Malgowska et al., 2016). Each G series is

separated from the next by a stretch of random nucleotide

composition, which bulges out of the tetrahelix and forms three

distinct loops. Canonical G4 can be described using the

GXNL1GXNL2GXNL3GX motif where X is the length of G stretches,

N is any nucleotide (A, U, C and G) and L1, L2, L3 are the lengths

of the loops.

So far, potential G4 have been described by this motif and most

identification strategies rely on it (Eddy and Maizels, 2006; Huppert

and Balasubramanian, 2005; Kikin et al., 2006; Lorenz et al., 2013;

Menendez et al., 2012). However, its usage is limited. The classical

X¼3 and 1�L�7 fails to identify several unorthodox structures

identified in recent years (Faudale et al., 2009; Jodoin et al., 2014;

Martadinata and Phan, 2014; Warner et al., 2014). Adjusting the

motif to accommodate these new structures by reducing X to 2 or

raising the upper limit of L increases the number of hits drastically,

likely introducing many false positives. In fact, the high diversity of

sequences shown to fold into G4 exposes a challenge for their pre-

diction. A partial solution to filter out sequences not folding into a

G4 is to consider their flanking sequences. The presence of runs of

cytosines (C) in the flanking sequences of a potential G4 can hinder

its folding. The consecutive guanine over consecutive cytosine

(cGcC) score was a first endeavor to address this issue (Beaudoin

et al., 2014). Recently, G4Hunter (G4H), a tool providing a similar

score, was used to assess the G4 propensity of the mitochondrial

genome (Bedrat et al., 2016). It was designed for DNA but

was shown to be usable on RNA, although non-exhaustively

(Bedrat et al., 2016). Both the cGcC and G4H are limited by their

consideration of G and C nucleotides alone. The absence of C in

sequences strongly increases the cGcC score. The substitution of a

single nucleotide to C decreases the score by �10-fold while one

C alone is not considered to be relevant to interfere with G runs.

Both the cGcC and G4H tools are not designed to cope with ex-

ceptions. Some G rich sequences were reported not to fold in G4,

while on the other hand G4 presenting bulges broaden sequence re-

quirements reducing the importance of consecutive G. To improve

the identification of G4, we chose to consider both the required

sequence, which is currently undefined, and its flanking se-

quences, using a machine learning approach trained considering un-

usual G4.

To undertake this endeavor, we first implemented the G4RNA

database, which aims to host available RNA sequences investigated

for G4 folding, whether the outcome of the experiment was positive

or negative (Garant et al., 2015). Exploring the data manually failed

to expose an intuitive way to classify or discriminate sequences.

Thus, to learn from the rich G4RNA data, we chose to submit them

to a machine learning algorithm to explore the ability of such an ap-

proach to classify and extrapolate this classification logic and ultim-

ately identify potential G4 in human transcripts. Machine learning

has often been used to identify sequence elements in genomic data

(Libbrecht and Noble, 2015). Our hypothesis is that machine learn-

ing, with its use of combinatorial representations of variables to re-

solve complex situations, would be able to resolve the minimal

features needed in a sequence to observe a G4 and/or the combin-

ation of features that would prevent the folding of a G4. Following

extensive comparison of performance with comparable tools that do

not rely on motif search, we are releasing G4RNA screener, a

comprehensive software to cope with the need of potential G4

identification.

2 Results and discussion

The identification of potential G4 can be transposed computation-

ally as a classification problem in which each sequence can be cate-

gorized as either a positive (G4) or negative (non-G4) case. We

propose a new score based on abstract sequence similarity, com-

puted by a simple artificial neural network (ANN) named G4NN

which was trained on the sequences of the G4RNA database.

G4NN was built to provide G4 detection without a definition of the

motif and to minimize bias from experts’ assumptions. G4NN learns

from available examples and considers irregular G4 just as it does

canonical G4. The ANN takes the trinucleotide composition of a

window as its input, which translates to an abstract representation

of the sequence. By providing the composition of all trinucleotides,

we do not bias the classifier in considering specific trinucleotides as

more important than any other. The implementation set used for

training consists of 149 G4 and 179 non-G4 sequences with folding

outcome validated and 200 sequences randomly taken in the tran-

scriptome (O’Leary et al., 2016) (Fig. 1). The architecture was opti-

mized using a 5-fold cross-validation strategy while monitoring the

receiver operating characteristic (ROC) curve to appreciate the clas-

sification power of G4NN. We reached an average area under the

ROC curve (AUC) of 0.9536 0.013 and 0.92860.024 for the

training sets and test sets respectively on our last iteration of opti-

mization (Fig. 1).

Cross-validation usage facilitates the observation of over-

training and over-fitting behavior but it does not prevent it. We

chose to investigate further since the AUC values were very high and

stable throughout the iterations. We validated that the classification

power of G4NN relies on G4-related generalization by randomly

switching an increasing number of the labels in the training set.

The rationale behind this test is that an increasing number of ran-

domly labelled examples should lead to a decrease in the accuracy of

the predictor. G4NN lost its classification power linearly until

half of the input data were randomly switched (G4, non-G4), at

which point the classification is random (AUC¼0.5), as shown in

Figure 1D.

Once G4NN was built, we compared our classification strategy

to the previously used scoring systems by integrating them all in a

new tool. With increasing reports of non-canonical G4 structures,

requiring a recurrent redefinition of the G4 motif, we propose

G4RNA screener to sift through RNA sequences and produce a pro-

file of sequences as described by their cGcC, G4H and G4RNA

score. The G4RNA screener also provides a means to compare the

three available G4RNA predictors.

We first applied the G4RNA screener on the sequences from the

G4RNA database using a sliding window of 60 nucleotides (nt)

moving with steps of 10 nt to mimic a genuine search of potential

G4s. Using the maximum value obtained for each score in the region

of the known G4, we assessed their respective classification power

as described by their ROC curve. Unsurprisingly G4NN displays a

good performance on the implementation set sequences since this is

the set on which it was trained. The G4H score provides a compar-

able performance, while its predecessor, the cGcC score, has a

slightly lower prediction power (Fig. 2A). G4NN and cGcC have a

similar pattern on the independent test set, which consists of sequen-

ces that were not included in the development of G4NN (Fig. 2B).

We observe a lower classification power for G4H in the independent
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test set, showing that while evaluating similarly the G and C con-

tent, the cGcC and G4H scores can provide distinct insights on a se-

quence. Even though G4H was designed mainly for DNA (Bedrat

et al., 2016) we confirm here its relevance for RNA, justifying its in-

clusion in G4RNA screener.

In 2016, the rG4-seq method was introduced by Kwok and col-

leagues (Kwok et al., 2016), providing an approach to identify RNA

G4s by high-throughput sequencing. The rG4-seq method is de-

signed to capture the Kþdependent stalling of the reverse transcript-

ase when compared to Liþ. The Kþdependent stalling is likely to

directly precede a G4 since stalling occurs when the reverse tran-

scriptase encounters a stable G4 (Kwok and Balasubramanian,

2015). The rG4-seq provides an interesting high-throughput inde-

pendent dataset to compare the three RNA G4 predictors. We

retrieved the hits from the Gene Expression Omnibus (GSE77282)

and ran our tool on the sequences of the genes where a stalling was

detected. We produced ROC curves using the maximum value of

each score on the rG4-seq hits (Fig. 2C). G4NN yields good classifi-

cation, however rG4-seq data was best classified by G4Hunter both

with and without the usage of pyridostatin (PDS) as a G4 stabilizer

(Fig. 2C, D). The lower performance of G4NN compared to G4H

on this dataset is likely due to the fact that some rG4-seq identified

G4 present important differences compared to the sequences on

which G4NN was trained. This demonstrates the need to further

characterize unusual G4 structures and include their sequences in a

forthcoming training and update of G4NN.

To characterize further the three predictors, we plotted the sen-

sitivity and specificity of each scoring methods (Fig. 3A–C). The

sensitivity curve (descending curve) meets the specificity curve

(increasing curve) at the score threshold that minimizes the number

of false positives and false negatives for a given dataset. The G4NN

score has an optimal threshold for G4RNA data at 0.5 which is con-

sistent with the knowledge that it was trained to classify these se-

quences between 1 (G4) and 0 (not G4) (Fig. 3A). The G4H optimal

Fig. 1. Implementation of G4NN. (A) Sequence management to produce both

the implementation set and independent test set. (B) Five-fold cross-valid-

ation strategy used to assess performance during optimization of the ANN

architecture and learning parameters. ROC curve average AUC values for the

optimal configuration are shown with standard deviation. (C) Illustration of

the chosen architecture. (D) Classification performance of the implementation

set when erroneous data are introduced by changing labels in the implemen-

tation set. The standard deviation is shown using error bars

Fig. 2. ROC curves of scores for each available dataset. (A, B) Classification

performance on the implementation set (A) and independent test set (B) by

G4NN (black), G4Hunter (red) and cGcC (blue). The AUC values are provided

in legend. (C, D) Classification of the rG4-seq Kþ (C) and rG4-seq Kþ stabilized

by PDS (D) datasets by G4NN (black), G4Hunter (red) and cGcC (blue). The

AUC values provided in the legend are indicated with 95% confidence inter-

vals (shading on the curves) computed by stratified bootstrap
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threshold to classify G4RNA’s data is �0.9 (Fig. 3B) which is close

to the recommended threshold of 1 for DNA (Bedrat et al., 2016).

We observed lower optimal thresholds to classify rG4-seq data

than G4RNA data when considering each score, in accordance with

the presence of non-G4 sequences in G4RNA that are very similar to

G4 sequences. To illustrate this phenomenon, we drew the distribu-

tion of scores of each dataset, plotting G4 separately from non-G4

and from randomly chosen transcriptomic sequences (Fig. 3D–F).

G4RNA data are more challenging to classify than rG4-seq data

since their non-G4 sequences are more similar to G4 than the tran-

scriptomic background. Non-G4 sequences were experimentally

challenged and reported in the literature. Generally, they are either

G4 sequences mutated at very specific positions to be used as nega-

tive control of folding, or sequences that were investigated but were

shown not to adopt a G4 (Garant et al., 2015). G4NN is therefore

the most efficient classifier when considering G4RNA data only

(Fig. 3D–F, lanes 1 and 2) since the G and C content of non-G4 and

G4 sequences are alike. G4NN can rely on the other nucleotides to

have a more complete outlook of the sequence. rG4-seq provides

only G4 sequences detected as hits, therefore their classification

from all non-hits is efficiently performed using a lower threshold.

It also explains the steep increase of the specificity of the ANN for

rG4-seq hits compared to G4RNA data, reaching �90% of specifi-

city with a score as low as 0.12 (Fig. 3A). The G4NN score is effi-

cient at discarding random transcriptomic sequences by attributing

a low score to them. The sensitivity of the G4NN score for rG4-seq

data decreases in an almost linear manner which is consistent with

the large diversity of sequences in rG4-seq hits (Fig. 3A).

We consider the validated non-G4 sequences from G4RNA to be

relevant for the determination of thresholds when using the G4RNA

screener as a tool to identify new potential G4. The contribution of

each score to detect rG4-seq data was evaluated using Euler graphs

with the following thresholds: 0.5 G4NN score, 0.9 G4Hunter

score, 4.5 cGcC score (Fig. 3G, H). Since these thresholds are quite

stringent as shown by the decrease of sensitivity, these graphs illus-

trate well the relationship between the scores. Considering rG4-seq

Kþhits only (Fig. 3G), the three scores agree on the prediction of

53.2% sequences. Unsurprisingly, 95.0% of G4Hunter detected hits

are also found in cGcC detected hits, consistent with these two pre-

dictors evaluating the G richness in a very similar way. rG4-seq hits

detected by G4NN only are likely to be G4 sequences similar to the

ones described previously but with a G/C skewness that would have

Fig. 3. Classification of datasets displayed using the G4NN, G4H and cGcC scores. (A–C) Specificity (positive slope) and sensitivity (negative slope) for the imple-

mentation set (black), rG4-seq Kþ set (red) and rG4-seq Kþwith PDS set (blue) as described by each score. The ninety-five percent confidence intervals computed

by stratified bootstrap are provided in shading. (D–F) Datasets broken down and distributions of scores shown as boxplots. The implementation set (black) is split

in three subsets; validated G4 from G4RNA, validated non-G4 from G4RNA and random transcriptomic sequences, all of which were used for the training of

G4NN. rG4-seq Kþdata (red) and rG4-seq Kþwith PDS data (blue) are both split to show G4 hits and random transcriptomic sequences used to generate the

curves. (G, H) Euler’s graph of either rG4-seq Kþhits or rG4-seq Kþwith PDS hits (yellow) and the proportion predicted above the thresholds for each meth-

od;>0.5 G4NN (red),>0.9 G4H (blue),>4.5 cGcC (green)
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been evaluated as unfavorable to G4 folding. In contrast, rG4-seq

hits detected by G4Hunter and cGcC scores, but not by G4NN

score, are likely to be G4 sequences rich in G but presenting a se-

quence different from the ones described so far. However, we are

not able to evaluate the number of rG4-seq hits that are false signals,

i.e. Kþdependent stalling not caused by G4 structure. For pyridos-

tatin (PDS) stabilized rG4-seq hits, fewer hits are scored above the

thresholds and fewer hits are shared between the scores (Fig. 3H).

Our hypothesis is that the shared hits between Kþ alone and

Kþwith PDS conditions are predicted the same way by the scores,

they represent the predictable hits. While a large proportion of PDS

dependent hits are sequences that are different from our understand-

ing of potent G4 folding sequences, we lack knowledge about those

ligand-dependent hits to properly address them. All three scores

were designed to identify G4 occurrences in the absence of ligands,

therefore we refrain from drawing conclusions.

3 Methods and implementation

3.1 Implementation data
G4RNA is a very inclusive database, useful to track all experiments

performed on a particular sequence and all publications in which

the sequence was investigated. It also holds sequences that present

an experimental outcome that is either ambiguous or conflicting

when compared to another experiment. However, such extensive

data presents redundancy which must be taken into consideration to

use as training data for a machine learning algorithm. Two filters

were used; a uniqueness filter which retains the smallest sequence

from duplicates and a length filter discarding all sequences longer

than 300 nt. The length filter was required since some sequences in

G4RNA are complete 50 untranslated regions that are several hun-

dred nucleotides long. We were concerned that long sequences

would not be useful to determine the features associated with G4

since the G4 represents a short fraction of the overall sequence. The

features associated with the G4 would be weakened by the much

larger flanking sequence.

From the 590 sequences that were first available, 368 were con-

served after filtering. The 40 sequences (�11%) reported most re-

cently in the literature were kept as an independent test to

appreciate the final performance of our tool (Fig. 2B). The remain-

ing 328 sequences, with an average length of 63 nt and median

length of 57 nt, were used for implementation and optimization of

the tool along with 200 sequences of 60 nt in length randomly ob-

tained from the transcriptome (Fig. 1A). The random sequences

were retrieved from RefSeq accessed through the UCSC RefGene

database (O’Leary et al., 2016). They are essential in order for the

tool to be trained on background sequences as well as the experi-

mentally tested sequences. Overall, this dataset comprised 149 con-

firmed G4 folding sequences, 179 confirmed non-G4 sequences and

200 randomly chosen sequences assumed to be non-G4 and are

referred to as the implementation set (Supplementary Table S1).

There are many similar sequences in the implementation set since

most wild-type sequences experimentally challenged were compared

to slightly mutated versions of the sequence. While similar data are

usually discarded to reduce bias in the training of machine learning

classifiers, we chose to keep sequences that were very similar since

most of them are wild-type sequences with only few nucleotides

changed in their mutated counterpart. The mutated sequences

present minimalistic mutations to impede G4 folding. We believe

that those sequences actually present critical information for our

tool to learn.

3.2 Artificial neural network design and optimization
G4NN was implemented using the PyBrain library from the python

programming language (Schaul et al., 2010). Sequences were pro-

vided to the algorithm as vectors of their tri-nucleotide content.

These 64 combinations of nucleotides were the features used as in-

put for the ANN. G4NN has a very simple architecture with a sin-

gle hidden layer and full connection between nodes of each layer

(Fig. 1C). The objective is to obtain a tool that would have general-

ization power rather than a deep learning architecture with greater

classification power. The architecture and various learning param-

eters of the ANN were optimized using a 5-fold cross-validation

strategy in an iterative process where the values of the parameters

are gradually changing (Fig. 1B). To do so, the implementation set

was split into five non-overlapping sets of equal size. Four of these

sets were used as a training set and the fifth set was used as a test.

The ANN is trained using half the data from the training set while

the other half is used as validation to determine when training must

end. The performance was evaluated on both the training set and

the test set. The training using the implementation set was done five

times, each time using a different combination of training and test

sets (Fig. 1B). The final architecture and learning parameters were

chosen where the classification performance was kept at its highest

and the computational requirements were reasonable. The classifica-

tion performance was monitored using the area under ROC curve

(AUC) and computational requirement was monitored using mem-

ory usage, CPU usage and computing time to train.

This optimal ANN was achieved using full connections between

the 64 input nodes and 35 hidden nodes through a switch sigmoid

activation layer and the application of a sigmoid squashing function

on the output layer. Its training was performed using a resilient back

propagation algorithm and by using evenly the sequences for train-

ing and validation at random. Through iterations, weights be-

tween nodes were gradually changing until it reached convergence

with minimal validation error. The average AUC from the cross-

validation for the training values using the optimal architecture was

0.9536 0.013 (stdev) and the AUC for the corresponding test values

was 0.9286 0.024 (Fig. 1B).

With such good classification power from the tool and knowing

that there is similarity between G4 folding sequences and non-

folding sequences, we investigated whether G4NN is overtrained or

overfitted. Overtraining and overfitting happens when a classifier is

able to classify all values without generalization, registering the

training values individually with their outcome. In order to address

the issue, we chose to purposely induce errors in the implementation

set by gradually permuting the labels (G4 or non-G4) of the se-

quences at random and restarting the cross-validation procedure.

Overtraining, overfitting or classification not related to G4 would

be suggested if the architecture of the tool allows good classification

of scrambled data, while a tool relying on generalization would not

be able to classify correctly those erroneous data. Our neural net-

work architecture lost its classification power as the proportion of

permuted labels increased up to half of the data (Fig. 1D). This con-

vinced us that the classification power of our tool was relying on G4

related generalization (Ojala and Garriga, 2009).

3.3 G4RNA screener
We wrapped our new G4NN together with the previously estab-

lished cGcC scoring system and the newly described G4Hunter in a

single tool, as the G4RNA screener. The program is written in py-

thon and is available at http://gitlabscottgroup.med.usherbrooke.ca/

J-Michel/g4rna_screener along with its documentation and manual.
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The repository hosts the program in its most user friendly form, i.e.

without the training and validation codes. Those are available in the

more inclusive development repository http://gitlabscottgroup.med.

usherbrooke.ca/J-Michel/g4rna_screener_dev. The G4RNA screener

runs from the terminal, the input is passed as arguments and the re-

sults of the analysis are displayed in the standard output as a tab de-

limited values file by default (.tsv) or BEDGRAPH file (.bedgraph).

It can easily be implemented as part of a large analysis pipeline.

G4RNA screener was used to mimic a genuine search for G4 on

the implementation set and the independent test set. Using 60 nt

long windows with steps of 10 nt, we analyzed all sequences and

used the maximum value to compare with the label associated with

the sequence. We then plotted the ROC curves of each dataset using

the three scores available in G4RNA screener to observe their classi-

fication power (Fig. 2A, B).

3.4 Validation using rG4-seq high-throughput data
We performed the same genuine search for G4 previously described

on the sequence of transcripts where a rG4-seq hit was detected. We

used chromosomal positions of rG4-seq hits provided in the BED

files available from the gene expression omnibus (GSE77282) and

retrieved sequences corresponding to the position in transcripts from

the RefSeq database through the UCSC table browser. We then used

the maximal value obtained in windows overlapping the positions of

the hits to plot ROC curves. Random transcriptomic sequences that

did not overlap with rG4-seq hits were picked as negative values to

plot the curves (Figs 2C, D and 3A–C) and their distributions are

shown (Fig. 3D–F).

4 Conclusion

G4RNA screener provides a reliable way to identify potential RNA

G4. It includes the tools developed so far that are not limited by a

motif definition of the G4. G4NN, one of the tools included in

G4RNA screener, is a novel machine learning approach trained on

sequences that were investigated experimentally in previous studies.

Its abstract representation of the sequence can be used along with

previously developed G richness-based predictors to evaluate how a

sequence relates to the known G4 of G4RNA database. G4NN

could be trained again easily to keep pace with the new G4 that are

described. The G4RNA screener repository is available at http://

gitlabscottgroup.med.usherbrooke.ca/J-Michel/g4rna_screener.
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