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Abstract
1.	 Longitudinal video archives of behaviour are crucial for examining how sociality 

shifts over the lifespan in wild animals. New approaches adopting computer vi-
sion technology hold serious potential to capture interactions and associations 
between individuals in video at large scale; however, such approaches need a 
priori validation, as methods of sampling and defining edges for social networks 
can substantially impact results.

2.	 Here, we apply a deep learning face recognition model to generate association 
networks of wild chimpanzees using 17 years of a video archive from Bossou, 
Guinea. Using 7 million detections from 100 h of video footage, we examined how 
varying the size of fixed temporal windows (i.e. aggregation rates) for defining 
edges impact individual-level gregariousness scores.

3.	 The highest and lowest aggregation rates produced divergent values, indicating 
that different rates of aggregation capture different association patterns. To avoid 
any potential bias from false positives and negatives from automated detection, 
an intermediate aggregation rate should be used to reduce error across multiple 
variables. Individual-level network-derived traits were highly repeatable, indi-
cating strong inter-individual variation in association patterns across years and 
highlighting the reliability of the method to capture consistent individual-level 
patterns of sociality over time. We found no reliable effects of age and sex on 
social behaviour and despite a significant drop in population size over the study 
period, individual estimates of gregariousness remained stable over time.
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1  |  INTRODUC TION

Social behaviour has important implications for survival and re-
production, and understanding sociality is therefore import-
ant for understanding animals' evolution and ecology (Abbot & 
Rubenstein,  2017; Krause & Ruxton,  2002). Using interaction pat-
terns and spatial associations between group members, biologists 
can gain insight into the structure, function and evolutionary con-
sequences of sociality for animals in the wild (Alexander,  1974; 
Hinde,  1976; Silk & Kappeler,  2017). Social network analysis has 
proven to be a useful tool for quantifying individual-level patterns 
of association and group-level social structure in a wide array of spe-
cies (Croft et al., 2008; Krause et al., 2015), including birds (Aplin, 
Farine, et al., 2015; St Clair et al., 2015), cetaceans (Allen et al., 2013) 
and primates (Sueur et al., 2011). Long-term field sites and repeated 
observations of individuals across many years are required to cap-
ture the demographic fluctuation of populations and the ecological 
and evolutionary processes driving species' adaptations and so-
cial behaviour (Clutton-Brock & Sheldon, 2010). Large-scale image 
datasets, in particular remote camera trap databases and video ar-
chives (Burton et al., 2015; O'Connell et al., 2010) at high tempo-
ral resolution, have potential to examine behavioural change over 
time. Conventional methods employ human researchers to code 
behavioural information; however, this is becoming increasingly 
difficult to scale as video databases accumulate, limiting the scope 
of research and the statistical power of analysis. For typical cod-
ing tasks such as individual identification from camera trap footage, 
learning to reliably identify habituated individuals can take a mat-
ter of weeks for experienced coders, whilst training inexperienced 
coders or for more challenging tasks such as labelling unhabituated 
individuals or multiple behavioural variables, it can take months of 
research effort (McCarthy et al., 2019).

Recent developments in artificial intelligence (AI) and the field 
of computer vision, boosted by advances in deep learning (LeCun 
et al.,  2015), have opened up the possibility for automating be-
havioural analysis from video (Vidal et al., 2021; Weinstein, 2018). 
Individual detection, tracking and recognition using deep learning 
can be used to measure patterns of association and social networks 

at high frame rates (Schofield et al., 2019). Automated micro-sensing 
technologies such as animal-borne radio frequency identification 
tags (Firth & Sheldon, 2016; Gelardi et al., 2020), proximity loggers (St 
Clair et al., 2015) and GPS trackers (Strandburg-Peshkin et al., 2015) 
can track animal behaviour at high resolution and accuracy, but re-
quire individual animals to be fitted with devices, which introduces 
logistical and ethical challenges that can be prohibitively invasive for 
some species such as chimpanzees (Dore et al., 2020). The use of 
deep learning for individual identification (Chen et al., 2020; Ferreira, 
Silva, et al., 2020) can efficiently generate sociality information for a 
wider array of species that are difficult to observe in situ or cannot 
be tagged or tracked using biologgers. Visual data from archives are 
valuable as they can reveal the nature and behavioural context of in-
dividual interactions. Video data can be collected through different 
methods such as systematic remotely operated camera trap grids or 
hand operated video cameras. Although the use of video offers a 
valuable way to capture a detailed record of events, it also presents 
several visual challenges. For example, remote camera traps, which 
are fixed in situ, can miss animal interactions due to their limited 
fields of vision. Hand-operated cameras can move more freely to 
capture social behaviours by panning or zooming, but this movement 
can cause motion blur or introduce observer bias by focusing on spe-
cific individuals or behaviours. Additionally, video data collected in 
the wild often has low resolution, poor lighting, and may be occluded 
by vegetation, making it a challenge to capture animal associations 
accurately and without bias.

Once video has been collected, behavioural information, such as 
the distribution of individuals in video across time and space, can 
be automatically extracted using individual recognition classifiers 
to produce a time series of individual detections and co-presence 
(Schofield et al., 2019). The data can be summarised to capture so-
cial relationships by generating ‘association’-based social networks, 
recording ‘co-occurrences’ if individuals appear together at a set lo-
cation, within a certain threshold of distance, or within a time win-
dow, as an indication of the rate of interaction and the strength of 
the relationship—these relationships are represented as ‘edges’/edge 
weights between ‘nodes’ in a network (Farine & Whitehead, 2015). 
Automating data collection of social behaviour through video-based 

4.	 We believe that our automated framework will be of broad utility to ethology and 
conservation, enabling the investigation of animal social behaviour from video 
footage at large scale, low cost and high reproducibility. We explore the implica-
tions of our findings for understanding variation in sociality patterns in wild ape 
populations. Furthermore, we examine the trade-offs involved in using face rec-
ognition technology to generate social networks and sociality measures. Finally, 
we outline the steps for the broader deployment of this technology for analysis 
of large-scale datasets in ecology and evolution.

K E Y W O R D S
chimpanzee, computational methods, deep learning, face recognition, primate sociality, social 
networks, social structure

 2041210x, 2023, 8, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14181 by C
ochrane Portugal, W

iley O
nline L

ibrary on [13/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  1939Methods in Ecology and Evolu
onSCHOFIELD et al.

analysis using AI enables high-throughput sampling compared to 
coding this information manually from in situ observation or retro-
spectively from video records, and thus provides greater statistical 
power which is required for robust estimates of these social indices 
(Franks et al., 2010; James et al., 2009). However, social interaction 
is highly dynamic, and choosing a set threshold for defining ‘group-
ing events’ of edges/edge weights between individuals in a network 
(otherwise referred to here as the aggregation rate, that is the size 
of the temporal window used for defining edges/co-occurrences 
and aggregating individual associations) to detect the ‘real’ biolog-
ical signal for capturing meaningful associations is a considerable 
challenge (Ferreira, Covas, et al., 2020); furthermore, these thresh-
olds are likely to be species, population specific and may need to be 
adjusted depending on the study design or context. Thus, far few 
studies have examined how the choice of sampling strategies, meth-
ods of data collection and network aggregation can impact biological 
results (Castles et al., 2014; Davis et al., 2018; Farine, 2015; Gelardi 
et al., 2020; He et al., 2022). Choosing a fixed threshold for the size of 
temporal window used introduces trade-offs which need further in-
vestigation. For example, using high thresholds/short time windows 
(e.g. recording interactions every second) increases data throughput, 
but can aggregate too much noise (Farine, 2018) and may introduce 
false negatives by failing to detect social interactions (Type II error). 
Conversely, using low thresholds/aggregation rates with larger 
time windows may increase false positives by aggregating individ-
uals who were not interacting (Type I error), thereby producing net-
works which are lacking in variation and too low in resolution (Wang 
et al., 2014). The aim is to record associations at a high enough tem-
poral resolution to capture meaningful variation in sociality without 
oversampling and introducing errors to the social networks.

In this study, we use a long-term video archive of wild chim-
panzees Pan troglodytes verus from Bossou in Guinea to investigate 
the reliability of face recognition for producing social networks and 
sociality estimates at the individual level. To assess potential biases 
from use of human-operated cameras in our dataset (e.g. individu-
als missed out of shot), we examine how varying the size of fixed 
temporal windows for sampling grouping events affects the patterns 
and consistency of social behaviour estimates over time. Bossou of-
fers a unique opportunity to examine social behaviour in the context 
of tool use, where chimpanzees have been continuously observed 
over 30 years at a clearing in the forest to crack nuts using stone 
tools (Matsuzawa, 1994; Sugiyama & Koman, 1979). Using footage 
recorded annually at the so-called ‘outdoor laboratory’, we exam-
ine three measures of gregariousness in chimpanzees: (a) individ-
ual social network centrality (Strength); (b) the average size of the 
party in which an individual is observed (Mean Group Size) and (c) 
the proportion of time spent alone (Time Alone). The main aims of 
this paper are to (1) investigate how the aggregation rate/size of the 
temporal window used for capturing co-occurrences affects these 
estimates; (2) investigate how stable and repeatable these measures 
are at the individual level across years; and (3) model whether any 
demographic and life-history variables (age and sex) are related to 
this variation. We provide future directions for the wider roll-out 

of the method and suggestions for next steps of data collection and 
analysis.

2  |  MATERIAL S AND METHODS

2.1  |  Study site and subjects

Data were collected from the wild chimpanzee field research site 
of Bossou, southeastern Guinea, West Africa (Humle, 2011b). Long-
term observations of a single community of wild chimpanzees Pan 
troglodytes verus have been conducted here since 1976 (Matsuzawa 
et al.,  2011; Sugiyama,  1984). In 1988, researchers established a 
quasi-experimental ‘outdoor laboratory’ in a natural forest clearing 
(Matsuzawa, 1994) to observe nut cracking behaviour, which peaks 
naturally in June–July and November–December (Yamakoshi, 1998). 
In this study, data were collected across 17 years (1996–2017) from 
film recording at the outdoor laboratory during each dry season 
(December–February) whereby provisioning of nuts and stones by 
researchers allowed effective observation of nut-cracking behav-
iour. Approximately 20–30 h of footage was collected annually using 
tripod-mounted human-operated cameras, sometimes from multi-
ple angles. The outdoor laboratory was opened daily during daylight 
hours throughout the field season (typically across 1–2 months), and 
video was only recorded if individuals attended, until they left the 
forest clearing. Video data collection was non-invasive and approved 
by the ethics committee at Kyoto University's Primate Research 
Institute. All field research in Guinea conformed to ethical guide-
lines outlined by the Association for the Study of Animal Behaviour.

2.2  |  Video pre-processing

To minimise computation for image processing and data storage, 
while ensuring consistent sampling across years, an average of 6 h 
of video content (5.99 ± 1.46 h) distributed across 15.29 ± 24.14 vid-
eos was randomly sampled per field season for 17 years spanning 
1996–2017, totalling 101.82 h of footage from manually digitised 
tapes (see Table S1). To avoid data re-sampling, maintain consistency 
and improve performance of our recognition model, we used one 
medium-distance camera angle per year to capture clear footage 
of individual faces, avoiding the low resolution from wider camera 
angles where face detection is challenging. Videos were processed 
using a deep learning face recognition pipeline as described in 
Schofield et al. (2019) using Pytorch (Paszke et al., 2019) and a ‘Titan 
X' Graphical Processing Unit (GPU). For each video in the dataset, 
a CSV file produced a spatiotemporal database with coordinates of 
individual detections in each video frame. Multiple CSV files were 
collated into a large dataframe comprising 7 million frame-level de-
tections using the package Pandas (McKinney, 2011) in Python ver-
sion 3.7.3 (Oliphant, 2007).

The face recognition method uses supervised deep neural net-
works and makes a prediction for each face detection from 23 fixed 
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identity classes (and an additional class for mistaken ‘nonface’ false-
positive detections). Some individuals were rarely sighted and thus 
not included in training data (2002 n = 1, 1996–1999 n = 1). For these 
‘unknown’ chimpanzees, the model is forced to falsely predict an 
identity from one of the fixed classes; to reduce the number of false 
positives, individuals known not to be present in that year (those 
yet to be born, or having died or dispersed) were removed from the 
dataframe using field notes/records. Continuous video sequences 
often contain shot-changes—jumps in time where the camera was 
switched on and off. To prevent an impact on the social network 
analysis (individuals being incorrectly grouped/associated across 
different time periods), a Python shot-detector (Castellano,  2021) 
was used with its default sensitivity value to mark these points. 
Given the variable frame rate of videos, frames were converted into 
seconds for aggregation to reduce the amount of observations for 
analysis and provide consistent units of time for sampling networks.

2.3  |  Social network adjacency matrices

To quantify social networks of the Bossou group, we adopted the 
‘Gambit of the group’ methodology, which calculates association 
scores based on the observation of all individuals within a group at a 
single point in time, rather than using behavioural interactions such 
as grooming or physical contact (Franks et al., 2010). Videos are split 
into a set of fixed time windows/observation points (or ‘grouping 
events’) where individuals detected in the same time window are 
recorded as co-occurring in that group. This produces networks 
represented as weighted adjacency matrices, where the associa-
tion scores for each pair of individuals (dyads) are weighted using 
the simple ratio index (Hoppitt & Farine, 2018; see section below) 
to reflect the proportion of times they co-occurred at the outdoor 
laboratory (Schofield et al., 2019). These matrices form the basis of 
social networks, where ‘nodes’ represent individual chimpanzees, 
and ‘edges’ the strength of association between individuals. These 
association-based networks thus infer social connections without 
measuring them directly, but when sampled at high rates produce 
robust association indices for easily observed groups (Farine & 
Whitehead, 2015; Silk et al., 2015).

2.4  |  Correlations across aggregation rates

In the context of video data collection at the outdoor laboratory, 
individuals were recorded at approximately a 15–20 m distance. The 
general protocol for the camera shots was to capture all individu-
als within the video frame, covering most of the 7 × 20 m space of 
the outdoor laboratory. However, occasionally, the camera would 
pan or zoom to capture specific bouts of activity, such as a special 
case of tool use or social interaction, which may only include the 
1–5 m surrounding the focal individuals (Figure 1). Wider shots are 
more likely to capture all individuals at the forest clearing, whereas 
zoom shots capture individuals in close proximity. The size of the 

temporal window used for recording social associations thus has 
key implications for capturing social associations. Sometimes, the 
detector can fail to detect faces when they are obscured from view 
(e.g. by vegetation or another individual) or the individual moves 

F I G U R E  1  Sequence from a 15-s clip of footage filmed at the 
outdoor laboratory in 2012. The example detections depict three 
adult males and highlight shot variations resulting from the moving 
camera, as well as potential biases caused by missed detections 
when individuals turn their heads or move out of shot. Images 
1–4 (top to bottom) show (1–2) a medium shot of three individuals 
entering; (3) a zoom shot of two males (with one peripheral male 
out of shot); and (4) two male turning their backs and being missed 
by our detector.
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out of shot (e.g. Figure 1, 3–4). Larger time windows (e.g. spanning 
multiple seconds, minutes or even hours) may be less sensitive to 
these detection errors, as only a single detection is needed for indi-
viduals to co-occur in the time window—this means individuals can 
co-occur, despite having moved temporarily out of shot (the obser-
vational area). Larger time windows may group together individuals 
who never interacted—for example, if they enter and leave the forest 
clearing at different points in time. Furthermore, a single misidenti-
fication in an image can incorrectly aggregate individuals across this 
larger time range (e.g. a 10-min interval).

To examine how temporal window size impacts gregariousness 
scores and social networks, we constructed weighted adjacency 
matrices for a broad range of temporal windows/fixed aggregation 
rates (1–3600 s at 10 s intervals), resulting in 360 methodological 
replicates. Social networks were generated and analysed in R v. 
4.1.0 (R Core Team,  2021). For each aggregation rate, we gener-
ated a ‘group-by-individual’ matrix detailing the co-occurrences be-
tween all chimpanzees, which was weighted using the simple ratio  
index (SRI): DetectionsA,B ∕

(

DetectionsA + DetectionsB − DetectionsA,B
)

 
(Cairns & Schwager, 1987). This represents the proportion of group-
ing events/time windows in which focal individuals were detected 
together. One social network was produced for each field season, 
which was resampled using each aggregation rate, producing 6120 
networks for comparison for 17 years of data. To examine how vary-
ing the size of the temporal window affected the sociality scores, 
we used Pearson's correlation coefficient to compare social network 
values (strength) calculated from weighted networks generated 
using face recognition (‘AI’) at different aggregation rates (1–3600 s) 
against the most extreme aggregation rate (every second). We also 
mapped how the mean values for Time Alone, Mean Group Size and 
Network Density changed as a function of aggregation rate across 
this time interval range.

2.5  |  Statistical analysis

2.5.1  |  Sociality measures

We generated common individual-level network and social-
ity variables used to study animal social networks (Farine & 
Whitehead,  2015) and gregariousness across the lifespan in pri-
mates (Machanda & Rosati, 2020). Individual metrics were used to 
examine correlations between different sampling methods, and as 
response variables in Generalised Linear Models (GLMMs). We cal-
culated measures including (1) ‘Strength’—the sum of an individual's 
social associations or the proportion of time spent associating with 
others; (2) ‘Mean Group Size’—the average number of co-detections 
at any one time across all time windows as a measure of party size 
and (3) ‘Time Alone’—the proportion of ‘grouping events’/time win-
dows where an individual was detected alone as a gauge of solitari-
ness. We calculated a ‘global’ network measure to quantify a feature 
of the overall structure of the network (‘Density’)—the proportion 
of edges (social connections) to the total potential edges in the 

weighted network—to examine how aggregation rates affected the 
overall cohesiveness and connectivity of the network.

2.5.2  |  Models

For every year in the dataset, each individual has one value for each 
of our outcome variables/gregariousness scores (conditional on 
being detected by our recognition model at least once in that year). 
Consistent experimental and filming protocols at a single location 
and during the same time of year reduced the potential impact of 
nuisance/extraneous variables on our sociality scores (e.g. such as 
from variations caused by environmental factors, locality and sea-
sonality). For two variables (Strength and Mean Group Size), we fit-
ted linear mixed models (LMMs) with Gaussian error structure and 
identity link function using the package lme4 (Bates et al., 2007) in 
the R v. 4.1.0 statistical software package (R Core Team, 2021). To 
model the proportion data for ‘Time Alone’, we fitted a GLMM with 
a beta regression error structure, logit link function and Restricted 
Maximum Likelihood (REML) using the package glmmTMB (Brooks 
et al., 2017). To fit the beta regression model using glmmTMB, the 
zero-inflated proportion scores (individuals who were not observed 
alone) were adjusted by 0.001. We examined whether demographic 
variables (Age and Sex) influenced our three individual sociality met-
rics (sampled at an intermediate 120 s aggregation rate). All model 
sets retained the same structure for fixed and random effects: 
Individual Identity and Year were included as categorical random ef-
fects; Sex, Age in years, and Population Size were included as fixed 
effects. Given that age has been shown to follow a quadratic curve 
in primate sociality and cognition (Lacreuse et al., 2020), we included 
it as a quadratic term for all models. We scaled all of our continuous 
predictor variables to have a mean of 0 and a standard deviation of 1 
to encourage model fitting and aid interpretability (Schielzeth, 2010). 
No further transformation was applied to the quadratic age term 
(which represents the square of the z-transformed Age variable). 
To examine the effect that our test variables (Age and Sex) had on 
individual sociality scores, we used likelihood ratio tests (Harrison 
et al.,  2018; Nakagawa & Schielzeth,  2010) comparing our full 
model containing the fixed predictors of interest, and a reduced 
regression/‘null’ model, which only contained our control predictor 
variables (Year of Observation and Individual as random effects, and 
Population Size as a control fixed effect). This approach differs from 
the use of null models that rely on randomisations or permutations 
to address bias in network studies (e.g. Farine & Carter, 2022). For 
each variable, a further likelihood test was performed comparing the 
full model with a null model with individual identity as a random ef-
fect removed to examine the impact it had on our outcome variables 
(Nakagawa & Schielzeth, 2010; see Section 2.5.3 below). For each 
full-null model comparison, we used the ‘anova’ and ‘compare’ func-
tions in the performance package in R (Lüdecke et al., 2021) to assess 
model fit and obtain p-values. For all models, we checked for collin-
earity, homogeneity of variance and the normality of residuals using 
the ‘check_model’ function in the performance package, which did 

 2041210x, 2023, 8, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14181 by C
ochrane Portugal, W

iley O
nline L

ibrary on [13/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1942  |   Methods in Ecology and Evolu
on SCHOFIELD et al.

not reveal any significant abnormalities. ‘Time Alone’ was modelled 
using beta regression which showed slight violation of normality of 
residuals due to outliers in the dataset, indicating that our model 
under-predicted some large values at the tail end of the distribution 
(see Figure S6 for normality checks and discussion of outliers; Vallejo 
Seco et al., 2013).

2.5.3  |  Repeatability

Repeatability measures the consistency of inter-individual differ-
ences over time. Traits that show a high level of repeatability have 
high between-individual variance and low within-individual variance, 
which indicates that individuals have differing and stable tenden-
cies or strategies for interacting/associating with group members 
over time (Tkaczynski et al., 2020). To identify the individual-level 
repeatability of these metrics, we assessed the proportion of vari-
ance in our gregariousness variables that were attributable to the 
individual identity random effect in our models (Nakagawa & 
Schielzeth, 2010). We compared full models containing all fixed and 
random effects, and null models without the random intercept and 
slope for individual identity, to test whether individual identity ex-
plained variance in our outcome variables and improved model fit 
(Tkaczynski et al.,  2020). We used the ‘r.squaredGLMM’ function 
from the MuMin package in R (Bartoń, 2021) to calculate individual 
R2 for a model containing individual identity as the only random ef-
fect (dropping Year) to examine the repeatability/strength of the ef-
fect that individual identity had.

3  |  RESULTS

3.1  |  Aggregation rates

Figure 2 summarises the changes in correlations and mean values of 
social network and sociality variables across rates aggregation. For 
Strength (Figure 2a), we found a steep drop-off in correlation values 
when comparing networks from the highest aggregation rate (1 s) 
to other aggregation rates, indicating that the highest and lowest 
aggregation rates produced divergent social network scores. This 
indicates that extreme aggregation rates may be capturing differ-
ent association patterns, and may also be introducing errors affect-
ing the network scores. The network density ranged from 0.94 to 
0.99 (Figure 2c) which indicates that as the size of the aggregation 
time window increases, a greater proportion of individuals are ob-
served together, reducing variation in association rates and network 
scores. This high range of connectivity in the network is also likely 
due to the small group size from population decline (Humle, 2011a), 
and a feature specific to Bossou (Sugiyama, 1988, 2004; Sugiyama 
& Fujita, 2011) compared to other populations (e.g. Langergraber 
et al., 2009; Mitani, 2009) (see discussion in Supporting Information 
Section ‘Social and ecological context at Bossou’). Sociality variables 
(‘Mean Group Size’ and ‘Time Alone’) also appear to be sensitive to 

the size of the temporal window, with the highest aggregation rate 
producing more extreme values before stabilising at around the 
600 s aggregation rate. This suggests that short temporal windows 
(below a minute) are susceptible to bias when the camera zooms or 
captures a single individual in shot, therefore overestimating the 
time individuals spend alone and underestimating the party size. 
Using a low aggregation rate with larger time windows has the in-
verse effect, reducing the number of observations, overestimating 
party size and underestimating individual solitariness as more indi-
viduals are grouped together. Collectively across measures, visual 
assessment of these curves indicates that an intermediate value of 
50–120 s avoids extreme values and the potential noise generated 
from oversampling, whilst still capturing enough variation in the net-
works to make inferences about individual-level sociality patterns; 
however, this optimal window may shift depending on the time span 
of the study and amount of data collected.

3.2  |  Modelling results

Effect sizes and measures of model fit from likelihood ratio tests 
for each model set are presented in Tables 1 and 2. We found no 
significant differences between the effect of age and sex on social-
ity scores for Strength (χ2 = 5.18, df = 2, p = 0.075) and Mean Group 
Size (χ2 = 2.58, df = 2, p = 0.27). We found weak evidence for a quad-
ratic age effect on Time Alone (AIC difference = 2.47; Figure  S8). 
Repeatability scores for each sociality variable are presented in 
Table  3. For all models, individual identity improved model fit: 
Strength (χ2 = 116.14, df = 1, p < 0.001), Mean Group Size (χ2 = 11.70, 
df = 1, p < 0.001) and Time Alone (χ2 = 20.11, df = 1, p < 0.001). This 
indicates that Bossou chimpanzees showed inter-individual varia-
tion and high repeatability (consistency) in gregariousness over time. 
For all of our models, individual identity had a significant impact on 
model fit; however, the size of the effect varied—the variation ex-
plained by the random effect of individual identity was highest for 
Strength (0.35) followed by Time Alone (0.13) and Mean Group Size 
(0.03). Inter-individual variation in Strength, Mean Group Size and 
Time Alone are visualised in Figure 3.

4  |  DISCUSSION

In this study, we tested the reliability of automated face recogni-
tion for measuring association-based social networks and individual-
level gregariousness scores, using a long-term video archive dataset 
of wild chimpanzees. We examined how the size of the temporal 
window used for capturing co-occurrences affects the robustness 
of estimates of chimpanzee association scores over time, and the 
impact of potential errors and biases generated from different rates 
of aggregation on these measures. Overall, our results reveal that 
the size of temporal window used for aggregation of social networks 
should be a key consideration when measuring gregariousness using 
computer vision-based identification of individuals in video footage. 
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F I G U R E  2  Networks aggregated 
using different fixed time windows/
aggregation rates (1–3600 s). (a) Strength 
values from each network generated at 
different aggregation rates, correlated 
using Pearson's to the smallest temporal 
window (1 s). (b) Mean value for group size 
and Time Alone (scaled to be between 
0 and 1) for each aggregation rate. (c) 
Network density for each network and 
aggregation rate. Dashed lines indicate 
range for intermediate aggregation  
(50–120 s) which avoids extreme values.
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Although networks produced across different aggregation rates 
were generally well correlated, extreme aggregation rates produced 
divergent scores, and our sociality variables Mean Group Size and 
Time Alone showed a steep drop off in values (Figure 2b), indicat-
ing that care should be taken to evaluate how variables change as a 
function of aggregation rate. We found that selecting an intermedi-
ate aggregation rate avoids potential noise and extreme values gen-
erated from under- and over-aggregating. This approach improves 
the researcher's ability maximise the intensity of data collection 
while reducing errors, to capture meaningful variation in networks 
and gregariousness scores. However, the behavioural context of the 
study species and the choice of measures should inform the sam-
pling strategy and size of temporal window used for capturing social 
behaviour.

4.1  |  Robustness of method

Our dataset was sampled annually within a 1–2 month window 
of data collection spanning 17 years. This is within the range of 
observation time for other studies generating animal social net-
works from intensive data collection over short periods (Davis 
et al., 2018; Feczko et al., 2015; Gelardi et al., 2020). The correla-
tion of networks produced using larger temporal windows (lower 
aggregation rates) appeared to break down at around 1000s 
(Figure  2a), indicating that networks and measures generated 
at this aggregation rate were unreliable, which may be driven in 
part by too few data points and the sparse networks it produced. 
Examining the performance of the models, individual repeatability 
and the distributions of sociality variables across all aggregation 
rates could help to investigate the source of diverging values and 
potential bias in the networks further. For other automated track-
ing technologies, such as GPS, there is often a trade-off between 
rate of sampling and the longevity of battery life (He et al., 2022; 
McCann et al., 2021); sparse sampling can be surprisingly low for 
producing robust association networks if collected over many 
months (Davis et al., 2018). Thus, consideration should be given 
to the span of data collection in video databases—for our small 
seasonal snapshots, more hours of observation within each year 
would be required to generate robust measures using larger tem-
poral windows. Data collected consistently across the field season 
through continuous monitoring (such as remote camera traps) may 
generate robust and stable network estimates using larger win-
dows of aggregation. In the context of our study, using high ag-
gregation rates may more closely approximate proximity networks 
(measuring how often individuals are within several metres of one 
another), whereas sparser aggregation rates may approximate 
party membership at a coarser level. In our study, we have also not 
examined how sparse networks from using larger temporal win-
dows produce false positives, due to the potential impact of a sin-
gle misidentification for aggregating individuals within a large time 

TA B L E  1  Model results: Overview of model parameters for 
linear mixed models fitted using the lmer and glmmTMB packages 
in R.

Outcome 
variable Term Estimate SE

Strength Intercept 3.50 0.35

Sex −0.93 0.47

Age2 −0.11 0.08

Population size 0.79 0.17

Mean Group 
Size

Intercept 3.50 0.35

Sex −0.93 0.47

Age2 −0.11 0.08

Population size 0.79 0.17

Time Alone Intercept −2.91 0.18

Sex −0.24 0.24

Age2 −0.20 0.08

Population size −0.29 0.08

TA B L E  2  Likelihood ratio test comparing model fit between full model containing all fixed and random effects, and a null model with 
fixed predictor variables of interest (age and sex) removed for each of our outcome variables: ‘Strength’, ‘Mean Group Size’ and ‘Time Alone’. 
For each likelihood ratio test, we report the AIC, BIC and R2 for the full and null model, and the difference between them (null-full) when the 
predictors of interest (age and sex) are removed from the full model. We also present χ2 and p-value for significance, and AIC for glmmTMB 
beta regression model (a difference of ~2 or less in AIC indicates no difference between models).

Outcome variable
Model 
comparison AIC BIC Conditional R2 Marginal R2 χ2 df p value

Strength Full model 537.61 561.62 0.88 0.33 — — —

Null model 538.79 555.94 — — — — —

Full-null 1.18 −5.68 — — 5.18 2 0.075

Mean Group Size Full model 657.48 681.49 0.78 0.52 — — —

Null model 656.06 673.21 — — — — —

Full-null −1.42 −8.28 — — 2.58 2 0.27

Time Alone Full model −1027.52 −1003.52 0.27 0.08 — — —

Null model −1030.00 −1012.85 — — — — —

Full-null −2.47 −9.33 — — — — —
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window, and in future additional thresholds can be implemented 
to reduce these errors (e.g. requiring a certain amount of time for 
individuals to spend together to co-occur within a time window).

Our results indicate that our recognition model produced 
individual-level estimates of sociality that were replicable over 
time at our intermediate rate of aggregation, highlighting the ro-
bustness of the method to produce reliable sociality estimates. 
Our finding that gregariousness was variable between individu-
als, and consistent within individuals across years, is consistent 
with the wider pattern shown by many other species, namely that 
behavioural patterns such as social network positions remain sta-
ble across the lifespan (Aplin, Firth, et al., 2015; Blaszczyk, 2017; 
Finger et al.,  2017; Jacoby et al.,  2014; Wuerz & Krüger,  2015). 
This also supports previous findings on repeatability of sociality 
in other chimpanzee groups which indicate that gregariousness 
becomes fixed during development through some form of canali-
sation, and remains consistent throughout their lifetime (Altschul 
et al., 2018; Tkaczynski et al., 2020).

4.2  |  Extending to other species and contexts

This system was developed and tested for a single group of chim-
panzees, and thresholds are likely to vary depending on the eco-
logical context and species (Webster & Rutz, 2020). However, the 
methodology for model training is not species specific (Schofield 
et al., 2019), and it is relatively simple to implement as it only re-
quires a time series of individual detections, which means it can be 
flexibly applied for different forms of video data collection, species 
and ecological contexts. Our approach using Gambit of the Group 
for co-occurrences was able to generate enough variation and 

consistency in social measures, despite the relatively low image 
quality of archival data, moving cameras, small population size and 
specific context of a single forest clearing at Bossou. For video 
datasets collected over short timeframes (e.g. over several hours, 
days or weeks), in constrained contexts where many individuals 
can be observed clearly in the same shot or do not have freedom 
to vary their social groups (e.g. in an enclosure in captivity), then 
additional classifiers which track proximity or behavioural inter-
actions may be required (see future directions below). The ap-
proach outlined here is particularly useful for species that exhibit 
fission–fusion dynamics and for data collection where grouping 
events are recorded over many months (Franks et al., 2010; Silk 
et al.,  2015) and thus can be applied for either hand-held video 
focal follow data or long-term camera trap projects. For any ap-
proach, consideration of the size and quality of the shot should 
be considered, and studies using automated recognition classifiers 
should maximise the field of vision and image quality to capture 
all visible individuals whilst maintaining a close enough shot to de-
tect individual faces reliably. The use of a full body recognition 
classifier should be a consideration due to its potentially greater 
recall than face recognition, depending on the size of the species, 
how recognisable individuals are by their bodies and the ecologi-
cal context (e.g. how often individuals are occluded by vegetation; 
Bain et al., 2019; Ferreira, Silva, et al., 2020).

4.3  |  Benefits of using AI for animal sociality

A significant advantage of this system is that once the neural net-
works have been trained, archive footage can be used to optimise 
strategies for data collection of social behaviour from longitudinal 

TA B L E  3  Individual chimpanzee repeatability in sociality variables. Variance in outcome variables attributed to individual identity as 
a random effect in linear models (R2), spanning 17 years of video footage, and aggregated at 120 s time windows. We report the AIC/
BIC values for the full/null model with the random effect of identity removed, and the χ2 and the p-value significance of this difference. 
We report ‘ID model’, which is the full model with ID as the only random effect (dropping year), to show the strength of the effect of 
individual ID, as a measure of individual-level repeatability of each trait. Individual R2 is conditional R2 (variance of fixed and random effects 
combined)—R2 (the variance of only fixed effects).

Outcome variable
Model 
comparison AIC BIC Conditional R2 Marginal R2 χ2 df p value

Strength Full model 537.61 561.62 0.88 0.33 — — —

Null model 651.75 672.32 — — — — —

Full-null 114.14 110.71 — — 116.14 1 <0.001

ID model — — 0.71 0.35 0.35 — —

Mean Group Size Full model 657.48 681.49 — — — — —

Null model 667.19 687.76 — — — — —

Full-null 9.70 6.28 — — 11.70 1 <0.001

ID model — — 0.58 0.56 0.03 — —

Time Alone Full model 1027.52 1003.52 — — — — —

Null model 1009.41 988.84 — — — — —

Full-null 18.11 14.68 — — 20.11 1 <0.001

ID model — — 0.23 0.10 0.13 — —
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F I G U R E  3  Individual random effect 
coefficients (x-axis indicates mean and 
variation) representing inter-individual 
variation in chimpanzee sociality measures 
for Strength, Mean Group Size and Time 
Alone at the 120 s aggregation rate. 
Scores above or below zero represent 
higher or lower than average expression 
in outcome variables for each individual. 
Error bars indicate 95% confidence 
intervals for the effects.
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datasets. Manual data collection of social networks undertaken 
retrospectively via video coding or through behavioural observa-
tion in situ is time-consuming and can take many times the length 
of the video depending on the task (Anderson & Perona, 2014). Our 
method for generating social indices is entirely automatic, so once 
models are trained no video coding is required, which reduces po-
tential for human observer bias and improves scalability; previous 
work found that without contextual information researchers strug-
gle to identify individuals from video footage, being outperformed 
by the recognition model in both speed and accuracy for this fine 
level task (Schofield et al.,  2019). This is particularly relevant for 
long-term field sites where researchers with different levels of ex-
perience and interest can introduce variation in how data are col-
lected from year to year. A key problem in the field of animal social 
networks is generating sufficient data for a robust analysis (Farine 
& Whitehead, 2015; Franks et al., 2010). This automated approach 
is scalable and can increase the quantity of observations, increasing 
the statistical power and reliability estimation of the ‘real’ networks, 
without the need for re-watching and coding video.

4.4  |  Future directions

Despite these significant advantages, there are limitations of using 
AI. Deep neural networks take significant time and resources in 
terms of storage, annotation and processing of video data. Currently, 
investment is required by engineers to build, maintain and run the 
pipelines; these require technical knowledge, reducing the avail-
ability and practicality of the approach in the field and leading to 
bottlenecks for data preparation, annotation, storage and training 
between engineers and biologists. In order for this technology to 
be more widely adopted, open datasets and end-to-end pipelines 
need to become more transparent, accessible and efficient to use 
through open-access software projects (Mathis & Mathis,  2020; 
Nath et al., 2019). The original development for our system took over 
a year to implement; however, the bulk of this time was spent on 
acquisition of the data, expert annotation and development of the 
tools to train models from scratch. However, it should be possible to 
train and fine-tune models in much less time as more open frame-
works and models are released and computational resources become 
more affordable. Supervised methods are useful for retrospective 
analysis of complete archives when individuals are clearly visible and 
identifiable, as is the case with our dataset. However, applying these 
methods becomes significantly more challenging for large unhab-
ituated populations with unknown individuals. Annotating data for 
training requires significant effort, and incorporating new individu-
als into the model may require modifying the final layer of the neu-
ral network and retraining (Schofield et al., 2019). New methods are 
emerging to improve the efficiency and flexibility of computer vision 
pipelines. Active learning models can automatically locate images 
of interest for human annotators, and lightweight on-device/real-
time recognition systems can improve the ease with which data are 
stored and annotated (Norouzzadeh et al., 2021). New methods for 

re-identification of individuals are emerging (Miele et al., 2021), such 
as metric learning, which can quantify similarity between images in a 
dataset of individuals, or one-shot meta-learning, training networks 
to learn categories without human annotation, without needing to 
retrain from scratch, or when classes are data poor (Hospedales 
et al., 2021).

The flexibility of such systems will enable development of more 
sophisticated analysis—for example, layering individual identifica-
tion with behavioural recognition (Bain et al., 2021). Such new ap-
proaches will enable capture of a richer array of animal behaviour, to 
examine how individual-sociality, behaviour and networks interact in 
real time—for example, to trace how new behaviours spread through 
a population via social learning, using dynamic network-based diffu-
sion analysis (Hasenjager et al., 2021; Hobaiter et al., 2014). Despite 
over 60 years of field research, few studies have leveraged a longitu-
dinal approach to examine how sociality patterns change over time 
and are impacted by demographics, such as reductions in population 
size, the loss of key individuals to death or dispersal, lack of emigra-
tion, reductions in fertility and ageing population structures (Brent 
et al., 2017; Machanda & Rosati, 2020; Rosati et al., 2020; Sheldon 
et al., 2022; Shizuka & Johnson, 2019) (see discussion in Supporting 
Information Section ‘Sociality over the lifespan’). For large-camera 
trap databases and continuous monitoring projects, systematic 
comparison of multiple communities using automated classifiers for 
video data has potential to examine behavioural variation of many 
animal groups across large temporal and geographical ranges.

5  |  CONCLUSIONS

Capturing social associations using automated face recognition 
and social networks is a powerful tool for unlocking video archives 
and revealing the social structure of wild animal populations; how-
ever, investigation of the adequate thresholds for defining edges 
is required to provide robust insights into individual-level patterns 
of sociality. Overall, we find that automated face recognition using 
deep neural networks provides a robust method for producing 
chimpanzee social networks and sociality measures, and brings 
several key advantages including reduction in time investment in 
data collection and human observer bias, high-throughput sam-
pling for statistical power, and optimisation of network aggre-
gation strategy for modelling biological processes. The method 
produces repeatable social networks, which show that inter-
individual differences in sociality patterns remain stable over time 
in a group of wild chimpanzees. Using this automatic framework, 
we find that although there was individual-level variation in social 
behaviour, age and sex do not appear to be strong drivers of in-
dividual gregariousness and social structure for the Bossou com-
munity in this data. This work provides a framework for evaluating 
the consistency and reliability of using AI to measure social be-
haviour from longitudinal archive datasets; it moves towards the 
widespread adoption of numerous deep learning algorithms which 
are able to generalise behavioural data collection across multiple 
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species and habitats. Ultimately, this methodology builds the plat-
form to model the flexibility and variation in social behaviour and 
social networks in different ecological contexts and populations, 
over larger temporal and geographic ranges and across the lifes-
pan in wild animals.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Kernel density plot for distribution of individual-level 
strength values.
Figure S2. Output from normality checks using the ‘check_model’ 
function in the performance package in R (Lüdecke et al., 2021) for 
the individual strength variable.
Figure S3. Kernel density plot for distribution of individual-level 
Mean Group Size values.
Figure S4. Output from normality checks using the ‘check_model’ 
function in the performance package in R (Lüdecke et al., 2021) for 
the Mean Group Size variable.
Figure S5. Kernel density plot for distribution of individual-level 
‘Time Alone’ values.
Figure S6. Output from normality checks using the ‘check_model’ 
function in the performance package in R (Lüdecke et al., 2021) for 
the individual-level Time Alone variable. Normality checks of Time 
Alone reveal that the assumption of normality has been violated 
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with a slightly longer tail than would be expected from a normally 
distributed variable and beta distribution, indicating our model is 
systematically underestimating the upper tail end of our distribution 
(see distribution of predicted values below). However, this may be 
due to the nature of our dataset which has some outliers/inflated 
proportion scores, above that which would be expected for a 
chimpanzee (i.e. above 10% of their time spent alone). Furthermore, 
it has been demonstrated that violation of normality assumptions 
does not significantly affect regression estimates for mixed 
models (Vallejo Seco et al., 2013). Although the reference line for 
homogeneity of variance is not perfectly horizontal, overall there 
is an equal spread around this line indicating that the amount of 
heteroskedasticity is unproblematic.
Figure S7. Bossou Age distribution (scaled to be within 0 and 1) 
by Sex. Across years, there is a small proportion of middle-aged 
individuals, with a large core of elderly females.
Figure S8. Model outputs from data generated using intermediate 
120 s sampling/aggregation rate, visualising the effect of Age on 
each outcome variable (left column). Corresponding forest plots 
(right column) showing the effect of each fixed effect (SexM—effect 
of Males compared to Females), Age (fitted as a quadratic term) 
and population size (as a controlled fixed effect). Point estimates 
denote the effect size between each variable on outcome variable, 

error bars the 95% confidence intervals and asterisks statistical 
significance (with estimated confidence intervals not overlapping 
with zero). Model parameters are detailed in Tables 1 and 2. Note 
that visualised model fit for Age for Strength and Mean Group Size 
(left) are non-significant. To assess whether variables of interest (Age 
and Sex) significantly impact our model's predictive ability, check 
significance of likelihood ratio tests which are detailed in Table 2.
Figure S9. A zoom shot of two old females at the outdoor lab in 2012 
eating palm fruit (left: Velu, right: Yo) (photo credit: Tetsuro Matsuawa).
Table S1. Information on videos for each year in the dataset. ‘Total 
observation time’ refers to the hours of video data sampled for each 
year and ‘mean duration’ refers to the average length of the video 
clips.
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