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Abstract: In this review, we will describe the importance of fibrosis in inflammatory bowel disease
(IBD) by discussing its distinct impact on Crohn’s disease (CD) and ulcerative colitis (UC) through
their translation to histopathology. We will address the existing knowledge on the correlation between
inflammation and fibrosis and the still not fully explained inflammation-independent fibrogenesis.
Finally, we will compile and discuss the recent advances in the noninvasive assessment of intestinal
fibrosis, including imaging and biomarkers. Based on the available data, none of the available cross-
sectional imaging (CSI) techniques has proved to be capable of measuring CD fibrosis accurately,
with MRE showing the most promising performance along with elastography. Very recent research
with radiomics showed encouraging results, but further validation with reliable radiomic biomarkers
is warranted. Despite the interesting results with micro-RNAs, further advances on the topic of
fibrosis biomarkers depend on the development of robust clinical trials based on solid and validated
endpoints. We conclude that it seems very likely that radiomics and AI will participate in the future
non-invasive fibrosis assessment by CSI techniques in IBD. However, as of today, surgical pathology
remains the gold standard for the diagnosis and quantification of intestinal fibrosis in IBD.
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1. The Importance of Fibrosis in IBD

Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and ulcerative
colitis (UC), is characterized by chronic intestinal inflammation mediated by dysregulated
immune responses to such factors as diet and microbiota [1–4].

In both CD and UC, chronic inflammation causes disruption of the epithelial barrier
and tissue destruction. Fibrosis, which is a healing mechanism, becomes progressive
and damaging in the scope of long-lasting IBD, in which persistent tissue damage and
healing result in scar tissue formation [5,6]. At tissue and cellular levels, fibrosis is an
amplified response characterized by the accumulation of collagen-rich extracellular matrix
(ECM) produced by an increased number of mesenchymal cells, including fibroblasts,
myofibroblasts, and smooth muscle cells (SMCs) [7]. The proliferation of fibroblastic cells,
along with the accumulation of ECM, are the hallmarks of intestinal strictures in IBD [8].
Fibrosis is a frequent outcome in the natural history of IBD and is the background for
most of the IBD complications, such as strictures, bowel penetration, and obstruction,
often demanding surgery [5,6,9]. It has been estimated that about 30% to 50% of CD
patients and 1% to 12% of UC patients would suffer from fibrosis complications during the
disease course [6,10,11]. Until recently, intestinal fibrosis was considered an unavoidable
complication of IBD in patients that did not respond to anti-inflammatory therapy, often
requiring surgical intervention [6]. The emergence of the possibility of an anti-fibrotic
approach changed this paradigm, creating challenges in terms of diagnosis and treatment
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of bowel fibrosis [6,12]. As such, understanding the molecular and cellular mechanisms
underpinning fibrosis and improving techniques for the assessment of fibrosis in IBD
patients are still relevant research topics.

1.1. Fibrosis in CD

In CD, both inflammation and fibromuscular changes are transmural, leading to pro-
gressive thickening of the bowel wall and stricture development, even in the absence of
inflammation. Pathologically, intestinal fibrosis in CD is characterized by ECM accumu-
lation and mesenchymal cell expansion affecting all layers of the bowel wall along the
intestinal tract [13]. In addition, recent pathologic consensus defined small bowel strictures
in CD as a combination of decreased luminal diameter and increased thickness of all layers
of the intestinal wall, including expansion of the muscularis mucosae (MM) and inner
muscularis propria (MP), muscularization of the submucosa, and fibrosis of the submucosa
and intestinal wall [14]. Notwithstanding, the universality of this concept was recently
challenged by the description of a non-hypertrophic, constrictive type of stricture in CD [15].
Regardless of the type of stricture, these remain common complications of CD with serious
clinical relevance and impact on the patients’ quality of life [12,15,16].

Aside from fibrosis in strictures, it has been proposed that a certain degree of fibrosis
would exist in nearly all CD phenotypes, even from early onset. In addition, it has been
demonstrated that the degree of fibrosis may be similar in both stricturing and penetrating
CD, with differences regarding the degree of transmural inflammation [17].

Though still used in clinical practice, the classification of CD in three-category phe-
notypes, as inflammatory or non-stricturing, non-penetrating (B1), stricturing (B2), and
penetrating (B3) disease, is now considered too rigid [18,19]. As an alternative, CD shall be
viewed through the lens of a progressive accumulation of intestinal fibrosis and damage
over the course of the disease, leading to stricturing and/or penetrating complications, as
supported by epidemiological natural history studies [16,20–26]. This progressive and cu-
mulative structural bowel damage would occur irrespective of symptoms and, considering
current fibrogenesis knowledge, of the degree of intestinal inflammation [6,27,28]. Hence,
clinical symptoms, disease activity [29,30], and progression of bowel damage [4,31] are not
totally correlated.

Considering that population-based studies have shown a 10-year cumulative risk of
surgery between 40% and 71% [32–34] and that fibrosis is a marker of advanced disease, its
importance is central in the setting of CD, as it underlies the need for surgical resection in
stricturing disease and, maybe, also in penetrating complications, as strictures coexist in
over 85% of penetrating CD [4,30–35].

In this context, to further understand pathology changes in CD, deep research on the
basic cellular and molecular mechanisms of fibrogenesis is warranted.

1.2. Fibrosis in UC

In UC patients, fibrosis is characterized by a thickening of MM and excessive ECM
deposition in the submucosa, affecting deeper layers only after profound ulceration of the
submucosa [36–38]. Strictures are uncommon in UC, and the majority are benign and re-
versible [39]. However, in UC, fibrosis originates the increased wall stiffness, which may result
in motility abnormalities, anorectal dysfunction, rectal urgency, and incontinence [10,38].

The evidence regarding fibrosis in UC is limited and controversial, but a comprehen-
sive assessment performed by Gordon et al. in 2018 demonstrated that UC is characterized
by progressive fibrosis and MM thickening in correlation with the severity and chronicity
of inflammation. Hence, deep remission, including histological remission, should be a
priority and a therapeutic target [40]. Recent research in mice with dextran sulfate sodium
(DSS)-induced colitis has shown that, in UC, changes in motility may also be related to
neuronal modification. The study highlighted that UC does not promote neuron death but
induces changes in the chemical code of myenteric neurons [41]. A better comprehension
of these data and the translation of these results depend on studies on human tissue.
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2. Is There Fibrosis without Inflammation?

During physiological tissue repair, collagen substitutes the temporary fibrin plug
to create a permanent sealant of the injured tissue. Briefly, in response to injury signals,
fibroblasts activate, proliferate, expand, and transform into myofibroblasts, which have the
innate contractile ability and produce higher levels of ECM components. Under normal
circumstances, once the healing process is accomplished, the fibrotic matrix is degraded
by matrix metalloproteases (MMPs), and both fibroblasts and myofibroblasts undergo
apoptosis or revert to a non-activated state [42,43]. However, in the setting of recurrent or
persistent epithelial injury, intestinal inflammation initiates and sustains fibrogenesis, which
can progress even after the inflammatory trigger has subsided [6]. Chronic epithelial and
endothelial injury release chemotactic factors that promote recruitment and constitutional
activation of immune and mesenchymal cells, leading to inflammation-dependent and
-independent progression of fibrosis with progressive organ dysfunction [43].

2.1. Inflammation-Dependent Fibrogenesis

In CD patients, research has highlighted a strong connection between inflammation
and fibrosis (Figure 1). In fact, in intestinal resection specimens, both components generally
overlap and share a similar distribution [6,44–46].
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Figure 1. Inflammation-dependent fibrogenesis. (A) Left panel. Schematic representation of homeo-
static balance between innate and adaptative immune cells in the intestinal lamina propria. Acute
aggression to the intestinal epithelium (yellow star) leads to physiological inflammation in view of
removing aggression and allowing tissue repair through activation and expansion of local fibroblasts.
Part of these will undergo transition to active myofibroblasts, which finalize the restoration of the
ECM. When healing is complete, both fibroblasts and myofibroblasts suffer apoptosis. (B) Right panel.
Schematic representation of dysregulated chronic inflammation occurring in intestinal lamina propria
due (among other causes) to increased permeability of the intestinal epithelium, allowing penetration
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of microbiota perpetuating inflammatory cascades (both cellular and humoral), which also cause
local tissue injury (ulceration) with further increase in microbiota access and inflammation on the
lamina propria. Chronic inflammation will eventually activate local fibroblasts in the lamina propria,
which will expand and migrate to other locations of the intestinal wall, namely, the submucosa.
1. Fibromuscular expansion of the submucosa—due to massive infiltration of activated and expanded
fibroblasts, smooth muscle cells (SMCs), and myofibroblasts. 2. Sources of recruitment of activated
myofibroblasts driven by intense production of pro-fibrotic mediators by activated myofibroblasts in
a vicious-cycle way. 3. Activation of fibroblasts, SMCs, and mostly myofibroblasts leads to chronic
and intense production and accumulation of ECM components, mostly on the submucosa, but that
may transverse the whole intestinal wall. 4. Activation and expansion of SMCs lead to the thickening
of all muscular layers, being disproportional on the muscularis mucosae where fibrosis splaying
is usually more common. 5. Creeping fat has recently been demonstrated as a source of both pro-
inflammatory and pro-fibrotic mediators, including free fatty acids, which will target both locally,
leading to inflammation and fibrosis through creeping fat and on adjacent layers of the intestinal
wall. ECM: extracellular matrix; EMT: epithelial-to-mesenchymal transition; endoMT: endothelial-to-
mesenchymal transition; IL: interleukin; SMCs: smooth muscle cells; TGFβ: transforming growth
factor β.

Inflammation has been established as the most potent activator of mesenchymal cells,
initiating fibrogenesis, both in the early stages of CD and over the course of the disease,
eventually leading to a fibrotic scar that may permeate the whole tissue architecture [47].

The physiopathological process of inflammation-dependent fibrogenesis is complex
and involves a variety of such molecules and cells as immune cells, ECM-producing cells,
and intestinal microbiota [48]. Without exhausting all involved mechanisms, it is known
that Th17 and Th2 cells play a central role in IBD inflammation and fibrosis through the
secretion of interleukins (ILs) involved in intestinal myofibroblasts’ activation, migra-
tion, and ECM production (IL17, IL21) [11]; epithelial to mesenchymal transition (EMT,
IL17) [11,45]; collagen deposition by fibroblasts (IL13); secretion of latent transforming
growth factor (TGF)-β and MMP-9 by macrophages; and TGF-β activation by cleaving its
latency-associated peptide (LAP) [11,43,45,48]. TGF-β is considered the major cytokine in
intestinal fibrosis [43,48,49], mediating the differentiation of fibroblasts into myofibroblasts
and promoting myofibroblasts’ proliferation, migration, contraction, and resistance to
apoptosis, while increasing the production of ECM components and tissue inhibitor of
MMP (TIMP)-1 [11,50,51]. Importantly, TGF-β has an anti-inflammatory role, including
the promotion of class-switching immunoglobulin A, inhibition of antibody production,
and downregulation of inflammatory cytokine production by monocytes and macrophages
through inhibition of nuclear factor (NF)-B. Overall, TGF-β is key in keeping the im-
mune balance of the intestine through enhancing mucosal defense and tissue healing,
promoting immune tolerance, and suppressing anti-inflammatory responses [52]. Apart
from TGF-β, many other soluble factors produced by immune cells during inflammatory
responses can promote fibrogenesis, such as transforming necrosis factor (TNF), IL-23,
IL-36, activins, connective tissue growth factor (CTGF), epidermal growth factor (EGF),
insulin-like growth factor (IGF)-1 and -2, platelet-derived growth factor (PDGF), vascular
growth factor (VGF), galectin-3, endothelins (ET-1, -2 and -3), products of oxidative stress,
components of the renin-angiotensin system (RAS), and mammalian target of rapamycin
(mTOR) [6,11,43,45,48–51].

After T cells, macrophages are also expanded in IBD, although their specific role in
intestinal fibrosis is only partly explained [45]. It has been described that IL-36α secreted
from M1 macrophages locally induces myofibroblasts proliferation and collagen VI pro-
duction [53], while an increase in M2 macrophages was demonstrated in creeping fat [54].
However, it was shown that, in certain situations, M2 cells could inhibit ECM synthesis;
thus, their definitive role in fibrosis requires further investigation [48]. Neutrophils, mast
cells, and eosinophils can all promote fibrosis through the release of pro-fibrotic cytokines,
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chemokines, and, for neutrophils, reactive oxygen and nitrogen species, while basophils
have a less clear role in fibrogenesis [43].

Considering that the hallmark of CD strictures includes excessive secretion of ECM
and increased numbers of mesenchymal cells in distinct locations of the bowel wall, the
importance of ECM-producing cells, namely, fibroblasts, myofibroblasts, and SMCs in
fibrosis is crucial [6]. Histopathologically, these cells can be distinguished according to the
expression of vimentin (V), α-smooth muscle actin (α-SMA), and desmin (D): fibroblasts
exhibit a V(+), α-SMA (−), D (−) pattern, myofibroblasts a V(+), α-SMA (+), D (−) one,
and SMCs are V(− or low), α-SMA (+), D (+) [45]. Fibroblasts are the primary effector cell
in CD fibrosis. As referred, several mediators (the strongest being IL13 and TGF-β) drive
the fibrotic response of intestinal fibroblasts in IBD [11,48,55]. Once activated, fibroblasts
proliferate, migrate, increase the secretion of ECM, and can transform into myofibrob-
lasts [56]. The same occurs with activated myofibroblasts, which can produce much higher
levels of ECM than intestinal fibroblasts [45,57]. Moreover, if dysregulated, activated my-
ofibroblasts may shift collagen type IV synthesis to collagens type I and III, which will
be gradually deposited into fibrillar ECM, distort normal architecture, and increase tissue
stiffness and scarring [58]. In an inflammatory environment, they can differentiate from
fibroblasts and SMCs, but also from other cell types, such as fibrocytes, pericytes (blood
vessels walls’ fibroblasts), and epithelial, endothelial, stellate, or bone-marrow-derived
stem cells [6,11,43,47,48,58]. Moreover, under chronic inflammation, SMCs can transdif-
ferentiate into myofibroblasts and vice-versa [43]. Once activated by TGF-β1 and IL-1β,
SMCs increase IL-6 production, thus further contributing to intestinal inflammation [59].
Apart from originating myofibroblasts, contributing directly to fibrogenesis, SMCs are
the major contributors to intestinal wall thickening in CD strictures, both by hyperplasia
and/or hypertrophy of muscular layers and by undergoing fibromuscular hyperplasia in
the submucosa [47,60–62]. To finalize, a reference to creeping fat is mandatory. Creeping
fat, defined as a pathologically increased fat tissue adjacent to areas of the intestine affected
by CD, has been shown to correlate both to strictures and degree of inflammation [63]
and, more recently, to MP hyperplasia through free fatty acids-mediated intestinal SMCs
hyperplasia [8,64]. Conversely, Ren Mao et al. demonstrated that activated MP SMCs
interact with creeping fat preadipocytes through the production of a specific ECM scaf-
fold able to induce preadipocytes migration out of mesenteric fat into de novo creeping
fat [64]. Creeping fat directly promotes inflammation-dependent fibrosis in the adjacent
intestine through large amounts of pro-fibrotic cytokines, adipokines, growth factors, and
fatty acids produced by both innate and adaptive immune cells as well as adipocytes [65].
On the other hand, creeping fat fibrosis is a well-known histopathological feature of CD,
which was described by Karl Geboes as “fibrous strands are present in the mesenteric fat,
irradiating from the intestine and surrounding thickened, hypertrophied fat lobules” [66].
The mechanisms underlying the concept of penetrating fibrosis and creeping fat fibrosis
are complex and not fully understood, involving fibroblasts, SMCs, preadipocytes, and
macrophages (specifically M2-subtype [67,68]. Serum markers for microbiota were also
associated with complicated and stricturing CD [69]. In addition, intestinal dysbiosis and
its secondary products have been shown to be able to induce fibrosis in the gut of CD
patients [70]. However, it is not clear if dysbiosis affects only inflammation-dependent
fibrogenesis or also the -independent one, and, if so, which microbiota components promote
fibrosis without inflammation [48].

2.2. Inflammation-Independent Fibrogenesis

Despite our increasing capacity to control intestinal inflammation through such drugs
as biologics and new small-molecule drugs, the progress in preventing progression to
fibrosis and stricture development is minimal [43]. Moreover, while suppressing inflam-
mation waives inflammatory markers, it does not reduce the expression of profibrotic
mediators, suggesting the existence of inflammation-independent mechanisms mediating
self-perpetuating fibrogenesis [6].
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In the absence of inflammatory stimuli, ECM stiffness and mechanotransduction by
fibroblasts (Figure 2) should be considered the central inflammation-independent mecha-
nisms of intestinal fibrosis [71]. In fact, even though ECM is accountable for keeping tissue
integrity, it is a dynamic structure able to communicate with a variety of cells, including
those involved in the production of its own constituents. The interaction of ECM with
fibroblasts includes multi-protein assemblies at the cell membrane, called focal adhesions
(or focal adhesion complexes). ECM stiffness is determined by the abundance of fibrillary
collagens and their degree of cross-linking, as well as the degree of hydration of the ma-
trix, determined by the concentration of proteoglycans and hyaluronic acid and also the
coexistence of inflammatory edema [71]. As referred, through the course of IBD, cytokines
and fibrotic growth factors mediate the deposition and crosslinking of ECM components,
making ECM stiffer with changes in its mechanical properties. These changes appear to
activate pro-fibrotic signaling cascades in fibroblasts that only recently began to be explored.
Briefly, ECM stiffness perpetuates fibrogenesis through the activation of mesenchymal cells,
which, in turn, can further increase stiffness and regulate contraction in an inflammation-
independent way [6,72]. It has been shown that in the absence of inflammation, tissue
stiffness alone can lead to the progression of fibrosis in CD by inducing a morphological
transformation of intestinal myofibroblasts from round to stellate shape, cellular prolif-
eration, collagen and αSMA production and development of focal adhesions [73]. The
mechanical properties of ECM stiffness are able to induce profibrotic signaling cascades
in fibroblasts at least by two concurrent mechanisms [71]. First, the increased stiffness of
the regenerated ECM drives fibroblast differentiation through the focal adhesion-mediated
translation of ECM mechanical forces to biochemical activity within the cell, mediated
by a dynamic cellular cytoskeleton. Cells adhered to ECM respond to resistance changes
by increasing both the number and size of focal adhesions and the cytoskeletal pre-stress,
increasing F-actin/myosin stress fibers and downstream intracellular pro-fibrotic signal-
ing to increase ECM deposition. Second, through mechanotransduction by fibroblasts—a
process by which fibroblasts convert mechanical signals into biochemical signals—ECM
stiffness can also lead to the release of the potent pro-fibrotic and anti-apoptotic TGF-β
“stored” in the ECM, creating a positive feedback loop crucial for sustained myofibroblast
function [71,74].

The process is complex and involves a variety of structures and molecules; integrins
have been demonstrated to play an important role as components of focal adhesion com-
plexes [71]. The most important integrins involved in mechanotransduction are α5β1,
which is expressed in fibroblasts [73], and αγ class integrins [71]. Herein, it is worthwhile
to recall the role α5β1integrin in mediating the ability of fibronectin of the SMCs-derived
matrisome adjacent to the outer aspect of the MP to induce preadipocytes migration out of
mesenteric fat leading to de novo formation of creeping fat. Moreover, no proinflammatory
cytokine could promote this migration [64], reinforcing the importance of this molecule in
inflammation-independent fibrogenesis in CD.

In the ECM, TGF-β is kept inactive through its inclusion in the so-called TGF-β-large
latent complex, composed of a latency-associated peptide (LAP) bounded to a latent TGF-β
binding protein (LTBP), which, in turn, is linked to collagen and proteoglycans (as decorin,
thrombospondin, and fibronectin), determining its bioavailability [53,75].

In resting conditions, fibroblasts form only loose contacts with ECM through weak
and short-lived integrin adhesions. Upon tissue injury, fibroblasts rapidly transform into
an activated state, secreting mainly fibronectin and fibronectin ED-A and migrating over
the injured tissue to restore tissue integrity. Only in the late contracting phase of wound
healing, by means of a combination of mechanical stimulations through focal adhesions
and TGF-β presence, will fibroblasts terminate their differentiation into myofibroblasts by
expressing αSMA [51,76]. Importantly, after wound healing, the contracting ECM is always
less organized and more rigid than the original one [6,71].

Hence, the ECM functions as a reservoir of both pro-fibrotic and pro-inflammatory
mediators, ready to be released upon mechanical stretching of the stiff ECM, leading to
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fibrosis either directly (without inflammation drivers) or indirectly through the initiation of
inflammatory cascades [71]. How cells, namely, fibroblasts and myofibroblasts, integrate
the mechanical and biochemical information present in the ECM to impact cellular functions
is still not understood.

Diagnostics 2023, 13, x FOR PEER REVIEW 7 of 25 
 

 

 
Figure 2. Inflammation-independent fibrogenesis. Schematic representation of mechanotransduc-
tion of fibroblasts and latent-TGFβ liberation in response to ECM stiffness. (A) Left panel. “Resting 
state” of focal adhesion complex in normal ECM stiffness. (B) Right panel. Mechanotransduction of 
fibroblasts and latent-TGFβ liberation in response to ECM stiffness. 1. ROCK activation through 
PI3K and AKT serine/threonine kinase (phosphorylation). 2. ROCK promotes G-actin binding to 
myocardin-related transcription factor (MRTF), which then migrates to the nucleus. LAP: latency-
associated peptide; LTBP-1: latent transforming growth factor β-binding protein; P: phosphoryla-
tion; PI3K: phosphatidylinositol 3-kinase ROCK: rho kinase; SMAD: suppressor of mothers against 
decapentaplegic; TGFβ: transforming growth factor β; TGFBR: TGFβ receptor.  

The process is complex and involves a variety of structures and molecules; integrins 
have been demonstrated to play an important role as components of focal adhesion com-
plexes [71]. The most important integrins involved in mechanotransduction are α5β1, 
which is expressed in fibroblasts [73], and αγ class integrins [71]. Herein, it is worthwhile 
to recall the role α5β1integrin in mediating the ability of fibronectin of the SMCs-derived 
matrisome adjacent to the outer aspect of the MP to induce preadipocytes migration out 
of mesenteric fat leading to de novo formation of creeping fat. Moreover, no proinflam-
matory cytokine could promote this migration [64], reinforcing the importance of this 
molecule in inflammation-independent fibrogenesis in CD. 

In the ECM, TGF-β is kept inactive through its inclusion in the so-called TGF-β-large 
latent complex, composed of a latency-associated peptide (LAP) bounded to a latent TGF-
β binding protein (LTBP), which, in turn, is linked to collagen and proteoglycans (as 
decorin, thrombospondin, and fibronectin), determining its bioavailability [53,75]. 

In resting conditions, fibroblasts form only loose contacts with ECM through weak 
and short-lived integrin adhesions. Upon tissue injury, fibroblasts rapidly transform into 
an activated state, secreting mainly fibronectin and fibronectin ED-A and migrating over 
the injured tissue to restore tissue integrity. Only in the late contracting phase of wound 
healing, by means of a combination of mechanical stimulations through focal adhesions 

Figure 2. Inflammation-independent fibrogenesis. Schematic representation of mechanotransduction of
fibroblasts and latent-TGFβ liberation in response to ECM stiffness. (A) Left panel. “Resting state” of
focal adhesion complex in normal ECM stiffness. (B) Right panel. Mechanotransduction of fibroblasts
and latent-TGFβ liberation in response to ECM stiffness. 1. ROCK activation through PI3K and AKT
serine/threonine kinase (phosphorylation). 2. ROCK promotes G-actin binding to myocardin-related
transcription factor (MRTF), which then migrates to the nucleus. LAP: latency-associated peptide;
LTBP-1: latent transforming growth factor β-binding protein; P: phosphorylation; PI3K: phosphatidyli-
nositol 3-kinase ROCK: rho kinase; SMAD: suppressor of mothers against decapentaplegic; TGFβ:
transforming growth factor β; TGFBR: TGFβ receptor.

2.3. Unmet Needs

Considering that inflammation is the most potent trigger for fibrogenesis in CD,
the early control of inflammation should reduce the incidence of strictures in the long
term. Although this was not proven before the biologic era [68,69], it has been shown
that early biologic therapy may achieve this purpose [77–79], leading to a reduction in
hospitalizations and surgery [80]. However, as stated before, current anti-inflammatory
and immunosuppressive strategies have not yet been capable of fully controlling tissue
remodeling and fibrosis progression nor eliminating established complications.

In this setting, preventing intestinal fibrogenesis or reversing already established
bowel strictures in patients with IBD should remain the ultimate goal of disease man-
agement [35]. For the end purpose of developing clinical trials for anti-fibrotic agents
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that would change the IBD treatment paradigm, the Stenosis Therapy, and Anti-fibrosis
Research (STAR) consortium has been dedicated to the revision of the available knowledge
on the identification and characterization of strictures in CD, in which fibrosis is a major
issue [81–83]. Based on the collected data, the STAR consortium has been working on
definite standards to measure response to anti-fibrotic agents by developing endpoints
and standard methodology for clinical, radiological, and histopathologic scoring systems
essential for the design of reliable anti-fibrotic clinical trials [83–86].

3. Non-Invasive Techniques to Access Fibrosis

Several clinical, genetic, and serological risk factors for complicated or disabling
disease and/or surgery have been identified in the setting of IBD. Among these, only clinical
factors are being used in clinical practice to select patients who would benefit from early
medical aggressive therapy [31]. However, none of these risk factors has been undoubtedly
associated with stricturing disease or proved to predict fibrosis development [11,87].

Considering that, at this point, fibrosis cannot be predicted, IBD management would
benefit from an accurate and non-invasive assessment of intestinal fibrosis, as patients
with predominant inflammatory strictures are likely to respond better to current therapies,
whereas those with established fibrotic ones will probably require surgery [6,88,89]. How-
ever, as stated, pure fibrotic or inflammatory strictures in surgical specimens are rare, with
inflammation and fibrosis usually co-existing in varying degrees [6].

Broadly, fibrosis assessment in IBD is a challenging and non-invasive evaluation
of fibrosis remains elusive. Despite the advances in imaging and molecular technolo-
gies, definitive identification, characterization, and quantification of intestinal fibrosis
in CD still depend on the histopathological evaluation of surgical specimens [87], even
though no histopathological scoring system has been validated or widely accepted for this
purpose [14,82,85,90–92]. To some extent, the same applies to UC, in which fibrosis affects
mostly MM but can sometimes extend to the submucosa. Thus, its complete quantification
also cannot rely solely on endoscopic biopsies or imaging [10,38].

While some imaging techniques have been intensively investigated through the last
decade, mainly ultrasound elastography [93–95] and specific magnetic resonance tech-
niques, such as diffusion-weighted imaging (DWI) [96–101], diffusion kurtosis imaging
(DKI) [102,103], magnetization transfer (MT) [104–109], and intravoxel incoherent mo-
tion imaging (IVIM) [110,111], none has been definitively established as reliable for this
objective [112,113]. Very recently, some promising developments arose through artifi-
cial intelligence (AI) techniques in cross-sectional imaging, such as radiomics [114–117].
In addition, biomarkers remain a field of intense investigation and deserve proper
discussion [42,83,118,119].

Imaging Techniques

Even though imaging techniques have been used for several decades to identify and
measure the severity of IBD, only in recent years has research explored methods with
valuable prognostic value [120].

Cross-Sectional Imaging

Among imaging techniques, cross-sectional imaging (CSI) is an essential tool for IBD
characterization in all disease stages [81,106,121–124]. Traditionally, CSI has been used to
evaluate the extent and activity of CD and to detect such complications as abscesses or
fistulae, but it is also being used for the assessment of treatment response and prediction of
outcomes and post-surgery recurrence [106,121].

It is recommended that such CSI techniques as ultrasonography (US), computed to-
mography (CT), enterography (CTE), or magnetic resonance (MR) enterography (MRE)
should be performed at the time of diagnosis of CD to complement endoscopy by assessing
stricturing and penetrating complications [110,125–129]. These techniques are all able to
detect strictures with high accuracy, with the selection of the best approach depending
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on availability, cost, patient clinical status (including comorbidities), and radiation con-
cerns [124]. Their ability to identify and quantify fibrosis has been variably studied mostly
in CD (Table 1).

Table 1. Comparison of the available cross-sectional imaging techniques for the assessment of fibrosis
in CD.

Cross
Sectional Imaging Features Limitations Future Perspectives

MRE

No radiation
High contrast resolution
Possibility of performing
fluoro-magnetic resonance
Can be combined with perianal imaging
High accuracy for severe fibrosis
identification

Time consuming
Intravenous and oral contrast agents
Longer scanning time than CTE
Less robust than CTE
Lower patient compliance than CTE
Availability

Validation in more robust
clinical trials
Combination with radiomics

DWI-MR

Short-time
Possible with standard MR scanners
No intravenous contrast
Qualitative and quantitative analysis
High accuracy for inflammation
and penetrating
complications in IBD
High accuracy for severe
fibrosis identification

Lack of anatomic details
Low reproducibility of ADC
Availability

Promising results to be confirmed in
more robust clinical trials

DKI-MR

More physiologic imaging
No intravenous contrast
High accuracy for inflammation
Correlation with different
fibrosis grades

Few data Promising results to be confirmed in
more robust clinical trials

MT-MR

No intravenous contrast agent
Correlation with different
fibrosis grades
Higher accuracy for fibrosis than MRE
with or without DWI

Few data Promising results to be confirmed in
more robust clinical trials

CTE

Accessible
Fast
Robust
Better spatial resolution than MRE

Radiation

Combination with radiomics
Reduction in the radiation dose
with high-standard dual-source or
ultra-high-pitch CT scanners and
iterative reconstruction systems

PET/CTE
PET/MRE

In combination with CTE or MRE adds
functional data

Radiation (labeled marker; CTE)
High cost
Limited availability
Lack of anatomic details

The disadvantages and lack of
advantages when compared to CTE
and MRE may hinder further
developments

USE
US-SWI Real-time visualization of tissue stiffness

Operator dependent
Not easy to interpret
More difficult to compare current
examination with previous studies
Heterogeneous data

Promising results to be confirmed in
more robust clinical trials

CEUS Severe fibrosis identification when
associated to elastography techniques

Operator dependent
Not easy to interpret
More difficult to compare current
examination with previous studies
Heterogeneous data

Promising results to be confirmed in
more robust clinical trials

CTE: computed tomography enterography; CEUS: contrast-enhanced ultrasonography; DKI-MR: diffusion
kurtosis imaging–magnetic resonance; DWI-MR: diffusion-weighted imaging–magnetic resonance; MRE: mag-
netic resonance enterography; MT-MR: magnetization transfer–magnetic resonance; PET/CTE: positron emis-
sion tomography/CTE; PET/MRE: positron emission tomography/MRE; USE: ultrasound strain elastography;
US-SWI: ultrasound–shear wave imaging.

Magnetic Resonance

MRE is considered the most advanced technique for imaging fibrosis in CD strictures.
Its accuracy and lack of radiation exposure are the most attractive features. Overall, the
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sensitivity of MRE for stricture detection ranges from 75% to 100%, with an estimated
specificity between 91% and 96% [81,124,130–132]. As for fibrosis assessment, MRE has
been described to accurately differentiate between severe and mild–moderate fibrosis,
with a sensitivity of 0.94 and a specificity of 0.89 (p < 0.01), irrespective of the degree of
inflammation [133]. In addition, MRE could also distinguish severe fibrosis from severe
muscle hypertrophy in ileal CD [134]. Recently, an MRE-based composite score was shown
to be a very good predictor of histologic fibrosis (ROCAUC = 0.910) [128].

Concerns related to the intravenous administration of gadolinium justify the efforts
to replace MRE with other MR techniques that do not demand intravenous contrast [106].
Even though diffusion-weighted imaging (DWI) has been used to detect inflammatory
activity in CD [97], its utility for fibrosis assessment based on the assumption that the
presence of fibrotic tissue is related to the restricted diffusion of water molecules, is still
not defined [81,106,124,135]. Initial research showed that fibrosis was associated with
low attenuated diffusion coefficient (ADC) values, presumably due to the reduction in
extracellular space in fibrotic tissue leading to a restriction in diffusion [96,98,99,136].
However, more recent data evidenced constraints while distinguishing severe fibrosis from
severe muscle hypertrophy in ileal CD [134], while others showed that the accuracy of
DWI in detecting fibrosis varies with the degree of bowel inflammation. Since the available
reports on the use of DWI on IBD included a wide range of ADC values, threshold values
have not yet been defined to differentiate between active inflammatory, non-active, and
fibrotic disease [98,136–138]. Mainenti et al. associated this variability with technical
aspects, such as differences in MR equipment concerning magnetic field strengths, lack
of reproducibility, and absence of standardized sequence parameters [100,101]. Still, even
though DWI is not validated as a reliable quantitative biomarker for fibrosis, its short
analysis time, absence of contrast, ability to provide qualitative and quantitative data,
and high accuracy for inflammation and penetrating complications in IBD support the
continuous research on its utility in the setting of fibrosis assessment in IBD.

However, researchers have highlighted relevant inconsistencies in DWI, such as the
concept that, in this method, ADC calculation assumes that water distribution obeys a
Gaussian model, not reflecting the impact of cell structures and biophysical properties on
water displacement [139]. In response to this inconsistency, MR scanners evolved to con-
sider non-Gaussian diffusion, demanding distinct analysis models. In this setting, diffusion
kurtosis imaging (DKI) emerged as a more robust analysis model, providing a more precise
display of water diffusion in the human body than conventional DWI [139,140]. DKI was
first applied in the context of IBD to evaluate CD activity, providing values of Kapp (appar-
ent diffusional kurtosis) and Dapp (diffusional coefficient) corrected for non-Gaussian
behavior, which could distinguish between inactive, mild, and moderate–severe CD
(p < 0.05) with better accuracy than DWI [139]. Concerning fibrosis, DKI has been consid-
ered useful for staging liver fibrosis in a rabbit model [141]. In the scope of IBD, it has been
shown that Kapp was significantly correlated to fibrosis grades and allowed to distinguish
between the absence of fibrosis or mild fibrosis and moderate to severe fibrosis (sensitivity
of 95.9% and specificity of 78.1%), evidencing its potential for the assessment of bowel
fibrosis [102]. However, further studies are warranted to validate this data.

Based on previous data on animal models [105,108], magnetization transfer–magnetic
resonance (MT-MR) was explored in a cohort of 31 CD patients. The results showed
that magnetization transfer ratio (MTR) values correlated with fibrosis (p < 0.0001) [96],
confirming that MT-MR may be of value for fibrosis identification in CD with only a small
increase in the analysis time. In 2018, Li et al. confirmed that MTR was strongly correlated
with fibrosis scores (r = 0.769, p = 0.000) but not with inflammation scores (r = −0.034,
p = 0.740) and could differentiate moderately–severely fibrotic from non-fibrotic and mildly
fibrotic bowel walls. This study showed its superiority when compared to DWI-MR and
contrast-enhanced MR [107].

In recent years, the concept of textural analysis (TA) was introduced in MR imaging,
namely, for fibrosis detection purposes. In this line, MR elastography was presented by
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Avila F and colleagues in a pilot study in which the tissular stiffness value, measured
by MR elastography, correlated with the degree of fibrosis (p < 0.001), according to an
MR-based score [142]. No pathological correlation was undertaken; hence, the true value
of this technique remains unproven. Very recently, TA of T2-weighted MR imaging (T2WI)
was used to assess intestinal fibrosis in a dextran sodium sulfate (DSS) murine model and,
as a proof-of-concept in 5 CD patients, against MT-MR and histopathology. TA features
included skewness, kurtosis, and entropy. Both entropy and MT ratio correlated with
histopathological fibrosis (r = 0.85 and r = 0.81, respectively); MT was superior in monitoring
bowel fibrosis when coexisting with inflammation (linear regression R2 = 0.93 vs. R2 = 0.01,
respectively) as well as in assessing antifibrotic response in mice. As entropy increased with
fibrosis accumulation in human CD strictures, TA was capable of quantifying fibrosis in
mixed inflammatory–fibrotic strictures. Considering that TA of T2WI is an accessible post-
processing technique, the authors conclude that it deserves further research and validation
both for clinical practice and antifibrotic trial design [143].

Computer Tomography

CTE has proved to be adequate, in terms of sensitivity and specificity, for the detection
of features suggestive of CD and its complications [106,121,127]. In addition, it is widely
available, fast, has relatively low cost, and enables the analysis of longer portions of the gas-
trointestinal tract than MR and the detection of extraintestinal manifestations [124,127,144].
The accuracy of CTE for the detection of strictures in CD ranges from 78.7% to 83% [145,146].
However, its use is limited by radiation exposure, mainly in the pediatric population [121,126],
and previous studies suggest that CTE findings do not correlate with intestinal fibrosis [147].
Meng et al. considered later that this alleged lack of correlation could be related to the
focus of the study on the diseased bowel, with reduced attention to the potential value
of mesenteric abnormalities on CTE, which, when integrated into a nomogram, could
differentiate between non-mild and moderate-to-severe fibrosis in CD patients [148].

In this context of risks and doubts, research was directed to safer and more effective
approaches within CT. One of the most valuable explored strategies was the reduction in
radiation dose, resorting to high-standard dual-source or ultra-high-pitch CT scanners and
iterative reconstruction systems [144,149–152]. These strategies maintain or improve the
quality of CT images and signal-to-noise ratio with lower doses of radiation.

Positron Emission Tomography

Even though positron emission tomography (PET) is not considered in current IBD
guidelines [153], its ability to detect inflammation in IBD and to add functional data to
the structural abnormalities found with MR and CT has supported the research of hybrid
techniques, such as PET/MR and PET/CT, in the setting of IBD [136,154,155]. Although
promising, their performances in detecting and quantifying fibrosis are globally modest
when compared with the results from their single counterparts, especially MR.

Furthermore, high costs and radiation exposure may hinder the wide applicability of
these techniques.

Ultrasonography

Based on the ability of US elastography to measure tissue stiffness, this technique has
been used to evaluate fibrosis in IBD [93,95,113,120]. Several variations of this technique
have been studied in the following settings: ultrasound strain elastography (USE) [156–161];
shear wave imaging (SWI) [162–164]; and contrast-enhanced ultrasonography
(CEUS) [160,161,165,166], which have been showing different performances across stud-
ies in small cohorts. USE is a non-invasive, innovative technique, in which quantitative
measurements of strain ratio can be obtained through the ratio between the strain of a
reference region and the strain of the pathologic region, with values above 1 indicating
higher stiffness [167]. In the context of IBD, USE showed promising results in animal mod-
els [156] and has proven to be able to differentiate between normal and strictured bowel
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segments [156]. Importantly, it showed to correlate with the severity of fibrosis [157–159].
A recent systematic review showed that, in comparison to histopathological assessment,
USE showed moderate-to-good accuracy in detecting histological fibrosis [95]. However,
based on the available data, the authors considered that USE could not replace the tissue
specimen yet, and its applicability must be validated in randomized clinical trials with
proper design.

SWI is based on the measurement of shear wave vibration upon application of a
pulse wave to tissues by means of an ultrasound probe. The applicability of SWI to
fibrosis measurements relies on the fact that transmission of shear waves is faster in
stiffer tissues than in softer ones [120]. In CD, SWI was able to distinguish between
inflammation from fibrosis in a rodent model [168] but also in human bowel resected
from CD patients immediately after surgery [163] and to discriminate between distinct
levels of fibrosis in a pilot study with 35 CD patients (p = 0.002) [162]. Furthermore, in a
comparative study, including three ultrasound techniques, SWI proved to be superior to
USE and acoustic radiation force impulse (ARFI) in evaluating and differentiating intestinal
stenosis in CD [169]. However, these features could not be confirmed in a pediatric
CD cohort [170], and SWI showed no correlation with fibrosis scores in a population of
105 ileal CD patients [164].

Three studies based on the combination of CEUS and USE [160,161] or SWI [171] in the
setting of CD showed that combined techniques present an increased ability to differentiate
inflammation from fibrosis. The utility of CEUS for fibrosis assessment had been suggested
before in a quantitative study in CD patients in which fibrosis seemed to be associated
with reduced blood volume and blood flow [172]. However, CEUS did not show similar
performance in a 2018 study with 25 CD patients who were evaluated before elective
surgery [166]. Despite these conflicting results and the need to recur to an intravenous
contrast agent, CEUS seems to add diagnosis value to other imaging techniques. Still, more
studies are warranted to explore its full potential.

Even though only a few studies have resorted to Doppler-ultrasonography for the
assessment of IBD patients, this technique also deserves mention in this section. In 2013,
a study designed to assess the accuracy of US parameters for the evaluation of mural inflam-
mation in CD revealed a significantly negative association between color Doppler grade
and fibrosis score (r = −0.584, p = 0.001) [165]. Later, Sasaki and colleagues demonstrated
that color Doppler was able to predict tissue inflammation and fibrosis in small-intestinal
CD lesions (p < 0.05) [173].

At this point, CSI techniques have proven to be valuable tools in the attempt to
measure fibrosis non-invasively, and ongoing research will be pivotal to defining validated
measurement protocols with high accuracy and specificity while guaranteeing minimal
risks for patients. In fact, from all the available data and clinical evidence, even though none
of the available methodologies is capable of defining the fibrotic component of a CD stricture
accurately, MRE-based modalities have proven to be the more advanced for the non-
invasive assessment of severe fibrosis in stricturing CD, followed by US-based techniques.

Despite the uncertainties regarding future advances in this field, it is undebatable
that the evaluation and diagnosis of fibrosis in IBD requires a multidisciplinary approach
involving gastroenterologists, radiologists, pathologists, surgeons, and nurses, among
others. Overall, patients benefit from regular monitoring with biomarkers and imaging
techniques and from deep clinical discussions in a multidisciplinary setting. In addition,
the development of effective referral processes, improved access, and departmental guide-
lines/pathways with the identification of quantifiable quality indicators creates conditions
to provide patients with the best possible diagnosis, treatment, and follow-up [174].

4. What Is the Future Holding for Fibrosis?
4.1. Radiomics

In a 2020 commentary, Lin and colleagues discussed the concept of computer-assisted
image analysis in the context of IBD and suggested radiomics as a tool to transform
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qualitative fibrosis evaluations on quantitative data [114]. The path to this discussion was
opened by a study on the applicability of semi-automated analysis to the measurement of
bowel structural damage, with evidence of high consistency with measurements performed
by experienced radiologists [117]. In line with data from other diseases, at this point,
a few studies support that radiomics of MRE and CTE, consisting of the extraction of
high-dimensional data from CSI images, are viewed as a potential source of valuable
data for the assessment of IBD fibrosis [115–117]. In 2021, Li and colleagues developed
a novel CTE-radiomic model for the characterization of intestinal fibrosis in CD, which
distinguished the histological non-mild from moderate–severe fibrosis with an AUC of
0.888 on the training cohort and AUCs between 0.724 and 0.816 (95% CI) in the three
test cohorts. Moreover, the model performed better than visual interpretations by two
experienced radiologists (p < 0.001) [116]. The potential of radiomics in this setting was
also evidenced in a recent study that reported the integration of CTE on a deep-learning
model based on a 3D deep convolutional neural network with 10-fold cross-validation.
This model also presented higher accuracy for the assessment of fibrosis severity than CTE
evaluation by two radiologists, with the advantage of having a shorter processing time [115].
Despite the robustness of these data, in a letter to the Editor of Gastroenterology, Zhang
considered that the validation of these results depends on the development of reliable
radiomic biomarkers and criteria to evaluate the design and report of radiomic studies in
prospective cohorts [175]. Very recently, the STAR consortium presented the results of a
machine-reader evaluation of severe inflammation and fibrosis in CD strictures through
quantitative radiomic features and expert radiologist scoring on CTE [176]. Based on the
evidenced association of two distinct sets of radiomic features for severe inflammation and
fibrosis (p < 0.01), the authors considered that the combination of quantitative radiomics
with radiological visual assessment might favor more personalized treatments by providing
more accurate phenotyping of CD strictures. In the validation study, however, while
confirming the value of radiomics in the identification of fibrosis but not inflammation in
stricturing CD, the same group did not find advantages in combining radiomic features
with the radiologist’s visual assessment [177]. Hence, it seems very likely that radiomics
and AI will set the path for the future in the scope of fibrosis assessment by the CSI
techniques in CD. However, it is still not clear whether AI alone (without concomitant
human intervention) will be able to accomplish this purpose.

4.2. Others

Even though imaging techniques have been the focus of most of the developed re-
search regarding fibrosis assessment, studies have diverted to other approaches, such as
biochemical and genetic markers, including proteomics, genomics, metabolomics, and
transcriptomics. The efforts are supported by the assumption that fibrosis biomarkers
would provide useful data for risk stratification and treatment optimization of IBD patients.
However, the available evidence includes conflicting data and is focused on markers with
low diagnostic and prognostic value. Still, considering that past and ongoing research
has provided promising data, an update of the most relevant candidate biomarkers seems
appropriate in the context of this revision.

In 2014, the fourth scientific workshop of the European Crohn’s and Colitis Organiza-
tion (ECCO) focused on understanding basic mechanisms and markers of intestinal fibrosis
and considered that, as none of the available biomarkers were able to accurately assess
fibrosis, research for novel targets should proceed, as it is pivotal for the development of
novel therapeutic options for intestinal fibrosis [119].

In 2012, based on previous findings in the scope of renal disease, Chen and coworkers
explored the role of miR-200a and miR-200b in intestinal fibrosis in a colorectal adenocar-
cinoma epithelial cell line [178]. The results showed that miR-200b was overexpressed in
the serum of the fibrosis group and could have diagnostic and therapeutic applications for
CD patients with fibrosis. This study leveraged further research on this topic, including
a revision on the emerging role of micro-RNAs (miRNAs) in IBD [179], exploring their
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involvement in the pathways of inflammation and fibrosis in IBD. At that point, the authors
considered that miR-200 [178,180] and miR-29b [181] seemed to deserve further research
due to evidence of their potential as IBD biomarkers. The importance of these two miRNA
families was addressed in two 2015 and 2023 reviews [182,183]. In both, it is stated that the
research performed so far still warrants confirmation in more robust studies due to small
sample sizes, lack of control of patients’ heterogeneity, and absence of a standard protocol
to assess miRNAs.

Other studied candidate biomarkers include serum and plasma proteins, such as
collagen [184], ECM [185], pentraxin-2 [186], serum glycoproteins [187], enzymes, such
as metalloproteinases [188], antimicrobial antibodies [189,190], and serum growth factors,
such as YKL-40 [191,192] and gene variants [193]. Similar to miRNAs, data on these topics
are conflicting and do not support their utility in the scope of fibrosis measurement.

In conclusion, considering the vast evidence on this topic, it seems that the efforts on
the discovery of novel biomarkers to assess fibrosis would be more consequent through the
development of more robust clinical trials based on solid and validated endpoints.

4.3. Anti-Fibrotic Therapy

The discussion of fibrosis in the context of IBD can only be completed by addressing
the current therapeutic challenges and perspectives toward fibrosis. In the scope of CD,
ECCO recommends endoscopic balloon dilatation (EBD) or surgery for patients with short
strictures (<5 cm), and strictureplasty for the resection of long segments of the bowel;
strictureplasty of the colon is not recommended [194]. Regarding EBD, the PRODILAT
study—an RCT with CD patients with the obstructive disease and predominantly fibrotic
strictures of less than 10 cm—showed that 80% of the patients approached with this
technique were free of a new therapeutic intervention at 1 year; compared with fully covered
self-expandable metal stents, EBD proved to be more effective for CD strictures [195].

So far, past and ongoing research did not generate evidence to support the approval
of any anti-fibrotic agent. Considering that the fibrosis process is similar in IBD and in sys-
temic and pulmonary fibrosis, several drugs are under investigation as anti-fibrotic agents,
in a pre-clinical setting resorting mainly to UC animal models, with promising results in the
TGF-β [196–204], TNF [205], IL-36 [206], rho-kinase [207], peroxisome-proliferator activated
receptor (PPAR) [208], HMG-CoA reductase [209] pathways, among others (Table 2) [5,210].
Table 2 includes the most promising targets and molecules and is not an exhaustive descrip-
tion of all the ongoing research in this field. Regarding phase 2 studies, spesolimab proved
to be well tolerated with an adverse event rate similar to placebo (without meeting efficacy
criteria) [206], and PF-06480605 demonstrated an acceptable safety profile with concomitant
endoscopic improvement (week 14) in patients with moderate to severe UC [205].

Table 2. Potential anti-fibrotic agents under research.

Agent Pathway Model Research Status Reference

Pirfenidone TGFβ

Human cells

Pre-clinical [196–201]Murine models

Mice

Tranilast TGFβ

Rats

Pre-clinical [202,203]Rat models

Patients with CD

EW-7197 TGFβ Murine model Pre-clinical [204]

PF-06480605 TNF Patients with UC Phase 2 [205]

Spesolimab IL-36 Patients with UC Phase 2 [206]
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Table 2. Cont.

Agent Pathway Model Research Status Reference

AMA0825 Rho-kinase inhibitor

Mice models

Pre-clinical [207]Cells

CD biopsies

GED-0507-34 PPARγa agonist Mice Pre-clinical [208]

Statins HMG-CoA reductase inhibitors Human intestinal fibroblasts Pre-clinical [209]

CD: Chron’s disease; IL-36: interleukin 36; HMG-CoA: 3-hydroxy-3-methylglutaryl-CoA; PPARγa: perox-
isome proliferator-activated receptor-γ; TGFβ: transforming growth factor β; TNF: tumor necrosis factor;
UC: ulcerative colitis.

Several molecules are now awaiting clinical trials in humans, and in the near future,
new therapeutic agents may be approved. Further improvements in this field have been
hindered by the reduced research in CD models and by the lack of research standards.
The intensive work of the STAR consortium regarding the standardization of the condi-
tions to measure response to anti-fibrotic agents will be determinant for the success of
these processes.

5. Conclusions

Intestinal fibrosis is a serious complication of IBD with relevant clinical implications
that determine treatment selection, prognosis, and quality of life. Currently, available
data support the concomitant influence of inflammation-dependent and -independent
mechanisms on the induction and progression of fibrosis.

In this review, we highlighted the importance of the development of accurate non-
invasive methodologies for the assessment of fibrosis and discussed their strengths, lim-
itations, and future perspectives. In the setting of CSI, MRE advanced modalities seem
to be the most robust techniques to measure fibrosis. However, the subjectivity of the
visual analysis and interpretation of the images has been hindering the endorsement of
CSI in this field. In fact, from the available recent data on radiomics, we believe that
imaging techniques will only reach their full potential in terms of accuracy through the
combination with artificial intelligence systems. Data in the setting of biomarkers research
lack consistency and warrant deeper and more structured trials.

At the end of the day, surgical pathology remains the definitive modality for diagnos-
ing and quantifying intestinal fibrosis in IBD, with the unavoidable disadvantages of being
invasive and limiting this study of intestinal damage to “end-of-stage” disease.
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