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Abstract: A variety of bioactive substances present in fruit- and vegetable-processed products have
health-promoting properties. The consumption of nutrient-rich plant-based products is essential to
address undernutrition and micronutrient deficiencies. Preservation is paramount in manufacturing
plant-based nonsolid foods such as juices, purees, and sauces. Thermal processing has been widely
used to preserve fruit- and vegetable-based products by reducing enzymatic and microbial activities,
thereby ensuring safety and prolonged shelf life. However, the nutritional value of products is
compromised due to the deleterious effects of thermal treatments on essential nutrients and bioactive
compounds. To prevent the loss of nutrients associated with thermal treatment, alternative tech-
nologies are being researched extensively. In studies conducted on nonsolid food, UV-C treatment
has been proven to preserve quality and minimize nutrient degradation. This review compiles
information on the use of UV-C technology in preserving the nutritional attributes of nonsolid foods
derived from fruit and vegetables. The legislation, market potential, consumer acceptance, and
limitations of UV-C are reviewed.

Keywords: fruits; vegetables; plant-based; minimally processed; UV-C treatment; bioactive; nutrients;
nutrition security

1. Introduction

Millions of people worldwide are undernourished and affected by “hidden hunger”,
which is caused by a lack of essential minerals and micronutrients. Food items need to
contain enough nutrients, whether processed or unprocessed, so that these nutrients can be
significant contributors to food and nutrition security [1,2]. The majority of consumers view
food safety as being of the utmost importance [3]. On the other hand, they are increasingly
aware of nutrient uptake and seek to consume more foods that will benefit their health,
well-being, and nutritional status. The increased consumption of fruit- and vegetable-based
products has been motivated by the potential health benefits based on the significant
amounts of vitamins, nutrients, and bioactive compounds contained in these products [4].
Several fruit- and vegetable-based products are preferred in their fresh state. However,
they have a high perishability and a short shelf life. This limits the amount of time for
which they are available and safe for consumption. Processing techniques can increase
food choices while increasing the length of time before a food product becomes unfit for
consumption. In the manufacture of processed foods, the use of preservation strategies
is unavoidable in suppressing microbial or enzymatic and nonenzymatic spoilage, and
therefore achieve an extended shelf life [5].
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Thermal processing has historically been one of the most extensively used and ap-
proved methods to prevent foodborne illnesses and ensure food safety through the inacti-
vation of spoilage enzymes and the destruction of microbial contaminants (pathogenic and
spoilage) in foods and beverages [6]. The intensity of the heat treatment is dependent on the
combination of temperature and treatment duration. From a microbiological perspective,
intense heat treatment is preferable, but the employment of excessively high temperatures
during prolonged times (severe heat treatments) can have deleterious consequences on
the flavor, taste, and nutritive quality. Hence, a food product may be free of contaminants,
comply with food safety standards, and still be nutritionally poor [7]. For instance, severe
heat treatments degrade several heat-labile vitamins (e.g., vitamins A and C, and thiamin)
and decrease the biological value (BV) of proteins by denaturing them and reducing their
digestibility and bioavailability. The significance of nutrient degradation on nutrition secu-
rity is determined by the eating habits and consumption frequency of a certain kind of food
in the diet. Loss of nutritional value is thus more significant when there is a decrease in
nutrients in nutritionally-rich and highly consumed food items that are sources of nutrients
for a large share of the population than in foods that are either consumed in low quantities
or have low nutritional contents [8,9].

Novel food processing methods are under investigation to address the loss of nutri-
tional value due to thermal preservation [10]. Food processors and scientists have been
exploring more effective low-temperature technologies that enable high-quality retention
to deliver safe food products with acceptable organoleptic and rich nutritional profiles [7].
Nonthermal processing methods have been employed and among these, ultraviolet irradia-
tion holds great promise as a food preservation technique for pathogen reduction and to
minimize nutritional losses observed in heat-processed foods [11,12]. Ultraviolet radiation
is divided into four categories in terms of wavelength range: UV-A (315–400 nm), UV-B
(280–315 nm), UV-C (200–280 nm), and vacuum-UV (100–200 nm) [13]. The UV-C range
possesses great antimicrobial effectiveness, which makes it useful for ensuring the microbial
safety of foods. The genetic material (DNA or RNA) of microbes strongly absorbs UV pho-
tons within the UV-C range, with a wavelength around 260–265 nm corresponding to max-
imal UV absorption [14]. The preferred alternative pasteurization and shelf life extension
method for beverages for the past two decades has been UV-C radiation at 253.7 nm [15].
UV-C irradiation causes damage to the nucleic acids of microorganisms, mainly due to the
formation of dimers of pyrimidine bases between adjacent pyrimidines in a DNA strand,
which prevents microbial replication and ultimately leads to cell death [16,17].

UV-C is a nontoxic and noninvasive method with numerous advantages that include
the absence of chemical residues, it produces no waste, is cost-effective (low installation
and maintenance cost), simple to implement, eco-friendly, has low energy consumption,
minimal impact on nutritional quality and organoleptic parameters, and good consumer
perception [11,15,18,19]. The primary drawback of this technology is the poor penetration
depth of UV-C, which limits its antibacterial efficacy [20]. The microbial inactivation
efficiency of UV-C is dependent on several factors like the UV-C dose (UV-C fluence),
uniformity of UV-C dose distribution, UV-C sensitivity of the target microbial cells, the
ability of the microorganisms to repair UV-induced damage, the physicochemical properties
of the treated product (e.g., viscosity, density, soluble and suspended solids), and the optical
properties of foods (e.g., transparency, absorption coefficient, scattering) [16,21–23]. This
poses difficulties in the design of UV-C food treatment devices and for laboratory tests
(experiments) that must guarantee a defined and consistent UV-C delivery while ensuring
that all of the food surfaces are exposed to the UV-C illumination [22]. This paper provides
a review of the impacts induced by ultraviolet pasteurization and ultraviolet combined
pasteurization on the composition of nutrients and bioactive compounds on UV-C treated
products. The regulatory standards, associated cost, consumer perception, and limitations
of this emerging technology are equally discussed.



Foods 2023, 12, 3227 3 of 25

2. UV-C Light: Principles and Mechanisms of Germicidal Action

The principle behind UV-C light’s germicidal action is based on its ability to damage
the DNA or RNA of microorganisms such as bacteria, viruses, and fungi through interaction
between the UV photons and the genetic material of these microorganisms [21]. When
UV-C light penetrates the cell wall of a microorganism, it is absorbed by the DNA or RNA
inside the cell. This disrupts the genetic material, which can lead to the formation of
new bonds or the breakage of existing ones. This alteration results in photodimerization,
where two adjacent bases in the DNA/RNA sequence bind together. This genetic damage
disrupts the affected cells’ ability to replicate, rendering them unable to cause infection or
pose a threat [24].

The mechanism of UV-C germicidal action involves several factors including the light
intensity, exposure time, and the type of microorganism being targeted, which can vary
depending on the specific application [21,25]. Furthermore, the germicidal effectiveness
of UV-C light as a disinfectant is based on the dose–response relationship, microbial
susceptibility, and the optical properties of the food matrices or treated surfaces [26,27]. In
Figure 1, the main factors that affect the success of UV-C processing are presented as well
as a general representation of the reactor chamber.
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Figure 1. Reactor chamber of UV-C processing for fluid food and the main factors that influence
the process.

It is important to note that these factors are interconnected and should be considered
collectively during the design and implementation of UV-C treatment processes for de-
veloping shelf-stable food. Higher intensity levels of UV-C radiation generally lead to
better microbial inactivation [28]. However, the duration of UV-C exposure should be care-
fully selected to achieve microbial reduction without compromising food composition and
quality [29,30]. Furthermore, the choice of the UV-C wavelength should be based on the
target microorganisms and the food product [24]. The material of the product’s container
can affect UV-C treatment, with transparent materials allowing for better penetration; the
depth of the liquid and flow rate through the UV-C system should be considered for uni-
form exposure [31,32]. At the same time, suspended solids can reduce the effectiveness of
UV-C treatment [25,33]. The pH and turbidity of the liquid also impact treatment efficiency,
and maintaining optimal ranges enhances the effectiveness of UV-C treatment [25]. From
the understanding of these principles, UV-C light technology has been used effectively not
only for disinfection and sterilization in various applications such as healthcare settings
and water treatment, but also in the food industry and more recently as a neutralizing
agent of the infectivity of SARS-CoV-2 [22,34–38]. Some factors that influence UV-C efficacy
are described below.

2.1. Dose–Response Relationship

The dose-response relationship of UV-C light germicidal action follows a pattern
where the effectiveness of killing microorganisms increases with higher doses or intensities
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of UV-C light [39,40]. At lower doses, the light exposure may not be sufficient to cause
significant damage to the microorganisms, allowing some of them to survive or repair the
damage [12,40,41]. As the dose of UV-C light increases, the likelihood of DNA and RNA
damage also increases, leading to a higher rate of microorganism inactivation [42].

It is important to note that there is an optimal range of UV-C light intensity for germici-
dal action. The sensitivity of microbes to UV light varies depending on the wavelength [21].
However, the strong absorption of ultraviolet light by water at wavelengths below 230 nm
is a limiting factor for the germicidal effect. Beyond this wavelength, increasing the dose
may not significantly enhance the killing efficacy and may even result in diminishing
returns. Additionally, excessively high doses of UV-C light can harm human health and
damage materials or surfaces [37,43]. In this sense, it is crucial to use UV-C light within safe
and recommended exposure limits to balance its germicidal efficacy with potential risks.

2.2. Microbial Susceptibility

The susceptibility of microorganisms to UV-C light varies depending on their structure
and genetic makeup [33]. UV susceptibility of microorganisms can differ considerably
due to differences in cellular elements like cell wall thickness, composition, nucleic acid
structure, type of proteins within the cell, photoproducts, the physiological condition of the
microbe, and the cell’s capacity for repairing damage caused by ultraviolet radiation [19].
However, it is worth mentioning that the effectiveness of UV-C light as a microbial inac-
tivation method depends on other factors including the food matrix [44], exposure time,
distance from the UV-C source, and the presence of any physical barriers or shadows that
may shield microorganisms from direct UV-C exposure [42]. Different microorganisms
have varying levels of sensitivity to UV-C-induced DNA/RNA damage. In this sense,
viruses with RNA genomes are more susceptible to UV-C light than viruses with DNA
genomes [45]. Another important factor is the cell wall structure. Microorganisms with
more robust and resistant cell walls may be more resistant to germicidal UV-C light. Viruses
and fungi, on the other hand, may be more susceptible to UV-C light due to their frag-
ile cell walls. Gram-negative bacteria, in general, are more sensitive to UV-C light than
Gram-positive bacteria due to their thinner cell walls [46]. The efficacy of UV-C microbial
inactivation greatly depends on the treated food. Opaque and turbid nonsolid food matri-
ces are more challenging to treat compared to transparent food substrates. This is because
the turbidity and presence of suspended solids in nontransparent liquids confer protection
to microorganisms by scattering or absorbing the radiation before it reaches them [44].

2.3. Optical Properties of Surfaces

The optical properties of surfaces refer to how they interact with light. These properties
can include the reflection, absorption, transmission, and scattering of light [21,32]. When
it comes to UV-C light, the optical properties of surfaces that host microorganisms can
affect the effectiveness of UV-C light. For example, surfaces that are rough or uneven may
scatter UV-C light, potentially reducing the intensity of UV-C radiation in a particular
direction [32], and if they are porous, UV-C light can be absorbed. Reflective surfaces can
also scatter and absorb UV-C light [22,37]. When compared to smooth surfaces, some of
these surfaces require roughly two orders of magnitude greater UV-C doses to adequately
inactivate microorganisms [37,47]. Normally, light transmission refers to the passage of
UV-C light through materials. Materials like certain types of glass can allow UV-C light to
pass through with minimal attenuation, while others may block or attenuate UV-C light,
reducing its transmission [31,32].

3. Current Applications of UV-C Light in the Food Industry

The recent consumer demands for safe food with high-quality nutritional (e.g., vita-
mins, protein) and sensory (mainly color, flavor, and texture) attributes have challenged the
scientific community and the food industry to develop and implement nonthermal technolo-
gies to process/manufacture foods while minimizing the changes to these attributes [48–50].
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In this sense, UV-C light has been a promising technology for improving food safety and
reducing the risk of foodborne illnesses in the food industry [21,33]. In the last decades, the
food industry has used this versatile tool for surface decontamination, air and water treat-
ment, to prevent the spread of microorganisms, and ensure food safety and preservation.

3.1. Air Purification and Surface Disinfection

UV-C light is used to purify air in food processing facilities. UV-C lamps can be
installed in air handling units to sterilize the air as it circulates through the facility, reducing
the risk of airborne contamination [35]. Air disinfection can be accomplished by irradiating
only the upper parts of the room or by irradiating the entire air, either in an empty room
or using an air conditioner [51]. UV-C light is also used to disinfect surfaces following
routine cleaning procedures in food processing facilities including food preparation areas,
packaging areas, and equipment. UV-C light can effectively kill bacteria, viruses, and other
microorganisms that may contaminate surfaces and cause foodborne illness [35,52,53].
Low-pressure mercury lamps are ideal for controlling surface microorganisms in the food
industry, since 90% of the emitted light is at a 253.7 nm wavelength [54].

3.2. Water Treatment and Food Preservation

UV-C light can be used to sanitize water used in food processing and production as
well as help prevent the growth of harmful bacteria and other microorganisms in municipal
water supply systems [53,55]. Additionally, UV-C light has been used to extend the shelf
life of fresh, minimally processed, and liquid foods by reducing the microbial load and
helping to prevent spoilage [12,56–60].

3.3. Retention of Bioactive Compounds

While UV-C light technology is commonly used for its antimicrobial properties in
the food industry, there is also research indicating that it can be used to improve and/or
preserve the nutritional properties of fruit and vegetables [33,60–63]. When exposed to
UV-C light, certain compounds in foods can be activated or transformed, resulting in
the production of bioactive compounds that may have health benefits [64–66]. Bhat and
Stamminger (2014) reported that exposure to UV-C light has been shown to increase the
levels of phenolic compounds and antioxidant activity in strawberry juice [48]. In the same
way, UV-C light exposure has been shown to increase the levels of certain phytochemicals
in plant produce [67].

Győrfi et al. (2011) identified the capacity of UV-C light to increase the production of
vitamin D in mushrooms. When exposed to UV-C light, the ergosterol in mushrooms is
converted to vitamin D2, increasing the vitamin D content [68]. Overall, UV-C light can be a
useful tool for producing bioactive compounds in foods, which can enhance their nutritional
value and potential health benefits. However, it is important to carefully evaluate the safety
and efficacy of these compounds before incorporating them into food products.

4. Ultraviolet Light for the Preservation of Fruit- and Vegetable-Based Nonsolid Foods

There is a growing demand for fresh foods such as fruits and vegetables that are ready
to eat, nutritious, safe, free of additives, and can be included in a healthy diet. However,
the convenience and attractiveness of these high-in-demand fresh foods and beverages
are affected by rapid spoilage and short shelf life due to changes that can be physical,
chemical, microbiological, and enzymatic [69]. Frequent outbreaks of foodborne pathogens
are associated with fresh produce and fruit juices. The addition of chemical preservatives
to liquid foods and beverages to extend their shelf life and protect against foodborne
pathogens is eliciting negative consumer acceptance. UV irradiation has been used mainly
for microbial load reduction in liquid foods and beverages such as milk, juices, ciders, liquid
eggs, beverages, and honey [19]. In terms of plant-based products, UV has been applied as
a nonthermal method to improve the safety and shelf life of products such as vegetables,
fruits, cold-pressed juices, plant-derived milk alternatives, and nectars [25,70–72], with a
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demonstrated ability in inactivating a wide range of microbial pathogens (e.g., bacteria,
fungi, yeasts, molds, and viruses) [25]. Figure 2 demonstrates some positive outcomes from
the application of UV-C in the fruit and vegetable sector.
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4.1. Microbial Inactivating Effect

Liquid food products have a diverse range of physical (e.g., viscosity and density),
chemical, and optical properties. Each group of properties must be properly evaluated
to design the preservation process and optimize the performance of the UV reactor. The
physical properties influence the effectiveness of the fluid momentum transfer and the
flow pattern. Optical properties are the main factors affecting UV light transmission and
hence microbial inactivation in liquid foods. Chemical composition, pH, dissolved solids
(◦Brix), and water activity are considered obstacles that can modify the effectiveness of
UV inactivation [21]. The sensitivity of microorganisms to ultraviolet radiation varies
significantly due to differences in cellular components such as cell wall structure, thickness,
composition, nucleic acid structure, type of cellular proteins, photoproducts, physiological
state of the microorganism, and the ability of the cell to repair the damage caused by
ultraviolet radiation [19].

Numerous applications of UV treatment in plant-based nonsolid foods have been
recorded. In a study conducted by Caminiti et al. (2010), reconstituted apple juice was
exposed to UV light in a continuous laboratory scale system with doses ranging from 2.66 to
53.10 J/cm2, altering the exposure time. The treated and untreated juices were evaluated for
microbial count and selected physical and chemical attributes. Microbiological analysis was
performed by inoculating apple juice with Escherichia coli K12 and Listeria innocua and the
bacterial count was estimated before and after processing. Overall, this study demonstrated
that UV technology applied for short periods can represent a valid alternative to the heat
treatment of reconstituted apple juice by reducing E. coli and L. innocua counts below the
detection limits [73]. Mango nectar was UV-C-treated at varying flow rates of 0.073 and
0.451 L/min and analyzed for yeast and total microbial counts during storage at 3 ◦C.
The highest log reduction obtained from the UV-C exposure at 0.451 L/min for 30 min
was 2.71 CFU/mL for the total microbial count and 2.94 CFU/mL for the yeast count [71].
Table 1 shows some examples of how UV-C light has been used to reduce the microbial
load in nonsolid fruit- and vegetable-based foods.
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Table 1. UV-induced microbial inactivation in different types of liquid foods and beverages.

Food Product Target
Microorganism UV-C Dose (mJ/cm2)

Microbial
Log Reduction References

Kale juice Escherichia coli P36 108.3 5.8 [72]

Carrot-orange juice Saccharomyces cerevisiae KE 162 0.016 2.6 [74]

Grape juice Lactic acid bacteria 78.46 1.6 [75]

Coconut water Salmonella typhimurium 5–30 1.4 [76]

Tomato Juice E. coli O157:H7 191.5 3.83 [77]

Soymilk E. coli W1485
Bacillus cereus 11.187 5.6

3.29 [78]

Apple Juice E. coli K12 (ATCC 25253) 707.2 4.4 [79]

4.2. Preservation of the Biological Activities of Foods

Regarding the use of UV treatments, preventing the loss of nutritional quality and
bioactive compounds is the aspect that has received the most attention, after microbial
control. Bioactive compounds are extra-nutritional constituents, available mainly in fruits
and vegetables, that confer additional health benefits to humans [80]. A few examples of
bioactive components include phytosterols, phytoestrogens, glucosinolates, polyphenols,
taurine, carotenoids, flavonoids, carnitine, choline, coenzyme Q, and dithiolthiones. Vita-
mins and minerals possess pharmacological activity and can also be classified as bioactive
compounds for this reason. The majority of biologically active compounds contain antimi-
crobial, anticarcinogenic, anti-inflammatory, and antioxidant activities [81]. In contrast to
the major nutrients, bioactive substances are neither officially recommended nor listed by
governmental organizations [82].

The antioxidant potential is one of the most important properties that protects against
harmful free radicals known to contribute to the occurrence of chronic conditions such as
cancer and age-related degenerative diseases. Moreover, antioxidants are a good predictor
of the biological activity and health-protective properties of foods since they are known to
inhibit oxidative damage in organisms [51,80,83]. Living plant tissues (e.g., peppers and
blueberries) frequently experience hermetic reactions from UV-C light, which stimulates
the production of secondary metabolites and raises their antioxidant capacity [84]. Like-
wise, UV-C light can induce the formation of phenolic compounds, which have gained
popularity as anticancer agents [85,86]. On the other hand, UV-C exposure has been shown
to cause oxidation in several fruit and vegetable juices and purees. For example, after being
exposed to UV-C radiation, the total phenolic and vitamin C content of apple juice dropped
considerably, and this deterioration was accelerated in clarified apple juice. Clarification
increases light transmittance and removes the intrinsic protective compounds enhancing
UV-C’s effect on food components. Additionally, a decrease in the antioxidant activity of
UV-C treated horchata beverage against DPPH radicals has been reported [84].

Pala and Toklucu (2011) conducted a study where they exposed apple juice to UV
radiation to preserve the main quality characteristics such as anthocyanins, polymeric color,
antioxidant activity, and total phenol content. The obtained results were compared with
the control (i.e., the untreated juice), and a better preservation of the studied parameters
was obtained with UV-C [87]. After being exposed to UV-C for durations ranging from 5 to
25 min, blueberry and raspberry nectars were reported to contain more total monomeric
anthocyanins [88]. Table 2 shows some examples of how UV-C light has been used to
produce, increase, or retain bioactive compounds in liquid foods, but the benefits are
proven to be extended to solid foods.
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Table 2. Effects of UV-C light treatment in the quality of health-related bioactive components in fruit-
and vegetable-based fluid foods.

Food Product Bioactive Components Treatment Conditions Outcome References

Apple and
pineapple juice

Antioxidant activity
Phenolic compounds

Vitamin C

UV-C dose:
100–700 mJ·cm−2

Exposure time:
5–15 min

Affected the quality of juices,
decreasing the bioactive

components levels
[89]

Chokanan mango juice
(Mangifera
indica L.)

Antioxidant activity
Carotenoids
Flavonoids

Polyphenols

UV-C dose: 3.525 J·m−2

Exposure time:
15 and 30 min

UV-C light improved the quality
of the juice along with the
antioxidant activity and

extractability of the
bioactive compounds

[90]

Cranberry
flavored water

Anthocyanins
Ascorbic acid

UV-C dose:
15–240 mJ·cm−2

Exposure time:
0 to 403 s

Anthocyanins and ascorbic acid
were well retained [29]

Grape juice (Vitis
labrusca) Phenolic compounds UV-C dose: 65.6 J·m−2

Exposure time: 10 min.

Juice from grapes subjected to
postharvest UV-C treatment

showed an increase in the levels
of phenolic compounds

[91]

Grape juice (White
“Superior” grape)

Resveratrol phenolic
compounds

Irradiation power:
510 W

Exposure time: 60 s

UVC treatment enabled the
further selective stilbenes

enrichment of the juice,
especially resveratrol.

[92]

Fresh apple juice

Anthocyanin content
Ascorbic acid

Antioxidant activity
Phenolic compounds

Flavonoids

UV-C doses:
84.6–169.1 mJ·cm−2

Temperatures: 40, 45,
50, 55, and 60 ◦C

UV-C irradiation combined with
moderate heat treatment

increased levels of
bioactive compounds

[66]

Lemon Pomace
Aqueous Extracts

Antioxidant capacity
Phenolic content

Flavonoid content
Proanthocyanidins

UV-C dose: 4, 19, 80,
and 185 kJ·m−2

Exposure time: 60, 120,
240, and 360 s

UV-C treatment showed the
potential to increase the

extraction of
bioactive compounds at
relatively high dosages.

[93]

Pomegranate juice
Anthocyanins

Antioxidant activity
Phenolic content

UV-C dose:
12.47 J·mL−2,

37.41 J·mL−2 and
62.35 J·mL−2 Passes: 1,

3 and 5 times

The major quality
characteristics of

pomegranate juice was better
preserved by UV-C treatment

than by heating.

[94]

Red Wine
(Boğazkere grape)

Anthocyanins
Antioxidant activity
Phenolic compounds

Thermovinification
combined with UV-C

Increased phenolic compounds
with health benefits [95]

Starfruit juice (Averrhoa
carambola L.)

Flavonols, flavonoids,
phenols, antioxidant

capacity

UV-C dose: 2.158 J·m−2

Exposure time: 0, 30,
and 60 min.

UV-C treatment enhanced
selected antioxidant compounds [96]

Strawberry juice
Anthocyanins, ascorbic

acid, phenolic
compounds

Exposure time:
15–60 min

Temperature: 25 ± 1 ◦C

Decreased the levels of the
bioactive compounds [48]

In summary, the proper application of UV-C as a preservation method can be bene-
ficial in terms of food composition. However, it is also possible that UV-C (particularly
prolonged UV-C exposure) may have an unfavorable effect on the food’s nutritional value
because a number of photochemical reactions may induce undesirable outcomes such as
the production of free radicals, potentially reducing the amount of beneficial components
found in food [97].
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4.3. Endogenous Enzyme Inactivation

The spoilage of fruit- and vegetable-based products is closely linked to the activity of
various endogenous enzymes such as browning enzymes (e.g., polyphenol oxidase, peroxi-
dase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzymes (e.g.,
pectin methyl-esterase) [98]. Controlling the activity of these enzymes is critical because
they remain active after processing, negatively affecting the quality, nutritional content,
and shelf life [99,100]. In Table 3, data on enzyme inactivation using ultraviolet technology
is provided, reporting the data sources.

Table 3. Enzyme inactivation studies using ultraviolet light.

Product Processing Conditions Results Obtained Reference

Apple juice
Treatment duration: 2 h

Temperature: 25 ◦C
UV source: 400 W high-pressure mercury lamp, 250 to 740 nm

100% inactivation of
peroxidase (PO) after 15 min [101]

Apple juice

Treatment duration: 40 min
UV source: UV-LED at 254 nm

UV intensity: 0.3 mW/cm2

UV dose: 707.2 ± 143.5 mJ/cm2

70.43% residual polyphenol
oxidase (PPO) activity [79]

Carrot and
orange juice

blend

Treatment duration: 1 min
UV source: 30 W low-pressure mercury lamp in a tubular reactor

Fluence: 10.6 J/cm2

18% reduction of
pectin methyl-esterase

(PME) activity
[102]

Pear juice
Treatment duration: 120 min

Temperature: 25 ◦C
UV source: 400 W medium-pressure mercury lamp, 250 to 740 nm

50% reduction in PPO
activity after 20 min [103]

Watermelon
juice

Treatment duration: 12 min
Temperature: 23 ◦C

UV Source: 9 W UV-C low-pressure mercury lamp at 254 nm
Flow rate: 8.4 L/h

35% residual PME activity [104]

Tomato juice
Treatment duration: 15 min

UV source: UV-LED, 278 nm
Fluence: 351 mJ/cm2

7.31 ± 0.89% residual
PME activity [105]

4.4. Modeling the Kinetics of Preservation of Bioactive Compounds and Nutrients

Kinetic models are often used for objective assessment and economic evaluation of
food safety. Kinetic modeling can also be used to predict the influence of processing on
critical quality parameters. Knowledge of the kinetics of food quality degradation including
reaction order and half-life is critical for predicting the food quality loss during storage and
preservation processes. One of the crucial factors to consider in processing is compositional
changes due to nutrient loss. Therefore, kinetic studies are essential to minimize unwanted
variation and optimize the quality of specific food [106].

Considering that the kinetics of nutrient changes in fruits and vegetables usually
follows either a zero-order or a first-order model, Equations (1)–(4) [107] are

dP
dt

= −k (P)n (1)

where k is the nutrient rate constant, n is the reaction order, and P is the parameter of the
nutrient to be estimated with a variable time, t. In the zero-order reaction kinetic model, the
nutrient parameters are usually independent of the reaction rate, as shown in Equation (2):

−dP
dt

= k (2)
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Integrating Equation (2) yields Equation (3):

P = P0 ± kt (3)

where P0 is the value of the nutrient parameter at time zero and ± would typically signify
the increase or degradation of the nutrient parameter. When the reaction rate is dependent
on the nutrient parameter, the solution of a first-order reaction rate Equation (1) is expressed
by Equation (4):

P = P0 exp(±kt) (4)

4.5. The Combined Use of UV-C with Other Preservation Technologies

The limited microbial lethality of UV light in food matrices with a high absorption
coefficient and turbidity such as nontransparent liquid foods promoted the emergence
of combined processes and hurdle technology. UV technology can be combined with
conventional and other nonthermal processes to increase the lethal effects of UV light
on microorganisms. The germicidal degree of combined treatments can result from an
additive or synergistic effect. Synergistic lethal effects are preferable in the design of
combination processes because a specific level of inactivity can be achieved by reducing
energy consumption and treatment intensity/severity [108].

Several studies have investigated the effectiveness of UV irradiation treatment in
combination with other treatments. In one research study, UV irradiation combined with
laser irradiation was effective against Bacillus cereus compared to UV irradiation or laser
irradiation alone [19]. The combination of ultraviolet-C radiation and ultrasonic technology
as a barrier approach provides increased efficiency, cost-effectiveness, and reduced process-
ing time without compromising quality. These are widely accepted and are continually
being evaluated as alternatives to conventional thermal techniques for decontaminating
fruits, vegetables, and derived products. However, studies in these areas have presented
challenges related to quality, safety, limited capacity, and energy cost [109]. According to
Gayán et al. (2014), the simultaneous application of UV light with gentle heating, oxidiz-
ing agents, or cell membrane fluidizing compounds can result in successful inactivation
treatments [110]. The application of UV-C pulsed radiation in combination with thermoson-
ication at 90 ◦C resulted in a 3-log reduction of the heat-resistant and radiation-resistant
cells of the vegetable contaminants, Enterococcus faecalis and Deinococcus radiodurans, sur-
passing the industrial requirement of 2-log reduction [12]. Table 4 demonstrates some
examples of how UV-C light combined with other treatments has been used to reduce the
microbial load in nonsolid fruit- and vegetable-based foods.

Table 4. UV light in combination with other treatments for juices.

Food Product Target Microorganism UV-C Fluence Combination
Technique References

Tomato Juice
E. coli O157:H7

Salmonella typhimurium
Listeria monocytogenes

191.5 mJ cm2 Ohmic heating [77]

Tangerine and
grape juices S. cerevisiae 0, 1.64, and 3.13 J m−l Ultrasonic atomization [111]

Mango juice

Coliform
Aerobic bacteria

S. yeasts
Molds

3.525 J m−1 Heat (90 ◦C) [90]

Carrot juice E. coli O157:H7
L. monocytogenes STCC 5672 3.92 J m−1 Heat (60 ◦C) [112]

Orange juice E. coli O157:H7 0.114 kJ m−2 Heat (53 ◦C) [113]
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5. Ultraviolet Reactors for Nonsolid Food Pasteurization

UV-C irradiation in liquid foods can be performed in equipment that either uses
batch or continuous operation modes. In batch processing, the product is placed in a
glass container within a UV-C irradiation chamber. The product is then irradiated for a
predetermined amount of time at a given UV-C dose. Continuous operation mode involves
pumping the product into a high-permittivity UV light tube, coiled tube, or jacketed
reactor that contains lamps that emit UV-C light. In continuous systems, UV-C exposure
is performed for minutes to hours during which the product flows around the lamps
with or without recirculation [110,114,115]. Continuous UV-C is preferable for industrial
applications because it could present advantages over batch processing such as increased
productivity [115].

A variety of UV light sources have been used in UV-disinfection systems including
pulsed-light (PL), excimer lamps, low-pressure mercury (LPM), medium-pressure mercury
(MPM), low-pressure high output mercury lamp-amalgam type, mercury-free amalgam
lamps, and so on [116]. LPM lamps currently serve as radiation sources in the majority
of UV-based disinfection systems for the treatment of nonsolid foods and beverages [117].
More recently, ultraviolet light-emitting diodes (UV-LEDs) have been employed in treating
juices and beverages in continuous reactors [118]. There are various types of UV-C reactors
with various flow patterns. The flow pattern in the reactor has a major impact on the UV-C
dose required for the inactivation of undesirable microorganisms. Hence, to maximize the
homogeneity of UV-C treatment, it is necessary to enhance the flow conditions [119]. In
general, four flow types can be identified as follows: Taylor–Couette flow, Dean–Vortex
flow, laminar, and turbulent flow. Various reactor designs or systems are often utilized to
achieve the aforementioned flow characteristics [120].

5.1. Laminar and Turbulent Flow Reactors

Laminar flow is a flow type where the fluid travels smoothly or through regular
paths, as opposed to turbulent flow where the fluid experiences unstable fluctuations and
mixing [121]. Figure 3 is a schematic illustration of laminar and turbulent flows.
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The low radial mixing in laminar flow systems reduces their efficiency in facilitating
a uniform UV dose distribution [122]. Turbulent flow reactors, on the other hand, use
higher flow rates to increase turbulence within a UV reactor, thereby enabling close contact
between the UV-C light and the product’s constituents during treatment and overcoming
product turbidity, which interferes with UV penetration. The turbulent flow mechanism
efficiently mixes the fluid, allowing for a more uniform UV-C dose distribution [97,123].
Different types of turbulent flow UV-C reactors have been developed. In the Aquionics
UV-C turbulent reactor (Hanovia, Slough, UK), the fluid passes through a cylindrical
compartment made of stainless steel in which 12 parallel 42 Watt UV-C low-pressure lamps
are housed in a quartz sleeve (Figure 4) [110].
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Laminar and turbulent flow regimes were previously used in thin film reactors. The
intended effect of thin film reactors is to shorten the path of UV radiation to maximize the
UV-C radiation delivery to the food or beverage, thus providing a solution to the inadequate
penetration of UV photons [124]. Using laminar and turbulent flows in continuous thin film
reactors, Koutchma et al. (2004) investigated the effectiveness of UV radiation to inactivate
E. coli K-12 in apple juice. They observed that the inactivation of E. coli in apple juice
increased under turbulent flow conditions due to enhanced mixing [125]. In another study,
turbulent flow conditions in an ultra-thin film annular reactor produced a better UV dose
distribution and higher microbial inactivation rate compared to a laminar flow regime. The
microbial inactivation rates were found to increase as the flow rate increased due to greater
turbulence intensity [126]. A diagram of a thin film annular reactor is provided in Figure 5.
The annular structure is utilized because it is effective for deactivating microorganisms. It
is made of a single lamp that is positioned at the center of the reactor. The product flows
in the annular gap. The flow in this gap might be turbulent or laminar depending on the
flow rates [127].

5.2. Taylor–Couette Reactors

The flow between two coaxial cylinders with an inner rotating cylinder is referred
to as Taylor–Couette flow [128,129]. As seen in Figure 6, the Taylor–Couette ultraviolet
unit is made up of two concentric cylinders: an outer stator (outer stationary cylinder)
and an inner rotor (inner rotating cylinder). The fluid product is pumped through the
annular space between the cylinders and subjected to UV-C irradiation that originates from
lamps positioned around the outer cylinder. The rotation of the inner cylinder creates a
Taylor–Couette flow [52]. The vortices produced in the Taylor–Couette UV reactors have
the potential to deliver effective radial and axial mixing. Furthermore, the thickness of
the fluid boundary layer between the fluid and the UV lamps is minimized, resulting
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in optimal UV exposure times for the undesired microorganisms and uniform radiation
intensities [130]. Several flow regimes can be obtained under different flow and rotation
rates in a Taylor–Couette system [128]. Ye et al. (2008) demonstrated that higher log
reduction levels of Escherichia coli K12 (ATCC 25253) and Yersinia pseudotuberculosis could be
achieved with laminar Taylor–Couette flow as opposed to turbulent or laminar Poiseuille
flow. The authors concluded that the Taylor–Couette UV-C reactors are appropriate for the
preservation of a variety of juices, particularly those with high absorption coefficients [131].
Similarly, a study by Orlowska et al. (2014) highlighted that the Taylor–Couette UV unit
offered effective mixing that could overcome the limited UV-C penetration depth in opaque
beverages like carrot juice [132].
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5.3. Dean–Vortex-Based Reactors

A Dean flow system (Figure 7) is characterized by secondary flow vortices (also
known as Dean vortices) with the primary forward flow caused by the coiled flow channel
in coiled tube reactors. The Dean vortices form as a result of centrifugal forces acting
on the fluid volume during rotation. This generates effective radial mixing as well as
a greater homogeneity of velocity and residence time distribution (RTD) of the liquid
products due to higher Reynold numbers and turbulent conditions, resulting in more
uniform treatment conditions [133,134]. The fluid product in these reactors passes through
a highly UV-transparent fluorinated ethylene propylene (FEP) tube that is coiled in a
helix pattern around one or more UV-C lamps [110]. A Dean flow system consisting of a
module made up of a polytetrafluoroethylene (PTFE) envelope with a helically coiled tube
tightly fitted to a quartz glass cylinder that houses the UV-C light source was previously
used to investigate the formation of toxic compounds in UV-C treated cloudy apple juices.
No quantifiable alterations were found in the cytotoxic and genotoxic effects of UV-C
treated apple juices [135]. The UVivatec Dean–Vortex reactor was used to treat Lactobacillus
plantarum BFE 5092 in orange juice. The authors found that increasing the Reynolds number
from 86 to 696 led to an increase in the inactivation rate by roughly 2.5 log10 cfu/mL [134].
Barut Gök (2021) exposed apple and grape juice to low doses of UV-C in a Dean–Vortex-
based reactor. This study demonstrated the potential of this technology to eliminate
relevant microorganisms in opaque fruit juice such as Lactobacillus plantarum NRIC1749 and
Saccharomyces cerevisiae NCIB4932 [136]. Orange juice was treated using a modified UV-C
reactor based on Dean–Vortex flow. The results indicated that UV-C treatment would be a
helpful way to remove or reduce the content of 5-(hydroxymethyl)furfural in orange juice.
Additionally, no furan formation was found, and there was no significant alteration in the
appearance and color of the juice following UV-C treatment [137]. Cranberry-flavored water
was previously treated in a continuous UV-C reactor under a laminar flow regime combined
with Dean vortices to ensure suitable mixing, and the treatment enabled a 5-log reduction
(99.999%) of Escherichia coli ATCC 700728 and Salmonella enterica ser. Muenchen ATCC BAA
1764 with a UV-C fluence of 12 mJ·cm−2 and 16 mJ·cm−2, respectively. In addition, there
was no formation of cytotoxic substances up to a UV-C dose of 120 mJ·cm−2 [138].
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Some examples of commercially available UV-C pasteurizers with their flow types are
provided in Table 5.

Table 5. Commercial UV-C food pasteurizers based on different flow patterns.

Equipment Name Manufacturer Flow Type References

Ultraviolet Shockwave
Power Reactor (UV-SPR) Hydrodynamics Inc., Rome, Georgia, USA Taylor–Couette [139,140]

UVivatec® Bayer Technology Services GmBH, Leverkusen, Germany Dean–Vortex [134]

SurePure Turbulator™ SurePure Inc., New York, USA Turbulent [136]

CiderSure UV processor FPE (Food Processing Equipment, Inc.), Ontario, New York, USA Laminar [110]

Aquionics Hanovia (Nuvonic), Slough, UK Turbulent [141]

6. Cost Implications, Market Potential, and Consumer Perception

UV-C radiation sources are readily available at affordable costs. This decontami-
nation method is rapid and can be easily integrated into existing food processing sys-
tems with low initial investment [142]. The cost of a UV-irradiation unit costs between
$10,000–15,000, making it more affordable than a heat pasteurization unit, which costs
between $20,000–30,000. The cost of production using UV-C pasteurization may be cheaper
than thermal pasteurization. It costs MYR 0.895 ($0.20) to produce UV-C treated pineapple
juice in a 320 mL container, while thermally pasteurized pineapple juice costs MYR 0.900
($0.20) [15]. Similarly, UV-C decontamination costs about MYR 1.60 ($0.35) per 100 L for
apple cider, while thermal treatment costs about MYR 4.00 ($0.88). Furthermore, food
producers with limited financial resources are likely to benefit from the low initial cost of
UV reactors and the low requirement for safety equipment [142].

Compared to other technologies, food and beverage preservation using UV-C is a more
sustainable option offering additional cost-saving opportunities due to its reduced machin-
ery cost and electricity consumption. In comparison to heat pasteurization, it has been
found that a UV system can consume approximately 10,000 times less energy. Additionally,
compared to other emergent food processing technologies like pulsed electric fields (PEF),
high-pressure processing (HPP), and membrane filtering (MF), UV also consumes less spe-
cific energy when considering an achievement of 5-log reduction in apple juice [143]. The
number and kind of UV light sources, the flow rate and pattern, the effectiveness of mixing
the UV reactor, and the type/characteristics of the food to be treated (UV light attenuation
coefficient, composition of the product, and viscosity) all impact the energy-efficiency of
the UV system, and will ultimately influence its operational cost [18].

The operational cost of UV-C food processing is further influenced by a variety of
factors including the size/quantity of the food product to be treated, the level of microbial
reduction required, the design and capacity of the UV-C equipment, maintenance costs,
regulatory compliance, and quality standards. The operational cost of UV-C food processing
is between $0.01 and $0.05 per liter for liquid foods and $0.02 to $0.10 per kilogram for solid
goods. In the years to come, the market potential for UV-C food processing is anticipated
to increase dramatically as consumers desire food products that are fresher, safer, and
processed minimally. UV-C is a more sustainable food processing option. The market for
UV disinfection equipment was valued at $1.3 billion in 2019 and is anticipated to rise to
$5.7 billion by 2027, with a compound annual growth rate (CAGR) of 17.1% from 2020 to
2027. The main factors responsible for propelling the market growth are the environmental
and financial benefits of UV-C over conventional technologies and the advent of novel UV-C
applications in the food and beverage industries [144]. It is a potential green alternative for
processes such as the drying of fresh produce, microbial decontamination of food products
(blanching pasteurization and sterilization), post-lethality sanitization of meat, disinfection
of food contact surfaces, decontamination of food packaging materials, and extend the shelf
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life of fresh produce [35,145,146]. However, low-pressure vapor mercury lamps, which are
extensively used, present a health risk due to mercury exposure [147].

UV preservation technologies have a good consumer perception due to their numer-
ous benefits including microbial inactivation (including spores) and the deactivation of
spoilage enzymes and mycotoxins [59,148]. In a 2022 survey [149], all consumers perceived
UV-treated food products as safe for consumption, but they also expressed health-related
concerns, primarily due to radiophobia, because numerous consumers still connect radi-
ation with radioactivity and nuclear energy. Furthermore, younger people proved to be
more pessimistic, which might be explained by rising health consciousness among this
group of respondents, implying that extra efforts will be required for efficient communi-
cation to successfully introduce UV-processed foods into the market [149]. The consumer
acceptance of UV-treated foods can be increased by omitting the word “radiation” from
the label information and adding phrases/terms such as “food safety”, “no radioactivity”,
“elimination of microorganisms”, “minimal changes to food”, “absence of residues and
toxic effects”, besides the fact that UV preservation is more affordable and energy-efficient
than other preservation techniques [149,150].

7. International Standards and Regulations for the UV-C Pasteurization of Beverages Foods

UV-C has been used for a long time in the global industry as a viable alternative to
thermal pasteurization where its application must guarantee no toxicity to the product,
and its use must be allowed by component authorities. The Food and Drug Administration
(FDA) approved under regulation 21CFR179.39 the use of UV-C to reduce human pathogens
and other microorganisms in juices, control surface microorganisms in food and food
products, and the sterilization of water used in food production [151]. The technology
is considered germicidal as it effectively inactivates bacteria and viruses with safe use at
253.7 nm, where the preferred UV source for food treatment is low-pressure mercury lamps
emitting 90% of emission at a wavelength of 254 nm. However, FDA does not specify any
minimum/maximum UV dose levels, where this should be determined on a case-by-case
basis, considering good manufacturing practices and situational factors [151]. According to
21CFR179.41, the application of pulsed light technology is approved for food treatment to
remove surface microorganisms with a regulated dose below 12 J/cm2. The FDA does not
have specific regulations or guidance addressed to labeling requirements for foods treated
with UV irradiation [152].

The European Union (EU) Novel Food Regulation (Regulation (EU) 2015/2283) is
responsible for the authorization and safety assessment of UV-treated foods in the EU
as these are considered novel foods [153]. The European Food Safety Authority (EFSA),
covered by the regulation in EC no. 258/97, approved the safe use of UV radiation for milk
processing post-pasteurization, aiming for the extension of shelf life and to increase the
vitamin D content [154]. The intended use of the foods that contain vitamin D resulting
from ultraviolet treatment and the specific wavelength ranges allowed for different foods
(200–800 nm for mushrooms, 240–315 nm for bread, 200–310 nm for milk, not specified for
baker’s yeast) were provided by the European Commission (EC). The EU Regulation also
covers the novel foods that need to be authorized before entry into the market in Great
Britain since their approach is based on EU processes [30].

The scientific committee of the Food Safety Authority of Ireland published a report in
2020 focusing on the evaluation of emergent food processing technologies (including UV-C)
as well as the safety and associated changes in the nutritional content of products treated
using emergent technologies in comparison to conventional preservation processes [155].
An evaluation template of novel food processing methods is provided in this report to
protect public health and facilitate the development of innovative technologies in the Irish
food sector [155]. In Israel, food derived from new production processes like UV-treated
milk was approved by The National Food Service at the Ministry of Health to be safely used,
where the Israeli food legislation and standardization are under European standards [156].
The regulation requires the product to be labeled as “UV-treated” [30].
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In Canada, the Novel Foods Regulation of Health Canada regulates UV-light-treated
foods and guarantees the safe use of CiderSure 3500 equipment to achieve at least a 5-log
reduction in E. coli O157:H7 in unpasteurized and unfermented apple cider and juice [157].
The scientific committee of the Food Safety and Standards Authority of India (FSSAI) has
approved raw milk and other dairy products treated with the SurePure UV system with
the status “Process Approval” [158].

The knowledge of specific guidelines and regulations regarding UV treatment in each
country opens up new opportunities for the further development and commercialization
of UV-treated products at an industrial scale.

8. Current Limitations and Future Trends of UV-C Food Processing

The biggest obstacle to the commercial use of UV-C technology is its poor penetrating
power [159]. The composition and type of food influence UV-C penetration capabilities,
being necessary to study foods and beverages case by case to obtain information regard-
ing microbial disinfection and determine the optimal UV-C dosage. This is because the
optical and physicochemical characteristics of liquid foods could cause interferences in
the target microbe’s exposure to the radiation, which can lessen the efficiency of UV-C
radiation [160,161]. For instance, UV-C radiation easily penetrates through transparent or
clear liquids. In contrast, because UV-C light can be readily absorbed by opaque matrices,
its penetrating potential in opaque foods is quite limited [162]. Additionally, the color and
viscosity of the liquid products as well as the presence of natural pigments, organic solutes,
and suspended solids limit the penetration of UV photons, lowering the efficacy of UV
radiation in inactivating microbes [145,163]. The physicochemical characteristics of treated
foods and beverages should be closely monitored because UV-C at high doses may cause
the production of hazardous chemicals [164]. Unwanted reactions induced by UV-C can
lower vitamin levels, breakdown proteins, degrade antioxidants, oxidize lipids, alter the
food color, and generate unpleasant odors [97].

Microbial species can have different degrees of susceptibility and resistance, which can
affect the efficacy of UV-C penetration. As such, higher doses of UV-C light will be required
for the most resistant species to be inactivated. Because UV-C has a shallow penetration
depth, microorganisms need to be directly exposed to it to be inactivated. Hence, a major
technical difficulty in commercial UV-C applications is how to guarantee that all the product
surfaces are uniformly exposed to UV-C radiation to allow for regular dose delivery and
complete microbial exposure [159]. However, altering the flow rate improves its efficiency
to inactivate microbes. Another strategy is to employ turbulent flow to guarantee the
success of the liquid treatment [124]. Additionally, UV-C can be combined with other
low-intensity preservation technologies such as ultrasound, high-pressure processing, and
even mild temperatures to enhance overall food safety and quality [165]. However, these
combined treatments and hurdle technology should be conducted properly before large-
scale implementation to guarantee that the microbiological permissible limits and quality
requirements are attained through effective control of the dose and exposure of UV-C [15].

Recently, pulsed ultraviolet (PUV) treatment has been studied for the decontamination
of nonsolid foods. PUV has some benefits over continuous UV-C technology: it is rich in
UV-C germicidal radiation (200–280 nm) and comprises both the UV-B and UV-A wave-
length band (280–400 nm); it has a higher intensity, and shorter treatment duration [30].
Xenon lamps are common light sources in pulsed ultraviolet application, having the ad-
vantage of being mercury-free, but their high installation and maintenance costs limit their
use in PUV treatments, however, this can be offset by their cheap operating costs and
long-lastingness [147]. UV-C radiation from pulsed xenon lamps therefore offers a safe
alternative to traditional UV-C food preservation technologies and provides a solution to
the low energy output of UV-C radiation through the emission of very high intensity light
compared to conventional UV-C light sources such as mercury lamps [25,166]. Neverthe-
less, the current regulations and guidelines for UV-C application are not standardized in
various countries, and information is missing in terms of the exposure times, permissible
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doses, and labeling requirements, which leads to a variability in the standards, presenting
an obstacle for food manufacturers in their food processing operations (see Section 7). Con-
ducting supplementary research and validation studies are a strategic key to optimizing the
process and minimizing any negative effects on the safety, sensory quality, physicochemical
properties, and nutritional attributes of foods.

9. Concluding Remarks

UV-C technology is an environmentally friendly, energy-efficient, and cost-effective
process, having appreciable germicidal properties that can inactivate a variety of microbio-
logical pathogens including bacteria, fungi, and viruses to efficiently prevent foodborne
diseases and extend the shelf life of food through microbial load reduction without compro-
mising the food’s quality by ensuring minimal alterations to the food’s nutritional value.
Numerous food safety applications of UV-C technology exist in the manufacturing of non-
solid foods, ranging from the popular pasteurization of juices to the less common treatment
of opaque liquid and semi-liquid plant-based foods, which needs more investigation.

The efficacy of UV-C to preserve nutrients in foods has been discussed extensively,
however, the potential contributions of its nutrient retention ability with respect to nutrition
insecurity is lacking in the literature. Instances of nutrition insecurity, where individuals
do not obtain sufficient nutrients from foods, will inevitably lead to hidden hunger (mi-
cronutrient deficiencies). The pasteurization of plant-based nonsolid food has been studied
in various UV-C reactor types, and this technology has proven its abilities to reduce the
microbial load while causing the minimal degradation of nutrients and health-promoting
bioactive compounds in foods. Thanks to this, employing UV-C technology in food pro-
duction processes can help to tackle hidden hunger and have a positive effect on nutrition
security. Consequently, UV-C could be employed as a tool in food design strategies target-
ing hidden hunger, thereby providing a solution to tackle this global challenge that affects
the lives of millions of people.

Although UV-C has limited capacity to penetrate dense and opaque fluids, techno-
logical advancements have been made to circumvent the high opacity and high turbidity
of some plant-based nonsolid products that lower the UV-C photon penetration such as
the use of thin-film systems and the use of equipment that improves flow pattern using
turbulent or Dean–Vortex flow [136]. Several difficulties and limitations associated with
this technique remain including the need for an adequate reactor design, appropriate
selection of processing parameters, and safety precautions. In addition, legislation and
standards governing UV-C technology applications in the food industry differ from country
to country.

Depending on the specific conditions and requirements of each application, UV-C food
processing equipment may incur different operating expenses. A feasibility assessment and
a cost–benefit analysis are therefore necessary before introducing UV-C food processing in
a food production plant. The use of UV for processing liquid fruit- and vegetable-based
foods continues to grow in popularity since it is nonthermal and chemically inert. Although
scientists and food professionals know about the advantages and risks of foods processed
by UV-C technology, consumers are less informed. An increase in public awareness about
this decontamination technology is therefore needed. Additionally, the right labelling can
be used to encourage consumers to adopt UV-irradiated food products as rich sources of
beneficial nutrients.
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