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Abstract 

Robotic devices are used to provide physical guidance when teaching different 

movements. To advance our knowledge of robotic guidance in training complex movements, 

this investigation tested different kinematic data filtering methods of individual’s golf putts to 

convert them into trajectories to be employed by a robot arm. The purpose of the current 

study was to identify a simple filtering method to aptly replicate participants’ individual golf 

putter trajectories which could be used by the robot to execute them with greater consistency 

and accuracy than their human counterpart. 

Participants putted towards 3 targets where three-dimensional data of the putter’s 

head was filtered and then fitted by using one- or two-dimensions of the participant’s putter 

head trajectories. As expected, both filtering methods employed with the robot outperformed 

the human participants in ball endpoint accuracy and consistency. Further, after comparing 

the filtered to the human participants trajectories, the two-dimensional method best replicated 

the kinematic features of human participants natural putter trajectory, while the one-

dimensional method failed to replicate participant’s backstroke position. This investigation 

indicates that a two-dimensional filtering method, using Y-forward and Z-vertical position 

data, can be used to create accurate, consistent, and smooth trajectories delivered by a robot 

arm.  

Keywords: robotic guidance, physical guidance, golf putt 

  



HUMANS VS. ROBOTS   3 

 

Humans vs. robots: Converting golf putter trajectories for robotic guidance 

1. Introduction 

 As technology advances, the way in which we provide physical guidance when we 

teach motor skills has great potential to be enhanced. Recently, robots have been used to help 

teach novel movements (e.g., Kümmel et al., 2014; Marchal-Crespo & Reinkensmeyer, 2008) 

and assist patients in rehabilitation settings (e.g., Kwakkel et al., 2008; Lugo-Villeda et al., 

2009; Masiero et al., 2007). Using robots to assist with motor skill acquisition is commonly 

referred to as robotic guidance. Robotic guidance entails a participant being guided or moved 

through a specified trajectory with the use of a robotic device or manipulandum. 

 There are different ways to administer robotic guidance. Typically, when conducting 

robotic guidance investigations participants are actively involved in generating a motor plan 

when being guided (i.e., Active Guidance: see Bluteau et al., 2008; Kümmel et al., 2014), or 

do not need to generate a motor plan when being guided by a robotic device or 

manipulandum (i.e., Passive/Haptic Guidance: see Feygin et al., 2002). Although the robot-

guided techniques currently used in the literature have had some limited success, the methods 

that are used are quite variable. Specifically, some of the studies that have employed robotic 

guidance training, have done so by implementing an ideal predetermined robot trajectory 

(e.g., Kümmel et al., 2014; Marchal-Crespo & Reinkensmeyer, 2008). This predetermined 

trajectory was programmed by the experimenters and set as the ideal trajectory to be learned 

by all participants. This specific type of robotic guidance has been implemented to help 

participants learn the optimal driving path when steering a vehicle (Marchal-Crespo & 

Reinkensmeyer, 2008), which is logical considering that there is a single and ideal driving 

path. However, robotic guidance implemented for the acquisition of motor skills should also 

consider the typical movement profile of the individual. Thus, more research is needed to 

refine guidance protocols and how they are employed to induce long lasting learning effects 

depending on the task being performed (e.g., Kümmel et al., 2014; Manson et al., 2014; 

Marchal-Crespo & Reinkensmeyer, 2008). 

 When administering robotic guidance, there are at least three reasons to employ each 

participant’s own trajectory instead of an optimal trajectory (cf. Marchal-Crespo and 

Reinkensmeyer, 2008). First, many research studies recruit novice participants because these 

individuals: a) are easier to recruit, b) are more likely to exhibit significant improvements in 
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performance, and c) represent a relevant target population for many practical applications. On 

this point of expertise level, it is also known that novices typically exhibit different 

movement patterns than experts (e.g., expert golfers exhibit higher golf club impact velocities 

and more symmetric trajectories than novices: see Sim & Kim, 2010). As such, a second 

reason to employ individual profiles is because acquiring and filtering of each individual’s 

trajectory also ensures that the trajectory shares spatio-temporal features of their own 

movement (cf., single optimal trajectory that could be perceived as more foreign or 

awkward). Specifically, participants should revert to their typical movement profiles upon the 

removal of the robotic guidance. Thus, being exposed to a “better version” of their own 

movements could also yield a useful contrast with unassisted practice trials and facilitate 

error detection processes (see details below from Bested et al., 2019a). A third reason to use 

each person’s own trajectory can be for motivational purposes, as being told that one is 

exposed to an improved version of themself should yield a lower perceived task difficulty and 

higher perception of mastery vs. being exposed to an expert’s trajectory. In our experience, 

participants were happy to train with the robot device when told that its trajectories were 

based on their own putter trajectories. In sum, while it remains to be determined if a single 

optimal/ expert trajectory can also elicit significant benefits; the current study ultimately 

employed an optimized version of each participant’s own putter head trajectories because of 

the expertise level of the participants and our previous work. 

 Our laboratory has also previously used participant’s individual trajectories in our 

robotic guidance protocols to alter the sensorimotor characteristics of upper-limb reaches in 

neurologically-intact participants (Manson et al., 2014). To implement robotic guidance trials 

successfully, Manson and colleagues (2014) used a similar protocol as employed by Bluteau, 

et al. (2008). To create guidance trials that were as smooth as an expert performing the 

movement, pre-recorded three-dimensional reaching movements to three separate targets 

were converted into robot trajectories. These trajectories were then used to guide participants 

through a rapid aiming movement to multiple target locations with or without the use of 

vision (i.e., variability of practice: see Shea & Kohl, 1990; Tremblay et al., 2001). Reaching 

movement performance was assessed prior to and after robotic guidance, and the robotic 

guidance practice group’s performance was compared to a control group who trained 

unassisted. Manson and colleagues (2014) found that although both the unassisted training 

and robotic guidance groups improved their movement endpoint precision, only the group 

that trained with robotic guidance reduced their time after peak velocity and shifted toward a 
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more bell-shaped (i.e., symmetrical) velocity profile (see Elliott et al., 2010). This change in 

temporal-kinematic movement characteristics, indicates that participants who trained with 

robotic guidance produced smoother movements. Moreover, we have also extended this 

robotic guidance work with a golf-putting task. Specifically, by using the 2D filtering method 

used in this current investigation, participants significantly improved their putting 

performance (Bested et al., 2019a; Bested et al., 2019b). During acquisition, it was found that 

combining both robotic guidance trials and unassisted trials (i.e., mixed guidance: 50% 

guidance group) led to a significant improvement in endpoint accuracy and precision for 

novice participants (Bested et al., 2019a & 2019b). Overall, it was found that by allowing 

participants to experience both an errorful performance (i.e., unassisted trials) and an 

improved version of their typical performance (i.e., robotic guidance trials), led to 

participants improving not only their performance during acquisition, but their ability to 

predict their own errors (Bested et al., 2019a; Bested et al., 2019b). From these findings, such 

work could be deployed with robots although the industry would likely seek to determine the 

simplest robot one can employ to deliver such robotic guidance protocols. 

 Expanding on the methodology used by Manson et al. (2014) and Bested et al. (2019a 

& 2019b), the purpose of the current investigation was to examine the effectiveness of two 

filtering methods of a single point on a golf putter head for the development of a robotic 

guidance protocol. That is, instead of testing different robots, we employed filtering methods 

that limited the physical guidance to one (1) or two (2) degrees of freedom (1DF or 2DF). 

That way, the same 4DF robot in our laboratory was limited to employing 1DF or 2DF only. 

The methodological goal was thus to develop trajectories that were smooth and accurate, but 

also based on the participant’s natural golf putting strokes (Sim & Kim, 2010) to be used for 

future robotic guidance experiments. To test if the robot was successful at performing the 

task (i.e., putting the golf ball to the center of the target), the robot’s performance was 

compared to the human participants putting performance. It was predicted that the robot 

would outperform the human participants on the golf putting task and that the two filtering 

methods would not differ in their performance when compared to each other. This hypothesis 

was made as the Selective Compliant Assembly Robot Arm used in these experiments can 

replicate a movement with a 0.02 mm spatial repeatability (SCARA; Epson E2L853, Seiko 

Epson Corp., Owa, Suwa, Nagano, JAPAN). With this novel method of employing robotic 

guidance, it is hoped to change how robotic guidance is employed to facilitate the acquisition 

and retention of motor skills, while employing the simplest robot possible. 
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2. Methods 

2.1. Participants 

 Fourteen healthy participants were recruited from the University community (7 males 

and 7 females; M = 26.8 yrs, range = 22 - 33 yrs). All participants were self-declared right-

hand dominant and had normal to corrected-to-normal vision. Participants were questioned 

on their golf experience (see Appendix A: Golf Experience Questionnaire) to identify if they 

were novice or expert golfers. Each participant was unaware of what a golf handicap was and 

did not play enough organized golf to register a handicap for the golf season (i.e., which is a 

minimum of 5 acceptable scores: Golf Ontario, 2019). Thus, all participants in the current 

investigation were deemed novice golfers. Each participant signed a consent form before 

taking part in the experiment and the study was approved by a Research Ethics Board at the 

University. For participating in the study participants received payment of $10/hr for time in 

testing with an average testing time of 1 hour. 

2.2. Apparatus 

The golf putting task was executed on a putting green (BirdieBall Putting Green, 

BirdieBall Inc., Wheat Ridge, CO, USA) measuring 488 cm long × 122 cm wide. During the 

task, participants putted to three custom built circular Light-Emitting Diode (LED) targets 

starting from an LED home position (see Figure 1). The LED targets were constructed with 8 

bright white circular LEDs (i.e., 2 mm in diameter), which represented the circumference of a 

golf hole measuring 10.8 cm in diameter. Three targets were located at distances of 192 cm 

(first target); 213 cm (second target); and 234 cm (third target) from the home position (i.e., 

measured from center to center). The targets were spaced at 10% of total amplitude (i.e., at 21 

cm intervals) to ensure that they were of perceivably different amplitudes (re.: Weber’s Law 

see: Gescheider, 1997). In addition, the LEDs were inserted under the putting green to 

guarantee that the targets were only perceivable when lit and so that they did not interfere 

with the roll of the golf ball. The targets and home position for the ball were 52 cm from the 

right edge of the putting green. To ensure a consistent start location for the ball on every trial, 

a home position marker was used. A protective cage (L: 193 cm x W: 208 cm x H: 202 cm: 

see Figure 1) hovered over the left side of the putting green (i.e., see Figure 1). This cage 

separated and protected participants from the Selective Compliant Assembly Robot Arm used 

for robotic guidance trials (SCARA; Epson E2L853, Seiko Epson Corp., Owa, Suwa, 
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Nagano, JAPAN). The robot arm used in the current experiment could move in up to four 

degrees of freedom (i.e., “sway”: left and right movement along the X-axis, “surge”: forward 

and backward movement along the Y-axis, “heave”: up and down movement along the Z-

axis, and yaw: rotation around the Z-axis) and replicate a movement with a 0.02 mm spatial 

repeatability. An opening in the protective cage was built to allow the robot to be used during 

the golf putting task. An extension of the cage ensured that participants and the experimenter 

did not come in direct contact with the robot (L: 48 cm x W: 208 cm). Each golf putt was 

performed using a Titleist Scotty Cameron Studio Select Newport 1.5 putter (Titleist Inc., 

Fairhaven, MA, USA) and a Nike SFT golf ball (Nike Inc., Beaverton, OR, USA). For 

robotic guidance trials, a second identical putter was connected to the robot using a custom-

built connection with the golf putter head as well as a grip connection to the cage so the robot 

could putt without any human assistance (see Figure 1).  

  
Figure 1. Rendering of the experimental set-up. A: Human 

putting trials. B: Robot putting trials. Kinematic data of the 

putter was recorded by using an Optotrak motion capture 

system, which was mounted on a custom-built stand on the 

right side of the putting green. 

A B 
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2.3. Task and procedure 

The task required participants to perform a golf putt to three different targets. This 

golf putting task, unlike a traditional golf putt, required participants to try their best to have 

the ball stop on the center of the target, as opposed to sinking it in a hole. Thus, this putting 

task required more distance control to ensure that the ball did not go past the hole. This task 

was chosen so that it would not only focus on distance control of a golf putt but also so that 

we could switch between targets in future investigations in a random order. Using a typical 

golf hole would not allow us to have participants putt to different targets one after another 

without a significant increase in time (i.e., removing and inserting a hole cover) as well as the 

interference this would cause with other golf putts performance from the holes not aligning 

perfectly with the surface. At the start of each trial, the home position and a target were 

presented. Participants were instructed to stand with their feet shoulder width apart with the 

ball in the center of their stance and to grip the putter with a standard overlapping putter grip. 

Participants were then asked to place the putter as closely behind the golf ball as possible in 

addition to aligning the middle of the putter head with the middle of the golf ball. When 

ready to execute the golf putt, participants were then instructed to focus on the target that was 

presented for that trial.  

After the experimenter ensured that the participant was in the correct stance and with 

the putter in the relatively correct location, the trial began. The beginning of each trial was 

signaled by a double beep sounded by a piezo-electric buzzer (Mallory Sonalert Products 

Inc.: Model SC628, tone frequency of 2900 Hz). Following the double beep, participants 

were asked to shift their focus of attention from the target onto the golf ball and prepare to 

execute the golf putt to the target displayed. Following a two second delay, a third beep 

sounded instructing participants to initiate their putt. Three seconds were given to complete a 

single putt (i.e., backstroke and forward stroke) before a fourth and final beep sounded 

ending the trial.  

The experiment consisted of one testing phase where participants (i.e., both human 

and robot participants) performed putts to each of the three targets in a blocked fashion. The 

orders of the blocks were presented in a counterbalanced fashion. Each block consisted of 5 

familiarization trials followed by 10 trials in the testing phase. Participants completed a total 

of 45 trials (i.e., 15 familiarization and 30 testing trials).  
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2.4. Filtering methods 

Three trajectories unique to each participant (i.e., averaged across the 10 trials 

performed for each target) were programmed into the robot. Participant’s three-dimensional 

putts were recorded at 250 Hz using an infrared emitting diode (IRED) secured to the inside 

front edge of the putter head. The IRED was monitored by an Optotrak Certus motion capture 

system (Northern Digital Inc., Waterloo, ON, Canada). The start and the end of both the 

backstroke and forward stroke of the golf putt were identified when the putter head velocity 

rose above and fell below 30 mm/s for 3 consecutive samples. To ensure the robot trajectories 

most resembled human participants putting trajectories, two different filtering methods were 

used and tested by the robot. 

Specifically, both a one-dimensional (1D) and a two-dimensional (2D) filtering method 

were employed. The purpose of using two filtering methods was to determine if such simple 

methods of controlling different degrees of freedom of the trajectory can successfully yield 

putting trajectories that either: A) replicated the amplitude of the putter trajectory while 

constraining the movement direction and elevation (i.e., 1D method), or B) replicated both 

amplitude and elevation of the putter trajectory while constraining the movement direction 

(i.e., 2D method). Also, using 1D and 2D filtering methods were expected to help determine 

if a 1D or 2D robot could be employed in future applications. Further, the procedures used by 

Manson et al. (2014) were incorporated in the current investigation, so that participants could 

eventually train using a smoother version of their own trajectories implemented by a robotic 

device. Both filtering methods led to smooth trajectory data that were converted into robot 

trajectories and compared to the kinematic trajectories produced from human participants. 

This comparison was done to ensure that the replication of the golf putter trajectory was 

successful.  

To create the trajectory for each target, each participant’s backstroke was first identified 

from the start position and end position of their average putter trajectory for the respective 

target. The data points were then taken from the backstroke (e.g., 0  -20 cm backwards in 

the primary movement axis: Y) and doubled (e.g., backstroke = 0  -20 cm, forward stroke = 

-20  +20 cm) to create the forward stroke of the putting stroke (1D Filtering Method). The 

distance of the backstroke was the main measure as this has been identified as an important 

kinematic factor for distance control of a golf putt (see Delay et al., 1997). Another reason 

why the back stroke was doubled and used for the forward stroke was to ensure that at ball 
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impact (i.e., crossing of the starting position) occurred at peak velocity. Contacting the ball at 

approximately peak velocity resulted in smoother acceleration and deceleration of the robotic 

device. Once this new trajectory was created, a 30th-order polynomial was fitted with a 

custom MATLAB script (using the Polyval and Polyfit functions in the curve fitting toolbox: 

The MathWorks Inc., Natick, MA, USA: see Manson et al., 2014). The custom script was 

used to create a trajectory that was in equal length to the back stroke and to create a smooth 

putting stroke to be used by the robot. The 30th-order polynomial was used as this method of 

filtering human participants’ limb trajectory had been used in prior experiments conducted in 

our lab (see Manson et al, 2014). Once the polynomial fit was applied, the trajectory was 

further filtered using a low-pass Butterworth filter [10 Hz] to further increase the smoothness 

of the trajectory. Once filtered, the new trajectory was also separated into the two different 

movements (i.e., backstroke and forward stroke) and converted into coordinates that could be 

reproduced by the robot. 

Once these coordinates were created, the peak velocity and peak acceleration values 

were scaled to ensure participants’ putts with the robot were successful (i.e., stopped on or 

just beyond the hole consistently). The scaling was done so that the robot could be 

incorporated using participants’ kinematic trajectories for future robotic guidance studies. 

Although the scaling was done successfully for the given experiment, the current 

methodology was limited by the size of the room and the robot’s physical limits in movement 

(i.e., both amplitude and velocity). The robot arm was controlled using a custom SPEL + 

program (Seiko Epson Corp., Owa, Suwa, Nagano, JAPAN) interfacing with MATLAB (The 

MathWorks Inc., Natick, MA, USA), which ran the entire experiment with custom scripts. 

The robot then performed the same putting task as performed by the human participants using 

the 2 filtering methods. The robot’s performance as well as kinematic data was then 

compared to that of the human participants performance to not only demonstrate that the 

robot was more accurate at performing these movements, but also to ensure that the filtering 

method matched the human participants putter trajectories.  

 

2.4.1. 1D Filtering method (Y axis) 

To ensure optimal contact with the ball, participants putting strokes were constrained to 

constant X (i.e., secondary axis: left and right) and Z (i.e., tertiary axis: up and down) values. 



HUMANS VS. ROBOTS   11 

 

This resulted in the putter head trajectory movement that was constrained in all 4 axes of the 

robot (i.e., sway, surge, heave, and yaw) with a specific backstroke and forward stroke unique 

to each individual participant (i.e., Y axis). 

Once these robot trajectories were created for each participant, the robot reproduced the 

human participants putter trajectories. Although this filtering method produced movements 

that could be replicated by the robot, 3 participants’ trajectories were unable to be used. This 

was because these participant’s trajectories were much shorter in the Y axis and without the 

tertiary axis (i.e., Z axis) included, the trajectory processing resulted in a significant 

shortening of the backstroke which did not allow the robot to effectively execute the 

participants’ putts (i.e., accelerate fast enough to hit the ball to the target). As a result, these 

participants data were removed from the putter head kinematics analyses. Although this was 

the case, this was due to the robot’s acceleration limits (i.e., 2,500 mm/s2). 

2.4.2. 2D Filtering method (Y and Z axis) 

Participants’ putter trajectories were aligned from the start position and were averaged 

for both the primary movement axis (i.e., Y) as well as the tertiary movement axis (i.e., Z). 

This allowed for a trajectory that better replicated each participant’s putter trajectory (see 

Figures 2 and 4). To create the trajectory for each target, the backstroke as well as the 

forward stroke were identified based on the start position and end position of each stroke 

(similar to the 1D filtering method). The entire stroke was used and replicated as participants 

tended to reach peak velocity of the forward stroke at ball impact (see Table 1). This finding 

corresponds with the study conducted by Sim and Kim (2010), which also showed that 

novice participants golf strokes typically are symmetrical in that participants reach peak 

velocity in the middle of their forward stroke (i.e., ball impact: see PVPos in Table 1). Once 

this new trajectory was created, the same procedures were used to fit and filter the trajectory 

as used in the 1D filtering method but for both the primary (i.e., Y) and tertiary movement 

axes (i.e., Z). To ensure perfect contact with the ball was made, participants’ putter 

trajectories were fitted to a constant secondary axis (X or left and right direction).  
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Figure 2. Examples of one participant’s averaged trajectory (i.e., backstroke and follow 

through in the primary movement axis [Y]: black line) with both filtering methods used with 

the robot (i.e., grey line). On the edges of each panel, a trail of golf putter heads depict the 

backstroke and forward sub-segments of the stroke. The putter head changes from light grey 

to solid black to depict from the start to the end of each sub-segment. A: 1D Filtering 

Method, B: 2D Filtering Method. 

2.5. Data analyses 

Performance data (i.e., ball endpoint location) was recorded with the use of a grid 

system (see Figure 3). This custom grid consisted of squares measuring 30 cm × 30 cm. The 

grid began from the home position where the ball was placed for each putt (i.e., A position: 

see Figure 3). From there, each line away from that position was 30 cm apart in the primary 

direction (positive on the Y-axis A - O: see Figure 3). Similarly, the secondary movement 

axis (i.e., X-axis) started from the left side of the putting green (i.e., when facing the 

participant; 1 position: see Figure 3). The large grid ball endpoint location was recorded in 

MATLAB and stored for later analyses (e.g., J2 = 270 cm Y-axis, 30 cm X-axis: see Figure 

3). To determine where the ball landed specifically within the identified square, a 30 cm ruler 

was aligned to the edge of each square by the experimenter to calculate the position in which 

the ball was located within the specified square (e.g., Y = 20, X = 20 cm). These values were 

again recorded in MATLAB, which yielded the location of the center of the ball on the green, 

to the nearest millimeter (e.g., Y = 290 cm, X = 50 cm). This ball endpoint location was then 

used to subtract the target location resulting in a signed error measure. 
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Figure 3. Depicting the process of collecting the ball location on the putting green. A) Once 

the ball had been putted by participants the large grid location was input into the MATLAB 

program (e.g., J2). B) Once the large grid location was input, participants ball location within 

the specified square was measured with the use of a ruler for each axis. The custom 

MATLAB program then calculated the exact location of where the ball was on the green 

which was used for all performance measurements.  

  

2.5.1. Ball endpoint measures, putter head kinematics, and analyses 

The ball endpoint measures consisted of constant error (i.e., signed average of ball 

endpoints) in the primary movement axis (CEY) and secondary movement axis (CEX) as 

well as variable error (i.e., standard deviation of ball endpoints) in the primary movement 

axis (VEY) and secondary movement axis (VEY), respectively. As the main objective was to 

identify if there was a difference between the three conditions (i.e., humans, 1D, and 2D), the 

target data was collapsed within each condition yielding one overall result for each variable 

investigated. Ball endpoint measures were analyzed using three independent sample t-tests, to 

assess the differences between the three conditions (i.e., humans, 1D, and 2D). Independent 

sample t-tests were used because of the human participants performance data being compared 

to the robot’s performance. These were deemed as independent groups as a result of the 

robot’s performance capabilities (i.e., 0.02 mm spatial repeatability: SCARA; Epson E2L853, 

Seiko Epson Corp., Owa, Suwa, Nagano, JAPAN) which is independent to what can be 

produced by a human participant and even an expert golfer (i.e., SD  = 8 mm, backstroke 

amplitude for a 2 meter putt: see Delay et al., 1997). 

To ensure that the filtering of the trajectories was representative of participants’ golf 

putts, putter head kinematic measures of participants putter end position of the backstroke 
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(BackPos) as well as participants putter position at peak velocity of the forward stroke 

(PVPos) were taken from the position data of both human participants and robot filtering 

methods (i.e., 1D and 2D) in the primary movement axis (i.e., Y). These two (2) unique 

elements of each trajectory were first selected to yield the lowest number of variables to 

eventually employ in practical applications. The decision to take BackPos and PVPos was 

also based on evidence that modelling a trajectory based on positions achieved at peaks and 

troughs of a velocity profile can suffice to model entire limb trajectories (see Figure 21 as 

associated text in Rosenbaum et al., 1995). Also to further investigate how well trajectories 

matched their robotic counterpart, Root Mean Square Error (RMSE) was computed between 

the average normalized Human, 1D and 2D Filtering Methods putter head trajectories for 

each of the axes of interest (i.e., X & Y: see Table 2). Finally, as the main objective was to 

identify if there was a difference between the three conditions (i.e., humans, 1D, and 2D), the 

target data was collapsed within each condition yielding one overall result for each variable 

investigated. Trajectory variables were analyzed using three paired sample t-tests to assess 

the differences between the conditions (i.e., humans, 1D and 2D). A paired samples t-test was 

conducted because of comparisons being made between participants own putter trajectories 

(i.e., human) and their own robot filtered trajectories (i.e., 1D and 2D method). Cohen’s d 

was also calculated for all significant effects in order to determine the effect size (i.e., 

reported as dz).  

A Bonferroni correction (i.e., αcorrected = .05/3 = .016) was applied to correct for the 

three t-tests conducted for each variable. Means and between-subject SDs were reported in 

Table 1 and Table 2. If variance was not equal between conditions, the correction of equal 

variances not assumed was applied (i.e., Levene’s Test for Equality of Variances).  
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Figure 4. Participants’ averaged trajectories (i.e., backstroke and follow through in the 

primary movement axis [Y in cm]), with both filtering methods used with the robot. 
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Table 1  

Means and between-subject SDs for the ball endpoint measures 

and putter head kinematic measures for all conditions: Humans, 

1D Filtering Method (1D), and 2D Filtering Method (2D). 

 Humans 1D 2D 

CEY (cm) 24.4 (25) 0.1 (2) 1.3 (3) 

CEX (cm) 1.7 (3) 1.7 (1) 2.0 (1) 

VEY (cm) 55.0 (22) 2.0 (1) 2.1 (1) 

VEX (cm) 5.1 (2) 1.1 (0.3) 1.0 (0.5) 

BackPos (cm) -23.0 (4) -17.0 (5) -23.0 (4) 

PVPos (cm) -0.2 (5) 0.4 (1) 1.2 (4) 

Note. CEY = constant error in the primary movement axis,  

CEX = constant error in the secondary movement axis, VEY = 

variable error in the primary movement axis, VEX = variable error 

in the secondary movement axis, BackPos = putter end position of 

the backstroke, and PVPos = putter position at peak velocity of the 

forward stroke. 

Table 2  

Means and between-subject SDs of Root Mean 

Square Error (RMSE) computed between the 

average normalized Human, 1D and 2D Filtering 

Methods putter head trajectories for each of the 

axes of interest (i.e., X & Y). 

 Human/1D Human/2D 

RMSEy (cm) 6.7 (4.8) 3.1 (1.3) 

RMSEx (cm) 0.64 (0.5) 0.65 (0.5) 

Note. RMSE = root mean square error for each of 

the axes of interest (i.e., X & Y). 
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3. Results 

3.1. Ball endpoint measures 

3.1.1. Humans vs. filtering methods 

Analysis of ball endpoint CEY when comparing human participants to the 1D filtering 

method, t(41.9) = 6.4, p < .001, dz = 1.01, and the 2D filtering method, t(41.9) = 6.1, p < 

.001, dz = 0.93, revealed that both robot filtering methods were more accurate than human 

participant performance. Analysis of CEY when comparing the 1D filtering method to the 2D 

Filtering Method yielded no significant differences between the methods, t(73) = -2.0, p = 

.046. Analysis of CEX yielded no significant differences when comparing between human 

and robot performance (p’s > .30).  

Analysis of ball endpoint VEY when comparing human participants to the 1D filtering 

method, t(41.2) = 15.6, p < .001, dz = 2.46, and 2D filtering method, t(41.1) = 15.6, p < .001, 

dz = 2.43, revealed that human participants were significantly more variable than both robot 

filtering methods. Analysis of VEY when comparing the 1D filtering method to the 2D 

Filtering Method yielded no significant difference, t(53.9) = -0.7, p = .52.  

Analysis of ball endpoint VEX when comparing human participants to the 1D filtering 

method, t(43.2) = 11.2, p < .001, dz = 1.94, and 2D filtering method, t(45.3) = 11.3, p < .001, 

dz = 1.70, again revealed that human participants were less precise than the robot. Analysis of 

VEX when comparing the 1D filtering method to the 2D Filtering Method yielded no 

differences between the methods, t(70.4) = 1.1, p = .26. 
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Figure 5. A: Constant error in the primary movement axis (CEY), B: Variable error in the 

primary movement axis (VEY) for each condition (i.e., humans, 1D, and 2D) collapsed 

across all targets. Note. Between-group differences were reported with a ( ) identifying 

significant differences between both Filtering Methods (i.e., 1D & 2D) when compared to 

human participants. Error bars represent the standard error of the mean. 

3.2. Putter head kinematic measures 

3.2.1. Humans vs. filtering methods 

Analysis of BackPos when comparing the 1D filtering method to the human 

participants, t(32) = -8.7, p < .001, dz = 1.14, and 2D filtering method, t(32) = 8.4, p < .001, 

dz = 1.12, revealed a significant difference between conditions. This result indicated that the 

1D method had significantly smaller BackPos amplitudes when compared to the human 

participants trajectories and the 2D filtering method. Analysis of BackPos when comparing 

Human participants to the 2D filtering method did not yield a significant difference, t(32) = -

0.4, p = .73. The analysis of PVPos yielded no significant differences (p’s > .25). 
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Figure 6. Putter head position at the end 

of the backstroke (BackPos) for each 

condition (i.e., Humans, 1D, & 2D). 

Note. Significant differences were 

reported with a ( ). Error bars represent 

standard error of the mean. 

 

Root Mean Square Error (RMSE) was computed between the average normalized 

Human and 1D Filtering Method putter head trajectories for each of the axes of interest (i.e., 

X: M = 0.64 cm, SD = 0.5 cm and Y: M = 6.7 cm, SD = 4.8 cm). The RMSE was also 

calculated between the average normalized Human and 2D Filtering Method putter head 

trajectories for each of the axes of interest (i.e., X: M = 0.65 cm, SD = 0.5 cm and Y: M = 

3.1 cm, SD = 1.3 cm). A paired samples t-test was conducted identifying a significant 

difference between the filtering methods in the Y axis, t(10) = 2.9, p = 0.015 confirming that 

the Y axis was a better fit for the 2D Filtering Method (RMSE = 3.1 cm) when compared to 

the 1D Filtering Method (RMSE = 6.7 cm). 

4. Discussion and Conclusions 

The current investigation tested a novel and simple method to collect and filter 

individual’s golf putter trajectories and trajectories capable of successfully performing a 

unique golf putter trajectory using limited to only 1 or 2 degrees of freedom (i.e., 1D & 2D). 

As predicted, both filtering strategies used to create ideal robot trajectories performed by the 

robot outperformed the human participants in the golf putting task (i.e., in CEY, VEY & 

VEX). The robot stopped the ball on the hole on average and did so with much greater 

consistency compared to the original human performance.  
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Although both filtering methods used successfully converted human participants data 

into robot coordinates, the 1D filtering method was unable to be implemented by the robot for 

3 participants. Specifically, trajectories from 3 participants were not properly translated to the 

guidance protocol because of the shortness of the participants’ backstrokes. This was because 

these participant’s trajectories in the Y axis were short to begin with and removing the 

tertiary axis (i.e., Z axis) resulted in further shortening of the backstroke. Further, as a result 

of the backstroke being shortened, unfortunately due to the robot’s acceleration limitations 

(i.e., maximum acceleration of 2,500 mm/s2) the 3 participants trajectories were not able to be 

used. This was demonstrated when investigating participants putter end position of the 

backstroke as the 1D filtering methods backstroke position was statistically shorter when 

compared to both the human participants and the 2D filtering method accordingly. One 

reason as to why the 2D filtering method was able to use all participants trajectories may 

have been because of the second dimension included (i.e., z-axis: heave) which resulted in 

movements that replicated participants’ putting performance more precisely and allowed the 

robot more time to accelerate the club head. Although these differences did emerge for the 

putter end position of the backstroke, no differences were present in the putter position at 

peak velocity of the forward stroke.  

Recently, we have shown that incorporating the 2D filtering method has led to the 

successful implementation of robotic guidance for improving putting performance (Bested, et 

al., 2019a; Bested et al., 2019b). Specifically, combining both robotic guidance and 

unassisted trials (i.e., mixed guidance: 50% guidance group) during the acquisition phase of a 

learning paradigm led to a significant improvement in endpoint accuracy and precision for 

novice participants (Bested et al., 2019a). Further, these results were replicated, and it was 

found that robotic guidance may influence participants performance during motor skill 

acquisition (Bested et al., 2019b). By allowing participants to experience what both an 

errorful performance (i.e., unassisted trials) and an expert performance (i.e., robotic guidance 

trials) felt like (i.e., mixed guidance), we found that participants improved not only their 

performance during acquisition, but their ability to predict their own errors (Bested et al., 

2019a). Critically, our approach in the current study and our previous work has employed 

guidance that brings the participant to a unique but optimal version of their own trajectories 

and induced significant motor learning effects, only when combine with unassisted practice. 

However, we also ought to raise the issue of exploring different movement patterns to 

optimize motor learning. 
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Many researchers have previously attempted to employ robots to deliver optimal 

trajectories, which has been met with quite mitigated success (e.g., Reinkensmeyer et al., 

2004). Moreover, some have even suggested that employing robots to perturb limb 

trajectories might be more effective than guiding trajectories. That is, perturbing the 

participant’s limb away from a desired trajectory may yield greater motor learning effects 

than guiding the participant’s limb towards a trajectory (i.e., error-augmenting vs. error-

reducing guidance: see Lee & Choi, 2010). For example, it has been shown that motor 

learning can be facilitated only when the participant deviates from the optimal trajectory 

(e.g., Williams et al., 2016) or only when the participant makes a common error (i.e., error-

field guidance: see Patton et al., 2022). In contrast, our anecdotal laboratory experience is that 

participant’s motivation is high when helped towards an optimal trajectory, whereas many 

individuals find the trajectory disruptions frustrating. As such, while we acknowledge an 

entire field of research challenging the use of error-reducing guidance per se, our previous 

work has shown that mixing such guidance with unassisted practice has yielded significant, 

relatively persistent, and transferable improvements in golf putting performance. Indeed, 

incorporating the filtering method used in the current investigation has led to the 

development of effective robotic guidance based on participants individual trajectories, that 

can also be easier to multiply and deploy than more complex guidance systems. 

As demonstrated, using 1D and 2D filtering methods to translate participant’s 

trajectories to robotic guidance protocols is effective for improving the participant’s motor 

learning in a golf putting task (Bested et al., 2019a; 2019b). However, the current 

investigation and the ones conducted using this filtering technique have done so with a robot 

that has 4 degrees of freedom, high torque motors, and precise position controllers. Although 

successful, using a robotic device with this capacity is highly expensive. To reduce the cost 

of running such a training protocol, we plan to conduct similar investigations by 

implementing robots that move in only 2 degrees of freedom (i.e., x-axis: left and right, y-

axis forward and backward). Although in the current investigation the 1D Filtering Method 

produced guidance trajectories that were significantly different to the participants’ own 

trajectories (i.e., y-axis forward and backward), this did not yield an increase in error in this 

axis. Limiting the amount of axes used to only 1 is consistent with previous research 

identifying that it is important to constrain and reduce variability in order to produce 

successful performance (see Todorov, 2004). This type of performance constraint is relative 

to the current task being performed as it has been identified that putting to targets differing in 
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distance, was dependent on the amplitude of the backstroke (see Delay et al., 1997; Sim & 

Kim, 2010). Although it may be cost effective to run this protocol with a more simplistic 

robot, it is unknown as to whether constraining these other kinematic dimensions will have 

similar effects on motor learning and task performance. It may be the case that if this robotic 

guidance is performed with a robot that is unable to provide the participant with a natural 

feeling golf trajectory, that it may not help participants improve their putting performance 

accordingly. Further investigations are needed to investigate these areas of research. 

Overall, the present study demonstrated a novel way to collect, filter, and convert 

individual participant’s golf putts into robot trajectories capable of producing highly 

consistent, accurate golf putts. Although both filtering methods were successful, the 2D 

filtering method used was the best at replicating participants individual trajectories. Due to 

the success of the current investigation, the current methodology has been implemented in 

experiments investigating the influence of robotic guidance on the learning of a complex 

novel golf putting task (Bested et al., 2019a; 2019b). Further investigations are needed to 

understand further as to what degrees of freedom are necessary to promote effective motor 

learning of a golf putting task. 
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Appendix: Golf Experience Questionnaire 
 
1. What is your age? _____ 
 
2. 
A. Have you ever completed a full 18 hole round of golf before and/or mini putt? 
• Golf 
• Mini Putt 
• Both 
 
B. If yes, how old were you when you completed your first round? 
Golf _____Mini Putt _____ 
 
3. In the past year, how many rounds have you completed? 
Golf _____Mini Putt _____ 
 
4. What is your handicap (if known)? 
Golf _____Mini Putt _____ 
 
Adapted with permission from Prof. Joe Baker’s master’s athletes survey, which 
was retrieved at https://www.yorku.ca/bakerj/mcmaster_golf_questionnaire.htm on February 3, 2017. 
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