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Abstract: Periodontitis has been commonly linked to periodontopathogens categorized in Socransky’s
microbial complexes; however, there is a lack of knowledge regarding “other microorganisms” or
“cryptic microorganisms”, which are rarely thought of as significant oral pathogens and have been
neither previously categorized nor connected to illnesses in the oral cavity. This study hypothesized
that these cryptic microorganisms could contribute to the modulation of oral microbiota present in
health or disease (periodontitis and/or obstructive sleep apnea (OSA) patients). For this purpose, the
presence and correlation among these cultivable cryptic oral microorganisms were identified, and
their possible role in both conditions was determined. Data from oral samples of individuals with or
without periodontitis and with or without OSA were obtained from a previous study. Demographic
data, clinical oral characteristics, and genera and species of cultivable cryptic oral microorganisms
identified by MALDI-TOF were recorded. The data from 75 participants were analyzed to determine
the relative frequencies of cultivable cryptic microorganisms’ genera and species, and microbial
clusters and correlations tests were performed. According to periodontal condition, dental-biofilm-
induced gingivitis in reduced periodontium and stage III periodontitis were found to have the highest
diversity of cryptic microorganism species. Based on the experimental condition, these findings
showed that there are genera related to disease conditions and others related to healthy conditions,
with species that could be related to different chronic diseases being highlighted as periodontitis
and OSA comorbidities. The cryptic microorganisms within the oral microbiota of patients with
periodontitis and OSA are present as potential pathogens, promoting the development of dysbiotic
microbiota and the occurrence of chronic diseases, which have been previously proposed to be
common risk factors for periodontitis and OSA. Understanding the function of possible pathogens in
the oral microbiota will require more research.

Keywords: periodontitis; obstructive sleep apnea; oral microbiota; pathogenic microbiota; chronic
diseases; MALDI-TOF

1. Introduction

According to recent studies, patients with obstructive sleep apnea (OSA) have an
increased risk of developing periodontitis [1,2]. Some hypotheses about the connection
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between periodontitis and OSA include a genetic predisposition, an inflammatory response
that both disorders share, and a change in the oral microbiota [3].

Individuals with OSA have a higher prevalence of increased periodontal parameters
such as probing depth (PD) and clinical attachment level (CAL), as well as an index of
apnea–hypopnea (AHI) >15 events per hour, and they experience mouth-breathing-related
oral dryness. In addition, these individuals have a microbiota characterized by an increase
in Gram-negative bacteria, primarily periodontal pathogens [4,5]. It has been reported
that the oral microbiota of patients with OSA is significantly different from that of indi-
viduals without OSA. The nasal microbiome of subjects with severe OSA was found to
be altered and enriched with Streptococcus, Prevotella, and Veillonella. Several common
oral commensals (Streptococcus, Rothia, Veillonella, and Fusobacterium) have been correlated
with the apnea–hypopnea index [6]. Pyrosequencing has also been utilized to detect bacte-
ria associated with OSA and hypertension, revealing the presence of Porphyromonas spp.
and Aggregatibacter sp. in both mild and moderate–severe OSA [7]; both genera are as-
sociated with the development of periodontitis. Similar studies have found that pa-
tients with OSA have significantly higher levels of the Scardovia species [8], and that
patients with OSA-comorbid hypertension have a different salivary microbiota, which in-
cludes the genera Actinomyces, Absconditabacteria (SR1) [G-1], Granulicatella, Corynebacterium,
Peptostreptococcus, Porphyromonas, and Leptotrichia [9].

Oral dryness affects bone remodeling triggered by hypoxia, with an increase in CO2
levels [5], reducing the immune system’s response to infections and allowing a higher
diversity of microorganisms (bacteria and yeasts), which are capable of generating dys-
biotic polymicrobial communities. Recent studies have found that individuals with OSA
and periodontitis have higher levels of periodontal pathogenic bacteria [10] associated
with yeasts such as Candida spp. [11]. Additionally, cryptic microbiota, which we describe
as microorganisms that are not often considered significant oral pathogens and are not
classified in the Socransky’s microbial complexes [12], nor are they associated with specific
pathologies in the oral cavity, have been identified in periodontitis and OSA [11]. These
cryptic microorganisms could contribute to periodontitis development in OSA patients.
Therefore, the following study hypothesized about these cryptic microorganisms, which
could contribute to the modulation of oral microbiota present in health or disease (periodon-
titis and/or OSA patients). The purpose was to analyze the presence of these cultivable
cryptic oral microorganisms in individuals with periodontitis associated with OSA and to
identify potential pathogens in both conditions.

2. Materials and Methods
2.1. Study Population

Demographic data, clinical oral characteristics, and cultivable cryptic microorganisms
identified by MALDI-TOF equipment (Microflex from® Bruker Daltonik Inc., Billerica, MA,
USA) in three oral samples (saliva, subgingival plaque, and gingival sulcus) of participants
from a previous study were available for re-analysis for this study. As previously de-
scribed [11], participants were recruited from the Sleep Clinic of the Hospital Universitario
San Ignacio and the Sleep Clinic of the Faculty of Dentistry at the Pontificia Universidad
Javeriana-PUJ, Colombia. Participants with the following criteria were included: (1) adults
over 30 years old, (2) individuals who have at least six teeth in their mouth, and (3) in-
dividuals who underwent a polysomnographic exam no more than six months ago. The
following were the exclusion criteria: smokers, diabetics, individuals who recently took
antibiotics, individuals who have had periodontal therapy in the past three months, indi-
viduals who use continuous positive airway pressure (CPAP) or bilevel positive airway
pressure (BPAP), and individuals who have had pharmacological or surgical treatment for
OSA. All participants were diagnosed by a sleep medicine pulmonologist and specialists
in periodontics [11].

Inclusionary criteria were set to select completed clinical oral data of participants
with cryptic microorganisms identified in their oral samples. Seventy-five participants that
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fulfilled the inclusion criteria were assigned to one of four groups according to the severity
of their OSA and their periodontal diagnosis, as follows: Group 1 (G1) (H) healthy patients:
non-periodontitis and non-OSA (n = 20), Group 2 (G2) (P) periodontitis and non-OSA
patients (n = 13), Group 3 (G3) (OSA) OSA and non-periodontitis patients (n = 18), and
Group 4 (G4) (P-OSA) periodontitis and OSA patients (n = 24).

Three oral samples (saliva, subgingival plaque, and gingival sulcus) were obtained
from patients’ oral cavities as previously described [11], with no periodontal stimulation
before the samples were taken (probing, prophylaxis, and calculus removal). The un-
stimulated saliva was collected in polypropylene tubes containing thioglycollate medium
(Oxoid®, Thermo Fisher Scientific Inc, Waltham, MA, USA). The gingival sulcus sample
was taken after the area of the tooth of interest was relatively isolated using gauze and
cotton rolls. This sample was obtained by inserting standard absorbent papers (Periopapers,
Oral Flow®, Plainview, NY, USA) into the periodontal sulcus for 30 s and vortexing them
for 10 s to elute the Periopaper content into PBS before transferring them to polypropylene
tubes with thioglycolate medium. Before collecting a sample of the subgingival plaque,
the supragingival plaque was removed with a sterile curette and gauze. The subgingival
plaque sample was then obtained with a curette and put into polypropylene tubes with
thioglycolate media. The pellet from each oral sample was grown on Sabouraud agar
(Merck®, Merck KGaA, Darmstadt, Germany) and BBL Columbia AgarTM with 5% sheep
blood, and incubated at 37 ◦C for 2 and 7 days under aerobiosis and anaerobiosis conditions,
respectively. At the conclusion of the incubation period, the MALDI Biotyper® system
(Bruker Daltonics Inc., Billerica, MA, USA) was used to identify each type of microbial
colony. The data from the 75 participants were earlier related by Corral et al, 2022 [11], and
in this study, the data were analyzed in relation to cryptic oral microorganisms.

2.2. Data Register

The demographic data and clinical oral characteristics were recorded, including age,
sex, and periodontal parameters: probing depth (PD), clinical attachment loss (CAL),
plaque index (PI), bleeding of probing (BOP), and missing teeth. Additionally, the genera
and species of cultivable cryptic oral microorganisms identified were recorded.

2.3. Statistical Analysis

The first part of the present study consisted in performing a descriptive statistic. Two-
way ANOVA with Tukey’s multiple comparisons test was used to analyze the demographic
data and periodontal parameters. In the second part, tests were carried out to compare
the cultivable cryptic oral microorganisms between each group, determining the relative
frequencies of cryptic microorganisms’ genera and species. The cluster analysis of cryptic
microbial communities by the group of patients was conducted using agglomerative
hierarchical clustering (AHC) according to the frequency of the microorganisms. Principal
coordinates Analysis (PCoA) was calculated by the relative abundance of microorganisms.
Association tests were performed within each group using the Spearman r test (p < 0.5) to
correlate periodontal parameters and the cultivable cryptic microorganisms. The software
packages GraphPad Prism 9.0.2 (GraphPad Software, San Diego, CA, USA) and XLSTAT
statistical and data analysis solution (Addinsoft, New York, NY, USA) were used.

3. Results
3.1. Clinical Data

The demographic variables and periodontal parameters of the study population are
presented in Table 1. There was a higher percentage of men in Group 4 (P-OSA) than
in the other groups. Teeth with periodontitis (%),BOP (%), and PI showed statistically
significant differences between Group 2 (P) and Group 4 (P-OSA) vs. Group 1 (H) (p < 0.001).
In addition, the PI showed statistically significant differences between Group 3 (OSA)
(p < 0.001) vs. Group 1 (H). Regarding the periodontal condition, dental-biofilm-induced
gingivitis in reduced periodontium was more prevalent in patients in Group 1 (H) and
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Group 3 (OSA) (56% and 79%, respectively). Stage III periodontitis was more prevalent in
patients in Group 2 (P) and Group 4 (P-OSA) (65% and 81%, respectively) (Figure 1).

Table 1. Demographic variables and periodontal parameters of the group of patients.

Clinical Variable Group 1 (H) (n = 20) Group 2 (P) (n = 13) Group 3 (OSA)
(n = 18)

Group 4 (P-OSA)
(n = 24)

Age (years) 44.35 ± 14.24 40.69 ± 10.83 50.35 ± 13.09 49.33 ± 11.65

Gender (Males) (%) 32 41 37 69

Missing teeth 6.21 ± 4.42 5.69 ± 2.25 8.53 ± 6.53 7.08 ± 6.23

Teeth with
periodontitis (%) 2.18 ± 3.99 47.91 ± 24.72 * 1.37 ± 2.98 » 39.16 ± 19.39 *,§

PD (mm) 1.81 ± 0.48 2.64 ± 0.45 2.36 ± 4.82 13.83 ± 9.95

Sites (%) PD ≥ 4 mm 0.29 ± 0.50 16.76 ± 10.62 2.01 ± 0.15 2.64 ± 0.41

CAL (mm) 1.33 ± 0.78 2.15 ± 1.01 1.52 ± 0.98 2.31 ± 1.14

BOP (%) 11.59 ± 11.46 49.19 ± 26.92 * 24.02 ± 22.96 » 48.67 ± 26.69 *,§

PI 19.30 ± 11.48 47.21 ± 26.28 * 39.65 ± 21.43 * 39.16 ± 19.39 *

Values are given as mean ± standard deviation; Two-way ANOVA, Tukey’s multiple comparisons test, p < 0.05;
PD: Probing depth; CAL: Clinical attachment loss; BOP: Bleeding of probing; PI: Plaque index; * Significantly
different to Group 1; » Significantly different to Group 2; § Significantly different to Group 3.
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Figure 1. Percentage of patients of each group according to periodontal condition (according to
the new Classification of Periodontal and Peri-implant Diseases and Conditions by G. Caton et al.
2018 [13]). G1 (H): healthy patients, non-periodontitis and non-OSA (n = 20); G2 (P) periodontitis
and non-OSA patients (n = 13); G3: (OSA) OSA and non-periodontitis patients (n = 18); G4 (P-OSA)
periodontitis and OSA patients (n = 24).

3.2. Microbiological Data

According to the total number of microorganisms per genus identified by group,
the percentages of the cryptic microorganisms for each group of patients were adjusted
to percentages of relative frequency (Figure 2). Each patient group has a unique mi-
crobiological profile that is primarily made up of the genera Staphylococcus spp. and
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Cutibacterium spp.; the relative frequency of each genus ranged from 32 to 43% and 10 to
17%, respectively. The third most frequent genera in each group stood out as Gemella spp.
(9%) in G1 (H), Neisseria spp. (10%) in G2 (P), Rothia spp., Leuconostoc spp. (7.5%) in
G3 (OSA), and Bifidobacterium spp. and Lactococcus spp. (8.5%) in G4 (P-OSA). There was
a decrease in the presence of four genera in G2 (P), G3 (OSA), and G4 (P-OSA) com-
pared to G1 (H): Staphylococcus spp.: 3% decrease in G2 (P), 8.4% in G3 (OSA) and 11.5%
in G4 (P-OSA); Enterococcus spp.: 2.3% decrease in G2 (P), 3.2% in G3 (OSA) and 5.7%
in G4 (P-OSA); Gemella spp.: 9.4% decrease in G2 (P), 6.9% in G3 (OSA) and 7.3% in
G4 (P-OSA); Lachnoanaerobaculum spp.: 7.6% decrease in G2 (P), 2.6% in G3 (OSA) and
5.4% in G4 (P-OSA). Otherwise, there was an increase in the presence of five genera in
G2 (P), G3 (OSA), and G4 (P-OSA) compared to G1 (H): Alloscardovia spp.: 3.3% increase
in G2 (P) and 4.3% in G4 (P-OSA); Bifidobacterium spp.: 0.6% increase in G3 (OSA) and
6.6% in G4 (P-OSA); Corynebacterium spp.: 0.6% increase in G3 (OSA); Lactococcus spp.:
0.6% increase in G3 (OSA) and 6.6% in G4 (P-OSA); Leuconostoc spp.: 5.6% increase in
G3 (OSA) and 4.5% in G4 (P-OSA); Propionibacterium spp.: 0.6% increase in G3 (OSA) and
4.5% in G4 (P-OSA).
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Figure 2. Microbial profile: percentage of each patient group’s relative frequency of the genus
of cultivable cryptic microorganisms (other microorganisms). G1 (H): healthy patients; G2 (P)
periodontitis patients; G3: (OSA) OSA patients; G4 (P-OSA) periodontitis and OSA patients.

Some species were only identified in one of the four patient groups: (Table S1).
Fifty-six species were found, distributed into thirty-one genera. The major diversity
of species of cryptic microorganisms was identified in dental-biofilm-induced gingivi-
tis in reduced periodontium (26 species) and in stage III periodontitis (25 species), with
Staphylococcus epidermidis, Cutibacterium acnes, and Bifidobacterium dentium being the most
prevalent in both conditions (Figure 3).
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Figure 3. Microbial profile: percentage of relative frequency of each species of cultivable oral
cryptic microorganisms by periodontal condition. Healthy conditions: clinical gingival health on an
intact periodontium, dental-biofilm-induced gingivitis, dental-biofilm-induced gingivitis in reduced
periodontium, Stable periodontal disease in reduced periodontium. Disease condition: periodontitis
Stages I–IV.

The relative frequencies of microorganisms were analyzed using agglomerative hi-
erarchical clustering (AHC) in order to classify cryptic microorganisms based on the
microbial community makeup by patient group. The results of this study are depicted as
a dendrogram (Figure 4), which illustrates the degree to which the community makeup
differs and how the cryptic microorganisms clustered for each patient group. The en-
suing G1 (H) and G2 (P) dendrograms revealed two major well-defined clusters. In
Cluster 2, Staphylococcus spp., Cutibacterium spp., and Enterococcus spp. Were shared by
both groups. G3 (OSA) displayed four clusters, while G4 (P-OSA) displayed three clusters,
with Bifidobacterium spp. Constituting Cluster 1 in G3 (OSA) and Cluster 2 in G4 (P-OSA).
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clidean distance dissimilarity matrix and agglomeration method of Ward (agglomerative hierarchical
clustering (AHC)). The microorganisms present in two or more patient groups are indicated by
color. Those without color were only identified in a group. C: cluster; G1 (H): healthy patients;
G2 (P) periodontitis patients; G3: (OSA) OSA patients; G4 (P-OSA) periodontitis and OSA patients.

In order to observe the distributions of the cryptic microbiota in each category, PcoA
was applied to the relative abundances in each group of patients (Figures S1–S4). The G1
scattering showed that Component 1 was defined by Bifidobacterium spp., Lactococcus spp. and
Gemella spp., and Enterococcus spp., and Component 2 was defined by Corynebacterium spp. How-
ever, when applying marimax rotation, this component was redefined by Lachnoanaerobaculum spp.
and Leuconostoc spp., the distribution for men and women being associated with Com-
ponent 1. The G2 scattering showed that Alloscardovia spp., Clostridium spp., Neisseria
spp., and Pseudopropionibacterium spp. Highly defined the first component, and the com-
ponent was mainly defined by Staphylococcus spp. This was maintained in rotation, being
directly associated with those of stage II periodontitis. The G3 scattering showed that
Component 1 was defined by Enterococcus spp, Leuconostoc spp., and Propionibacterium spp.,
being highly associated with moderate OSA and inversely with severe OSA and women.
Component 2 was mainly defined by Staphylococcus spp., and this is maintained in rotation,
being inversely associated with men. The G4 scattering showed that Haemophilus spp.,
Staphylococcus spp., and Raoultella spp. Defined Component 2 with an associative pattern
for men and women, while Bifidobacterium spp., Atopobium spp., and Parascardovia spp.
Defined Component 1 with an association trend with severe OSA.
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3.3. Association between Periodontal Parameters and the Cryptic Oral Microorganisms

This correlation between periodontal parameters and the genera of species of cryptic
microorganisms present in the four groups of patients evaluated was found by the analysis
of multicomponent matrices. The association can be positive (+) or negative (−) according
to the Spearman correlation range (rs). The rs values over zero indicate a positive correlation
in cyan tones, whereas rs values below zero indicate a negative correlation in purple tones.
(Figure 5, Table S2).
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Figure 5. Multicomponent matrix for the correlation of periodontal parameters and oral cryptic
microorganisms present in each of the groups of patients evaluated: (A) G1 (H), n = 20; (B) G2 (P),
n = 13; (C) G3 (OSA), n = 18; (D) G4 (P-OSA), n = 24, using the Spearman’s rank correlation coefficient
rs > 0.30, p < 0.05. The association can be positive (+) or negative (−) according to the Spearman
correlation range (rs). The rs values over zero indicate a positive correlation in cyan tones, whereas
rs values below zero indicate a negative correlation in purple tones. M.T., Missing teeth; T.P., Teeth
with periodontitis; PD: probing depth; CAL: clinical attachment loss; BOP: bleeding of probing;
PI: plaque index.
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In G1 (H), there was a positive, statistically significant correlation between miss-
ing teeth and Rothia spp. (rs = 0.58, p = 0.004), PD (mm), and Lachnoanaerobaculum spp.
(rs =0.38, p = 0.047), sites (%) PD > 4 mm and Enterococcus spp. (rs = 0.56, p = 0.006), BOP
(%) and Leuconostoc spp. (rs = 0.38, p = 0.048), and PI and Staphylococcus spp. (rs = 0.42,
p = 0.032), whereas Cutibacterium spp. And missing teeth, and CAL and Gemella spp.
Showed a negative statistically significant correlation (rs = −0.56, p = 0.005 and rs = −0.42,
p = 0.032, respectively) (Figure 5A). In G2 (P), there was a positive correlation with statis-
tical significance between Staphylococcus spp. And teeth with periodontitis (%) (rs = 0.46,
p = 0.056), as with BOP (%) (rs = 0.56, p = 0.026) (Figure 5B). In G3 (OSA), there was a
positive correlation with statistical significance between age and Lachnoanaerobaculum spp.
(rs = 0.49, p = 0.018), missing teeth and Bacillus spp. (rs = 0.40, p = 0.05), teeth with peri-
odontitis (%), and Bifidobacterium spp. (rs = 0.55, p = 0.01), as with Pluralibacter spp. and
Rothia spp. (rs = 0.48, p = 0.022; rs = 0.43, p = 0.036, respectively). In addition, PD (mm) and
Rothia spp. (rs = 0.36, p = 0.011), sites (%) PD > 4 mm, and Cutibacterium spp. (rs = 0.45,
p = 0.03), whereas there was a negative statistical significance between Leuconostoc spp.
And PD (mm) (rs = −0.39, p = 0.046), as with PI (rs = −0.47, p = 0.023) (Figure 5C). In G4
(P-OSA), Proteus spp. Was correlated positively with missing teeth, PD (mm) and sites
(%) PD > 4 mm (rs = 0.56, p = 0.026). Serratia spp. Was correlated positively with teeth
with periodontitis (%), BOP (%) and PI (rs = 0.35, p = 0.048), whereas Lactococcus spp. Was
correlated negatively with missing teeth (rs = −0.49, p = 0.008) and Propionibacterium spp.
With all the periodontal parameters (rs = −0.55, p = 0.003) (Figure 5D).

4. Discussion

This study is the first to analyze the presence of microorganisms found in oral samples
that are not often linked to oral diseases such as periodontitis related to OSA. A previous
study [11] demonstrated that there was a greater diversity of microorganisms in oral
samples from individuals with periodontitis and OSA, and showed the association between
both diseases by sharing risk factors such as comorbidities and presence of the bacteria
of the orange and red complexes, associated with Candida albicans. Additionally, this
study identified cultivable cryptic microorganisms in healthy individuals (G1), individuals
with periodontitis (G2), individuals with OSA (G3), and individuals with periodontitis
and with OSA (G4), which describe as microorganisms that are not often considered
significant oral pathogens and are not classified in Socransky’s microbial complexes [12],
nor are they associated with specific pathologies in the oral cavity; however, they could be
microorganisms that contribute to periodontitis development in OSA patients and could be
associated with other chronic pathologies. It is crucial to clarify the role and modulation
of this diverse group of microorganisms [14–21], which goes beyond those first identified
as periodontal pathogens, in both disease and pathogenicity, taking into consideration the
effectiveness of current identification technologies. It is important to consider that cryptic
microorganisms may or may not contribute to the health and emergence of periodontal
disease or may not. To clarify the role of these microorganisms, the purpose of the current
study was to analyze their presence in health or disease (periodontitis and/or OSA) and to
identify potential pathogens.

The periodontal parameters BOP (%) and PI were highest in all groups of patients,
compared to patients of G1, highlighting that the patients of G3 had an increased PI with a
statistically significant difference (p = 0.001). This evidence suggests that OSA might favor
oral biofilm formation, and is consistent with previous reports [22,23]. In addition, other
study demonstrated that periodontal parameters such as PD (mm) and CAL were higher
in patients with OSA [4], supporting the idea that OSA pathophysiology, which includes
hypoxia, hypercapnia, and oral dryness, can contribute to the development of periodontitis.

According to the new Classification of Periodontal and Peri-implant Diseases and
Conditions [13], the periodontal condition of the patients of each group was determined.
The dental-biofilm-induced gingivitis in reduced periodontium was more frequent in G1
and G3 (56% and 79%, respectively). Meanwhile, stage III periodontitis was more frequent
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in G2 and G4 (65% and 85%, respectively). These results suggest that OSA is a factor that
increases the risk of periodontitis, and it is crucial to comprehend that OSA individuals
should undergo periodic periodontal screenings. The percentage of the relative frequency of
each species of cultivable oral cryptic microorganisms showed that dental-biofilm-induced
gingivitis in reduced periodontium as a healthy condition and stage III periodontitis as a
disease condition had major diversity of species.

There was evidence that the presence and absence of certain species vary depending
on health and disease conditions, as a possible modulation between the cryptic microor-
ganisms. According to the literature, the severity of OSA may be involved in the diversity
and abundance of different species and genera of microorganisms [5]. This could be related
to hypoxic episodes and an increase in CO2 levels, which are consequences of apnea or
hypopnea events, reflected in AHI, which determines the severity of OSA. The oral samples
analyzed in a previous study [11] were taken at the same time in the morning to minimize
potential influences on the microbiota’s characterization and take into consideration the
possibility of diurnal oscillations in their composition and function [24]. The experimental
data obtained are reproducible once this factor is taken into consideration along with the
sample collection techniques.

Different studies have reported alterations in oral microbiota evaluating just the
saliva of patients with OSA. Nizam et al. reported the results of 13 patients without OSA,
17 patients with mild–moderate OSA, and 22 patients with severe OSA [5]. Ko et al. con-
cluded oral microbiota changes from the saliva of 19 patients with OSA [25], and Chen
et al. found alterations in the salivary microbiome in 26 patients with OSA comorbid
hypertension [9]. In the current study, the oral microbiota data were complemented, ana-
lyzing three oral samples (saliva, subgingival plaque, and gingival sulcus) from 75 patients
categorized into four groups based on the diagnosis of periodontitis and OSA: 20 healthy
patients (G1), 13 patients with periodontitis (G2), 18 patients with OSA (G3), and 24 patients
with periodontitis and OSA (G4). Therefore, the cryptic microorganisms identified were
analyzed, according to the presence of each bacterium and its association with healthy or
disease conditions, to identify potential pathogens, which may be related to the presence of
periodontitis associated with OSA.

According to the results of the cluster conformation, periodontitis and OSA affect the
diversity and distribution of cryptic microorganisms and unique genera in each group
formed the majority of clusters. In G2 (P), both genera Olsenella spp. And Megasphaera spp.
have been reported as periodontal pathogens. M. micronuciformis has been isolated from
women suffering from preterm birth [26,27]. In G3 (OSA), the microorganisms Paracoccus spp.,
Pantoea spp., Pluralibacter spp., and Bacillus spp. are related to biofilm formation, ab-
scess, bacteremia, pneumonia, urinary tract infection, septic arthritis, osteomyelitis, peri-
tonitis, choledocholithiasis, dacryocystitis, and endophthalmitis [28]. Bacillus sp. Have
pathogenic potential through the production of enterotoxins [15,29,30]. In G4 (P-OSA),
Selenomonas spp. And Proteus spp. are related to pathogenesis of periodontal disease [31]
and catheter-associated urinary tract infections (CAUTIs) [32], respectively. Furthermore,
other microorganisms were found in each group, but in small clusters. In G2, the genus
Neisseria spp. has been related to endocarditis and osteomyelitis [33], and N. oralis has
been identified in systemic infection and cystitis in a diabetic adult [34]. Leptotrichia sp.
(G3) has been related to periodontal disease and abscesses of the oral cavity, endocardi-
tis, and septicemia [35], and Kluyveromyces sp. (G3) has been identified as a yeast pro-
ducer of pGK1 killer toxin [36]. Raoultella spp. (G4) has been related to infected root
canals and urinary, gastrointestinal, hepatobiliary, and osteoarticular infections [37], and
Haemophilus spp. (G4) has been related to endocarditis, meningitis, pneumonia, otitis media,
sinusitis, and epiglottitis [38]. The PcoA identified that Alloscardovia spp., Clostridium spp.,
Neisseria spp., and Staphylococcus spp. have been associated with stage III periodontitis
in G2 (P). Alloscardovia spp. Has been related to dental caries [14], and Clostridium spp.
has been related to gas gangrene, bacteremia, meningitis, septic arthritis, enterocolitis,
spontaneous bacterial peritonitis, post-traumatic brain abscess, and pneumonia [16,17].
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Enterococcus spp., Leuconostoc spp., and Propionibacterium spp. have been associated with
moderate OSA in G3 (OSA). Enterococcus spp. has been related to endodontic disease, bac-
teremia, endocarditis, urinary tract infections, diabetic foot ulcers, and cholecystitis [20,21],
and Leuconostoc spp. has been related to bacterial meningitis and bacteremia [39–41]. These
results suggest that severe conditions of periodontitis and OSA may harbor microorganisms
that favor the development of systemic infectious disease.

Regarding the cryptic microorganisms identified (Table S3) [18,19,42–48], Staphylococcus spp.
And Cutibacterium spp. Were the genera more common in all patient groups. However, it
was clear that their abundance was higher in G1 compared to the other patients’ groups.
Staphylococcus spp. Is frequent in skin and soft tissue infections, bloodstream infections,
endocarditis, osteomyelitis, lung infection, suppurative diseases, pneumonia, prosthetic
joint infections, and toxic shock syndrome [49–57]. S. aureus stands out in this genus,
considered an opportunistic pathogen that is a part of the skin and nasal microbiota. It has
been related to infectious diseases of the oral cavity, such as periodontitis [26], coinciding
with the positive correlation found between Staphylococcus spp. And TP (%) and with
BOP (%) in G2, and an in vitro study determined that S. aureus has the ability to bind
to periodontal pathogenic bacteria, such as F. nucleatum and P. gingivalis, supporting the
idea that S. aureus can become part of the complex oral microbiota and contribute to the
development of oral infections [58].

The presence of S. epidermidis and S. hominis is associated with skin conditions such as
atopic dermatitis or psoriasis; bloodstream infections, including endocarditis, peritonitis,
and osteomyelitis; and infections of the bones and joints [52,53]. Both bacteria have been
isolated from subgingival samples of healthy and periodontitis patients, without significant
differences between both conditions [59], also supported by our results. The current study
found that patients with periodontitis and OSA had lower levels of Staphylococcus spp. A
highly diverse microbial community that influences the microenvironment and controls this
bacterium’s growth may be responsible for this bacterium’s decline. Furthermore, a study
found that Staphylococcus spp. Increased during treatment with continuous positive airway
pressure (CPAP), the primary therapy for OSA patients [25]. This finding might explain the
increase of Staphylococcus spp. In healthy patients due to the restored microenvironment
that favors its growth.

Gemella spp. Is mainly linked to poor dental health, dental manipulation or surgery,
colorectal disease or procedures, steroid therapy, diabetes mellitus, or hepatocellular dys-
function [60,61]. Moreover, Gemella spp. Is also linked to septic arthritis and oral abscesses,
which can result in serious endovascular infections such as endocarditis and pericardi-
tis [62]. CPAP-using OSA patients were shown to have lower levels of this bacterium [25].
In contrast, the healthy patients (G1) in the current study had a higher prevalence of these
bacteria than in the other patient groups. Like this, a study found a higher proportion of
Gemella sp. In saliva from healthy patients than in the saliva obtained from periodontitis
patients. This study demonstrated that Gemella sp. in saliva is linked to periodontal health
and the protein components in Gemella’s culture supernatant directly inhibited P. gingivalis’s
growth in vitro [63].

In the current study, Cutibacterium spp. and Propionibacterium spp. [64] were indepen-
dently identified by MALDI-TOF. Infections in neurosurgical shunts, bone, breast, and
prostate infections; infective endocarditis; splenic and cutaneous abscesses; and chronic
blepharitis and endophthalmitis are all linked to Cutibacterium spp. [65–67]. C. acnes plays a
role in the onset and development of Alzheimer’s disease (AD) [68] and Parkinson’s disease
(PD) [69], and this bacterium has been demonstrated to be able to cross the blood–brain
barrier through transcellular invasion in an in vitro study [70]. In addition, C. acnes is
recognized for its ability to form biofilms on biomaterials in implanted medical devices,
such as C. albicans [71]. These two microorganisms can establish polymicrobial biofilms
that are synergistic, which enhances yeast resistance to micafungin [72]. The frequency of
C. albicans and the percentage of biofilm were both higher in patients with periodontitis and
OSA [11]; in this scenario, C. acnes could participate as a C. albicans protector, encouraging
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the development of dysbiotic biofilms. This might lend to the notion that these opportunis-
tic microorganisms behave in a way that makes it possible for periodontopathogen bacteria
to colonize in periodontitis linked to OSA.

Propionibacterium spp. live on human skin as well as in the gastrointestinal and oral
mucosa [73,74]. They have been linked to endocarditis and the infection of both natural
and artificial valves [75], and are present in endodontic infections with a higher prevalence
for secondary endodontic lesions [76]. In the current study, Propionibacterium spp. was
identified in patients with OSA and patients with periodontitis and OSA, increasing by
0.61% in G3 and 4.5% in G4. The presence of this microorganism in individuals with
OSA and those who also had periodontitis and OSA is reported for the first time in
this study. Another study determined the presence of Propionibacterium spp. in apical
periodontitis, forming a network of interactions with Lactobacillus spp. and different
species of Streptococcus [77]. It is crucial to emphasize the link between the presence of this
microorganism in co-association with other periodontal pathogens in periodontitis and
OSA. According to reports [78,79], OSA is associated with chronic diseases such as AD
and PD, primarily due to its potential neurodegenerative effects. In a similar vein, studies
have suggested that periodontitis and AD may have a potential bidirectional relationship
that may be caused by microorganisms [80]. The present study opens the possibility
of establishing microbiological implications; for instance, the presence of P. acnes may
play a role in the development and progression of this type of neurological disease in
OSA patients.

Bifidobacterium spp. is usually related to dental caries, by acidogenic potential [81,82],
and is a well-adapted commensal in the gastrointestinal tract. An earlier study deter-
mined that Bifidobacterium dentium is associated with an increased risk for gastrointestinal
cancer [83], and along with Lactobacillus, Bacteroides, and Prevotella, was detected in OSA
patients. It has also been implicated in obesity and diabetes [84]. Moreover, a substantial
correlation between B. dentium abundance and pregnant women’s salivary progesterone
concentrations [85] and also pregnant women who had B. dentium had greater levels of IL-6
and IL-8 [86]. G3 and G4 had the highest frequency of Bifidobacterium sp. compared to G1
and G2, and it was positively correlated with teeth with periodontitis (%) and PI in G3 and
the presence of Cutibacterium spp. in G4, indicating its pathogenic effect in both diseases,
and microorganisms with Atopobium spp. [87,88] and Parascardovia spp. [89] showed an
association trend with severe OSA.

Despite these findings, more research will be required to fully understand the con-
nections between cryptic oral microorganisms and known oral pathogens in periodontitis
associated with OSA, as well as their participation as risk factors.

5. Conclusions

This study reveals the existence of cryptic microorganisms and confirms that some
of them are connected to a microbial profile of health, while others are more connected to
a microbial profile of sickness. While Gemella spp. were connected to healthy conditions,
Cutibacteria spp., Propionibacterium spp., and Bifidobacterium spp. were connected to disease
profiles. Staphylococcus spp. prevalence in all patient categories may vary depending on
the presence of other microorganisms. It was discovered that the illness profile contained
microorganisms that might be categorized as possibly pathogenic and may have a role in the
interaction between OSA, periodontitis, and other clinically significant chronic disorders or
systemic infectious diseases. Understanding whether and how they will respond to health
and disease is based on this reality.
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