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Introduction

Inspired by DeepMind’s article ”Advancing Mathematics by Guiding Human
Intuition with AI” [8], where connections between mathematical objects were
discovered leading to the formulation and subsequent proof of conjectures in
knot theory and representation theory, we embark on an approach utilizing
machine learning and deep learning techniques, with the primary objective to
investigate the Hilbert class field of a real quadratic field. By leveraging the
capabilities of modern AI, we aim to guide our intuition and uncover patterns
in number fields that may facilitate explicit constructions of abelian extensions.

The explicit class field theory problem consists on finding a way to explicitly
construct all abelian extensions of a given number field. This is a difficult
problem, and it has only been solved in a few special cases.

The first case that was solved is the case of the rational number field, Q.
In this case, the maximal abelian extension is the cyclotomic field, obtained by
adjoining to the rational numbers all roots of unity. In the resulting field we can
then write every element as a finite sum of products with rational coefficients
of primitive roots of unity.

The second case that was solved was the case of imaginary quadratic fields.
An imaginary quadratic field is a number field that is generated by the square
root of a negative integer. The theory of elliptic curves with complex multipli-
cation settles the problem by generating first the maximal abelian unramified
extension using the j-invariant and then adjoining values of the Weber function
at the torsion points on elliptic curves.

Other cases of explicit class field theory have been solved as well, but the
problem is still unsolved in general. Following results in machine learning as
stated above together with tools from noncommutative geometry our goal is to
tackle this problem for the case of real quadratic fields.
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Chapter 1

Preliminaries and
Background

1.1 Basic definitions about quadratic fields

In this section we will introduce the basic definitions and results about fields
and some of the rudiments of algebraic number theory for the quadratic case,
which will be used in the following sections to explain the present problem and
its developments. Proofs of the results can be found in Trifkovic’s [24]; we also
follow his notation.

As usual an extension of a base field F , is a field K such that F ⊆ K. By
a number field we mean a finite degree extension of the rational numbers.

A cyclotomic field is an extension obtained by adjoining a root of unity to
Q.

Let K be an extension of the field F . The set of automorphisms σ ∈ Aut(K)
such that σ(a) = a for all a ∈ F , is a group under composition and it is called
the Galois Group of K over F . We use the usual notation Gal(K/F ).

Every finite group G appears as a Galois group of certain field extension.
To study such groups is reasonable to start with the simplest case, when G is
abelian. An extensionK of F is said to be abelian if Gal(K/F ) is a commutative
group.

Here will concentrate in a particular type of number field.

Definition 1.1.1. A quadratic field is an extension of degree two of the ra-
tional numbers. Any such field has the form

Q[
√
D] = {a+ b

√
D : a, b ∈ Q}
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with D square-free integer. The adjectives real or imaginary are added to
Q[
√
D] depending on whether D is positive or negative.

Of utmost importance are the analogs to the integers in these more general
fields which also happen to be a subring of the number field under consideration.

Definition 1.1.2. A quadratic integer is a number α ∈ Q[
√
D] that satisfies

a monic polynomial with coefficients in Z.

The set of all the quadratic integers in a given field forms a ring 1. Moreover
there is a nice characterization for such ring of integers in a quadratic field:

Proposition 1.1.1. The set of quadratic integers of K = Q[
√
D] is the ring

OK = Z+ Zδ = Z [δ], where

δ =

{√
D, if D ≡ 2, 3 mod 4

1+
√
D

2 , if D ≡ 1 mod 4

An useful numerical invariant is the discriminant of the field which in
someway measures the size of its ring of integers. In the case of quadratic fields
it is defined as

∆K =

{
4D, if D ≡ 2, 3 mod 4

D, if D ≡ 1 mod 4

In any quadratic field we can define trace and norm as Tr(α) = α + ᾱ
and N(α) = αᾱ, where the bar means complex conjugation. In the case of
α = a+ b

√
D ∈ R is just ᾱ = a− b

√
D.

Trace and norm are group homomorphisms:

Tr : Q[
√
D]→ Q

N : Q[
√
D]× → Q×

For example the norm can be used to find the units in the ring of quadratic
integers.

Proposition 1.1.2. An element α ∈ OK is an unit if and only if N(α) = ±1
1This definition makes sense for any number field: An integer in the number field K is

a number α ∈ K that satisfies a monic polynomial with coefficients in Z. The set of such a
numbers is a subring of K denoted by OK
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Also these operations appear when working with polynomials satisfied by
elements in the field. If p(α) = 0 also p(ᾱ) = 0 then p(x) is divisible by

(x− α)(x− ᾱ) = x2 − Tr(α) +N(α)

Following proposition 1.1.1, the ring of integers is of the form Zα + Zβ. In
the complex quadratic case this is a nice subset of the complex plane.

Definition 1.1.3. A lattice Λ ⊂ C is a subgroup (under addition) of the com-
plex numbers that has the form Λ = Zv1+Zv2, with v1 and v2 linearly indepen-
dent over R.

Definition 1.1.4. A fundamental parallelogram is a subset of the complex num-
bers of the form

Π(a,b) = {at1 + bt2 : t1, t2 ∈ [0, 1)}

Given a lattice Za+ Zb, it is possible to tile the complex plane with trans-
lations of a fundamental parallelogram.

Notation as above and identifying C with R2, the prototype for all lattices is
Λ0, the set of all column vectors with entries in Z or equivalently to Z×Z. Then

the map

[
1
0

]
7→ a and

[
0
1

]
7→ b is an isomorphism between Λ0 and Za+ Zb.

Proposition 1.1.3. Given an imaginary quadratic field K, its ring of integers
OK ⊆ C is a lattice. Moreover, the inverse of the above isomorphism maps
nonzero ideals of OK to sublattices of Λ0.

This correspondence is used with the objective of studying the ring of quadratic
integers. The following proposition will be a step in this direction.

Proposition 1.1.4. A subgroup Λ ⊆ Λ0 is a sublattice if and only if there exist
a 2× 2 matrix γ with integer coefficients such that Λ = γΛ0 and detγ ̸= 0.

Proposition 1.1.5. Let Λ = γΛ0 be a lattice. Then Λ0/Λ is finite and |Λ0/Λ| =
|detγ|.

This provides us with two important properties of the quadratic integers of
a given field.

Corollary 1.1.1. Let I be a nonzero ideal of OK . Then OK/I is finite and
any strictly ascending chain of ideals of OK is finite.
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Corollary 1.1.2. Every prime ideal in OK is maximal.

We can extend the notion of norm to ideals, for I an ideal of OK its norm
is the natural number NI = |OK/I|.

If I, J are ideals of the ring R, we say that I divides J , written I|J if J ⊆ I.

Proposition 1.1.6. Let, I, J be non-zero ideals of OK . If I|J , then NI|NJ .

The proposition below will have as consequences two results that led to a
generalization of unique factorization to the realm of ideals.

Proposition 1.1.7. If I is a nonzero ideal of OK then IĪ = OKNI. The
principal ideal in OK generated by NI.

Corollary 1.1.3. For all I, J ideals of OK , N(IJ) = (NI)(NJ).

Corollary 1.1.4. Let I, J, L be ideals of OK with I ̸= 0. If IJ = IL then
J = L.

To make this last corollary meaningful we have to add inverses since within
all nonzero ideals of OK the full ring is the only element with an inverse.

Definition 1.1.5. Let K = Q[
√
D] and OK = Z + Zδ its ring of integers. A

fractional ideal F of OK is a subgroup of K such that the following holds:

• F = Zα+ Zβ, for some α, β linearly independent over Z.

• δF ⊆ F.

With OK = Z+Zδ. The set of all non zero fractional ideals in a given field
K is denoted by IK .

It is possible to consider fractional ideals in an arbirtrary number field K,
these are just the finitely generated OK-submodules of K, see for instance [2].

In the case of quadratic fields we can determine easily which are the fractional
ideals. All fractional ideals are of the form I = r(Za+Z(−b+ δ)) with a, b ∈ Z
and r ∈ Q×.

Also fractional ideals have a well defined group structure given by the oper-
ation F ·G = 1

kl (kF)(lG), where k and l are integers such that kF, lG ⊆ OK .

The first main result is the well known unique factorization of ideals for
quadratic numbers.

6



Theorem 1.1.1. Let K = Q[
√
D] and OK its ring of integers. For any non-

trivial ideal I ⊆ OK , there exists prime ideals P1, ..., Pn of OK such that I =
P1 · P2 · ... · Pn, this factorization is unique up to a permutation of the Pi.

This factorization is never too bad due to OK fulfilling the ascending chain
condition of corollary 1.1.1 and the following lemma.

Lemma 1.1.1. Let P be a prime ideal in OK . Then exist a unique prime p ∈ N
such that P |⟨p⟩ = pOK .

To find the prime factorization of P we only then need to factor principal
ideals generated by primes in N.

Proposition 1.1.8. Let p ∈ N be prime. The prime factorization of the ideal
⟨p⟩ is one of the following:

• ⟨p⟩ = P with NP = p2

• ⟨p⟩ = P 2 with NP = p

• ⟨p⟩ = PP̄ with NP = p and P not equal to its conjugate.

We call p and P ; inert, ramified or split respectively.

An integer prime p is ramified if and only if p|∆K so only finitely many
primes ramify.

A similar theory of ramification applies to more general fields including ex-
tensions of a quadratic fields K, see for example [3].

Finally all non zero ideals in a quadratic field have a standard form Za +
Z(−b+ δ) and can be factored this way

I =
r∏

i=1

(Zpi + Z(−b+ δ))ei

where a = pe11 · ... · perr .

Another invariant that we won’t discuss but will be used in our computa-
tional example in the last chapter is the regulator.

Let σ1, ..., σr1 and σr1+1, ..., σr1+r2 be the real and complex embeddings (re-
spectively) of a number field K into C.

If u1, ..., ur a full set of fundamental units of K. Then r = r1 + r2 − 1.

If we denote by M the (r1 + r2 − 1) × (r1 + r2) matrix with coefficients
(di log σj(ui)), where di = 1 if i ≤ r1 or di = 2 otherwise.
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Definition 1.1.6. The regulator of K is the absolute value of the determinant
of the matrix M minus one column.

To end this section we mention explicitly how are the subrings of OK this
will be useful to relate quadratic fields with elliptic curves.

Subrings of OK = Z+δZ are either Z the usual integers or a ring of the form
Of = Z+Zfδ where f is a positive integer called the conductor and equals the
size of OK/Of . These are called orders in K.
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1.2 Class numbers and real quadratic fields

Definition 1.2.1. Let K be a quadratic field and PK be the set of all non zero
fractional principal ideals of OK . The ideal class group of K is the quotient

Cl(K) = IK/PK

The class number of K is h(K) = |Cl(K)|.

The inverses in the group are given by conjugation and, using unique fac-
torization of ideals, classes of prime elements generate the group. A complete
explanation for the following two results is out of the scope of this work but its
proofs can be found in most algebraic number theory books (see for example [3]).

Theorem 1.2.1. The class number of a number field is finite.

Proposition 1.2.1. Each ideal class in Cl(K) contains an ideal with norm at
most

MK =
√
|∆K | ·

2

π
for K quadratic imaginary, or

MK =
√
|∆K | ·

1

2
for K real quadratic.

Combining the two big results up to now; unique factorization and finiteness
of the class number we obtain

Theorem 1.2.2. The ideal class group of K is generated by a finite number of
elements Pi with the Pi having prime norm bounded by MK .

We want to have as much information about a quadratic field K as possible,
this includes its ideal class group structure and class number. The difference
between imaginary and real quadratic fields which will be of importance later
is that the former has nicer properties to start with.

Firstly, the ring of integers of K imaginary quadratic has a lattice structure.
Second, its norm homomorphism involves solving an equation of the form N(x+
yδ) = (x− t

2y)
2 − ∆K

4 y2 = n which has a finite number of solutions due to ∆K

being negative.

On the other hand the norm homomorphism in the real case leads to solving
the equation x2−Dy2 = ±n which is Pell’s equation and has in general infinitely
many solutions which are not always easy to find.
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1.2.1 Continued Fractions

The proper setting for working with Pell’s equation and real quadratic fields is
by using continued fractions. We now give a short introduction to its theory
just enough to aid our quadratic field studies. Its usefulness lies in the fact that
continued fractions approximate real numbers in efficient way. Furthermore,
even though not thoroughly covered in this work, convergents of a continued
fraction appear in the theory of generalized theta functions and also in the
theory of noncommutative tori with real multiplication.

Definition 1.2.2. A finite continued fraction is an expression of the form:

[a0; a1, a2, . . . , an] = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

where the ai are integers.

The ith convergent pi/qi is obtained by truncating this expansion at the i-th
element. Convergents are given by the recursive formulas:

pi = aipi−1 + pi−2, qi = aiqi−1 + qi−2

where p−1 = 1, p−2 = 0, q−1 = 0, q−2 = 1.

These recursions can be written in matrix form:[
pi

pi−1

]
=

[
ai 1
1 0

] [
pi−1

pi−2

]
and

[
qi

qi−1

]
=

[
ai 1
1 0

] [
qi−1

qi−2

]

An infinite continued fraction is denoted as:

[a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

A periodic continued fraction is of the form:

[a0; a1, a2, . . . , am, am+1, am+2, . . . , am+k]

where m is the index where the periodic part starts, and k is the period length.
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A purely periodic continued fraction is of the form:

[a0; a1, a2, . . . , ak]

where k is the period length.

Any real number can be expressed as a continued fraction, with rational
numbers corresponding to finite continued fractions.

The relationship between continued fractions and the theory of quadratic
numbers comes from the following theorem.

Theorem 1.2.3. A continued fraction for an irrational number is periodic if
and only if that number is a quadratic number.

In our study we will want to obtain fast approximations to quadratic num-
bers. There are algorithms that calculate periods of a continued fractions ef-
ficiently, in this work we used the current implementations included in SAGE
and PARI/GP.

Continued fractions are also used for obtaining the units in the ring of inte-
gers of a real quadratic field OK .

Proposition 1.2.2. If K is a real quadratic field, there exist a unique δ such
that OK = Z[δ] and its continued fraction is purely periodic.

Definition 1.2.3. Given a real quadratic field K, a fundamental unit of OK is
an element ϵK ∈ O× satisfying the following:

• For any ϵ ∈ O×
K , ϵ = ±ϵnK for some n ∈ Z,

• ϵK > 1.

The way to construct the group of units O×
K using continued fractions is by

means of

Theorem 1.2.4. Let OK = Z[δ] with δ > δ be the ring of integers of K =
Q[
√
D]. Let p′i/q

′
i be the convergents of δ, and l the period length of D.

Set ϵ1 = p′l − q′lδ. Then any unit ϵ ∈ O×
K is given by ϵ = ±ϵn1 for some

integer n. The fundamental unit ϵK is then ±ϵ1 or ±ϵ1, whichever fulfills the
second condition above.

11



1.3 Abelian Extensions and the Hilbert Class
Field

The goal of the theory as stated in the introduction is to find the maximal
abelian extension in an explicit way. This is no easy task and far from be-
ing solved, even the quadratic case which is the most simple and nontrivial is
incomplete.

Definition 1.3.1. Let K be a field. The maximal abelian extension of K,
denoted by Kab, is the largest field extension of K that is abelian over K.

The maximal abelian extension Kab has several important properties:

1. Kab is a Galois extension of K, meaning it is a normal and separable
extension.

2. Every abelian extension of K is contained in Kab

3. Kab is the union of all finite abelian extensions of K.

Proposition 1.3.1. Let K be a number field and Kab be its maximal abelian
extension. Then the following relationship between Galois groups holds

Gal(Kab/K) ∼= Gal(K̄/K)ab

Where K̄ is the algebraic closure of K and the right hand side is the abelian-
ization of the absolute Galois group.

The maximal abelian extension Kab plays a fundamental role in algebraic
number theory. It provides a way to study the abelian extensions of a field and
the behavior of Galois groups. Even though there is a description of what Kab

is 2, in general it is hard or not know its explicit generators and structure.

Definition 1.3.2. Let K be a number field. The Hilbert class field of K, denoted
by HK , is the maximal abelian extension of K which is unramified at all primes.

The Hilbert class field HK has several important properties:

1. HK is a finite extension of K.

2. HK is Galois over K.

2using class field theory

12



3. HK is an abelian extension of K.

4. HK is the smallest field containing K such that all prime ideals in OK

become principal in HK .

David Hilbert conjectured the existence of this field sometimes also called
the absolute class field and then Philipp Furtwängler prove its existence in 1907
( [3] Chapter XI).

Theorem 1.3.1 (Furtwängler). For any number field K, the Hilbert class field
HK exists and is unique up to isomorphism.

Theorem 1.3.2. Let HK be the Hilbert class field of K. Then Gal(HK/K) is
isomorphic to the ideal class group Cl(K).

The Hilbert class field HK has deep connections to the arithmetic properties
of the number field K. It provides a way to study the behavior of prime ideals
in K and is related to important topics such as class field theory and the study
of quadratic forms.

Understanding the Hilbert Class field is an important first step to understand
the maximal abelian extension of a number field. This applies in particular to
the problem of finding explicit generators.

1.4 Kronecker-Weber Theorem

We are looking for descriptions of abelian extensions of fields, explicit generators
of these extensions, and the action of the Galois group for such elements. One
of the first steps in this direction is the Kronecker-Weber theorem.

We begin with a well known result of field theory [10]:

Proposition 1.4.1. Let K be a cyclotomic extension obtained from Q by ad-
joining ζ, a n−th root of unity. Then K is abelian with Galois group isomorphic
to (Z/nZ)×.

A partial converse is

Theorem 1.4.1. (Kronecker-Weber) Let K be a number field that is Galois over
Q, suppose that Gal(K/Q) is an abelian group. Then there exists a cyclotomic
extension Q(ζ) that contains K, for ζ an n-th root of unity for some positive
integer n.

13



In other words, Kab = Qab = Qcycl. the field resulting by adjoining all roots
of unity to Q.

This result is special not only because of the description given for Qab.
Theorem 1.4.1 says that there is an specific function that produces generators
for the extension.

Consider the Taylor series of the complex exponential function which con-
verges in all C:

f(z) = e2πiz =

∞∑
k=0

(2πiz)k

k!
,

By evaluating in 1/n for some n we obtain a transcendental function with the
property that Q

[
f( 1n )

]
is abelian and that every other finite abelian extension

of Q is contained in one of these for some value of n.

The point is, we can describe all finite abelian extensions of the rationals
in terms of the special values of an analytic function. Moreover, Galois theory
gives us an isomorphism ϕ : Gal(Q(ζ)/Q)→ (Z/nZ)×. And we can capture the
action of each element in the Galois group on the elements of the field:

σ

(
f

(
1

n

))
= f(

ϕ(σ)

n
)

For every σ en Gal(Q(f(1/n))/Q).

Kronecker Jugendtraum: refers to the discovery of a similar theory to that
described above to fields more general than Q. Given a field F , we want to find
a function f with the following property: for every abelian extension K of F ,
there exist some values αi that satisfy F (f(α1), ..., f(αn)) and K is contained
in the resulting field.

The next step in the development of this problem was the case where F is
an imaginary quadratic extension of Q. This was solved by using the theory
of elliptic curves with complex multiplication that we briefly outline in the
following section.

1.5 Elliptic Curves

As a motivation and starting point we are going to skim over the theory of
elliptic curves, their basic properties for completeness and finally review the
theory of such curves with complex multiplication. All the following results are

14



standard and their proofs can be found in most books on the subject (see for
instance [21]).

1.5.1 Elliptic curves over the rationals

An elliptic curve over Q is a smooth cubic projective curve defined over the field
of rational numbers together with a rational point O.

A general equation for such curve is of the form

aX3+bX2Y +cXY 2+dY 3+eX2Z+fXY Z+gY 2Z+hXZ2+ iY Z2+jZ3 = 0

As a consequence of the Riemann-Roch theorem, if the elliptic curve is de-
fined over a field of characteristic different to 2 or 3, as is the case of Q, number
fields and C, then its equation can be simplified to the so-called Weierstrass
form:

ZY 2 = X3 + aXZ2 + bZ3

with 4a3 + 27b2 ̸= 0. In affine coordinates, y2 = x3 + ax+ b.

In this context two elliptic curves are isomorphic if there is a bijective change
of variables that converts the Weierstrass form of one into the corresponding
Weierstrass form of the other.

Let E/Q be an elliptic curve and E(Q) its set of rational points. E(Q) can
be equipped with a (geometric) group structure. The result of adding two points
P +Q will be the reflection over the x-axis of the third point of intersection of
PQ with E.

This group is abelian and finitely generated according to Mordell-Weil the-
orem. Its structure is given by

E(Q) ∼= E(Q)tors ⊕ Zr

For some r ∈ N.

1.5.2 Elliptic curves over the complex numbers

Considering an elliptic curve E defined by a cubic with rational coefficients as
being defined over the complex numbers yields to some additional structure.
If Λ is a lattice, then C/Λ is topologically a torus since every fundamental
parallelogram is a complete set of representatives in C/Λ.
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Following the propositions about lattices in section 1.1 we have

Proposition 1.5.1. Let Λ = ⟨ω1, ω2⟩ and Λ′ = ⟨ω′
1, ω

′
2⟩ be oriented lattices.

Then

• Λ = Λ′ if and only if there is a matrix γ ∈ SL(2,Z) such that

[
ω′
1

ω′
2

]
=

γ

[
ω1

ω2

]
• There is a holomorphic isomorphism C/Λ 7→ C/Λ′ if and only if Λ′ = αΛ,
for some α ∈ C.

Corollary 1.5.1. Let Λ = ⟨ω1, ω2⟩ and Λ′ = ⟨ω′
1, ω

′
2⟩ be oriented bases of

lattices, such that there is an analytic isomorphism C/Λ ∼= C/Λ′ of abelian

groups. Then, there exist α ∈ C∗ and γ ∈ SL(2,Z) such that (ω′
1 ω′

2) = αγ

[
ω1

ω2

]
.

If Λ = ⟨ω1, ω2⟩ we can always simplify using proposition above to obtain a
isomorphism C/Λ ∼= C/Λ′ where Λ′ = ⟨τ, 1⟩ and τ = ω1/ω2.

With the above notation, and using the previous corollary we have that given
two lattices Λ,Λ′, given by fundamental periods τ, τ ′. Then C/Λ ∼= C/Λ′ if and

only if there is a γ =

[
a b
c d

]
∈ SL(2,Z) with

τ ′ = γτ =
aτ + b

cτ + d

Definition 1.5.1. Let k ≥ 2 and Λ a lattice. The Eisenstein series of Λ is

G2n(Λ) =
∑

ω∈Λ−{0}

1

ω2n

The main result is the following

Theorem 1.5.1. Uniformization theorem: If y2 = 4x3 + ax + b is an elliptic
curve E. Then there exists a lattice Λ such that a = −60G4(Λ), b = −140G6(Λ)
and that C/Λ ∼= E(C).

In other words, there is a correspondence between elliptic curves defined
over C and quotients of the complex plane modulo lattices. Also, since we
determined that arbitrary (oriented) lattices can be obtained by those of the
form ⟨τ, 1⟩ with τ in the upper half plane.

Another important function defined on lattices is the Weierstrass ℘-function.
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Definition 1.5.2. The Weierstrass ℘ function is defined as follows:

℘(z,Λ) =
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
,

where Λ is the lattice associated with the elliptic curve.

1.6 Modular curves

The modular group is the quotient Γ(1) = SL(2,Z)/{±Id}, its fundamental
domain is the subset of the upper-half plane of complex numbers such that
|z| ≥ 1 and Re(z) ≥ 1/2 and its generators are the matrices

S =

[
1 1
0 1

]
, T =

[
0 −1
1 0

]
And their action in H is given by Tτ = τ + 1 and Sτ = −1/τ .

Of importance for us are the so called modular curves. Define Y (1) =
H/Γ(1), this is homeomorphic to a sphere without a point so we compactify it
by addint a point to infinity X(1) = Y (1) ∪ {∞}. More formally:

Definition 1.6.1. Let H∗ = H∪ P1(Q). The modular curve X(1) is defined as

X(1) = H∗/Γ(1)

Taking subgroups of the modular group is possible to extend this definition
by considering the quotients X(1) = H∗/Γ(n), where

Γ(n) =

{[
a b
c d

]
∈ SL(2,Z : a, d ≡ 1(modn), b, c ≡ 0(modn)

}
A congruence subgroup is a subgroup G of SL(2,Z) such that Γ(n) ≤ G for

some positive integer n. The groups X(n) = H∗/Γ(n) are other examples of
modular curves.

Cusps of a modular curves are elements in the quotient with representatives
in P1(Q).

Using the uniformization theorem we see that every class [τ ] (no in the cusp)
of the modular curve corresponds to an elliptic curve so X(1) separates curves
into isomorphism classes.
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1.7 The j-invariant

Let a, b be as in theorem 1.5.1 with y2 = x3 + ax+ b the corresponding elliptic
curve E. The discriminant for E is the quantity

∆ = a3 − 27b2

Definition 1.7.1. The j-invariant for an elliptic curve E is

j(τ) = 1728
a3

∆

with τ ∈ H and a as in 1.5.1. The name comes from the fact that this
function is an invariant for isomorphism classes of elliptic curves, See chapter
III.1 proposition 1.4 in [21]:

Theorem 1.7.1. Let K be a field and E an elliptic with Weierstrass form.
Then

• Two elliptic curves are isomorphic over K̄ if and only if they have the
same j-invariant.

• Let j0 ∈ K̄. There exists an elliptic curve defined over K(j0) whose j-
invariant is equal to j0.

1.8 Morphisms and Complex Multiplication

For the group law described in the previous section, the identity is assumed
to be the point at infinity O of the curve seen as a projective curve. Group
morphisms in this context are called isogenies. For elliptic curves E,E′, with
point-wise addition End(E,E′) forms a group and End(E,E) = End(E) is a
ring with composition of isogenies as product.

The simplest example of isogeny is the multiplication by m ∈ C map and if
Λ is the associated lattice of E, then mΛ ⊆ Λ.

If the base field K ⊆ C, then End(E) is either Z or an order in an imaginary
quadratic field. An analogue to this in the real case will be introduced in the
following chapter.
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Culmination of this elliptic curve overview is the analogous to the Kronecker-
Weber theorem for the case of imaginary quadratic fields, see [21] C.11.2 or [3]
XIII for the following two culminating results:

Theorem 1.8.1. Weber-Fueter: Let K = Q[
√
D], D < 0 and E = C/Λ an

elliptic curve with complex multiplication.

1. j(E) is an algebraic integer.

2. [K(j(E)) : K] = [Q(j(E)) : Q].

3. The field HK = K(j(E)) is the maximal unramified abelian extension of
K, i.e., HK is the Hilbert class field of K.

4. Gal(K(j(E))/K permutes the j(E)s associated to Λ transitively.

This can be generalized to other subrings Of of OK . Let Of = Z + Zfδ.
When E has complex multiplication we have that End(E) ∼= Of . This goes both
ways and for each possible Of there is an elliptic curve with endomorphism ring
isomorphic to it.

Theorem 1.8.2. Up to isomorphism, there are finitely many curves E with
End(E) ∼= Of , exactly |Cl(Of )|.

And correspondingly the j(E)s are algebraic integers.

Using class field theory, the maximal abelian extension can be obtained from
HK by adjoining certain elements obtained from the points of finite order of E.
We are not going any further in this direction but in short terms we have that

Kab = K(j(E), w(Etors))

Where w is the Weber function from the elliptic curve to P1 defined as

w(f(z)) =


ab
∆℘(z,Λ), if j(E) ̸= 0, 1728,
a2

∆ ℘(z,Λ)2, if j(E) = 0,
b2

∆℘(z,Λ)3, if j(e) = 1728.

f : C/Λ→ E is an isomorphism and a, b are as in theorem 1.5.1.

It is also possible to find a curve E = C/Λ such that Λ is the same as the
lattice OK .

Ideally we would like to have a similar construction for real quadratic fields.
That is a generating function for HK . Unfortunately at this time there is no
such description and further investigation is required.
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1.9 Theta Functions

The theta function is denoted as θ(z, τ) and is defined as follows:

ϑ(z, τ) =
∑
n∈Z

eπin
2τ+2πinz

where z ∈ C and τ is in the upper half complex plane.

By setting an(τ) = eπin
2τ we can see ϑ as a Fourier series of a function of z.

ϑ(z, τ) =
∑
n∈Z

an(τ)e
2πnz

If Λ is a lattice, a short calculation shows that ϑ(z+τ, τ) = e−πiτ−2πizϑ(z, τ)
and ϑ(z + 1, τ) = ϑ(z, τ) which shows that this functions is quasi-periodic in
the variable z with respect to lattices.

We will work with a set of variations of the general theta function above
called theta functions with characteristics.

Take a, b ∈ R and f(z) holomorphic. Set

(Sbf)(z) = f(z + b)

and
(Taf)(z) = eπia

2τ+2πiazf(z + aτ)

This way we obtain

Sb · Ta = e2πiabTa · Sb

Let G = S1 × R× R. Then

(U(λ,a,b)f)(z) = λ(Ta · Sbf)(z) = λeπia
2τ+2πiazf(z + aτ + b)

And we can define a group operation in G as

(λ, a, b)(λ′, a′, b′) = (λλ′e2πiba
′
, a+ a′, b+ b′)

This group is a function space representation of the continuous Heisenberg
group in quantum mechanics.

Let F = {(1, a, b) : a, b ∈ Z}, it is a subgroup of G and by quasi-periodicity
of ϑ, this function is invariant under the action of F .
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Consider the sets
lF = {(1, la, lb)} ⊆ F

and
Vl = {f : f is entire and invariant under lF}

This is a vector space with basis

ϑa,b = SbTbϑ = e2πiabTaSbϑ

Where a, b ∈ 1/lZ

In explicit form writing the action of the transformations S and T :

ϑa,b =
∑
n∈Z

eπi(a+n)2τ+2πi(n+a)(z+b)

The following properties hold

• ϑ0,0 = ϑ

• If a, b, c ∈ 1/lZ, then Sc(ϑa,b) = ϑa,b+c

• For a, d, b ∈ 1/l ∈ Z, then Td(ϑa,b) = e−2τidbϑa+d,b

• ϑa+p,b+q = e2πiaqϑa,b, with p, q ∈ Z

There are four auxiliary theta functions that are just translates of ϑa,b with
a, b = 0, 1, denoted as ϑi(z, τ) for i = 1, 2, 3, 4. If q = eπiτ , they are defined as:

θ1(z, τ) = 2

∞∑
n=0

(−1)nq(n+1/2)2 sin((2n+ 1)z)

θ2(z, τ) = 2

∞∑
n=0

q(n+1/2)2 cos((2n+ 1)z)

θ3(z, τ) = 1 + 2

∞∑
n=1

qn
2

cos(2nz)

θ4(z, τ) = 1 + 2

∞∑
n=1

(−1)nqn
2

cos(2nz)

where z ∈ C and q = eπiτ .

These are just examples of theta functions with rational (integer) character-
istics described above.
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We immediately obtain

θ1(z, τ) = −ϑ11(z, τ)

θ2(z, τ) = ϑ10(z, τ)

θ3(z, τ) = ϑ00(z, τ) = θ(z, τ)

θ4(z, τ) = ϑ01(z, τ)

In the special case where z = 0, the auxiliary theta functions are usually
called theta constants.

There are several reasons why theta functions are important. A great deal
of the theory of elliptic curves can be derived in terms of theta functions, see for
example the projective embedding of C/Λ by means of theta functions in [16].

In the context of Manin’s real multiplication program (to be described later)
they are important because the absolute j-invariant of an elliptic curve can be
described in terms of theta functions with characteristics.

If λ =
ϑ4
1,0

ϑ4
0,0

, then

j(λ) =
4

7

(1− λ+ λ2)3

λ2(1− λ)2

This λ function is know as the modular lambda function and can be obtained
via the Weierstrass P function too.

There’s a large and useful formulae for theta functions and j-invariants, see
for example [9] and [16].

1.10 Concepts on functional analysis

As opposed to the customary approach of using class field theory, Manin pro-
posed tackling the problem using non-commutative geometric tools. Since func-
tional analysis plays an important role here, we will summarize the necessary
definitions and concepts in this section.

Definition 1.10.1. An algebra over a field K is a vector space A over K with
a product such that for all a, b, c ∈ A and α ∈ K:

• (ab)c = a(bc)

• a(b+ c) = ab+ ac

• (a+ b)c = ac+ bc

• α(ab) = (αa)b = b(αy)

We say that A is commutative if the product commutes.
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All our algebras in the following will be defined over the complex numbers.

Definition 1.10.2. A Banach algebra A is a normed algebra which is complete
and satisfies ||ab|| ≤ ||a||||b||, for all a, b ∈ A.

Definition 1.10.3. An involution on an algebra A is a unary operation denoted
by ∗ that satisfies the following properties:

1. (a∗)∗ = a for all a ∈ A (involutive property).

2. (ab)∗ = b∗a∗ for all a, b ∈ A (anti-multiplicative property).

3. (αa+ βb)∗ = ᾱa∗ + β̄b∗ for all a, b ∈ A and α, β ∈ C (linearity property).

Definition 1.10.4. A Banach *-algebra A is a Banach algebra equipped with
an involution ∗ that is compatible with the norm, i.e., ∥a∗∥ = ∥a∥ for all a ∈ A.

Definition 1.10.5. A C*-algebra A is a Banach *-algebra that satisfies the
additional property, ∥a∗a∥ = ∥a∥2 for all a ∈ A.

In addition, a simple algebra is an algebra with no nontrivial two-sided ideals.

The most important example of a C*-algebra is the set of bounded operators
B(H) on a Hilbert space H with product given by composition and with adjoint
operation as its involution. Also an example of the ubiquitous of C*-algebras is
the following result.

Proposition 1.10.1. Let X be a compact Hausdorff space and C(X) its algebra
of continuous functions, then C(X) is a commutative C*-algebra.

The crucial theorem that simplifies the study of C∗-algebras is the following
result similar to Cayley’s theorem in group theory

Theorem 1.10.1 (Gelfand-Naimark). Every C∗-algebra is isomorphic to a C*-
subalgebra of the algebra of bounded operators on certain Hilbert space.
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1.11 Deep Learning and Terminology

Following the introduction, we would like to use a framework similar to [8] in
order to exploit the capabilities of machine learning in our problem. Our goal
is to use neural networks as a predictive tool to find properties of the Hilbert
class field of a given quadratic extension and asses our intuition in the right
direction. Below is a high-level introduction of how neural networks work and
chapter 4 explains our implementation.

Deep learning is a subfield of machine learning. What distinguishes deep
learning from traditional machine learning approaches is its ability to auto-
matically learn and extract hierarchical representations of data. Deep neural
networks are made up of multiple layers, each consisting of many interconnected
neurons.

In a neural network, a neuron is a computational unit that receives inputs,
performs a weighted sum of these inputs, and applies an activation function to
produce an output.

Layers in a neural network transform data into increasingly different rep-
resentations. This provides additional information about our desired output.
As stated by Chollet in [4] Chapter 1, we can think of a neural network as a
multi-stage information distillation process.

A neural network starts with an input layer of raw data/features. Each
connection between neurons has weights, and each neuron has a bias, initially
set to small random values. The layers then transform the input by weighted
sums and application of activation functions.

An activation function is a function applied to the output of each neuron in
a layer, it introduces non-linearity into the model since the usual transforma-
tion operations in layers are linear (a dot product and a sum) allowing neural
networks to learn complex, non-linear relationships in the data.

After this step, an output layer produces predictions based on the trans-
formed data. The error is measured by a loss/cost function that we want to
minimise. The approach is to use the output of this loss function to adjust
the weights in a direction that will reduce the loss in the next iteration. An
optimiser is the algorithm used for this task.

To update the parameters of a neural network during training to minimize
the loss function. Optimisers use gradient descent methods to adjust the weights
and biases of the network’s neurons. The central method for doing this in deep
learning is the use of backpropagation which is an application of the chain rule
of differentiation.

This process is iterative and so the weights are updated several times to
improve the predictions.
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Other concepts to consider when building a neural network are learning rate,
batches and batch size and epochs:

The learning rate is a parameter that determines the step size or rate at
which a model’s parameters (weights and biases) are updated during training.
It affects the convergence and stability of the training.

A batch refers to a subset of the training data that is processed together dur-
ing a single iteration of training. Batch training is more efficient than training
on individual data points and allows for parallel processing.

An epoch is a complete pass through the entire training dataset during the
training of a neural network. In each epoch, the model is trained on all available
training data, typically in multiple batches. Multiple epochs are used to improve
the performance of the model over time.

In order to begin the training process described above, further work is re-
quired. A general outline could be described as follows.

• Data Collection:

– Gather and compile the dataset containing input features and corre-
sponding target labels.

• Data Splitting:

– Training Set: Used to train the neural network.

– Validation Set: Used for parameter tuning and model evaluation dur-
ing training.

– Test Set: Reserved for the final evaluation of the trained model’s
generalization performance. That is, data that has not being used
before to train or tune the model.

• Data Preprocessing:

– Feature Scaling/Normalization: Scale input features to ensure they
have similar magnitudes, typically between 0 and 1, to aid in conver-
gence during training.

– Handling Missing Data: Address any missing or incomplete data by
imputation or removal.

– Encoding Categorical Variables (if applicable): Convert categorical
variables into numerical representations.

• Data Batching:

– Divide the training and validation data into mini-batches to facilitate
efficient gradient computation and model training.
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After the initial training, it is necessary to experiment with different hyper-
parameters (e.g., learning rate, batch size, number of layers) on the validation
set to find optimal settings that reduce loss and improve the model’s ability to
predict and generalise.
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Chapter 2

Real Multiplication

As opposed to the case K = Q or K imaginary quadratic, most other cases
where we want an explicit description of Kab are far from being solved. Those
that are already understood or partially solved are:

• K = Fp(t), using Drinfeld modules [19]

• K a finite extension of Qp the p-adic rationals, due to Lubin and Tate.
They used a similar method to that of elliptic curves but over p-adic
numbers [13].

In addition there’s work due to Dasgupta and Kadke [7] that deals with
totally real fields but is not published yet.

Before, we have shown the usefulness of the theory of elliptic curves with
complex multiplication to address the explicit class field theory problem for
the case of imaginary quadratic fields. In this chapter we are going to explain
an analogous theoretical framework for the case of real quadratic fields due to
Manin. For this purpose we will use the tools of non-commutative geometry.

2.1 Noncommutative spaces

Proposition 1.10.1 and theorem 1.10.1 provide a correspondence between cate-
gories:

{Locally compact Hausdorff spaces} ∼= {commutative C∗-algebras}op
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And we can regard non-commutative spaces as a dual category of the cate-
gory of non-commutative C∗-algebras (see chapter 1 of [11]).

{NC locally compact spaces} := {Non-commutative C∗-algebras}op

Some objects of study in noncommutative geometry and mainly in Manin
proposal are noncommutative tori, these are examples of C∗-algebras that we
will study next following the treatment of [18].

Definition 2.1.1. The rotation algebra Aθ is a C*-algebra generated by two
unitary operators U and V subject to the relations UV = e2πiθV U and U∗U =
V ∗V = I, where θ is a real number. This algebra can be realized as a C*-
subalgebra of B(L2(R/Z)), the algebra of bounded linear operators of square
integrable functions over S1.

A list of basic facts

1. If θ ∈ Z the algebra Aθ is isomorphic to C(T2).

2. If θ ∈ Q the algebra Aθ is isomorphic to the algebra of global sections of
the endomorphism bundle of a complex vector bundle over T2.

3. If θ ∈ R \Q the algebra Aθ is a simple C∗-algebra.

For irrational values of θ, Aθ is also called the algebra of continuous functions
on the noncommutative torus T2

θ. Following the correspondences in the prior
section, as a topological space the noncommutative torus T2

θ is defined as the
dual object of C(T2

θ) := Aθ.

Smooth elements in this algebra are defined by C∞(T2
θ) := Aθ and

Aθ =

{ ∑
n,m∈Z

an,mUnV m ∈ Aθ | {an,m} ∈ S(Z2)

}

where S(Z2) denotes the space of sequences of rapid decay in Z2.

Noncommutative tori are defined in terms of function algebras. Morphisms
T2
θ → T2

θ′ between two noncommutative tori T2
θ and T2

θ′ and the corresponding
C∗-algebra morphisms Aθ′ → Aθ are not enough in the context of noncommu-
tative geometry. A more suitable notion of morphisms here is that of Morita
equivalences.

Recalling the definition of projective modules and bimodules
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Definition 2.1.2. A module P over a ring R is called projective if, for every
surjective module homomorphism f : M → N and every module homomorphism
g : P → N , there exists a module homomorphism h : P →M such that f ◦h = g.

Definition 2.1.3. A R − S-bimodule is an abelian group M such that M is a
left R-module and a right S−module. And such that, for all r ∈ R, s ∈ S, and
m ∈M , we have:

r · (m · s) = (r ·m) · s

Definition 2.1.4. Let R and S be rings. We say that R and S are Morita
equivalent if there exists a bimodule P such that:

• P is a projective left R-module and a projective right S-module.

• The functors

– HomR(P,−) : R-Mod → S-Mod

– HomS(P,−) : S-Mod → R-Mod

provide an equivalences of categories.

For real multiplication program we are looking for Morita equivalences be-
tween Aθ′ and Aθ. These are given by the isomorphism class of a Aθ′-Aθ-
bimodule E which is projective and of finite-type both as a left
Aθ′ -module and as a right Aθ-module.

If such bimodule exists we say thatAθ′ andAθ are Morita equivalent. We can
consider a Morita equivalence between Aθ′ and Aθ as a morphism between Aθ′

and Aθ inducing a morphism between T2
θ and T2

θ′ . Composition of morphisms
is provided by tensor product of modules.

Let SL2(Z) act on R \Q by fractional linear transformations, i.e. given

g =

(
a b
c d

)
∈ SL2(Z), θ ∈ R \Q

we take

gθ =
aθ + b

cθ + d
.

Morita equivalences between noncommutative tori are characterized by the
following result:
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Theorem 2.1.1. (Rieffel [20]) Let θ′, θ ∈ R \ Q. Then the algebras Aθ′ and
Aθ are Morita equivalent if and only if there exist a matrix g ∈ SL2(Z) such
that θ′ = gθ.

In the context of noncommutative geometry we’ll call our irrationalities θ =√
D.

Let θ ∈ R be quadratic irrational and θ′ its image under the nontrivial
element of Gal(K/Q). If K = Q[

√
θ], given a matrix

γ =

[
a b
c d

]
∈ Γ(1)

such that ϵ = cθ+ d is a fundamental unit of OK . Denote by γn the powers
of γ:

γn =

[
an bn
cn dn

]

These matrices have fixed points θ and θ′ and the fundamental unit still
satisfies ϵn = cnθ + dn.

A profinite group is an inverse limit of finite groups. This means that it can
be constructed by taking the limit of a sequence of finite groups, where each
group is a quotient of the previous group.

From the above statements we can define a profinite group as follows. Since
m|n implies cm|cn

Gϵ = lim←−Z/cnZ

And we would like to think of this group as an analogous to a Galois group
and see if it is of use in the study of the field K.
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2.2 Real Multiplication

Inspired by Alain Connes work, Manin’s real multiplication program is described
in detail in his paper [14]. An informal summary is described below.

Stark conjectures suggest that an analogous to the Kronecker-Weber theorem
or Complex Multiplication theory should exist for real quadratic fields. That
is, a description of the Hilbert Class Field (and eventually Kab) given by a
generating transcendental function.

This function say κ is z 7→ e2πiz in KW case and the j-invariant together
with modular functions in Complex Multiplication.

Let K be a imaginary quadratic field. An elliptic curve with complex multi-
plication has a description of the form C/Λ with Λ ∼= OK . One may try to find
an analogue in the real quadratic case, this by assuming the existence of a space
R/OK . We don’t have anymore the nice discrete lattice structure but instead a
dense subset of the real line, also this quotient happen to be non-Hausdorff.

Since part of the motivation for Alain Connes to develop noncommutative
geometry was to aid in the study of ”ill-behaved” quotients as R/OK is reason-
able to use his tools here.

Manin’s proposal is to replace elliptic curves by noncommutative tori as
defined in 2.1.1. The following theorem and its similarity with the analogous in
complex multiplication gives the reason why this approach might be fruitful

Theorem 2.2.1. Let θ ∈ R−Q. The following are equivalent

• Aθ has nontrivial Morita autoequivalences (in the context of categories)

• There exists a matrix g ∈ SL2(Z) such that θ = gθ

• θ is a real quadratic so [Q(θ) : Q] = 2

A noncommutative torus that satisfies any of these conditions is said to have
Real Multiplication (see [18]).

We denote by (EndMorita(Aθ)) the set of isomorphism classes of Aθ − Aθ

bimodules.

There is a well defined ring homomorphism ϕ : EndMorita(Aθ)→ R

If T2
θ is a real multiplication noncommutative torus then

ϕ(EndMor(Aθ)) = {α ∈ R |αΓθ ⊂ Γθ}
= Z+ fOk

where f ≥ 1 is an integer and Ok is the ring of integers of the real quadratic
field K = Q(θ).
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Chapter 3

AI and mathematical
intuition

3.1 Framework

As its work title states, inspiration draws from the paper Advancing mathemat-
ics by guiding human intuition with AI [8].

The authors of the paper used machine learning (deep learning specifically)
to find relations between mathematical objects and prove two conjectures, one
in topology (knot theory) and the other in representation theory. They already
have some conjectures about the possible behavior of some invariants in each
case and used the method to reject or refine them and prove a proper result.

Some previous usages of machine learning in mathematics included: finding
counterexamples, accelerate computations, generating conjectures.

The focus being the use of supervised learning to inquire about an hypoth-
esized function, the paper shows a framework that we expect to follow in this
work.

A summary of the above method is as follows, see figure 3.1 below.

There is a conjecture (maybe not necessarily be a strongly supported one)
about the relationship between two features X(z) and Y (z) associated with an

object z. This connection is thought to be a function f̂ such that f̂(X(z)) ≈
Y (z) and analysing could allow the mathematician to understand properties of
the relationship.

In the supervised learning stage, the researcher proposes a hypothesis that
there exists a relationship between X(z) and Y (z). Now generate data for X(z)
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Figure 3.1: How to include AI in mathematical research, Chart from [8]

and Y (z) pairs and train a function f̂ that predicts Y (z), using only X(z) as
input.

The fundamental contribution here are all the possible functions that can
be learned (linear, nonlinear, continuous or not, etc) given an enough amount

of data. If the measures of performance and loss for f̂ are more accurate than
what would be expected by chance, it indicates that there may be a relationship
worth studying deeper.

In that case, attribution techniques like gradient saliency used in [8] can aid

to understand f̂ and help conjecture a candidate f ′. Though it may be out of
the actual scope of this work, the use of these techniques could aid to identify
which components of f̂ are more relevant for prediction the outputs Y (z) and
therefore for f ′.

By iterating the process just described by generating data with our candi-
date f ′ and reformulating our hypotheses given the attribution analysis when
necessary, we obtain what the paper calls a ‘test bed for intuition’ by finding
what relationships and features weight more so we can adjust our experiment.

[8] makes a simple example. Let z run between the set of convex regular
polyhedra, X(z) ∈ Z2 × R2 be a tuple representing its vertices, edges, volume
and surface area. Then Y (z) ∈ Z would represent the number of faces of z given
by Euler’s characteristic: X(z) · (−1, 1, 0, 0) + 2 = Y (z).

One of the two results proved in the paper using the framework was a relation
between an algebraic invariant of hyperbolic knots z in topology, their signature
σ and some of its geometric invariants slope, volume and ratio.

It was initially conjectured that there exist constants c1 and c2 such that,
for every hyperbolic knot z,

|2σ(z)− slope(z)| < c1vol(z) + c2
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This was supported by large amounts of data but they were able to find
counterexamples to it. A framework as described in this section lead to a new
conjecture that could be proved at the end with the support of this method:

Theorem 3.1.1. There exists a constant c such that, for any hyperbolic knot
z,

|2σ(z)− slope(z)| ≤ cvol(z)inj(z)−3

Where slope(z), inj(z) the injectivity radius, vol(z) are geometric invariants
of the know and σ(z) is an algebraic invariant. For more information about know
invariants see [1].

The conclusion being that instead of generating data-driven conjectures di-
rectly, we can iteratively guide our thinking in a direction with the aid of AI.

3.2 Current computations of HK for real quadratic
fields

Where does the previous section fit into our study of quadratic fields and their
abelian extensions? An example of how we can use the framework from Nature’s
paper is to set our objects z as a given quadratic field, say Q[

√
D] = K with

D < 0. The tuple X(z) storing invariants of K and finally Y (z) representing its
corresponding Hilbert Class Field (or a description of it). With these pieces of
information we could try to recreate in part, the theory of complex multiplica-
tion of elliptic curves and obtain an approximation of j(E), E an elliptic curve
given by the orders of a lattice Λ in the ring of integers OK .

As complex multiplication for imaginary quadratic fields is already proven
we can readily check results with existing algorithms see [5] for example.

Now for the real part of the story Q[
√
D] = K, D > 0, no proven method

yields a description of a generating function for HK , similar to the complex
exponential for Q or the j-invariant for an imaginary quadratic field. According
to [6] and [14], there is evidence that a similar relation/generating function may
exists.

Concretely in [6], Stark units are described as a special set of units in a
number field that appear in Stark’s conjectures on the values of L-functions at
s = 0. They are used in the algorithm presented in the paper to compute the
Hilbert class field of a real quadratic field. Algorithm involves computing the
Stark units of the real quadratic field and using them to generate the Hilbert
class field and then as output provide the minimal polynomial which defines
HK .
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Even though Stark units come from the still unproven Stark conjectures
in [22], Cohen’s and Roblot’s paper verifies independently of them that the gen-
erated field is in fact the Hilbert Class Field. This algorithm together with a
complex multiplication version for imaginary fields is implemented in the com-
puter algebra system PARI/GP. Created by Henri Cohen and designed for com-
putations in number theory it is available at https://pari.math.u-bordeaux.fr/.

35



Chapter 4

Some Computations

4.1 Initial setting and generating Data

Our approach will deviate from the classical techniques of class field theory and
instead try to find a way through different methods, here machine learning and
possibly non commutative geometric tools. Following the framework in 3.1.

The objects of study are real quadratic fields and our target values are
Hilbert Class Fields.

Let z = Q[
√
D] with D > 0 squarefree integer, be a real quadratic field.

Mimicking [8] we’ll work with a set of known data of z, and divide it into
vectors X(z) and Y (z).

For each z, X(z) contains the following data

• X1 = D

• X2 = ∆z

• X3, X4, X5: the coefficients of the minimal polynomial of definition for
Q[
√
D]

• X6: Class number for z

• X7: Period length of the expression of
√
D as a continued fraction

• X8, ..., X206: numbers ai in [a0; a1, a2, . . . , an]. Depending on the period
length most of the time just a few of these Xi apply for each field z

• X207, X210, X209: Three numbers representing the decomposition of the
class group of z according to the structure theorem for finitely generated
abelian groups. In our data no real quadratic field had a Class Group
where such a decomposition consisted of more than three groups
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• X210: Regulator of z

• X211 = pn/qn, where n = X7 the period length of the continued fraction
expansion of

√
D

• X212, X213: pn and qn as above respectively.

Similarly, Y (z) is made of the following components:

• Y1: Degree of the polynomial p that generates the Hilbert Class Field

• Y2, .., Y28: Possible roots of p

• Y29, ...Y40: Coefficients of p

We would expect the Hilbert Class Field of a given z, identified with the
values Y (z) to be related to some if not all of these components Xi(z) through

an unknown function f̂(X(z)) ≈ Y (z).

The non-standard addition here is based mainly in non-commutative geom-
etry and corresponding to the relationship between the expression of

√
D as

a continued fraction and real quadratic fields. For example, Manin proposes
in [14] the use of pseudolattices (an analog to lattices within R) as tools to find
the Hilbert Class Field of Q[

√
D]. Two such pseudolattices are generated by

irrationals θ, θ′ and they are isomorphic if and only if their continued fraction
expansions coincide starting from some place.

This connection is supported by several sources, see for example [17] and [15],
or [12].

The software used to generate the above data for each field was PARI/GP
and SageMath. As described in 3.2 the Y (z) values we obtained via the al-
gorithm in [6]. Fortunately for quadratic extensions, several invariants from
Galois theory are trivial and the remaining features in X(z) had fast algorithms
implemented in PARI/GP to compute them.

Initially, computations were performed on the same dataset as in Cohen and
Roblot’s paper [6] that consisted in all quadratic real fields of discriminant less
than 2000 (around 700 fields) but it was later enlarged to include all fields z =
Q[
√
D] for 0 < D < 10000, D squarefree, that is, 6082 fields with ∆z < 40000.

The routine quadhilbert(d) which calculates the Hilbert class field of the
quadratic field with discriminant d, running in a intel i5 at 3.60GHz and 16Gb
of RAM took around 20 minutes to compute the Hilbert Class Field polynomial
of 6082 fields without taking into account its roots.

Our purpose is to train a function f̂ that predicts Y (z) (or a part of it)
using only X(z) values that do not require the use of Stark conjectures. If not
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possible, then a posterior study and implementation of attribution techniques
could lead us in the right direction.

4.2 Method Used

For simplicity the machine learning model applied is a feedforward neural net-
work constructed with the sequential API, part of the Keras library in Python.
As such, we focused on obtaining an individual target value, a root of the gen-
erating polynomial of the Hilbert Class Field, specifically Y2 the first found root
since it was the only available for all fields in the dataset. A future approach
could consist on finding the degree of the polynomial or using a more flexible
method as the Functional API.

An original attempt consisted in trying to find the coefficients of the poly-
nomial instead of its roots. Apparently the large nature of some coefficients for
several fields made that computation too large for a model of this type even after
removing outliers or applying different normalization techniques in the data.

The pandas data analysis library and scikit learn were used to manipu-
late the data. TensorFlow and Keras for models

Standard methods of data normalization and regularization were applied.
StandScaler standarizes features removing mean and scaling to unit variance.

This normalization was applied firstly to make the data conform to what
is expected by the method in the Keras library, and secondly to standardize
our data due to the nature of the features. For example, discriminants and
coefficients of the Hilbert class field tend to increase and are far from being
uniformly distributed. Also, some others like the coefficient of x2 in the minimal
defining polynomial of z have no deviation since this polynomial is by definition
monic.

• First a feature selection was implemented to simplify the model so it
would take into account only the first 50 and then the first 20 numbers in
[a0; a1, a2, ..., an].

• Another method was the removal of outliers, that included some fields
with an abnormal/bigger than usual polynomial for the Hilbert class field.

• Finally, due to the high validation loss, simultaneous L1 and L2 regular-
ization was applied at different penalization values.

• L1 regularization consists of a cost added proportional to the absolute
value of the nets weight coefficients (L1 norm)
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• L2 regularization consists of an added cost proportional to the square of
the value of the weight coefficients (L2 norm)

See [4] for more in relation to L1 and L2 regularization.

In this work, each layer is a fully connected or dense layer. Data was tested
with 2 up to 4 layers with different number of neurons 32, 64, 200, 300, 400, and
500.

For each of this possible configurations batch and epochs sizes of 32, 64, 128,
256 and 50, 100, 150, 200 respectively were tested with similar results.

Learning rates of 0.001, 0.01 and 0.5 were used at different stages of the
experiment.

Model was implemented with the following functions

• Activation: Rectified linear activation function ReLU

• Loss function: mean squared error

• Optimizer: Adam optimization algorithm which is an extension of the
stochastic gradient descent.

Since our data was small for the task at hand, we performed k-fold cross-
validation at K = 4 and K = 5. This consisted in splitting the data in K
partitions and iterating training and evaluation steps.

4.3 Preliminary Results and Next Steps

The results of the experiment were fairly consistent between different runs using
different parameters as mentioned in the previous section.

Across all different tests, training set loss was in the interval [5, 36], valida-
tion set loos within [19.4336, 27] and Test loss inside [20, 32]. The best results
obtained lead to a training set loss of 5.2557, a validation set loss of 19.4336
and a Test/total loss of 20.1540.

A relative and improving low training set loss and a high, constant or in-
creasing validation test loss indicate that even though the algorithm is learning
for the data, it is not good at generalizing and consequently inappropriate to
make predictions for unseen data.

The training loss of 5.2557 indicates that, on average, the squared prediction
errors (the squared differences between predicted and actual values) on the
training data are approximately 5.2557. The target values in the full dataset
were in the interval [−50, 0] and we considered this to be low for our case.
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However, further investigation is required as this could be due to the somewhat
small amount of data retrieved.

Similarly the relatively high validation loss compared to the training loss
indicated to us that the model might not generalise well. A test/total loss was
expected to be higher than the validation loss since the test set is totally new to
the model and not tuned for the problem. In summary, this indicates an issue
with the model’s performance.

An attribution score plot for the most accurate iteration of the experiment
using the absolute value of the gradients of the root with respect to the inputs
is given below

Figure 4.1: Attribution score

Where coefminpolx1 is the coefficient of x in the polynomial generator of
z = Q[

√
D], classgroupi corresponds to a component in the finite abelian de-

composition of Cl(z). Similarly the ci’s are the numbers in the continuous
fractional expansion of

√
D.

One of the purposes of [8] was to introduce a framework that uses attribution
techniques in machine learning to guide mathematical thought. In our case
figure 4.3 shows that coefminpolx1 and the class group having bigger attribution
scores might be more important to our study than other features. This however
is hypothetical and is subject to the results given by a further improved model
with better generalisation.
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As mentioned in [8]. The fact that the model cannot predict a relationship
between X(z) and Y (z) better to what is expected by chance doesn’t mean that
such relationship or pattern doesn’t exist.

Even if the results are inconclusive, we can still gain some insights. First,
possible ways to improve our experiment including generating additional data
including new features/invariants of Q[

√
D], choosing different and more appro-

priate target values as the degree of the generating polynomial. Furthermore
we are not led to abandon the deep learning approach as the training set results
and attribution do not rule out a relationship between our features and target
values.

Currently we are working in further implementation of Manin’s real multi-
plication program into the algorithm.

A possible approach is to compute special values of theta functions with
characteristics (a, b) = (pn, qn), where pn, qn are the numerator and denominator
of the n-th convergent of

√
D and n is the period length. This is outlined in

Manin’s paper [14] with ideas that come from Hecke.

As of our current knowledge there is not a built-in library to work with
theta functions with arbitrary rational characteristics in PARI/GP, Sage or
Mathematica, the computer algebra systems inquired for this work. However a
custom library for SageMath has been written and published in [23]. We expect
this library to help us in further developments.
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ond edition, 2013.

42

https://knotinfo.math.indiana.edu/
https://arxiv.org/abs/2103.02516


[12] J. Lewis and D. Zagier. Period functions and the Selberg zeta function for
the modular group. In The mathematical beauty of physics (Saclay, 1996),
volume 24 of Adv. Ser. Math. Phys., pages 83–97. World Sci. Publ., River
Edge, NJ, 1997.

[13] Jonathan Lubin and John Tate. Formal complex multiplication in local
fields. Ann. of Math. (2), 81:380–387, 1965.

[14] Yu. I. Manin. Real multiplication and noncommutative geometry (ein al-
terstraum). In The legacy of Niels Henrik Abel, pages 685–727. Springer-
Verlag, 2004.

[15] Yuri I. Manin and Matilde Marcolli. Continued fractions, modular symbols,
and noncommutative geometry. Selecta Math. (N.S.), 8(3):475–521, 2002.

[16] David Mumford. Tata lectures on theta. I. Modern Birkhäuser Classics.
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