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Foreword 

Artificial ground freezing is a safe, proven and reliable method for various construction 

projects in water-bearing, unstable soils and rock, from special civil engineering (e.g. for 

excavations), to tunnel construction and mine shafts. Essential for the design and control of 

the freezing process are the thermal calculations. Historically, these have been performed 

by using analytical methods. However, the project-specific geometrical and geological 

conditions and the construction sequence have a significant influence on the design, which 

is difficult to consider using analytical and empirical methods only. A partial solution to 

more complex design challenges is currently the use of numerical models. An important 

advantage of numerical modelling, among others, is the use of 3D models, which becomes 

practically necessary in many present challenges of engineering and allows a suitable 

representation of the geological structure. Numerical models also make possible the proper 

combined simulation of the excavation sequence, the ground support and the coupling 

thermo-hydro-geomechanical approach. 

It must be stated, however, that the results of numerical calculations are known to be mesh-

dependent, which means that for too “coarse” meshes a correct interpretation of the 

analysed physical phenomena is not possible. Unfortunately, there are also other factors 

which significantly influence the accuracy of numerical calculations. 

The research work of Diego Sancho Calderón starts at this point, reviewing the analytical 

and numerical approaches. He selected different freezing problems, which he investigated 

and analysed. Based on the performed verification, he was able to define the limitations 

and applicability of both analytical and numerical methods. In my opinion, the presented 

results are a step forward in the scientific research of artificial ground freezing. 

Furthermore, the presented adjustment of the Sanger & Sayles formula and the code of 

good practice for thermal numerical modelling are of great practical importance for 

construction projects using the artificial ground freezing technique. 

It was a great pleasure for me to assist and support Diego in his work and I would like to 

thank him for the opportunity to be a part of this very important research. 

 

 

Kamen, June 2022 

Dr. Sven Bock 
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ln [2 (cosh

2𝜋𝑦

𝑠
− cos

2𝜋𝑥

𝑠
)] 
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𝑣𝑜𝑙𝑢𝑚𝑒⁡𝑜𝑓⁡𝑠𝑜𝑙𝑖𝑑⁡𝑜𝑓⁡𝑜𝑛𝑒⁡𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑠𝑢𝑟𝑓𝑎𝑐𝑒⁡𝑎𝑟𝑒𝑎⁡of⁡one⁡element⁡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔⁡ℎ𝑒𝑎𝑡
 : smallest characteristic length 

of any zone 

𝑳𝑭 
𝑙𝑣 −

1

2
𝑐1𝑇𝐼 + 𝑐2𝑇𝐼𝐼 (

𝑎𝑟−1

ln⁡(𝑎𝑟)
) : volumetric latent heat of the unfrozen area, 

freeze wall case (used in Sanger & Sayles’ solution) 

𝑳𝑰 
𝑙𝑣 +

(𝑎𝑟
2−1)

⁡2⁡ln⁡𝑎𝑟
⁡𝑐2𝑇𝐼𝐼 : volumetric latent heat of the unfrozen area, single 

freeze pipe case (used in Sanger & Sayles’ solution) 

  

𝑳𝑰𝑰𝒆 
𝑙𝑣 + 2.5𝑐2𝑇𝐼𝐼 − 0.5𝑐1𝑇𝐼 : volumetric latent heat of the unfrozen area, 

outer boundary of freeze circle (according to Sanger & Sayles)  

𝑳𝑰𝑰𝒊 
𝑙𝑣 + 2.0𝑐2𝑇𝐼𝐼 − 0.5𝑐1𝑇𝐼 : volumetric latent heat of the unfrozen area, 

inner boundary of freeze circle (according to Sanger & Sayles)   

𝑳𝒛𝒐𝒏𝒆 Amount of latent heat in the zone 

𝒎 
Constant, larger than one, which depends on the geometrical 

discretisation 

𝒎𝟏 Number of time steps simulated 

𝒏 Number of data points 

𝒏𝟏 Number of elements in the model 

𝒑 Calibrated parameter for the correlation of 𝑎𝑟 

𝑷(𝒙, 𝒕) Flux per unit surface 

𝒒 Calibrated parameter for the correlation of the computing time 

𝒒𝒈 Energy released per unit volume and per unit time 

𝒒𝒔 Constant heat flux extracted at the origin 

𝒒𝒙 Flux or heat transfer rate in the direction of the “x” axis 

𝒒𝟏 Constant heat flux applied at boundary 1 

𝒓 Radial coordinate 

𝒓𝟎 Freeze pipe radius 

𝒓𝟏 Radius of source in annular problem 

𝒓𝟐 Radius of external boundary in annular problem 

𝑹(𝒕) or 𝑹 For the single freeze pipe problem: Freeze radius 
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For the freeze wall problem: Half-width of the freeze wall (freeze radius 

in the direction perpendicular to the freeze wall) 

𝑹𝟐 Coefficient of determination 

𝑹𝒆 External radius of the freeze annulus (in the freeze circle problem) 

𝑹𝒊 Internal radius of the freeze annulus (in the freeze circle problem) 

𝒔 Separation between pipes 

𝑺𝑻 Stefan number 

𝑺⊥ 
Surface of the zone perpendicular to the direction of the energy 

transmission 

𝒕 Temporal coordinate (time) 

𝒕𝑰 Freeze time up to a freeze radius R 

𝒕𝐈𝐈𝐞 Time to reach the external freeze radius (in a freeze circle problem) 

𝒕𝐈𝐈𝐢 Time to reach the internal freeze radius (in a freeze circle problem) 

𝑻 Temperature 

𝑻(𝒙) Temperature distribution in the direction of the “x” coordinate 

𝑻𝒇 Phase-change temperature or upper limit of freeze temperature range 

𝑻𝒎 Lower limit of freeze temperature range 

𝑻𝒔 Source (freeze-pipe) temperature 

𝑻𝑰 𝑇𝑠 − 𝑇𝑓: freeze-pipe temperature minus phase-change temperature 

𝑻𝑰𝑰 𝑇0 − 𝑇𝑓: initial temperature minus phase-change temperature 

𝑻𝟎 Initial temperature 

𝑻𝟏(𝒙, 𝒕) Temperature distribution in the frozen phase 

𝑻𝟐(𝒙, 𝒕) Temperature distribution in the unfrozen phase 

𝑻𝟐 Temperature at the boundary 2. 

𝒖 
Update period (every how many time steps) with which the “freeze 

block” routine is executed 

𝒗 
𝑣2 =⁡

𝑅2−𝑟0
2

4𝛼1∙𝑡
 : variable defined in Ständer’s solution for the single freeze 

pipe 

𝒗𝒈 Groundwater velocity 

𝑽 Zone / element volume 
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𝑾 Freeze wall width 

𝑾𝑰 Average freeze wall width at closure 

𝑿 −
𝑘1∙𝑇𝐼

𝑘2∙𝑇𝐼𝐼
: parameter in Ständer’s solution for the single freeze pipe 

𝒙 Linear spatial coordinate in the x-direction 

𝒙𝒊
𝒆𝒙𝒂𝒄𝒕 value of the variable x, from the exact analytical solution 

𝒙𝒊
𝒏𝒖𝒎 value of the variable x, from the numerical method 

𝒙𝟐 Thickness of slab 

𝑿(𝒕) 
Distance from the phase-change interface to the source (freeze front 

position) 

𝒚 Linear spatial coordinate in the y-direction 

𝒀 −
𝑘1∙𝑇𝐼

𝛼1∙𝜌∙𝑞𝑠
 : parameter in Ständer’s solution for the single freeze pipe 

𝒛 Linear Spatial coordinate in the z-direction 

𝒁 
𝑅

𝑟0
: parameter in Ständer’s solution for the single freeze pipe 

 

Greek symbols 

Symbol Name 

𝜶 𝛼 = 𝑘/𝜌𝑐 : thermal diffusivity 

𝜶𝟏 Thermal diffusivity of phase 1 (frozen phase) 

𝜶𝟐 Thermal diffusivity of phase 2 (unfrozen phase) 

𝜶𝟏𝟐 
𝛼1

𝛼2⁄  : ratio of thermal diffusivities 

𝜷 Constant coefficient in the condition of stability of the FTCS scheme 

𝜸 Dimensionless parameter 

𝜹 Half-width of the freeze annulus or freeze wall at closure time 

𝜹(𝒕) Temperature penetration depth 

∆𝒕𝒄𝒓 Critical time step 

∆𝐓 Temperature difference between phases 

∆𝒕 Time step 

∆𝒙 Discrete interval of length in the coordinate x 
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𝛆 Phase-change temperature range 

𝜼 𝑥 (2√𝛼1𝑡⁄ ), similarity variable 

𝜼𝟏 
𝑟2

4𝛼1𝑡
, first similarity variable 

𝜼𝟐 
𝑟2

4𝛼2𝑡
, second similarity variable 

𝝀 Dimensionless parameter 

𝝁 Average 

𝝃 Unfrozen water function 

𝝃𝒋
𝒏 Unfrozen water content of element 𝑗 at time 𝑛 

𝝆 Density of the medium 

𝝆𝟏 Density of the frozen phase 

𝝆𝟐 Density of the unfrozen phase 

𝝈 Standard deviation 

𝝋(𝒛) ∫
𝑒𝑧−1

𝑧
𝑑𝑧 = ∑

𝑧𝑛

𝑛⁡𝑛!
∞
𝑛=1

𝑧

0
    with 𝑧 = 2⁡𝑙𝑛

𝑅

𝑟0
 (in Leibenson’s solution) 

𝝓(𝒙, 𝒕) Exact, continuous solution 

𝝓(𝒙𝒊, 𝒕𝒎) Exact solution evaluated at the mesh point i at time instant tm 

𝝓𝒊 Approximate numerical solution evaluated at the mesh point i 

𝝓𝒊+𝟏 Approximate numerical solution evaluated at the mesh point i +1 

𝝓𝒊
𝒎 

Approximate numerical solution evaluated at the mesh point i at time 

instant tm 

𝝎 Water content 

 

Other symbols 

Symbol Name 

𝓞(∆𝒙) 
Notation used to indicate that the truncation error is proportional 

(linearly) to ∆𝑥 

𝝏𝑻

𝝏𝒙
 Temperature gradient in the direction of the “x” axis 

𝝏𝑻

𝝏𝒚
 Temperature gradient in the direction of the “y” axis 



  

List of Symbols 

 

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing XXVI 

𝝏𝑻

𝝏𝒛
 Temperature gradient in the direction of the “z” axis 

𝛁𝟐 Laplacian operator 
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List of Abbreviations 

AGF: Artificial Ground Freezing 

BC: Boundary Conditions 

BTCS: Backward Time, Centred Space method 

CaCl2: Calcium Chloride 

FD: Finite Difference 

FDM: Finite Difference Method 

FEM: Finite Element Method 

FLAC3D: Fast Lagrangian Analysis of Continua (3D) 

FTCS: Forward Time, Centred Space method 

HBIM: Heat Balance Integral Method 

LNG: Liquefied Natural Gas 

ODE: Ordinary Differential Equation 

PDE: Partial Differential Equation  

RMSE: Root-Mean-Square Error 

THM: Thermal-Hydraulic-Mechanical 

2D: Two Dimensions 

3D: Three Dimensions 
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Glossary and naming convention for numerical models  

Glossary  

Average of absolute values of errors: The average of the absolute (positive) values of the 

errors.  

Artificial ground freezing: A method used in geotechnical engineering for stabilising the 

ground and / or preventing groundwater from entering an excavation. 

Boundary conditions: Conditions imposed at the boundaries (limits) of a problem which is 

described by differential equations inside those boundaries.  

Closure time: Time required to close the freeze body. 

Computing time: Time required by a computer to perform a certain numerical calculation.  

Critical time step: Largest time step for which the explicit method is stable for a certain 

model. 

Freeze block / Freeze routine: Block of numerical code used in FLAC3D to simulate the 

phase change effects.  

Freeze body: Frozen body of ground, usually used for structural improvement and/or 

groundwater cut-off. The freeze body may present different shapes (wall, cylinder, 

annulus…). 

Freeze circle: An annular or cylindrical freeze body, engendered by a set of freeze pipes 

disposed at regular intervals in a circle, usually in order to provide protection for a circular 

excavation. It is also applicable to refer to the circular-shaped freeze pipe disposition itself. 

Freeze front: Time-dependent phase-change interface. 

Freeze pipe: A pipe inserted into a borehole into which a coolant circulates with the purpose 

of freezing the ground around it. 

Freeze pipe temperature: Temperature of the freeze pipe. 

Freeze radius: Radius of the freeze front (used in problems with radial symmetry). 

Freeze status: Status of the zones / elements in the numerical model (unfrozen, freezing or 

already frozen). 

Freeze wall: A straight or linear freeze body, generated by a set of freeze pipes disposed at 

regular intervals in a row. It may be used to protect a side of a rectangular excavation. 

Freeze temperature: Phase-change temperature or phase-change point of the groundwater. 

Initial temperature: Initial temperature of the ground before the start of the ground freezing 

process. 

Plateau: Horizontal area in the temperature-time graph produced by numerical simulation 

of a ground freezing problem, generated due to the typical oscillations occurring in the 

enthalpy method. 
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Root-Mean-Square Error (RMSE): A measure of the error which is defined as the square 

root of the sum of the squares of the errors of the different points. 

Single freeze pipe: Problem with one singular freeze pipe. This problem has one of the 

simpler geometries and has been extensively studied. 

Source temperature: Temperature of the cooling or heating source.  

Steady state: A state of a system in which it does not change in time, e.g. for a thermal 

system, a state in which the temperature of all its points does not change in time.  

Temperature penetration depth / radius: Distance from the thermal source to the farthest 

point of the material whose temperature has been affected by the source. 

Thermal time: Simulated time considered in a thermal calculation. 

Time step: Discretisation of time in a numerical model. The numerical calculations are 

performed at the intervals defined by the time step. 

Verified numerical model: Numerical model for ground freezing which uses appropriate 

numerical parameters according to the conclusions of the evaluations from chapter 5. 

Zone / element (mesh zone / mesh element): Portion into which the space is discretised for 

numerical calculations using the Finite Element or Finite Difference Methods. 
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Naming convention for numerical models 

The following naming convention for numerical models has been used in the dissertation: 

MHa-TSb-UFc-TEd-SOe-SCf-STg-TPh-AGi-j_k 

The meanings of the variables (the lower-case letters in italics) are as follows: 

• MHa: variable a is the mesh size, in cm. 

• TSb: variable b is the time step, in seconds. 

• UFc: variable c is the update period (every how many time steps) with which the 

“freeze block” routine is executed. 

• TEd: variable d is the type of elements (“h” for rectangular prisms and “t” for 

triangular prisms). 

• SOe: variable e stands for the source type (“s” for surface, “p” for punctual). 

• SCf: variable f is the type of phase change (“a” for abrupt, “g” for gradual). 

• STg: variable g represents the presence or not of phase change (“p” for problems 

with phase change, “n” for problems without phase change). 

• TPh: variable h is the maximum temperature difference (initial temperature of the 

ground minus temperature of the “cold boundary”). 

• AGi: variable i stands for the solving algorithm, (“E” for explicit, “I” for implicit). 

• j: variable j represents the geometry of the model (“NE” for Neumann, “CY” for 

single freeze pipe, “fw” for freeze wall and “fc” for freeze circle). 

• k: variable k is used for additional parameters changed in the models, e.g. larger 

models, models with a longer computed thermal time or models without any latent 

heat (shown as LHT=0). 

An example of a model name following this convention is presented below: 

MH1-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHT=0 
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Abstract 

Artificial ground freezing is a method widely used for improvement of the ground stability 

and water cut-off for excavation in water-bearing ground. The engineering design of these 

ground improvement measures requires thermal calculations in order to prognose the time 

necessary for sufficient freeze wall thickness and thus the power of the freezing machines 

and the energy consumption. Nowadays, there are two main methods to perform such 

calculations: analytical and numerical. 

Thermal problems with phase change are described mathematically by means of partial 

differential equations with a moving (time-dependent) boundary, which are usually known 

as Stefan problems. Due to the intricacy of these problems, despite intensive research, only 

a small number of exact solutions are known. Furthermore, these solutions are usually 

applicable for problems with very specific conditions only, such as the well-known 

Neumann solution for the semi-infinite slab. Therefore, the designer of artificial ground 

freezing projects has to recur to numerical or approximate analytical solutions for thermal 

design. 

Numerical methods, because of their very nature, need to be verified and calibrated in order 

to limit and control the errors in the results. In the present thesis, several numerical models 

for thermal calculations with phase change were verified against the exact Neumann 

solution. This was performed by an in-depth analysis of the effects of several numerical 

parameters, such as the mesh size and type, the time step, the frequency of updating the 

freeze status of the mesh elements and the type of solving method (implicit or explicit). 

Additionally, a sensitivity analysis was performed to investigate the effect of the initial and 

boundary conditions of the problems, such as the initial temperature gradient, the amount 

of latent heat, the graduality of the phase change and the thermal characteristics of the 

ground. In this way, the applicability limits of the numerical model were sought and the 

conditions for an accurate, verified model were found. It was concluded that the mesh size 

has the most significant impact on the accuracy of the results. A code of good practice for 

numerical modelling of thermal problems with phase change was created based on the 

results of these investigations. 

In addition to the numerical methods, approximate analytical solutions for engineering 

design were studied. These solutions are applicable to three usual practical configurations: 

single freeze pipe, freeze wall and freeze circle. The accuracy of the approximate analytical 

solutions from Leibenson, Khakimov, Ständer, Sanger & Sayles and Lunardini was 

investigated by comparing them with the results from the previously verified numerical 

model for several problems with several initial and boundary conditions, similarly to the 

sensitivity analysis for the verification of the numerical model. The values of these 

parameters were chosen to cover usual and potential cases in engineering projects. It was 

concluded that Ständer’s solution was the one with the highest accuracy for most of the 

problems, especially for the single freeze pipe and freeze wall geometries, although it does 

not appear to be widely known in the literature. One drawback of Ständer’s solution is that 

it is not in a closed form, so it is more complex to use than other formulae. Thus, it was 
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attempted to create a solution which is easy to use and accurate at the same time. With this 

intent, Sanger & Sayles’ formula was adjusted by benchmarking it with the verified 

numerical model, with positive results.  

Finally, experimental and project data from several literature sources were used to further 

confirm the usability of the numerical and analytical solutions. The empirical data and the 

calculated results could be reconciled, providing further evidence of the usefulness of the 

approach employed and reinforcing the conclusions of the thesis. 
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Resumen  

La congelación artificial del terreno es un método que se utiliza habitualmente en 

excavaciones en terrenos acuíferos con el fin de estabilizarlos y evitar la entrada de agua 

subterránea. Para diseñar esta medida de mejora del terreno es necesario realizar cálculos 

térmicos, de los cuales se derivan el tiempo necesario hasta alcanzar el espesor de pared 

congelada, la requerida potencia de las máquinas de congelación y el consumo energético. 

Actualmente existen dos métodos principales para estos cálculos: analítico y numérico. 

Los problemas térmicos con cambio de fase pueden describirse matemáticamente mediante 

ecuaciones diferenciales en derivadas parciales con frontera móvil, que representan los 

llamados problemas de Stefan. La complejidad de estos problemas es tal que, a pesar de la 

intensiva investigación en este campo, solamente se conocen soluciones exactas para unos 

pocos de estos problemas. Estas soluciones son aplicables normalmente sólo para 

problemas con condiciones muy específicas, como el conocido problema de Neumann. Así, 

el ingeniero de diseño de proyectos de congelación artificial tiene que recurrir a soluciones 

aproximadas para el diseño térmico, ya sean analíticas o numéricas. 

Cuando se utilizan métodos numéricos, debido a su propia naturaleza, es necesario 

verificarlos y calibrarlos para limitar y controlar los errores en los resultados. En esta tesis, 

se han verificado varios modelos numéricos para el cálculo térmico comparándolos con la 

solución exacta de Neumann. Este proceso se ha realizado mediante un análisis en 

profundidad de los efectos de diferentes parámetros numéricos, como el tamaño y tipo de 

malla, la duración de los pasos de tiempo, la frecuencia de actualización del estado de 

congelación de los elementos y el tipo de método de resolución (implícito o explícito). 

Adicionalmente, se ha realizado un análisis de sensibilidad sobre las condiciones iniciales 

y de contorno del problema, como el gradiente de temperatura inicial, la cantidad de calor 

latente, el tipo de cambio de fase (abrupto o suave) y las características térmicas del terreno. 

De este modo, se ha tratado de hallar los límites de aplicabilidad del modelo numérico, 

encontrando las condiciones que hacen que el modelo sea preciso. Con el fin de condensar 

los resultados de estas investigaciones, se ha creado un código de buenas prácticas para la 

modelación numérica de problemas térmicos con cambio de fase. 

Además de los modelos numéricos, se han estudiado algunas soluciones aproximadas para 

el diseño ingenieril. Estas soluciones son aplicables a tres configuraciones habituales de 

tuberías de congelación: tubería aislada, tuberías en fila (pared congelada) y tuberías en 

círculo (círculo de congelación). La precisión de las soluciones analíticas aproximadas de 

Leibenson Khakimov, Ständer, Sanger & Sayles y Lunardini ha sido investigada 

comparando sus resultados con los del modelo numérico previamente verificado. Esta 

comparación se ha realizado para varios problemas con diferentes condiciones iniciales y 

de contorno, de forma similar a los análisis de sensibilidad para la verificación del modelo 

numérico. Los valores de estos parámetros han sido elegidos para cubrir casos habituales y 

potenciales en proyectos de ingeniería. Se ha concluido que la solución de Ständer es la 

más precisa para la mayoría de los problemas, especialmente para la tubería aislada y 

tuberías en fila, aunque sin embargo, según la bibliografía, esta solución no parece ser 
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ampliamente conocida. Una desventaja de la solución de Ständer es que no se presenta en 

forma de fórmula cerrada, de manera que su uso es más complicado que otras fórmulas. 

Por ello, se ha tratado de crear una solución que sea a la vez fácil de usar y precisa. A tal 

fin, se ha ajustado la fórmula de Sanger & Sayles basándose en los resultados del modelo 

numérico verificado, con resultados positivos. 

Finalmente, datos experimentales y de proyectos de diferentes fuentes bibliográficas se han 

utilizado para confirmar la utilidad de las soluciones numéricas y analíticas. Los datos 

empíricos y los resultados de los cálculos concuerdan suficientemente, aportando evidencia 

adicional sobre la utilidad de los métodos empleados y reforzando las conclusiones de la 

tesis. 
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 Introduction 

Underground openings and excavations often require stabilisation and groundwater control 

methods to prevent failure of the excavation face and water inflow into the excavation. One 

of the ground improvement methods which may be used in those situations is artificial 

ground freezing (AGF). AGF is based on freezing the ground prior to excavation by means 

of circulation of a cooled fluid in boreholes, which improves the ground stability and 

watertightness. It has been widely used in mining (especially for shaft sinking) and civil 

engineering. AGF is often considered as providing more certainty and less geotechnical and 

hydrogeological risk than other ground-treatment methods, such as grouting, as reported 

e.g. in Leung et al. (2012) for tunnel construction in Hong Kong and in Sturk and Stille 

(2008) for the Hallandsås railway tunnel in Sweden. In the same lines, Bock (2018) stated: 

“Today, the ground freezing method is still unrivalled in terms of providing safe and 

predictable work conditions during mine shaft sinking”.  

The method of artificial ground freezing for groundwater control originated during the 

second half of the 19th century for the execution of mine shafts in granular soils and water-

bearing rock. This application in shaft sinking has continued throughout the time in 

numerous shafts (see e.g. Harris (1995), Franz (2015) and Czaja et al. (2020)). In the last 

decades, it has been increasingly applied to projects in civil engineering (Chang and Lacy, 

2008) (Vitel et al., 2015), such as cross-passages between parallel tunnels (Wenke and 

Willner, 2008) (Roberti, 2012) (Mueller et al., 2015) (Filippo Mira-Catto, 2018) (Phillips 

et al., 2021) or between the tunnel and an escape shaft (Zhou et al., 2021), tunnelling under 

freeze body roof protection (Aerni, 1979) (Hu et al., 2018c), launching starting shafts for 

TBMs and excavations in soils in urban environments (Klösges and Müller, 2021), e.g. 

shallow tunnels near sensitive structures (Jones and Brown, 1979) (Zhou, 2013). It has also 

been used for temporary soil improvement under foundations or in order to seal leakages 

(Haß and Schäfers, 2013). An interesting example of its use in foundations is the 

rehabilitation of the historical building of the 15th century Casa del Cordón in Burgos, 

Spain (Muzás, 1985). Artificial ground freezing is also used at times as an emergency 

solution, e.g. after other methods such as grouting, micropiling, etc. have failed (Schmall 

and Braun, 2006) (Chang and Lacy, 2008) (Orth and Müller, 2013) (Arroyo, 2017) 

(Nikolaev and Shuplik, 2019). A more exceptional but highly interesting application is the 

long-term ground freezing of a large area to avoid groundwater inflow. Examples of this 

application are found in the Cigar Lake mine in Canada (see Newman et al. (2011) and 

Roworth (2013)) and in the Banji coal mine in China (Zueter et al., 2021). In cases of very 

complex geological or geometrical conditions, artificial ground freezing may be the only 

solution with high success chances (Arroyo, 2017). 

As already indicated, the main aim of the design of the ground freezing process is to ensure 

the stability and/or watertightness of the freeze wall and the safety of the excavation. To 

achieve that, it is required to perform geotechnical and thermal calculations for the ground 

freezing project (Zhou, 2013). “The theory and application of ground freezing appear 

deceptively simple” (Powers et al., 2007): there are many factors which may influence the 
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ground freezing process, such as the geological and hydrogeological conditions, the 

performance of the freezing station or the freeze pipe deviations. Naturally, these factors 

have to be assessed and controlled for a successful project delivery.   

The prediction of the effects of ground freezing (freezing progress, strength improvement, 

etc.) is critically required to ensure the safety of the excavation, evaluate the construction 

costs and schedule (Sopko, 2017a), as well as to optimize the design (Casini et al., 2016). 

The ground strength and creep properties are highly dependent on its temperature (the 

strength improves dramatically in the temperature range around the phase-change 

temperature and generally increases with decreasing temperatures below the phase-change 

temperature, see e.g. Harris (1995) and Roberti (2012)). Hence, the temperature field, 

derived from thermal calculations, is an essential input for the geotechnical calculations 

(P.E.Frivik, 1981) (Hu et al., 2016b). This means that thermal calculations are essential for 

the design of the ground freezing project (Müller, 2014) (Bosch, 2017), for instance, for the 

optimization of the freeze pipe arrangement, the estimation of the time of use and required 

power of the freezing machines, the total energy consumption, the time to achieve the 

required freeze wall thickness and the control of the freezing progress and freeze wall 

stability during the excavation works. Additionally, thermal simulations may be compared 

to the results of a monitoring programme or used to back-analyse the thermal properties of 

the ground, as in Pimentel et al. (2011).  

Thermal design for artificial ground freezing has the main goal of predicting the 

temperature field in the ground given certain initial and boundary conditions, such as the 

initial ground temperature, the thermal properties of the ground and the freeze pipe 

temperature. In order to perform the design, a moving boundary problem in partial 

derivatives, a so-called Stefan problem, must be solved. For this type of problems, only a 

few exact analytical solutions have been found for very specific, simple geometries and 

conditions. However, several approximate analytical formulations for the prediction of the 

freezing time were developed as early as 40-60 years ago (see also Sopko Jr. (1990)), e.g. 

by Ständer (1967) and Sanger and Sayles (1979), and have been extensively used for 

thermal design of AGF in the past. Up to the present day, design engineers commonly make 

use of these formulae, at least in the first stages of the design process, due to the lower 

effort involved than with numerical methods. Thus, the search for accurate and reliable 

analytical methods is still of interest (Xu et al., 2020). In the past years, commercial codes 

for thermal numerical modelling have been developed and have increasingly popularized 

for the design of ground freezing engineering projects. Therefore, it is becoming 

increasingly common nowadays to make use of numerical software for thermal modelling 

of AGF, especially for the detail design stage, as a result of its better accuracy and 

versatility in the consideration of the specific conditions of the project (e.g. time-dependent 

brine temperature, inhomogeneous ground or freeze pipe deviations with respect to the 

idealised design geometry, see Hentrich and Franz (2015) and Bock (2018)).  

Oftentimes, using the ground freezing method has been economically challenging due to 

the high costs, uncertainties in the estimation of the required energy (Schüller, 2015) or 

installation time (Powers et al., 2007). This may be one of the reasons why AGF is 
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considered a very specific technology, which is not extensively used in construction 

(Roberti, 2012). One of the sources of uncertainty and thus need for overconservative 

designs is the insufficient knowledge of the thermal behaviour of the system (Ziegler et al., 

2010). Therefore, it is critical for the economical application of ground freezing that the 

thermal distribution forecasted by the calculations is realistic and that the freeze pipe 

arrangement is optimized in the design phase and tailored for the prevailing conditions. For 

instance, researchers have studied the optimization of the freeze pipe distribution under 

groundwater flow and found that it can significantly shorten the freezing time (Ziegler et 

al., 2010). Also in other neighbouring technical fields, such as permafrost calculations 

(Hwang et al., 1972) (Osterkamp, 1987) (Dagher et al., 2014), LNG underground storage 

(Neaupane et al., 1999), the effect of glacial periods on geological nuclear repositories 

(Nasir et al., 2013) and thermal storage of latent heat for solar systems (Lunardini, 1986), 

air heat exchangers and underground buildings, thermal calculations to simulate the phase 

change of the ground have to be performed and suitable design tools are required (Rees et 

al., 2000). With the aim of improving the design tools for ground freezing, the existing 

analytical solutions should be reviewed and updated with the currently available means. 

Regarding numerical methods, their accuracy and sensitivity to numerical parameters 

should also be investigated. 

 Problem discussion and formulation 

As a result of the complexity of the phase-change problem, the natural inhomogeneity and 

the different components of the ground (air, water, grains) and potential groundwater flows, 

analytical formulae are only available for simple, specific cases (Lunardini, 1986) (Paynter 

and Life, 1999) (Ziegler et al., 2010). A few exact analytical formulae have been developed, 

e.g. for the one-dimensional semi-infinite slab with constant imposed and initial 

temperatures (the Neumann problem), but they possess only limited applicability to the 

practice, due to the very different geometrical and boundary conditions in real projects. In 

the last years, several steady-state solutions have also been developed, however, it is 

essential to solve the transient problem for AGF projects (Alzoubi et al., 2020). There are 

also a few approximate solutions for practical transient problems in ground freezing for the 

commonly used geometries: single freeze pipe, freeze circle and freeze wall. As already 

stated in the previous section, two solutions frequently used for the estimation of the 

freezing time and power in current engineering practice are the ones from Ständer (1967) 

and Sanger and Sayles (1979), both dating from the 1960-70s. Their results differ widely 

between them and also compared to numerical simulations (see e.g. Hentrich and Franz 

(2015) and Sancho-Calderón et al. (2021)), because they make different simplifications or 

assumptions and / or differ in the calculation method. Also the rules of thumb for estimation 

of the freeze power produce results varying in a large range (Schüller, 2015). Thus, it is 

worth investigating the source of these differences and their accuracy. Furthermore, 

improving these solutions or developing additional analytical solutions would be very 

helpful for engineering design, especially for estimating purposes in the first project phases, 

as analytical solutions are usually easier and faster to use than numerical models. The 
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solution should be sufficiently precise to be of practical utility to forecast the freezing 

process in most of the cases, while being relatively simple to use in practice (e.g. in the 

form of an explicit mathematical expression).  

As the practical applicability of analytical formulations is limited by the complexity of real 

projects, the solutions to the phase change problems and the design of AGF frequently 

require the use of numerical calculations (Li et al., 2018), which are predictive and useful 

for the design, being able to model complex geometries and conditions (Colombo, 2010). 

Therefore, the analysis of the accuracy and sensitivity of numerical methods is also very 

relevant. Already in the 1980s, Furzeland (1980) concluded that although research had been 

directed towards finding numerical methods for special or general phase-change or Stefan 

problems, more investigation was required to find out which type of methods were more 

suitable for which problems and to compare their relative computational effort and 

accuracy. Nowadays, similarly, there is on one hand a vast amount of literature on 

improvements to the numerical methods from the mathematical side, frequently verified 

under theoretical conditions which are not directly applicable to engineering practice, e.g. 

applicable only to idealized, simplified geometries, to materials of uniform thermal 

properties or verified for just a very small timeframe of a few minutes or several hours. On 

the other hand, engineers tend to use analytical or numerical methods for the design of the 

ground freezing process in real projects and have only limited time to prepare the design, 

which makes it necessary to optimise the computing time. In these projects, the spatial scale 

is larger (of the order of several meters), the duration ranges from several weeks (e.g. for a 

cross-passage (Sopko, 2017c)) to months or even more than a year (Alzoubi et al., 2019), 

there exist many uncertainties regarding the initial and boundary conditions and the 

geometry is usually not ideal. Due to the limited time and resources for the design of the 

project, it is often challenging to perform calibrations and sensitivity analyses of the model 

during the course of the project.  

The main difficulty in the thermal simulation of AGF is the non-linearity introduced by the 

phase change, and the associated challenge of tracking the interface position (Alzoubi et 

al., 2020). The problem is usually simulated via the enthalpy method, which is known to 

produce oscillations and temperature plateaux (Voller and Cross, 1981), and therefore has 

a certain degree of inaccuracy. Also, it has been noticed in the literature and in preliminary 

calculations that the results vary significantly when the numerical parameters are changed 

(see also e.g. Alekseev et al. (2018) for examples of errors in numerical models for ground 

freezing). For instance, regarding the time and space discretisation, Zhang et al. (2008) 

notes that finer mesh and time step theoretically lead to higher accuracy, but it comes at the 

cost of a higher computing time and modelling effort: “A balance must be achieved between 

simulation accuracy and computational efficiency”. Tounsi et al. (2019) also found that the 

results vary with the mesh and the type of source representing the freeze pipes (surface or 

punctual/linear sources). These variations may be unacceptable for practical purposes, even 

using meshes that would be accepted a priori as "sufficiently fine". In fact, not only the 

fineness of the mesh, but also many other numerical parameters may influence the accuracy 

and correctness of numerical calculations, such as the size of the time steps, the 
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convergence criteria, the type of mesh (structured or unstructured) and elements/zones 

(triangular / quadrilateral, first / second order...), the way of modelling the phase change of 

the ground (abrupt change of the thermal properties at the phase-change temperature or 

gradual change over a small range of temperature), the type of heat / cold sources that 

represent the freeze pipes (point or line sources, surface or volume sources, etc.). 

Furthermore, some of these factors are interrelated, such as the mesh size and time step (see 

Recktenwald (2004) for the theoretical bases and GEO-SLOPE International Ltd. (2014) 

for a more practical approach). There is only very limited literature focused on evaluating 

the effect of the numerical parameters on the accuracy of the model for AGF numerical 

models. However, these effects and especially the response of the numerical code in the 

phase change zone (freezing range) are critical for the accuracy of the simulation and need 

to be investigated further.  

 Objectives 

The overall aim of the present thesis is to review and improve the practicability and 

accuracy of the analytical and numerical thermal calculation methods for predicting and 

monitoring the advance of the freeze front in ground freezing projects. The time-dependent 

temperature field and the interface between the frozen and unfrozen ground are derived 

from the solution to the mathematical moving boundary problem and are the inputs for the 

structural design of the freeze body and the assessment of its closure and stability. Thus, 

their accurate determination is of utmost importance for ground freezing design.  

The first objective of this thesis is to study in detail the potential, limitations and errors of 

thermal numerical calculations with phase change. This has been done using a custom code 

to simulate phase change developed for the commercial program FLAC3D. As explained 

in chapter 1.1, there are significant differences between the results of the commercial 

numerical programs when calculating using different numerical parameters, e.g. with 

different spatial (mesh) and time discretisations. Therefore, this first objective involves 

establishing the conditions under which these numerical codes provide results with 

reasonable accuracy and within a practical computing time. To verify the code and 

determine these conditions, the numerical results have been compared to known exact 

analytical solutions, so that the accuracy of the numerical method could be measured. A 

code of good practice for thermal numerical calculations has been created on the basis of 

these results. This should assist design engineers in minimizing the errors when using the 

numerical codes and provide them with more confidence in the accuracy of their models. 

It is well-known that numerical methods usually require a considerable amount of time and 

may not be practicable for the early stages of the engineering project, when only limited 

budget and information are available. In those cases, as already stated previously, analytical 

methods are still nowadays very useful (Colombo, 2010) for easy estimations or quick 

sensitivity analyses of ground thermal parameters, which are often not known accurately. 

The second goal of this thesis is therefore to analyse and improve the existing analytical 

methods for the estimation of the freezing time, in particular for the cases of one freeze 

pipe, freeze wall and freeze circle.  
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As the results of some of the currently available analytical solutions differ significantly 

from one another (see chapter 1.1), it was necessary to review them and propose 

adjustments or new solutions. Ideally, an analytical solution should be both sufficiently 

precise and practical for engineering applications. Such a solution would be useful even if 

it were more complex mathematically than past solutions, since more advanced means of 

calculation are currently available to solve the mathematical problem than in the past. This 

solution has been sought for the single freeze pipe problem and created based on an 

adjustment of Sanger & Sayles’ solution and the verified numerical model.  

All in all, the present thesis should support practitioners in two main ways. First, it poses 

the basis for new, practical and accurate analytical methods for thermal calculations during 

the early project phases. Second, it supplies guidelines for choosing suitable numerical 

parameters in order to achieve a sufficiently accurate and efficient numerical model in more 

advanced project stages. 

 Extent and limitations 

Freezing of a porous inhomogeneous medium such as natural ground is a very complex 

physical phenomenon involving thermal, mechanical and hydraulic processes which is 

influenced by numerous factors (Schüller, 2015). Thus, the most realistic and 

comprehensive modelling method for ground freezing problems is ideally a calibrated fully 

coupled Thermal-Hydraulic-Mechanical (THM) simulation (see examples in Nasir et al. 

(2013), Huang et al. (2018) and Spiridonov et al. (2022)). However, simplifying the 

simulation is often required in engineering projects due to time and resource limitations 

during the design phase. For these reasons, it is frequent practice in engineering design to 

first perform a thermal analysis and then to introduce its results as part of the input for a 

geomechanical simulation, sometimes also neglecting the groundwater movement. The 

present thesis is focused exclusively on the time-dependent (transient) thermal problem of 

heat conduction in ground freezing, the hydraulic and mechanical components of the 

problem being out of its scope. The accuracy of the geometry of the problem and other 

boundary and initial conditions has not been investigated either but will be taken as known 

data from design assumptions, in-situ or laboratory tests. For instance, the evaluation of the 

thermal properties of the ground and the design of the freeze pipe pattern deserve studies 

on their own and have not been handled in this thesis. The thermal properties of the ground 

have been extensively studied; a review of this subject can be found e.g. in Rees et al. 

(2000) and Baier (2008). A sensitivity analysis regarding the effect of the thermal properties 

of the ground on thermal calculations was already done in Schüller (2015). 

As frequently considered in engineering design, it is assumed that the groundwater velocity 

is sufficiently low so as not to affect the freezing process. Besides, the effects of convection 

are usually smaller than those of heat conduction (see chapter 2.3.2 and Hu et al. (2016b)). 

Thus, in the present thesis, heat transfer is assumed to happen only due to conduction. The 

geomechanical stability of the ground is assumed as given and not taken into further 

consideration. Therefore, no seepage or geotechnical calculations were performed. 

Furthermore, the study of the effects of volume changes as a result of freezing or thawing 
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(as e.g. in Hirai and Komori (1971)), which may create surface heaves or settlements, is 

also out the scope of this thesis. The migration of water during the freezing process, which 

plays a crucial role in the creation of ice lenses, especially in silty soils (Kellner, 2007), as 

well as the diffusion of solutes (e.g. salt, see Vasilyev (2009)) were not considered. For 

instance, the complexity of coupled problems is such that further assumptions would be 

required to obtain analytical solutions for them (Neaupane et al., 1999). 

Following a typical simplification in practical engineering design, the freeze pipes were 

considered in a simplified manner, as a cylinder or a line at a constant temperature, i.e. the 

detailed heat transfer processes inside the pipe system and towards the ground as for 

example done in Ziegler et al. (2013), Vitel et al. (2016) or Kazemi et al. (2022) were not 

simulated, as they are not the main focus of this thesis.  

Finally, it is the usual approach in ground freezing design and in most commercial software 

to consider the ground as a homogenous and fully saturated medium, i.e. it is studied from 

the macroscopic point of view. Research regarding the heat and mass transport at the 

mesoscopic scale of the ground has been performed, e.g. by Wang et al. (2017). These 

effects, e.g. nucleation, supercooling, capillary and absorption forces, which are due to 

interactions between the components of the ground (solid grains, water, voids, etc.) are not 

in the scope of the present thesis.  

 Methodology and structure of the thesis  

After the introduction of the problem, objectives and methodology of the thesis in the 

present chapter, the ground freezing method is presented in chapter 2, presenting an 

overview of the current challenges in the thermal design of ground freezing projects. 

Afterwards, the state of the art of analytical and numerical calculations for phase-change 

problems is reviewed in chapters 3 and 0, respectively, in order to create a solid basis from 

which to build up the investigations.  

In chapter 5, the exact analytical solution from Neumann is used to measure the accuracy 

of the numerical model and to find out the conditions under which it provides reasonably 

accurate results within a practicable computing time. In this way, a verified numerical 

model is obtained.  

Once the verified numerical model has been attained, it is extrapolated to different 

geometries and used as a benchmark to measure the accuracy of the approximate analytical 

solutions in chapter 6. Based on these results, the analytical solution from Sanger & Sayles 

is adjusted and improved in chapter 7.  

The numerical and analytical solutions are checked against experimental results and real 

engineering projects in chapters 8 and 9, respectively. The results of the previous chapters 

are discussed in chapter 10 and the limitations of the thesis are drafted in chapter 11. 

Finally, the conclusions of the thesis are drawn in chapter 12. 
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 The artificial ground freezing method 

The most common aims of artificial ground freezing are the stabilisation of the ground and 

the achievement of watertightness, e.g. in mine shafts, tunnelling or excavations. The 

ground freezing process allows the construction of underground structures with a low 

environmental impact, because it does not introduce external materials into the ground 

(Jessberger, 1979a) (Zhou, 2013) (Arroyo, 2017) and the ground is less altered than with 

the grouting method, i.e. it generally reverses to its original state after thawing (Alzoubi et 

al., 2020). In addition to these applications, it is also used for containment of contaminants 

or waste in the ground (Hu et al., 2018a), e.g. at the Fukushima Daiichi nuclear plant 

(Gallardo and Marui, 2016) (Alzoubi et al., 2019) or combined with a heat pump (Hu et al., 

2018b). In some cases, ground freezing is used as an emergency measure or after other 

methods have failed in sealing and stabilising the excavation, as reported for example in 

Sopko (2017b). 

The artificial ground freezing method is considered a versatile and safe method, which can 

be designed and monitored reliably. It can be applied to nearly any kind of water-bearing 

ground (Jessberger, 1979a) (Arroyo, 2017) (Sopko, 2017b): in ground from highly 

permeable coarse soils to clays and fractured rock (Schmall and Braun, 2006). Thus, it is 

more flexible than grouting in that respect (Harris, 1995) (Leung et al., 2012). The freeze 

body can embed any obstacles, and its geometry can be adapted to the requirements of the 

subsequent excavation (Schüller, 2015). In addition to preventing groundwater inflows into 

the excavation, the freeze body can serve as a temporary support (Zhelnin et al., 2020). 

Among the drawbacks of artificial ground freezing, its typically higher costs compared to 

alternative methods (such as grouting) is one of the most important (see e.g. Braun et al. 

(1979), Chang and Lacy (2008) and Orth and Müller (2013)). However, it tends to be a 

cost-effective option to ensure structural stability and groundwater control especially at 

high depths or in difficult ground (Schmall and Braun, 2006) (Powers et al., 2007) (Filippo 

Mira-Catto, 2018). An additional downside of AGF is that the microstructure of the ground 

changes when it freezes and it does not completely recover its initial state after thawing 

(see Harris (1995) and An et al. (2021)). It has been demonstrated by means of experiments 

that this leads to a decrease of its strength, more markedly after several freeze-thaw cycles 

(Chen et al., 2021). This effect can also be observed for seasonal freezing in natural slopes 

(Chen et al., 2017). Another consequence of the changes in the ground after freeze-thaw 

cycles, reported by Dalla Santa (2022), is the increase in permeability and pore size. 

Another potential negative consequence of artificial ground freezing is frost heave (Kellner, 

2007) (Zhao, 2019) (Zhou et al., 2021), which is produced by the formation of ice lenses 

and, to a lesser extent, the increase of volume of water turning into ice (Zhang, 2014). This 

may generate issues in structures above the frozen ground area and lead to heave after 

freezing and settlements after thawing, which are especially problematic if uneven. A 

detailed study of freeze-thaw cycles and a mathematical model for numerical simulations 

of these effects can be found in Zhang (2014). Another effect which needs to be considered 
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in the geomechanical design of the freeze body is that frozen ground creeps under stress 

(Harris, 1995). 

All in all, artificial ground freezing is deemed to be a proven and reliable method (Sopko, 

n.d.-a) (Müller, 2014) provided that proper design and monitoring programmes are put in 

place (insufficient design and monitoring, among other reasons, have led to major issues in 

the past, e.g. flooding (Czaja et al., 2020) and breaches of the freeze wall (Cleasby et al., 

1975) (Sopko and Braun, 2000). AGF is considered “one [of] the most reliable techniques 

for very complex projects” (Filippo Mira-Catto, 2018), see also Roberti (2012) for a 

comparison of its risks with other methods, such as piling, diaphragm walls, low-pressure 

injections and jet-grouting. In addition, it may be used in small spaces (Roberti, 2012), 

which is advantageous for urban environments. Due to these advantages and the strong 

urbanization trend, the relevance of the ground freezing technique will tend to increase in 

the future in underground engineering projects (Haß and Schäfers, 2013). 

 History of artificial ground freezing  

In the winter of 1852, French engineers found out that it was advantageous to construct a 

mine shaft under frozen conditions, as it was in otherwise unstable water-bearing ground 

(Harris, 1995). The first application of artificial ground freezing is recorded by Siebe 

Gorman & Co on a coal mine shaft in Swansea, South Wales, UK, around the year 1862 

(Hu et al., 2018b) (Alzoubi et al., 2020). The ground freezing technique was then patented 

by Friedrich Hermann Poetsch in Germany in 1883 (Poetsch, 1883) (Vitel et al., 2015). A 

detailed account of the history of this invention, Poetch’s achievements and the 

development of the ground freezing technique in Germany until the 1960s can be found in 

Hoffmann (1962). The first ground freezing application in the United States was done in 

1888 at the Chapin Mine Co. in Montana (Schmall and Maishman, 2007). 

Originally, AGF was developed to sink mine shafts through water-bearing layers down to 

coal seams (Haß and Schäfers, 2013). It was later on internationalised and has been used 

repeatedly in numerous countries around the world. Khakimov (1966) estimates that, just 

for subway construction, more than 1 million m3 of soil were frozen between 1947 and 

1957 in the Soviet Union. Also in China, ground freezing has been used for more than 55 

years (Li et al., 2006). It has also been used for underground construction in New York, 

Beijing, Shanghai, Nanjing, Guangzhou, Shenzhen, Napoli or Moscow, among others 

(Nikolaev and Shuplik, 2019) (Yan et al., 2019). Ground freezing has been used extensively 

for shaft sinking for gold mines in mining regions such as Siberia (Russia) too. For instance, 

all copper mine shafts and most hard-coal mine shafts in Poland have been sunk using the 

ground freezing method, with water-bearing layers up to depths of 700 m (Czaja et al., 

2020) (Kamiński, 2021). In the coal-mining Ruhr area in Germany, the ground freezing 

method has also been used extensively, for example for shaft Rheinberg 

(Arbeitsgemeinschaft Schacht Rheinberg, n.d.). Deep shafts have also been built by means 

of AGF for purposes of underground nuclear waste repositories, for example in Mol 

(Belgium) (Ramaeckers et al., 2000) and in Gorleben (Germany) (Jessberger, 1994). 
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A further advance was made in 1962, when freezing with liquid nitrogen was first used in 

France (Ritter, 1962) (from Sanger and Sayles (1979)). In the past, simple, conservative 

models were used to estimate the ground freezing requirements, whereas more intensive 

investigations in the ground freezing field were first performed in the 1970s (Schüller, 

2015). Afterwards, AGF has been widely used in mining and civil engineering. In the last 

20-30 years, its application has increased in tunnelling and urban areas (Zhou, 2013) 

(Schüller, 2015), see e.g. Haß and Schäfers (2013) for examples of such projects.  

As artificial ground freezing has been widely used since the early 20th century for 

underground construction, it is a mature technology which has been applied to numerous 

engineering projects (Hu et al., 2018a). Indeed, Harris (1995) compiled about 400 of them 

from the period 1862-1990.  

 The principles of the artificial ground freezing technique 

The ground freezing method is used to improve the stability and watertightness of the 

ground prior to excavation by freezing the groundwater, as already presented in chapter 1.  

The usual ways to freeze the groundwater are either to circulate a cooled fluid, usually brine 

(a solution of calcium chloride, CaCl2, in water), at about –20 to -38ºC (see e.g. Kellner 

(2007), Haß and Schäfers (2013) and Hentrich and Franz (2015)), or liquid nitrogen, at 

about -196ºC (Harris, 1995), through pipes installed in the ground (freeze pipes). In that 

way, the groundwater in the soil or rock starts freezing from the neighbourhood of the pipes 

towards the regions further from the pipe. As a consequence, the water in the ground pores 

turns into ice, improving the mechanical properties of the soil or rock. The ground becomes 

practically watertight (provided it is saturated) and its strength increases to a variable 

extent, which depends on its characteristics. In the case that it is desired to apply the ground 

freezing method to non-saturated ground, it is possible to inject water into the ground in 

order to increase its water content, as e.g. done for the construction of cross-passages for 

the Westerschelde tunnel in the Netherlands (Haß and Schäfers, 2013). Figure 2.1 shows a 

picture of the application of AGF for a tunnel in Naples (Italy), which shows the freeze 

pipe heads and manifold. 
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Figure 2.1: Freeze pipes around a platform tunnel in Naples (Viggiani and De Sanctis, 2009) 

For ground freezing with brine, a freezing station is required, which cools the brine. 

Additionally, connecting pipes are installed, which carry the brine from the station to the 

freeze pipes. The freeze pipes typically consist of an outer pipe and a supply inner pipe (or 

downpipe), which are installed in boreholes. The inner pipe is opened at its further end and 

carries the brine from the freeze head towards the end of the borehole. It is surrounded by 

an outer closed pipe, in which the cooling fluid circulates in the reverse direction and cools 

the surrounding ground, before finally returning to the freezing station. A schematic 

illustration of a freeze pipe is shown in Figure 2.2. 
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Figure 2.2: Schematic view of a freeze pipe (Müller, 2014) 

The freezing station cools down the brine with a refrigeration cycle with e.g. ammonia or 

CO2 and dissipates the heat produced by using water or air. An exemplary overview of the 

ground freezing setup is presented in Figure 2.3. 
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Figure 2.3: Exemplary ground freezing setup with brine (Filippo Mira-Cattò, 2016) 

If ground freezing with nitrogen is chosen, liquid nitrogen is delivered by tank trucks to the 

site and injected into the pipes at a temperature of approx. -196ºC. After having cooled the 

ground, it exhausts towards the exterior as a gas (Pimentel et al., 2011). A scheme of a 

ground freezing arrangement with nitrogen is shown in Figure 2.4. 

 

Figure 2.4: Scheme of ground freezing method with nitrogen (Linde plc, 2021) 
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In general, ground freezing with brine requires a larger site setup than nitrogen freezing, 

which does not require either a freezing station or electrical power. Another drawback of 

brine freezing is that it does not achieve as quick a freezing progress as nitrogen freezing 

does, which may be an issue in certain projects. For instance, nitrogen freezing was applied 

for this reason in the metro from Valencia after attempting to use the brine freezing method 

(Muzás, 1989). Thus, nitrogen freezing may be the preferred method for emergency cases. 

However, the daily costs are much lower with brine freezing than with nitrogen freezing 

(Sopko, 2017a), which is why the former is typically used for projects running for a longer 

time (from several weeks to years), while nitrogen freezing tends to be applied for short 

periods of time or emergency situations. A practical comparison of these methods, 

including economic considerations, can be found in Roberti (2012). It is also possible to 

combine both methods, using nitrogen freezing at the start of the project, to generate the 

freeze body quickly and to switch afterwards to brine freezing to maintain the freeze wall 

during a longer time (e.g. for the metro of Naples, in the Piazza Municipio station 

(Manassero et al., 2008) (Viggiani and De Sanctis, 2009) and for metro tunnels in Warsaw 

(Arroyo, 2017)). Another technique, though less commonly used, is to use liquid or solid 

carbon dioxide (CO2) (Nikolaev and Shuplik, 2019) (Shuplik and Nikolaev, 2019). Ground 

freezing may also be combined with other ground improvement methods, such as jet 

grouting and injections (see e.g. Muzás (1989)). 

Several phases can be differentiated in the freezing process. The first one (pre-freezing) 

starts when the freeze pipes are put into operation and frozen cylinders grow from the pipes 

outwards. The second phase (maintenance) begins when these cylinders have merged with 

each other, generating a continuous, watertight freeze body. At some point in time, the 

freeze body will reach the minimum thickness required for stability reasons (in the case 

that the freeze body is required to stabilize the ground) and the excavation may begin. 

Afterwards, the so-called maintenance phase starts, in which the size of the freeze body just 

needs to be maintained and the freezing station is typically run intermittently and/or using 

less power. The phases are shown in Figure 2.5 for a freeze circle. As the temperature 

gradient between the freeze pipe and the ground is steadily reduced, the power consumed 

by the freezing station typically decreases continuously during the whole freezing process 

(Schüller, 2015). Finally, when the excavation has been finalised and the permanent lining 

installed, the freezing plant can be disconnected, the freeze pipes are usually backfilled, 

and the freeze body left to thaw. In most cases, the thawing process is natural, but in some 

projects the ground is heated from the freeze pipes to accelerate the process, as e.g. in the 

Fernbahntunnel Lot 3 in Berlin (Haß and Schäfers, 2013). 
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Figure 2.5: Evolution and phases of the freezing process in a freeze circle, adapted from Baier (2008) 

 Design and monitoring of ground freezing engineering projects 

The aim of ground freezing engineering design is to achieve a safe excavation by 

controlling the groundwater and stabilising the ground, while at the same time minimizing 

the costs and the overall schedule of the works (Filippo Mira-Catto, 2018). It needs to be 

highlighted that a suitable design and monitoring programme is key to the safety of the 

works and avoidance of accidents, as can be learned from the cases presented in Sopko and 

Braun (2000), Shawn et al. (2016) and Levin et al. (2017). In fact, the success of ground 

freezing projects rests largely on a suitable design (an overview of the design components 

is given in Figure 2.6), which requires “appropriate modelling and understanding of the 

ground freezing problem” (Zueter et al., 2021).  

 

Figure 2.6: AGF design process and project impacts 

As no norms or standards for ground freezing design exist to the author’s knowledge, a 

brief description of the design process is presented below. 

Ground freezing design typically starts with the evaluation of the geometrical requirements 

of the project and a preliminary determination of the freeze pipe pattern. For instance, a 

cylindrical shaft will usually imply the use of a circular pattern of freeze pipes around the 

future excavation, while a row of pipes may be required to support a plane wall of a straight 

excavation. Aside from the geometry, the thermal and mechanical characteristics of the 

ground are considered for the design, as they may affect the freeze pipe spacing and 

disposition. In order to collect these data, a suitable ground investigation programme 
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focused on the future ground freezing application needs to be performed prior to the design, 

otherwise assumptions may be taken based on the available ground data and literature 

values. Suitable input data to the design is required for an adequate and cost-effective 

design and efficiency of the calculations (Frivik, 1981). 

Once the geometry of the excavation and freeze pipe pattern and the ground properties for 

design are determined, it is possible to start the thermal and geomechanical calculations. In 

the case that the freeze body is required for stability reasons, geomechanical calculations 

are performed to determine the shape and thickness of the freeze body required for the 

stability of the excavation. Then, a transient thermal analysis is performed in order to 

predict the required time until the targeted freeze body geometry is achieved and the 

required power of the freezing station for the project. This analysis may be performed with 

analytical tools in the early design stages and is nowadays usually refined with numerical 

methods for final design (Powers et al., 2007). Nomograms like the one in Figure 2.7, which 

are based on analytical methods, also represent an alternative to the calculations and may 

be useful in early stages. A historical review of the thermal design of AGF can be found in 

Frivik (1981). 

Ground freezing design is usually an iterative process, for instance, the design (brine 

temperature, number of pipes, pipe pattern) may be adapted according to the results of the 

first geomechanical and thermal analyses, e.g. the number of pipes may need to be increased 

in order to reduce the freezing time or may need to be reduced to optimize the number of 

boreholes to be drilled and decrease the project costs. In the end, there is often a trade-off 

between the schedule improvement for the works and the costs of the ground freezing 

measure. 

 

Figure 2.7: Exemplary nomograms for ground freezing thermal design (Jessberger, 1979b) 
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In addition to a suitable freeze design, a full quality control and monitoring program during 

execution are essential to achieve a successful ground freezing project (Max Bögl, n.d.) 

(Chris K W Leung, 2012). A sample of such a program can be found in Powers et al. (2007). 

For instance, the position of the pipes has to be surveyed to measure their deviations and 

the tightness of the piping system needs to be controlled. Additionally, several temperature 

monitoring boreholes and piezometer boreholes are required and a relief borehole in the 

centre of the shaft or tunnel is often installed. The data from the monitoring system can be 

used in order to control the freezing progress as well as to refine or verify the design model 

(Chang and Lacy, 2008), such as done in Colombo (2010). 

 The ground as thermodynamic system 

In thermodynamic analysis, materials are usually considered as a continuum at a 

macroscopic scale, i.e. it assumed that it is possible to analyse a reference volume with 

average properties (Lunardini, 1986). The ground is an inhomogeneous, porous medium 

composed mainly by mineral particles, water and air (in case it is saturated, it can be 

considered to contain no air). If it is frozen, it will normally contain a mixture of water and 

ice. Figure 2.8 presents a conceptual model for saturated ground, showing its different 

phases. 

 

 

 

Figure 2.8: Phase model for saturated ground, modified from Ziegler et al. (2010) 

Unlike pure substances, which change phase at a constant temperature, the ground presents 

a gradual phase change (Osterkamp, 1987) (Ramos, 1996). In ground systems, it is known 

that water does not freeze at a constant temperature due to adsorption forces (Baier, 2008), 

see also Sres (2009). Even at very low temperatures, a certain amount of unfrozen water 

remains, especially in fine soils (clays and silts), because of their higher specific surface 

(Baier, 2008). Extensive investigations have been performed to find out the relationship 

between temperature and unfrozen water content in soils. An overview of the unfrozen 

water content for different types of soil is presented in Figure 2.9. 
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Figure 2.9: Typical unfrozen water content functions for different soils, adapted from Jessberger (1990) and Schüller 

(2015) 

The unfrozen water content discussed above has the effect that, unlike pure substances, 

water-bearing soils and rocks change phase at a temperature range (Lunardini, 1988) and 

therefore an abrupt simulation of the phase change in analytical and numerical models may 

not accurately represent the reality of the process. From a mathematical point of view, phase 

change problems in porous materials, such as soil, are governed by similar differential 

equations as the solidification of metals or semiconductor crystals (Rodrigues and Urbano, 

1999). 

As natural ground is inhomogeneous (at a micro- as well as at a macroscopic scale), it is 

usually challenging to determine the thermal properties of the soils and rocks in engineering 

projects. The thermal properties are typically determined at the macroscopic scale, i.e. 

considering the soil as a homogeneous mixture at the microscopic scale. The determination 

of the thermal characteristics of soils is usually performed in the laboratory on relatively 

small samples, which may or may not be representative of the in-situ conditions. Another 

factor is that water migrates during the process (Jame and Norum, 1980), complicating the 

thermal calculations (Berggren, 1943) and causing ice lenses, frost heave or high frost 

pressures, especially in finely grained soils (Kellner, 2007). Additionally, the volumetric 

expansion of water during the freezing process also produces frost heave or pressure 

(Jessberger, 1979a), which may damage nearby structures. 

The thermal properties of the ground depend heavily on the mineralogy, grain size and 

water content. For instance, coarser soils (gravels and sands) typically have a higher 

thermal conductivity and a lower specific heat capacity than clays; furthermore, the latter 

exhibit molecular bonds between their minerals and water (see e.g. Arroyo (2017)). 
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Therefore, coarser soils typically display a faster freezing progress. Figure 2.10 and Figure 

2.11 present typical values of thermal conductivity and specific heat capacity for different 

types of soils. 

 

Figure 2.10: Typical thermal conductivity of different types of soils (GEO-SLOPE International Ltd., 2014) 

 

Figure 2.11: Typical specific heat capacity of different types of soils (GEO-SLOPE International Ltd., 2014) 



  

Chapter 2: The artificial ground freezing method   

 

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 20 

 Typical assumptions & simplifications in AGF design 

It is usual in engineering design of ground freezing projects to make certain assumptions in 

order to achieve a sufficiently accurate design while limiting the costs and time required 

for the design.  

One possible assumption is to model the freeze pipe as a punctual/linear cooling source of 

constant temperature (as done e.g. in Hentrich and Franz (2015)). This simplifies the real 

three-dimensional geometry of the pipe and the detailed heat transfer mechanisms. For 

instance, in reality the fluid travels down the internal pipe and goes up through the exterior 

ring, so the fluid temperature is usually non-uniform over the depth, an effect which is 

typically not considered in the design. A detailed study of the heat transfer between the pipe 

and the ground can be found in Vitel et al. (2016). Their model aims to optimize the design 

of the freezing system. 

Regarding the thermal properties of the ground, it is usual to assume the specific heat 

capacity and thermal conductivity of each phase as constant (see e.g. Hentrich and Franz 

(2015) and Colombo (2010)), even though they are variable with temperature (Ziegler et 

al., 2010). However, the variation of these properties with the temperature, within each of 

the phases, is relatively minor for the temperature ranges relevant in civil or mining 

engineering (see e.g. GEO-SLOPE International Ltd. (n.d.), Lunardini (1987), Robertson 

(1988) and Misra et al. (1995)). 

The thermal properties are often considered as independent of stress and strain state, i.e. in 

this case, the thermal and mechanical fields are simulated separately, as not coupled. To 

further simplify the problem, the hydraulic field is also often uncoupled from the thermal 

field: convection is ignored and the migration of water to the freeze front is neglected in 

the thermal simulation. These assumptions are used for example in G. Gioda (1994), 

Hentrich and Franz (2015) and Colombo (2010).  

The necessity to consider the effects of the groundwater flow on the freeze body has been 

studied in several papers and doctoral theses. Jame and Norum (1980), Baier (2008), Sres 

(2009), Ziegler et al. (2010), Zhou (2013) and Vitel et al. (2016) conclude that water 

movement may affect the freezing process and has to be considered under certain 

conditions. With respect to specific values of groundwater flow, it is said in Stuizalec 

(1989) that a flow velocity of more than 1 m/day is normally taken as affecting the ground 

freezing process. Andersland and Ladanyi (2004) point out a velocity of 1 m/day to 2 m/day 

as impeding the closure of the freeze wall. Harris (1995), Arroyo (2017), Chang and Lacy 

(2008), Zhou (2013) (from Schultz et al. (2008)) and Filippo Mira-Catto (2018) provide an 

approximate limit of approx. 2 m/day for brine freezing (also cited by Powers et al. (2007), 

based on several sources) and 4-6 m/day for liquid nitrogen freezing. Haß and Schäfers 

(2013) report that for the Fernbahntunnel Lot 3 in Berlin the groundwater velocity of 

1.5 m/day was considered as uncritical for ground freezing. The actual groundwater 

velocity depends on the gradient and also on the permeability of the soil, according to 

Darcy’s law: in highly permeable soils, such as gravels, critical velocities may be reached 

even under relatively low gradients (Roberti, 2012). For ground freezing with nitrogen, a 
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groundwater flow of more than 10 m/day was reported to have a significant effect (Wang 

et al., 2020).  

As shown above, there are several studies which have proved that groundwater flow may 

have a significant influence on the ground freezing process and should be considered in 

ground freezing design, at least in certain cases, see e.g. Baier (2008), Sres (2009) and 

Schüller (2015). Naturally, the critical groundwater velocity also depends on several 

factors, such as the freeze pipe temperature and freeze pipe separation (Roberti, 2012), the 

phase-change temperature of the groundwater and the thermal properties and water content 

of the ground. Nevertheless, the effects of convection and radiation are usually low relative 

to the conduction in ordinary ground freezing projects (Lunardini, 1998) (Hu and Zhang, 

2013). The relative importance of the heat transfer mechanisms in the ground with respect 

to its saturation and grain size is presented in Farouki (1981) and summarised in Figure 

2.12. Therefore, in the present thesis, only conduction has been considered, as defined in 

chapter 1.3 above, which is a valid approach for many cases (Lunardini, 1987), although 

its applicability needs to be evaluated under the particular circumstances of the problem. 

 

Figure 2.12: Relative importance of various heat transfer mechanisms in different soils (Farouki, 1981), redrawn by 

Loveridge (2012)
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 Review of the state of the art in analytical thermal calculations 

for ground freezing design  

The physical phenomenon underlying the ground freezing technique is the phase change of 

groundwater. Phase change of matter is a process which plays a crucial role in nearly every 

aspect of everyday life, science and engineering. When a material turns from liquid to solid, 

it is said to be freezing, which is, naturally, the relevant phase change process for the present 

thesis. During that process, latent heat is released at the interface between the two phases. 

Latent heat for pure water is high compared to other materials and to its own specific heat 

capacity, amounting to 333,600 J/kg. 

In thermodynamics, a phase-change problem consists of predicting the temperature field 

and physical state of the material which is undergoing phase change, given certain boundary 

and initial conditions. The phase change problem can be classified mathematically as a free 

boundary problem, specifically, it is a moving boundary problem. A free boundary problem 

is a problem described by differential equations which includes a boundary condition whose 

position is not known a priori, but which has to comply with certain constraints (Friedman, 

2000) (Chen et al., 2015), in the case of phase-change problems, among others, energy 

conservation and constant temperature. As the determination of this moving boundary is 

part of the solution to the problem, these problems are non-linear (Furzeland, 1980). With 

respect to the regularity of the solution, it has been proved that in general one-dimensional 

Stefan problems are well-posed, i.e. a unique and classical continuous solution exists 

(Ayasoufi, 2004). 

A further distinction typically made in the literature is between one- and two-phase 

problems. In one-phase problems, it is assumed that one of the two phases can be neglected 

in the problem. One representative case is that the material is at the phase-change 

temperature at the beginning of the problem, gradually melting due to a heat source located 

at the boundary. The classical Stefan problem is an example of a one-phase moving 

boundary problem which can be applied to ground freezing. Stefan (1891) performed 

investigations on the depth of the frozen zone in the polar seas and solved the mathematical 

one-phase problem, which is why moving boundary problems are named after him. 

However, the first recorded contribution regarding the heat transfer problem with phase 

change is by the French mathematician Lamé and Clapeyron (1831) (Jonsson, 2013). Franz 

Ernst Neumann (c.1860) found the solution for the corresponding two-phase problem, 

which is a one-dimensional case of a semi-infinite space with a plane source (Lunardini, 

1986). In artificial ground freezing for engineering projects, the typical situation requires 

solving two-phase 2D or 3D problems, because the initial ground temperature rarely 

coincides with the phase-change temperature of the groundwater.  

Interestingly, free boundary problems appear in various fields of science and technology: 

apart from the phase change problem in thermodynamics (with applications in artificial 

ground freezing, permafrost depth prediction, solidification of volcanic lava, food 

preservation, melting of alloys, welding or compact energy storage), they govern processes 
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in other areas of physics, chemistry, engineering, finance and biology, among others (Basu 

and Date, 1988) (Chen et al., 2015) (Zhou et al., 2018) (Bollati, 2019). Among the specific 

problems they govern are the determination of the pricing and optimal exercise value of 

American options in Black-Scholes models in economics, the prediction of the movement 

of tumours in mathematical biology (Chen et al., 2015) or the sediment mass transport 

(Kumar and Singh, 2020). More examples of applications of free boundary problems can 

be found in the areas of geophysics, semiconductor design and cryosurgery (Mackenzie and 

Robertson, 2000) (see also Friedman (2000)). Stefan problems have been extensively 

studied (Roscani and Tarzia, 2018) and are nowadays the subject of intense research, from 

the experimental, numerical and analytical viewpoints (Chen et al., 2015). 

The occurrence of the phase change implies a change of the thermal, mechanical and 

hydraulic properties of the material and the release or absorption of latent heat during the 

phase change process. Thus, it introduces a non-linearity in the boundary conditions (BCs) 

of the differential equations governing the heat exchange. This non-linearity considerably 

increases the difficulty of solving the system of equations. For instance, the superposition 

principle cannot be used due to the non-linearity (Özişik, 1993). As a consequence, only a 

limited number of exact closed analytical solutions for specific phase-change problems 

with practical applicability have been found to date (Lunardini, 1986) (Paynter and Life, 

1999). Still, exact solutions have several practical applications, even if only a few of them 

are available, typically for idealized problems. First, they may be used to check the accuracy 

of approximate analytical or numerical solutions (Gottlieb, 2002) (Zhou et al., 2018) 

(Kumar and Singh, 2020). Moreover, analytical solutions often present explicit formulae, 

which are convenient and relatively fast to use for sensitivity analysis and simplified 

engineering calculations in early stages of the design.  

A widely used parameter in Stefan problems is the Stefan number 𝑆𝑇, a dimensionless 

parameter which intends to characterise the ratio of sensible heat to latent heat, as defined 

in Equation (3.1). For large Stefan numbers, heat conduction governs the heat transfer 

process, while for small Stefan numbers, the phase change has a dominant effect 

(Alexiades, 2017). 

 
𝑆𝑇 =

c𝑠⁡ ∙ ∆T⁡

𝑙
 (3.1) 

where: 

c𝑠: specific heat capacity 

𝑙: latent heat per unit mass 

𝑆𝑇: Stefan number, [-] 

∆T: temperature difference between phases 
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 Theory of thermal conduction without phase change 

Before studying the heat transfer in systems with phase change, the equations for 

conductive heat transfer without phase change are presented shortly. The energy transfer 

by conduction follows Fourier’s law (Fourier, 1955) (from Lunardini (1986)), which is 

based on the first law of thermodynamics (conservation of energy). Fourier’s law in one 

dimension can be written, exemplarily for heat transfer in the x-direction, as:  

 
𝑞𝑥 = −𝑘𝑥 ⋅ 𝑆⊥ ⋅

𝜕𝑇

𝜕𝑥
 (3.2) 

where: 

𝑘𝑥: thermal conductivity in the direction of the “x” axis 

𝑞𝑥: flux or heat transfer rate in the direction of the “x” axis 

𝑆⊥: surface of the zone perpendicular to the direction of the energy transmission 

𝜕𝑇

𝜕𝑥
: temperature gradient in the direction of the “x” axis 

According to this equation, the flux 𝑞𝑥 in the direction of the temperature gradient is 

proportional to the surface 𝑆⊥ and the gradient⁡𝜕𝑇 𝜕𝑥⁄ , being the thermal conductivity 𝑘𝑥 

the proportionality constant (Lunardini, 1986). 

This equation can be completed with the consideration of energy sources (due to chemical 

reactions, electricity current, latent heat, etc.). This is done by adding a generation term 𝑞𝑔 

to the equation, which represents the energy released or absorbed per unit volume and time 

(Lunardini, 1986). 

Furthermore, materials store energy when they change temperature and possess a certain 

specific heat capacity, 𝑐𝑠. For a material at rest and neglecting the effect of radiation, the 

conduction is governed by the following parabolic partial differential equation (PDE) 

(Lunardini, 1986): 

 𝜕

𝜕𝑥
(𝑘𝑥 ⋅

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦 ⋅

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘𝑧 ⋅

𝜕𝑇

𝜕𝑧
) + 𝑞𝑔 = 𝜌𝑐𝑠

𝜕𝑇

𝜕𝑡
 (3.3) 

where: 

𝑘𝑥, 𝑘𝑦, 𝑘𝑧: thermal conductivities in the directions of the “x”, “y” and “z” axes, respectively 

𝑞𝑔: energy released by the source per unit volume and per unit time 

𝜕𝑇

𝜕𝑥
,
𝜕𝑇

𝜕𝑦
,
𝜕𝑇

𝜕𝑧
: temperature gradient in the direction of the “x”, “y” and “z” axes, respectively 

𝜌: density of the material 

If the material is thermally isotropic, the equation can be presented in a more compact form 

using the Laplacian operator ∇2𝑇 (Lunardini, 1986), as: 
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∇2𝑇 +

𝑞𝑔

𝑘
=
1

𝛼

𝜕𝑇

𝜕𝑡
 (3.4) 

where⁡𝑘 is the thermal conductivity and 𝛼 = 𝑘/𝜌𝑐 is the thermal diffusivity. 

The heat transfer problem requires setting initial and boundary conditions. These conditions 

are set at certain regions of time and space, for example at 𝑡 = 0, 𝑥 = 0 and 𝑥 = 𝑠. These 

boundary conditions may be a fixed temperature (Dirichlet condition), a fixed flux 

(Neumann condition) or mixed conditions. The solution to this PDE is the temperature 

distribution, a function 𝑇(𝑥, 𝑦, 𝑧, 𝑡), which fulfils the PDE and the boundary conditions at 

all points in space (𝑥, 𝑦, 𝑧) in the region considered, at all times, and additionally satisfies 

the initial conditions (Causon and Mingham, 2010). 

The previous equation can be written in cylindrical coordinates, which is very useful for 

problems with cylindrical symmetry. If the only relevant coordinate is the radius and there 

are no flux sources, the equation can be simplified as follows (Lunardini, 1986): 

 1

𝑟
∙
𝜕

𝜕𝑟
(𝑟 ⋅

𝜕𝑇

𝜕𝑟
) =

1

𝛼

𝜕𝑇

𝜕𝑡
 (3.5) 

where 𝑟 is the radial coordinate. 

 Steady-state solutions to heat transfer problems 

Steady-state analysis evaluates the heat-transfer problem without transient effects, which is 

analogous to considering the state reached after a sufficiently long time. Solutions to one-

dimensional steady-state problems can be obtained more easily than to transient problems 

with phase change (unknown, n.d.-b). 

3.1.1.1. One-dimensional conduction between two surfaces at constant 

temperature 

The solution for an infinitely high and long slab of finite thickness 𝑥2, with known heat 

flux at one side 𝑞1 and known temperature 𝑇2 at the other, can be obtained by integrating 

the general differential heat equation (unknown, n.d.-b), resulting in: 

 𝑇(𝑥) =
𝑞1
𝑘
⁡(𝑥2 − 𝑥) + 𝑇2 (3.6) 

where 𝑇(𝑥) is the temperature distribution in the direction of the coordinate “x”. 

3.1.1.2. Single cylindrical sink with constant flux 

In analogue manner to the previous chapter, a few exact solutions for problems in 

cylindrical coordinates have been found (unknown, n.d.-c) (unknown, n.d.-b). For example, 

the temperature distribution for the problem with a constant given heat flux 𝑞1 at 𝑟 = 𝑟1 

and a constant temperature 𝑇2 at 𝑟 = 𝑟2, is given by (unknown, n.d.-b): 

 𝑇(𝑟) =
𝑞1𝑟1
𝑘
ln (

𝑟2
𝑟1
) + 𝑇2 (3.7) 
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 Transient solutions to heat transfer problems 

Transient solutions for thermodynamic systems without phase change may be obtained by 

integrating the time-dependent heat equation. Transient analysis is required, among other 

reasons, due to the effect of the sensible heat, which may be large and needs to be 

considered (Rees et al., 2000) (sensible heat does not affect the results of steady-state 

analyses). These solutions are the basis to build upon and simulate ground freezing 

problems appropriately. Exemplarily, a solution for a 1-dimensional problem is presented 

below. A review containing further solutions to problems without phase change can be 

found in Rees et al. (2000). 

3.1.2.1. One-Dimensional semi-infinite slab 

The solution to the one-dimensional transient problem without phase change in a 

semi-infinite solid (domain 𝑥 = 0 to 𝑥 = ∞) is presented here. This may be compared to 

the same problem with phase change: the Neumann problem presented in chapter 3.2.1.  

Let the whole solid be at an initial constant temperature 𝑇0 at 𝑡 = 0 and be suddenly 

exposed to a fixed temperature 𝑇 = 0 at the boundary 𝑥 = 0. The problem is defined by 

the following PDE and BCs: 

 1

𝛼
∙
𝜕𝑇

𝜕𝑡
=
𝜕2𝑇

𝜕𝑥2
 (3.8) 

   

 𝑇(𝑥, 0) = 𝑇0 (3.9) 

   

 𝑇(0, 𝑡) = 0 (3.10) 

 

Unknown (n.d.-b) obtains the solution making use of the Laplace transform, leading to: 

 𝑇(𝑥, 𝑡) = 𝑇0 ∙ erf
𝑥

2√𝛼𝑡
 (3.11) 

where erf⁡(z) is the error function. 

Solutions to more problems in cartesian and cylindrical coordinates with relatively simple 

geometry and boundary conditions have been obtained, e.g. by use of the method of 

separation of variables (unknown, n.d.-b). Further solutions for multisource problems have 

been proposed by means of superposition techniques, although they are semi-analytical and 

therefore not exact (Fossa and Rolando, 2014). 
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 Exact analytical solutions for Stefan problems 

A review of the most relevant of the few known exact analytical solutions to Stefan 

problems is performed in this chapter. These solutions are derived by applying the 

mathematical and physical principles, to problems with a certain geometry, material 

characteristics and boundary conditions. In the case of exact solutions, no approximations 

or empirical parameters are incorporated in the formulas. This makes them principally 

distinct from the approximate solutions, also analytical, presented in chapters 3.3 and 3.4. 

As already exposed in previous chapters, only a small number of exact solutions for Stefan 

problems have been found (Lunardini, 1986). Reviews of the analytical and numerical 

methods to solve them are frequent in literature: compilations of these have been published 

by Carslaw and Jaeger (1959), Wilson (1978), Lunardini (1986) and Tarzia (2011). Most 

of these problems deal with relatively simple conditions (see for example Neumann’s or 

Carslaw’s solutions), such as a constant initial temperature and isotropic thermal properties, 

or with very specific conditions, such as a power-type latent heat (see Zhou et al. (2018)).  

 Neumann Problem: one-dimensional semi-infinite slab 

This is the classical and well-known problem solved by Neumann (c.1860). The one-phase 

variant of this problem, in which the initial temperature is the phase-change temperature, 

was solved by Stefan (1891). A semi-infinite region initially in liquid phase and at a 

constant temperature is considered, in which a temperature below the phase-change point 

is applied to the boundary of the region and remains constant. An overview of the problem 

is presented in Figure 3.1. This problem is equivalent to one with the heat flux condition 

proportional to 𝑡−1/2 posed at the boundary, as shown in Boucíguez et al. (2007). The 

detailed mathematical development of this solution can be found, among others, in 

Lunardini (1986) or Jonsson (2013). A summarized description of the procedure to obtain 

this solution is presented below.  
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Figure 3.1: Overview of the Neumann problem 

The Neumann problem is described by a system of two heat transfer PDEs, one for each 

phase, with two independent variables (the time 𝑡 and space 𝑥 coordinates), together with 

the initial and boundary conditions. This system is presented below (from Lunardini (1986), 

see also Sancho-Calderón et al. (2021)): 

System of partial differential equations: 

 𝜕2𝑇1(𝑥, 𝑡)

𝜕𝑥2
=
1

𝛼1
⁡
𝜕𝑇1(𝑥, 𝑡)

𝜕𝑡
 (3.12) 

 

 𝜕2𝑇2(𝑥, 𝑡)

𝜕𝑥2
=
1

𝛼2
⁡
𝜕𝑇2(𝑥, 𝑡)

𝜕𝑡
 (3.13) 

Initial condition and boundary condition at the freezing source: 

 lim
𝑥→∞

𝑇2(𝑥, 𝑡) = 𝑇0 (3.14) 

 

 𝑇1(0, 𝑡) = 𝑇𝑠 (3.15) 
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Boundary conditions at the moving interface 𝑋(𝑡): 

 𝑇1(𝑋(𝑡), 𝑡) = 𝑇2(𝑋(𝑡), 𝑡) = 𝑇𝑓 (3.16) 

 

 
𝑘1
𝜕𝑇1(𝑥, 𝑡)

𝜕𝑥
− 𝑘2

𝜕𝑇2(𝑥, 𝑡)

𝜕𝑥
= 𝜌⁡𝑙⁡

𝑑𝑋

𝑑𝑡
⁡; ⁡𝑥 = 𝑋(𝑡) (3.17) 

where: 

𝑐1: specific heat capacity of the frozen phase (used to define 𝛼1 below) 

𝑐2: specific heat capacity of the unfrozen phase (used to define 𝛼2 below) 

𝑘1: thermal conductivity of phase 1 (frozen phase) 

𝑘2: thermal conductivity of phase 2 (unfrozen phase) 

𝑙: latent heat per unit mass 

𝑇𝑓: phase-change temperature 

𝑇0: initial temperature 

𝑇𝑠: source temperature 

𝑇1(𝑥, 𝑡): temperature distribution in the frozen phase 

𝑇2(𝑥, 𝑡): temperature distribution in the unfrozen phase 

𝑋(𝑡): distance from the phase-change interface to the source 

𝛼1 = 𝑘1/𝜌𝑐1: thermal diffusivity of phase 1 (frozen phase) 

𝛼2 = 𝑘2/𝜌𝑐2: thermal diffusivity of phase 2 (unfrozen phase) 

𝜌: density of the medium (assumed the same for both phases) 

It is possible to find an exact solution to this problem by means of the similarity method, 

which consists of substituting the variables x and t by a so-called similarity variable, which 

is a function of the two. This method solves the problem if all the PDEs as well as the initial 

and boundary conditions can be expressed exclusively in terms of this variable, which is 

useful for the Neumann problem but unfortunately not the case for many other problems 

with e.g. non-uniform initial temperature, time-dependent boundary temperatures, finite 

domains, etc. (Lunardini, 1986) (Lunardini, 1987). Nevertheless, this is the case for the 

Neumann problem, in which the similarity transformation 𝜂 = ⁡𝑥 (2√𝛼1𝑡⁄ ) transforms the 

system of PDEs into a system of two ODEs (Ordinary Differential Equations) in the 

variable 𝜂, which can be solved. In this case, the solution to the system of ODEs is given 

by: 

 
𝑇1(𝑥, 𝑡) = 𝑇𝑠 +

𝑇𝑓 − 𝑇𝑠

erf(𝛾)
⋅ erf

𝑥

2√𝛼1𝑡
 

 

(3.18) 
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𝑇2(𝑥, 𝑡) = 𝑇0 +

𝑇0 − 𝑇𝑠

erf(𝛾√𝛼12)
⋅ erfc

𝑥

2√𝛼2𝑡
 (3.19) 

where: 

erfc(z): complementary error function 

𝛼12 =
𝛼1

𝛼2⁄  : ratio of thermal diffusivities 

𝛾: dimensionless parameter 

The parameter 𝛾 needs to be solved for from the transcendental equation below (Lunardini, 

1986): 

 exp(−𝛾2)

erf(𝛾)
− 𝑘21 ⋅ √𝛼12

(𝑇0 − 𝑇𝑓)𝑒
−𝛼12𝛾

2

(𝑇𝑓 − 𝑇𝑠)⁡erfc⁡(𝛾√𝛼12⁡)
=

𝑙⁡𝛾⁡√𝜋

𝑐1(𝑇𝑓 − 𝑇𝑠)
 (3.20) 

The position of the phase-change interface is given by: 

 𝑋(𝑡) = 2γ√𝛼1𝑡 (3.21) 

The uniqueness of the root 𝛾 implies that there is only one similarity solution; this problem 

is well-posed in the mathematical sense (Alexiades, 2017). The equations can be easily 

adapted for the thawing case, in which the material is initially frozen and starts melting as 

it is exposed to a temperature at the boundary which is higher than the phase-change 

temperature. It can be proven that the solution exists, is unique and is a continuous function 

of the initial and boundary conditions, conditions which are required for the numerical 

analysis (Jonsson, 2013). 

With respect to experimental verification, Ständer (1967) performed several laboratory 

experiments with results which match the predictions from Neumann’s equation. 

As the Neumann formula is implicit and relatively complex, it has not been frequently used 

(Kurylyk, 2016). In this regard, Kurylyk (2016) gave simplified polynomial correction 

factors for the Stefan equation, which aim to provide a higher accuracy with a more 

practical formula than the Neumann one.  

Several solutions for additional variants of this problem under specific conditions or 

assumptions have been published. For instance, solutions for specific boundary or initial 

conditions, small volumetric heat relatively to the latent heat or frozen and unfrozen 

material with the same characteristics can be found in Lunardini (1986), Paynter and Life 

(1999) or Tarzia (2011). An exact solution of a variant of this problem with consideration 

of temperature-dependent thermal conductivity in the two phases is reported in Cho and 

Sunderland (1974). Another specific solution to the problem in which the specific heat 

capacity and thermal conductivity of the material follow Storm’s condition (used for simple 

monoatomic metals), can be found in Briozzo and Natale (2014). Voller et al. (2004) found 

an exact solution for the one-phase, one-dimensional problem with latent heat varying 

linearly with the distance to the origin, which could be applicable to shoreline movement 

in a sedimentary basin. 
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 One-dimensional semi-infinite slab with gradual phase change 

As already presented in chapter 2.3.1, phase change in highly porous materials, such as soil 

or rock, is not abrupt like in pure substances, but it occurs over a temperature range. In this 

case, at least two moving boundaries will exist in the moving boundary problem, which 

may be called a “moving zone” problem (Kellner, 2007). Between those boundaries, there 

is a partially frozen zone which is usually named the “mushy zone”. An approximation to 

the behaviour of the soil is to assume that the unfrozen water content function 𝜉 in the 

mushy zone varies linearly in the temperature range during the freezing process. For this 

case, Lunardini (1985) (also published in Lunardini (1988)) obtained an exact solution. 

Although this is not completely realistic for the soil material (as the unfrozen water function 

typically follows a curve, see Figure 2.9), this exact formula can be used to check 

approximate solutions. 

It is further assumed by Lunardini for this problem that the thermal properties are constant 

for each phase. The latent heat is gradually released (in accordance with the unfrozen water 

content function 𝜉) in the mushy zone. The solution is obtained in a similar way to the 

Neumann problem, but it requires solving a system of two transcendental equations for two 

parameters.  

Figure 3.2 shows the temperature profile with gradual phase change compared to the 

Neumann solution (sharp phase change). 

 

Figure 3.2: Temperature distributions for a semi-infinite slab with sharp and gradual phase change according to 

Lunardini (1985) 

Weiner (1955) solved a similar problem: a semi-infinite slab with a multiphase material (a 

material which changes phase an arbitrary number of times) at a constant temperature, 
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whose border is initially at a different temperature. This solution may be applied for 

example to the phase change of carbon steel.  

 Linear constant-flux heat source with phase change in an infinite 

medium 

In cylindrical coordinates, the main exact solution with potential practical applications in 

ground freezing is the one given by Carslaw and Jaeger (1959) for an infinite medium with 

a line source extracting a constant heat flux 𝑞𝑠 at the origin r = 0. They arrive to the 

following solution by means of the similarity method using the similarity variables 𝜂1 and 

𝜂2: 

 𝑇1 = 𝑇𝑓 +
𝑞𝑠

4𝜋𝑘1
(𝐸𝑖(−𝜂1) − 𝐸𝑖(−𝜆

2))      for 0<r<R 

 

(3.22) 

 𝑇2 = 𝑇0 −
𝑇0−𝑇𝑓

𝐸𝑖(−𝛼12𝜆
2)
⁡𝐸𝑖(−𝜂2)               for r>R 

 

(3.23) 

The dimensionless parameter 𝜆 is found by solving the following transcendental equation: 

 𝑞𝑠
4𝜋
⁡𝑒−𝜆

2
+
𝑘2(𝑇0 − 𝑇f)

𝐸𝑖 (−
𝜆2𝛼1
𝛼2

)
𝑒
(−
𝜆2𝛼1
𝛼2

)
= 𝜆2⁡𝛼1⁡𝑙⁡𝜌 (3.24) 

where: 

𝐸𝑖(𝑥) is the exponential integral function 

𝜂1 =
𝑟2

4𝛼1𝑡
, first similarity variable 

𝜂2 =
𝑟2

4𝛼2𝑡
, second similarity variable 

Finally, the phase-change interface R(t) is calculated as 𝑅(𝑡) = 2𝜆⁡√𝛼1⁡𝑡 (Lunardini, 

1986). 

 Linear constant-flux heat source with gradual phase change 

Li et al. (2018) found a solution to the steady-state Stefan problem with constant initial 

temperature and a line heat sink with constant flux considering gradual phase change of the 

soil material. They simulated the continuous phase change of the soil by considering a 

polymorphous material, i.e. with a step-by-step phase change. They arrived at an explicit 

solution whose coefficients are determined by a set of non-linear equations. The solution 

has a certain parallelism to that one found by Carslaw and Jaeger (1959) for the same 

problem with abrupt phase change. However, the consideration of a polymorphous material 

causes the temperature to be a piecewise function with several steps (the number of which 

depends on the discretisation of the phase change) and increases the number of equations 
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for the parameters. A solution to the linear constant-flux heat source with gradual phase 

change was also found by Özişik and Uzzell Jr (1979). 

 Further solutions to Stefan problems 

Researchers have continuously tried to find further exact solutions for moving boundary 

problems. Several solutions have been found for very specific conditions, which tend to 

limit their applicability to engineering problems (Zhou et al., 2018). Furthermore, these 

solutions are usually more complex than the solutions presented in the chapters above, a 

fact which also makes it difficult to use them in engineering practice. The disadvantages of 

solutions requiring a high mathematical effort were already noticed by Kurylyk (2016) for 

the comparatively handy Neumann equation. However, even if having limited practical 

application for engineering projects, exact solutions are useful as a benchmark to compare 

approximate solutions against (Gottlieb, 2002). Compendia of solutions can be found in 

Carslaw and Jaeger (1959), Lunardini (1986), Crank (1987), Özişik (1993) and 

Tarzia (2011). Tarzia (2000) also produced an extensive bibliography of moving and free 

boundary problems. In this chapter only a sample of the available solutions are presented 

exemplarily below. 

Kumar and Singh (2020) were able to find a solution for a one-phase Stefan problem with 

variable thermal conductivity, assuming that the conductivity follows a certain function of 

time and temperature. Their solution uses a similarity variable and the “tau method based 

on shifted Chebyshev operational matrix of differentiation”. Salva (2011) found the 

solution to the two-phase Stefan problem of a semi-infinite material with variable (linear) 

latent heat of fusion and constant heat flux boundary conditions. 

Another exact solution for a particular one-phase, unidimensional, Stefan problem was 

given by Layeni and Johnson (2016). A differential-difference formulation of the problem 

was used to find the solution for cylinders with thermal properties which depend on the 

inverse-square of the radius. Also for cylindrical coordinates, a solution for inwards 

freezing of a cylinder with specific and latent heat proportional to the inverse square of the 

radial distance was found by Gottlieb (2002).  

Zhou et al. (2018) investigated a two-phase Stefan problem with latent heat following a 

power function of the position, which could be applicable to the consolidation process of 

soils. They used the similarity transformation and Kummer functions. Following a similar 

approach, Voller et al. (2004) provided a solution for a one-phase, one-dimensional Stefan 

problem with latent heat linearly dependent on the position. Bollati (2019) found further 

solutions to problems with latent heat variable with the position. 

Ramos (1996) found exact solutions for Stefan problems with thermal conductivity and 

specific heat capacity dependent on temperature following a power law. They used the 

enthalpy formulation to find solutions for flat, cylindrical and spherical shapes.  

Cherniha and Kovalenko (2009) studied the one-dimensional problem of melting and 

evaporation of metals by means of the classical Lie symmetry.  
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Fractional space and time derivatives were used in Voller (2014) to solve the Stefan 

problem with heterogeneity, which can cause anomalous diffusion.  

 Inverse Stefan problems 

Scholars have also sought solutions for the inverse Stefan problem, in which, starting from 

a known temperature field, some of the characteristics of the material are determined. This 

could also be potentially applied in ground freezing engineering, e.g. for the case that in-situ 

temperature measurements are available from a past ground freezing project, but the 

thermal characteristics of the soil are unknown and required to design another ground 

freezing project. However, these problems usually imply an even more complex 

mathematical framework than usual Stefan problems. Examples are the solution found by 

Tarzia (2015) for the one-phase fractional Lamé-Clapeyron-Stefan problem, the artificial 

intelligence algorithms used in Hetmaniok et al. (2014) or the iterative approach described 

in Levin et al. (2017), which minimises the errors of the solution by applying the gradient 

descent method. 

 Analytical methods to find approximate solutions 

As only a few exact solutions to Stefan problems have been found, scholars have also 

sought approximate solutions. Two groups of analytical methods have commonly been used 

to find approximate analytical solutions. They are the Heat Balance Integral Method 

(HBIM) and the quasi-stationary and quasi-steady-state approximations. Other 

approximate techniques are the power series expansion, the isotherm migration method 

(which takes temperature as the independent variable (Savovic and Caldwell, 2009)) and 

source and sink methods (Yigit, 2008).  

 The heat balance integral method 

The Heat Balance Integral Method (HBIM) was introduced by Goodman (1958) for Stefan 

problems and aims to reduce the PDE problem to an ODE problem, which can be more 

easily solved. The HBIM has also been applied to model other processes, such as the 

temperature in a thermistor or the ignition time of wood (Myers, 2010). 

The HBIM is an approximate method which assumes that the temperature penetration depth 

(the distance from the thermal source to the farthest point of the material whose temperature 

has been affected by the source) is given by a function 𝛿(𝑡) (Lunardini, 1986). In this case, 

the temperature profile from the source to the affected material is assumed to follow a 

certain approximating function. Finally, the heat equation is integrated in the interval whose 

temperature has changed, between 0 and 𝛿(𝑡) (Myers, 2010). A representation of the 

temperature penetration depth is shown in Figure 3.3. 
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Figure 3.3: Temperature penetration depth for HBIM, adapted from Lunardini (1986) 

The approximating coefficients of the function are determined by the initial and boundary 

conditions (Layeni and Adegoke, 2011). Polynomial temperature profiles are commonly 

chosen for their simplicity, being the most usual the quadratic and linear ones (Lunardini, 

1986). A caveat of this procedure is that, even if in general the accuracy improves with 

increasing degree of the polynomial, it may decrease (Lunardini, 1986), so choosing the 

most accurate function is not straightforward. Another possibility is to use piecewise linear 

or polynomial approximations, which tend to increase the accuracy of the method, are 

generally applicable, and imply a low computational effort (Mosally et al., 2002). 

Therefore, the determination of the optimal temperature profile has been the object of 

intensive research, e.g. Hristov (2010) studied the optimization of a parabolic profile with 

unspecified exponent. The optimization of the polynomial degree has been studied by 

minimising an error function in Myers (2010). The optimal polynomial degree “n” seems 

to depend on the boundary conditions: for a fixed-temperature condition, n close to 2 (1.8) 

was found to be accurate; if the condition is a constant-flux one, it was found that n should 

be chosen as 3.6 (Myers, 2010).  

Variants of the HBIM method are often proposed and their accuracy is measured against 

the known exact solutions, e.g. as in Bollati (2018). Non-polynomial profiles have also 

been evaluated, for instance, the Gaussian profile is considered one of the most accurate 

(Layeni and Adegoke, 2011). Exponential profiles have been discussed too, although they 

seem to achieve a better accuracy only at the cost of increasing the difficulty of choosing 

the appropriate function (Mosally et al., 2002).  
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There is evidence that the accuracy of the HBIM depends on the boundary conditions of 

the problem (Myers, 2010). Two further drawbacks of this method are the facts that the 

assumed temperature profile may not be adequate or valid for the problem and that the order 

of accuracy of the solution obtained is unknown (Mitchell and Vynnycky, 2014). 

 The quasi-stationary and quasi-steady state approximations 

The quasi-stationary assumption is mainly based on neglecting the moving interface and 

the diffusive flux (Lunardini, 1986). It is possible to consider initial conditions with this 

approximation, but it may not be valid if the temperature is affected by the movement of 

the phase interphase. A further simplification is the quasi-steady state approximation, 

which neglects the transient term of the equation, so it cannot satisfy the initial conditions 

of the problem. However, it has been used widely for freezing problems because it 

simplifies the problem to a significant extent (Lunardini, 1986).  

Solutions following these approaches may be useful after a certain time has elapsed since 

the start of the freezing process, when the temperature field becomes similar to the one 

given by the steady-state approximation (Hu and Han, 2013). Furthermore, they could be 

used in practical projects to obtain the thickness of the freeze wall from punctual 

temperature measurements. 

Some solutions by Hu and others (see e.g. Hong and Hu (2019) and Wang et al. (2020)) 

using the quasi-steady state approximation have been directly applied to find temperature 

distributions in the framework of the ground freezing technique for different geometries 

(freeze circle, freeze wall, etc.). A few of them are presented below.  

3.3.2.1. Single pipe with phase change 

Trupak (1954) found the solution to the temperature field of the single-pipe problem with 

the steady-state approximation (Hu et al., 2016b): 

 
𝑇(𝑟) = 𝑇f +

ln(𝑟 𝑅⁄ )

ln(
𝑟0
𝑅⁄ )
(𝑇𝑠 − 𝑇f) (3.25) 

where: 

𝑟0: freeze pipe radius 

𝑅: freeze radius 

Building up on this solution, a solution for several pipes in a random disposition based on 

the potential superposition theory was found by Hu et al. (2016b). 
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3.3.2.2. Single row of pipes with phase change 

A solution to this problem based on the steady-state approximation was given by Bakholdin 

(1963) (Hu and Han, 2013). His solution gives a temperature field as follows: 

 
𝑇(𝑟) =

𝑇𝑠 − 𝑇f
ln⁡(2𝜋⁡𝑟0/𝑠) − 𝜋𝑅/𝑠

⁡(𝐴𝑓 −
𝜋𝑅

𝑠
) + 𝑇f⁡⁡ (3.26) 

where: 

𝐴𝑓 =
1

2
ln [2 (cosh

2𝜋𝑦

𝑠
− cos

2𝜋𝑥

𝑠
)]  

𝑅: half-width of the freeze wall (freeze radius in the direction perpendicular to the freeze 

wall)  

𝑠: separation between pipes 

Hu and Han (2013) produced a further solution for the variant in which the freezing process 

is asymmetric, e.g. due to an existing boundary in one of the sides of the pipe row. In 

another paper, Hu and Zhang (2013) studied the temperature distribution between pipes at 

different temperatures based on the thermal potential superposition. Further investigations 

in this direction with the undetermined coefficient method were performed in Zhang et al. 

(2021). 

3.3.2.3. Circle of pipes with phase change 

Hu et al. (2018b) found a solution for the steady-state temperature field of the freeze circle 

pipe configuration using conformal mapping and the boundary separation method for 

harmonic equations. The particularity of their solution is that it considers the waviness of 

the freeze body, which is usually neglected in order to simplify the problem (i.e. the freeze 

body of a freeze circle is typically simplified as a cylindrical annulus). The solution is 

expressed as: 

 

𝑇(𝑥, 𝑦) = (𝑇𝑠 − 𝑇f) ∙ ⁡

1
2 ln (2 (cosh

2𝜋𝑦
𝑠 − cos

2𝜋𝑥
𝑠 )) −

𝜋𝑅
𝑠

ln
2𝜋𝑟0
𝑠 −

𝜋𝑅
𝑠

+ 𝑇f 
(3.27) 

where the symbols represent the same variables as in the previous equations.  

 Approximate semi-empirical solutions applied to thermal design of 

artificial ground freezing  

In chapter 3.2 it has been shown that, although there exist several exact solutions for Stefan 

problems, most of them are restricted to simple geometries, uniform thermal properties and 

very specific boundary and initial conditions, such as uniform initial temperature 

(Ayasoufi, 2004) (Alexiades, 2017). Also, there are no explicitly solvable Stefan problems 

in 2 or 3 dimensions (Alexiades, 2017).  
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Furthermore, the solutions and mathematical techniques presented in chapter 3.3, even if 

approximate, tend to be limited to one-dimensional analysis and/or produce complicated 

mathematical solutions (Yigit, 2008), which are not easy to apply to problems in 

engineering practice.   

With respect to analytical solutions for artificial ground freezing, distinguished scholars 

already expressed the associated challenges during the First International Symposium on 

Ground Freezing in Bochum (Braun et al., 1979), from Frivik (1981), as follows:  

“The thermal analysis for a ground freezing system is fundamentally crude. 

Complex, three-dimensional, transient heat transfer in a heterogeneous porous 

medium including phase change, is essentially indeterminate. Furthermore, the 

specific refrigeration system and procedures utilized by the contractor frequently 

determine the actual field performance of the system and the in-situ thermal regime 

that will exist. Because of these factors, refined thermal analysis is pointless, 

preconstruction determination of refrigeration requirements is largely an art tinged 

with science, much the same as the selection and sizing of dewatering system or the 

determination of grouting requirements.”  

This is also condensed in the statement from Sanger and Sayles (1979), in Frivik (1981): 

“A rigorous treatment of the design and construction of structures of artificially frozen 

ground is impossible. It is an art in which ‘experimentia docet’”. The assertion from Jumikis 

(1979) that “In practice, all heat-transfer solutions in thermal soil mechanics are 

approximative ones” still holds today (see also Lunardini (1987)).  

Therefore, approximate analytical solutions based on further simplifications and/or 

assumptions and on empiric experience, however less accurate than the ones presented 

above, have been developed and are very useful for practical use in engineering design 

(Colombo, 2010). They have been commonly used for design during the 20th century and 

the beginning of the 21st century (Bock, 2018). Some relevant approximate solutions are 

presented in this chapter.  

Although they are not exact, these solutions are informative and may be good enough for 

the early stages of many engineering projects, as they are fast and efficient tools for 

calculating under certain circumstances (Rees et al., 2000). Moreover, in engineering 

projects there are usually other additional sources of uncertainty, which may have an even 

larger effect than the inaccuracies due to approximations in the analytical formula itself. 

Some examples of these practical uncertainties are the errors in the determination of the 

initial temperature, thermal parameters, water content and phase-change temperature of the 

ground. Furthermore, applying the more complex exact mathematical solutions to practical 

projects would probably require additional simplifications, such as simplifying the real 

geometry of the problem. Finally, approximate solutions are often easier and quicker to use 

than the more complex numerical solutions (which are handled in chapter 0), so they are 

more practical for early stages in the project. 
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The solutions presented in this chapter originated between 50-90 years ago. Trupak’s 

solution, presented in chapter 3.3.2.1, can also be cited as an early attempt on this problem. 

It was proposed already in 1954 for one freeze pipe and also for several pipes, using a 

simple superposition of the thermal fields of the single pipes (Hu et al., 2018b). One of the 

first rough simplifications for the transient problem neglected the specific heat capacity of 

the ground, proposing solutions valid only for small Stefan numbers. However, these 

solutions tend to largely overestimate the freezing rate and consequently to be of limited 

use (Khakimov, 1966). 

Another rather obvious simplification would be to neglect the latent heat of the ground, 

which largely simplifies the mathematics of the process. However, this does not yield 

accurate results (Vitel et al., 2015). 

All the solutions presented below do not consider the effect of groundwater flow. 

Furthermore, they assume homogeneous and isotropic ground, a uniform initial ground 

temperature, a constant freeze pipe temperature and constant thermal properties within each 

of the two phases. Regarding the solutions for patterns with several freeze pipes (freeze 

circle and freeze wall), they assume an ideal geometry and uniform pipe spacing. Finally, 

they generally provide the user with a formula for the determination of the freeze radius 

with respect to time, instead of the time-dependent temperature distribution. 

Their results differ greatly, as shown e.g. in Hentrich and Franz (2015) and Sancho-

Calderón et al. (2021), which stems from the fact that they make diverse simplifications 

and assumptions and apply different calculation methods. 

As heat-transfer equations are in general reversible (Jumikis, 1979), the solutions may also 

be used for thawing problems. An example of an approximate solution for a thawing 

problem can be found in Zhang et al. (2012). 

 Single freeze pipe 

As already stated by Lunardini (1981): “No exact, general, solution exists for phase change 

in a cylindrical geometry. In fact, even approximate solutions are rare and limited in 

applicability.” This summarizes quite well the difficulties that are found by the design 

engineer, who would favour having a closed analytical solution which is easy to use and 

sufficiently accurate. Five solutions from the literature are presented in this chapter and 

considered in more detail in the subsequent ones. Another solution which has been created 

recently is the one by Cai et al. (2018). However, it has not been yet used in many 

engineering projects, and it seems comparatively difficult to use, requiring mathematical 

software, such as Maple (from Maple Inc., https://www.maplesoft.com/), which may not be 

typically available to the design engineer. 

3.4.1.1. Leibenson’s solution  

Leibenson (1931), in the 1930s, similarly to Trupak, assumes a quasi-stationary state 

temperature distribution and neglects the sensible heat for the unfrozen region. This 

assumption introduces an error unless the initial temperature of the ground is the 

https://www.maplesoft.com/


  

Chapter 3: Review of the state of the art in analytical thermal calculations for ground freezing 

design   

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 40 

phase-change temperature. Indeed, Sanger and Sayles (1979) estimate the sensible heat for 

the unfrozen region at about 30% of the total heat, which is significant. Leibenson arrived 

at a relatively simple formula (Ständer, 1967): 

 

𝑡𝐼 = −

𝜌 ∙ 𝑙𝑠 (𝑅
2 ∙ ln

𝑅
𝑟0
−
𝑅2 − 𝑟0

2

2
) − 𝑐1𝜌1𝑇𝐼 (

𝑅2 − 𝑟0
2

2 −
𝑟0
2

2 ⁡𝜑
(𝑧))

2𝑘1𝑇𝐼
 

(3.28) 

where: 

𝑐1: specific heat of the frozen phase 

𝑙𝑠 =
𝑙𝑤𝑎𝑡𝑒𝑟⁡𝜔⁡𝜌𝑑

𝜌
 : crystallisation heat of the groundwater, per unit mass of ground 

𝑡𝐼: freezing time up to a freeze radius r 

𝑇𝐼 = 𝑇𝑠 − 𝑇𝑓: freeze-pipe temperature minus phase-change temperature 

𝜌1: density of the frozen phase 

𝜑(𝑧) = ∫
𝑒𝑧−1

𝑧
𝑑𝑧 = ∑

𝑧𝑛

𝑛⁡𝑛!
∞
𝑛=1

𝑧

0
       with 𝑧 = 2⁡𝑙𝑛

𝑅

𝑟0
 (this definition of 𝑧 is only meant for 

this equation, as 𝑧 generally represents the coordinate 𝑧) 

3.4.1.2. Khakimov’s solution 

Khakimov (1966), building up on Leibenson’s solution, makes use of the quasi-stationary 

approximation and assumes that the temperature penetration depth is directly proportional 

to the freeze radius, similarly to Sanger and Sayles (1979), see chapter 3.4.1.4. Furthermore, 

according to experimental data, he assumes that the temperature penetration depth is about 

4.5 to 5.5 times the freeze radius. This parameter is assumed as 5 for the analyses performed 

in the following chapters of the present thesis. Another assumption made is that the 

temperature is assumed to follow a logarithmic distribution up to a finite distance from the 

source. He uses the specific heat capacity of the frozen ground to account for the sensible 

heat also in the unfrozen area. As the specific heat capacity of ice is smaller than that of 

water, his solution predicts a faster freezing progress than it should (Ständer, 1967). His 

solution can be expressed as: 

𝑡𝐼 = −

𝜌 ∙ 𝑙𝑠 + 𝑐2𝜌2𝑇𝐼𝐼
𝑎𝑟

2 − 1
2 ln(𝑎𝑟)

(𝑅2 ∙ ln
𝑅
𝑟0
−
𝑅2 − 𝑟0

2

2 ) + 𝑐1𝜌1𝑇𝐼 (
𝑅2 − 𝑟0

2

2 −
𝑟0
2

2 ⁡𝜑
(𝑧))

2𝑘1𝑇𝐼
 

(3.29) 

where: 

𝑇𝐼𝐼 = 𝑇0 − 𝑇𝑓: initial temperature minus phase-change temperature 

𝑐2: specific heat of the unfrozen phase 

𝜌2: density of the unfrozen phase 
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𝑎𝑟: ratio of the radius of the zone affected by the temperature descent due to the influence 

of the freeze pipe (temperature penetration depth) and the freeze radius 

3.4.1.3. Ständer’s solution  

Ständer (1967) proposed practical solutions for some cases relevant to artificial ground 

freezing: single freeze pipe, freeze wall and freeze circle, and tested those solutions against 

laboratory experiments. These solutions have since been used in several engineering 

projects, see e.g. Hentrich and Franz (2015) and Bosch (2017). 

For the single freeze pipe, he starts discussing the approximate solutions known at his time, 

starting with a very rough approximation consisting of neglecting the sensible heat of the 

ground. Then, as presented in chapter 3.4.1.1, in the 1930s, Leibenson found an 

approximate solution which considers the sensible heat of the freeze body, but neglects the 

sensible heat of the non-frozen region (Ständer, 1967). Furthermore, he also discusses 

Khakimov’s solution (see chapter 3.4.1.2). He questions Khakimov’s assumption (which is 

also made by Sanger and Sayles (1979)) that the temperature penetration depth is a constant 

multiple, which is determined only empirically, of the freeze radius. In fact, that multiple 

is dependent on the thermal characteristics of the ground and is therefore not constant; the 

error of this simplification being unknown (Ständer, 1967).  

The solution by Ständer (1967) takes as a starting point the exact solution for the punctual 

source with constant heat flux by Carslaw and Jaeger (1959), which was presented in 

chapter 3.2.3. He then takes the average over time of the temperature on the freeze pipe 

from that exact solution and equates it to the freeze pipe temperature of the problem 

considered. 

Ständer (1967) performed experiments to check his solutions. However, the experiments 

were conducted during a relatively short time of a few hours.  

Ständer’s solution is comparatively more difficult to use in practice than the other formulae 

in this chapter, because it involves solving equations which are relatively complex. Indeed, 

he provided numerous nomograms to solve them. With the current available means, his 

solution for the single freeze pipe, which is shown in Equation (3.30) can, however, be 

solved entirely analytically, e.g. with the commercial software Maple 2018. 

1

𝑋
=

𝑒𝛼12𝑣
2
𝐸𝑖(−𝛼12𝑣

2)

𝑒𝑣
2 𝑍2

𝑍2 − 1
(𝑒

−𝑣2
𝑍2
⁄ −

1
𝑍2
𝑒−𝑣

2
+ (1 + 𝑣

2

𝑍2
⁄ ) (𝐸𝑖 (−

𝑣2
𝑍2
⁄ ) − 𝐸𝑖(−𝑣

2)))

+
𝑘2𝐸𝑖(−𝛼12𝑣

2)𝑒𝛼12𝑣
2

𝑌
 

(3.30) 

where: 

𝑣 is related to the freeze radius as follows:  

𝑣2 =⁡
𝑅2 − 𝑟0

2

4𝛼1 ∙ 𝑡
⁡ 

𝑋 = −
𝑘1∙𝑇𝐼

𝑘2∙𝑇𝐼𝐼
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𝑌 = −
𝑘1∙𝑇𝐼

𝛼1∙𝜌∙𝑙𝑠
  

𝑍 =
𝑅

𝑟0
  

3.4.1.4. Sanger & Sayles’ solution  

Sanger and Sayles (1979) created a widely used solution for the calculation of the freezing 

progress from a single freeze pipe. It has been applied in numerous practical engineering 

projects (Holden, 1997) (Sopko, 2017a), e.g. in Manassero et al. (2008), Colombo (2010), 

Pigorini et al. (2012), Hentrich and Franz (2015) or Filippo Mira-Cattò (2016). 

They aim to provide a solution for freeze walls with multiple pipes by dividing the process 

in two stages. The first stage, which is described in the present chapter, describes the growth 

of the freeze front growing from a single freeze pipe, without consideration of the potential 

influence of any neighbouring pipes.  

Three basic assumptions are taken in Sanger and Sayles (1979): 

1. “Isotherms move so slowly they resemble those for steady-state conditions. […]” 

This corresponds to the quasi-stationary approximation. 

2. “The radius of the unfrozen soil affected by the temperature of the freeze pipe 

[temperature penetration depth] can be expressed as a [constant] multiple of the 

frozen soil radius prevailing at the same time.” For the single-pipe case, this 

multiple is assumed as 𝑎𝑟 = 3. (This assumes that this multiple is constant with 

time, for all types of ground and for different freeze-pipe, phase-change and initial 

temperatures). 

3. “The total latent and sensible heat can be expressed as a specific energy which when 

multiplied by the frozen volume gives the same total as the two elements computed 

separately.” 

The relatively simple and practically applicable expressions of Sanger and Sayles (1979) 

for estimating the freeze time around a single pipe are presented below.  

The formula to find the time 𝑡I to achieve a certain freeze radius R is: 

 
𝑡I =

𝑅2𝐿𝐼
4⁡𝑘1𝑣𝑠

(2 ln (
𝑅

𝑟0
) − 1 −

𝑐1𝑇𝐼
𝐿𝐼
) (3.31) 

 

The required power per unit length of freeze pipe is given by Sanger and Sayles (1979) as: 

 
𝑃𝐼 = −2⁡𝜋

𝑘1𝑇𝐼

ln
𝑅
𝑟0

 
(3.32) 

where: 

𝑎𝑟: Ratio of the radius of the zone affected by the temperature drop due to the influence of 

the freeze pipe (temperature penetration depth) and the freeze radius 
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𝑐1: specific heat capacity of frozen ground 

𝑐2: specific heat capacity of unfrozen ground 

𝑘1: thermal conductivity of frozen ground 

𝑘2: thermal conductivity of unfrozen ground 

𝑙𝑣 = 𝑙𝑤𝑎𝑡𝑒𝑟⁡𝜔⁡𝜌𝑑 : crystallisation heat of the groundwater, per unit volume of ground  

𝐿𝐼 = 𝑙𝑣 +
(𝑎𝑟
2−1)

⁡2⁡ln⁡𝑎𝑟
⁡𝑐2𝑇𝐼𝐼⁡: volumetric latent heat of the unfrozen area 

𝑟0: freeze pipe radius 

𝑅: freeze radius 

3.4.1.5. Lunardini’s solution 

Lunardini (1981) developed an approximate solution for the single pipe problem by using 

the effective thermal diffusivity method and the heat balance integral method with a 

polynomic approximation having a degree of 20. The effective thermal diffusivity is 

defined as a fictitious diffusivity, which introduced in the solution to the analogue problem 

with zero latent heat, gives the same results as the problem with latent heat. The solution 

reached by Lunardini (1981) requires the sequential use of several formulae, some of which 

are transcendental equations, and is therefore not as straightforward as the one from Sanger 

and Sayles (1979). 

 Flat freeze wall 

Flat freeze walls may be used to protect rectangular excavation pits in water-bearing 

ground. For instance, artificial ground freezing was applied at the excavation pit for the 

Berlin opera (Staatsoper) (BAUER Spezialtiefbau GmbH, 2018). Ständer (1967) and 

Sanger and Sayles (1979) provided approximate solutions for the flat freeze wall which are 

used in engineering projects.  

3.4.2.1. Sanger & Sayles’ solution  

Sanger and Sayles (1979) provide a closed-form solution for the freeze wall problem which 

is easy to use in engineering practice. Based on experimental data from Khakimov (1966), 

they assume a value of 𝑎𝑟 = 5 for the flat freeze wall.  

The freezing process for a freeze wall is divided by Sanger and Sayles (1979) into two 

stages (see the representation in Figure 2.5). The first stage encompasses the time from the 

beginning of the freezing process until the single frozen cylinders around the pipes merge 

(freeze body closure). This first stage is described by the equation for the single freeze pipe 

in chapter 3.4.1.4. Thus, Sanger and Sayles (1979) do not consider either the cooling effect 

of the neighbouring pipes before the freeze wall closure or the temperature descent in the 

remaining unfrozen ground. The solution for the second stage has a form which is 

analogous, (although more complex) to the one for the first stage. A linear temperature 
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distribution in the frozen zone and a logarithmic one in the unfrozen zone are assumed. The 

freeze pipe pattern of the freeze wall is shown in Figure 3.4. 

 

Figure 3.4: Schematic drawing of a freeze wall (Sanger and Sayles, 1979) 

The solution from Sanger and Sayles (1979) for the freeze wall is presented below: 

 
𝑡II = −

𝐿𝐹
2⁡𝑘1𝑇𝐼

(
W2

4
−
𝑊𝐼

2

4
) (3.33) 

where: 

𝐿𝐹 = 𝑙𝑣 −
1

2
𝑐1𝑇𝐼 + 𝑐2𝑇𝐼𝐼 (

𝑎𝑟−1

ln⁡(𝑎𝑟)
)  

𝑊: freeze wall width 

𝑊𝐼: average freeze wall width at closure 

3.4.2.2. Ständer’s solution 

For the freeze wall calculation, Ständer (1967) uses similar assumptions as for the single 

pipe problem presented in chapter 3.4.1.3. He divides the freezing process for the freeze 

wall into two phases, before and after the closure of the freeze wall. In contrast to Sanger 

and Sayles (1979), he does consider, based on empirical values, the influence of the 

neighbouring freeze pipes on the freezing process before closure. Thus, the closing time 

decreases compared to the case in which they are considered independently. Moreover, for 

the second phase, he also takes into account the amount of cooling by the freeze pipes on 

the unfrozen ground until the closure. He determines experimentally an effective “starting 

ground temperature” for the second phase. For instance, he suggests using 𝑡𝐼𝐼𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =

𝑡𝐼𝐼 ∙ 0.270 for the freeze wall. In this respect, he recognizes a probable error in the factor 

of about ±15%.  

For the second phase, Ständer (1967) calculates the spatial average of the temperature over 

the freeze line (row of pipes). Then, this temperature is averaged over the time passed 

between the start of the freezing process and the time corresponding to the sought freeze 

radius. Afterwards, he applies the exact Neumann solution for the semi-infinite-slab 

problem (presented in chapter 3.2.1), introducing the previously calculated average 
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temperature as the temperature of the plane source. The solution is more complex than his 

solution for the single freeze pipe, so it is relatively complicated to use in engineering 

projects. 

 Freeze circle 

Artificial ground freezing with circular geometry is the oldest and most widely used freeze 

pipe pattern, very often applied to sink deep mine shafts (Hu et al., 2018b). There are two 

solutions for freeze circles often used in engineering projects: Ständer (1967) and Sanger 

and Sayles (1979), both dating from the 60-70s of the last century. These solutions stem 

from the solutions for the flat freeze wall and their formulations are therefore analogous to 

them. 

3.4.3.1. Sanger & Sayles’ solution 

Sanger and Sayles (1979) proposed a relatively simple, explicit solution for the estimation 

of the freezing progress in a freeze circle. They proceeded based on the same assumptions 

as presented in chapter 3.4.1.4 for the single freeze pipe. The process to obtain the solution 

is analogous to the one for the freeze wall presented in chapter 3.4.2.1. Two equations are 

given for the second stage (after freeze body closure): one for the external freeze radius 

(outwards from the freeze pipes), see Equation (3.34), and another one for the internal 

freeze radius (see Equation (3.35)). Based on experimental data from Khakimov (1966), 

they assume a value of 𝑎𝑟 = 5 for the external freeze wall and 𝑎𝑟 = 4 for the internal freeze 

wall. 

This solution has been widely used in engineering design, see e.g. Chang and Lacy (2008), 

Colombo (2010) and Hentrich and Franz (2015). 

 

 
𝑡IIe =

1

2⁡𝑘1𝑣𝑠
𝐿𝐼𝐼𝑒 (𝑅𝑒

2 ln
𝑅𝑒

𝑟0 + 𝛿
−
𝑅𝑒

2 − (𝑟0 + 𝛿)
2

2
) +

𝑐1
2⁡𝑘1

(
𝑅𝑒

2 − (𝑟0 + 𝛿)
2

2
) (3.34) 

   

 
𝑡IIi =

1

2⁡𝑘1𝑣𝑠
𝐿𝐼𝐼𝑖 ((𝑟0 − 𝛿)

2 ln
𝑟0 − 𝛿

𝑅𝑖
−
(𝑟0 − 𝛿)

2 − 𝑅𝑖
2

2
) +

𝑐1
2⁡𝑘1

(
(𝑟0 − 𝛿)

2 − 𝑅𝑖
2

2
) (3.35) 

where: 

𝐿𝐼𝐼𝑒 = 𝑙𝑣 + 2.5𝑐2𝑇𝐼𝐼 − 0.5𝑐1𝑇𝐼    (for 𝑎𝑟 = 5) 

𝐿𝐼𝐼𝑖 = 𝑙𝑣 + 2.0𝑐2𝑇𝐼𝐼 − 0.5𝑐1𝑇𝐼  (for 𝑎𝑟 = 4) 

𝑅𝑒: external radius of the freeze annulus 

𝑅𝑖: internal radius of the freeze annulus 

𝑡IIe: time to reach the external freeze radius (𝑅𝑒) 

𝑡IIi: time to reach the external freeze radius (𝑅𝑖) 

𝛿: half-width of the freeze annulus at closure time (see Figure 3.4)  
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3.4.3.2. Ständer’s solution 

Ständer (1967) gives a solution for the freeze circle which is analogue to the one presented 

for the flat freeze wall in chapter 3.4.2.2. Ständer (1967) first calculates the average 

temperature in the freeze pipe circle, a similar approach to the one taken for the flat freeze 

wall. Then, he seeks the solution without consideration of the sensible heat and assuming 

the calculated average temperature over the freeze circle. He solves this problem using 

experimental data and analogies to the problems previously solved: flat freeze wall and 

single freeze pipe. After having arrived at a solution for the freeze circle without 

consideration of the sensible heat, he builds up a solution for the freeze circle under 

consideration of the latent and the sensible heat in the ground, using again the parallelism 

with the flat-freeze-wall problem. He uses two factors which adjust his solution from the 

plane problem without sensible heat. The first of the two considers the effect of the sensible 

heat and the second one the relationship between the plane and the cylindrical problems. 

Ständer’s solution for the freeze circle is relatively difficult to use in practice because it is 

not presented in the form of an explicit formula, but instead, several nomograms need to be 

used. However, this solution has sometimes been used for thermal design of freeze shafts 

by German-speaking authors (see e.g. Baier (2008), Pimentel (2012) or Hentrich and Franz 

(2015)). The nomograms contained in Ständer’s paper are required to evaluate the solution 

(even with specialised mathematical software such as Maple 2018 it is difficult to 

automatize the formulae completely without the use of the nomograms). This complexity 

and the fact that the paper is written in German language (no English translation is known 

to the author) may be the reasons why this solution does not seem to be well-known outside 

of the German-speaking countries. 
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 Summary of approximate semi-empirical solutions 

Table 3.1 shows a summary of the main assumptions, limitations and other characteristics 

of the solutions presented in chapter 3.4. 

Table 3.1: Summary of analytical solutions for ground freezing thermal design 

Solution Main Assumptions and limitations 

Solution available 

for freeze wall and 

freeze circle 

Easy-to-use 

closed 

Formula 

Leibenson 
• Quasi-stationary approximation 

• Neglection of sensible heat in the unfrozen region 
No Yes 

Khakimov 

• Quasi-stationary approximation 

• Temperature penetration depth directly 

proportional to freeze radius. Ratio according to 

experience. 

• Use of specific heat capacity of frozen ground 

also for unfrozen areas 

No Yes 

Ständer 

• Based on Carslaw and Jaeger's (1959) exact 

solution for a constant flux source 

• Several assumptions made to apply the 

parallelism with exact known solutions 

Yes No 

Sanger & 

Sayles 

• Quasi-stationary approximation 

• Temperature penetration depth directly 

proportional to freeze radius. Ratio according to 

experience. 

• The latent and sensible heat can be expressed as a 

total specific energy. 

Yes Yes 

Lunardini 
• Use of the Heat Balance Integral Method  

• Use of the effective thermal diffusivity method  
No No 
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 Review of the state of the art in numerical thermal calculations 

with phase change 

Already 40 years ago, Frivik (1981) reckoned that numerical methods would be required 

for thermal design of AGF, due to the limitations of analytical methods. Approximate 

analytical solutions for phase-change problems have limitations caused by the assumptions 

and simplifications used for their derivation, which is why the more flexible numerical 

solutions are sought (see also Sopko Jr. (1990) and Zueter et al. (2021)). Analytical 

solutions also tend to be limited to one-dimensional problems and its application becomes 

complex for multidimensional ones, among other limitations they have (Yigit, 2008). 

Therefore, the search for numerical solutions which can solve phase-change thermal 

problems with complex geometry and boundary conditions is the natural response to the 

limited number of available exact analytical solutions (Rees et al., 2000). Moreover, the 

flexibility of numerical methods is such that they can account, among other factors, for 

complex geometries, heterogeneous ground properties and time-dependent boundary 

conditions. Furthermore, it is possible to simulate 2D and 3D problems with numerical 

solutions, in contrast to most of the analytical solutions presented in chapter 3, which can 

be applied to 1D problems only. 

Numerical methods for Partial Differential Equations (PDEs) use discrete approximations 

to find approximate solutions to the PDEs (Recktenwald, 2004). That is, instead of using 

differential elements (elements infinitely small) and infinitesimal time steps like in 

differential calculus, they use elements of finite size and time steps of finite duration. In 

numerical methods, the mathematical equations are proposed for every element instead of 

for the entire domain, and then they are combined to solve the whole problem (Babaei, 

2016). The points in which the numerical solution is computed are called nodes, and the set 

of nodes makes up the mesh, which discretises the space domain (Recktenwald, 2004). The 

size of the elements of the mesh and of the time steps is defined by the user depending on 

several factors, such as the geometry of the problem and the available time for the 

computation. It is widely accepted that, in general, increasing the number of elements (i.e. 

decreasing their size) improves the resolution and accuracy of the numerical solution, see 

e.g. Recktenwald (2004).  

The Finite Difference Method (FDM) was introduced in 1928 (Emery and Mortazavi, 

1982), whereas the Finite Element Method (FEM) was introduced in the late 1960s to solve 

problems in geotechnics (Babaei, 2016). Already in the early 1960s 2D numerical methods 

capable of solving the heat transfer equations existed (P.E.Frivik, 1981). In Germany, 

(Ständer, 1967), a numerical method was applied to ground freezing, although probably 

only in a scientific way, as the calculations for practical engineering problems following 

that method would have been very time-consuming. In the 1970s, numerical methods 

capable of simulating the effect of latent heat were developed as tools to design several oil 

and gas pipelines in Northern Canada and Alaska (Pentland and Fredlund, 2001). 

Nowadays both FDM and FEM methods are commonly used for heat transfer problems 



  

Chapter 4: Review of the state of the art in numerical thermal calculations with phase change   

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 49 

with phase change (see Table 4.3). A comparison of their principles, advantages and 

disadvantages can be found in Emery and Mortazavi (1982). 

The computational methods have been significantly influenced in the last several decades 

by the improving computing capacity, the development of software for numerical 

calculations and the research of scholars (Paynter and Life, 1999). Nevertheless, numerical 

solutions have by its mere nature several limitations. For instance, they require much more 

computing power and time than analytical solutions (Fossa and Rolando, 2014) and may 

pose problems regarding their accuracy and stability, which need to be treated and limited 

to acceptable values which depend on the engineering problem they are applied to.  

Another type of numerical schemes is based on semi-analytical methods. These schemes 

can usually be applied with larger time steps than those of conventional numerical schemes 

(Rizwan-uddin, 1998). 

Choosing the most appropriate and efficient method for a given problem is not trivial, on 

the contrary, it is a complex issue. According to Voller (1996), the efficiency of a numerical 

scheme depends on “the implementation of the method, its accuracy, the problem to be 

modelled, the convergence criteria, the computer architecture and the choice of space and 

time steps”. Furthermore, he claims that the solution scheme should be chosen considering 

its robustness, flexibility and accuracy, and the available computing resources. Gustafsson 

(2011) argues in a similar direction that the method chosen should be the one which results 

in the fastest solution for a given required accuracy. 

 Principles of the Finite Difference Method 

As presented in the previous section, the two numerical methods most commonly used are 

the Finite Element and Finite Difference Methods. FLAC3D (commercialised by Itasca 

Consulting Group Inc., https://www.itascacg.com/) is the commercial software used for 

thermal numerical modelling in this thesis, which was chosen due to its flexibility and 

programmability (Bock, 2018). As FLAC3D is based on the Finite Difference (FD) 

Method, from here on the focus will be directed on this method. The Finite Difference 

Method is based on replacing the derivatives in the PDEs with finite-difference formulae, 

which are evaluated only in the nodes of the mesh, which discretises the region considered 

(Recktenwald, 2004), obtaining an approximate solution to the PDE at a finite set of nodes 

and time instants. Different approximations to the derivatives may have different 

characteristics in terms of being convergent or divergent, rate of convergence, maximum 

required time step (∆𝑡) or mesh size (∆𝑥, ∆𝑦, ∆𝑧), etc. The results of any unconditionally 

convergent method will tend towards the exact solution when ∆𝑥 and ∆𝑡 tend to zero 

(Recktenwald, 2004). However, some other schemes may not work properly for 

unfavourable conditions of ∆𝑥 and ∆𝑡 (Recktenwald, 2004). A finite difference scheme is 

convergent if its pointwise errors tend to zero when ∆𝑡 and ∆𝑥 tend to zero (Causon and 

Mingham, 2010). The scheme is stable if its pointwise errors do not grow without limit 

after a certain arbitrary time. For linear PDEs (like the heat conduction equation without 

https://www.itascacg.com/
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phase change), the Lax Equivalence Theorem states that stability and convergence are 

equivalent (Causon and Mingham, 2010).  

An example of a discrete approximation which may be used in Finite Difference Methods 

is (Recktenwald, 2004): 

 𝜕𝜙(𝑥, 𝑡)

𝜕𝑥
≈
𝜙𝑖+1 − 𝜙𝑖

∆𝑥
 (4.1) 

The notation in the equation above and in the rest of this chapter is as follows: 

∆𝑥: discrete interval of length in the coordinate x 

𝜙(𝑥, 𝑡): exact, continuous solution 

𝜙(𝑥𝑖 , 𝑡𝑚): exact solution evaluated at the mesh point i at time instant tm 

𝜙𝑖: approximate numerical solution evaluated at the mesh point i  

𝜙𝑖+1: approximate numerical solution evaluated at the mesh point i +1  

𝜙𝑖
𝑚: approximate numerical solution evaluated at the mesh point i at time instant tm 

A graphical representation of a mesh for a one-dimensional problem used in numerical 

methods is presented in Figure 4.1. The black squares represent the initial conditions, while 

the white ones show the boundary conditions. The solution is obtained with the numerical 

scheme at the positions and times represented by the circles (Recktenwald, 2004). 

 

Figure 4.1: Mesh for a plane, semi-infinite heat conduction problem (Recktenwald, 2004) 
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 Numerical schemes for thermal problems without phase change 

The finite difference approximations may be computed following several schemes. To start 

with, they differ in their order of approximation. For instance, first-order schemes are based 

on truncating the Taylor series for 𝜙(𝑥) to the first term. Then, the scheme may be a 

forward or a backward scheme, which use the values of the solution 𝜙 in the next or in the 

previous node, respectively (Recktenwald, 2004). Another scheme is the central difference 

approximation. The truncation error is usually dependent on the mesh size. These usual 

schemes are presented below (formulae adapted from Recktenwald (2004)). 

First order forward difference formula for 
𝜕𝜙

𝜕𝑥
 at point 𝑥 = 𝑥𝑖: 

 𝜕𝜙

𝜕𝑥
⁡(𝑡 = 𝑡𝑛, 𝑥 = 𝑥𝑖) =

𝜙𝑖+1
𝑛 − 𝜙𝑖

𝑛

∆𝑥
+ 𝒪(∆𝑥) (4.2) 

where 𝒪(∆𝑥) means that the truncation error is proportional (linear) to ∆𝑥. 

First order backward difference formula for 
𝜕𝜙

𝜕𝑥
 at point 𝑥 = 𝑥𝑖 (for the next three equations, 

the time step is not explicitly shown in the formula; it is understood that the formula is 

applied to an arbitrary time step 𝑛): 

 𝜕𝜙

𝜕𝑥
⁡(𝑥 = 𝑥𝑖) =

𝜙𝑖 − 𝜙𝑖−1
∆𝑥

+ 𝒪(∆𝑥) (4.3) 

First order central difference formula for 
𝜕𝜙

𝜕𝑥
 at point 𝑥 = 𝑥𝑖: 

 𝜕𝜙

𝜕𝑥
⁡(𝑥 = 𝑥𝑖) =

𝜙𝑖+1 − 𝜙𝑖−1
2∆𝑥

+ 𝒪(∆𝑥2) (4.4) 

𝒪(∆𝑥2) means that the error is proportional to ∆𝑥2. 

From this central difference formula, it can be seen that the truncation error 𝒪 approaches 

zero much faster than with the forward or backward formulae (Recktenwald, 2004), as it is 

proportional to the square of the mesh size instead of being linearly dependent of it. 

However, Equation (4.4) may cause problems when applied to a differential equation 

because 𝜙𝑖 does not enter into the formula (Recktenwald, 2004). 

Approximate expressions for higher-order derivatives can be obtained analogously. As an 

example, the second order central difference approximation approximates the second 

derivative as follows: 

 𝜕2𝜙

𝜕𝑥2
⁡(𝑥 = 𝑥𝑖) =

𝜙𝑖+1 − 2𝜙𝑖 + 𝜙𝑖−1
∆𝑥2

+ 𝒪(∆𝑥2) (4.5) 

Introducing this or other finite difference approximations into the PDE, a numerical 

solution may be obtained. The discretised equation is arranged as a time-marching scheme, 

so that it is possible to calculate the solution values for the following time step based on the 

solution values for the previous time step.  
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Applied to thermal problems, the finite difference approximations are used to find an 

approximate solution to the heat conduction equation (Equation (4.6), which is the 

one-dimensional form of Equation (3.4), without the energy release term): 

 𝜕𝜙

𝜕𝑡
= 𝛼

𝜕2𝜙

𝜕𝑥2
 (4.6) 

In transient problems, the time also needs to be discretised, analogously to the space 

discretisation shown above. One possible discretisation of Equation (4.6) is the Forward 

Time, Centred Space or FTCS approximation (Recktenwald, 2004): 

 
𝜙𝑖
𝑚+1 = 𝜙𝑖

𝑚 +
𝛼∆𝑡

∆𝑥2
⁡(𝜙𝑖+1

𝑚 − 2𝜙𝑖
𝑚 + 𝜙𝑖−1

𝑚 ) (4.7) 

The error of this method is 𝒪(∆𝑡) + 𝒪(∆𝑥2), i.e. it is of order one in time and of order two 

in space. 

It is essential to consider the stability of the numerical scheme, which depends on the 

physical properties of the material, as well as on the space and time discretisations, because 

if the solution is unstable, it may oscillate or diverge from the exact solution. The FTCS 

scheme can provide stable solutions (Recktenwald, 2004) only if the condition of 

Inequation (4.8) is fulfilled: 

 𝛽∆𝑡

∆𝑥2
≤
1

2
 (4.8) 

where 𝛽 is a constant coefficient. 

That is, for a constant time step, if the mesh size is decreased and the previous condition is 

not met, the method will become unstable. Hence, the scheme will become unstable for 

time steps larger than the critical time step for given mesh size and material properties. 

Thus, Inequation (4.8) also implies that the choices of time step and mesh size need to be 

related (see also unknown (n.d.-d) and GEO-SLOPE International Ltd. (2014)). 

Analogously to the FTCS method, there exists the Backward Time, Centred Space method 

(BTCS). This approximation can be represented by Equation (4.9): 

 𝜙𝑖
𝑚 − 𝜙𝑖

𝑚−1

∆𝑡
= 𝛼

𝜙𝑖−1
𝑚 − 2𝜙𝑖

𝑚 + 𝜙𝑖+1
𝑚

∆𝑥2
+ 𝒪(∆𝑡) + 𝒪(∆𝑥2) (4.9) 

The errors of the BTCS method have the same order of magnitude as the ones of the BTCS. 

There is, however, an important difference: Equation (4.9) cannot be rearranged as an 

explicit function of 𝜙𝑖
𝑚, which means that, unlike the former schemes, the BTCS scheme 

is implicit. 

Explicit schemes may require a very small time step to stay stable. An alternative to them 

are implicit schemes, which have the significant advantage of being unconditionally stable 

(Recktenwald, 2004), i.e. they are stable and convergent for any time step. Thus, the time 

step can be chosen solely based on accuracy requirements (Causon and Mingham, 2010), 

as there is no stability restriction (Gustafsson, 2011). Consequently, a much larger time step 
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may be chosen than when using the explicit method. On the downside, as implicit methods 

require solving a non-linear system of equations every time step (Bonacina and Comini, 

1973) (Voller, 1996), they require more computational effort per time step than explicit 

methods, such as the FTCS method. This is the reason why larger time steps are generally 

used for implicit methods (Voller, 1996). Typically, time steps used for implicit methods 

are in the range of fifty to a few hundred times of the maximum time step for the explicit 

method (unknown, n.d.-e). 

Yet another frequently used method is the Crank-Nicholson scheme. This scheme has an 

additional advantage relative to the FTCS and BTCS schemes: it has a temporal error of 

second order, i.e. the error decreases faster with smaller time steps. It is implicit and also 

unconditionally stable (Recktenwald, 2004), which can be proven by means of the von 

Neumann stability analysis (Causon and Mingham, 2010). Although the von Neumann 

stability analysis is only applicable to linear schemes and thus cannot be used for schemes 

simulating phase change, applying it to the corresponding linearized scheme provides a 

necessary condition for the stability of the nonlinear scheme. In any case, the theory to 

establish convergence and stability of a method is frequently applicable to specific cases 

only, so it often needs to be combined with numerical experimentation (Causon and 

Mingham, 2010). 

The Crank-Nicholson method approximates Equation (4.6) with the following implicit 

equation, with a truncation error of 𝒪(∆𝑡2) + 𝒪(∆𝑥2).  

 𝜙𝑖
𝑚 − 𝜙𝑖

𝑚−1

∆𝑡
=
1

2
(
𝜙𝑖−1
𝑚 − 2𝜙𝑖

𝑚 + 𝜙𝑖+1
𝑚

∆𝑥2
+
𝜙𝑖−1
𝑚−1 − 2𝜙𝑖

𝑚−1 + 𝜙𝑖+1
𝑚−1

∆𝑥2
) (4.10) 

This expression can be extended to two space dimensions. For two dimensions, the PDE 

becomes more complicated, but it can be discretised and simplified with e.g. the operator 

splitting technique, splitting the PDE in different dimensions or terms (Causon and 

Mingham, 2010). 

The values of the solution function 𝜙 for the time step 𝑚 (the current time step which is 

being solved for) can be obtained from Equation (4.10), provided that the values of 𝜙 are 

known for the last time step 𝑚− 1. For real problems with large meshes, this procedure 

originates a system of equations which may become very large. This system can be solved 

by direct methods, e.g. Gauss elimination, although for large sizes it is more efficient to use 

iterative solution methods, such as the Jacobi iteration (used by FLAC3D), the 

Gauss-Seidel iteration or the successive over-relaxation method (Causon and Mingham, 

2010). 

A representation of the FTCS, BTCS and Crank-Nicholson methods is found in Figure 4.2. 
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Figure 4.2: Graphical representation of different numerical schemes (Recktenwald, 2004) 

 Numerical methods for Stefan problems 

The PDE that governs the heat conduction process without phase change is linear and, 

provided that the boundary conditions are constant, gives monotone, smooth and bounded 

solutions, which describe the transformation of the system from the initial state to a steady 

state (Recktenwald, 2004). On the contrary, the phase change process introduces a 

non-linearity, which causes the solution for the temperature field to have a discontinuous 

derivative (the temperature history is no longer smooth). For instance, if the thermal 

characteristics of the soil vary with temperature, for example due to the phase change 

process, the coefficients of the finite difference equation may need to be adjusted every 

time step in an iterative process (Bonacina and Comini, 1973). 

There exist different numerical schemes to solve Stefan problems. Extensive reviews on 

these methods can be found, among others, in Crank (1987), Voller (1996), and Javierre et 

al. (2006). These numerical methods can be classified into “fixed grid” (the enthalpy 

method being the most extended among them) and “front tracking” methods (Voller, 1996) 

(Mackenzie and Robertson, 2000) (Savovic and Caldwell, 2009) (Ivanovic et al., 2017). A 

third type, similar to front tracking methods, is formed by front-fixing methods, such as the 

boundary immobilization method, which fixes the moving boundary (phase-change 

interface) via a coordinate transformation. Other methods, such as the perturbation method, 

require symbolic mathematics software or are only applicable under specific conditions, 

e.g. for small Stefan numbers (Caldwell and Kwan, 2004). A comparison of several of these 

methods applied to the one-dimensional Stefan problem can be found in Karabenli et al. 

(2016). 

Fixed-grid methods are clearly more advantageous than front-tracking methods to solve 

problems in two or more dimensions (Voller, 1996). In general, problems in 2D and 3D are 

of high practical importance (Basu and Date, 1988), as most of the phenomena and real 

projects cannot be reduced to one-dimensional problems. Lastly, there are hybrid methods, 

like node jumping, local tracking and deforming enthalpy methods, which aim to profit of 

the advantages of both types of methods (Voller, 1996). 

Finally, although there are well-established numerical solutions for Stefan problems, the 

field for future research is large, e.g. to simulate specific problems like the morphology of 

the mushy region or the coupling of thermal and other fields (Voller, 1996). 
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 Front-tracking and front-fixing methods  

In these methods, the phase change interface is continuously tracked (Savovic and 

Caldwell, 2009). The isotherm migration method, the variable grid method and the heat 

balance integral method are considered front-tracking schemes. The boundary 

immobilization method is a front-fixing method. 

Front-tracking methods use an explicit representation of the interface (Javierre et al., 2006) 

and adjust the grid or the time steps to always locate nodes along the phase interface (Voller 

et al., 2004). The variable time step method adapts the time step so that the interface 

coincides with the grid lines at every time step (Basu and Date, 1988). Other methods are 

the boundary immobilization and the isotherm migration method. In these methods, which 

are common in finite-element literature (Voller, 1996), the Stefan condition (energy 

conservation) is explicitly imposed at the moving interface (Mackenzie and Robertson, 

2000), thus an a-priori knowledge of the boundary geometry is usually required. The 

moving grid methods use an adaptable grid and have been shown to give the interphase 

position more accurately, while the former provide a more precise temperature distribution 

in the whole region. The applicability of the moving grid or moving mesh methods is 

however usually limited to relatively simple problems, with one-dimensional and 

uncomplex geometry (unknown, n.d.-a) (Stuizalec, 1989) (Ayasoufi, 2004).  

Very low relative errors, of the order of 10−4 to 10−5, have been documented in Karabenli 

et al. (2016) with the Finite Element Boundary Immobilization Method, the Finite Element 

Isotherm Migration Method and the Finite Element Variable Space Grid Method. 

4.3.1.1. Variable grid and variable time step methods 

In these methods, the spatial grid or the time step is adapted at every time step, so that the 

interphase is always located at the same nodes. For instance, the number of elements 

between a boundary and the phase interface is fixed to be N, so the interface will always be 

at the Nth line of the grid (Savovic and Caldwell, 2009). This method has advantages in the 

implementation and can be solved with symmetric matrices, which are easier to compute 

(Javierre et al., 2006). Furthermore, it gives smooth solutions for the phase interface and is 

more efficient than uniform mesh methods (Mackenzie and Robertson, 2002). The main 

drawback of this method for practical use is that the form of the phase change interface 

needs to be known a priori, so that it is currently applicable only for simple 1D geometries 

(see e.g. Savovic and Caldwell (2009) or Wu and Wang (2012)), or possibly for regular 2D 

geometries. Furthermore, it needs to be assumed that the moving boundary is moving 

smoothly and monotonically with time, which may not always be the case (Furzeland, 

1980). 

4.3.1.2. Isotherm migration method 

The basic idea behind the isotherm migration method is that the temperature can be taken 

as the independent variable, whereas the spatial coordinates are considered as the dependent 

variables (Crank and Gupta, 1975). This approach is essentially tracking the movement of 
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the isotherms, one of which is the phase-change interface. This front-tracking method has 

been used to solve phase-change problems in one and two dimensions, however, its 

applicability is restricted to problems with symmetry (Crank and Gupta, 1975) or simple 

geometries. 

4.3.1.3. Boundary immobilization method 

The boundary immobilization method is a front-fixing method based on performing a 

coordinate transformation which practically fixes the phase change boundary. In exchange, 

however, a more complicated problem needs to be solved (Savovic and Caldwell, 2009). A 

representation of the methodology is shown in Figure 4.3. These kinds of methods are 

usually difficult to apply in problems with several phase interfaces, disappearing or 

merging interphases or gradual phase change. Additionally, this method does not seem to 

be easily applicable for 2D complex geometries, although it may be more accurate than the 

enthalpy method. Examples of application for typical geometries can be found in Kim and 

Kaviany (1990) and in Mitchell and Vynnycky (2009). Finally, this method requires a 

starting solution for small time (Caldwell and Kwan, 2004). 

 

Figure 4.3: Real geometry and transformed geometry with fixed interphase (Crank, 1987) 
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 Fixed domain or fixed grid methods  

Fixed grid methods use a constant grid during the whole calculation. The most widely fixed 

grid method is the enthalpy method, which was first introduced by Eyres et al. (1946) to 

treat heat transfer problems with thermal conductivity varying with the temperature 

(Ayasoufi, 2004). 

4.3.2.1. The enthalpy method 

The enthalpy method is considered to be a “simple and flexible technique” to tackle 

phase-change problems (Esen and Kutluay, 2004). One of the early papers to discuss it was 

Rose (1960). It can be combined with finite element and finite difference schemes 

(Furzeland, 1980). In this method, the enthalpy function “𝐻”, which represents the total 

heat including specific and latent heat per unit mass, is defined by Equation (4.11) (Voller, 

1996). As the defined enthalpy function is discontinuous, it is usual to use the weak 

(integral) formulation of the heat conduction PDEs (Crank, 1987). 

 
𝐻 = {

𝑐1𝑇 𝑇 < 𝑇𝑓
𝑐2𝑇 + (𝑐1 − 𝑐2)⁡𝑇𝑓 + 𝐿 𝑇 ≥ 𝑇𝑓

 (4.11) 

Where 𝐿 is the absorbed latent heat per unit mass and 𝑐1 and 𝑐2 the respective frozen and 

unfrozen specific heat capacities. 

This method does not track the phase interface directly (Furzeland, 1980) (Voller, 1996). It 

is said to be the only numerical method for phase-change simulation which can be applied 

to general problems (unknown, n.d.-a). Moreover, it is flexible, easy to program and 

provides a clear representation of the physical phenomena. It can be applied relatively 

easily to 2D and 3D problems (Scheerlinck et al., 1997), having the following advantages 

(Voller and Cross, 1981): 

1. No additional conditions need to be imposed at the phase interface. The Stefan 

condition is not imposed at the interface, but it is obeyed automatically. 

2. The phase interface does not need to be tracked and consequently it does not have 

to be assumed a priori, but can be extracted a posteriori if required. 

3. The frozen and unfrozen areas do not need to be considered separately, but are 

treated together, using the enthalpy function instead of the temperature. 

4. It is easy to simulate a “mushy” region. 

These facts make it one of the most popular methods for solving Stefan problems (Caldwell 

and Kwan, 2004). 

On the other hand, several disadvantages of the enthalpy method are presented below:  

1. It may require a finer mesh than moving grid methods in order to reach the same 

level of accuracy (Furzeland, 1980).  

2. For small Stefan numbers, it has accuracy and convergence issues (Ayasoufi, 2004).  

3. The position of the interface has to be interpolated and is not directly calculated 

(Basu and Date, 1988). 
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Furthermore, another drawback is that for sharp interface problems, the enthalpy method 

tends to produce oscillations of the interface position and unrealistic plateaux followed by 

sharp drops in the temperature-time graph (see Figure 4.4) (Furzeland, 1980) (Voller and 

Cross, 1981) (Basu and Date, 1988) (Mackenzie and Robertson, 2000). These temporal 

oscillations of the temperature appear because when the interface is located at a certain 

node, the node is held at the phase-change temperature, which causes the neighbouring area 

to relax to a steady state (unknown, n.d.-a). When the interface progresses to the next node, 

the temperature adjusts to the new steady state. The extent of the oscillations depends, 

among other factors, on the properties of the material: with higher Stefan numbers, the 

plateaux in the temperature history tend to be less marked, but the phase interface history 

exhibits oscillations. The performance of the enthalpy method was also analysed by Voller 

(1996), who concluded that, at a low Stefan number of 0.1, it tracks quite accurately the 

phase-change interface. Oscillation issues are reduced in multidimensional problems and 

by applying Neumann instead of Dirichlet boundary conditions (Voller, 1996).  

 

Figure 4.4: Comparison between the analytical solution (a) and the results from the enthalpy method (b) (Voller and 

Cross, 1981) 

The enthalpy method with sharp phase change needs adjustments to achieve convergence 

and stability and to avoid oscillations (Ayasoufi, 2004). If the phase change is gradual and 

happens over a temperature range, instead of at a specific temperature, the enthalpy method 

delivers more stable results (Voller and Cross, 1981). Voller and Cross (1981) assessed the 

enthalpy method and concluded that smooth results can only be achieved if at every time 

step at least two elements (zones) are within the phase change range (𝑇𝑓 − 𝜀, 𝑇𝑓 + 𝜀). Thus, 

the size of the phase change range directly impacts the accuracy of the enthalpy method. 
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However, in the case that this range is just introduced for computational reasons (i.e. if it 

is not fixed to the real phase-change range of the material), the optimal or most suitable 

range has to be determined based on numerical experiments (Furzeland, 1980). 

For gradual phase change with a range 2𝜀, the enthalpy function may be defined as in 

Equation (4.12) (Voller and Cross, 1981). This approach assumes that the latent heat is 

released uniformly over the phase change range, which corresponds to a linear unfrozen 

water function. A graphical representation of the enthalpy function versus the temperature 

is shown in Figure 4.5. 

 

𝐻 = {

𝑐1𝑇 𝑇 < 𝑇𝑓 − 𝜀

𝐻(𝑇𝑓 − 𝜀) + 𝐿⁡(𝑇 − 𝑇𝑓 + 𝜀)/2𝜀 𝑇𝑓 − 𝜀 < ⁡𝑇 < 𝑇𝑓 + 𝜀

𝐻(𝑇𝑓 + 𝜀) + 𝑐2(𝑇 − 𝑇𝑓 − 𝜀) 𝑇𝑓 + 𝜀 ≤ 𝑇

 (4.12) 

 

Figure 4.5: Enthalpy function versus temperature 

The oscillations are less pronounced with decreasing mesh element (zone) size and may 

also be decreased by reducing the time step in relation to the mesh size. Therefore, it would 

be optimal to use a reduced mesh size in the area of the phase change interface (adaptive 

mesh). In this way, the small mesh size is applied only in the neighbourhood of the 

phase-change location, where it is required, but a larger mesh is used elsewhere, so that the 

model has a lower number of zones and is computationally efficient. An example of such 

an algorithm for 1D geometries can be found in Mackenzie and Robertson (2000).  

In order to ensure the stability of the scheme, the time steps and grid size have to fulfil the 

following condition (Voller and Cross, 1981) (Voller, 1996): 

 
max |

∆𝑡⁡𝑘1
𝜌⁡𝑐1⁡∆𝑥2⁡

,
∆𝑡⁡𝑘2
𝜌⁡𝑐2⁡∆𝑥2

| ⁡≤
1

2
 (4.13) 

H
(T
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Esen and Kutluay (2004) showed that the enthalpy method with finite differences using the 

hopscotch scheme, which combines explicit and implicit methods and is overall explicit 

and unconditionally stable, can produce good results compared to the exact solution.  

Scheerlinck et al. (1997) published an improved finite element enthalpy method, combined 

with the Kirchhoff transform, which allows for larger time steps and a more stable system 

than the explicit finite element enthalpy method. The enthalpy method has also been applied 

to artificial ground freezing, e.g. in Vasilyeva et al. (2020). 

An alternative fixed-grid method is the apparent heat capacity method. This commonly 

used method is based on reformulating the heat equation based on the apparent heat 

capacity (Voller, 1996), which is the derivative of the enthalpy with respect to the 

temperature. The so-called apparent or equivalent heat capacity is the specific heat capacity 

increased by a certain amount in the freezing range to account for the latent heat (Jame and 

Norum, 1980) (Ziegler et al., 2010). With this approach, the non-linearity is contained in 

the definition of the apparent heat capacity, so the Stefan problem can be solved by using 

a standard heat-transfer numerical scheme. The apparent heat capacity can be defined as 

follows: 

 

𝑐𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 =
𝜕𝐻

𝜕𝑇
=

{
 

 
𝑐1 𝑇 ≤ ⁡𝑇𝑓 − 𝜀

𝑐1 + 𝑐2
2

+
𝐿

2𝜀
⁡ 𝑇𝑓 − 𝜀 < 𝑇 < 𝑇𝑓 + 𝜀

𝑐2 𝑇 ≥ 𝑇𝑓 + 𝜀

 (4.14) 

Osterkamp (1987) found that this method is suitable for freezing problems even with small 

amounts of unfrozen water. Voller (1996) argues for the conserved enthalpy linearization 

(which needs a small additional computational effort) above the apparent heat capacity 

method because, unlike the latter, it conserves heat at every time step and point in space 

and does not have the oscillation problems of the apparent heat capacity method for early 

time steps. The apparent heat capacity method is commonly used in numerical modelling 

for artificial ground freezing projects, see for example Zhu and Michalowski (2005) or 

Zhao (2019). 

Another possibility, which is said to be more stable and allow for larger time steps (while 

perhaps requiring more computational time), is to constrain the temperature of the nodes 

during the phase change (G. Gioda, 1994). An alternative but similar approach is to include 

the latent heat as a source term in the equations, as e.g. in Hwang et al. (1972) or Bock 

(2018). However, unknown (n.d.-a) reports that algorithms which model the latent heat by 

means of a source term tend to have more phase change missing problems. 

Regarding the thermal properties of the material near the phase change interface, layers of 

solid and liquid material appear, so it may make sense to calculate the properties for the 

model zone containing the interface (and thus including solid and liquid material) according 

to a “serial” arrangement of the material (unknown, n.d.-a). For instance, the thermal 

conductivity of element “j” inside the zone considered could be calculated as follows: 
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 1

𝑘𝑗
𝑛 =

𝜉𝑗
𝑛

𝑘2(𝑇𝑓)
+
1 − 𝜉𝑗

𝑛

𝑘1(𝑇𝑓)
 (4.15) 

where 𝑘𝑗
𝑛 and 𝜉𝑗

𝑛 are, respectively, the thermal conductivity and the unfrozen water content 

of element 𝑗 at time 𝑛. 

For simplicity, it is possible to take the arithmetic average of the conductivities of the solid 

and liquid phases, as done in Equation (4.14) for the specific heat capacities, (unknown, 

n.d.-a), especially if their values do not differ significantly. This is also applicable to the 

“mushy” zone in problems with gradual phase change. Nevertheless, as this zone is 

relatively thin, the exact distribution of the thermal properties in it is usually not of practical 

importance (Nakano and Brown, 1971). 

4.3.2.2. Other fixed-grid schemes 

There are other fixed-grid schemes, such as the phase field method. In this case, a phase 

field function is defined, which has different values for the two phases and intermediate 

values in the interface, which is considered as a region. This differs to other methods, in 

which a sharp interface is considered (Javierre et al., 2006). Numerical issues appear if the 

interface region is set very small in order to find the solution to the sharp-interface problem 

(Javierre et al., 2006). A difficulty presented by the phase field method is that obtaining the 

physical parameters required to apply the method may be complicated (Javierre et al., 

2006). 

Another fixed-grid method is the level-set method. It describes the position of the interface 

with a continuous function, which varies linearly in each phase and takes the value of zero 

at the interface. This method is useful to model merging interfaces. A fixed grid can be 

used, avoiding the effort of generating a new mesh at each time step (Javierre et al., 2006). 

Javierre et al. (2006) recommend the level-set method for 2D and 3D problems rather than 

the moving-grid method or the phase-field method. 

 Significant aspects in numerical modelling of Stefan problems 

 Meshing and time stepping for Stefan problems 

The discretisation of the space and time continuum in numerical schemes can have a 

significant influence on the accuracy of the results and the efficiency of the computation. 

This is a very relevant area of study, even considering the improvements in computing 

capacity in the last years, because the increasing complexity of the models poses growing 

computing requirements. For instance, according to Akin (2009), a typical thermal mesh 

may have between 20,000 and 100,000 nodes and temperature equations. The computation 

time will depend on the required time per iteration and the rate of convergence of the 

iterative scheme (Causon and Mingham, 2010). Specially in non-linear schemes a good 

discretisation (mesh quality) is crucial to achieve sufficiently accurate results, stability and 

fast convergence (Itasca Consulting Group, 2018). For instance, Stout and Billings (2002) 
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state that “an improperly meshed model will never provide accurate transient response, 

regardless of the time stepping”.  

As much of the theory to establish convergence and stability of numerical methods has been 

created for specific cases, it is of limited application (especially to non-linear problems, 

such as thermal problems with phase-change), hence it often needs to be combined with 

numerical experimentation (Causon and Mingham, 2010). Although there are some rules 

of thumb for meshing and, in transient problems, for choosing time steps for finite element 

schemes (Abbasi et al., 2013), the usual engineering practice involves using a 

trial-and-error approach to choose the mesh and time steps, which requires skill and 

experience (GEO-SLOPE International Ltd., 2014). The order of magnitude 𝒪 of the 

truncation error in a numerical scheme may be used to check that a scheme is working 

properly, e.g. if the order is linear in space, 𝒪(∆𝑥), the error should decrease linearly when 

the mesh size is reduced linearly (Recktenwald, 2004). 

The fact that the appropriate time step is dependent on the mesh size further complicates 

modelling. As presented in chapter 4.2, the time step is dependent upon the chosen mesh: 

even for problems without phase change, explicit methods have stability issues when the 

time step is larger than the critical time step for a certain mesh (see Equation (4.8)). ANSYS 

(2004) (https://www.ansys.com/), the owner of a Finite Element software very widely used 

in engineering problems, recommends using smaller time steps for phase-change thermal 

problems. 

4.4.1.1. Mesh quality and evaluation 

Itasca Consulting Group (2018) defines a good mesh as the one which allows “to solve the 

problem at the expected level of accuracy within the time available for the project”. 

According to Altair university (n.d.), the suitable mesh (regarding accuracy) to be used in 

a numerical model is the one whose results do not significantly change if it is refined. There 

are several methods for mesh generation, which yield meshes of different elements and 

quality (see e.g. the review in Owen (1998)).   

Meshes can be classified in structured and unstructured meshes. Structured meshes are 

regular, contain typically well-shaped elements and are computationally more efficient than 

unstructured meshes (Itasca Consulting Group, 2018). Studying the comparative 

performance of structured and unstructured meshes has been suggested by Zavaleta 

Camacho (2017).  

As much of the research on meshing for numerical methods has been performed for 

mechanical simulations, it makes sense to use parallelisms between the mechanical and 

thermal numerical analyses, as shown e.g. in Table 4.1.  

  

https://www.ansys.com/
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Table 4.1: Analogies between thermal and structural analyses (Akin, 2009) 

Thermal analysis item, [units], symbol Structural analysis item, [units], symbol* 

Unknown: Temperature [K], 𝑇 Unknown: Displacements [m], 𝑢 

Gradient: Temperature Gradient [K/m], ∇T Gradient: Strains (m/m], 𝜀 

Flux: Heat flux [W/m2), 𝑞 Flux: Stresses [N/m2], 𝜎 

Source: Heat Source for point, line, surface, volume 

[W], [W/m], [W/m2], [W/m3], 𝑄 

Source: Force for point, line, surface, volume 

[N], [N/m], [N/m2], [N/m3], 𝑄 

Restraint: Prescribed temperature [K], 𝑇 Restraint: Prescribed displacement [m], 𝑢 

Reaction: Heat flow resultant [W], 𝑄 Reaction: Force component [N], 𝑄 

Material Property: Thermal conductivity [W/m K], 𝑘 Material Property: Elastic modulus [N/m2], 𝐸 

Material Law: Fourier's law Material Law: Hooke's law 

*Note: Several of these symbols, which are used in the table above in the context of structural analysis, are used 

otherwise in the rest of this thesis (see List of Symbols). 

Areas with high stresses in mechanical analysis (Altair university, n.d.) or analogously a 

steep thermal flux and temperature gradient in thermal simulations need a finer and 

preferably structured mesh. Also areas in which the heat flux will change rapidly should be 

finely meshed (Akin, 2009). Areas of numerical difficulties in thermal simulations include 

e.g. the freeze pipes if simulated as punctual sources (lines in 3D models or points in 2D 

models), which pose a similar case of singularity (Tounsi et al., 2019) to stress 

concentration under a punctual load in mechanical analysis (see Table 4.1). A graded mesh 

can be used so that there is a fine mesh in those sensitive areas in order to achieve good 

results, while limiting the increase of the computing time (Stout and Billings, 2002).  

It is also important to choose the most suitable element type, considering the boundary 

conditions, geometry and required accuracy (Altair university, n.d.). A structured 

hexahedral mesh usually gives the best results regarding accuracy, although it can be more 

time-consuming to create (Itasca Consulting Group, 2018). With respect to the order of the 

elements, lower-order elements are recommended for problems with phase change 

(ANSYS, 2004).  

In order to set the requirements for meshing, to improve the mesh and to control its quality, 

mesh quality metrics are used (Knupp, 2001). A metric for an element is a scalar function 

which depends on the node coordinates and provides a measure of some geometrical 

property of the element (Knupp, 2001). Numerous measures of mesh quality have been 

proposed, e.g. element volume, aspect ratio, skew, angles, stretching or orientation (Knupp, 

2001). A specially interesting metric is the Jacobian matrix because it contains information 

regarding the volume, shape and orientation of an element (Knupp, 2001). “Good” elements 

are usually regular elements, i.e. equilateral or symmetrical (Pébay, 2002). Another relevant 

approach is the Grid Convergence Index proposed by Roache (1993) in order to improve 

the comparability between grids. 
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There exist automatized programmes to evaluate metric quality, such as the Verdict 

Geometric Quality Library (Knupp et al., 2006) and there are numerous academic papers 

written on mesh optimisation, such as Dompierre et al. (1998). In FLAC3D, there are three 

metrics for controlling the quality of the elements (Abbasi et al., 2013): 

• Aspect ratio: “ratio of the longest edge of an element to either its shortest edge or 

the shortest distance from a corner node to the opposing edge”. 

• Orthogonality: “the ratio of the smallest angle to the largest angle” 

• Face planarity 

4.4.1.2. Meshes and time steps used in engineering projects and theoretical 

studies 

A review of the meshes and time steps in different studies and projects reported in the 

literature was performed. The results are shown in Table 4.2 and Figure 4.6. It can be 

concluded from this table and graph that the meshes used in papers written by the theoretical 

researchers with the aim of checking the accuracy of numerical methods tend to be 

significantly smaller (in the order of a few centimetres) with respect to the ones used by 

practitioners who apply them to engineering projects (several decimetres). Furthermore, in 

the latter, there is usually no justification of the chosen discretisation. There is no known 

method to choose “appropriate” mesh size, so it is common practice to do it by trial and 

error (GEO-SLOPE International Ltd., 2014). Choosing a mesh which produces 

sufficiently accurate results and at the same time requires an acceptable computing time 

and RAM memory is a critical task for the numerical modeller. For instance, finer mesh is 

reported to produce a large increase in computation time (unknown, n.d.-a). Another aspect 

which should be considered is that areas where phase change is occurring and with high 

temperature gradients may require finer meshes: see e.g. Nakano and Brown (1971), who 

use meshes of approximately 2 cm in those areas, gradually increasing it to 1 m in less 

critical areas.Not only the spatial discretisation but also time steps should be carefully 

chosen (P.E.Frivik, 1981); too large steps may cause instability or accuracy problems. It is 

known that “very small time steps are often needed for accurate solutions” (Rizwan-uddin, 

1998) (Savovic and Caldwell, 2009). As the time step is seldom reported in the publications 

on actual engineering projects, it is not possible to compare the size of the time steps 

between theoretical and practical papers from the data in Table 4.2 and Figure 4.6. 

However, according to the experience of the author, it is probable that the time steps 

typically used in engineering practice are generally larger than the ones used for theoretical 

studies.  
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Table 4.2: Meshes and time steps used in different publications 

Paper nº 
Study or project name and 

dimensions 
Paper author Mesh Time step 

1 
Experiment (30 cm length, 72 

hours) 

Jame and Norum 

(1980) 
0.01 to 2.5 cm 

0.001 to 0.4 

hours 

2 
Experiment (ca. 75 cm length, 

ca. 72 hours) 

Vitel et al. 

(2016) 
Approx. 5-10 cm 0.024 hours 

3 
Mathematical discussion (200 

grid intervals, 0.25 total time) 

Javierre et al. 

(2006) 
0.0005 (no units) 

5x10-4 to 9x10-5 

(no units) 

4 

Verification of FLAC thermal 

capabilities, line source, without 

phase change (length 500 m, 

360 days). 

Itasca 

Consulting 

Group (n.d.-a) 

Graded, 1 m to 40 m 2 h 

5 
Verification against analytical 

solution (50 days) 

Voller and Cross 

(1981) 
10, 12.5 cm 

1 h (explicit 

algorithm) 

108 h (implicit 

algorithm) 

6 

Verification of TEMP/W 

against analytical solution 

(10 m, 100 days) 

GEO-SLOPE 

International 

Ltd. (n.d.) 

1 – 20 cm 

10 days (these 

steps may be 

subdivided by 

the program) 

7 
Verification against analytical 

solution (20 m, 24 h) 

Nakano and 

Brown (1971) 
0.2 – 100 cm 2.4 h 

8 
Verification against an 

experiment (15 cm, 2 h) 

Scheerlinck et 

al. (1997) 
1.25 x 0.83 x 0.25 cm 10 s 

9 
Verification of an analytical 

solution (model of 4m radius) 
Cai et al. (2018) Approx. 2 – 29 cm unknown 

10 

Development of customised 

numerical code (6x8m model, 

48 days) 

Zhu and 

Michalowski 

(2005) 

Approx. 6 – 110 cm unknown 

11 
Design of AGF for cross 

passage in Shanghai metro 

Wang et al. 

(2015) 
Approx. 50 cm unknown 

12 
Design of AGF for metro 

station in Naples 

Viggiani and De 

Sanctis (2009) 

35-60 cm and 

upwards 
unknown 

13 
Design of AGF for mine shaft in 

Russia 
Franz (2014) Approx. 50 cm unknown 

14 
Design of AGF for metro of 

Naples 
Colombo (2010) Approx. 10 – 50 cm unknown 
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Figure 4.6: Minimum mesh size used in theoretical / model verification papers and in engineering projects 

 Phase change missing and overflowing 

The numerical methods developed for phase-change problems often account for a sharp 

phase-change. However, allowing for a gradual release of the latent heat over a range of 

temperatures is usually more realistic and improves the stability of the method (Pentland 

and Fredlund, 2001). Even so, if the half phase change range, 𝜀, is too small and the time 

steps are too large, the enthalpy scheme may “skip” or may overestimate the effects of the 

latent heat (Voller, 1996) (Tao and Zheng, 2009). The origin of the problem is that, for 

instance, in the case that the temperature of an element changes within one time step from 

𝑇 ≥ 𝑇𝑓 + 𝜀 to 𝑇𝑓 − 𝜀 < 𝑇 < 𝑇𝑓 + 𝜀, then the scheme applies a specific heat capacity which 

is not correct for the whole time step, simulating too high or too low latent heat effects.  

It is not physically accurate, when simulating an abrupt phase change, that more than one 

element in the direction of the freeze front changes phase in any given time step. Thus, 

similarly to the stability criterion applied in Causon and Mingham (2010) to the advection 

differential equation, a condition for the heat transfer equation with phase change would be 

∆𝑡 ≤ ∆𝑥/|𝑣𝑔| (𝑣𝑔 represents the flow velocity in the original equation for advection). When 

applied to the advection equation, 𝐶 = 𝑣𝑔 ∙ ∆𝑡/∆𝑥 is called the Courant number, and 

schemes are often stable for |𝐶| ≤ 1 (Causon and Mingham, 2010). For the heat transfer 

equation with phase change, 𝑣𝑔 would represent the speed of propagation of the freeze 

front. Furthermore, the time step should be somewhat smaller than what is given by the 

previous condition, i.e. a certain “safety factor”, which has to be determined testing the 

numerical method, should be applied (Causon and Mingham, 2010).  
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A solution to the problems of phase change missing and overflowing was proposed by Tao 

and Zheng (2009). They propose a so-called backwards calculating time step method, 

which computes the largest possible time step required to avoid these issues and 

recalculates the system with it. They demonstrate that this method has lower phase-change 

errors and shows a more regular behaviour than the fixed-time-step and variable-time-step 

methods, which tend to overestimate the velocity of the freezing process. 

 Sharp and gradual phase change in phase change problems 

As described in chapter 2.3.1, in general, materials which are not a pure substance, such as 

soil or metallic alloys, change phase at a temperature range and instead of a sharp interface, 

a mushy region appears. These problems are generally solved by using a fixed grid scheme 

and the enthalpy method. The simplest approach is to define a function of unfrozen water 

content, which can be directly related to the enthalpy (Voller, 1996). The release of latent 

heat in natural ground can be described by unfrozen water functions which are usually 

non-linear (see e.g. Lunardini (1988) and Schüller (2015)) and which are typically derived 

from laboratory tests or literature values. Typical unfrozen water content functions for 

different soils are shown in Figure 2.9. For the purposes of this thesis, a linear unfrozen 

water function is a reasonable approach. 

Numerical methods generally perform better for smooth problems, i.e. problems without 

singularities. That is, computationally it is more stable to simulate a gradual phase change 

with a “mushy” region than a sharp phase change with an infinitesimally thin interface and 

an abrupt change in apparent heat capacity (Alekseev et al., 2018). Therefore, even for 

materials with near-sharp phase change (such as granular soils), a temperature range for 

phase change may be introduced for computational reasons, which has been proved to be 

more stable and sufficiently accurate for engineering (Nakano and Brown, 1971). 

Furthermore, the effect of gradual phase change in cohesive soils has an impact in the 

temperature distribution which could be of practical importance. 

 Initialisation and boundaries of the numerical model 

Numerical methods are prone to instabilities at the beginning of the calculation, as the 

model starts at non-equilibrium conditions, e.g. with very large temperature gradients. That 

is why it is common to use analytical solutions as an initial condition for numerical schemes 

until a certain (small) time has elapsed (Mitchell and Vynnycky, 2009). Indeed, the sudden 

temperature change and large gradient caused by the initial condition tend to produce 

numerical instabilities and error, which may be prevented by using as the initial boundary 

condition the exact analytical solution (if available) for a certain time after the initial time 

(Nakano and Brown, 1971), also applied in Furzeland (1980).   

In order to avoid boundary effects in a numerical model with finite dimensions, the size of 

the model has to be sufficiently large so that the boundaries do not significantly affect the 

temperature field in the relevant region. Alternatively, if there is an available analytical 

solution, it may be applied at the boundary.  
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 Introduction to numerical software for Stefan problems  

There are a few numerical software packages capable of solving thermal ground freezing 

problems. Some of the most common are presented in Table 4.3, along with exemplary 

publications in which they were used.  

A comparison of the results from four different software packages was performed in 

Alekseev et al. (2018) and found FROST3D to generate the most accurate results. However, 

the numerical calculations were performed with different meshes in the four models, which 

may impair the comparability of the results. 

Table 4.3: Overview of software packages for ground freezing design 

Software Developer 

Used for thermal 

calculations in ground 

freezing in 

Comments 

TEMP/W GeoStudio 

Sopko (n.d.-a), Sopko (n.d.-

b), Chang and Lacy (2008), 

Hentrich and Franz (2015), 

Shawn et al. (2016) and Yan 

et al. (2017) 

Finite Element Method, Apparent 

heat capacity method, only for 2D 

problems. 

Plaxis 

Thermal Flow 

Bentley Systems, 

Inc. (previously 

Plaxis BV) 

- 
Finite Element Method, Apparent 

heat capacity method. 

ABAQUS 
Dassault 

Systèmes 

Zhu and Michalowski 

(2005), Viggiani and De 

Sanctis (2009), Colombo 

(2010) and Cai et al. (2018) 

Finite Element Method, method to 

simulate phase change can be 

customised. Apparent heat 

capacity. 

SHEMAT RWTH Aachen 
Baier (2008) and Schüller 

(2015) 

Finite Difference Method, 

Apparent heat capacity method. 

Used up to date only in 

academical work (to the author’s 

knowledge). 

FLAC3D 
Itasca Consulting 

Group 

Wang et al. (2015), Kang et 

al. (2016) and Bock (2018) 

Finite Difference Method, method 

to simulate phase change can be 

customised. Apparent heat 

capacity method may be used. 

ANSYS ANSYS, Inc. 

Chris K W Leung (2012), 

Lam and Pang (2014), 

Alekseev et al. (2018), Song 

et al. (2018) and Alzoubi et 

al. (2019) 

Finite Element Method. 

TH-Model ETH Zurich Sres (2009) 
Finite Element Method, Apparent 

heat capacity method. 
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Used up to date only in 

academical work (to the author’s 

knowledge). 

JOBFEM 

KTH, Royal 

Institute of 

Technology, 

Stockholm 

Johansson (2009) Finite Element Method. 

Comsol 

Multiphysics 
COMSOL 

Manassero et al. (2008), 

Alekseev et al. (2018), 

Tounsi et al. (2019), Wang 

et al. (2019), Qi et al. 

(2020), Zhelnin et al. (2020), 

Zhelnin et al. (2021) 

Finite Element Method. 

MATLAB Mathworks 
Xu et al. (2020) and Zueter 

et al. (2021) 

Finite Difference Method, 

enthalpy formulation. 

SV Office 

2009, 

SVHEAT 

module 

SoilVision 

Systems Ltd. 
Alekseev et al. (2018) Finite Element Method. 

FROST3D Simmakers Ltd. Alekseev et al. (2018) Finite Difference Method. 

 Introduction to FLAC3D 

FLAC3D (Fast Lagrangian Analysis of Continua) is a commercial numerical software from 

the developer Itasca Consulting Group, Inc, based in Minneapolis, USA. It is widely used 

to solve geotechnical, thermal and hydrogeological problems in engineering projects, 

especially in soil and rock engineering. It is capable of performing complex calculations 

coupling the mechanical, thermal and hydraulic fields (THM simulations), determining e.g. 

thermal stresses, stresses due to frost heaving, heat transfer combined with groundwater 

flows and other coupling effects. The thermal capabilities of FLAC3D include conduction 

and advection. FLAC3D has also been applied to ground freezing projects, see for example 

Kang et al. (2016) or Bock (2018). 

FLAC3D is a quite versatile software (Bock, 2018) in the sense that many of the parameters, 

solving algorithms, mesh, time steps etc. may be steered through the built-in programming 

language FISH. Moreover, the results can be accessed and operated, e.g. to create custom 

graphics or export tables, via FISH. This flexibility and easy adaptation of the numerical 

code was the main reason why it was chosen as the numerical simulation tool for this thesis. 

FLAC3D is programmed to solve thermal problems without phase change. On the other 

side, the simulation of the phase change for ground freezing needs to be fully programmed 

by the user. This provides an excellent framework for the present thesis to investigate ways 

to model the phase change, as well as their accuracy and efficiency. 

With respect to the solving algorithm, Itasca Consulting Group (n.d.-b) states the following 

(referring to the 2D version of the programme, FLAC): 
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“The explicit formulation used in FLAC may be slow in some circumstances, but it 

is very tolerant of extreme nonlinearities and offers a straightforward framework in 

which to implement complex physics. The method provides a flexible way to 

simulate complex, 2D systems involving transient, nonlinear heat, fluid and solid 

coupling.”  

Further details on the solving algorithm in FLAC3D can be found in the FLAC3D thermal 

analysis manual in Itasca Consulting Group (n.d.-a). FLAC3D can use two solving 

algorithms: explicit and implicit. For the explicit scheme to be stable, which is first order 

accurate, the time steps must be below a certain value. The critical time step is a measure 

of the time that takes for the diffusion “front” to travel through the element (zone) (Itasca 

Consulting Group, n.d.-a). For the case without coupling with groundwater flow (and 

without considering phase change), Equation (4.16) is given by Itasca Consulting Group 

(n.d.-a) to determine the critical time step:   

 
∆𝑡𝑐𝑟 =

1

𝑚

𝐿𝑐
2

𝛼
 (4.16) 

where: 

∆𝑡𝑐𝑟: critical time step 

𝑚: constant, larger than one, which depends on the geometrical discretisation 

𝐿𝑐 =
𝑣𝑜𝑙𝑢𝑚𝑒⁡𝑜𝑓⁡𝑠𝑜𝑙𝑖𝑑⁡𝑜𝑓⁡𝑜𝑛𝑒⁡𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑠𝑢𝑟𝑓𝑎𝑐𝑒⁡𝑎𝑟𝑒𝑎⁡of⁡one⁡element⁡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔⁡ℎ𝑒𝑎𝑡
: smallest characteristic length of any zone 

𝛼: thermal diffusivity 

The implicit method in FLAC3D is based on the (second order) Crank-Nicholson method 

and is stable for any time step (Itasca Consulting Group, n.d.-b). However, it involves 

solving simultaneous equations at each time step. FLAC3D solves these equations by using 

the Jacobi method, which, in turn, converges only for time steps below a certain value 

(Itasca Consulting Group, n.d.-a). 

Itasca Consulting Group (n.d.-a) provides some recommendations for choosing between 

the explicit and implicit methods. For instance, the explicit method tends to be used at the 

beginning of the simulation or when the model is perturbed, while the implicit method is 

rather used for the more stable period of the simulation. Regarding computational effort 

and efficiency, they also give some hints: the implicit method requires more memory and 

at least three iterations per time step, each of which takes a similar calculation effort as the 

explicit method for one time step. However, it may be possible to use a much larger time 

step with the implicit method or it may have higher accuracy for the same time step. It is 

also highlighted that the critical time steps for coupled mechanical or hydraulic simulations 

may differ from the one in Equation (4.16).
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 Establishment of the accuracy and limits of numerical methods 

for thermal calculations with phase change 

It is well known that numerical schemes must be verified (Causon and Mingham, 2010). 

As explained in chapter 3, comparing the results of a numerical program against the exact 

analytical solution of the PDE is a typical way of checking the accuracy and correctness of 

the numerical method. This has been done for Stefan problems in several papers, see e.g. 

Karabenli et al. (2016), Vitel et al. (2016), Alekseev et al. (2018) and FROST 3D (2018). 

The absolute error of a magnitude obtained from the numerical model can then be defined 

as the magnitude of that result minus the corresponding exact result obtained from the exact 

analytical solution. 

The usual procedure in engineering practice when utilizing numerical programs is to check 

that the results are plausible, but a detailed, systematic sensitivity analysis is seldom 

performed during the course of engineering projects due to time constraints. On the other 

side, sensitivity studies have been performed in the framework of research regarding the 

effect of soil properties and freeze pipe positioning, e.g. in Ziegler et al. (2010), Schüller 

(2015) and Hu et al. (2016a). Parametric studies considering the freeze system geometry, 

the properties of the coolant or its flow rate can be found in Vitel et al. (2015). However, 

there is a scarcity of published comprehensive sensitivity studies and systematic calibration 

checks on the numerical parameters themselves (as an exception to this, Tounsi et al. (2019) 

performed some sensitivity analyses for different meshes and punctual and surface source 

types). 

When modelling a ground freezing process in a real project, the design is often performed 

without all the required parameters being available and sometimes based on data of 

uncertain quality. Consequently, the design engineer must necessarily use engineering 

judgement to make reasonable assumptions on the missing or uncertain parameters. These 

assumptions are additional causes of potential inaccuracies, so it is not easy to check the 

accuracy of the numerical model itself during the design stage. Putting up experiments to 

check numerical models is also challenging, as it requires significant resources. Indeed, 

most of the experiments done in this regard are limited in dimensions (usually no larger 

than 1 m) and duration (a few days at the most), see e.g. Ständer (1967), Scheerlinck et al. 

(1997) or Sres (2009). Moreover, discrepancies between the experimental results and the 

numerical simulations may arise from various sources, like for instance inaccuracies in the 

estimation of the seepage velocity, the initial ground temperature or the thermal parameters 

of the ground, e.g. in Pimentel et al. (2011). While these sources of error, whose nature is 

external to the model, may be the causes of some part of the errors in the results, the 

accuracy of the numerical model itself should also be reviewed. To this extent, comparing 

the numerical results with the ones of exact analytical solutions seems to be a suitable path 

to take. 

Therefore, the main objectives of this chapter are checking the accuracy of the model 

without external error sources, evaluating its sensitivity to the numerical parameters and 
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investigating its accuracy limits. Numerical models with different parameters and 

conditions (mesh size, time steps, type of source, type of elements, model size, solving 

algorithm, etc.) will be run to find out under which conditions the numerical solution is 

correct, sufficiently precise and stable for freezing problems (such sensitivity analyses have 

also been used e.g. in Ayasoufi (2004) for time step optimisation). Exact analytical 

solutions known for “simple” problems (mainly Neumann’s solution for the one-

dimensional problem) will be used in order to check the sensitivity and accuracy of the 

numerical model. This approach has already been applied e.g. in Baier (2008) and Alekseev 

et al. (2018). Several verifications will be performed with different initial and boundary 

conditions. The main ground thermal parameters which affect the conductive freezing 

process (latent heat of fusion, specific heat capacity and thermal conductivity) according to 

Jumikis (1966) (from Johansson (2009)) will also be varied in the different models. Further 

studies have been done to assess the influence of the numerical parameters on the 

computing time of the models, the numerical predictions for power consumption, the 

comparison with the exact solution from Carslaw and Jaeger (1959) and the applicability 

of the numerical code to a large-scale engineering model. In this thesis, only the freezing 

case was evaluated, as FLAC3D does not admit negative values of specific heat, which 

would be required to model the thawing case with the apparent heat capacity method. An 

overview of the verifications performed and the numerical parameters considered, along 

with some additional studies, is presented in Table 5.1. 

Table 5.1: Numerical parameters and physical properties for the sensitivity analyses and additional studies 

Numerical parameter Chapter Range of values 

Model boundaries 5.2 5 – 50 m length 

Mesh Size 5.3, 5.9, 5.10 1 – 400 cm 

Time step 5.4, 5.9, 5.10 1 – 12,800 s 

Frequency of execution of "freeze code" 5.5, 5.9, 5.10 1 – 3.2 x 106 s 

Abrupt / Gradual phase change modelling 5.8 0.1 – 4ºC 

Structured / unstructured mesh 5.12 
Structured & unstructured 

meshes 

Type of elements 5.12 
Triangular & rectangular 

prisms 

Punctual / surface source 5.16 Source radius 0.1 – 106 cm 

Explicit / Implicit algorithm 5.11 Explicit & implicit 

   

Physical property Chapter Range of values 

Thermal properties 5.3, 5.8 water & soil properties 

Initial temperature gradient 5.6, 5.8 10, 55 & 250 ºC 

Stefan number (latent heat) 5.7 0, 79.71, 797.1 cal/g 
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Additional studies Chapter - 

Predictions for power consumption 5.13 - 

Effects of numerical parameters on computing time 5.14 - 

Comparison with the solution from Carslaw and 

Jaeger (1959) 
5.15 - 

Applicability to a large-scale engineering model 5.17 - 

 Bases of the numerical sensitivity analyses in FLAC3D 

The numerical code programmed by the author in FLAC3D is based on the enthalpy method 

(specifically on the apparent heat capacity variant of the method), because of its flexibility 

and programmability, as described in chapter 4.3.2.1. The code consists of several blocks. 

The first one defines the geometry of the model (size, length, width, shape, etc.) and creates 

the mesh. For the verification of the code, a relatively simple geometry needs to be used 

for which an exact analytical solution is available. The semi-infinite slab was chosen, for 

which the Neumann solution exists, so that the accuracy of the simulations could be 

checked against this exact analytical solution. This exact solution has been contrasted 

against real data for example in Takashi et al. (1979). The geometry of the model for the 

1 cm mesh is shown in Figure 5.1. The width and height of the model can be selected 

arbitrarily, due to the symmetry of the Neumann problem and to the fact that the boundaries 

of the model are adiabatic. Both dimensions were chosen to be 100 cm. Based on the results 

of the analytical solution for a thermal time of 10 days, it was concluded that a 500 cm long 

model would be sufficiently long to prevent the boundary from having a significant effect 

on the calculations. Additionally, it was hypothesized that using a larger mesh in the zones 

further away from the origin (x=0, where the thermal source or “cold plane” is located), 

would not have a significant effect on the results, but would expedite the computing time 

significantly. These two hypotheses are confirmed based on numerical experiments in 

chapter 5.2. For most of the models, a thermal time of 10 or 365 days was selected for the 

simulation. 
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Figure 5.1: Geometry of the semi-infinite slab used in FLAC3D (with 1 cm mesh in the area near the source, left side) 

In the second block of the code, the material properties (density, specific heat capacity, 

thermal conductivity, latent heat, etc.) are determined. For the analysed Problems 1 to 4, 

which are defined below, the properties of water and ice listed in Table 5.2 were used:  

Table 5.2: Thermal properties of water and ice used in Problems 1 to 4 

Thermal property Value 

Specific heat capacity (unfrozen) 1 cal/g/ºC 

Specific heat capacity (frozen) 0.501 cal/g/ºC 

Thermal conductivity (unfrozen) 0.00144 cal/(s cm ºC) 

Thermal conductivity (frozen) 0.0053 cal/(s cm ºC) 

Latent heat 79.71 cal/g 

Phase-change temperature 0ºC 

Phase change range 
0 to -0.1ºC (range of 0.1ºC, simulating an abrupt 

phase change) 

As FLAC3D does not include an integrated phase-change simulation tool, the user needs 

to program a customised routine in order to simulate the effects of the phase change process 

(see Itasca Consulting Group (n.d.-d) or Zhu and Michalowski (2005) for an example of 

such a routine for mechanical calculations). In this case, the apparent heat capacity method 

was implemented in the routine due to its flexibility. Thus, the next block of code (the 

“freeze block”) defines how the effects of the phase change are modelled. This block is 

regularly called by the program every certain number of time steps, which can be 

determined by the user. In principle, the program is instructed to go through every zone in 

the model and check if its temperature is above or below the previously defined 

phase-change temperature. In the case that the temperature in the zone is below the 

phase-change temperature, the program checks whether the zone is already in the status 
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“freezing” (i.e. it has already started changing phase) or not. If it is not yet in the “freezing” 

status, the zone’s thermal parameters (specific heat capacity and thermal conductivity) are 

changed from the unfrozen properties to the “freezing” properties. The thermal conductivity 

is set to the average of the frozen and unfrozen thermal conductivities. With respect to the 

heat capacity, based on the apparent heat capacity method, the effect of the latent heat is 

taken into account by adding the latent heat divided by the phase change range to the 

average specific heat capacity. The numerical simulations are effectively being performed 

considering this apparent heat capacity in the zones which are in the status “freezing”. 

When the zone is already in this status, the amount of latent heat introduced via the increase 

of the specific heat capacity is added up in every iteration, stored in a variable and 

controlled until it reaches the total latent heat to be introduced for the zone considered. 

Once that happens, the status of the zone is changed by the program to “already frozen”, 

and the thermal properties (specific heat capacity and thermal conductivity) are updated to 

the frozen properties. The different statuses of the zones are illustrated by the model in 

Figure 5.2. 

 

Figure 5.2: Model with already frozen, freezing and unfrozen zones (unfrozen zones shown as “default”) 

The subsequent code blocks are mainly used for the interpretation of the results of the 

model. They create the required tables and graphs and import the results from the exact 

analytical calculations previously performed with Maple 2018, a widely used symbolic and 

numeric mathematics software. Finally, a block containing the “solve” command is 

included in the code, which is called to start the numerical simulation. 

Six thermal Problems with different boundary conditions were analysed: 

• Problem 1: This problem was taken as the base case. The boundary conditions were 

assumed in the range of the typical temperatures for the artificial ground freezing 

process with brine. Thus, the model starts at a uniform temperature of +20ºC (which 

can be considered to be inside the range of typical ground temperatures) and the 

“cold boundary” is at a constant temperature of -35ºC (typical brine temperature, 

e.g. when using a calcium chloride brine, see chapter 2.2). Sensitivity analyses 
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regarding the mesh size, time step and period of execution of the “freeze block” are 

performed in chapters 5.3, 5.4 and 5.5, respectively. 

• Problem 2: A second, more extreme case, was chosen applying a high ground 

temperature of 50ºC, which may occur at high depths of several hundreds or 

thousands of meters below ground. Furthermore, the temperature of the “cold 

boundary” was chosen to be -200ºC, which can be considered representative for 

nitrogen freezing (see chapter 2.2). The aim of this problem is to check the 

sensitivity of the model against the initial temperature difference, which in this case 

is 250/55=4.54 times larger than in the previous model. It may be suspected that 

such a large thermal gradient may produce numerical instabilities in the model and 

reduce its accuracy. This Problem is studied in chapter 5.6. 

• Problem 3: A third case with the same temperatures as in Problem 2 and with an 

extreme latent heat 10 times higher than water was simulated in chapter 5.7 in order 

to check the model’s sensitivity to the amount of latent heat. This extremely high 

latent heat may also be suspected to produce instabilities. 

• Problem 4: A model without phase change (linear model) was evaluated in 

chapter 5.7 in order to isolate the errors that the numerical model already produces 

without any phase change from the additional errors caused by the simulation of the 

phase change. Naturally, lower errors are expected in this model. 

• Problem 5: The thermal characteristics in Table 5.3 and a small maximum 

temperature gradient (source temperature of -6ºC, initial temperature of 4ºC) are 

assumed for this Problem (see chapter 5.8). The other boundary conditions are the 

same as defined for Problem 1, including the phase-change range between 0ºC and 

-0.1ºC.  

• Problem 6: This is a case based on Problem 5, with a more gradual phase change 

(gradual phase change over a range of 4ºC, between 0ºC and -4ºC). This Problem is 

used to check the effect of the abruptness or graduality of the phase change. This 

model should give more accurate results than the model with abrupt phase-change, 

as the abruptness may create numerical instabilities and it therefore usually 

negatively affects the accuracy of numerical models. The material properties 

considered for Problems 5 and 6 are the ones listed in Table 5.3: 

Table 5.3: Thermal properties used in Problems 5 and 6 

Thermal property Value 

Specific heat capacity (unfrozen) 0.165 cal/g/ºC 

Specific heat capacity (freezing/mushy region) 0.165 cal/g/ºC 

Specific heat capacity (frozen) 0.165 cal/g/ºC 

Thermal conductivity (unfrozen) 0.00578 cal/(s cm ºC) 

Thermal conductivity (freezing/mushy region) 0.00703 cal/(s cm ºC) 

Thermal conductivity (frozen) 0.00828 cal/(s cm ºC) 

Water content 20% 
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Residual unfrozen water content 7.82% 

Latent heat of water 79.71 cal/g 

Phase-change temperature 0ºC 

Phase change range 
0 to -0.1ºC (abrupt phase change) – Problem 5 

0 to -4ºC (gradual phase change) – Problem 6 

Several models with different numerical parameters were simulated for these six problems. 

In order to keep track of the different models and parameters evaluated, the following 

naming convention was developed. From this point on, the models are named in the thesis 

following this convention: 

Naming convention for numerical models:  

MHa-TSb-UFc-TEd-SOe-SCf-STg-TPh-AGi-j_k 

The meanings of the variables (the lower-case letters in italics) are as follows: 

• MHa: variable a is the mesh size, in cm. 

• TSb: variable b is the time step, in seconds. 

• UFc: variable c is the update period (every how many time steps) with which the 

“freeze block” routine is executed. 

• TEd: variable d is the type of elements (“h” for rectangular prisms and “t” for 

triangular prisms). 

• SOe: variable e stands for the source type (“s” for surface, “p” for punctual). 

• SCf: variable f is the type of phase change (“a” for abrupt, “g” for gradual). 

• STg: variable g represents the presence or not of phase change (“p” for problems 

with phase change, “n” for problems without phase change). 

• TPh: variable h is the maximum temperature difference (initial temperature of the 

ground minus temperature of the “cold boundary”). 

• AGi: variable i stands for the solving algorithm, (“E” for explicit, “I” for implicit). 

• j: variable j represents the geometry of the model (“NE” for Neumann, “CY” for 

single freeze pipe, “fw” for freeze wall and “fc” for freeze circle). 

• k: variable k is used for additional parameters changed in the models, e.g. larger 

models, models with a longer computed thermal time or models without any latent 

heat (shown as LHT=0). 

An example of a model name following this convention is presented below: 

MH1-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHT=0 

In order to compare the accuracies of the different models studied, the following data sets, 

among others, were retrieved from the models, tabulated and plotted into graphs: 

• Temperature versus time graph for the point at x=2 cm: T(2,t) for t=0 to 10 days 

• Temperature versus time graph for the point at x=10 cm: T(10,t) for t=0 to 10 days 

• Temperature versus time graph for the point at x=25 cm: T(25,t) for t=0 to 10 days 
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• Temperature versus time graph for the point at x=60 cm: T(60,t) for t=0 to 10 days 

• Position of the freeze front versus time: X(t) for t=0 to 10 days 

• Temperature versus distance graph for t =10 days = 864,000 s: T(x,864’000) for 

x=0 to 500 cm 

In addition to analysing the accuracy of the model, it is imperative to evaluate the 

computing time, as the available time for design and simulations is usually limited in 

engineering projects. In order to provide a reliable comparable standard of the computing 

times cited in this thesis, a benchmark data file, “timing-test-simple.f3dat”, from chapter 7 

of Itasca Consulting Group (n.d.-c), was run. The results obtained with the computers used 

in this thesis for the calculations are shown in Table 5.4 in italics, along with results for 

other benchmark computers provided by Itasca Consulting Group (n.d.-c). The numerical 

simulations with FLAC3D in this thesis were generally performed with the laptop Asus 

UX360UAK, with the exception of the ones in chapters 5.10 and 9.2.3, for which the 

computer Dell Precision 7530 was used. 

Table 5.4:  

Benchmark of computers and processors for FLAC3D calculations, based on Itasca Consulting Group (n.d.-c) 

Computer Processor Name 

Number 

of 

Processors Cores Threads 

Operating 

System 

Calculation speed 

(kzones / sec) 

ZT Affinity Intel Pentium D 1 2 2 Win-7 64 SP1 170 

HP ProBook 

4530S 
Intel Core i5-2410M 1 2 4 Win-7 64 SP1 680 

DELL 

Optiplex 790 
i7-2600 1 4 8 Win XP SP3 1450 

Custom Intel Xeon x5680 2 6 24 
Win-Server 64 

SP2 
2121 

Asus 

UX360UAK 
Intel Core i5-7200U 1 2 4 

Windows 20 

Home, V.1903 
669.5 

Dell 

Precision 

7530 

Intel(R) Xeon(R) E-

2176M 
1 6 12 

Win-10 

Enterprise 
2332 

 Preliminary model checks: boundary and far-field mesh size effects 

Several preliminary model checks were performed in order to optimise the simulation time. 

First, it was confirmed that the numerical model, calculated using certain reference values 

of the numerical parameters (in this case a mesh size of 1 cm, a time step of 1 s, etc.) can 

be very accurate, generating errors of less than 1ºC for temperatures and 1 cm for the freeze 

front. It was also checked that a model with a length of 5 m instead of 50 m to simulate 

Problem 2 (which is the problem, of the six problems defined in the previous chapter, in 

which the freeze front advances the fastest) does not provide less accurate results for a 

thermal time of up to 10 days. Then, it was checked that a coarser mesh from a distance of 

1 m of the cold source onwards would give results (for a model simulated until a thermal 
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time of 10 days) which do not significantly defer from the ones which would be obtained 

with a completely uniform mesh over the whole length of the model (see the average errors 

in Table 5.5). However, significant computing time would be saved by using the first mesh.  

To this extent, three models were compared and the hypotheses confirmed. This can be 

appreciated in Figure 5.3, Figure 5.4 and Table 5.5. Figure 5.5 shows in more detail that 

the additional error because of these simplifications (boundary effect of the boundary at 

x=500 cm) is reduced and very localized in the area near the phase-change front. The 

relative error is small, considering that the initial gradient in these models was 250ºC. The 

absolute error of about 5ºC of the mesh with a larger mesh size from 100 cm onwards shown 

in Figure 5.5 is due to the phase-change interface having already reached the model area 

with a coarser mesh. Taking care of avoiding that the phase-change interface reaches the 

coarser mesh in the next chapters, this approach with a graded mesh and a reduced model 

length will be used.  

 

Figure 5.3: Temperature vs time at x=25cm, preliminary model checks, Problem 2 
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Figure 5.4: Temperature vs distance to source at t=10 days, preliminary model checks, Problem 2 

 

Figure 5.5: Error of temperature vs distance to source at t=10 days, preliminary model checks, Problem 2 

Note: both models with uniform meshes yield nearly the same results, so their graphs overlap. 
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Table 5.5: Average of absolute values of errors, preliminary model checks, Problem 2 

Average of 

absolute values 

of errors / 

Computing time 

Units 

Average absolute 

error of MH1-TS20-

UF1-TEh-SOs-SCa-

STp-TP250-AGE-

NE_5m_unif_mesh  

(5 m total length) 

Average absolute error 

of MH1-TS20-UF1-

TEh-SOs-SCa-STp-

TP250-AGE-

NE_50meter 

Average absolute error 

of MH1-TS20-UF1-

TEh-SOs-SCa-STp-

TP250-AGE-

NE_5m_graded_mesh  

(broadening mesh after 

1 m, 5 m total length) 

T(10 cm, t) [ºC] 0.17 0.17 0.17 

T(25 cm, t) [ºC] 0.88 0.88 0.88 

T(60 cm, t) [ºC] 0.39 0.39 0.41 

X(t) [cm] 0.57 0.57 0.61 

T(x, 10 days) [ºC] 0.09 0.09 0.25 

Computing time [s] 0:03:31 0:33:56 0:01:13 

 Mesh-size sensitivity analysis 

As already explained in the previous chapters, the mesh size may have a significant effect 

on the accuracy of the results. To test this hypothesis, six models with different mesh sizes 

of 1, 2, 5, 10, 25 and 50 cm in the near field of the cold source (100 cm) were run for 

Problem 1. The time step was fixed at 1 s and the freeze routine was executed every time 

step. 

The model MH1-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE, which has the smallest 

mesh size of 1 cm and should therefore be the most accurate of the evaluated models, has 

been taken as a basis to compare the others to. A typical view of the temperature in the 

model after 10 days is presented in Figure 5.6. 

 

Figure 5.6: Isometric view of temperature contour in the model 
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Figure 5.7 shows the temperature history in the point of study which is nearest to the source 

(2 cm away). It can be appreciated that the models with mesh sizes of 1 and 2 cm deliver 

reasonably accurate results. The 5 cm-mesh provides somewhat unstable results until about 

1x105 seconds (roughly above 1 day), but its accuracy improves afterwards (see Figure 

5.8). The other three models with coarser meshes generate graphs with very marked 

“numerical steps”, which is typical of the enthalpy method (see chapter 4.3.2.1 and 

Furzeland (1980), Voller and Cross (1981), Basu and Date (1988) and Mackenzie and 

Robertson (2000)). For instance, in the model with a mesh size of 25 cm, the maximum 

errors appear after about 3 days of thermal time and amount to approximately 12 cm for the 

position of the freeze front (see Figure 5.11 and Figure 5.12) and 25ºC for the temperature 

at the point 25 cm away from the thermal source (see Figure 5.9 and Figure 5.10). 

On the long term, the models tend to stabilize, and the errors tend to decrease after a certain 

time. Accordingly, the timeframe of interest to the designer and the duration of the project 

(several weeks, months or years) have to be weighed in when deciding which mesh size to 

choose. For instance, if long timeframes are of interest, coarser meshes may deliver results 

which are accurate enough. The stabilisation of the errors with increasing thermal time can 

be seen in Figure 5.8, Figure 5.10 and Figure 5.12. Indeed, the largest errors tend to occur 

near the position of the freeze front. The errors at a certain point in the model increase at 

the beginning of the freezing process as the phase change interface approaches that point, 

then they reach the maximum when the interface is approximately at that point and finally, 

they decrease and the numerical results tend to converge with the exact solution. This can 

be clearly appreciated in Figure 5.10 (the largest errors at a distance of 25 cm from the front 

occur at 𝑡 ≈ 3⁡𝑑𝑎𝑦𝑠, which is the time when the freeze front is at 𝑥 ≈ 25⁡𝑐𝑚) and Figure 

5.13 (the largest errors occur at 𝑥 ≈ 50⁡𝑐𝑚, the position where the freeze front is at 𝑡 =

10⁡𝑑𝑎𝑦𝑠). This effect is also apparent in the results from Alekseev et al. (2018). 
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Figure 5.7: Temperature vs time at x=2cm, mesh sensitivity for Problem 1 

 

Figure 5.8: Error of temperature vs time at x=2cm, mesh sensitivity for Problem 1 
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Figure 5.9: Temperature vs time at x=25cm, mesh sensitivity for Problem 1 

 

 

Figure 5.10: Error of temperature vs time at x=25cm, mesh sensitivity for Problem 1 
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analytical curve consistently with very high accuracy are the 1 cm and 2 cm mesh models. 

It is also interesting to notice that the majority of the models underestimate the advance of 

the phase-change front most of the time (see Figure 5.11 and Figure 5.12). 

 

Figure 5.11: Freeze front, mesh sensitivity for Problem 1 

 

Figure 5.12: Error of freeze front, mesh sensitivity for Problem 1 
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In the temperature versus space graph (Figure 5.13), the numerical oscillations are not 

visible (in any of the models). Again, the 1 cm and 2 cm-mesh models appear to have a 

very high accuracy. 

 

Figure 5.13: Temperature vs distance, t=10 days, mesh sensitivity for Problem 1 
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Table 5.6: Average of absolute values of errors, mesh sensitivity, Problem 1 

Average of 

absolute 

values of 

errors / 

Computing 

time 

Units 

MH1-TS1-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

MH2-TS1-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

MH5-TS1-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

MH10-TS1-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

MH25-

TS1-UF1-

TEh-SOs-

SCa-STp-

TP55-

AGE-NE 

MH50-

TS1-UF1-

TEh-SOs-

SCa-STp-

TP55-

AGE-NE 

T(2 cm, t) [ºC] 0.39 0.68 1.39 2.26 3.08 3.51 

T(10 cm, t) [ºC] 0.12 0.27 0.75 1.50 4.48 6.30 

T(25 cm, t) [ºC] 0.35 0.54 1.36 2.12 5.86 8.13 

T(60 cm, t) [ºC] 0.30 0.55 1.22 2.17 4.14 6.11 

X(t) [cm] 0.40 0.73 1.61 3.28 6.88 10.92 

T(x, 10 

days) [ºC] 0.04 0.09 0.19 0.52 1.40 2.19 

Computing 

time [s] 0:29:27 0:16:24 0:08:25 0:05:27 0:03:43 0:03:16 

Note: The smaller the average error the better the accuracy. Errors are highlighted in a colour scale from green 

(smallest) to red (largest). 

 Time-step sensitivity analysis 

According to the literature (see chapters 4.4.1 and 4.4.1.2), the time step used to discretise 

the time may also have a very significant impact on the accuracy of the numerical model. 

In this chapter, models with time steps of 1, 5, 10, 20 and 40 seconds (and the smallest 

mesh of 1 cm used in the previous chapter) were run. The critical time step for the 1 cm 

mesh, i.e. the largest time step with which the explicit method is stable, is 45.365 seconds 

according to FLAC3D, and provides similar results to the 40-second time step. In general, 

all these models provide very accurate results, with significantly shorter computing times 

for the larger (though sub-critical) time steps. Equations (4.13) and (4.16) (with 𝑚 = 2), 

yield a time step of 47.26 seconds for the frozen phase (which is the most restrictive one in 

terms of critical time step), a similar result to the critical time step of 45.365 seconds 

detected by FLAC3D. 

Exemplarily, the evolution of the temperature at x=25 cm is presented in Figure 5.14. The 

high accuracy of all five models can be appreciated. 
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Figure 5.14: Temperature vs time at x=25cm, time-step sensitivity for Problem 1 
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Figure 5.15: Freeze front, time-step sensitivity for Problem 1 
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The main conclusion which can be extracted from these results is that, for the 1 cm mesh, 

all the models which were run have a very high accuracy, contrarily to the differences in 

computing time between them, which are very significant. Consequently, the largest stable 

time step should be used, in order to spare computing time. This can be appreciated in Table 

5.7 and Table 5.8. 

Table 5.7: Average of absolute values of errors, time-step sensitivity with 1 cm mesh size, Problem 1 

Average of 

absolute 

values of 

errors / 

Computing 

time 

Units 

MH1-TS1-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

MH1-TS5-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

MH1-TS10-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

MH1-TS20-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

MH1-TS40-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

T(2 cm, t) [ºC] 0.39 0.35 0.35 0.38 1.03 

T(10 cm, t) [ºC] 0.12 0.12 0.11 0.11 0.12 

T(25 cm, t) [ºC] 0.35 0.35 0.36 0.37 0.37 

T(60 cm, t) [ºC] 0.30 0.30 0.31 0.31 0.31 

X(t) [cm] 0.40 0.40 0.41 0.43 0.45 

T(x, 10 days) [ºC] 0.04 0.04 0.04 0.04 0.04 

Computing 

time [s] 0:29:27 0:06:49 0:03:38 0:01:48 0:01:01 

Table 5.8 presents the results of models with mesh sizes of 1, 5 and 10 cm, calculated for 

different time steps. It shows a very interesting effect: while the errors of the different 

models remain practically constant when increasing the time step for a certain mesh size, 

the computing time is reduced up to 97-98% for the larger time step compared to the smaller 

one. 
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Table 5.8: Average of absolute values of errors, time-step sensitivity with different mesh sizes, Problem 1 

Average of 

absolute 

values of 

errors / 

Computing 

time 

Units 

MH1-TS1-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

MH1-TS40-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

MH5-TS1-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

MH5-

TS200-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

MH10-

TS1-UF1-

TEh-SOs-

SCa-STp-

TP55-

AGE-NE 

MH10-

TS400-

UF1-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

T(2 cm, t) [ºC] 0.39 1.03 1.39 1.51 2.26 2.02 

T(10 cm, t) [ºC] 0.12 0.12 0.75 0.78 1.50 1.36 

T(25 cm, t) [ºC] 0.35 0.37 1.36 1.38 2.12 2.10 

T(60 cm, t) [ºC] 0.30 0.31 1.22 1.24 2.17 2.18 

X(t) [cm] 0.40 0.45 1.61 1.73 3.28 3.30 

T(x, 10 

days) [ºC] 0.04 0.04 0.19 0.19 0.52 0.54 

Computing 

time [s] 0:29:27 0:01:01 0:08:25 0:00:11 0:05:27 0:00:07 

 Sensitivity to the period of execution of the “freeze block” 

The zone properties (unfrozen / freezing / already frozen) are only updated at certain 

intervals of time, when the “freeze block” of code is executed. The sensitivity of the model 

to this is evaluated in this chapter. To this aim, models with 1-second time steps were run 

in which the “freeze block” was executed every 1, 10, 100 and 1,000 steps. An additional 

model was executed with a 40-second time step and the execution of the “freeze block” 

every 100 steps (i.e. every 4,000 seconds). The accuracy of the results remains in a similar 

order of magnitude to the base case; however, the computing time is heavily reduced (see 

Table 5.9 and Table 5.10). The advance of the freeze front according to the different models 

is presented in Figure 5.16. 
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Figure 5.16: Freeze front, freeze block update sensitivity, Problem 1 

Table 5.9: Average of absolute values of errors, freeze block update sensitivity, Problem 1 

Average of 

absolute 

values of 

errors / 

Computing 

time 

Units 

MH1-TS1-

UF1-TEh-SOs-

SCa-STp-

TP55-AGE-

NE 

MH1-TS1-

UF10-TEh-

SOs-SCa-

STp-TP55-

AGE-NE 

MH1-TS1-

UF100-TEh-

SOs-SCa-STp-

TP55-AGE-

NE 

MH1-TS1-

UF1000-TEh-

SOs-SCa-STp-

TP55-AGE-NE 

T(2 cm, t) [ºC] 0.39 0.40 0.42 0.48 

T(10 cm, t) [ºC] 0.12 0.12 0.13 0.38 

T(25 cm, t) [ºC] 0.35 0.36 0.40 0.78 

T(60 cm, t) [ºC] 0.30 0.33 0.35 0.46 

X(t) [cm] 0.40 0.41 0.52 1.29 

T(x, 10 days) [ºC] 0.04 0.04 0.24 0.10 

Computing 

time 
[s] 0:29:27 0:07:32 0:05:02 0:04:01 
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Table 5.10: Average of absolute values of errors, freeze block update sensitivity and time step sensitivity, Problem 1 

Average of 

absolute 

values of 

errors / 

Computing 

time 

Units 

MH1-TS1-UF1-

TEh-SOs-SCa-STp-

TP55-AGE-NE 

MH1-TS40-UF1-

TEh-SOs-SCa-STp-

TP55-AGE-NE 

MH1-TS40-UF100-

TEh-SOs-SCa-STp-

TP55-AGE-NE 

T(2 cm, t) [ºC] 0.39 1.03 1.12 

T(10 cm, t) [ºC] 0.12 0.12 0.21 

T(25 cm, t) [ºC] 0.35 0.37 0.37 

T(60 cm, t) [ºC] 0.30 0.31 0.41 

X(t) [cm] 0.40 0.45 0.45 

T(x, 10 days) [ºC] 0.04 0.04 0.04 

Computing 

time 
[s] 0:29:27 0:01:01 0:00:47 

 Effect of the initial temperature gradient on the accuracy 

To study the effect of the initial temperature gradient on the accuracy of the model, 

Problem 2 was created, which has an initial temperature difference (source temperature 

minus initial ground temperature) about 4.5 times larger than Problem 1. All the other 

parameters have been chosen as in Problem 1. Thus, the accuracy of the models of the base 

case (Problem 1) and the Problem 2 can be compared. An overview of the errors of the 

models for Problem 2 is provided in Table 5.11. In Table 5.12 it can be appreciated that the 

error in Problem 2 is generally higher than in Problem 1, for all the models. However, it is 

usually in the same order of magnitude and it has increased by a lower factor than the 

gradient increase. The median of the ratio of the errors is 245%, i.e. Problem 2 has errors 

which are typically about 2.45 times larger than the errors in Problem 1. Of special interest 

are the models with a time step of 40 seconds and the one executing the “freeze block” 

every 1,000 seconds, which produced relatively accurate results for Problem 1, but whose 

results are significantly less accurate for Problem 2. This can be explained in that the higher 

temperature gradient requires a smaller time step and a more frequent update of the “freeze 

status” of the zones in order to reduce the errors. Finally, the computing time does not 

appear to have a clear relationship with the initial temperature gradient.   
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Table 5.11: Average of absolute values of errors, different models, Problem 2 

                                                               Average of absolute values 

of errors / Computing time 

   Model 

T(2 cm, t) T(10 cm, t) T(25 cm, t) T(60 cm, t) X(t) T(x, 10 days) Computing time 

                                                                             Units [ºC] [ºC] [ºC] [ºC] [cm] [ºC] [s] 

MH1-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0.3 0.28 0.24 0.42 0.5 0.18 0:29:37 

MH2-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 1.11 0.45 0.48 0.96 0.9 0.4 0:24:59 

MH5-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 3.45 0.96 1.29 1.93 1.55 0.3 0:13:08 

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 5.97 3.19 2.19 3.43 2.5 0.82 0:07:08 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 8.43 11.23 8.15 6.57 4.81 3.66 0:06:00 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 10.04 18.74 20.92 16.71 10.53 7.12 0:05:19 

MH1-TS5-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0.42 0.26 0.93 0.81 0.54 0.26 0:05:57 

MH1-TS10-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0.94 0.33 0.92 0.81 0.58 0.26 0:02:12 

MH1-TS20-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 2.02 0.17 0.88 0.8 0.61 0.25 0:01:13 

MH1-TS40-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 4.78 8.99 13.11 13.79 9.4 2.63 0:00:38 

MH5-TS200-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 5.84 4.19 1.86 2.18 1.7 0.22 0:00:09 

MH10-TS400-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 6.18 5.22 2.42 3.56 2.61 0.91 0:00:07 

MH20-TS800-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 7.19 9.76 6.36 5.48 3.97 2.67 0:00:07 

MH1-TS1-UF10-TEh-SOs-SCa-STp-TP250-AGE-NE 0.33 0.24 0.22 0.42 0.58 0.26 0:05:32 

MH1-TS1-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE 1.38 0.54 0.42 0.65 0.77 0.24 0:04:07 

MH1-TS1-UF1000-TEh-SOs-SCa-STp-TP250-AGE-NE 3.64 3.23 4.1 5.01 3.79 0.85 0:05:23 

MH1-TS40-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE 4.78 8.99 13.11 13.79 9.4 2.63 0:00:17 

 

  



  

Chapter 5: Establishment of the accuracy and limits of numerical methods for thermal calculations with phase change   

 

 

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing                          94 

Table 5.12: Ratios of average of absolute values of errors and computing times, Problem 2 to Problem 1 (TP250/TP55) 

                                      Ratio of Error of Problem 2 / Problem 1 

   

Model 

T(2 cm, t) T(10 cm, t) T(25 cm, t) T(60 cm, t) X(t) T(x, 10 days) Computing time 

MH1-TS1-UF1-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 78% 238% 67% 139% 125% 481% 101% 

MH2-TS1-UF1-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 164% 170% 88% 173% 124% 447% 152% 

MH5-TS1-UF1-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 249% 128% 95% 159% 96% 161% 156% 

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 264% 212% 103% 159% 76% 157% 131% 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 274% 251% 139% 159% 70% 261% 161% 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 287% 297% 257% 273% 96% 326% 163% 

MH1-TS5-UF1-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 120% 223% 262% 266% 133% 697% 87% 

MH1-TS10-UF1-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 266% 286% 255% 263% 139% 690% 61% 

MH1-TS20-UF1-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 531% 149% 241% 257% 142% 675% 68% 

MH1-TS40-UF1-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 464% 7,705% 3,572% 4,391% 2,092% 6,777% 62% 

MH5-TS200-UF1-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 386% 534% 134% 175% 98% 116% 82% 

MH10-TS400-UF1-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 305% 385% 115% 163% 79% 169% 100% 

MH20-TS800-UF1-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 269% 268% 163% 167% 87% 445% 100% 

MH1-TS1-UF10-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 83% 205% 60% 129% 141% 692% 73% 

MH1-TS1-UF100-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 331% 412% 104% 185% 148% 102% 82% 

MH1-TS1-UF1000-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 762% 843% 526% 1093% 293% 811% 134% 

MH1-TS40-UF100-TEh-SOs-SCa-STp-TP250/TP55-AGE-NE 425% 4,262% 3,572% 3,376% 2,092% 6,777% 36% 

Average of models (TP250/TP55) 309% 975% 574% 678% 355% 1,164% 103% 

Median of models (TP250/TP55) 274% 268% 139% 175% 125% 447% 100% 
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 Effect of the Stefan number and amount of latent heat on the 

accuracy 

In order to evaluate the effect of the amount of latent heat, which is the major parameter 

which makes the model non-linear and poses numerical difficulties, two additional 

problems were studied. First, in order to eliminate the non-linearities, a model without 

phase change was created (Problem 4). As it was expected, the simulation results are 

smoother, and no steps or fluctuations are observed (see Figure 5.17). Furthermore, the 

accuracy of the results tends to be higher than in the models which simulate phase change 

(see Table 5.13). However, in the models with larger time steps and/or mesh size, the 

accuracy in the very near field of the “cold source” is worse than in the model with phase 

change. This effect can be explained in that the existence of latent heat slows down the very 

abrupt effects of the high initial temperature gradient, leading to more accurate numerical 

results. The computing time was lower for most (but not all) of the models without latent 

heat, amounting to a median of 75% of the computing time of Problem 2. 

 

Figure 5.17: Temperature vs time at x=25cm, Problem 4 
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MH50-TS1-UF1-TEh-SOs-SCa-STn-TP250-AGE-NE_LHT=0 MH1-TS5-UF1-TEh-SOs-SCa-STn-TP250-AGE-NE_LHT=0

MH1-TS10-UF1-TEh-SOs-SCa-STn-TP250-AGE-NE_LHT=0 MH1-TS20-UF1-TEh-SOs-SCa-STn-TP250-AGE-NE_LHT=0

MH1-TS40-UF100-TEh-SOs-SCa-STn-TP250-AGE-NE_LHT=0 MH5-TS200-UF1-TEh-SOs-SCa-STn-TP250-AGE-NE_LHT=0

MH10-TS400-UF1-TEh-SOs-SCa-STn-TP250-AGE-NE_LHT=0 MH20-TS800-UF1-TEh-SOs-SCa-STn-TP250-AGE-NE_LHT=0

MH1-TS1-UF10-TEh-SOs-SCa-STn-TP250-AGE-NE_LHT=0 MH1-TS1-UF100-TEh-SOs-SCa-STn-TP250-AGE-NE_LHT=0

MH1-TS1-UF1000-TEh-SOs-SCa-STn-TP250-AGE-NE_LHT=0 MH1-TS40-UF100-TEh-SOs-SCa-STn-TP250-AGE-NE_LHT=0
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Table 5.13: Ratios of average of absolute values of errors and computing times, Problem 4 to Problem 2 (STn/p) 

                                                  Ratio of Error of Problem 4 / Problem 2 

 

     Model 

T(2 cm, t) T(10 cm, t) T(25 cm, t) T(60 cm, t) T(x, 10 days) Computing time 

MH1-TS1-UF1-TEh-SOs-SCa-STn/p-TP250-AGE-NE 23% 4% 2% 1% 200% 18% 

MH2-TS1-UF1-TEh-SOs-SCa-STn/p-TP250-AGE-NE 23% 10% 15% 2% 87% 21% 

MH5-TS1-UF1-TEh-SOs-SCa-STn/p-TP250-AGE-NE 136% 29% 10% 5% 113% 33% 

MH10-TS1-UF1-TEh-SOs-SCa-STn/p-TP250-AGE-NE 128% 31% 83% 10% 49% 54% 

MH25-TS1-UF1-TEh-SOs-SCa-STn/p-TP250-AGE-NE 139% 167% 35% 81% 18% 72% 

MH50-TS1-UF1-TEh-SOs-SCa-STn/p-TP250-AGE-NE 154% 197% 206% 82% 36% 68% 

MH1-TS5-UF1-TEh-SOs-SCa-STn/p-TP250-AGE-NE 32% 4% 83% 1% 137% 15% 

MH1-TS10-UF1-TEh-SOs-SCa-STn/p-TP250-AGE-NE 37% 3% 1% 1% 137% 22% 

MH1-TS20-UF1-TEh-SOs-SCa-STn/p-TP250-AGE-NE 50% 7% 1% 1% 138% 75% 

MH1-TS40-UF100-TEh-SOs-SCa-STn/p-TP250-AGE-NE 48% 0% 0% 0% 13% 76% 

MH5-TS200-UF1-TEh-SOs-SCa-STn/p-TP250-AGE-NE 110% 35% 7% 4% 145% 100% 

MH10-TS400-UF1-TEh-SOs-SCa-STn/p-TP250-AGE-NE 138% 76% 80% 10% 41% 114% 

MH20-TS800-UF1-TEh-SOs-SCa-STn/p-TP250-AGE-NE 153% 153% 96% 26% 18% 129% 

MH1-TS1-UF10-TEh-SOs-SCa-STn/p-TP250-AGE-NE 21% 5% 2% 1% 138% 137% 

MH1-TS1-UF100-TEh-SOs-SCa-STn/p-TP250-AGE-NE 5% 2% 1% 1% 145% 179% 

MH1-TS1-UF1000-TEh-SOs-SCa-STn/p-TP250-AGE-NE 2% 0% 0% 0% 41% 138% 

MH1-TS40-UF100-TEh-SOs-SCa-STn/p-TP250-AGE-NE 48% 0% 0% 0% 13% 94% 

Average of models (STn/p) 73% 43% 37% 13% 86% 79% 

Median of models (STn/p) 48% 7% 7% 1% 87% 75% 
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A case with a latent heat 10 times higher than in the Problem 2, named Problem 3, was also 

studied. In this problem, as the effect of the phase change is more pronounced, the errors 

are expected to be higher. Indeed, this prediction is confirmed for the temperature-time 

graphs (the absolute values of the errors of Problem 3 being in average about 255% of the 

ones of Problem 2). The temperature profile over distance also presents a higher error for 

Problem 3, while the freeze front has a lower average error, about 66% of the average errors 

of Problem 2. The computing time is about 42% higher on average. The detailed results are 

presented in Table 5.13. 
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Table 5.14: Ratios of average of absolute values of errors and computing times, Problem 3 to Problem 2 (LHTx10/LHTx1) 

                                                  Ratio of Error of Problem 3 / Problem 2 

  

     Model 

T(2 cm, t) T(10 cm, t) T(25 cm, t) T(60 cm, t) X(t) 
T(x, 10 

days) 

Computing 

time 

MH1-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 480% 272% 549% 205% 45% 104% 126% 

MH2-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 293% 380% 541% 182% 57% 89% 74% 

MH5-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 178% 475% 579% 219% 81% 365% 76% 

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 178% 487% 538% 216% 103% 176% 141% 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 182% 302% 649% 181% 153% 129% 121% 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 162% 200% 225% 77% 101% 51% 113% 

MH1-TS5-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 305% 476% 148% 284% 42% 195% 228% 

MH1-TS10-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 235% 435% 147% 285% 42% 196% 16% 

MH1-TS20-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 38% 404% 150% 274% 38% 72% 258% 

MH1-TS40-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 117% 82% 54% 8% 17% 34% 195% 

MH5-TS200-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 107% 105% 403% 251% 72% 492% 200% 

MH10-TS400-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 173% 300% 480% 243% 100% 161% 200% 

MH20-TS800-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 210% 345% 600% 229% 173% 70% 186% 

MH1-TS1-UF10-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 433% 312% 597% 203% 41% 71% 147% 

MH1-TS1-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 118% 138% 312% 125% 32% 68% 106% 

MH1-TS1-UF1000-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 74% 71% 55% 10% 16% 42% 127% 

MH1-TS40-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE_ LHTx10/LHTx1 123% 82% 54% 7% 17% 34% 94% 

Average of models (LHTx10/LHTx1) 200% 286% 358% 176% 66% 138% 142% 

Median of models (LHTx10/LHTx1) 178% 302% 403% 205% 45% 89% 127% 
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 Abrupt and gradual phase change  

Two models with identical thermal parameters and boundary conditions except for the 

phase-change ranges (Problems 5 and 6, see chapter 5.1) were run and compared. A phase 

change range of 0.1ºC was chosen to simulate the abrupt phase change (Problem 5), as it is 

not possible to numerically simulate a phase-change range of 0ºC with the enthalpy method. 

A phase-change range of 4ºC was defined for the case with gradual phase change 

(Problem 6). The Neumann formula and the solution for gradual phase change by Lunardini 

described in chapter 3.2.2 were used to check the accuracy of the respective numerical 

models. The material properties used are different than for the other problems and are 

defined in chapter 5.1. 

The results indicate, as expected, that a material with gradual phase change leads to 

smoother numerical results and smaller oscillations in the progress of the freeze front 

(compare Figure 5.18 and Figure 5.19). This effect can also be observed in the 

temperature-time graphs (Figure 5.20 and Figure 5.21), which usually display large 

oscillations and steps, typical of the enthalpy method, but in the case of the gradual phase 

change, the oscillations practically disappear.  

With respect to the errors of the models, Table 5.15 presents the ratios of the average of the 

absolute values of errors of Problem 6 (gradual phase change) to Problem 5 (abrupt phase 

change). It can be observed that in most cases, the results of Problem 6 are more accurate, 

although this accuracy improvement varies widely. For instance, Problem 6 is, on average 

across the different models, less accurate than Problem 5 regarding the prediction of the 

freeze front. On the other hand, the model with gradual phase change consistently takes 

longer to compute (up to twice as long), which may be caused by the fact that the zones in 

the numerical model stay in the freezing state during more time steps, which makes the 

computing routine slower, as the status of a higher number of zones has to be evaluated. 
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Figure 5.18: Freeze front for Problem 5 (abrupt phase change) 
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Figure 5.19: Freeze front for Problem 6 (gradual phase change) 

 

0

20

40

60

80

100

120

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

Fr
ee

ze
 F

ro
n

t 
X

 (
t)

 [
cm

]

Time [s]

Freeze front - gradual phase change

Freeze front (from Neumann's solution) MH1-TS1-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE

MH2-TS1-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE MH5-TS1-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE

MH10-TS1-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE MH25-TS1-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE

MH50-TS1-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE MH1-TS5-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE

MH1-TS10-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE MH1-TS20-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE

MH1-TS40-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE MH5-TS200-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE

MH10-TS400-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE MH20-TS800-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE

MH1-TS1-UF10-TEh-SOs-SCg-STp-TP10-AGE-NE MH1-TS1-UF100-TEh-SOs-SCg-STp-TP10-AGE-NE

MH1-TS1-UF1000-TEh-SOs-SCg-STp-TP10-AGE-NE MH1-TS40-UF100-TEh-SOs-SCg-STp-TP10-AGE-NE



  

Chapter 5: Establishment of the accuracy and limits of numerical methods for thermal calculations 

with phase change   
 

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 102 

 

Figure 5.20: Temperature vs time at x=25cm, Problem 5 (abrupt phase change) 
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Figure 5.21: Temperature vs time at x=25cm, Problem 6 (gradual phase change) 
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Table 5.15: Ratios of average of absolute values of errors and computing times, Problem 6 to Problem 5 (SCg/SCa) 

          Ratios of Error of Problem 6 / Problem 5 

 

     Model 

Te_ti_2cm T(10 cm, t) T(25 cm, t) T(60 cm, t) X(t) T(x, 10 days) Computing time 

MH1-TS1-UF1-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 50% 32% 18% 11% 11% 43% 185% 

MH2-TS1-UF1-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 61% 35% 25% 17% 10% 45% 126% 

MH5-TS1-UF1-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 82% 54% 35% 27% 43% 25% 124% 

MH10-TS1-UF1-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 89% 87% 49% 30% 100% 25% 115% 

MH25-TS1-UF1-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 88% 88% 76% 32% 137% 31% 102% 

MH50-TS1-UF1-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 79% 65% 41% 40% 124% 44% 97% 

MH1-TS5-UF1-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 80% 35% 20% 11% 11% 43% 119% 

MH1-TS10-UF1-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 117% 49% 21% 11% 1,836% 141% 129% 

MH1-TS20-UF1-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 126% 73% 22% 11% 13% 130% 125% 

MH1-TS40-UF1-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 126% 73% 22% 11% 11% 53% 140% 

MH5-TS200-UF1-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 88% 123% 53% 32% 44% 27% 138% 

MH10-TS400-UF1-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 108% 88% 56% 36% 95% 27% 150% 

MH20-TS800-UF1-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 98% 121% 76% 35% 114% 39% 233% 

MH1-TS1-UF10-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 130% 224% 209% 42% 14% 44% 123% 

MH1-TS1-UF100-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 128% 227% 491% 80% 28% 50% 105% 

MH1-TS1-UF1000-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 94% 140% 112% 133% 141% 132% 119% 

MH1-TS40-UF100-TEh-SOs-SCg/SCa-STp-TP10-AGE-NE 126% 73% 22% 11% 11% 53% 105% 

Average of models (SCg/SCa) 98% 93% 79% 34% 161% 56% 131% 

Median of models (SCg/SCa) 94% 73% 41% 30% 43% 44% 124% 
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 Scalability of the models: thermal time of 365 days 

In this chapter, it is investigated to which extent the results of the previous chapters, which 

have been evaluated for a total thermal time of 10 days, can be extrapolated to the usual 

dimensions in engineering projects. For instance, practical orders of magnitude of space 

and time could be a few meters of frozen ground and several weeks or months to a few 

years, respectively. For this purpose, several simulations for Problem 2 have been executed 

for a longer thermal time of 365 days and with a larger model, which is 50 m long, to avoid 

boundary effects. In this case, only a selection of the previous simulations has been run due 

to the longer computing times required.  

The results are qualitatively analogous to the ones in the previous chapters, indicating that 

the models converge to the exact analytical solution for long times. In general, as observed 

before, the models do not diverge from the exact solution, but they oscillate around it, 

eventually converging to it. Specially the temperature-time diagrams exhibit this effect. 

Once the freeze front has passed a certain location in space, the oscillations tend to decrease 

with time. Exemplarily, the temperature-time diagram at a distance of 2.5 m from the 

source is shown in Figure 5.22. The corresponding errors are presented in Figure 5.23. It is 

interesting to notice that the errors of the temperature-time diagram at x=2.50 m reach their 

maximum at the time of 5 ∙ 106 seconds, when the interface is around that same position. 

Indeed, the freeze-front diagram in Figure 5.24 confirms that the front is at x=2.50 m at a 

time of 5,011,200 seconds. This temporal coincidence of the maximum errors and the 

freeze front occurs in the temperature-time graphs for other locations as well. The profile 

of temperature versus space also confirms this, as it can be observed that the maximum 

errors occur in the position located about 600 cm from the source, where the front is situated 

(see Figure 5.25). 

The limits and the different computing efficiencies of the numerical simulations can be best 

appreciated in Table 5.16. Regarding the mesh sensitivity, the results of the 10 cm mesh 

and 1 second time step with execution of the freeze block every step have average errors 

under 1ºC for the temperature and under 5 cm for the freeze front. However, the calculation 

time for the model was nearly two days. The models with 25 cm and 50 cm mesh size and 

a time step of 1 second decrease the calculation time to 30 and 11 hours, respectively, but 

at the cost of increasing the errors to 2ºC / 7.5 cm and 5ºC / 10 cm. As already shown in 

chapter 5.4, it can be noticed also here that increasing the time step dramatically for the 

10 cm and 50 cm mesh size models, from 1 second to 400 s and 1,600 s, respectively, had 

a minimal impact on the accuracy of the models, supporting again the thesis that the largest 

stable time step should be used for the explicit method. 

Interestingly, much more accurate results (with errors below 0.1ºC and 0.6 cm) than with 

the 10 cm mesh and 1 second time step can be obtained by choosing a 1 cm mesh and a 

larger time step of 20 seconds. In addition, this model, which was the most accurate of the 

ones assessed, took just above 5 hours to calculate, i.e. it was about 9 times quicker than 

the first one which used a 1 cm mesh, a 1 s time step and freeze block execution every time 
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step. Very high accuracies in the same order of magnitude were obtained with the models 

using a 1 cm mesh and a 1 s time step but updating the freeze / no-freeze status of the model 

zones every 10 or 100 steps. However, these models took above 29 and 13 hours to run, 

respectively. The model with a mesh size of 5 cm and a time step of 200 seconds also 

reached very good accuracies (average errors under 0.3ºC / 3 cm for the freeze front), while 

taking a comparatively low computing time of 26 minutes. 

In practical projects, an accuracy of 1-2ºC for the temperature and of 10-20 cm for the 

position of the freeze front may be considered as a reasonable target for the desired accuracy 

of the models. Thus, in this example, all the models but the two models with 50 cm mesh 

size (i.e. MH50-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE and MH50-TS1600-UF1-

TEh-SOs-SCa-STp-TP250-AGE-NE) would be considered to fulfil the accuracy target on 

average. Nevertheless, a word of cautiousness is required here: the local accuracy in the 

areas where the freezing process is occurring is usually several orders of magnitude lower 

than the average accuracy. In fact, the maximum error is under the limits defined above 

only for the two most accurate models (i.e. MH1-TS20-UF1-TEh-SOs-SCa-STp-TP250-

AGE-NE and MH1-TS1-UF10-TEh-SOs-SCa-STp-TP250-AGE-NE) and even they 

produce maximum errors of about 4ºC in the point at a distance of 25 cm from the source 

(see Table 5.17). 

 

 

Figure 5.22: Temperature vs time at x=250cm, total time of 365 days, Problem 2 
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Figure 5.23: Error of temperature vs time at x=250cm, total time of 365 days, Problem 2 

-20

-15

-10

-5

0

5

10

15

20

0 5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000 35,000,000

Te
m

p
er

at
u

re
 [

ºC
]

Time [s]

Error of Temperature vs Time at x=250cm

Err of MH10-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE Err of MH25-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE

Err of MH50-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE Err of MH1-TS20-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE

Err of MH5-TS200-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE Err of MH10-TS400-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE

Err of MH20-TS800-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE Err of MH50-TS1600-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE

Err of MH1-TS1-UF10-TEh-SOs-SCa-STp-TP250-AGE-NE Err of MH1-TS1-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE

Err of MH1-TS1-UF1000-TEh-SOs-SCa-STp-TP250-AGE-NE Err of MH1-TS40-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE



  

Chapter 5: Establishment of the accuracy and limits of numerical methods for thermal calculations 

with phase change   

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 108 

 

Figure 5.24: Freeze front, total time of 365 days, Problem 2 
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Figure 5.25: Temperature vs distance, t=365 days, Problem 2 
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Table 5.16: Average of absolute values of errors, computing time, number of zones and number of time steps, 365 days, Problem 2 

                                                  Average of 

absolute values of errors 

 

Model 

T(25 cm, t) T(100 cm, t) T(250 cm, t) T(600 cm, t) X(t) 
T(x, 365 

days)* 

Computing 

 time 

Nº of 

zones 
Nº of steps 

                                                           Units [ºC] [ºC] [ºC] [ºC] [cm] [ºC] [s]   

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP250-

AGE-NE 
0.47 0.45 0.59 0.89 4.5 0.23 45:44:46 500 31,536,000 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP250-

AGE-NE 
1.84 0.98 1.48 1.82 7.52 0.59 30:03:54 240 31,536,000 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP250-

AGE-NE 
5.19 1.56 2.58 2.81 10.11 0.91 11:08:45 100 31,536,000 

MH1-TS20-UF1-TEh-SOs-SCa-STp-TP250-

AGE-NE 
0.07 0.05 0.07 0.08 0.6 0.03 5:18:54 1,400 1,576,800 

MH5-TS200-UF1-TEh-SOs-SCa-STp-

TP250-AGE-NE 
0.3 0.2 0.24 0.49 2.78 0.11 0:26:16 600 157,680 

MH10-TS400-UF1-TEh-SOs-SCa-STp-

TP250-AGE-NE 
1 0.92 0.89 1.15 4.6 0.22 0:15:06 500 78,840 

MH20-TS800-UF1-TEh-SOs-SCa-STp-

TP250-AGE-NE 
1.54 0.78 1.08 1.56 6.99 0.45 0:10:58 250 39,420 

MH50-TS1600-UF1-TEh-SOs-SCa-STp-

TP250-AGE-NE 
5.16 1.54 2.57 2.82 10.18 0.91 0:04:43 100 19,710 

MH1-TS1-UF10-TEh-SOs-SCa-STp-TP250-

AGE-NE 
0.06 0.05 0.06 0.08 0.58 0.02 29:41:44 1,400 31,536,000 

MH1-TS1-UF100-TEh-SOs-SCa-STp-

TP250-AGE-NE 
0.13 0.08 0.11 0.1 0.78 0.04 13:28:53 1,200 31,536,000 

MH1-TS1-UF1000-TEh-SOs-SCa-STp-

TP250-AGE-NE 
0.88 0.56 0.63 0.37 2.85 0.16 14:32:44 1,400 31,536,000 

MH1-TS40-UF100-TEh-SOs-SCa-STp-

TP250-AGE-NE 
2.31 1.76 2.04 1.05 8.18 0.51 0:27:19 1,400 788,400 

 

*Note: Averages calculated for the first 2,000 cm from the source. 
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Table 5.17: Maximum of absolute values of errors, 365 days, Problem 2 

                                                                                      Maximum of 

absolute values of errors 

    Model 

T(25 cm, t) T(100 cm, t) T(250 cm, t) T(600 cm, t) X(t) T(x, 365 days)* 

                                                                                                    Units [ºC] [ºC] [ºC] [ºC] [cm] [ºC] 

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 17.5 16.9 8.7 4.1 9.7 2.3 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 59.4 20.8 18.2 9.6 20.1 7.7 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 125 21 22.8 16 31.4 6 

MH1-TS20-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 4.3 1.8 0.7 0.4 0.9 0.3 

MH5-TS200-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 14.5 9.1 4.9 2.2 5.3 1.5 

MH10-TS400-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 16.2 23.2 11.2 4.8 9.8 2.4 

MH20-TS800-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 29.1 16.4 9.9 7.7 17.1 5.5 

MH50-TS1600-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 125 20.3 22.8 16 31.7 6.1 

MH1-TS1-UF10-TEh-SOs-SCa-STp-TP250-AGE-NE 3.8 1.8 0.7 0.3 0.9 0.3 

MH1-TS1-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE 9.8 2.2 0.9 0.4 1.1 0.3 

MH1-TS1-UF1000-TEh-SOs-SCa-STp-TP250-AGE-NE 26.4 8.6 3.2 1.2 3.1 1 

MH1-TS40-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE 53 19.8 8.3 3.2 8.4 2.8 
 

*Note: Averages calculated for the first 2,000 cm from the source. 
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 Scalability of the models: large mesh sizes, large time steps and 

low update frequency  

This chapter has the aim to test models with much larger meshes, time steps and freeze 

intervals than the ones used in the previous chapters. For this reason, another set of models 

was run for a thermal time of 365 days for Problem 1, with larger meshes and longer 

intervals between freeze status updates than in previous chapters. The time steps chosen 

correspond approximately to the respective critical time step (which vary with the mesh 

size) for most of the models. The reason is that, as shown in chapter 5.4, the accuracy does 

not significantly depend on the time step when using the explicit algorithm, as long as it 

stays under the critical time step. 

With regard to the extreme time steps used in this chapter, it could be thought that they 

have a negative influence on the accuracy of the results. As the problem is considered to 

have a sharp phase-change interface, it is not physically accurate that more than one element 

in the direction of the freeze front changes phase in any given time step. Thus, an analogous 

stability criterion to the one applied in Causon and Mingham (2010) to the advection 

differential equation, ∆𝑡 ≤ ∆𝑥/|𝑣𝑔|, (see also chapter 4.4.2) could be applied. This would 

imply that the time step should not be larger than the mesh size divided by the speed of 

freeze front propagation. This suggested criterion, however, does not seem to be too 

restrictive for freezing calculations: taking the average propagation speed for the first 

100 cm from Figure 5.27, and the model with the largest mesh (400 cm) and time step 

(12,800 s), the equation would be as follows: ∆𝑡 ≤
400

|
100

311000
|
= 1.244 ∙ 106 seconds, which is 

much larger than the largest chosen time step of 12,800 s. 

The results and errors of the calculations, presented in Figures 5.26 to 5.29 and Table 5.18, 

show that the accuracy of the results is low when the meshes and freeze intervals are too 

large. In fact, average errors as large as 6ºC for certain temperature histories and 86 cm for 

the freeze front are generated by the model with the 200 cm mesh size (see Table 5.19). 

Updating the freeze status at a very low frequency also decreases the accuracy of the model, 

e.g., using an update interval of 300 time steps and a time step of 1,600 seconds (i.e. 

updating the freeze status every approx. 5.5 days), generates errors in the temperature of 

about 2-5ºC and freeze front errors of about 50 cm (see Table 5.20). Interestingly, in this 

case, the errors do not appear to increase for update intervals larger than 300 time steps (for 

the same time step of 1,600 s). 
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Figure 5.26: Temperature vs time, x = 100 cm, large mesh sizes 

 

-30

-20

-10

0

10

20

30

0 5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000 35,000,000

Te
m

p
er

at
u

re
 [

ºC
]

Time [s]

Temperature vs Time at x=100cm - large meshes

Temp_an [´┐¢C] MH1-TS20-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE

MH5-TS200-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE MH10-TS400-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE

MH20-TS800-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE MH100-TS3200-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE

MH200-TS6400-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE MH400-TS12800-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE

MH50-TS1600-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE



  

Chapter 5: Establishment of the accuracy and limits of numerical methods for thermal calculations 

with phase change   

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 114 

 

Figure 5.27: Freeze front, large mesh sizes  

0

50

100

150

200

250

300

350

400

0 5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000

Fr
ee

ze
 f

ro
n

t 
X

 (
t)

 [
cm

]

Time [s]

Freeze front - large meshes

X(t) MH1-TS20-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE

MH5-TS200-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE MH10-TS400-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE MH100-TS3200-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE

MH200-TS6400-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE MH400-TS12800-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE

MH50-TS1600-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE



  

Chapter 5: Establishment of the accuracy and limits of numerical methods for thermal calculations 

with phase change   

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 115 

 

Figure 5.28: Temperature versus time, x = 100 cm, large freeze intervals 
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Figure 5.29: Freeze front, large freeze intervals 

Table 5.18: Average of absolute values of errors, mesh size sensitivity (large meshes), 365 days, Problem 1 

Average of absolute values of 

errors / Computing time 

T(25 

cm, t) 

T(100 

cm, t) 

T(250 

cm, t) 

T(600 

cm, t) 
X(t) 

T(x, 365 

days)* 

Computing 

time** 

Units [ºC] [ºC] [ºC] [ºC] [cm] [ºC] [s] 

MH1-TS20-UF1-TEh-SOs-SCa-

STp-TP55-AGE-NE 
0.13 0.12 0.13 0.1 1.98 0 2:03:22 

MH5-TS200-UF1-TEh-SOs-

SCa-STp-TP55-AGE-NE 
0.29 0.23 0.35 0.13 4.02 0.04 0:05:36 

MH10-TS400-UF1-TEh-SOs-

SCa-STp-TP55-AGE-NE 
0.4 0.4 0.65 0.17 7.31 0.09 0:03:19 

MH20-TS800-UF1-TEh-SOs-

SCa-STp-TP55-AGE-NE 
0.61 0.77 1.18 0.22 15.65 0.19 0:02:30 

MH50-TS1-UF1-TEh-SOs-SCa-

STp-TP55-AGE-NE 
1.95 1.77 2.84 0.26 28.09 0.45 5:20:33 

MH100-TS3200-UF1-TEh-SOs-

SCa-STp-TP55-AGE-NE 
3.34 3.5 3.81 0.51 47.69 1.34 0:01:59 

MH200-TS6400-UF1-TEh-SOs-

SCa-STp-TP55-AGE-NE 
4.6 6.83 6.11 0.69 86.51 0.91 0:02:09 

MH400-TS12800-UF1-TEh-

SOs-SCa-STp-TP55-AGE-NE 
5.5 9.53 12.67 0.89 40.3 0.66 0:02:08 

 

*Note: Averages calculated for the first 2,000 cm from the source. **Note: These models were calculated with a 

different computer, so the computing time is not comparable to the models in other chapters. 
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Table 5.19: Average of absolute values of errors, freeze interval sensitivity (large intervals), 365 days, Problem 1 

Average of absolute values of 

errors / Computing time 

T(25 

cm, t) 

T(100 

cm, t) 

T(250 

cm, t) 

T(600 

cm, t) 
X(t) 

T(x, 365 

days)* 

Computing 

time** 

Units [ºC] [ºC] [ºC] [ºC] [cm] [ºC] [s] 

MH50-TS1600-UF1-TEh-SOs-

SCa-STp-TP55-AGE-NE 
1.92 1.86 2.94 0.36 16.66 0.45 0:02:09 

MH50-TS1600-UF10-TEh-SOs-

SCa-STp-TP55-AGE-NE 
1.93 1.88 2.96 0.36 17.62 0.48 0:02:01 

MH50-TS1600-UF30-TEh-SOs-

SCa-STp-TP55-AGE-NE 
1.99 1.88 3.01 0.37 19.3 0.57 0:02:00 

MH50-TS1600-UF50-TEh-SOs-

SCa-STp-TP55-AGE-NE 
2.02 1.95 3.16 0.38 21.76 0.69 0:02:00 

MH50-TS1600-UF100-TEh-

SOs-SCa-STp-TP55-AGE-NE 
2.08 2.04 3.28 0.38 33.6 0.71 0:02:00 

MH50-TS1600-UF300-TEh-

SOs-SCa-STp-TP55-AGE-NE 
2.32 2.64 4.22 0.41 51.75 0.62 0:02:00 

MH50-TS1600-UF600-TEh-

SOs-SCa-STp-TP55-AGE-NE 
2.45 3.22 4.85 0.36 46.5 1.02 0:01:59 

MH50-TS1600-UF1000-TEh-

SOs-SCa-STp-TP55-AGE-NE 
2.96 2.99 4.11 0.3 49.45 1.13 0:01:59 

MH50-TS1600-UF2000-TEh-

SOs-SCa-STp-TP55-AGE-NE 
3.87 6.41 4.43 0.37 49.02 0.77 0:02:00 

 

*Note: Averages calculated for the first 2,000 cm from the source. **Note: These models were calculated with a 

different computer, so the computing time is not comparable to the models in other chapters. 

 Explicit and implicit solving algorithms 

The numerical simulations in the previous chapters have been performed with the explicit 

algorithm. In this chapter, the influence of using the explicit versus the implicit algorithm 

is analysed, taking Problem 1 as a basis. First, the previous simulations with the same 

numerical meshes and time steps were tried with the implicit algorithm, but FLAC3D 

automatically changes to the explicit algorithm if the implicit one is not required, i.e. if the 

explicit algorithm is stable for the defined mesh size and time step. Thus, several 

calculations with fixed time steps larger than the critical time step for the explicit method 

were executed with the implicit method. The results have reasonable accuracy for even 

relatively large time steps, although the errors eventually increase, mainly due to the update 

of the freeze code block becoming too seldom in time. This effect is specially illustrated by 

the model MH1-TS200-UF1000-TEh-SOs-SCa-STp-TP55-AGI-NE, in which the update 

is done only every 200,000 seconds (every 1,000 steps, the step duration being 

200 seconds). In this case, the results no longer converge to the exact solution (see Figure 

5.31 and Figure 5.32). The explanation is that, in the first calculation step of 

200,000 seconds (about 2.3 days), several zones in the model lower their temperature far 

below the freeze point. After the first step, the thermal properties of these zones are changed 

by the “freeze block” of the code, so their apparent heat capacity becomes comparatively 

large in order to account for the effect of the latent heat. However, in the second step, their 



  

Chapter 5: Establishment of the accuracy and limits of numerical methods for thermal calculations 

with phase change   

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 118 

temperature is not significantly lowered for two reasons: their temperature is already quite 

low (due to their cooling during the long first step of 200,000 seconds), so that the 

equilibrium can be found without lowering it in a large amount and they have a high 

apparent heat capacity. This leads to these zones becoming “stuck” in the “freezing” status 

(shown as blue zones in the left side of Figure 5.30, which should have progressed to the 

status “already frozen”) and to the model not converging to the temperatures predicted by 

the exact solution over time (at least not in the simulated first 10 days). This also explains 

the high errors produced by this model (see Table 5.20). These numerical issues were not 

observed in chapter 5.5, where the sensitivity of other models to the update frequency of 

the “freeze block” was also studied. This is probably because the update frequency in those 

models was not as large as the one modelled in the present chapter. An important lesson 

can be taken from this: numerical calculations of Stefan problems do have limitations and 

care should be taken to use appropriate numerical parameters and check the plausibility of 

the results. 

It is possible to achieve lower calculation times with the implicit method than with the 

explicit method by using larger time steps than the critical time step, while maintaining 

relatively low errors (see Table 5.21), which may be sufficiently good for practical 

purposes. If that table is compared with the results presented in the tables in chapters 5.2, 

5.3 and 5.4, it is found that the computing time to achieve a similar accuracy tends to be 

lower by using the implicit method. This result may, however, be influenced by the fact 

that the explicit method was not always used with the critical time step. Indeed, for similar 

time steps (explicit method with a time step slightly below the critical one and the implicit 

method with a time step slightly above the critical one), the errors and the computing time 

are very similar (see Table 5.21). The errors of the models calculated with the implicit 

method generally increase with larger mesh and time steps (see Table 5.21). 

The fact that the time steps of the implicit method can be chosen to be larger than in the 

explicit method is specially advantageous for models with variable mesh size in which 

some of the elements are very small, thus requiring a very small critical time step and long 

computing time for the explicit method (such as for example the model in chapter 5.17). 
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Figure 5.30: Overview of model MH1-TS200-UF1000-TEh-SOs-SCa-STp-TP55-AGI-NE showing the blue zones on the 

left “stuck” in the freezing status 

An overview of the results obtained with the implicit algorithm is presented in Figure 5.31 

and Figure 5.32. 

 

Figure 5.31: Temperature vs time, x=25cm, Problem 1, implicit algorithm 

-20

-15

-10

-5

0

5

10

15

20

25

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

Te
m

p
er

at
u

re
 [

ºC
]

Time [s]

Temperature vs Time at x=25cm - all models

Temperature (from Neumann's analytical solution) MH1-TS200-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE

MH2-TS400-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE MH5-TS1000-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE

MH10-TS2000-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE MH1-TS200-UF10-TEh-SOs-SCa-STp-TP55-AGI-NE

MH1-TS200-UF100-TEh-SOs-SCa-STp-TP55-AGI-NE MH1-TS200-UF1000-TEh-SOs-SCa-STp-TP55-AGI-NE

MH1-TS100-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE MH1-TS250-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE

MH1-TS280-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE MH1-TS45.4-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE

MH1-TS50-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE



  

Chapter 5: Establishment of the accuracy and limits of numerical methods for thermal calculations 

with phase change   

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 120 

 

Figure 5.32: Freeze front, Problem 1, implicit algorithm 

Table 5.20: Comparison of the accuracies of the explicit and implicit methods, critical time step 

Average of 

absolute values 

of errors / 

Computing time 

Units 

Implicit Model (calculated 

with the critical time step of 

the explicit method): 

MH1-TS45.4-UF1-TEh-SOs-

SCa-STp-TP55-AGI-NE 

Explicit Model (calculated 

with the critical time step): 

MH1-TS45.365-UF1-TEh-

SOs-SCa-STp-TP55-AGE-NE 

T(2 cm, t) [ºC] 1.09 1.16 

T(10 cm, t) [ºC] 0.20 0.11 

T(25 cm, t) [ºC] 0.37 0.46 

T(60 cm, t) [ºC] 0.41 0.34 

X(t) [cm] 0.46 0.46 

T(x, 10 days) [ºC] 0.04 0.04 

Computing time [s] 0:01:04 0:00:54 
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MH1-TS280-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE MH1-TS45.4-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE

MH1-TS50-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE
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Table 5.21: Average of absolute values of errors and computing time, Problem 1, implicit method 

Sensitivity 

study 

                                                                      Average of 

absolute values of errors /  

Computing time 

 

 

Model 

T(2 cm, t) T(10 cm, t) T(25 cm, t) T(60 cm, t) X(t) T(x, 10 days) 
Computing 

time 

                                                                                      Units [ºC] [ºC] [ºC] [ºC] [cm] [ºC] [s] 

Mesh 

sensitivity, 

TS=1s 

MH1-TS200-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 1.75 0.33 0.48 0.36 0.71 0.06 0:00:22 

MH2-TS400-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 2 0.67 0.68 0.62 1.13 0.1 0:00:13 

MH5-TS1000-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 2.41 2.21 1.12 1.27 2.71 0.33 0:00:18 

MH10-TS2000-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 2.6 2.97 1.89 2.26 3.8 0.55 0:00:08 

Time step 

sensitivity, 

MS=1cm 

MH1-TS45.4-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 1.09 0.2 0.37 0.41 0.46 0.04 0:01:04 
 

MH1-TS100-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 1.36 0.13 0.41 0.33 0.55 0.04 0:00:45  

MH1-TS250-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 1.78 0.44 0.47 0.37 0.7 0.07 0:00:37  

MH1-TS280-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 1.85 0.54 0.56 0.39 1 0.07 0:00:25  

Update 

freeze 

interval 

sensitivity 

MH1-TS200-UF10-TEh-SOs-SCa-STp-TP55-AGI-NE 2.16 1 1.24 0.63 2.1 0.13 0:00:10  

 

MH1-TS200-UF100-TEh-SOs-SCa-STp-TP55-AGI-NE 2.87 3.64 4.68 1.53 6.05 0.56 0:00:13  

MH1-TS200-UF1000-TEh-SOs-SCa-STp-TP55-AGI-NE 3.07 7.28 9.97 2.34 13.85 1.76 0:00:12  
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 Unstructured versus structured meshes 

In addition to the size of the mesh, its shape and regularity may have an influence on the 

accuracy of the results. The subject of unstructured and structured meshes for numerical 

modelling was introduced in chapter 4.4.1.1. In the prior chapters, only structured meshes 

featuring regular rectangular prisms of the same size (within every region of the model) 

have been used for the models. In order to evaluate the effect of unstructured versus 

structured meshes on the accuracy of the models, unstructured meshes were generated in 

the program Phase 2 from Rocscience Inc. Then, they were extruded using the convertor 

F2F, a free software which creates three dimensional zones for FLAC3D by extruding 

meshes from 2D finite element software (Geraili Mikola, 2015). Finally, they were 

imported into FLAC3D. Two unstructured meshes were generated, one with prisms whose 

bases are irregular quadrilaterals (presented in Figure 5.33) and one with irregular 

triangular prisms (presented in Figure 5.34). The structured meshes used are presented in 

Figure 5.35 and Figure 5.36. 

 

Figure 5.33: Overview of freezing progress, model MH10 -TS40-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE_UNSTR, 

unstructured mesh with quadrilateral prisms 

Note: The areas defined as “Default” and “rock1” have both the properties of the unfrozen material 

 

Figure 5.34: Overview of freezing progress, model MH10-TS40-UF1-TEt-SOs-SCa-STp-TP55-AGE-NE_UNSTR, 

unstructured mesh with triangular prisms 
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Figure 5.35: Overview of freezing progress, model MH10-TS40-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE_STR, 

structured mesh 

 

Figure 5.36: Overview of freezing progress, model MH10-TS40-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE-STR-1elem, 

structured mesh with a reduced number of elements 

Interestingly, the results of the models with unstructured meshes have lower errors than 

those with structured meshes, which contradicts the usual understanding that structured 

meshes generally yield results of higher quality (see e.g. Itasca Consulting Group (2018)). 

For instance, when models with the same mesh size of 10 cm are compared, the plateaux 

which appear in the freeze front versus time graphs are less marked for the models with 

unstructured meshes and the accuracy is better than in the models with structured meshes, 

as presented in Figure 5.37 and Table 5.22. The errors are between 10-50% lower with the 

unstructured mesh with quadrilateral prisms than with the structured meshes, even with a 

number of zones 10% lower than the structured mesh (i.e. zone volumes about 10% larger, 

which release 10% more latent heat each). Concordantly, the computing time is about 10% 

lower than with the structured model. The model with triangular prisms has an even better 

accuracy than the one with rectangular prisms, although this is probably at least partially 

due to it having nearly twice as many zones as the structured mesh. The reason for the 

unstructured meshes delivering better results than structured meshes could be that in the 
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structured model all the zones in a row (parallel to the freeze front) freeze during a single 

time step, producing large plateaux as a result of their latent heat being released 

simultaneously, while in the unstructured mesh, the zones freeze at different time steps, 

generating smaller plateaux. This can be appreciated by comparing Figure 5.33, Figure 5.34 

and Figure 5.35. For the same reason, the model with structured mesh and a reduced number 

of elements provides the same results as the structured one with more elements.  

 

Figure 5.37: Freeze front, Problem 1, structured and unstructured meshes 

Note: both structured meshes yield nearly the same results, so their graphs overlap. 
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Table 5.22: Average of absolute values of errors, Problem 1, structured versus unstructured meshes 

Average of 

absolute 

values of 

errors / 

Computing 

time / Nº of 

elements 

Units 

MH10-TS40-

UF1-TEh-SOs-

SCa-STp-TP55-

AGE-

NE_STR_1elem 

MH10-TS40-UF1-

TEh-SOs-SCa-STp-

TP55-AGE-NE_STR 

MH10-TS40-

UF1-TEh-SOs-

SCa-STp-TP55-

AGE-

NE_UNSTR 

MH10-TS40-

UF1-TEt-SOs-

SCa-STp-TP55-

AGE-

NE_UNSTR 

Te_ti_2cm [ºC] 2.26 2.26 2.19 1.87 

T(10 cm, t) [ºC] 1.50 1.50 1.29 0.52 

T(25 cm, t) [ºC] 2.13 2.13 1.81 0.78 

T(60 cm, t) [ºC] 2.17 2.15 1.52 0.72 

X(t) [cm] 3.28 3.27 1.85 1.16 

T(x, 10 

days) 
[ºC] 0.53 0.57 0.26 0.13 

Number of 

elements in 

the model 

[-] 20 110 100 202 

Computing 

time 
[s] 0:00:20 0:01:29 0:01:17 0:01:40 

 Power consumption 

The previous chapters have focused on the study of the accuracy of the numerical model 

by comparing the resulting temperature field with Neumann’s solution. This chapter deals 

with the accuracy of the power consumption predicted by the numerical model. The 

calculation of the power consumption is required for example to dimension the freezing 

station for artificial ground freezing projects. The energy flux which is absorbed by the 

material is equivalent to the power consumption of the source (which in engineering 

projects is typically a freeze pipe). In the case of a planar source with a semi-infinite space, 

this flux can be calculated exactly based on the Neumann’s analytical solution. This makes 

it possible to have a benchmark to compare the results of the numerical model also in terms 

of thermal flux. The power is calculated from the Neumann solution by applying the 

following Equation (5.1) at the position of the source 𝑥 = 0: 

 
𝑃(𝑥, 𝑡) = −𝑘1 ∙

𝜕𝑇(𝑥, 𝑡)

𝜕𝑥
 (5.1) 

where 𝑃(𝑥, 𝑡) is the flux per unit surface. 

The results and errors for the power of the source in Problem 1 from the numerical 

simulation are presented in Figure 5.38 and Figure 5.39, respectively. This flux has a similar 

accuracy to the temperatures, which were presented in chapter 5.3. This is logical, because 

the flux is proportional to the derivative of the temperature with respect to the space 

coordinate (see Equation (5.1) above). 
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Figure 5.38: Flux per unit surface, Problem 1 

 

Figure 5.39: Error of flux per unit surface, Problem 1 
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 Study of the Computing time 

The computing time required for the calculation of the model has been analysed for the 

model MH1-TS40-UF10-TEh-SOs-SCa-STp-TP250-AGE-NE for a thermal time of 

10 days. To start this study, some factors which could be suspected a priori to affect the 

computing time were selected. The first factor which could affect the computing time per 

time step is the temperature gradient, which decreases steadily during the calculation. It 

could have an influence on the computing time because higher gradients tend to make the 

model more unstable and further away from equilibrium, so it may take the numerical 

scheme more time to reach the equilibrium. The temperature gradient, i.e. the temperature 

difference divided by the distance, from the origin (source location) to the freeze front was 

chosen as a proxy measure of the overall temperature gradient. The computing time per 

time step is the computing time which the computer needed to compute one time step of 

the transient analysis. The temperature gradient defined before is depicted versus the 

computing time per time step in Figure 5.40, which does not show a clear correlation 

between them. 

 

Figure 5.40: Temperature gradient from the origin to the freeze front vs computing time per time step 

Another factor that may influence the computing time is the total thermal time the model 

is run for. The accumulated computing time is presented in Figure 5.41 versus the thermal 

time. It appears to be a clear linear correlation between them. That is, the computing time 

per time step (shown in Figure 5.42) does not seem to decrease with the advance of the 

simulation, but it tends to be stable instead. The average time to compute 1 time step is in 

the order of 5.59 milliseconds. 
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Figure 5.41: Thermal time vs computing time 

Yet another factor which a priori could be supposed to influence the computing time per 

time step is the execution or not of the code block which freezes the elements, and the 

number of elements (zones) changing phase. The time to compute the freeze block for the 

model with 804 gridpoints (nodes) is about 1 millisecond, which is about 18% of the 

average computing time per time step. From the model it was observed that there are very 

slow time steps at intervals, which are caused by the update of the graphs in FLAC3D and 

the export of data and graphic files. To review the effects of the freeze block execution, a 

model without export files was computed in order to filter out their effect on the computing 

time. The computing time per time step and the times where phase change of any zone 

happened are plotted in Figure 5.42. From this figure, no clear relationship between the 

phase change happening and a longer computing time in the time step directly afterwards 

can be derived. There are indeed some time steps which take longer to compute, but they 

are not necessarily the steps directly after a phase change. Nevertheless, the number of 

times the freezing status is updated does influence the total computing time, as shown for 

example in Table 5.9 in chapter 5.5.  
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Figure 5.42: Computing time per time step and time steps with phase change occurrence 

 Assessment of the accuracy of the numerical model by 

comparison with Carslaw’s solution for the punctual flux source 

In this chapter, the solution of Carslaw and Jaeger (1959) presented in chapter 3.2.3 is taken 

as an additional benchmark against which the results of the numerical model are compared. 

An overview of the model employed, which makes use of the radial symmetry of the 

problem and has a mesh size of 1 cm in the area near the cooling source, is presented in 

Figure 5.43.  

 

Figure 5.43: Cylindrical model with constant-flux source 
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The material properties and boundary conditions of Problem 1 were used. A constant flux 

of 1⁡𝑐𝑎𝑙/(𝑠 ∙ 𝑐𝑚) at the axis of the cylinder was considered. This boundary condition is 

applied in the numerical model as punctual sources in the two nodes located in the axis. As 

the cylinder section is 1 cm thick and spans an angle of 10º, the punctual sources used have 

a value of 
1

(2⁡∙⁡
360

10
)
= 0.0139⁡𝑐𝑎𝑙/𝑠 for each of the two nodes in the axis. 

The numerical and analytical results for the temperature profile along the cylinder radius 

after 10 days are shown in Figure 5.44. The temperature-time graphs are presented in Figure 

5.45. The accuracy of the numerical model is considerably lower than for the Neumann 

problem considered in the previous chapters. For example, the temperature at a distance of 

10 cm from the source shows errors of about 5ºC after 10 days. One potential reason for 

these higher errors could be the use of punctual sources, which tend to create instabilities 

in numerical calculations (analogously to for example punctual forces applied in a structural 

model). Another reason may be the use of a heat flux source instead of a constant 

temperature boundary. In fact, according to the analytical solution from Carslaw and Jaeger 

(1959), the flux source produces a temperature of minus infinite at the cylinder axis, which 

cannot be correctly represented by a numerical model. 

 

Figure 5.44: Temperature versus distance along the radius, t=10 days, comparison of the numerical results (shown as a 

continuous line) and analytical results (shown as crosses)  
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Figure 5.45: Temperature versus time, comparison of the numerical results (shown as a continuous line) and analytical 

results (shown as crosses) 

 Punctual versus surface source 

Freeze pipes are sometimes modelled in engineering models as punctual sources in order 

to simplify the model, see e.g. GEO-SLOPE International Ltd. (2014) and Hentrich and 

Franz (2015). To evaluate the accuracy of this approach, a single-freeze-pipe problem 

(Problem 7, defined in chapter 6.1) was simulated with various freeze pipe radii, ranging 

from 0.1 to 8 cm. Indeed, there are very significant differences in the results: the freezing 

progress is much slower in the models with smaller freeze pipe diameters (see Figure 5.46). 

Furthermore, the numerical model with a punctual source (just the two gridpoints at the 

origin with the fixed source temperature) generated an even slower freeze front progress 

than the small radii. As an additional benchmark, the analytical solution from Ständer, 

which has been proved to be very accurate for the single-freeze-pipe problem (see chapter 

6), was evaluated for different freeze-pipe radii.  

The fact that the models with a smaller freeze pipe radius exhibit a slower freezing progress 

can be explained because the perimeter of the pipe, which is where the heat transfer to the 

ground takes place, is linearly proportional to the pipe radius, leading to a slower heat 

transfer in these models. 
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Figure 5.46: Freeze front progress, freeze pipe radius sensitivity (graph origin at r=0) 

An additional planar (Neumann) model was run, which can be considered as a model with 

a freeze pipe of infinite radius. Ständer’s solution was computed for a freeze pipe radius of 

1 million centimetres (10 km), which is a circle so large that it could be considered a “plane 

source” and thus matches the Neumann model quite well. To be able to represent the results 

from this model and to provide an easier comparison of the freezing progress between the 

different models, Figure 5.47 was created. In this figure, the data from the “plane source 

model” are displayed together with the same data from the previous figure, but the origin 

of the graph has been moved to the corresponding freeze pipe radius of each model. In this 

figure it is again apparent that the freeze pipe radius has a high influence on the freeze wall 

advance, even when measured from the freeze pipe outwards.  
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Figure 5.47: Freeze front progress, freeze pipe radius sensitivity (graph origin at r=freeze pipe radius) 

 Large-scale engineering model  

Until this point, the models evaluated have been of a relatively small scale in order to be 

able to run a large number of experimental models in a reasonably short time. They have 

been mainly used to verify the accuracy of the model. However, it could be the case that 

the custom computing code programmed to simulate the phase change based on the 

enthalpy method may lead to impractically long computing times for models of the scale 

typically required for engineering purposes. In order to evaluate the usability of the method 

for practical engineering cases, a large-scale model with a size of 40x40x100 m and 45 

freeze pipes was calculated for a total thermal time of one year. This model could be used 

for example to simulate a 100 m deep, 8 m diameter, freeze shaft. It was discretised with a 

large number of gridpoints (540,956) and zones (576,000), although the mesh size is larger 

than the ones used in the previous chapters. An overview of the model is presented in Figure 

5.48, where the freeze circle and the effects of the external model boundaries can be 

appreciated. The duration of the time steps was between 292 and 1,600 seconds, with a total 

of 107,430 time steps. Still, the computing time was less than one week, even using a light 

laptop (see Table 5.4) which is in the low range of the computing capacity nowadays 

available to professional engineers. This can be considered as a reasonable computing time 
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for engineering purposes. Consequently, it can be concluded that the enthalpy method as 

implemented in the custom code can be practicable for large-scale engineering models. 

 

Figure 5.48: Large-scale numerical model, MHxx-TS20-UF1-TEh-SOs-SCa-STp-TP55-AGI-Wall_Pr7c_fulldepth 
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 Evaluation of the accuracy and applicability of existing 

approximate analytical solutions for ground freezing thermal 

design 

According to Lunardini (1981), “[for] approximate methods, the absolute accuracy of the 

results, […], is unknown without validation”, which is why these approximate analytical 

methods should be validated against either reliable verified numerical models, or controlled 

experiments. In this chapter, the freeze front positions provided by the five approximate 

analytical solutions presented in chapter 3.4.1 have been compared to the results from 

numerical models analogue to the ones verified in chapter 5. Since these analytical solutions 

just provide the position of the freeze front with respect to time, additional comparisons, 

e.g. in terms of the temperature evolution versus time or position are not possible. 

 Bases of the verification of the analytical solutions 

Problems with significantly different boundary conditions which may affect the accuracy 

and applicability of the analytical solutions have been used to evaluate them. The problems 

have the material parameters listed in Table 6.1 below, which could be representative of a 

sandy soil: 

Table 6.1: Thermal properties used in Problems 7 to 12 

Thermal property Value 

Specific heat capacity (unfrozen) 0.7019 cal/g/ºC 

Specific heat capacity (frozen) 0.5256 cal/g/ºC 

Thermal conductivity (unfrozen) 0.004545 cal/(s cm ºC) 

Thermal conductivity (frozen) 0.007608 cal/(s cm ºC) 

Density 2.664 g/cm3 

Water content 0.21 gwater/gdry soil 

Latent heat of water 79.71 cal/g 

Phase-change temperature 0ºC 

Phase change range 
0 to -0.1ºC (range of 0.1ºC, simulating an abrupt 

phase change) 

The Problems are defined as follows: 

• Problem 7: Base case, with the boundary conditions listed below (representative for 

ground freezing with brine). The following Problems are variations of this problem, 

with the indicated changes. 

▪ Initial temperature: 20ºC 

▪ Temperature of freeze pipe (source temperature): -35ºC 

▪ Phase-change temperature: 0ºC 
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• Problem 8: Case with extreme temperature gradient: initial temperature of 50ºC, 

freeze-pipe temperature of -200ºC (representative for ground freezing with 

nitrogen). 

• Problem 9: Case with extremely high latent heat 10 times higher than the base case 

and extreme temperatures as defined in Problem 8. 

• Problem 10: Linear case, no latent heat (only 0.5 cal/g latent heat in the liquid phase 

to prevent the analytical formulae from not working) and extreme temperatures as 

defined in Problem 8. 

• Problem 11: Case with a smaller amount of sensible heat compared to the latent 

heat: initial temperature of 2ºC. 

• Problem 12: Phase-change temperature of -21ºC. 

• Problem 13: Same boundary conditions as Problem 7 but with the thermal 

characteristics of water (comparable to Problem 1 but with different geometry, 

cylindrical geometry instead of planar). 

A freeze pipe radius of 8 cm was chosen, which is in the order of magnitude of the freeze 

pipes which are used in real projects. The model length (the radius of the outside boundary) 

is 500 cm for the models which were run for a thermal time of 10 days and 5,000 cm for 

the ones run for 365 days. 

The numerical parameters used were a mesh size of 1 cm and a time step of 20 s (model 

names MH1-TS20-UF1-TEh-SOs-SCa-STp-TPxx-AGE-CY), whose results have been 

proven to be sufficiently accurate by comparison with Neumann’s exact solution in 

chapter 5.4. It was also established that for these parameters the numerical model converges 

to the exact solution. Moreover, the errors of the model in the prediction of the freeze front 

location for Problems 1 to 3 were small, between 0.2 and 0.6 cm. For the calculations with 

a thermal time of 365 days, the freeze block of the model was updated only every 100 steps 

(model names MH1-TS20-UF100-TEh-SOs-SCa-STp-TPxx-AGE-CY), which should also 

be sufficiently accurate, considering the results in chapter 5.5. The geometry of the model 

is presented in Figure 6.1. 

 

Figure 6.1: Geometry of the cylindrical sector (angle 10º) used in FLAC3D 
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 Evaluation of the accuracy of the analytical solutions: single 

freeze pipe 

 Preliminary model check 

In order to reduce the computing time, a model of reduced size (with the geometry of a 

circular sector instead of the whole circle, see Figure 6.1), which exploits the radial 

symmetry of the problem, was used in the following chapters. A preliminary check was 

conducted in order to confirm that its results are very similar to those which would be 

obtained by using a larger model (e.g. a cylinder quarter, see Figure 6.2). For the freeze 

front, the results obtained from both models match up to the order of accuracy of the 

numbers exported, so there is no doubt that the reduced model shown in Figure 6.1 can be 

used from here on. 

 

Figure 6.2: Quarter-of-cylinder model 

 Problem 7: Base case 

This problem may be considered representative for brine ground freezing. The progress of 

the freeze front during the first 10 days according to the analytical and numerical models is 

presented in Figure 6.3. It is apparent that the Leibenson solution widely overestimates the 

freeze front advance, which can be explained considering that this solution neglects the 

sensible heat in the unfrozen area. The Lunardini and Khakimov solutions both 

underestimate the advance of the freeze front. The Sanger & Sayles and Ständer solutions 

appear to be the most accurate ones, with an error of just a few centimetres.  

However, the situation changes when a time period of 1 year is considered (Figure 6.4). In 

fact, Ständer’s and Khakimov’s solutions are still very near to the numerical results (their 

errors being below 9 cm), but Sanger & Sayles’ solution clearly overestimates the freezing 

progress. It can be observed in Figure 6.5 and Figure 6.6 that the relative errors of Ständer’s 

and Khakimov’s solutions appear to be bound for this Problem (i.e. they do not grow with 
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time or increase slowly, see also Figure 6.5 and Figure 6.6), whereas the errors of the other 

three solutions significantly grow with time.  

 

Figure 6.3: Single freeze pipe: freeze front progress, 10 days, Problem 7 

 

Figure 6.4: Single freeze pipe: freeze front progress, 365 days, Problem 7 
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Figure 6.5: Single freeze pipe: error of freeze front progress, Problem 7 

 

Figure 6.6: Single freeze pipe: relative error of freeze front progress, Problem 7 
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 Problem 8: Case with extreme temperature gradient 

This problem has been chosen to evaluate the usability of the analytical solutions for 

extreme temperature gradients, which may appear for example if nitrogen ground freezing 

is applied. In this case (see Figure 6.7), Ständer’s solution is still the most accurate one 

(average error of 5.5 cm) and Sanger & Sayles’ solution is also quite accurate (average 

error of 11.3 cm). Considering that the results of the numerical model indicate a freeze front 

position at 404 cm after 365 days, the relative errors are in the range of 1 to 3%, which is 

generally good enough for engineering purposes. The absolute errors of these two solutions 

appear not to grow with time. Khakimov’s solution, on the contrary, largely underestimates 

the freezing progress. Leibenson’s solution still has the largest errors, giving a freezing 

progress which is nearly twice faster than the numerical solution. Lunardini’s solution 

works similarly to the previous case, with an average relative error of -30.8%.  

 

Figure 6.7: Single freeze pipe: freeze front progress, Problem 8 

 Problem 9: Case with extremely high latent heat  
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extreme case of very high latent heat. The errors for this case are somewhat smaller for 

most of the solutions, probably due to the fact that the sensible heat to be absorbed by the 

unfrozen phase between the start of the freezing process and the phase change is smaller in 

relation to the amount of latent heat released than in Problem 8, which was analysed in the 

previous chapter. Indeed, sensible heat is absorbed by the unfrozen phase between the 

initial and the phase-change temperature, before the material starts freezing.  
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A lower sensible heat to be absorbed from the unfrozen phase, as in this Problem 9, 

improves the accuracy of the analytical formulae if they do not correctly account for this 

sensible heat, which is a common problem, see e.g. Ständer (1967). This effect is especially 

pronounced for Leibenson’s solution, for the reason that it completely neglects the sensible 

heat of the unfrozen area. In fact, Leibenson’s solution improves its accuracy for Problem 9 

with respect to the previous problems in a very significant amount, lowering its error to just 

above 20%. An overview of the results for Problem 9 is presented in Figure 6.8. 

 

Figure 6.8: Single freeze pipe: freeze front progress, Problem 9 
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solutions are higher than in Problem 7, hinting again to the fact that these the formulae do 
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Ständer solution again provides very good accuracy (average error of 8.1 cm), and 

Sanger & Sayles’ solution also provides a good accuracy. 
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Figure 6.9: Single freeze pipe: freeze front progress, Problem 10 

 Problem 11: Initial temperature of 2ºC 

This Problem is representative of brine ground freezing, together with Problem 7, but it 

serves to test the analytical solutions for a case where the initial temperature is quite near 

to the phase-change temperature. In this case, the amount of sensible heat to be absorbed 

by the unfrozen phase before the start of freezing is reduced, and all the solutions studied 
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Figure 6.10: Single freeze pipe: freeze front progress, Problem 11 

 

 

Figure 6.11: Single freeze pipe: error of freeze front progress, Problem 11 
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 Problem 12: Phase-change temperature of -21ºC 

This Problem may be representative of brine ground freezing in strata containing salty 

groundwater, which has a lower phase-change temperature than pure water. In this case, 

Lunardini’s solution is the most accurate one, followed by Ständer’s solution, both 

achieving average errors under 10 cm. However, they both produce relatively high relative 

errors of more than 25%, which may be because of the higher amount of sensible heat 

present in the unfrozen phase (because of the larger difference between the initial and 

phase-change temperatures). The other solutions provide results with extremely high errors 

(see Figure 6.12). 

 

Figure 6.12: Single freeze pipe: freeze front progress, Problem 12 
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Figure 6.13: Single freeze pipe: freeze front progress, Problem 13 
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versus time curves, the relative errors of the methods are larger than for the freeze front 

location. 

 

Figure 6.14: Average of absolute values of error in the location of the freeze front, single freeze pipe (logarithmic 

scale) 

Table 6.2: Average of absolute values of errors of freeze front, single freeze pipe, analytical solutions 
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106.5 5.5 11.3 37.6 17.3 - 

 

  

1

10

100

1,000

Problem 7 Problem 8 Problem 9 Problem 10 Problem 11 Problem 12 Problem 13 Average of
Problems

A
ve

ra
ge

 a
b

so
lu

te
 e

rr
o

r 
[c

m
]

Average of absolute values of errors of freeze front

Front Leibenson Front Ständer Front Sanger Sayles Front Lunardini Front Khakimov



  

Chapter 6: Evaluation of the accuracy and applicability of existing approximate analytical 

solutions for ground freezing thermal design   

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 147 

As already described in the previous chapters, the Problems where the analytical solutions 

had the lowest errors were Problems 9 and 11, in which the proportion of sensible heat in 

the unfrozen region to latent heat released is the lowest. On the other side, the Problem with 

the highest errors was by far, surprisingly, the linear problem without phase change 

(Problem 10). 

 

Figure 6.15: Average of errors of the freeze front, single freeze pipe 

*Note: The average over time may underestimate the real errors, because negative and positive errors of each problem 

may be compensated. 
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these models because the critical time step of the explicit method would be limited by the 

smallest mesh size, which would imply a considerably longer computing time than with the 

implicit method. An exemplary image displaying one of the numerical models used, which 

makes use of the symmetry of the freeze pipe disposition in a freeze wall, can be seen in 

Figure 6.16. 
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Figure 6.16: Exemplary numerical model for a freeze wall 

 Simulated problems - flat freeze wall 

These problems use the same parameters, material characteristics and boundary and initial 

conditions of Problems 7 to 13 presented in chapter 6.1, but with the freeze wall geometry 

instead of the single pipe. They are therefore named Problems 7_fw to 13_fw. The 

separation between freeze pipes was defined as 1 m, which is in the typical order of 

magnitude for engineering projects. 

The results for Problem 7_fw from the numerical simulation, Ständer’s solution and 

Sanger & Sayles’ solution are shown in Figure 6.17. It is apparent that the results derived 

from Ständer’s solution coincide very accurately with the results from the numerical model. 

On the other hand, Sanger & Sayles’ solution has an error of about 22% in this case, which 

may be too high for practical uses.  

In Problem 8_fw, the numerical results show a step characteristic of the enthalpy method 

as a result of the freeze front reaching the area with coarser mesh, however, this does not 

reduce the overall validity of the comparison with the analytical solutions. 

Both Sanger & Sayles’ and Ständer’s solutions were computed considering the closure time 

of the freeze wall, which was computed with their respective solutions for the 

single-freeze-pipe problem. 

The following figures 6.17 to 6.23 show the results of the problems calculated for the freeze 

wall. In general, Ständer provides more accurate results than Sanger & Sayles. A further 

overview of the results for the different problems is presented in chapter 6.3.2.  

 



  

Chapter 6: Evaluation of the accuracy and applicability of existing approximate analytical 

solutions for ground freezing thermal design   

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 149 

 

Figure 6.17: Freeze wall: freeze front progress, 365 days, Problem 7_fw 

 

 

Figure 6.18: Freeze wall: freeze front progress, 365 days, Problem 8_fw 
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Figure 6.19: Freeze wall: freeze front progress, 365 days, Problem 9_fw 

 

 

Figure 6.20: Freeze wall: freeze front progress, 365 days, Problem 10_fw 
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Figure 6.21: Freeze wall: freeze front progress, 365 days, Problem 11_fw 

 

 

Figure 6.22: Freeze wall: freeze front progress, 365 days, Problem 12_fw 
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Figure 6.23: Freeze wall: freeze front progress, 365 days, Problem 13_fw 

 Comparison of the analytical solutions for the flat freeze wall 

From the two solutions analysed for the freeze wall geometry, the solution from Ständer 

consistently generates results of significantly higher accuracy with respect to Sanger & 

Sayles’ solution (see Figure 6.24). Ständer’s solution has an accuracy higher than 5.1% for 

all problems except for Problem 13_fw (which has thermal characteristics of water), while 

Sanger & Sayles’ solution produces errors of up to 32% (see Table 6.3 and Table 6.4). 

Therefore, Ständer is probably sufficiently accurate for many practical problems, while 

Sanger & Sayles should be applied with considerable caution.  

Overall, both analytical solutions tend to underestimate the freezing progress, as can be 

observed from Figure 6.25, except for Problem 13_fw (which has a high latent heat due to 

using water’s thermal characteristics). 
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Table 6.3: Average of absolute values of errors of freeze front, freeze wall, analytical solutions 

Average of absolute 

values of error of X(t) 
Front Ständer Front Sanger & Sayles 

Average of 

methods 

Problem 7_fw 8.1 64.2 36.1 

Problem 8_fw* 7.6* 126.3* 66.9 

Problem 9_fw 15.7 71.0 43.4 

Problem 10_fw 23.6 190.5 107.0 

Problem 11_fw 16.2 107.7 62.0 

Problem 12_fw 7.6 4.2 5.9 

Problem 13_fw 42.1 46.3 44.2 

Average of Problems 17.3 87.2 52.22 

Median of Problems 15.7 71.0 - 

*Note: Errors evaluated only until a thermal time of 2.2x106 seconds. 

 

Table 6.4: Average of relative errors, freeze wall, analytical solutions 

Average of relative errors 

of X(t)* 
Front Ständer Front Sanger & Sayles 

Problem 7_fw 2.2% -16.1% 

Problem 8_fw 0.0%** -25.1%** 

Problem 9_fw -5.1% -24.1% 

Problem 10_fw -4.6% -24.9% 

Problem 11_fw -2.7% -25.4% 

Problem 12_fw -1.2% -2.8% 

Problem 13_fw 33.7% 31.8% 

*Note: The average over time may underestimate the real errors, because negative and positive errors of each problem 

may be compensated. **Note: Errors evaluated only until a thermal time of 2.2x106 seconds. 
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Figure 6.24: Average of absolute values of error in the location of the freeze front, freeze wall problems 

 

Figure 6.25: Average of relative errors in the location of the freeze front, freeze wall problems 

*Note: The average over time may underestimate the real errors, because negative and positive errors of each problem 

can be compensated. 
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 Evaluation of the accuracy of the analytical solutions: freeze circle 

In this chapter, numerical simulations with analogue models to the ones verified in 

chapter 5 were compared to the approximate analytical solutions for the freeze circle 

geometry from Ständer and Sanger & Sayles. An exemplary image displaying the 

numerical model used for the freeze circle can be seen in Figure 6.26. 

 

Figure 6.26: Overview of numerical model in FLAC3D for a freeze circle 

 Simulated problems - freeze circle 

These problems use the same parameters, material characteristics, etc. of the problems 

presented in chapter 6.1, but using the freeze circle geometry instead of the single pipe (thus 

they are named analogously, with the suffix “_fc”). The geometry is defined by: 

• Freeze circle radius of 8.5 m 

• Number of pipes in the freeze circle: 45 

• Freeze pipe radius of 6.99 cm 

The results from the numerical solution and Ständer’s and Sanger & Sayles’ solutions for 

Problem 7_fc are shown in Figure 6.27. In this case, the results derived from 

Sanger & Sayles’ solution for the outer freeze front coincide quite well with the numerical 

solution. For the inner freeze front, they approximate the solution with a larger error. 

Ständer’s solution has a larger error for both the inner and outer freeze front: about 0.6 m 

for the outer front and approximately 2 m for the inner front after 1 year, which is a very 

high discrepancy for practical uses.  

The results of Sanger & Sayles’ and Ständer’s solutions are presented including the 

consideration of the closure time of the freeze circle, which was calculated with their 

respective solutions for the single-freeze-pipe geometry. For these problems, several 

plateaux are visible in the numerical results because a larger mesh than in previous 

problems was chosen in order to limit the computing time. The following figures 6.27 to 

6.33 show the results for the problems evaluated. In these figures, the graph origin has been 
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situated at the centre of the freeze circle instead of at the centre of freeze pipes as in previous 

chapters. In general, both Sanger & Sayles’ and Ständer’s solutions provide results of 

variable accuracy and with high errors. An overview of the results and errors is presented 

in chapter 6.4.2. 

 

 

Figure 6.27: Freeze circle: freeze front progress, 365 days, Problem 7_fc 
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Figure 6.28: Freeze circle: freeze front progress, 365 days, Problem 8_fc 

 

 

Figure 6.29: Freeze circle: freeze front progress, 365 days, Problem 9_fc 
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Figure 6.30: Freeze circle: freeze front progress, 365 days, Problem 10_fc 

 

 

Figure 6.31: Freeze circle: freeze front progress, 365 days, Problem 11_fc 
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Figure 6.32: Freeze circle: freeze front progress, 365 days, Problem 12_fc 

 

 

Figure 6.33: Freeze circle: freeze front progress, 365 days, Problem 13_fc 
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 Comparison of the analytical solutions for the freeze circle 

The analytical solutions from Ständer (1967) and Sanger and Sayles (1979) for the 

freeze-circle geometry produce results of very variable accuracy, cf. Figure 6.34 and Figure 

6.35. For instance, Sanger & Sayles’ solution is relatively accurate for Problem 7_fc and 

Problem 9_fc, with an average of absolute errors lower than 57 cm, while Ständer produces 

errors of up to 136 cm and tends to overestimate the speed of the freezing process. For 

Problem 8_fc and Problem 11_fc, Sanger & Sayles’ solution underestimates the freeze front 

progress, whereas Ständer overestimates it, both of them by a significant amount. For 

Problem 10_fc, both solutions produce very large errors, underestimating the freeze front 

progress. It is worth noticing that Ständer’s solution yields a much lower freeze front for 

Problem 10_fc, where the latent heat is negligible, than in Problems 8_fc and 9_fc, where 

the latent heat was much higher. Therefore, there appears to be a systematic error in 

Ständer’s solution, which should be considered when using it for ground with low water 

content. For Problem 12_fc, both solutions overestimate the freeze front progress, with 

Sanger & Sayles producing the higher errors. In the case of Problem 13_fc, both analytical 

solutions yield results of similar accuracy, also overestimating the freeze front progress. 

Considering all problems studied for the freeze circle geometry, Ständer’s solution has a 

better accuracy than Sanger & Sayles’ one for the outer freeze front, while it is the other 

way around for the inner freeze front. In any case, both solutions yield very variable 

accuracies throughout the problems and should therefore be used with extreme caution (see 

Table 6.5). 

 

Figure 6.34: Average error of freeze front, freeze circle 

*Note: The average over time may underestimate the real errors, because negative and positive errors of each problem 

can be compensated. 
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Figure 6.35: Average of absolute values of error of freeze front, freeze circle (logarithmic scale) 

Table 6.5: Average of absolute values of errors of freeze front, freeze circle 

Average of absolute 

values of errors of X(t) 

Front 

Ständer, Ri 

Front 

Ständer, Ra 

Front Sanger 

& Sayles, Ri 

Front Sanger 

& Sayles, Ra 

Average of 

methods 

Problem 7_fc 136.1 75.4 56.8 16.5 71.2 

Problem 8_fc 142.1 143.6 281.9 154.5 180.5 

Problem 9_fc 101.9 70.6 33.6 17.0 55.8 

Problem 10_fc 582.3 475.2 314.1 253.3 406.2 

Problem 11_fc 139.2 73.6 101.8 60.1 93.7 

Problem 12_fc 37.9 25.2 88.2 107.6 64.7 

Problem 13_fc 153.3 130.4 127.0 123.1 133.5 

Average of Problems 184.7 142.0 143.3 104.6 143.65 

Median of Problems 139.2 75.4 101.8 107.6 - 

 Comparison of the accuracy of the analytical solutions for the 

different geometries 

Approximate analytical solutions for thermal design for three different geometries (single 

freeze pipe, freeze wall and freeze circle) have been studied. For the first two, Ständer’s 

solution provides generally very accurate results, which can be very useful in engineering 

practice. Sanger & Sayles’ solution provides estimates of variable accuracy, which is 

dependent on the initial and boundary conditions. Therefore, this solution may produce 

errors which are too high for practical uses. For the freeze circle, both solutions generate 

relatively high errors, so they should be used with extreme caution and only for estimation 

purposes. Therefore, the designer should be conscious of their limitations.
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 Adjustment of Sanger & Sayles’ analytical solution for the 

single freeze pipe geometry 

The importance and applicability of approximate analytical methods for thermal 

calculations in ground freezing design has already been discussed in chapter 3.4. Based on 

the review of the state of the art of analytical solutions in chapter 3 and the evaluation of 

the accuracy of the solutions in chapter 6, the necessity of improving the approximate 

analytical solutions is apparent. In this regard, a new adjusted solution for the single freeze 

pipe is sought in this chapter, which should be more accurate than the existing solutions 

and easier to use in engineering practice than Ständer’s solution, which is accurate but 

relatively complex to use. 

As Sanger & Sayles’ formula for the single freeze pipe has proven to be of very variable 

accuracy, depending on the conditions of the problem (see chapter 6.2), an attempt to adjust 

it based on the results of the verified numerical models is made in this chapter. 

From the three basic assumptions on which Sanger & Sayles’ formula is based, presented 

in chapter 3.4.1.4, the following one can be argued against, in the view of the author (see 

Holden (1997) for a discussion on the other assumptions of the formula): 

“The radius of the unfrozen soil affected by the temperature of the freeze pipe [i.e. 

the temperature penetration depth] can be expressed as a multiple of the frozen soil 

radius prevailing at the same time. […for the single-pipe case] assume [this 

multiple] as 𝑎𝑟 = 3.” (Sanger and Sayles, 1979) 

The statement above implicitly assumes that the ratio 𝑎𝑟 is constant and is not influenced 

by the duration of the freezing process, the boundary conditions, the initial conditions 

(freeze-pipe, phase-change and initial ground temperatures), the water content or the 

thermal properties of the ground (thermal conductivity and specific heat capacity). The 

assumption 𝑎𝑟 = 3 for the single freeze pipe case matches the experience from Khakimov 

(1966). Ständer (1967) questions this assumption, because it is only empirical and not based 

on physical theory. He also points out that the value of the factor 𝑎𝑟 will not be a constant 

but will depend on the thermal characteristics of the unfrozen ground and therefore the error 

arising from this simplification is unknown.  

Figure 7.1 presents an overview of an exemplary temperature distribution around a freeze 

pipe, which assumes 𝑎𝑟 =
7.5

2.5
= 3.  
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Figure 7.1: Typical temperature distribution around one freeze pipe, adapted from Sanger and Sayles (1979) 

Furthermore, the supposition that there exists a point at a finite distance of the pipe whose 

temperature is not affected by the freeze pipe is mathematically incorrect. Strictly 

considered, the temperature at any location of the continuum (ground) will change due to 

the existence of the cooling source (freeze pipe), no matter the distance of the point to the 

source (even if the temperature change may be extremely small and negligible at large 

distances to the pipe). This can be observed in the analogous Neumann problem by 

evaluating the exact solution and obtaining the temperature at long distances from the 

source. Indeed, the temperature penetration depth is mathematically infinite, so the 

assumption is intrinsically inaccurate. Therefore, this assumption is difficult to verify. In 

any case, for practical purposes, the temperature penetration depth could be defined as the 

radius at which the ground temperature changes by less than an amount considered 

negligible, taking a “small”, arbitrary quantity, e.g. 0.05ºC (𝑎𝑟0.05), 0.1ºC (𝑎𝑟0.1), 0.2ºC 

(𝑎𝑟0.2) or 0.5ºC (𝑎𝑟0.5).  

To examine these suppositions, the ratio between the position in which the temperature has 

changed a small amount and the freeze radius was calculated by means of numerical models 

for Problems 7 to 12. Figure 7.2 shows the ratios 𝑎𝑟0.5, 𝑎𝑟0.2, 𝑎𝑟0.1 and 𝑎𝑟0.05 for Problem 7. 

Based on Figure 7.2, it can be claimed that 𝑎𝑟 is not singularly defined, because the quantity 

considered “negligible” is arbitrary. Moreover, it is also clear that 𝑎𝑟 is not constant but 

A 
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instead it generally grows with time, for example, 𝑎𝑟0.1 increases from 3.7 to 8.2 for thermal 

times between 0 and 365 days.  

 

Figure 7.2: ar0.05, ar0.1, ar0.2, ar0.5 ratios for Problem 7 

The 𝑎𝑟0.1 ratios for Problems 7 to 12 are shown in Figure 7.3. From this figure, it is apparent 

that 𝑎𝑟0.1 (and by extension 𝑎𝑟) varies widely depending on the initial and boundary 

conditions and other variables of the specific problem. The values of 𝑎𝑟0.1 for a thermal 

time of 1 day are between 2.3 and 7, relatively near to Sanger & Sayles’ assumption of 

𝑎𝑟 = 3, which was possibly derived from experiences in short times. For longer times, the 

values of 𝑎𝑟0.1 are generally higher than at the beginning of the freezing process. 
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Figure 7.3: ar0.1 ratios for Problems 7, 8, 9, 10, 11, 12 and 13 

As shown in Figure 7.3, the ratio 𝑎𝑟 is not constant, but it depends on several variables of 

the model. As a qualitative example, a higher freeze pipe temperature, which is nearer to 

the phase change temperature, would have the effect that point “A” in Figure 7.1 would be 

higher and the freeze radius “*R” would be smaller compared to the temperature 

penetration depth, which implies a larger value of 𝑎𝑟. An initial temperature only slightly 

above the phase-change temperature would, on the contrary, generate a temperature 

penetration depth only slightly larger than the freeze radius, implying a ratio 𝑎𝑟 

approaching 𝑎𝑟=1 in the limit when the initial temperature is just infinitesimally above the 

phase-change temperature (cf. the one-phase Stephan problem). Following this logic, other 

variables, such as the thermal properties of the ground (thermal conductivity, specific heat 

capacity, latent heat/water content) or the freeze pipe radius may affect this ratio as well.  

 Adjustment of the Sanger & Sayles’ solution for a time of 365 days 

In order to test the prior hypotheses, the ratio 𝑎𝑟 was calculated based on the results of 

several numerical models, on the condition that Sanger & Sayles’ solution with the 

calculated⁡𝑎𝑟 yields the same freeze radius as the numerical model for a freezing time of 

one year. The problems evaluated included the ones studied in chapter 6 and several 

additional ones to further assess the effects of several variables on the Sanger & Sayles 

solution. Table 7.1 shows the definition of the problems, including the values of the main 

variables in them. 
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Table 7.1: Definition of the problems used for the adjustment of Sanger & Sayles’ solution 

Problem Short description 
𝑻𝑰𝑰 

[ºC] 

𝑻𝑰 

[ºC] 

𝒄𝒂𝒗 

[cal/g/ºC] 

𝒌𝒂𝒗 

[cal/(s cm ºC)] 

𝒍𝒔 

[cal/g] 

𝒓𝟎 

[cm] 

Base problems 

11 2ºC initial temperature 2 35 0.61 0.0061 13.8 8 

7.3 /3 k, x3 c 20 35 1.84 0.0020 13.8 8 

8 extreme temperature 50 200 0.61 0.0061 13.8 8 

13 water properties 20 35 0.75 0.0034 79.7 8 

7 base case 20 35 0.61 0.0061 13.8 8 

7.4 

-21ºC phase-change 

temperature, point, -46ºC 

freeze pipe 41 25 0.61 0.0061 13.8 8 

12 

-21ºC phase-change 

temperature 41 14 0.61 0.0061 13.8 8 

Latent heat sensitivity 

10 no latent heat 50 200 0.61 0.0061 0.1 8 

9 extreme latent heat 50 200 0.61 0.0061 138.3 8 

Water content sensitivity 

7.2 Water content = 0.42 20 35 0.61 0.0061 23.6 8 

13.1 

Water content =1 (soil 

properties) 20 35 0.61 0.0061 79.7 8 

Specific heat capacity and thermal conductivity sensitivity 

7.1 x3 k, /3 c 20 35 0.20 0.0182 13.8 8 

7.5 x2 k, /2 c 20 35 0.20 0.0122 13.8 8 

7.11 x2k 20 35 0.61 0.0122 13.8 8 

7.12 x3k 20 35 0.61 0.0182 13.8 8 

7.13 x2c 20 35 1.23 0.0061 13.8 8 

7.14 x3c 20 35 1.84 0.0061 13.8 8 

7.15 /2k 20 35 0.61 0.0030 13.8 8 

7.16 /3k 20 35 0.61 0.0020 13.8 8 

7.17 /2c 20 35 0.31 0.0061 13.8 8 

7.18 /3c 20 35 0.20 0.0061 13.8 8 

Freeze pipe radius sensitivity 

7.19 r0=4cm 20 35 0.61 0.0061 13.8 4 

7.20 r0=2cm 20 35 0.61 0.0061 13.8 2 

7.21 r0=16cm 20 35 0.61 0.0061 13.8 16 

In order to be able to interpolate and extrapolate the calculation of 𝑎𝑟 based on the different 

problems evaluated, a parameter 𝑝 was created, which is a function of the variables 

considered and can be correlated with 𝑎𝑟. The parameter 𝑝 was defined as a multiplication 

of the monomial functions of the variables considered. The exponents of these monomial 

functions were calibrated in a way that the coefficient of determination, 𝑅2, of its linear 

correlation with 𝑎𝑟 was maximized (see Equation (7.1)). Other combinations with slightly 

different values of the exponents may also yield a similarly high coefficient of 

determination. 
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 𝑝 = −𝑇𝐼𝐼
𝑎/⁡𝑇𝐼

𝑏/𝑐𝑎𝑣
𝑐 ∙ 𝑘𝑎𝑣

𝑑 ∙ 𝑙𝑠
𝑒/𝑟0

𝑓 (7.1) 

where: 

𝑎 = 1.0: exponent of 𝑇𝐼𝐼   

𝑏 = 1.4: exponent of 𝑇𝐼 

𝑐 = 0.4: exponent of 𝑐𝑎𝑣 

𝑐𝑎𝑣: average of frozen and unfrozen specific heat capacities, in 𝑐𝑎𝑙/(𝑐𝑚3 ∙ º𝐶) 

𝑑 = 0.1: exponent of 𝑘𝑎𝑣 

𝑒 = 0.0: exponent of 𝑙𝑠 

𝑓 = 0.2: exponent of 𝑟0 

𝑘𝑎𝑣: average of frozen and unfrozen thermal conductivities, in 𝑐𝑎𝑙/(𝑠 ∙ 𝑐𝑚 ∙ º𝐶) 

𝑙𝑠 =
𝑙𝑤𝑎𝑡𝑒𝑟⁡𝜔⁡𝜌𝑑

𝜌
 : crystallisation heat of the groundwater, per unit mass of ground, in 𝑐𝑎𝑙/𝑔 

𝑝: calibrated parameter 

𝑟0: radius of freeze pipe, in [cm] 

𝑇𝐼𝐼 = 𝑇0 − 𝑇𝑓: initial temperature minus phase-change temperature, in º𝐶 

𝑇𝐼 = 𝑇𝑠 − 𝑇𝑓: freeze-pipe temperature minus phase-change temperature, in º𝐶 

The calculated ratios 𝑎𝑟 and their correlation with the parameter 𝑝 are presented in Figure 

7.4. According to this figure, the optimal values of 𝑎𝑟, which minimize the error of 

Sanger & Sayles’ solution, vary widely, between 2.47 and 28.5 for the different problems 

used (see also Table 7.2). If 𝑎𝑟 could be estimated based on the conditions of the specific 

problem before introducing it in Sanger & Sayles’ formula, so that it approximates its 

optimal value, the error produced by this solution would decrease by a significant amount 

compared to the error produced when using their original assumption 𝑎𝑟 = 3 without 

consideration of the particular conditions of the problem. To this aim, the adjusted value of 

𝑎𝑟 can be estimated based on its correlation with parameter 𝑝 applying Equation (7.2), 

which is derived from the correlation in Figure 7.4. This parameter can be calculated 

previously from the boundary and initial conditions and thermal properties of the ground 

for the problem at hand by using Equation (7.1). An exemplary application of this procedure 

is shown in chapter 9.2.  

 𝑎𝑟,𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 54𝑝+ 2.0353 (7.2) 

This approach certainly has several limitations. First, it is still an empirical correlation 

based on the study of a limited number of specific cases, which is not based on physics 

(although it may be possible to qualitatively explain the effects of the variables considered, 

see previous section). Second, there may be additional variables to the ones considered here 

which could influence the value of 𝑎𝑟. Third, 𝑎𝑟 has been optimised based on the 
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minimisation of the error for a thermal time of 365 days. The dependency of 𝑎𝑟 with 

thermal time, which was proven in Figure 7.3, has not been accounted for yet.   

 

Figure 7.4: Ratio ar versus the defined parameter “p” 

The calculated 𝑎𝑟 for the different problems as well as the values of 𝑎𝑟 obtained from the 

correlation with the parameter 𝑝 (adjusted 𝑎𝑟) are presented in Table 7.2. It can be observed 

from the table that the error of the adjusted 𝑎𝑟 based on the correlation, compared to the 

calculated value, is small, of about 0.4 in average, much lower than it would be using the 

original approach of Sanger & Sayles of 𝑎𝑟 = 3. The relative error ranges from -38% to 

+58%. Nevertheless, the error of the freeze front estimated with those values is significantly 

lower (see Table 7.2) and is under 10% for all the problems considered but for Problem 13, 

which is a quite extreme case, as it considers the properties of water.  
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Table 7.2: Calculated and adjusted ar, error of ar and adjusted freeze front 

Problem 
Adjusted 

param. p 

Calc. 

ar, 

num. 

model 

Adjusted 

ar, adj. 

(from 

correl.) 

Rel. 

Error of 

ar, adj. 

Rel. 

Error of 

ar=3 

Freeze 

radius, 

365d, 

num. 

[cm] 

Freeze 

radius, 

365d,    

ar, adj. 

[cm] 

Freeze 

radius, 

365d,  

with 

ar=3 

[cm] 

Rel. 

Error of 

freeze 

Radius, 

365d,   

ar, adj. 

[cm] 

Rel. Error 

of freeze 

Radius, 

365d, ar=3 

[cm] 

11 0.007 2.42 2.39 -1.1% -25.1% 343 344.2 339.7 0.3% -1.0% 

7.3 0.038 3.77 4.10 8.9% 29.3% 102.5 98.56 113.2 -3.8% 10.5% 

8 0.014 2.87 2.82 -1.9% -6.4% 404 406 395.8 0.5% -2.0% 

13 0.058 3.27 5.15 57.6% 65.8% 167 143.2 171.1 -14.2% 2.5% 

7 0.066 5.6 5.62 0.3% 46.8% 195 194.7 250.3 -0.2% 28.4% 

7.4 0.218 14.2 13.80 -2.6% 76.2% 77.6 78.85 178.7 1.6% 130.3% 

12 0.491 28.5 28.53 0.1% 89.6% 41 40.97 140.8 -0.1% 243.3% 

           

10 0.014 2.47 2.82 14.0% -7.5% 484 452.2 437.7 -6.6% -9.6% 

9 0.014 4.55 2.82 -38.1% -4.0% 233 253.8 251.6 8.9% 8.0% 

           

7.2 0.066 5.91 5.62 -4.9% 44.3% 179.2 183 224.8 2.1% 25.5% 

13.1 0.066 6.32 5.62 -11.1% 41.4% 168.7 176.6 212.3 4.7% 25.8% 

           

7.1 0.115 8.47 8.24 -2.7% 61.9% 363.2 367.7 502.8 1.2% 38.4% 

7.5 0.110 7.23 8.00 10.6% 69.1% 289.9 276.3 393.8 -4.7% 35.8% 

7.11 0.071 5.96 5.88 -1.4% 48.3% 254.2 255.9 337.7 0.7% 32.9% 

7.12 0.074 6.24 6.03 -3.3% 48.6% 295.7 300.9 403.1 1.8% 36.3% 

7.13 0.050 4.67 4.75 1.7% 37.5% 168.1 166.7 204.9 -0.9% 21.9% 

7.14 0.043 4.27 4.34 1.7% 31.5% 151.8 150.6 179.1 -0.8% 18.0% 

7.15 0.062 5.09 5.38 5.7% 46.7% 152.3 148.5 186.2 -2.5% 22.3% 

7.16 0.059 4.9 5.25 7.1% 45.8% 130.9 127 157 -3.0% 19.9% 

7.17 0.088 6.7 6.76 0.9% 56.2% 223 222.1 291.4 -0.4% 30.7% 

7.18 0.103 7.64 7.60 -0.6% 60.2% 236.6 237.1 311.2 0.2% 31.5% 

           

7.19 0.076 6.42 6.15 -4.2% 49.1% 165 168.7 228.7 2.3% 38.6% 

7.20 0.088 7.44 6.76 -9.1% 50.6% 139.8 147.4 211.6 5.4% 51.3% 

7.21 0.058 4.7 5.15 9.7% 45.8% 236.6 227.6 278.5 -3.8% 17.7% 

The calculated values of 𝑎𝑟 which minimise the error of Sanger & Sayles’ solution correlate 

very well with the values of 𝑎𝑟0.1 obtained directly from the numerical solution (see Figure 

7.5). This correlation supports the idea that 𝑎𝑟 has a physical meaning, i.e., it is indeed 

related to the temperature penetration depth, which matches Sanger & Sayles’ definition of 

𝑎𝑟.  
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Figure 7.5: Correlation between ar0.1 from the numerical model and the calculated ar, Problems 7 to 13 

 Adjustment under consideration of the freezing time 

In the previous chapter, the ratio 𝑎𝑟 has been calculated and adjusted for different problems 

for a thermal time of 365 days after the start of the freezing process. Another subject of 

interest is the change of 𝑎𝑟 with time. Indeed, it was already shown in Figure 7.2 and Figure 

7.3 that 𝑎𝑟0.05, 𝑎𝑟0.1, 𝑎𝑟0.2 and 𝑎𝑟0.5 are not constant, but they increase with the freezing 

progress. The very high correlation with logarithmic trendlines in those figures, where 

𝑎𝑟0.𝑥𝑥 is represented against time, should also be noticed. Therefore, to study this, 𝑎𝑟 was 

calculated for Problem 7 for several time points, again showing a high correlation with 

logarithmic trendlines, see Figure 7.6.  
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Figure 7.6: Calculated ar for several time points, Problem 7 

Thus, it is apparent that the ratio 𝑎𝑟 varies with the thermal time. In order to study this 

effect, the ratio 𝑎𝑟 was calculated using the same method as in the previous chapter for a 

time of 10 days after the start of the freezing process. The results of using this calculated 

ratio in the Sanger & Sayles’ formula are compared to the ones previously obtained for 

365 days and to their original approach of 𝑎𝑟 = 3 in Figure 7.7. In this case, 𝑎𝑟,365𝑑 

provides a reasonable accuracy, also for shorter times than 365 days. Indeed, it generally 

produces lower errors than 𝑎𝑟,10𝑑. The values of 𝑎𝑟,365𝑑 and 𝑎𝑟,10𝑑 which have been used 

in this chapter are the ones calculated directly from the numerical model, and not the ones 

adjusted from the correlation with parameter 𝑝. The reason for this approach is that this 

allows a better comparability of both, uninfluenced by the additional error of the adjustment 

based on the correlation between different problems.  
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Figure 7.7: Freeze radius, Sanger & Sayles original (ar = 3) and with ar calculated for t=365d and t=10d 

The calculated ratios 𝑎𝑟,365𝑑 and 𝑎𝑟,10𝑑 have been applied to Sanger & Sayles’ formula for 

Problems 7 to 13 and are shown in Table 7.3. As explained before, the ratio 𝑎𝑟 increases 

with time, so 𝑎𝑟,365𝑑 > 𝑎𝑟,10𝑑. The ratio 
𝑎𝑟,365𝑑

𝑎𝑟,10𝑑
 seems to remain at about 1.15 to 1.5, except 

for Problem 12, which has a very low freeze temperature of -21ºC. This ratio and the 

logarithmic trendline shown in Figure 7.6 may be useful for the design engineer in order to 

adjust 𝑎𝑟 for other timeframes. It is also interesting to notice that the original assumption 

from Sanger & Sayles (𝑎𝑟 = 3) is more accurate for a time of 10 days than for 365 days. 

Hence, they may have made that assumption based on experimental data stemming from 

short-term experiments. 

Table 7.3: Calculated ratio ar for 365 and 10 days 

Problem ar365d ar10d Ratio ar365d/ar10d 

7 5.6 3.77 1.49 

8 2.87 2.09 1.37 

9 4.55 3.38 1.35 

10 2.47 1.81 1.36 

11 2.42 2.12 1.14 

12 28.5 11.5 2.48 

13 3.27 2.79 1.17 

  Average 1.48 

  Std. dev. 0.46 
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The calculated ratios 𝑎𝑟,365𝑑 and 𝑎𝑟,10𝑑 were introduced into Sanger & Sayles’ formula and 

the average errors of the resulting freeze radius between the start of freezing and 365 days 

have been evaluated. It is apparent from Table 7.4 and Figure 7.8 that the approach based 

on 𝑎𝑟,365𝑑 consistently generates significantly lower errors, which are under 5%, except for 

Problem 12. 

Table 7.4: Average of the relative errors of the freeze radius 

Average of the 

relative errors of 

X(t)* 

Freeze radius 

Sanger & Sayles 

original with 

𝒂𝒓 = 𝟑 

Freeze radius Sanger & 

Sayles with 𝒂𝒓,𝟑𝟔𝟓𝒅  

Freeze radius Sanger & 

Sayles with 𝒂𝒓,𝟏𝟎𝒅 

Problem 7 -20.9% 5.0% -11.9% 

Problem 8 4.6% 2.8% -8.9% 

Problem 9 -5.9% 1.6% -4.1% 

Problem 10 12.4% 3.5% -11.2% 

Problem 11 1.5% 1.5% -0.2% 

Problem 12 -178.4% 12.3% -43.6% 

Problem 13 -0.4% 1.8% -2.2% 

*Note: The average over time may underestimate the real errors, because negative and positive errors of each problem 

may be compensated. 

 

Figure 7.8: Average over time of absolute error of freeze front, original and calculated Sanger & Sayles solutions 
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 Comparison of numerical and analytical results against 

experimental data 

The accuracy of the numerical model used with respect to the exact analytical solution of 

Neumann was studied in chapter 5. In addition to this verification, it has to be checked that 

the partial differential equation which is being approximated by the numerical model 

represents the reality sufficiently accurately (Causon and Mingham, 2010). Compared to 

using data from real projects for model verification, experiments have the advantage that 

they are performed in a controlled environment under boundary conditions known within 

the measurement tolerances. Therefore, it is generally recognised that experimental data 

are a solid base for the verification of numerical models (Alzoubi et al., 2020). However, 

only a few experiments with sufficient data for model verification can be found in the 

literature (Schüller, 2015) (Alzoubi et al., 2020). A possible reason is that performing 

large-scale experiments with a long duration in a similar order of magnitude to real projects 

is costly, however, real-scale trials are necessary (Pigorini et al., 2012). The experiments 

have typically been done with small samples in short times, see e.g. Jame and Norum 

(1980), where 30 cm long tubes were cooled for 72 hours, Ständer (1967), G. Gioda (1994), 

Neaupane et al. (1999), Song et al. (2018), Alzoubi et al. (2019), Sudisman et al. (2019), 

Wang et al. (2019), Wang et al. (2020), Zueter et al. (2020) or Zhang et al. (2021)). 

Recently, a larger experimental model was studied in Qi et al. (2020). 

In this chapter, a numerical model analogue to the one evaluated in chapter 5 and the 

analytical solutions which have been evaluated in chapter 6 are compared to the 

experimental results in the doctoral thesis from Sres (2009). Sres (2009) performed 

monitored experiments with one and several freeze pipes, where the temperature was 

measured at several positions.  

 Experiment with a single freeze pipe 

Sres (2009) built up a small-scale model with one freeze pipe for experimentation. The 

model used is depicted in Figure 8.1. The positions of the temperature monitoring sensors 

in the experimental model are shown in Figure 8.2. 
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Figure 8.1: Scheme of the experimental model for a single freeze pipe, modified from Sres (2009) 

 

 

Figure 8.2: Disposition of the temperature monitoring sensors, modified from Sres (2009) (measures in mm) 
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A numerical model was built up in FLAC3D, taking into consideration the specific 

boundary conditions of the experiment, such as the change of the freeze pipe wall 

temperature with time and the temperature at the outside of the cylinder (see Figure 8.3). 

The numerical parameters (mesh, time steps, etc.) used were similar to the ones from the 

numerical models evaluated in chapters 5 and 6. 

 

Figure 8.3: Overview of the FLAC3D model for simulation of Sres’ experiment with a single freeze pipe 

The results from these experiments (see monitoring data in Figure 8.4) have been compared 

with the results of the numerical model and analytical solutions presented in chapter 6. The 

comparison of the numerical and the measured data from the second monitoring level 

shows a good match, with maximum errors of about 2ºC (see Figure 8.5). The higher errors 

compared to the models in chapter 5 can be explained in that, as it is a real experiment, 

there are several factors which could not be simulated exactly, among others, the following:  

• The temperature at the exterior of the cylinder wall was taken in the numerical 

model as the temperature measured at the interior of the isolation (from Sres (2009), 

Figure 8.4). 

• The freeze pipe wall temperature was taken from Sres (2009), Figure 8.4, based 

only on punctual data. 

• Other sources of error are for example the errors in the determination of the thermal 

parameters of the soil and isolation used in the experiment. 
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Figure 8.4: Measurement data, single freeze pipe model, modified from Sres (2009) 

 

 

Figure 8.5: Temperature profile after 40 hours, comparison of FLAC3D results vs experimental data from Sres (2009) 

The experimental data on the position of the freeze radius with time were derived from 

Figure 8.4 and compared to the results of the numerical model and of the approximate 

analytical solutions discussed in chapter 6 (see Figure 8.6). However, it must be highlighted 

here that the five analytical solutions consider an infinite cylinder of soil. That is, they do 

not consider the boundary effects of the existing isolation at a finite distance of the freeze 
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pipe. This is the reason why only at the very start of the process (up to approximately 

40,000 seconds), the two generally most accurate solutions (see chapter 6), i.e., Ständer and 

Sanger & Sayles, match the experimental and numerical results. After that time, the freeze 

radius moves at a much faster pace than they predict, because the cooling effect of the pipe 

is being concentrated in a smaller cylinder, as a result of the boundary effect of the isolation. 

Indeed, the bending of the experimental and numerical graphs at a time between 35,000 and 

40,000 seconds due to this effect can be observed in Figure 8.6. A further reason for the 

mismatch of the analytical and experimental results is that the analytical solutions are based 

on certain assumptions (e.g. a constant freeze pipe temperature), which is rather inaccurate 

at the beginning of the freezing process (see e.g. Figure 8.4). 

 

Figure 8.6: Evolution of the freeze radius: experimental data, FLAC3D results and analytical solutions 
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 Experiment with a row of three freeze pipes (freeze wall) 

Sres (2009) also performed an experiment with three freeze pipes in a line, corresponding 

to the freeze wall arrangement. An overview of this experiment is shown in Figure 8.7. 

 

Figure 8.7: Overview of experimental model with several pipes (freeze wall arrangement), modified from Sres (2009) 

This experiment was modelled in FLAC3D using the existing symmetry from chapter 6.3, 

presented in Figure 8.8. 
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Figure 8.8: FLAC3D model for freeze wall to simulate Sres’ experiment with several pipes 

The results of the experiments of Sres (2009) and of the numerical model in FLAC3D were 

compared and are shown in Figure 8.9, Figure 8.10 and Figure 8.11. In general, the results 

of the numerical model match the data from the experiment very well. In Figure 8.9 there 

are some differences at the farther distance to the pipe, potentially as a result of 

uncertainties in the boundary conditions at the outside of the box and in the thermal 

characteristics of the isolation. However, the numerical model approximates the 

experimental results with a higher accuracy than for the single freeze pipe experiment, 

probably due to a comparatively lower effect of the boundary conditions.  

The analytical solution from Ständer provides results of a relatively high accuracy, whereas 

Sanger & Sayles’ solution does not match the experimental and numerical results (see 

Figure 8.11). Interestingly, it can be corrected by moving its start to the origin, which 

potentially points to an incorrect calculation of the freeze wall formula for short timeframes 

below the closure time. This can be traced to how Sanger & Sayles’ solution for the freeze 

wall is built up, as the sum of the freezing times for the phases before and after wall closure. 

In fact, the short duration of the experiment (40 hours) is much shorter than the typical 

duration of ground freezing projects for which the analytical solution from Sanger & 

Sayles’ is likely to have been originally conceived. 
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Figure 8.9: Temperature profile perpendicular to pipe row: experimental data and FLAC3D results 

 

 

Figure 8.10: Temperature profile along the pipe row: experimental data and FLAC3D results 
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Figure 8.11: Freeze front progress, perpendicular to the pipe row: experimental data, FLAC3D results and analytical 

solutions 

 

0

5

10

15

20

25

30

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000

Fr
ee

ze
 f

ro
n

t 
d

is
ta

n
ce

 t
o

 p
ip

e 
[c

m
]

Time [s]

Freeze front progress, perpendicular to the pipe (Sres' experiment)

Front_FLAC3D [cm] Front_Sres [cm]

Front_Sanger&Sayles [cm] Front_Stander [cm]

Front_Sanger&Sayles_shifted to origin [cm]



  

Chapter 9: Application of the verified numerical model and approximate analytical solutions to 

artificial ground freezing projects   

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 183 

 Application of the verified numerical model and approximate 

analytical solutions to artificial ground freezing projects 

Real data from ground freezing engineering projects may be used to further validate the 

approach used in the numerical simulations and approximate analytical formulae from the 

previous chapters. Unfortunately, there is only a limited number of projects for which 

detailed, complete monitoring data is publicly available. In this chapter, two such projects 

were selected: the line 1 of Naples’ subway and the Ust-Jaiwa mine freeze shafts. The 

numerical model verified in chapter 5 was applied to these construction projects. The results 

of the model are compared against the field measurements performed in the projects. The 

analytical solutions from Sanger & Sayles and Ständer were also applied to the projects.  

 The line 1 of Naples’ subway 

The section between the stations of Piazza Dante and Piazza Garibaldi of line 1 of Naples’ 

(Italy) subway was excavated using the artificial ground freezing method (Colombo, 2010). 

The measurements performed to monitor the freezing progress are reported in Colombo 

(2010). An overview of the freeze pipe arrangement is shown in Figure 9.1. 

 

Figure 9.1: Overview of freeze pipe arrangement (Colombo, 2010) 

The results reported in Colombo (2010), from a numerical simulation for a single pipe (used 

to approximate the pre-closure phase of the wall) with the software ABAQUS, which 

applies the Finite Element Method, and from his calculation with Sanger & Sayles’ 

solution, are shown in Figure 9.2.  
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Figure 9.2: Results of thermal calculations with ABAQUS and Sanger & Sayles (single freeze pipe) (Colombo, 2010). 

Note: r=0.20 m/0.30 m/0.40 m in the graph legend refer to the temperature at a distance of 0.20 m / 0.30 m / 0.40 m 

from the freeze pipe. S&S refers to the Sanger & Sayles’ results and FEM refers to the results from ABAQUS. 

This single-pipe problem was simulated in FLAC3D and with the analytical solutions 

presented in chapter 6. The boundary conditions and soil characteristics are relatively 

similar to those of Problem 7 (see chapter 6.2.2). Therefore, not surprisingly, 

Sanger & Sayles’ solution forecasts for this case a faster freeze front progress than the one 

predicted by the numerical model, an analogous result to the one for Problem 7. Also in 

line with the results in chapter 6, Ständer’s solution provides results which are very close 

to the ones of the numerical model. Figure 9.3 presents the results from the numerical model 

and the five analytical solutions evaluated for a time of up to 46.2 days. 

 

Figure 9.3: Calculation of the freeze front advance for the Naple’s subway project with the numerical model and five 

analytical solutions 
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The results obtained from the FLAC3D simulation match the ABAQUS results from 

Colombo (2010) very well, and to a lesser extent, the results derived from the 

Sanger & Sayles’ solution (see Figure 9.4).  

 

Figure 9.4: Results of simulations of the ground freezing process, Naples metro, single freeze pipe  

Note: The results marked with “*” are from Colombo (2010). 

For the case of an isolated pipe, no measurement data is available, because the pipes were 

installed in a row so that a freeze body could be closed in order to protect the tunnelling 

works. Furthermore, unfortunately, the measurement data available for the project is 

influenced by several practical factors for which insufficient data is available in Colombo 

(2010), such as the combination of nitrogen and brine freezing, time-variable freeze pipe 

temperature, possible groundwater movements and freeze pipe deviations, among others. 

As these factors are likely to have a high influence on the results, engineering assumptions 

were made in Colombo (2010) to be able to use the numerical model. However, these 

factors introduce too much uncertainty in the models, making them effectively unusable for 

the scientific purpose of verifying either the numerical models or the analytical solutions. 

 Ust-Jaiwa mine shafts  

Artificial ground freezing was used to sink two freeze shafts for the Ust-Jaiwa potash mine 

in the Ural region in Russia. The project has been chosen to be analysed in this thesis 

because the thermal design and monitoring of its freeze circle are thoroughly documented 

in Hentrich and Franz (2015). In the context of this project, two new mine shafts were sunk 

with a diameter of 8 m and a depth of about 500 m. Several water-bearing strata were frozen 

for groundwater control and to achieve shaft wall stability during shaft sinking. 
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Based on the boundary conditions described in the paper from Hentrich and Franz (2015) 

and shown in Table 9.1, the single-pipe problem was evaluated with the Leibenson, 

Lunardini, Khakimov, Sanger & Sayles, adjusted Sanger & Sayles (see chapter 7) and 

Ständer solutions and simulated with the verified numerical FLAC3D model. Afterwards, 

the freeze wall and freeze circle geometries were evaluated using the same ground thermal 

properties. 

Table 9.1: Boundary conditions and parameters, Ust-Jaiwa project, modified from Hentrich and Franz (2015) 

Technical parameters Input Unit 

Radius of freeze pipe 0.06985 m 

Half distance between two freeze pipes 0.595 m 

Planned thickness of the freeze wall 3.3 m 

Radius of freeze circle 8.5 m 

Number of freeze pipes 45 nº of pipes 

Temperature at freeze pipe wall −35 °C 

   

Characteristics of the rock (Salt-marl strata) Input Unit 

Initial rock temperature +6 °C 

Phase-change temperature -21 °C 

Thermal conductivity of the rock (frozen/unfrozen) – 

from geotechnical report 
8.80/5.72 kJ/hmK 

Specific heat capacity of the rock (frozen/unfrozen) – 

from geotechnical report 
2.231/2.878 MJ/m³K 

Water content – from geotechnical report 16.4 % 

Thermal conductivity of the rock (frozen/unfrozen) – 

recalculated in Hentrich and Franz (2015) 
10.04/6.83 kJ/hmK 

Specific heat capacity of the rock (frozen/unfrozen) – 

recalculated in Hentrich and Franz (2015) 
2.231/2.878 MJ/m³K 

Water content – recalculated in Hentrich and Franz 

(2015) 
10 % 

 Simulation of one freeze pipe 

As a first step, a single freeze pipe was simulated, using the analytical solutions and a 

FLAC3D model. The results are shown in Figure 9.5. It is apparent that the adjusted 

Sanger & Sayles’ solution (in this case with the adjusted parameter 𝑎𝑟 = 19.85) matches 

the results of the numerical models very well (specially for the one-year timeframe, for 

which 𝑎𝑟 was adjusted). Ständer’s and Lunardini’s solutions also match the numerical 

solution reasonably well. It is important to highlight that, even if the difference after one 

year of about 12 cm for the Ständer solution seems relatively small (implying an error of 

about 23%), the difference in the required time to achieve a certain radius may be very 
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large. For practical design purposes, it is often the estimation of the freezing time which is 

critical, because it determines the waiting time to start excavating and the period of use of 

the freezing station. As an example, a freeze radius of 53 cm is reached after about 1 year 

according to the numerical solution, but it would only take about 152 days following 

Ständer’s solution, a difference which implies that this analytical solution should be used 

with caution in this practical case. No monitoring data is available for the single freeze pipe 

case because the pipes were located in a freeze circle. 

Finally, the results obtained for the single freeze pipe differ widely from the closure time 

(time to reach the half-distance between pipes, in this case a freeze radius of 59.5 cm) for 

the freeze circle, which was the geometry in the project. Indeed, a model simulating the 

freeze circle with the numerical program Temp/W in Hentrich and Franz (2015), which was 

calibrated based on measurement data, predicted a closure time of 20 days (see Figure 9.6), 

while the FLAC3D model which considers only one freeze pipe takes longer than one year 

to reach the freeze radius of 59.5 cm (see Figure 9.5). In this particular case, where the 

phase-change temperature is low and close to the freeze pipe temperature, the effect of the 

neighbouring pipes is very accentuated, because the heat that needs to be extracted before 

the phase change occurs is high (Ständer, 1967). 

 

Figure 9.5: Freeze front, one freeze pipe, Ust-Jaiwa project 
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 Simulation of two neighbouring pipes (freeze wall) 

A model accounting for two neighbouring pipes (via symmetry) was simulated in FLAC3D 

as a first approximation to the freeze circle. This can be considered a reasonable 

approximation in the first period after closure, when the circle can be approximated by a 

flat freeze wall; afterwards the freeze circle geometry leads to notoriously different freeze 

radius advance velocities on the outside and inside of the freeze circle. The results of this 

model with two neighbouring pipes show, as expected, a much faster freeze radius advance 

than in the model in the previous chapter, which only considered one single pipe. The 

closure time of about 14 days, corresponding to a radius of 59.5 cm (the half-distance 

between the pipes), matches only moderately well the 20 days obtained with a numerical 

model for the ideal freeze circle geometry from Hentrich and Franz (2015), which was 

calibrated based on monitoring data. The significant difference may be accounted for by 

several practical effects, which are not considered in the FLAC3D model, but which may 

have been considered in Hentrich’s calibrated TEMP/W model, such as the cooling of the 

system in the first days of freezing or the excavation of the shaft. 

The freeze body grows much faster between the pipes (due to the influence of the 

neighbouring pipes) than perpendicular to them (see Figure 9.6). For instance, it takes about 

33 days for the freeze body to reach a radius of 59.5 cm from the pipe centre in the 

perpendicular direction, in comparison to the closure time of 14 days. The progress of the 

freeze front in the directions parallel and perpendicular to the pipes is shown in Figure 9.6. 

The results for the single pipe are presented as well in Figure 9.6 for comparison. The 

solutions of Sanger & Sayles and Ständer for the freeze wall geometry have also been 

evaluated for the recalculated thermal parameters and are presented in the same figure. In 

accordance with the results in chapter 6.3, Ständer’s solution provides a quite good 

approximation of the numerical results. Finally, the results from Hentrich and Franz (2015) 

for the freeze circle are also showed in Figure 9.6. Comparing them to the freeze wall 

simulation from FLAC3D, it can be observed that the progress of the freeze front for the 

freeze wall is approximately the average progress of the inner and outer freeze fronts for 

the freeze circle. 
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Figure 9.6: Freeze front, two freeze pipes simulated (freeze wall), Ust-Jaiwa project 

 Simulation of the freeze circle 

The Ust-Jaiwa problem has been simulated in FLAC3D likewise for the freeze-circle 

geometry, using the same meshing approach of Figure 5.48. The analytical solutions from 

Sanger & Sayles and Ständer have also been evaluated for this geometry. The results are 

presented in Figure 9.7. The numerical results match the results from the simulations from 

Hentrich and Franz (2015) for the outer freeze front very accurately, but not for the inner 

freeze front. This may be due to Hentrich and Franz (2015) having considered the thermal 

influence of elements from inside the shaft related to the sinking process. Ständer’s solution 

produces very poor results in this case, largely underestimating the freeze front progress. 

Interestingly, if computed for a higher water content of 21% instead of 10%, it produces 

more accurate results, yielding a faster freeze front progress (also shown in Figure 9.7). 

This issue of Ständer’s solution for the freeze circle generating unplausible results for low 

water contents has already been identified in Problem 10_fc and described in chapter 6.4.2. 

Sanger & Sayles’ solution overestimates the outer freeze radius and underestimates the 

inner freeze radius. 

The analyses performed in this chapter give further confidence in the verified numerical 

model, whereas they also show that the specific boundary conditions of the project at hand, 

which may not be reported in publications, can have a major influence on the thermal field.  
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Figure 9.7: Freeze front, Ust-Jaiwa problem, freeze-circle geometry 

Note: Graph origin is the centre of the freeze circle. 
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 Discussion of the investigations on thermal calculations for 

ground freezing design 

The results obtained in the previous chapters of this thesis are discussed here with the aim 

of reaching practical conclusions which can be of use in real-life engineering projects. First, 

the results of the numerical experiments from chapter 5 are analysed and conclusions drawn 

towards the creation of a code of good practice for numerical modelling of thermal 

problems with phase change. Afterwards, the results of the sensitivity analysis with 

analytical solutions from chapter 6 and the adjusted solution from chapter 7 are discussed, 

aiming to provide designers with sufficiently accurate and practical tools for design, along 

with a database of the accuracy of the different solutions for a variety of potential scenarios.  

 Effects of the numerical parameters on the accuracy and 

efficiency of numerical models for thermal calculations with 

phase change 

This discussion is based on data gained from the evaluation of the numerical model 

performed in chapter 5, done primarily by means of sensitivity analyses. That study was 

mainly focused on the accuracy of both the temperature field and the position of the 

phase-change interface. The accuracy of the power consumption, which is also related to 

the accuracy of the temperature, as the thermal flux is directly proportional to the 

temperature gradient, was also shortly investigated in chapter 5.13. These results are 

discussed in the following sections. 

The dependency of the error with the mesh size and frequency of update of the freeze status 

of the elements, for the explicit and implicit methods, is discussed in this chapter. The 

dependency with the time step is only evaluated for the implicit method because it has been 

shown in chapter 5.4 that the size of the time step does not have a significant influence on 

the accuracy of the results of the explicit method. 

After investigating the effects of several numerical parameters on the accuracy and 

computing time of the numerical models in chapter 5, several clear conclusions can be 

drawn. For instance, the mesh size is the parameter with the most predominant effect 

according to the sensitivity analyses, largely influencing the size of the plateaux of the 

temperature which are typical of the enthalpy method. The plateaux in turn make the 

numerical results deviate from the exact, smooth solution. Although the results tend to 

converge for longer times, the inaccuracies appear mostly in the areas near the freeze front, 

where the phase change is occurring. The accuracy of the freeze front location is also 

affected by the mesh size. On the other hand, the time step, for the explicit solving method, 

does not have a major effect on the accuracy, as long as it is kept under the critical time 

step, which depends on the mesh size used (see chapter 5.4). For this reason, the effect of 

the time step on the accuracy of the explicit method is not studied in further detail in this 

chapter. Both the mesh size and time step are parameters which have a high, direct influence 

on the computing time. Consequently, a sufficiently small mesh size, depending on the 
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required accuracy, along with the corresponding critical time step should be used for 

modelling. 

The frequency of updating the freezing status of the elements, i.e. the frequency of 

execution of the “freeze code”, has a moderate effect on the accuracy and on the computing 

time. Nevertheless, the time between updates should be significantly smaller than the 

required time to freeze the elements (or the duration of the appearing plateaux in the 

graphs). 

A way to smooth the plateaux and improve the accuracy of the enthalpy method is using a 

larger phase-change temperature range (see chapter 5.8). However, it has to be considered 

whether this represents the actual phase change process of the ground. Using this approach 

also increases the computing time. 

The results of the explicit and implicit algorithms were compared in chapter 5.11. In 

general, for the critical time step, the explicit and implicit methods produced results of 

similar accuracy and required similar computing times. The implicit method is, however, 

more flexible in certain cases. For instance, it can be used with larger time steps than the 

critical one, sparing computing time and producing reasonably accurate results. 

Additionally, for complex models, with very variable mesh sizes including some very small 

elements, the explicit method requires very small time steps, the critical time step for the 

model being determined by the smallest elements, and may therefore require very long 

computing times. In those cases, the implicit method has the advantage that it can use larger 

time steps, requiring shorter computing times. 

Regarding the type of thermal source, a surface source instead of a punctual source should 

be used, e.g. to model a freeze pipe (see chapter 5.16). First, a punctual source is 

infinitesimally small, so it tends to produce local issues in the numerical calculations. 

Besides, a surface source is a more realistic representation of the geometry of a freeze pipe.  

Even under very extreme conditions of extremely high latent heat or very high initial 

temperature gradient, the numerical model proved to be stable and reasonably accurate, 

provided that appropriate numerical parameters (mesh size, time step, etc.) were chosen. 

Numerical results converged to the exact analytical solutions when the discretisation was 

refined (finer mesh, smaller time step, etc.). 

A qualitative analysis of the existing errors in the numerical models may be attempted based 

on sensitivity analyses. In chapter 5, it was shown that the most decisive parameter of the 

numerical model, which usually dominates the accuracy of the model, is the mesh size. 

Additionally, as already reported by several authors (see chapter 4.3.2.1 and e.g. Furzeland 

(1980), Voller and Cross (1981), Basu and Date (1988), Mackenzie and Robertson (2000)), 

the numerical results of the enthalpy method, which is the most extended and practical 

phase-change method, oscillate around the exact solution. The oscillations result in the 

temperature-versus-time and freeze-front-versus time graphs presenting plateaux or “steps” 

(see e.g. chapter 5.3). The size of these “steps” is directly related to the mesh size, as 
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illustrated in Figure 10.1. Therefore, the question presents itself, whether it is possible to 

estimate the error of the results in the cases where no exact analytical solution is known.  

 

Figure 10.1: Temperature vs time at x=25cm, mesh sensitivity for Problem 1 

When the mesh size is decreased, the results of the numerical model tend to match the exact 

solution with increasing accuracy (see e.g. Figure 10.1). This effect may be exploited in 

practical problems, where the exact solution is not known, in order to estimate the error of 

the numerical model. For example, a model with a small mesh may be run in order to 

compare it with the models with a larger mesh, which makes it possible to estimate their 

accuracy. Then, once the approximate accuracy of the models with larger mesh and lower 

computing time is known and thus confidence on their performance has been won, it is 

possible to calculate other models or design variants with those faster models, sparing time 

for the design engineer. As a rough assumption, the unknown exact solution could be 

approximated by a line which interpolates the plateaux (see e.g. Figure 10.1). 

 Mesh size 

The relationship between the error of the freeze front position and the mesh size is presented 

in this chapter. The figures below provide an overview of the results of the models listed in 

Table 10.1 and Table 10.2, which simulated problems with the Neumann geometry. They 

are based on the results obtained in chapter 5 with the explicit solving algorithm. From this 

study, it is again confirmed that the mesh size is a dominant parameter affecting the error 

of the results of numerical simulations (see also e.g. Stout and Billings (2002)). 
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Table 10.1: Models considered in Figures 10.2, 10.3, 10.6 and 10.7 

MH1-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 

MH2-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 

MH5-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 

 

MH1-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 

MH2-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 

MH5-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 

 

MH1-TS1-UF1-TEh-SOs-SCa-STp-TP10-AGE-NE 

MH2-TS1-UF1-TEh-SOs-SCa-STp-TP10-AGE-NE 

MH5-TS1-UF1-TEh-SOs-SCa-STp-TP10-AGE-NE 

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP10-AGE-NE 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP10-AGE-NE 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP10-AGE-NE 

 
MH1-TS1-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE 

MH2-TS1-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE 

MH5-TS1-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE 

MH10-TS1-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE 

MH25-TS1-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE 

MH50-TS1-UF1-TEh-SOs-SCg-STp-TP10-AGE-NE 

 
MH1-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 

MH2-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 

MH5-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 

 

Table 10.2: Models considered in Figures 10.4 and 10.5 

MH1-TS20-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 

MH5-TS200-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 
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The root-mean-square error (RMSE), which is a commonly used measure of the error (see 

e.g. Ivanovic et al. (2017)) and the maximum error were calculated for the numerical results 

of the models listed above, taking as basis the exact solution from Neumann. Both errors 

have a linear correlation with the mesh size (see Figure 10.2, Figure 10.3, Figure 10.4 and 

Figure 10.5) and are also linearly correlated to one another (see Figure 10.6). As already 

noticed previously (see chapter 5.3), the error tends to decline with time: the RMSE 

considering the first 10 days of simulation (see Figure 10.2) is higher than the RMSE for 

the first 365 days (see Figure 10.4). Equation (10.1) shows the formula for the application 

of the RMSE. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑖

𝑛𝑢𝑚 − 𝑥𝑖
𝑒𝑥𝑎𝑐𝑡)2

𝑛

𝑖=1

 (10.1) 

where: 

𝑛: number of data points 

𝑥𝑖
𝑒𝑥𝑎𝑐𝑡: value of the variable 𝑥, from the exact analytical solution 

𝑥𝑖
𝑛𝑢𝑚: value of the variable⁡𝑥, from the numerical method  

The figures and correlations below show that the error of the freeze front (RMSE and 

maximum error) can be expressed as a fraction (or percentage) of the mesh size, which 

shows that the method is convergent and matches the widely accepted concept that a lower 

mesh size provides more accurate results (Recktenwald, 2004). The correlations explain 

most of the variability in the error (𝑅2 > 0.95) and all the obtained points fall into the 

bands of the 99.73% confidence interval (μ ± 3σ). 
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Figure 10.2: RMSE of freeze front, first 10 days (models from Table 10.1) 

 

 

Figure 10.3: Maximum error of freeze front, first 10 days (models from Table 10.1) 
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Figure 10.4: RMSE of freeze front, first 365 days (models from Table 10.2) 

 

 

Figure 10.5: Maximum error of freeze front, first 365 days (models from Table 10.2)  
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RMSE and the maximum and average of the absolute value of the errors, respectively. 

Therefore, the approach used in chapter 5 can be considered valid. 

 

Figure 10.6: RMSE and maximum error of freeze front, first 10 days (models from Table 10.1) 

 

Figure 10.7: RMSE and average of absolute error of freeze front, first 10 days (models from Table 10.1) 
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 Computing time 

The subject of study of this chapter is the correlation of the computing time with the number 

of elements in the model, the number of time steps simulated and the update interval of the 

freeze status. The parameter used, which was adjusted so that it correlates linearly with the 

computing time, is defined in Equation (10.2). It was adjusted by modifying the values of 

the exponents 𝑔, ℎ and 𝑖 based on the data for a computed thermal time of 10 days from the 

models listed in Table 10.3. 

 𝑞 = 𝑛1
𝑔 ∙ 𝑚1

ℎ ∙ ⁡𝑢𝑖/105 (10.2) 

where: 

𝑔 = 0.65: exponent of the variable 𝑛1, number of elements in the model 

ℎ = 1.0: exponent of the variable 𝑚1, number of time steps simulated 

𝑖 = 0.6: exponent of the variable 𝑢, number of time steps after which the freeze status is 

updated 

𝑚1: number of time steps simulated 

𝑛1: number of elements in the model 

𝑞: calibrated parameter 

𝑢: update period (the “freeze block” routine is executed every 𝑢 time steps) 

This analysis shows that the computing time depends on the number of elements, which 

obviously affects the duration of the calculation time for each time step, on the number of 

time steps (the total computing time is the sum of the computing time for each of the time 

steps) and on the update period at which the freeze block is executed (which adds some 

computing time to the time steps in which it is executed). It has to be highlighted here that 

the variable with the most marked effect on the computing time is the number of time steps 

simulated. That can also be observed from its exponent, which is the largest of the three in 

Equation (10.2). The three variables considered, along with the adjusted exponents, explain 

most of the variability in computing time in the different models (𝑅2 > 0.93). Figure 10.8 

and Figure 10.9 represent the correlations of the defined parameter 𝑞 with the computing 

time, for models with computed thermal times of 10 and 365 days, respectively. 

Table 10.3: Models used for the correlation of the parameter 𝑞 with the computing time and shown in Figure 10.8 

Model name 
Computing 

time 
Parameter 𝒒 

MH1-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:37:13 270.51 

MH1-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:29:37 270.51 

MH1-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 0:29:27 270.51 

MH2-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:24:59 172.39 

MH2-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:18:30 172.39 

MH2-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 0:16:24 172.39 
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MH5-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:13:08 95.03 

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:10:02 60.56 

MH5-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:09:57 95.03 

MH5-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 0:08:25 95.03 

MH1-TS1-UF10-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:08:07 67.95 

MH1-TS5-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:08:02 54.10 

MH1-TS1-UF10-TEh-SOs-SCa-STp-TP55-AGE-NE 0:07:32 67.95 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:07:16 33.38 

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:07:08 60.56 

MH1-TS1-UF1000-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:06:51 4.29 

MH1-TS5-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 0:06:49 54.10 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:06:02 21.27 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:06:00 33.38 

MH1-TS5-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:05:57 54.10 

MH1-TS1-UF10-TEh-SOs-SCa-STp-TP250-AGE-NE 0:05:32 67.95 

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 0:05:27 60.56 

MH1-TS10-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:05:26 27.05 

MH1-TS1-UF1000-TEh-SOs-SCa-STp-TP250-AGE-NE 0:05:23 4.29 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:05:19 21.27 

MH1-TS1-UF100-TEh-SOs-SCa-STp-TP55-AGE-NE 0:05:02 17.07 

MH1-TS1-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:04:21 17.07 

MH1-TS1-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE 0:04:07 17.07 

MH1-TS1-UF1000-TEh-SOs-SCa-STp-TP55-AGE-NE 0:04:01 4.29 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 0:03:43 33.38 

MH1-TS10-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 0:03:38 27.05 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 0:03:16 21.27 

MH1-TS20-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:03:08 13.53 

MH1-TS10-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:02:12 27.05 

MH1-TS20-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 0:01:48 13.53 

MH1-TS40-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:01:14 6.76 

MH1-TS20-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:01:13 13.53 

MH1-TS40-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 0:01:01 6.76 

MH1-TS40-UF100-TEh-SOs-SCa-STp-TP55-AGE-NE 0:00:47 0.43 

MH1-TS40-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:00:38 6.76 

MH5-TS200-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:00:18 0.48 

MH1-TS40-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE 0:00:17 0.43 

MH1-TS40-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:00:16 0.43 

MH10-TS400-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:00:14 0.15 

MH20-TS800-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE_LHTx10 0:00:13 0.05 

MH5-TS200-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 0:00:11 0.48 

MH5-TS200-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:00:09 0.48 

MH10-TS400-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 0:00:07 0.15 

MH10-TS400-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:00:07 0.15 

MH20-TS800-UF1-TEh-SOs-SCa-STp-TP55-AGE-NE 0:00:07 0.05 

MH20-TS800-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:00:07 0.05 
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Table 10.4: Models run for a thermal time of 365 days, presented in Figure 10.9 

Model name 
Computing 

time 
Parameter 𝒒 

MH10-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 45:44:46 17,911.71 

MH25-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 30:03:54 11,115.88 

MH1-TS1-UF10-TEh-SOs-SCa-STp-TP250-AGE-NE 29:41:44 8,785.97 

MH50-TS1-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 11:08:45 6,292.26 

MH1-TS20-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 5:18:54 1,748.88 

MH1-TS1-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE 4:20:37 1,996.52 

MH1-TS40-UF100-TEh-SOs-SCa-STp-TP250-AGE-NE 0:27:19 55.17 

MH5-TS200-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:26:16 100.83 

MH10-TS400-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:15:06 44.78 

MH20-TS800-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:10:58 14.27 

MH50-TS1600-UF1-TEh-SOs-SCa-STp-TP250-AGE-NE 0:04:43 3.93 

 

 

Figure 10.8: Computing time versus the defined parameter” q”, total time of 10 days (models from Table 10.3) 
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Figure 10.9: Computing time versus the defined parameter “q”, total time of 365 days (models from Table 10.4) 

 Update of freeze status 
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Figure 10.10: RMSE of freeze front vs update period of freeze status, first 365 days, models with mesh size 50 cm, time 

step 1600 s and 55ºC initial temperature difference  
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Table 10.5: Models considered in Figures 10.11 to 10.14 

Mesh sensitivity 

MH1-TS200-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 

MH2-TS400-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 

MH5-TS1000-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 

MH10-TS2000-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 

 

Time step sensitivity 

MH1-TS200-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 

MH1-TS100-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 

MH1-TS250-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 

MH1-TS280-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 

MH1-TS45.4-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 

 

Update freeze status sensitivity 

MH1-TS200-UF1-TEh-SOs-SCa-STp-TP55-AGI-NE 

MH1-TS200-UF10-TEh-SOs-SCa-STp-TP55-AGI-NE 

MH1-TS200-UF100-TEh-SOs-SCa-STp-TP55-AGI-NE 

 

 

Figure 10.11: RMSE of freeze front vs mesh size, first 10 days, implicit method (models from Table 10.5) 
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Figure 10.12: RMSE of freeze front vs time step, first 10 days, implicit method (models from Table 10.5) 

 

 

Figure 10.13: RMSE of freeze front vs update interval of freeze status, first 10 days, implicit method (models from Table 

10.5) 
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Figure 10.14: RMSE vs maximum error of freeze front, first 10 days, implicit method (models from Table 10.5) 

 Analysis of the error and its relationship with the plateaux of the 

enthalpy method 

This chapter aims to perform a qualitative study of the error of the enthalpy method and its 

relationship with the mesh size and the plateaux characteristic of this method. The plateaux 

in the temperature-time graph corresponding to a certain point in space are caused by the 

discretisation of time and space. Indeed, they are due to the finite zones in the vicinity of 

the freeze front preventing the temperature from decreasing for the period of time in which 

they are in the freezing status, when they are assigned a very high apparent heat capacity. 

This effect can be observed in Figure 10.15. 

y = 1.5103x + 0.0983
R² = 0.974

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7

R
M

SE
 o

f 
fr

ee
ze

 f
ro

n
t 

[c
m

]

Max error of Freeze front [cm]

RMSE versus maximum error of freeze front, first 10 days



  

Chapter 10: Discussion of the investigations on thermal calculations for ground freezing design   

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 207 

 

Figure 10.15: Relationship between the plateaux and the freezing status of the elements (zones) of the numerical model 

Hence, it has been shown above that the duration of the plateaux is closely related to the 

duration of the freezing process in the elements (zones). This duration is in turn inversely 

proportional to the average rate at which energy is being absorbed from the zone which is 

freezing (𝐸′) and directly proportional to the amount of latent heat in the zone (𝐿𝑧𝑜𝑛𝑒) 

(considering the amount of sensible heat in the freeze range as negligible): 

 
Δ𝑡 =

𝐿𝑧𝑜𝑛𝑒
𝐸′

 (10.3) 

The total latent heat in the zone is proportional to the zone volume 𝑉, the water content per 

unit mass 𝜔/(𝜔 + 1) and the volumetric latent heat of water 𝑙𝑤𝑎𝑡𝑒𝑟: 

 𝐿𝑧𝑜𝑛𝑒 ∝ 𝑉 ∙ ⁡
𝜔

𝜔 + 1
∙ 𝑙𝑤𝑎𝑡𝑒𝑟 (10.4) 

As not only the latent heat in the zone, 𝐿𝑧𝑜𝑛𝑒, but also the rate of energy absorption, 𝐸′, is 

proportional to the surface of the zone (mesh element) perpendicular to the direction of the 

energy transmission 𝑆⊥, the duration of the plateaux is proportional to the length of the 

zones in the direction of the energy transmission, 𝑑𝑧𝑜𝑛𝑒. The latent heat per unit volume of 

the zone is proportional to the water content (assuming the latent heat of water is constant). 

Thus, the duration of the plateaux is also proportional to the water content per unit mass. 

These conclusions are shown in Equations (10.5) to (10.7): 
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 𝑉 = ⁡𝑆⊥ ∙ ⁡𝑑𝑧𝑜𝑛𝑒 (10.5) 

 𝐸′ ∝ 𝑆⊥ (10.6) 

 

Δ𝑡 ∝
𝑉 ∙ ⁡

𝜔
𝜔 + 1 ∙ 𝑙𝑤𝑎𝑡𝑒𝑟

𝑆⊥
= 𝑑𝑧𝑜𝑛𝑒 ∙ ⁡

𝜔

𝜔 + 1
∙ 𝑙𝑤𝑎𝑡𝑒𝑟 (10.7) 

The dependency of the duration of the plateaux with the mesh size, which coincides with 

𝑑𝑧𝑜𝑛𝑒 in the case of the Neumann model, can be appreciated in Figure 10.1. The relationship 

between these two magnitudes is explicitly apparent in Figure 10.16, Figure 10.17 and 

Table 10.6. 

 

Figure 10.16: Duration of the first plateau and mesh size for models with 55ºC initial temperature difference 
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Figure 10.17: Duration of the first plateau and mesh size for models with 250ºC initial temperature difference 
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MH2-TS1-UF1-Teh-SOs-

SCa-STp-TP55-AGE-NE 
26,000 1.00 1 

MH1-TS1-UF1-Teh-SOs-

SCa-STp-TP55-AGE-NE 
8,000 0.31 0.5 

The dependency of the duration of the plateaux with the energy extraction rate 𝐸′ is 
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with initial (maximum) temperature differences of 55ºC and 250ºC. Indeed, the higher 
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ceteris paribus, by a water content per unit mass 10 times higher, if physically possible) 

also generates plateaux which are about 10 times longer than the ones from the other model. 

This results in higher errors compared to the model with the lower latent heat (see also 

chapter 5.7). Figure 10.18 provides an overview of the dependency of the duration of the 

first plateau with the mesh size for the three different types of models considered here. The 

plateau duration and the mesh size have a high linear correlation (𝑅2 > 0.98). 

Table 10.7: Duration of the plateaux for different models 

Model name Mesh 
Plateau 

duration TP55 

Plateau 

duration TP250 

Plateau duration 

TP250_LHTx10 

MH25-TS1-UF1-Teh-SOs-SCa-

STp-TPxx-AGE-NE(_LHTx10) 
25 273,000 57,000 590,000 

MH10-TS1-UF1-Teh-SOs-SCa-

STp-TPxx-AGE-NE(_LHTx10) 
10 134,000 26,000 186,000 

MH5-TS1-UF1-Teh-SOs-SCa-

STp-TPxx-AGE-NE(_LHTx10) 
5 74,000 8,000 87,000 

MH2-TS1-UF1-Teh-SOs-SCa-

STp-TPxx-AGE-NE(_LHTx10) 
2 26,000 4,000 34,000 

MH1-TS1-UF1-Teh-SOs-SCa-

STp-TPxx-AGE-NE(_LHTx10) 
1 8,000 

non measurable 

plateau 
18,000 

 

 

Figure 10.18: Duration of the plateaux versus the mesh size, models from Table 10.7 
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graph, which is easily obtainable from the results of the numerical model. This correlation 

can be observed in Figure 10.19, as well as the dependency of the errors and plateau 

duration with the mesh size.  

 

Figure 10.19: Correlation between average and maximum of absolute values of errors, mesh size and plateau duration 

(Neumann problem, models with thermal gradient of 55ºC) 
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be considered carefully when trying to extrapolate them to practical engineering models. 

The first reason for this is that in the models used with Neumann geometry with structured 

meshing, all the elements at the freeze front freeze at the same time (due to the symmetry 

of the problem and of the meshing), whereas in engineering models using unstructured 

meshes, the elements tend to freeze successively at different time steps. This has a 

beneficial effect on the accuracy of the model, because the typical plateaux of the enthalpy 

method appear progressively and are smaller (see chapter 5.12). Another point to be taken 

into consideration is that, as shown in chapter 5, the maximum errors usually appear in the 

phase-change area, while the rest of the model has lower errors (see chapter 5.3). Therefore, 

as long as the average errors and/or the errors in the area of interest are below the accuracy 

threshold set, relatively high maximum errors may be acceptable for practical purposes.  

Notwithstanding the difficulty of providing specific quantitative rules for numerical 

modelling, the vast amount of results obtained in the performed evaluations and 

sensitivity analyses have been condensed here in order to deliver at least a qualitative 

guide for practitioners. Based on the simulations performed, which have been analysed in 

the previous chapters, qualitative recommendations for thermal numerical modelling are 

outlined in Table 10.8. The numerical models were also compared to real data, from 

experiments and real projects, in chapter 9. This confirmed that following the conclusions 

stated in Table 10.8 is a good basis to achieve results of good accuracy within a 

reasonable computing time.  

Performing numerical experiments is often cited in the literature as a necessary way of 

evaluating the performance of numerical methods (see Causon and Mingham (2010) and 

GEO-SLOPE International Ltd. (2014)). In addition to the recommendations in Table 10.8, 

a reasonable approach may be to use models with fine discretisations (of time and space) 

and compare their results with models with coarser discretisations. As the numerical 

schemes converge, the results of finer models approximate the exact solution with 

increasing accuracy. Therefore, if results of coarser models differ to them only in an 

acceptable quantity, it can be inferred that the coarser models provide acceptable results 

and may be used, sparing computing time. Another possibility is to create graphs such as 

Figure 10.2, in which the deviations of the results of several models with coarser 

discretisations are graphically compared to a model considered “sufficiently fine” and are 

correlated with their corresponding numerical parameters (mesh size, time step, etc.). To 

finalise, it needs to be highlighted that numerical models for engineering design always 

need to be complemented with good engineering judgement and cautiousness during the 

construction phase (Sagaseta and Castro, 2021). 
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Table 10.8: Code of good practice for thermal numerical modelling based on the analyses performed in the present 

thesis 

Numerical Parameter Recommendation 

Mesh Size 

The mesh size is a determining factor for the accuracy and computing time of 

the model. The mesh size which should be chosen is a compromise between 

the desired accuracy and the available time for modelling. The error in the 

determination of the freeze front is linearly correlated with the mesh size. The 

mesh size can be increased in the areas where no phase change will happen, 

in order to spare computing time. The detailed evaluations on the mesh size 

sensitivity are presented in chapters 5.3, 5.9, 5.10 and 10.1.1.  

Time step 

For the explicit algorithm: a sub-critical time step (a time step slightly lower 

than the critical time step) should be used. The reason is that the accuracy does 

not improve significantly for any time step below the critical time step. 

For the implicit algorithm: a larger time step than the critical one for the 

explicit method may be used with good accuracy. The accuracy decreases with 

increasing time step. 

The detailed evaluations on the time-step sensitivity are presented in chapters 

5.4, 5.9, 5.10 and 10.1.4. 

Frequency of execution of 

"freeze block" routine 

The "freeze block" should be executed with sufficient frequency. An 

excessively long thermal time between two executions may produce high 

errors in the model, e.g. by leaving zones “stuck” in the freezing status. The 

update period of the “freeze code” should be small compared to the duration 

of the freezing process for any element. The detailed evaluations on the 

time-step sensitivity are presented in chapters 5.5, 5.9, 5.10 and 10.1.3. 

Abrupt / Gradual phase 

change modelling 

A gradual phase change (e.g. using a phase range interval larger than 1ºC), is 

recommended because it smooths the results of the numerical model and thus 

provides a better accuracy (see chapter 5.8). 

Structured / unstructured 

mesh 

Unstructured meshes are recommended because they produce more accurate 

results. This is due to the fact that the elements of structured meshes may tend 

to freeze at the same time, as a result of the symmetry of the model. This effect 

accentuates the typical plateaux of the enthalpy method, which generate higher 

errors (see chapter 5.12). 

Punctual / surface source 

Surface sources are recommended to avoid instability problems and to better 

represent the real geometry of the sources. As an example, a punctual source 

representing a freeze pipe produces a much slower freeze front progress than 

simulating the pipe with its real radius (see chapter 5.16). 

Explicit / Implicit 

algorithm 

Both the explicit and implicit algorithms worked well. The implicit algorithm 

can be used for quicker calculations, as it allows larger time steps (see chapters 

5.11 and 10.1.4). Furthermore, the time step is not limited to the critical time 

step, which is especially important for models with elements of very different 

sizes, for which the explicit algorithm may require very small time steps. 

Model boundaries 

The model should be sufficiently large so that the model boundaries do not 

influence the results. That is, the areas near the outer model boundaries should 

suffer only negligible temperature changes (see chapter 5.2). 
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Physical Property Effect 

Initial temperature 

gradient 

Higher initial temperature gradients tend to produce higher errors (see chapters 

5.6 and 5.8). 

Stefan number (latent 

heat) 

A significantly higher latent heat produces higher errors (see chapter 5.7). 

However, in the ranges of latent heat of natural soil, its influence on the error 

is probably not dominant compared to the effects of other parameters. 

 Discussion of the analytical solutions used in engineering practice 

As already highlighted, the exact solutions presented in chapter 3.2 are constrained to very 

specific conditions and/or geometries, so their practical use is restricted. Furthermore, most 

of them are mathematically complex and consequently not easy to evaluate with simple 

calculations or spreadsheets, so they are of limited application in engineering design. 

Nevertheless, they can be used to verify numerical schemes or approximate analytical 

solutions. Intensive research has been and is still being performed in this area, but, even so, 

very few solutions with direct applicability to everyday engineering problems have been 

found.  

With respect to the approximate solutions for thermal design in ground freezing projects, 

only a few analytical formulae exist. Five of the most significant solutions were presented 

in chapter 3.4. They are based on different key assumptions and simplifications. 

Accordingly, their results vary widely, as has been shown in chapter 6. Furthermore, some 

of the simplifications made, on which these formulae are based, do not completely match 

the reality of ground freezing projects, which limits their applicability and accuracy. A few 

of these simplifications, which are especially relevant in engineering design are listed 

below: 

• constant freeze pipe temperature (no consideration of the initial cool-down period 

and other temperature changes, e.g. those due to break-downs, etc.) 

• constant distance between freeze pipes (no consideration of drilling deviations) 

• homogeneous ground (no consideration of layering or geological inhomogeneities) 

• no consideration of additional sources of energy (warm air during excavation 

opening, hydration heat of cement when concreting against the freeze wall, etc.) 

Despite these limitations, approximate analytical solutions are useful in engineering in the 

early stages of design (e.g. concept design, tender design, etc.), when the time and resources 

available may not be sufficient to set up a numerical model (Sancho-Calderón et al., 2021). 

Moreover, these solutions may also be used as a benchmark to compare numerical results 

against (Sancho-Calderón et al., 2021). Even at the detail design and execution stages, some 

of these solutions have been used, see e.g. Colombo (2010) and Franz (2015). 

Therefore, these approximate analytical solutions are still practical and relevant. As their 

results differ widely between themselves and also in comparison to numerical solutions, 

the boundaries of their applicability and accuracy have to be determined. An attempt on 

this task has been performed in chapter 6, where the results of the five solutions considered 
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were evaluated, compared and analysed for seven problems with different initial and 

boundary conditions (including freeze pipe temperature, initial ground temperature, amount 

of latent heat, thermal characteristics of the ground and phase change temperature of the 

groundwater).  

The results of the problems studied in chapter 6 were compared against a verified numerical 

model with parameters based on the conclusions of chapter 5, which can be considered a 

solid benchmark to analyse their accuracy against. Verified numerical simulations resulted 

very useful to check the analytical solutions.  

Experimental data were also used to verify the analytical solutions. However, they were 

generally only available for comparatively short times (e.g. in Ständer (1967) for approx. 

4 hours or in Sres (2009) for approx. 40 hours) with respect to the duration of ground 

freezing in projects, which is typically in the order of magnitude of weeks or several 

months. It was possible to use some data from an engineering project from Hentrich and 

Franz (2015). Nevertheless, further details than those published would have been required 

for a more reliable verification of the analytical solutions and numerical model. Indeed, the 

high complexity of a real engineering project requires an in-depth knowledge of the 

boundary conditions before an attempt can be made to verify a numerical model or 

analytical solutions against such data. Furthermore, even with detail knowledge of the 

ground parameters, construction sequence and construction events and detailed monitoring 

data, many unknowns stay, such as ground inhomogeneities, unknown groundwater flow, 

etc, which could only be potentially defined by a very extensive and untypical monitoring 

program. Therefore, it is extremely difficult to verify the accuracy of a numerical model or 

analytical solutions based on data from engineering projects, as the uncertainties from these 

sources may be much larger than the ones from the numerical parameters or analytical 

formulae. 

In engineering projects, the solution most widely used for the three usual geometries (single 

freeze pipe, freeze wall and freeze circle) is the one published by Sanger and Sayles (1979) 

(see e.g. Chang and Lacy (2008), Colombo (2010), Hentrich and Franz (2015) and Filippo 

Mira-Cattò (2016)). The solution by Ständer (1967) has also been applied, but it seems to 

be somewhat constrained to German-speaking countries (see e.g. Hentrich and Franz 

(2015), Bosch (2017) and Schüller (2015)). Along with these two, the solutions from 

Khakimov, Lunardini and Leibenson were also studied in chapter 6. On the one hand, 

Ständer’s solution proved to be very accurate, while being relatively complex to compute. 

On the other hand, Sanger & Sayles’ solution is easy to compute, as it can be expressed as 

a closed formula, but it often does not provide the accuracy required for practical purposes, 

especially when a high amount of sensible heat from the unfrozen phase needs to be 

accounted for. 

An example of the high errors which can render some of these solutions impracticable for 

practical purposes can be taken from Figure 10.20 (for Problem 7, cf. chapter 6.2.2). For 

instance, let us assume that in a ground freezing project a freeze radius of 120 cm is required 

for stability/geotechnical reasons. For that freeze radius, the solutions yield the results 
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shown in Table 10.9. In this case, only the errors from Ständer’s and Khakimov’s solutions 

would be moderate and usually acceptable for practical purposes. For instance, the widely 

used solution from Sanger & Sayles yields an error of about one month, which could have 

major consequences on the project schedule, budget and risk. Similar analyses can be done 

for the other problems (see chapter 6.2 and the overview of the RMSE errors in Figure 

10.21), concluding that the only solution for the single freeze pipe problem which is 

consistently usable for practical purposes is Ständer’s solution. 

Table 10.9: Time estimate for a freeze front of 120 cm, Problem 7 

 
Time 

Leibenson 

Time 

Ständer 

Time 

Sanger & 

Sayles 

Time 

Lunardini 

Time 

Khakimov 

Time 

numerical 

Time estimate 

[days] 
28.3 85.2 63.7 226.6 100.8 94.7 

Error of time 

[days] 
-66.4 -9.5 -31.0 131.9 6.1 - 

 

 

Figure 10.20: Time vs freeze front, Problem 7 
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temperature, freeze-pipe temperature, phase-change temperature and the amount of 

latent heat present.  

• The solution with the highest accuracy across the different problems studied for the 

single freeze pipe geometry is Ständer’s solution (see Figure 10.21). This solution 

generates errors for the problems considered which are within the usual limits for 

practical application. No other solution generates such consistently low errors. 

• Despite its dependably high accuracy, Ständer’s solution is not widely used in 

engineering design, according to the number of published papers found during the 

research for this thesis. Ständer’s solution may be suffering two burdens in this 

regard: its complexity, i.e. it is not based on a closed formula, and the fact that the 

original publication from Ständer is in German language (to the author’s 

knowledge, this paper has not been translated into English). 

• The analyses conducted for the freeze wall versions of Ständer’s and 

Sanger & Sayles’ formulae have led to similar conclusions: Ständer’s formula 

appears to be reliable and usually sufficiently accurate (freeze front accuracy higher 

than 5% for all but one of the problems studied) for the early stages of engineering 

design, although it produces higher errors than the solution for a single freeze pipe.  

• The evaluation of Ständer’s and Sanger & Sayles solutions for the freeze circle 

geometry has produced results of highly variable accuracy, which call for an 

extremely cautious use of these formulae. An issue which was identified with 

Ständer’s formula was that, for water contents lower than a certain value, it yields 

a slower freeze front progress for lower values of water content, which is physically 

incorrect. This issue should be present to the designer when using Ständer’s solution 

for the freeze circle, especially for ground with low water content. 

 

Figure 10.21: RMSE of the estimation of the freeze front by five approximate analytical solutions, single freeze pipe 

(logarithmic scale) 
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 Adjustment of the Sanger & Sayles formula 

In chapter 7, an attempt was made to improve the accuracy of the Sanger & Sayles’ solution 

for the single freeze pipe, while maintaining its easiness of use for practical engineering. 

The formula (more precisely the ratio 𝑎𝑟, which is the ratio of the temperature penetration 

radius to the freeze radius) was adjusted for several different conditions against verified 

numerical models. Based on these studies, an expression to calculate 𝑎𝑟 was proposed as a 

function of the problem’s parameters, such as the initial, freeze-pipe and phase-change 

temperatures, the average thermal conductivity and average specific heat of the ground, the 

latent heat content and the freeze pipe radius. The effect of the time point for the adjustment 

of 𝑎𝑟 was also studied in chapter 7.2 by comparing the adjustments for 10 and 365 days. It 

was concluded that the adjustment for 365 days provided a lower average error than the 

one for 10 days for times between 0 and 365 days after the start of freezing. 

Although the adjustment of the Sanger & Sayles formula was based on an empirical 

correlation with numerical results, the values of 𝑎𝑟 yielded by the adjustment correlate very 

well with the ratio 𝑎𝑟0.1 (ratio of the radius in which the temperature has changed by 0.1ºC 

to the freeze radius) extracted from the numerical models. This implies that 𝑎𝑟, as used in 

the formula, has indeed the physical meaning defined in Sanger and Sayles (1979).  

The adjusted formula was applied to a practical case, the Ust-Jaiwa project, in chapter 9.2.1, 

obtaining significantly better results than with the original Sanger & Sayles’ formula, in 

which 𝑎𝑟 is assumed as constant: 𝑎𝑟 = 3. Therefore, the adjusted formula is deemed to be 

useful for practical engineering design. The importance of this solution has to be considered 

also in the light that the single freeze pipe is the basic geometry for artificial ground 

freezing. For instance, this solution may also be used as a basis to calculate the closure time 

of the freeze body for other geometries. An overview of the accuracy improvement of the 

adjusted solution is presented in Figure 10.22, where it can be observed that its errors are 

under 10% for all the problems but for Problem 13. 



  

Chapter 10: Discussion of the investigations on thermal calculations for ground freezing design   

Improved Engineering Solutions for Thermal Design of Artificial Ground Freezing 219 

 

Figure 10.22: Relative error of freeze radius at t=365 days, for all problems studied for the adjusted Sanger & Sayles 

formula 

 On the applicability and practicality of numerical and analytical 

methods for thermal modelling 

The numerical models have proven to be reliable and, assuming that the numerical 

parameters are reasonably well chosen, sufficiently accurate for their use in most 

engineering projects. Furthermore, the computing times and hardware requirements have 

been found to be acceptable for practical uses even for large models, as shown in the 

example in chapter 5.17. Contrarily, approximate analytical solutions have been shown to 

produce results of variable accuracy, in some cases generating too high an error to be of 

use in practical projects (see chapter 6). 

In this regard, based on the experience gained from the investigations described in the 

previous chapters, the following recommendations, shown in Table 10.10 below, have been 

compiled. Naturally, the field of thermal calculations with phase change being large and 

complex, the recommendations will need to be critically adapted for the case in hand. 

In a nutshell, analytical and numerical methods (and also laboratory tests and monitoring) 

have both pros and cons, so it is recommendable to use several methods in combination to 

increase the quality of the results (Yan et al., 2019). Nevertheless, analytical solutions are 

by their bare nature more limited than numerical methods, especially for practical 

applications. On the other side, the advances in computing capacity in the recent decades 

have reduced one of the main disadvantages of numerical modelling, which is the higher 

computational effort required in comparison to analytical solutions.  
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Table 10.10: Recommendations on the use of numerical and analytical methods for thermal simulation and design for 

ground freezing projects 

Method 
Accuracy of 

the method 
Effort 

Degree of detail of data required 

and factors considered 

Results 

obtained 

Recommended 

use 

Numerical 

model (FDM) 

Mainly 

depends on the 

selected mesh 

size, but also 

on other 

numerical 

parameters (see 

Table 10.8). 

Typically 

longer or 

much longer 

engineering 

time required 

than with 

analytical 

methods.  

Highly detailed data required and 

possible to be considered: 

• Freeze pipe deviations  

• Variable freeze pipe 

temperature 

• Inhomogeneous ground, ground 

layers 

• Additional sources of energy 

(concrete binding, air 

temperature at open freeze 

walls) 

• Accidental events (e.g. freeze 

pipe outage) 

• T(x,t) 

Temperat

ure field  

• X(t) 

Freeze 

front 

advance 

• P(t) 

Power 

consumpt

ion 

Highly 

recommended 

for basic and 

detail 

engineering 

Ständer 

Quite accurate 

for the single 

freeze pipe and 

freeze wall 

problems, of 

variable 

accuracy for 

the freeze 

circle problem 

(see chapter 6). 

Complex to 

use. Added 

difficulty of 

the paper 

being in 

German and 

not widely 

known. 

Low detail of data required. 

Detailed conditions of practical 

engineering projects can only be 

considered through rough 

simplifications. The following can 

be taken into account: 

• Regular freeze pipe spacing 

• Variable freeze pipe 

temperature 

• Homogeneous ground 

• No additional sources of energy 

 

• X(t) 

Freeze 

front 

advance 

 

Convenient for 

preliminary 

design (tender 

phase, concept 

engineering). 

To be used 

very cautiously 

for the freeze 

circle 

geometry. 

Sanger & 

Sayles  

Of variable 

accuracy, 

probably 

insufficient. 

Closed form, 

easy to use. 

Low detail of data required. 

Detailed conditions of practical 

engineering projects can only be 

considered through rough 

simplifications. The following can 

be taken into account: 

• Regular freeze pipe spacing 

• Constant freeze pipe 

temperature 

• Homogeneous ground 

• No additional sources of energy 

 

• X(t) 

Freeze 

front 

advance 

• P(t) 

Power 

consumpt

ion 

Order-of-

magnitude 

calculations 

only. It should 

be checked or 

compared with 

other 

approaches. 

Sanger & 

Sayles 

modified with 

adjusted 

parameter 𝑎𝑟 

(for single 

freeze pipe) 

Quite accurate, 

especially in 

the calibrated 

time of 1 year 

(see chapter 7). 

Closed form, 

easy to use. 

Low detail of data required. 

Detailed conditions of practical 

engineering projects can only be 

considered through rough 

simplifications. The following can 

be taken into account: 

• Regular freeze pipe spacing 

• Constant freeze pipe 

temperature 

• Homogeneous ground 

• No additional sources of energy 

• X(t) 

Freeze 

front 

advance 

• P(t) 

Power 

consumpt

ion 

Convenient for 

preliminary 

design (tender 

phase, concept 

engineering) 
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 Future lines of investigation on thermal design of artificial 

ground freezing 

The present thesis is focused on the improvement of engineering solutions for thermal 

design of AGF, specifically on the verification of the conditions under which numerical 

models and existing analytical solutions for thermal ground freezing design provide 

reasonably accurate results. The potential future lines of investigation derived from these 

studies are presented in this chapter. 

 Future lines of investigation on numerical modelling for AGF 

thermal design 

In the light of the findings of the thesis, there are several future lines of investigation which 

seem of interest regarding numerical modelling for AGF. To start with, although extensive 

sensitivity analyses of thermal numerical models with phase change have been performed 

in chapter 5, further sensitivity analyses would be very useful. Additional parameters could 

be studied, along with other numerical schemes (for instance FEM instead of FDM), 

additional software packages (e.g. TEMP/W or ABAQUS) or methods for the simulation 

of the phase change process other than the enthalpy method. For instance, the effects on the 

model accuracy of the type of mesh generation, type of mesh elements (tetrahedra, 

pyramids or hexahedra) and mesh quality metrics could be evaluated further. Specific mesh 

quality metrics focused on thermal simulations with phase change may be developed. 

Structured and unstructured meshes may be studied in more detail, e.g. for the freeze wall 

and freeze circle geometries. Other ideas to improve the computing efficiency of the code 

should also be investigated, such as adaptive meshes which are modified during the 

computation of the problem, which could be finer at the start of the simulation or near the 

(moving) interface boundary. The accuracy and sensitivity of the simulations should also 

be studied for the thawing case. These analyses could provide further practical rules for 

numerical modelling to complement the code of good practice presented in chapter 10.2, 

such as the ones in Voller and Cross (1981) on the time step size.  

In addition to further sensitivity analyses, basic investigation should also be performed on 

new, powerful, accurate methods to numerically solve thermal problems with phase change. 

In the opinion of the author, this needs to be tackled as a multidisciplinary, joint effort 

between engineers and scientists (e.g. physicists and mathematicians). Until now it appears 

to have been a slight disconnect between the theoretical and practical areas of research, as 

exemplified in chapter 4.4.1.2. The following insight from the renowned 

mathematical-physicist John Crank in 1987 remains up-to-date and is shared by the author, 

especially in the hope that this thesis also contributes to enhance a more multidisciplinary 

approach on these problems:  
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“The broad spectrum of active research workers includes three groups: engineers 

and others with practical problems; numerical analysts producing suitable 

numerical algorithms; and pure mathematicians who decide that certain problems 

and their solutions exist, are properly posed, and may even be unique. They also 

examine the convergence and stability properties of numerical schemes. A few 

people fit into all three groups. It is hoped that this book will help to alleviate the 

usual difficulties of communication between the various interested parties.” (Crank, 

1987). 

Comparing the results of numerical models against exact analytical solutions has been the 

approach used in this thesis to validate the numerical simulations. However, as only a few 

exact analytical solutions for thermal problems with phase change are known, this is only 

possible for very specific cases and geometries. Thus, experimental data are also very 

useful for the validation of the models. Unfortunately, the experimental data which could 

be found during the literature research were not optimal for model calibration. Indeed, too 

many unknowns remain in the published data from engineering projects, and in the case of 

experiments, they were typically performed during very short periods of time of several 

hours. Therefore, it would definitely be useful in order to validate numerical models (and 

approximate analytical solutions) if well-documented and accurately monitored large-scale 

experiments with longer durations (i.e. several weeks to months) would be performed. 

Reliable monitoring data from engineering projects may also serve as a suitable alternative 

or complement to experiments in some cases, although the controlled environment of the 

laboratory usually leads to a higher knowledge of the system and its variables and therefore 

tends to provide more accurate data.  

 Future lines of investigation on analytical solutions for AGF 

thermal design 

There is certainly room for investigation and improvement on approximate analytical 

solutions for thermal engineering design of ground freezing projects. The accuracy of 

several analytical solutions has been evaluated in the present thesis for seven different 

problems, for three common geometries: single freeze pipe, freeze wall and freeze circle. 

This approach should be expanded by evaluating additional problems (for instance with 

other geometries, different boundary conditions, other values of the variables assessed here 

or by studying additional variables). This could be the basis for a more detailed guideline 

for practitioners on the use of the existing analytical solutions.  

Another potential improvement is that the adjustment performed for Sanger & Sayles’ 

solution for the single freeze pipe could be expanded to consider the dependency of the 

ratio 𝑎𝑟 with further factors, such as the thermal properties of the ground in frozen and 

unfrozen status and the duration of the freezing process. The calibration of the formula 

could also be done using the RMSE over time instead of the error of the formula at a certain 

point in time. This adjustment approach could also be applied to the Sanger & Sayles’ 

solutions for the freeze wall and freeze circle geometries, potentially providing designers 
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with practical solutions which at the same time yield accurate results. Additionally, these 

adjustments should also be checked against further laboratory tests and monitoring data 

from engineering projects. 

Ständer’s work, which was checked against short-term laboratory experiments, could be 

further built upon by validating or calibrating it against numerical solutions or experiments 

with longer thermal times. In particular, the accuracy of Ständer’s solution for the freeze 

circle geometry should be reviewed and possibly improved. In addition, it would be useful 

to translate the paper from Ständer (1967) into English in order to increase its visibility in 

the engineering and mathematical communities.  

Another idea for further investigations which could be potentially applied in engineering 

design is to expand Ständer’s and/or Sanger & Sayles’ solutions, which only provide the 

freeze front location, by combining them with steady-state temperature distributions such 

as the ones in Hu and Han (2013) and Hu and Zhang (2013). In this way, solutions would 

be created for time-dependent temperature distributions 𝑇(𝑟, 𝑡). 

The present thesis has focused on the evaluation of the accuracy of the analytical solutions 

in terms of the temperature field and freeze front. Further analyses should be performed in 

order to verify the accuracy of the existing solutions available to estimate the power 

consumption, such as the one by Sanger and Sayles (1979). 

 Outlook on thermal design of artificial ground freezing 

Thermal design of artificial ground freezing has evolved in the past from being done based 

on empirical and analytical methods to using advanced 2D and 3D numerical models, which 

is the current trend. Although there is extensive literature on these methods available to the 

design engineer, a standard or norm on ground freezing design seems to be missing. It 

would be very practical for design engineers if a standard for thermal and geotechnical 

design of artificial ground freezing projects (AGF) were drafted. This standard could be 

based on the wide available experience and research on this topic, and it would assist in 

spreading the best practices and minimising the risks in the design of AGF projects. 

Another substantial complement to the evaluations performed in the thesis would be 

assessing the outcomes from an economic and project perspective. That is, the implications 

of the results could be further evaluated in detail in terms of the consequences to the project 

budget, time schedule and health and safety risks.  

Finally, an essential part of the broad outlook in thermal design of ground freezing projects 

is, in the view of the author, the return to the larger picture in the scientific setting. Finding 

the solution to Stefan problems, which also arise in a number of other engineering and 

scientific disciplines (see chapter 3), stands in the core of thermal design of AGF. Namely, 

these academic fields face similar problems and may both profit from and contribute to the 

studies in thermal ground freezing design. Therefore, the analytical and numerical 

techniques for AGF design could potentially be extrapolated to Stefan problems in other 
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areas, such as biology, economics, metallurgy, etc., and vice versa, solutions originated 

from these disciplines may be applicable to ground freezing thermal design.  
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 Conclusions and implications 

Dependable and practical solutions for thermal problems with phase change are required 

for engineering design of artificial ground freezing projects. In this regard, the present 

thesis has investigated the applicability of numerical and analytical methods for this 

purpose.  

Analytical solutions for Stefan problems, which describe thermal problems with phase 

change, were searched for in the literature in chapter 3. The literature research showed that, 

as a result of the complexity of the mathematical problem involved, only a few exact 

solutions are available for such problems. One of those solutions is the Neumann solution, 

which solves the problem of a semi-infinite material with a cooled plane at its boundary. 

This solution was used as the benchmark against which the numerical model was verified. 

The research on various numerical methods to solve Stefan problems has advanced 

significantly in the past decades. However, when it comes to the design of the ground 

freezing measure for a specific project, the complexity of the model tends to limit the 

number of applicable methods for phase change simulation. Indeed, the enthalpy method 

(and variants of it, e.g. the apparent heat capacity method) is the most commonly used 

method in numerical calculations for ground freezing design, because the alternative 

methods (see chapter 4.3) are of limited application for irregular geometries or complex 

boundary conditions. This is also the reason why the present thesis has focused its study on 

the enthalpy method. Accordingly, a code based on the apparent heat capacity method was 

implemented in the numerical software FLAC3D.  

The results of the enthalpy method deviate from the exact solutions (as any numerical 

method) to a variable extent. After performing extensive sensitivity analyses on these 

grounds in chapter 5, it was found that numerical solutions for thermal problems with phase 

change are typically practical and efficient and provide sufficiently accurate results, as long 

as certain good practices for modelling are followed. However, if they are disregarded, for 

instance, in the case that too coarse meshes are used, the results may contain considerable 

oscillating errors, jeopardizing the accuracy and usefulness of the numerical model. From 

all the numerical parameters studied, the mesh size was found to be the most determinant 

one for the accuracy of the results.  

With regard to analytical methods, as no exact solutions for the usual problems in thermal 

design of artificial ground freezing exist, approximate solutions which were developed with 

the focus on solving practical engineering problems were investigated and were presented 

in chapter 3.4. Five of them were evaluated in detail in chapter 6 under different initial and 

boundary conditions by comparing them against numerical models which used analogue 

numerical parameters to the model previously verified against the exact Neumann solution. 

This was done for three usual geometries in engineering practice: single freeze pipe, freeze 

wall and freeze circle. It was concluded that the solution from Ständer (1967) typically 

yields the most accurate results for the single freeze pipe and freeze wall geometries, 
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whereas it is the most complex one to use, because it is not in the form of a simple closed 

formula.  

For the freeze circle geometry, the solutions from both Sanger & Sayles and Ständer yield 

results of very variable accuracy. As a further result of these analyses, Sanger & Sayles’ 

solution for the single freeze pipe (Sanger and Sayles, 1979) was adjusted in chapter 7 

against the verified numerical model. This made it possible to create an adjusted formula 

with enhanced accuracy but maintaining its ease-of-use for engineering design and physical 

significance. This approach could also be potentially useful to improve the analytical 

solutions for other geometries, such as the freeze wall and freeze circle. 

Data from experiments and engineering projects were used in chapters 8 and 9 to further 

contrast the results of the numerical and analytical models. This provided a qualitative 

comparison, which confirmed the usability of these models. Especially the numerical 

models proved to be of high and stable accuracy over the different cases. While the 

limitations of the applicability of the analytical models in view of the complexity of real 

problems were apparent, it was shown that the proposed adjustment to Sanger & Sayles’ 

solution provided a major improvement in accuracy compared to their original solution. In 

any case, the available experimental data is limited by the short duration and small scale of 

such studies and the data from projects is typically bound with many unknowns which stem 

from the practical difficulties of measuring many required variables, such as the thermal 

properties of the ground, the deviations of the freeze pipes and external thermal influences, 

for instance, the ones from the excavation process itself. These limitations prevented an 

exhaustive quantitative verification of the models used against experimental or project data.  

The main results of the undertaken investigations were condensed and discussed in 

chapter 10. Noteworthy conclusions were presented in terms of the effect of the numerical 

parameters on the accuracy of thermal calculations. In this regard, a very high linear 

correlation was found between the RMSE (root-mean-square error) of the freeze front and 

the mesh size. It was also shown that the computing time is very correlated with the number 

of time steps simulated and, less markedly, with the number of elements in the model and 

the update interval of the freeze status of the elements. Whereas the time step was found 

not to influence the accuracy of the results for the explicit method, it was found to be 

correlated with the error when using the implicit method. Finally, it was shown that the 

mesh size and the duration of the plateaux typical of the enthalpy method are highly linearly 

correlated. 

Based on the sensitivity analyses performed, the errors of the numerical models were 

extensively studied in the present dissertation in order to determine its application 

boundaries in engineering design and to define a code of good practice for numerical 

modelling containing, for instance, advice on appropriate time steps, meshing and other 

numerical parameters (see chapter 10.2). This code of good practice should be used as a 

starting point, whereas numerical experiments have to be performed also in engineering 

design in order to achieve suitable accuracy within an acceptable computing time. In fact, 

a purely theoretical analysis of the accuracy may support the numerical experimentation, 
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but it cannot be used alone to determine the accuracy of the model (see also Causon and 

Mingham (2010)). These recommendations and the current limitations of numerical 

modelling should, however, be present in the mind of the designers. 

Further works should be strived for in the area of thermal calculations with phase change 

and Stefan problems in general, given their applicability in wide-ranging science and 

engineering fields. In-depth analyses of the effect of further numerical parameters, such as 

the type of mesh, would be interesting in order to optimise the models used in engineering 

design of ground freezing projects. Additional studies of the accuracy of numerical models 

with different commercial software would also provide more confidence on their reliability 

under different conditions. The research should continue with the focus on 

multidisciplinary collaboration between mathematicians, who work on the development of 

new numerical and analytical solutions for Stefan problems, and practitioners, such as 

engineers, who require those methods for their designs.  

The present thesis has confirmed that numerical modelling is useful for thermal engineering 

design of artificial ground freezing problems, as it is sufficiently accurate and 

computationally efficient. For instance, it has been shown in chapter 5 that numerical 

models can achieve adequate accuracy and reasonable computing times for large-scale 

models. The accuracy was found to be satisfactory under very different boundary and initial 

conditions. Moreover, numerical modelling is very flexible with respect to the geometry, 

material characteristics and initial and boundary conditions which can be simulated. For 

instance, it is possible to adjust the numerical model to simulate practical details such as a 

time-dependent freeze pipe temperature, freeze pipe deviations from their theoretical 

positions as a result of drilling effects, inhomogeneous ground, etc.  

The evaluation of approximate analytical solutions has also proven their applicability for 

different usual geometries in ground freezing projects, although their limitations in terms 

of accuracy and consideration of specific project conditions make them more suitable for 

the early engineering phases, such as concept design.  
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