
NEV: Faster and Smaller NTRU Encryption
using Vector Decoding

Jiang Zhang(�) , Dengguo Feng , and Di Yan

State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China.
zhangj@sklc.org,fengdg@263.net,yand@sklc.org

Abstract. In this paper, we present NEV – a faster and smaller NTRU
Encryption using Vector decoding, which is provably IND-CPA secure in
the standard model under the decisional NTRU and RLWE assumptions
over the cyclotomic ring Rq = Zq[X]/(Xn + 1). Our main technique is
a novel and non-trivial way to integrate a previously known plaintext
encoding and decoding mechanism into the provably IND-CPA secure
NTRU variant by Stehlé and Steinfeld (Eurocrypt 2011). Unlike the orig-
inal NTRU encryption and its variants which encode the plaintext into
the least significant bits of the coefficients of a message polynomial, we
encode each plaintext bit into the most significant bits of multiple coef-
ficients of the message polynomial, so that we can use a vector of noised
coefficients to decode each plaintext bit in decryption, and significantly
reduce the size of q with a reasonably negligible decryption failure.

Concretely, we can use q = 769 to obtain public keys and ciphertexts
of 615 bytes with decryption failure ≤ 2−138 at NIST level 1 security,
and 1229 bytes with decryption failure ≤ 2−152 at NIST level 5 security.
By applying the Fujisaki-Okamoto transformation in a standard way, we
obtain an IND-CCA secure KEM from our basic PKE scheme. Compared
to NTRU and Kyber in the NIST Round 3 finalists at the same security
levels, our KEM is 33-48% more compact and 5.03-29.94X faster than
NTRU in the round-trip time of ephemeral key exchange, and is 21%
more compact and 1.42-1.74X faster than Kyber.

We also give an optimized encryption scheme NEV′ with better noise
tolerance (and slightly better efficiency) based on a variant of the RLWE
problem, called Subset-Sum Parity RLWE problem, which we show is
polynomially equivalent to the standard decisional RLWE problem (with
different parameters), and maybe of independent interest.

1 Introduction

The NTRU encryption proposed by Hoffstein, Pipher and Silverman [24] is one of
the first publicly known practical public key encryptions (PKEs) on lattices. The
security of NTRU encryption was originally stated as its own assumption, but
after more than 25 years of studies, there is no significant algorithmic progress
against it (except for overstretched parameters [17,29]). Now, it is more natural

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

2 Jiang Zhang� , Dengguo Feng , and Di Yan

to view NTRU encryption as a cryptosystem based on two hardness assump-
tions [18,43]: the decisional NTRU assumption which roughly says that the quo-
tient h = g/f of two small polynomials g, f is pseudorandom, and the RLWE
assumption [32,44] which says that it is hard to recover e from (h, hr+ e) when
h is uniformly random, and r, e are randomly chosen small polynomials. It is
worth to note that the first assumption can be removed for appropriately chosen
(but very inefficient) parameters [43].

In NIST post-quantum cryptography (PQC) standardization process [36],
NTRU was one of the four PKEs/KEMs in NIST Round 3 finalists [37], but it
was not selected for standardization by NIST in the end [38]. One main reason is
that it is neither the fastest nor the smallest among the lattice KEM finalists [38].
In particular, compared to Kyber which was selected as the NIST KEM standard,
NTRU has 8.3-18.6% larger public key and ciphertext sizes (see Table 1) and
8.21-45.34X slower key generation (see Table 2). Several recent efforts [18,20,33]
have been made to improve the performance of NTRU.

Lyubashevsky and Seiler [33] proposed a NTRU variant, called NTTRU, over
the specific cyclotomic ring Z7681[x]/(x

768 − x384 + 1) that supports Number
Theory Transform (NTT), and obtained significant speedup over the original
NTRU that uses rings (e.g, Zq[x]/(x

n− 1)) do not support NTT. Later, Duman
et al. [18] extended the idea of [33] to other NTT-friendly rings of the same
form Zq[x]/(x

n−xn/2+1), and obtained comparable efficiency improvement for
flexible choices of parameters. Note that given an NTRU public key h = pg/f
for some plaintext modulus p, the message m in the original NTRU encryption
c = hr +m will be multiplied by the secret f in decryption. Thus, purposefully
choosing a “bad” m can significantly increase the decryption failure (by more
than 2100 times for standard parameter choices [18]), which might be utilized
by the adversary in a decryption failure attack to obtain information of f . To
resist this attack, the authors [18] also provide three transformations to detach
the decryption failure from the message. One of their main transformation called
NTRU-A (that is used in comparison with related works in [18, Table 3]) requires
a new assumption called RLWE2, which is closely related to the RLWE problem,
but the authors only provide heuristic arguments to the equivalence of RLWE2
and RLWE [18]. Despite of the efficiency improvement, the sizes of [18, 33] are
still larger than that of Kyber at the same security levels (see Table 3).

Fouque et al. [20] proposed another NTRU variant, called BAT, with a GGH-
like encryption and decryption paradigm over the power of 2 cyclotomic ring
Zq[x]/(x

n + 1), which requires a very complex trapdoor inversion algorithm.
Compared to other NTRU schemes, BAT has the smallest sizes (see Table 3).
But it has a very slow key generation, which is 266-2131X slower than Kyber,
and is even 7-104X slower than NTRU (see Tables 2 and 5). Moreover, BAT
needs a strong RLWR with binary secret assumption.

1.1 Our results

We present a faster and smaller NTRU-like Encryption using Vector decoding,
called NEV-PKE, which is provably IND-CPA secure under the decisional NTRU

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 3

and RLWE assumptions over the cyclotomic ring Rq = Zq[X]/(Xn + 1) in the
standard model, and thus can be directly used as a passively secure key exchange
without resorting to the (quantum) random oracle model. Our main technique
is a novel way to non-trivially integrate a previously known plaintext encoding
and decoding mechanism [4, 41] into the provably secure NTRU variant [43],
which allows us to use a very small modulus q and obtain smaller public key and
ciphertext sizes with a reasonably negligible decryption failure (see Sec. 1.2).

Concretely, the small modulus q = 769 can be used to achieve a decryption
failure ≤ 2−138 for NIST level 1 security and ≤ 2−152 for NIST level 5 security.
With a compressed representation of Rq elements (see Sec. 6.5), we can obtain
public keys and ciphertexts of 615 and 1229 bytes respectively at the two security
levels, which is 33-48% more compact than NTRU, and is 21% more compact
than Kyber (see Table 1). By applying the Fujisaki-Okamoto transformation to
NEV-PKE, we obtain an IND-CCA secure KEM called NEV-KEM. We implement
our schemes using reference C language and AVX2 instructions in experiment.
Due to the use of (partial) NTT multiplications and inversions in Rq (see Sec. 6.1
and 6.2), our NEV-KEM is 5.03-29.94X faster than NTRU and 1.42-1.74X faster
than Kyber in the round-trip time of ephemeral key exchange.

We also give an optimized NTRU encryption called NEV-PKE′ with better
noise tolerance based on a variant of the RLWE problem, called Subset-Sum
Parity RLWE (sspRLWE) problem, which can also be seen as a generalization of
the RLWE2 problem in [18]. We show that the sspRLWE problem is polynomially
equivalent to the decisional RLWE problem (with different parameters), which
partially solves the problem of proving the equivalence of RLWE2 and RLWE
in [18]. By assuming that the concrete hardness of sspRLWE is equal to RLWE
with the same parameters as for RLWE2 in [18], NEV-PKE′ can achieve a smaller
decryption failure and slightly better performance than NEV-PKE. Concretely,
we can use the same modulus q = 769 to achieve a decryption failure ≤ 2−200

at both NIST levels 1 and 5 security.
One nice feature which is worth to mention is that our schemes NEV-PKE and

NEV-PKE′ are more robust than NTRU to a decryption failure attack because
the plaintext has little contribution to the decryption noise in NEV-PKE, and
the plaintext in NEV-PKE′ will essentially be masked using a random secret
share algorithm (see Sec. 1.2 below). Similar to Newhope [4] that uses the power
of 2 cyclotomic ring Zq[x]/(x

n + 1), one possible limitation for our schemes is
that we cannot find a proper parameter set for NIST level 3 security, but since
our performance at NIST level 5 security is already comparable with existing
schemes at NIST level 3 security (see Tables 1 and 2), we believe this would not
be a real problem in practice.

1.2 Technical Overview

We begin by first recalling the original NTRU encryption. Formally, let n, q, p
be three positive integers, and p coprime to q. Let Rq = Zq/(x

n−1). The public
key h and ciphertext c of NTRU has forms of:

h = pg/f, c = hr +m,

4 Jiang Zhang� , Dengguo Feng , and Di Yan

where g, f, r are polynomials with small coefficients, m is the message polyno-
mial. The decryption is done by first computing u = fc = pgr + fm ∈ Rq,
and then computing m = f−1u ∈ Rp. The decryption requires the ℓ∞ norm of
pgr+fm be smaller than q−1

2 (i.e., ∥pgr+fm∥∞ < q−1
2), and f be invertible in

both Rq and Rp for correctness, where p is typically equal to 3 for ternary mes-
sage polynomial m. To simplify the decryption, f is usually set to have the form
of f = pf ′+1 such that f−1 mod p = 1. In this case, we have u = pgr+pf ′m+m,
where the decryption noise pgr + pf ′m essentially has the same form to that of
RLWE-based encryptions (except that m in the term pf ′m is replaced with a
random error polynomial). There are two main reasons why NTRU has larger
public keys and ciphertexts sizes than its RLWE-based counterparts: 1) when
fixing all other parameters, the decryption noise with p = 3 in NTRU is 1.5X
larger than that of its RLWE counterparts where p = 2 is typically used; and 2)
the decryption failure for NTRU is more subtle because the term pf ′m in the
decryption noise usually has the same magnitude as pgr, which may be utilized
by the adversary in a decryption failure attack with a purposefully chosen “bad”
message m. This is why NTRU [11] submitted to NIST PQC standardization
sets its parameters to have no decryption failure.

Our basic idea is to use the plaintext encoding and decoding mechanism
in [4,41] to increase the noise tolerance of NTRU, which basically encodes each
plaintext bit into the most significant bit of multiple coefficients of the message
polynomial, so that a vector of noised coefficients can be used to decode each
plaintext bit in decryption. We note that this mechanism was, to the best of our
knowledge, not used in NTRU and its variants before, because it is not quite
compatible with the central features of NTRU: 1) m is required to be a random
polynomial for the security of the ciphertext c = hr+m (since m is directly used
as the RLWE error); and 2) fm is required to be small for decryption correctness.
We solve the above two technical issues by slightly modifying the key generation
and the plaintext encoding/decoding of the provably IND-CPA secure NTRU
variant [43] (whose security is independent from the message polynomial) with
a small polynomial v = (1 − xn/k), where n/k is the plaintext length and is
fixed to be 256 for our interest.1 Our construction crucially relies on the power
of 2 cyclotomic ring Rq = Zq[X]/(Xn + 1). In particular, v = (1 − xn/k) has a
nice inverse v−1 = q+1

2 (1 + xn/k + · · ·+ x(k−1)n/k) ∈ Rq, which will serve as our
plaintext encoding polynomial. The public key and ciphertext of our NEV-PKE
has forms of:

h = g/(vf ′ + 1), c = hr + e+ v−1m,

where g, f ′, r, e are small polynomials, and m is the plaintext polynomial only
having non-zero binary coefficients in the first 256 coordinates. For decryption,
we first compute u = (vf ′ + 1)c = gr + vf ′e + f ′m + e + v−1m. Since v−1m ∈
Rq essentially copies k = n/256 times the first 256 coefficients of m to obtain
n coefficients, we can use k coefficients in u to decode each plaintext bit in
decryption (if ∥gr + vf ′e + f ′m + e∥∞ ≤ q−1

4 holds with high probability) as

1 We note that a 256-bit session key is sufficient for most real applications, and that
the NIST PQC standard Kyber also only supports a 256-bit plaintext [9].

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 5

in [4,41]. The major reason that we can obtain a reasonably negligible decryption
failure with very small modulus is because: 1) the magnitude of the major noise
term vf ′e in our NEV-PKE is at least

√
2 times smaller than that of using p = 2, 3

or x+ 2 in NTRU and its provable version [43]; 2) m has at most 256 non-zero
binary coefficients; and 3) the use of vector decoding will lower the decryption
failure (using a single coefficient) by roughly k times in the exponent.

We clarify that the slight modification of the public key in NEV-PKE will not
require a stronger NTRU assumption because 1) the use of a polynomial v = x+2
was recommended by the authors of NTRU as early as 2000 [25] (note that vf ′+1
is small if f ′ is small) and was investigated in [6,22,23,27,35,43]; 2) by replacing
v = (1−xn/k) with v = p we recover the provably IND-CPA secure NTRU in [43],
and the proof for the public key uniformity in [43, Theorem 3] mainly depends
on the properties of the distributions of g and f ′, which essentially applies to
any invertible v ∈ Rq (even without changing any other parameters); and 3) the
currently concrete security estimation also only cares about the distributions of
g and f ′, since v = (1− xn/k) (or v = p) is invertible and publicly known which
can be somehow removed in lattice attacks (see Sec. 5.1).

One nice feature of our NEV-PKE is that the magnitude of f ′m is much
smaller than that of gr + vf ′e + e because m only has non-zero binary coeffi-
cients in the first 256 coordinates. This means that our NEV-PKE is more robust
than NTRU to a decryption failure attack with maliciously chosen bad messages
in generating ciphertexts. Experimentally, the best choice for the adversary to
obtain a failure decryption in NEV-PKE is to use a message polynomial with
all ones in the first 256 coordinates, which will only increase the decryption
failure by a factor of 221 and 214 for parameters NEV-512 and NEV-1024, respec-
tively (in contrast, NTRU has a factor more than 2100 for standard parameter
choices [18]), which means that the resulting decryption failure (i.e., 2−117 for
NEV-512 and 2−138 for NEV-1024) is still sufficiently small for a common re-
striction of at most 264 decryption queries. We note that one can further remove
this dependence on m by using the generic transformation (say, NTRU-C) with
a small price of an extra 32 bytes in ciphertexts in [18].

An optimization based on the sspRLWE assumption. Based on the observation
that in the application of using PKEs as KEMs, the session key is randomly
chosen and not necessarily known in advance, we also provide an optimized
construction NEV-PKE′ which essentially merges the sampling of the encryption
noise and the random session key in a single step: one can roughly think that the
encryption noise is a random secret share of a random session key. Specifically,
the public key and ciphertext of NEV-PKE′ has forms of

h = vg/(vf ′ + 1) = g/(f ′ + v−1), c = hr + e,

where g, f ′, r, e are randomly chosen small polynomials. Note that by setting
v = p, the above construction is essentially the same as the original NTRU
encryption. For decryption, we first compute u = (f ′+ v−1)c = gr+ f ′e+ v−1e.

6 Jiang Zhang� , Dengguo Feng , and Di Yan

Let v̄ = 1 + xn/k + · · ·+ x(k−1)n/k, e0 = v̄e mod 2, and 2e1 = v̄e− e0, we have

v−1 =
q + 1

2
v̄, v−1e = e1+

q + 1

2
e0 ∈ Rq, and u = gr+f ′e+e1+

q + 1

2
e0 ∈ Rq.

Letm be a polynomial only having n/k = 256 non-zero coefficients that are equal
to the first 256 coefficients of e0. By the nice property of Rq = Zq[x]/(x

n+1) and
the choice of v̄ (and v−1), it is easy to check that e0 is essentially a polynomial
which copies k = n/256 times the first 256 coefficients of m (and thus itself)
to obtain n coefficients. Hence, we can use the vector decoding technique [4,41]
again to recover m from u, and output m as the session key. Clearly, the decryp-
tion noise gr + f ′e+ e1 in NEV-PKE′ is much smaller than that of NEV-PKE.

To obtain an IND-CCA secure KEM, we have to convert NEV-PKE′ into
a PKE where m (or equivalently v̄e mod 2) is determined before e. Since v̄e
essentially adds k coefficients (with ± signs) of e to a single coefficient, we can
easily achieve the goal of “inverting v̄e mod 2 to obtain e” by using binomial
noise distribution Bη. Take η = 1 and k = 2 as an example, we can “invert”
a plaintext bit b∗ ∈ {0, 1} to 2 samples from B1 as follows: randomly choose
b1, b2, b3 ← {0, 1}, set b0 = b∗⊕b1⊕b2⊕b3, and output e0 = b0−b1, e1 = b2−b3.
It is easy to check that e0 ± e1 mod 2 = b∗, and e0, e1 ∼ B1 if b∗ is random.

One problem is that we do not know how to directly prove the IND-CPA,
or even OW-CPA security of NEV-PKE′ under the RLWE assumption. For this,
we introduce a variant of the RLWE problem, called subset-sum parity RLWE
problem (sspRLWE), which basically says that it is hard to compute v̄e mod 2
given an RLWE tuple (h, hr+ e) as input. We note that our sspRLWE can also
be seen as a generalization of the RLWE2 problem in [18], which essentially
asks to compute v̄e mod 2 for v̄ = 1 (or equivalently k = 1). At first glance,
one might think that sspRLWE is hard if its corresponding RLWE is hard.
Unfortunately, even in the special RLWE2 setting, the authors [18] only provide
heuristic arguments for its equivalence to RLWE.

In Sec. 4.3, we show that the sspRLWE problem with discrete Gaussian noise
distribution is polynomially equivalent to the DRLWE problem (with different
Gaussian parameters), which can be extended to the binomial distribution by
a standard argument using Rényi divergence [5]. Our proof is based on a very
simple observation: v̄(2e1 + e0) = v̄e0 mod 2, and one can naturally convert a
DRLWE instance (h, b = hr+e1) to an sspRLWE instance (h′ = 2h, b′ = 2b+e0)
(note that when both e1 and e0 follow discrete Gaussian distributions, so does
2e1 + e0 [39]). Then, if (h, b) is computationally indistinguishable from uniform,
the adversary can obtain no information about v̄e0 mod 2 from (h′, b′). Since
this proof also applies to v̄ = 1, we partially solve the problem of connecting
RLWE2 to RLWE (for sufficiently large parameters). We also provide two con-
crete theorems for basing sspRLWE with k = 1 (namely, RLWE2) and k = 2
on the RLWE problem with binomial noise distribution B1 and uniform binary
noise distribution, respectively. The two proofs are mainly based the fact that
e mod 2 = 0⇔ e = 0 for any variable e ∈ {−1, 0, 1}. Note that our parameter set
NEV′-512 exactly corresponds to the case of k = 2. We believe that those proofs
provide a good confidence to make the reasonable assumption: the concrete hard-

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 7

ness of sspRLWE is equal to RLWE with the same parameters. For those who
is unsatisfying with this assumption, we recommend to use NEV-PKE, which is
provably IND-CPA secure under the standard NTRU and RLWE assumptions,
and only has slightly worse decryption failure and performance.

Table 1. Comparison between our NEV-KEMs, NTRU and Kyber in sizes

Schemes
|pk| |sk| |C| Dec. LWE NIST Improv.

(Bytes) (Bytes) (Bytes) Failure Estimator Security Ratio

Kyber-512 800 1632 768 2−178 140

Level 1

21.56%

NTRU-HPS2048677 930 1234 930 - 170 33.87%

NTRU-HRSS701 1138 1450 1138 - 158 45.96%

Our NEV-512 615 1294 615 2−138 141 -

Our NEV′-512 615 1294 615 2−200 145 -

Kyber-768 1184 2400 1088 2−164 201
Level 3

-8.19%†

NTRU-HPS4096821 1230 1590 1230 - 199 0.08%†

Kyber-1024 1568 3168 1568 2−174 270

Level 5

21.62%

NTRU-HPS40961229 1842 2366 1842 - 296 33.28%

NTRU-HRSS1373 2401 2983 2401 - 300 48.81%

Our NEV-1024 1229 2522 1229 2−152 281 -

Our NEV′-1024 1229 2522 1229 2−200 292 -

1.3 Comparison to the State of the Art

We give a detailed comparison between our KEMs, NTRU and Kyber in Tables 1
and 2. The column “LWE estimator” in Table 1 presents the concrete security
estimates obtained by using the LWE estimator script [1]. The columns “Improv.
Ratio” in Table 1 and “Speedup” in Table 2 are obtained by dividing the total
sizes/timings of the corresponding schemes in an ephemeral key exchange by
that of our NEV-KEM (i.e., NEV-512 and NEV-1024) at the same security levels,
except that we obtain the figures (marked with †) for Kyber768 and NTRU-
HPS4096821 at NIST level 3 security by dividing that of our KEMs at NIST
level 5 security (i.e., NEV-1024). One can see that our NEV-KEM using NEV-1024
has the same public key and ciphertext sizes as that of NTRU-HPS4096821, but
is still 4.10-11.05X faster: because our ring allows (partial) NTT. Compared
to Kyber768, our NEV-KEM using NEV-1024 has size 8.19% larger but is 1.2X
faster: because we do not have to expand a seed to a random matrix.

In Table 3, we compare our KEMs with three recent NTRU variants in sizes,
where the figures in the column “LWE estimator” for schemes based on RLWE2,
RLWR and sspRLWE problems are all obtained by using the assumption that
the concrete hardness of those problems are equal to their corresponding RLWE
problems with the same parameters. In Sec. 7, we will also compare the concrete

8 Jiang Zhang� , Dengguo Feng , and Di Yan

Table 2. Comparison between our NEV-KEMs, NTRU and Kyber in efficiency

Schemes
KeyGen Encap Decap KeyGen Encap Decap Speedup

(Ref) (Ref) (Ref) (AVX2) (AVX2) (AVX2) (Ref/AVX2)

Kyber-512 132 334 167 834 195 024 32 996 47 514 34 816 1.67/1.42X

NTRU-HPS2048677 4 957 166 220 554 293 126 320 234 82 991 62 907 18.46/5.74X

NTRU-HRSS701 5 469 959 125 559 309 743 287 524 54 270 66 801 19.92/5.03X

Our NEV-512 95 007 88 131 113 268 21 192 33 694 26 297 -

Our NEV′-512 89 154 83 978 110 463 20 620 30 787 23 841 -

Kyber-768 217 023 263 971 303 945 54 789 72 268 53 822 1.21/1.19X†

NTRU-HPS4096821 6 645 818 251 935 280 318 450 336 96 475 78 522 11.05/4.10X†

Kyber-1024 329 555 377 541 421 837 73 562 97 756 76 454 1.74/1.62X

NTRU-HPS40961229 14 944 617 484 755 654 931 - - - 24.76/-X

NTRU-HRSS1373 18 366 972 313 188 769 187 - - - 29.94/-X

Our NEV-1024 208 045 183 977 257 489 37 636 64 046 50 807 -

Our NEV′-1024 205 719 171 669 251 303 37 805 60 411 45 851 -

Table 3. Comparison between our NEV-KEMs and recent NTRU variants in Size

Schemes
|pk| |C| Dec. Hardness LWE

(Bytes) (Bytes) Failure Assumption Estimator

NTRU-A576
2593 [18] 864 864 2−150

NTRU + RLWE2

154

NTRU-A648
2917 [18] 972 972 2−170

Rq = Zq[x]/(x
n − xn/2 + 1)

171

NTRU-A768
3457 [18] 1152 1152 2−202 200

NTRU-A864
3457 [18] 1296 1296 2−182 225

NTRU-A972
3889 [18] 1458 1458 2−206 252

NTRU-A1152
3457 [18] 1728 1728 2−140 305

NTRU-A1296
3889 [18] 1944 1944 2−158 341

NTTRU-768 [33] 1248 1248 2−1217 NTRU + RLWE
170

Rq = Zq[x]/(x
n − xn/2 + 1)

BAT-512 [20] 521 473 2−146 NTRU + RLWR 144

BAT-1024 [20] 1230 1006 2−166 Rq = Zq[x]/(x
n + 1) 273

Our NEV-512 615 615 2−138 NTRU + RLWE 141

Our NEV-1024 1229 1229 2−152 Rq = Zq[x]/(x
n + 1) 281

Our NEV′-512 615 615 2−200 NTRU + sspRLWE 145

Our NEV′-1024 1229 1229 2−200 Rq = Zq[x]/(x
n + 1) 292

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 9

performance of our schemes with BAT in Table 5 and NTTRU in Table 6 (we
do not have the source code of NTRU-A, but it was reported having comparable
performance with NTTRU [18, Table 3]). In summary, our KEMs have compara-
ble efficiency as NTRU-A, but have sizes at least 28% more compact. The sizes
of BAT are 19.19% (resp., 9.03%) smaller than our ΠKEM at NIST level 1 (resp.,
5) security (note that BAT uses a strong RLWR with binary secret assumption,
which allows to compress the ciphertexts almost for free), but our NEV-KEM is
140-973X (resp., 334-2648X) faster than BAT.

Most recently, Micciancio and Schultz [34] provide a framework to capture
the encoding of the message and the compression/quantization of the ciphertext,
which aims at improving the ratio of the size of a plaintext to the size of a LWE-
based ciphertext. As a NTRU-like ciphertext only contains a single ring element
which will be multiplied by the secret key (namely, f) in decryption, one cannot
directly apply their framework to improve the encryption rate of our schemes.

2 Preliminaries

2.1 Notation

Let n be a power of 2, and q a prime. We denote by R the ring R = Z[X]/(Xn+1)
and by Rq the ring Rq = Zq[X]/(Xn + 1). The regular font letters (e.g., a, b)
represent elements in R or Rq (including elements in Z or Zq), and bold lower-
case letters (e.g., a, b) denote vectors of R or Z elements. For a positive integer
ℓ ∈ Z, by [ℓ] we denote the set {0, . . . , ℓ− 1}. By r′ = r mod± q we denote the
unique element in the range [− q−1

2 , q−1
2] such that r′ = r mod q. For an element

w ∈ Zq, we write ∥w∥∞ to mean |w mod± q|. The ℓ∞ and ℓ2 norms of a ring
element w ∈ Rq is defined as that of its coefficient vector w ∈ Zn

q .
By x← D we denote sampling x according to a distribution D and by U(S)

we denote the uniform distribution over a finite set S. When we write that
sampling a polynomial g ← D from a distribution D over Z, we mean that
sampling each coefficient of g from D individually. We use logb to denote the
logarithm function in base b (e.g., 2 or natural constant e) and log to represent
loge. We say that a function f : N→ [0, 1] is negligible, if for every positive c and
all sufficiently large κ it holds that f(κ) < 1/κc. We denote by negl : N→ [0, 1]
an (unspecified) negligible function.

Binomial Distribution. The centered binomial distribution Bη with some pos-
itive η ∈ Z is defined as follows:

Bη =

{
η−1∑
i=0

(ai − bi) : (a0, . . . , aη−1, b0, . . . , bη−1)← {0, 1}2η
}

Ternary Distribution. The ternary distribution Tσ with some positive real

σ ∈ (0, 1/2) denotes the distribution of sampling a variable x ∈ {−1, 0, 1} with
Pr[x = 1] = Pr[x = −1] = σ, and Pr[x = 0] = 1− 2σ. By this notation, we have

10 Jiang Zhang� , Dengguo Feng , and Di Yan

T1/3 = U({−1, 0, 1}) is the uniform ternary distribution, and T1/4 = B1 is the
centered binomial distribution with η = 1.

Gaussian Distribution. The Gaussian function ρs,c(x) over Rm centered at
c ∈ Rm with parameter s > 0 is defined as ρs,c(x) = exp(−π∥x− c∥2/s2). For
lattice Λ ⊆ Rm, let ρs,c(Λ) =

∑
x∈Λ ρs,c(x), and define the discrete Gaussian

distribution over Λ as DΛ,s,c(y) =
ρs,c(y)
ρs,c(Λ) , where y ∈ Λ. We omit the subscript

c in the above notations if c = 0.

Lemma 1 ([7,30]). For any real s, t > 0, c ≥ 1, C = c · exp(1−c
2

2) < 1, integer

m > 0, and any y ∈ Rm we have that Prx←DZm,s
[∥x∥∞ > t · s] ≤ 2e−πt

2

.

Lemma 2 (Special case of [39, Theorem 3.1]). Let α, β, γ > 0 be reals

such that α ≥ ω(
√
log n), γ =

√
α2 + β2 and αβ/γ > 2 ·ω(

√
log n). Consider the

following probabilistic experiment:

Choose x2 ← D2Zn,β, then choose x1 ← x2 +DZn,α.

Then, the marginal distribution of x1 is statistically close to DZn,γ .

2.2 Public-Key Encryption

A public-key encryption (PKE) ΠPKE with plaintext spaceM consists of three
PPT algorithms (KeyGen,Enc,Dec):

– KeyGen(1κ): given a security parameter κ as input, output a pair of public
and secret keys (pk, sk), denoted as (pk, sk) = KeyGen(1κ).

– Enc(pk,M ; r): given the public key pk, a plaintextM ∈M and a randomness
r (which might be an empty string) as inputs, output a ciphertext C, denoted
as C = Enc(pk,M ; r) or C = Enc(pk,M) in brief.

– Dec(sk, C): given the secret key sk and a ciphertext C as inputs, output a
plaintext M ′ (which might be ⊥), denoted as M ′ = Dec(sk, C).

We say that a PKE scheme ΠPKE = (KeyGen,Enc,Dec) is δ-correct, if for
any M ∈ M, (pk, sk) = KeyGen(1κ) and C = Enc(pk,M), the probability that
Dec(sk, C) ̸= M is at most δ over the random coins used in KeyGen and Enc. For
our interest, we recall the OW-CPA and IND-CPA security for PKEs from [8],
which is modeled by games between a challenger C and an adversary A in Fig. 1.

Definition 1 (OW-CPA PKE). We say that a PKE scheme ΠPKE is OW-
CPA secure if for any PPT adversary A, its advantage

Advow-cpa
ΠPKE,A(κ) = Pr[M ′ = M∗]

in the OW-CPA security game in Fig. 1 is negligible in security parameter κ.

Definition 2 (IND-CPA PKE). We say that a PKE scheme ΠPKE is IND-
CPA secure if for any PPT adversary A = (A1,A2), its advantage

Advind-cpaΠPKE,A(κ) =

∣∣∣∣Pr[µ′ = µ∗]− 1

2

∣∣∣∣
in the IND-CPA security game in Fig. 1 is negligible in security parameter κ.

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 11

Algorithm OW-CPA:

1 (pk, sk) = ΠPKE.KeyGen(1
κ);

2 M∗ ←M;
3 C∗ = ΠPKE.Enc(pk,M

∗);
4 M ′ = A(pk, C∗);
5 return M ′ = M∗;

Algorithm IND-CPA:

1 (pk, sk) = ΠPKE.KeyGen(1
κ);

2 (M0,M1, st) = A1(pk);
3 µ← {0, 1};
4 C∗ = ΠPKE.Enc(pk,Mµ);
5 µ′ = A2(C

∗, st);
6 return µ′ = µ∗;

Fig. 1. Games for OW-CPA and IND-CPA Security of PKEs

2.3 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) ΠKEM with session key space K consists
of three PPT algorithms (KeyGen,Encap,Decap):

– KeyGen(1κ): given a security parameter κ as input, output a pair of public
and secret keys (pk, sk), denoted as (pk, sk) = KeyGen(1κ).

– Encap(pk; r): given the public key pk, and a randomness r as inputs, output
a ciphertext C and a session key K ∈ K, denoted as (C,K) = Encap(pk; r),
or (C,K) = Encap(pk) in brief.

– Decap(sk, C): given a secret key sk and a ciphertext C as inputs, output a
key K ′ (which might be a failure symbol ⊥), denoted as K ′ = Decap(sk, C).

We say that a KEM scheme ΠKEM = (KeyGen,Encap,Decap) is δ-correct,
if for any (pk, sk) = KeyGen(1κ) and (C,K) = Encap(pk), the probability that
Decap(sk, C) ̸= K is at most δ over the random coins used in KeyGen and
Enc. We now recall the chosen-ciphertext security for KEMs from [12], which is
modeled by the game between a challenger C and an adversary A in Fig. 2.

Algorithm IND-CCA:

1 (pk, sk) = ΠKEM.KeyGen(1κ);
2 µ← {0, 1};
3 (C∗,K∗

0) = ΠKEM.Encap(pk);
4 K∗

1 ← K;
5 µ′ = AODec(·)(pk, C∗,K∗

µ);
6 return µ′ = µ∗;

Oracle ODec(C):

1 if C = C∗ then
2 return ⊥;
3 end
4 K = Decap(sk, C);
5 return K;

Fig. 2. Game for IND-CCA Security of KEMs

Definition 3 (IND-CCA KEM). We say that a KEM scheme ΠKEM is IND-
CCA secure if for any PPT adversary A, its advantage

Advind-ccaΠKEM,A(κ) =

∣∣∣∣Pr[µ′ = µ∗]− 1

2

∣∣∣∣

12 Jiang Zhang� , Dengguo Feng , and Di Yan

in the IND-CCA security game in Fig. 2 is negligible in security parameter κ.

2.4 Hard Problems

Let n be a power of 2, and q a prime. Let Rq = Zq[x]/(x
n+1). Let R∗q denote all

invertible ring elements in Rq. Let χf , χg, χr, χe be four probability distributions
over R. Let v ∈ R∗q be a publicly known small ring element.

The NTRU Assumption. The computational NTRU problem NTRUn,q,χf ,χg,v

asks an algorithm, given h = g/f ∈ Rq as input, to output f ′, where f ′ ←
χf , g ← χg and f = vf ′+1 ∈ R∗q . The decisional NTRU problem DNTRUn,q,χf ,χg,v

asks an algorithm to distinguish the following two distributions:

{h = g/f | f ′ ← χf , g ← χg, and f = vf ′ + 1 ∈ R∗q} and {u | u← Rq}.

The computational (resp., decisional) NTRU assumption says that it is hard for
any PPT algorithms to solve NTRUn,q,χf ,χg,v (resp., DNTRUn,q,χf ,χg,v) with
non-negligible advantage over a random guess.

Remark 1. The above definition generalizes the common NTRU assumption with
v = p ∈ R∗q for some integer p (e.g., p = 3 in [11, 24, 25, 43]) with a publicly
known ring element v ∈ R∗q . We note that this generalization is mild up to the
choices of the secret key distribution χf , because NTRUn,q,χf ,χg,v is essentially
equivalent to the standard NTRU problem NTRUn,q,χ′

f ,χg,p with χ′f = p−1vχf

(or χf = pv−1χ′f). In fact, the polynomial v = x + 2 was recommended by
the authors of the original NTRU cryptosystem as early as 2000 [25], and was
investigated in [6, 22,23,27,35,43].

Since its introduction [24], the NTRU problem has been studied more than
25 years, and there is no significant algorithmic progress. The decisional NTRU
(DNTRU) assumption over the cyclotomic ring R = Zq[x]/(x

n+1), which is also
known as the decisional small polynomial ratio (DSPR) assumption, has been
extensively used and investigated in [10, 16, 19, 31, 40, 43]. Notably, Stehlé and
Steinfeld [43] showed that the DNTRU assumption indeed holds unconditionally
if χf , χg are discrete Gaussian distributions of standard deviation σ = ω(n

√
q)

(We note that their proof mainly focuses on the special case v = 3, but it
essentially applies to any invertible v ∈ R∗q). For small secret distributions, a
variant of the NTRU problem over Rq = Zq[x]/(x

n + 1) is also shown to be at
least as hard as the worst-case approximate SVP problem on ideal lattices [40].

The RLWE Assumption. The computational RLWE problem RLWEn,q,χr,χe

asks an algorithm, given a polynomial number of samples from the distribution
{(a, b = ar+ e) | a← Rq, e← χe} as inputs, to output the secret r ∈ Rq, where
r ← χr. The decisional RLWE problem DRLWEn,q,χr,χe

asks an algorithm, given
a polynomial number of samples to distinguish the following two distributions:

{(a, b = ar + e) | a← Rq, e← χe} and {(a, u) | a← Rq, u← Rq}.

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 13

The computational (resp., decisional) RLWE assumption says that it is hard
for any PPT algorithms to solve RLWEn,q,χr,χe

(resp., DRLWEn,q,χr,χe
) with

non-negligible advantage over a random guess.
As an extension of the LWE problem [42], the RLWE problem was first

considered in [32, 44], and was provably as hard as some hard lattice problems
such as the Shortest Vectors Problem (SVP) on ideal lattices.

The Subset-Sum Parity RLWE Assumption. We introduce a variant of the
RLWE problem which we call subset-sum parity RLWE (sspRLWE) problem.
Formally, the sspRLWE problem sspRLWEn,q,χr,χe,v asks an algorithm, given
an RLWE instance (a, b = ar + e) ∈ Rq as input, to output ve mod 2 ∈ R2

for some fixed ring element v ∈ R2. This name comes from the fact that for
R = Z[X]/(xn + 1), the i-th coefficient of ve mod 2 ∈ R2 is essentially equal
to the parity of the subset sum

∑
vj=1 e(i−j) mod n of the coefficient vector e =

(e0, . . . , en−1) of e ∈ Rq. The sspRLWE assumption says that it is hard for any
PPT algorithms to solve sspRLWEn,q,χr,χe,v with non-negligible advantage over
a random guess according to the distribution χ′ = vχe mod 2.

Remark 2. Our sspRLWE problem can be seen as a generalization of the RLWE2
problem [18] from a special choice of v = 1 to a general chosen v ∈ R2. On the
first hand, the sspRLWEn,q,χr,χe,v problem is not harder than the correspond-
ing RLWE problem RLWEn,q,χr,χe

. On the other hand, if the DRLWE problem
DRLWEn,q,χr,χe

is hard, it seems that a RLWE sample (a, b = ar+e) essentially
hides all the information about e, and that the best way for a PPT algorithm
to solve the sspRLWE problem is to make a random guess on ve mod 2 ac-
cording to the distribution χ′ = vχe mod 2. Moreover, the problem of reducing
DRLWEn,q,χr,χe to sspRLWEn,q,χr,χe,v can be seen as the problem of solving
DRLWEn,q,χr,χe

with modular hints ve mod 2, and an efficient algorithm to
solve sspRLWEn,q,χr,χe,v may directly lead to a new and better algorithm to
solve RLWEn,q,χr,χe

according to the study in [13].
However, we cannot expect a general reduction that bases the hardness

of sspRLWEn,q,χr,χe,v on that of DRLWEn,q,χr,χe
for arbitrary choices of v

and noise distribution χe, because ve mod 2 may loose too much information
about e and may be of little help to solve DRLWEn,q,χr,χe . Note that the au-
thors [18] only present heuristic arguments for the equivalence of RLWE and
sspRLWEn,q,χr,χe,v even for the special case v = 1. Moreover, it is easy to show
that DRLWEn,q,χr,χ′

e
for χ′e = 2χe is equivalent to DRLWEn,q,χr,χe

, but we
always have vχ′e = 0 mod 2 for the sspRLWEn,q,χr,χ′

e,v
problem. For our pur-

pose, we are particularly interested in the sspRLWE problem sspRLWEn,q,χr,χe,v̄

satisfying the following two conditions:

– v̄ = 1 + xn/k + x2n/k + · · ·+ x(k−1)n/k ∈ R2 for integers n/k = 256;
– χe is the binomial distribution.

Looking ahead, we will use this kind of sspRLWE assumption to construct a OW-
CPA secure encryption NEV-PKE′ with better noise tolerance in Section 4.2, and
will show that for appropriate choices of parameters, the sspRLWE problem is at

14 Jiang Zhang� , Dengguo Feng , and Di Yan

least as hard as the standard RLWE problem (with slightly different parameters)
in Section 4.3 (and thus partially solves the problem of reducing the RLWE2
problem to the standard RLWE problem in [18]).

3 NTRU Encryption using Vector Decoding

In this section, we first give a provably secure IND-CPA PKE scheme called
NEV-PKE from the standard DNTRU and DRLWE assumptions, then we trans-
form it into a IND-CCA KEM called NEV-KEM using the generic Fujisaki-
Okamoto (FO) transformation [21]. We begin by describing our plaintext en-
coding and decoding algorithms.

3.1 Plaintext Encoding and Decoding

Our way of encoding and decoding plaintext is inspired by the method for RLWE-
based encryption in [41], which essentially encodes a single plaintext bit into
multiple coefficients of a ring element, and is also used in Newhope [2, 4] sub-
mitted to NIST PQC competition. We adapted this idea to the NTRU setting.
Formally, let n be a power of 2, and q be a prime. Let R = Z[x]/(xn + 1) and
Rq = Zq[x]/(x

n + 1). Let M = {0, 1}ℓ be the plaintext space. Let k be the
largest integer satisfying k|n and n/k ≥ ℓ. Let v = (1 − xn/k) ∈ R∗q be a ring

element, whose inverse is v−1 = q+1
2 (1+xn/k + · · ·+x(k−1)n/k) ∈ R∗q . We define

the following two algorithms Pt2poly and Poly2Pt for encoding and decoding:

– Pt2poly(M) : given a plaintext M ∈ {0, 1}ℓ as input, return a polynomial
m = M0 +M1x+ · · ·+Mℓ−1x

ℓ−1 ∈ Rq, where Mi ∈ {0, 1} is the i-th bit of
M , denoted as m = Pt2poly(M).

– Poly2Pt(w) : given a polynomial w = w0 + w1x + · · · + wn−1x
n−1 ∈ Rq as

input, first compute w̃i = wi − q+1
2 mod± q for all i ∈ [n]. Then, compute

tj =
∑

i=j mod n/k |w̃i| for all j ∈ [ℓ]. Finally, set

Mj =

{
1, if tj <

k·(q−1)
4 ;

0, otherwise,

and return the plaintext M = (M0, . . . ,Mℓ−1) ∈ {0, 1}ℓ.

We have the following lemma for the above two algorithms.

Lemma 3. Let n, q, k, ℓ ∈ Z and v ∈ R∗q be defined as above. Then, for any

M ∈ {0, 1}ℓ, m = Pt2poly(M) ∈ Rq and any polynomial e = e0 + e1x + · · · +
en−1x

n−1 ∈ Rq satisfying the following condition ∑
i=j mod n/k

∣∣ei mod± q
∣∣ <

k · (q − 1)

4
for i ∈ [n] and j ∈ [ℓ] (1)

we always have Poly2Pt(v−1m+ e) = M .

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 15

Proof. Letm = Pt2poly(M) ∈ Rq. By the definition of Pt2poly(M), we have that
m only has non-zero binary coefficients at the first ℓ ≤ n/k coordinates. Thus,
multiplying m with v−1 = q+1

2 (1+ xn/k + · · ·+ x(k−1)n/k) is essentially equal to

first multiply m by q+1
2 and then copy k− 1 times the first n/k coefficients as a

block to the next (k−1)n/k coordinates. In other words, for all u = v−1m ∈ Rq,
we always have ui = Mj

q+1
2 for all i = j mod n/k for i ∈ [n] and j ∈ [ℓ], where

u = u0 + u1x + · · · + un−1x
n−1 and M = (M0, . . . ,Mℓ−1). Let w = u + e =

v−1m+ e ∈ Rq, it suffices to show that Poly2Pt(w) will always correctly recover
each bit of M . Formally, let w = w0 + w1x + · · · + wn−1x

n−1, we continue the
proof by considering the value of each Mj ∈ {0, 1} for j ∈ [ℓ]:

– Mj = 1: we have that wi = ui + ei =
q+1
2 + ei for all i = j mod n/k, and

that w̃i = wi − q+1
2 = ei mod± q. This means that

tj =
∑

i=j mod n/k

|w̃i| =
∑

i=j mod n/k

|ei mod± q| < k · (q − 1)

4
,

and that Poly2Pt(w) will output Mj = 1;
– Mj = 0: we have that wi = ei for all i = j mod n/k, and that w̃i = wi− q+1

2 =

ei− q+1
2 mod± q. Since we have either ei = |ei mod± q| or ei = q−|ei mod± q|,

it is easy to check that |w̃i| ≥ q−1
2 − |ei mod± q|. This means that

tj =
∑

i=j mod n/k

|w̃i| ≥
∑

i=j mod n/k

(
q − 1

2
− |ei mod± q|

)
>

k · (q − 1)

4
,

and that Poly2Pt(w) will output Mj = 0.

This completes the proof.

Remark 3. There is a tradeoff between the plaintext length ℓ and the decoding
capacity. A smaller k (e.g., k = 1) allows to support longer plaintext length (as we
require ℓ ≤ n/k) but has worse noise tolerance. In particular, if each coefficient
of e is chosen from a distribution such that the probability of |ei mod± q| < q−1

4
for all i ∈ [n] is 1 − p, then the probability that Poly2Pt(v−1m + e) = M is
roughly about 1− pk. This is why we prefer to choose the largest integer k such
that n/k ≥ ℓ. For the typical application of PKE in encrypting a session key
ℓ = 128 or 256, one could fix k = n/ℓ to obtain the best noise tolerance.

3.2 A Provably Secure IND-CPA NTRU Encryption

Let n, q, k, ℓ ∈ Z and v ∈ R∗q be defined as above. Let χf , χg, χr, χe be four
probability distributions over R. Our PKE scheme NEV-PKE consists of the
following three algorithms (KeyGen,Enc,Dec):

– NEV-PKE.KeyGen(κ): given the security parameter κ as input, randomly
choose f ′ ← χf and g ← χg such that f = vf ′ + 1 ∈ R∗q is invertible. Then,
return the public and secret key pair (pk, sk) = (h = g/f, f) ∈ Rq ×Rq.

16 Jiang Zhang� , Dengguo Feng , and Di Yan

– NEV-PKE.Enc(pk,M): given the public key pk = h ∈ Rq and a plaintext
M ∈ {0, 1}ℓ as inputs, randomly choose r ← χr, e ← χe, compute m =
Pt2poly(M) ∈ Rq and c = hr + e+ v−1m. Return the ciphertext c ∈ Rq.

– NEV-PKE.Dec(sk, c): given the secret key sk = f = vf ′ + 1 ∈ R∗q and
a ciphertext c ∈ Rq as inputs, compute w = fc, and M ′ = Poly2Pt(w).
Finally, return the message M ′ ∈ {0, 1}ℓ.

Remark 4. Our above PKE scheme can be easily adapted to support other
choices of v ∈ R∗q , e.g., v = 3, but it seems that v = (1 − xn/k) might be
the optimal one in reducing the decryption failure (see below).

Since we have the following decryption formula

w = fc = gr + (vf ′ + 1)(e+ v−1m) = gr + vf ′e+ f ′m+ e︸ ︷︷ ︸
= ẽ

+v−1m = ẽ+ v−1m.

the decryption is correct as long as we set the parameters such that ẽ satisfies the
condition (1) in Lemma 3. It is worth to note the following three nice properties
about our decryption formula, which are very important for our scheme to choose
practical (and small) parameters:

1. Multiplying v = (1 − xn/k) will only increase the size of vf ′e from that of
f ′e in a very mild way when taking account of the distributions of f ′ and e:
the standard deviation of vf ′e is about

√
2 times larger than that of f ′e;

2. The size of f ′m is far smaller than that of gr and vf ′e because m only has
non-zero binary coefficients at the first ℓ ≤ n/k coefficients.

3. The contribution of g, r to the size of ẽ is much less than that of (f ′, e), and
we can utilize this asymmetric property to obtain a better balance between
security and decryption failure as in [45].

In Section 5.2, we will choose concrete parameters such that the decryption
failure is negligibly small. For security, we have the following theorem.

Theorem 1. Let n, q ∈ Z, v ∈ R∗q and distributions χf , χg, χr, χe be defined as
above. Then, under the DNTRUn,q,χf ,χg,v and DRLWEn,q,χr,χe

assumption, our
PKE scheme NEV-PKE is provably IND-CPA secure in the standard model.

Proof. We prove Theorem 1 by using a sequence of games G0 ∼ G2, where
G0 is the standard IND-CPA game, and G2 is a random one. The security is
established by showing that G0 and G2 are computationally indistinguishable
in the adversary’s view. Let A = (A1,A2) be an adversary which can break the
IND-CPA security of our PKE with advantage ϵ. Let Fi be the event that A
correctly guesses µ′ = µ∗ in game i ∈ {0, . . . , 2}. By definition, the adversary’s

advantage Advind-cpaNEV-PKE,A(κ) in game i is exactly |Pr[Fi]− 1/2|.

Game G0. This game is the real IND-CPA security game defined in Fig. 1.
Formally, the challenger C works as follows:

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 17

KeyGen. randomly choose f ′ ← χf and g ← χg such that f = vf ′ + 1 ∈ R∗q ,
compute h = g/f . Then, return the public key pk = h to the adversary A1,
and keep the secret key f private.

Challenge. Upon receiving two challenge plaintexts (M0,M1) ∈ {0, 1}ℓ×{0, 1}ℓ
from the adversary A1, first randomly choose µ∗ ← {0, 1}, r∗ ← χr, e

∗ ← χe,
computem∗ = Pt2poly(Mµ∗) ∈ Rq and c∗ = hr∗+e∗+v−1m∗. Finally, return
the challenge ciphertext c∗ to A2.

Finalize. Upon receiving a guess µ′ ∈ {0, 1} from A2, return 1 if µ′ = µ∗,
otherwise return 0.

By definition, we have the following lemma.

Lemma 4. |Pr[F0]− 1/2| = ϵ.

Game G1. This game is similar to game G0 except that the challenger C changes
the KeyGen phase as follows:

KeyGen. randomly choose h ← Rq, and return the public key pk = h to the
adversary A1.

Lemma 5. Under the DNTRUn,q,χf ,χg assumption, we have that Games G1

and G0 are computationally indistinguishable in the adversary’s view. Moreover,
|Pr[F1]− Pr[F0]| ≤ negl(κ).

Proof. This lemma directly follows from that the only difference between Games
G0 and G1 is that C replaces h = g/f in G0 with a random one h← Rq in G1.

Game G2. This game is similar to game G1 except that the challenger C changes
the Challenge phase as follows:

Challenge. Upon receiving two challenge plaintexts (M0,M1) ∈ {0, 1}ℓ×{0, 1}ℓ
from the adversary A1, first randomly choose µ∗ ← {0, 1} and b ← Rq,
compute m∗ = Pt2poly(Mµ∗) ∈ Rq and c∗ = b+ v−1m∗. Finally, return the
challenge ciphertext c∗ to A2.

Lemma 6. Under the DRLWEn,q,χr,χe assumption, we have that Games G2

and G1 are computationally indistinguishable in the adversary’s view. Moreover,
|Pr[F2]− Pr[F1]| ≤ negl(κ).

Proof. This lemma follows from that the only difference between Games G1 and
G2 is that C replaces b = hr∗ + e∗ in G1 with a random one b← Rq in G2.

Lemma 7. |Pr[F2]− 1
2 | ≤ negl(κ).

Proof. This lemma directly follows from that b in Game G2 is uniformly random,
and statistically hides the information of m∗ in c∗ = b+ v−1m∗.

By Lemmas 4∼7, we have that ϵ = |Pr[F0] − 1
2 | ≤ negl(κ). This completes

the proof of Theorem 1.

18 Jiang Zhang� , Dengguo Feng , and Di Yan

3.3 An IND-CCA NTRU KEM from FO-transformation

Let NEV-PKE = (KeyGen,Enc,Dec) be defined in the above subsection. Let
H1 : {0, 1}∗ → {0, 1}κ, H2 : {0, 1}ℓ+κ → {0, 1}κ × {0, 1}κ and H3 : {0, 1}∗ →
{0, 1}κ be three hash functions, which will be modeled as random oracles in
the security proof. We now transform NEV-PKE into a IND-CCA secure KEM
NEV-KEM = (KeyGen,Encap,Decap) following the generic FO-transformation.

– NEV-KEM.KeyGen(κ): given the security parameter κ as input, compute
(pk′, sk′) = NEV-PKE.KeyGen(1κ) and randomly choose s ← {0, 1}κ. Then,
return the public key pk = pk′, and secret key sk = (sk′, pk,H1(pk), s).

– NEV-KEM.Encap(pk,M): given the public key pk as input, randomly choose
M ← {0, 1}ℓ, and compute

(K̄, ρ) = H2(M,H1(pk)), c = NEV-PKE.Enc(pk,M ; ρ) and K = H3(K̄, c).

Then, return the ciphertext and session key pair (c,K).
– NEV-KEM.Decap(sk, c): given the secret key sk = (sk′, pk,H1(pk), s) and

a ciphertext c as inputs, compute M ′ = NEV-PKE.Dec(sk′, c), (K̄ ′, ρ′) =
H2(M

′, H1(pk)) and c′ = NEV-PKE.Enc(pk,M ′, ρ′). If c′ = c, return K =
H3(K̄

′, c), otherwise, return K = H3(s, c).

Since NEV-KEM is obtained by a standard application of the FO transforma-
tion (with implicit rejection) to NEV-PKE, the correctness of NEV-KEM directly
follows from that of NEV-PKE. Moreover, we have the following security theorem
for NEV-KEM according to the studies in [15,18,26,28].

Theorem 2. Let n, q ∈ Z, v ∈ R∗q and distributions χf , χg, χr, χe be defined as
in Theorem 1. Then, under the DNTRUn,q,χf ,χg,v and DRLWEn,q,χr,χe assump-
tion, our KEM scheme NEV-KEM is provably IND-CCA secure in the (quantum)
random oracle model.

4 An Optimized NTRU Encryption from sspRLWE

Since in the typical application of using PKEs as KEMs, the session key is ran-
domly chosen and not necessarily known in advance, one might wonder if we can
somehow simplify the construction of NEV-PKE based on the assumption that
the plaintext is random. In this section, we give an optimized NTRU encryption
called NEV-PKE′, which essentially merges the sampling of the noise and the
plaintext in a single step: one can roughly think that the noise is the output of
a random secret share algorithm with a random plaintext as input.

4.1 Randomized Plaintext Encoding and Decoding

Let n be a power of 2, and q be a prime. Let R = Z[x]/(xn + 1) and Rq =
Zq[x]/(x

n+1). LetM = {0, 1}n/k be the plaintext space. Let v = (1−xn/k) ∈ R∗q
be a ring element, whose inverse is v−1 = q+1

2 (1 + xn/k + · · ·+ x(k−1)n/k) ∈ R∗q .
Let Bη be the binomial distribution with parameter η ∈ Z. We define a pair of
encoding and decoding algorithm (Pt2noise,Noise2Pt) as follows:

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 19

– Pt2noise(M,η) : given a plaintext M ∈ {0, 1}n/k and an integer η as inputs,
first randomly choose s ← {0, 1}2nη−n/k, and parse s = (s0, . . . , s2kη−2)
as (2kη − 1) blocks of n/k bits (i.e., si ∈ {0, 1}n/k for all i ∈ [2kη − 1]).

Then, set s2kη−1 = M ⊕ (⊕2kη−2
i=0 si) ∈ {0, 1}n/k, arrange the bit string

(s0, . . . , s2kη−1) ∈ {0, 1}2nη as a bit array with 2η rows and n columns, and
use the 2η bits in the i-th column as the randomness to sample the i-th
coefficient of a polynomial m ∈ Rq from Bη, as depicted in Fig. 3. Finally,
return m = m0 +m1x+ · · ·+mn−1x

n−1 ∈ Rq, where

min/k+j =

η−1∑
t=0

(s2iη+t,j − s2iη+η+t,j) for i ∈ [k], j ∈ [n/k].

η rows


s0,0 . . . s0,n/k−1 s2η,0 · · · s2kη−2η,0 . . . s2kη−2η,n/k−1

...
...

...
...

...
sη−1,0 . . . sη−1,n/k−1 s3η−1,0 · · · s2kη−η−1,0 . . . s2kη−η−1,n/k−1

−

η rows


sη,0 . . . sη,n/k−1 s3η,0 · · · s2kη−η,0 . . . s2kη−η,n/k−1

...
...

...
...

...
s2η−1,0 . . . s2η−1,n/k−1 s4η−1,0 · · · s2kη−1,0 . . . s2kη−1,n/k−1

=
m m0 . . . mn/k−1 mn/k . . . m(k−1)n/k . . . mn−1︸ ︷︷ ︸

n columns

Fig. 3. The bit array for randomized encoding of a plaintext

– Noise2Pt(w) : given a ring element w ∈ Rq as input, compute and return
M = Poly2Pt(w).

We have the following lemma for the above two algorithms.

Lemma 8. Let n, q, k, η ∈ Z and v ∈ R∗q be defined as above. If M is uniformly

chosen from {0, 1}n/k, then the coefficient distribution of m = Pt2noise(M,η)
is identical to the binomial distribution Bη. Moreover, if kη < q

2 , then for any
m = Pt2noise(M,η) and any polynomial e = e0 + e1x + · · · + en−1x

n−1 ∈ Rq

satisfying the following condition ∑
i=j mod n/k

∣∣ei mod± q
∣∣ <

k · (q − 1)

4
− k

kη + 1

2
for i ∈ [n] and j ∈ [n/k]

(2)
we always have Noise2Pt(v−1m+ e) = M .

Proof. The first claim directly follows from the fact that (s0, . . . , s2kη−2) are
uniformly chosen from {0, 1}2nη−n/k, and given (s0, . . . , s2kη−2), s2kη−1 is also
uniformly distributed over {0, 1}n/k. Let m̄ = Pt2poly(M). By Lemma 3, it

20 Jiang Zhang� , Dengguo Feng , and Di Yan

suffices to show that v−1m = v−1m̄+ e′ ∈ Rq for some ∥e′∥∞ ≤ kη+1
2 . Formally,

let v̄ = (1 + xn/k + · · ·+ x(k−1)n/k), and u = u0 + u1x+ · · ·+ un−1x
n−1 = v̄m,

we have that uin/k+j =
∑

t≤i mtn/k+j −
∑k−1

t>i mtn/k+j for all i ∈ [k], j ∈ [n/k].

By the assumption that kη < q
2 , we have that uin/k+j ∈ [− q−1

2 , q−1
2] for all

i ∈ [k], j ∈ [n/k]. Moreover, using a routine calculation one can check that

uin/k+j =
∑k−1

t=0 mtn/k+j = Mj mod 2 for all i ∈ [k], j ∈ [n/k] by the definition
of m, and that there exists a polynomial e′ such that u = 2e′+ v̄m̄ and ∥e′∥∞ ≤
kη+1

2 by the definition of m̄. We immediately have v−1m = v−1m̄+ e′ using the

the fact that v−1 = q+1
2 v̄. This completes the proof.

Remark 5. Since v−1m+ e = v−1m̄+ e+ e′, the condition (2) in Lemma 8 can
actually be relaxed to the following condition: ∑

i=j mod n/k

∣∣ei + e′i mod± q
∣∣ <

k · (q − 1)

4
for i ∈ [n] and j ∈ [n/k]. (3)

4.2 A OW-CPA Secure NTRU Encryption from sspRLWE

Let n, q, k, η ∈ Z and v ∈ R∗q be defined as above. Let χf , χg, χr be three

distributions over R. We now give our PKE scheme NEV-PKE′, which consists
of the following three algorithms (KeyGen,Enc,Dec):

– NEV-PKE′.KeyGen(κ): given the security parameter κ as inputs, randomly
choose f ′ ← χf and g ← χg such that f = f ′+v−1 ∈ R∗q is invertible. Then,
return the public key and secret key pair (pk, sk) = (h = g/f, f) ∈ Rq ×Rq.

– NEV-PKE′.Enc(pk,M): given the public key pk = h ∈ Rq and a plaintext
M ∈ {0, 1}n/k as inputs, sample r ← χr and m ← Pt2noise(M,η) ∈ Rq.
Then, compute and return the ciphertext c = hr +m.

– NEV-PKE′.Dec(sk, C): given the secret key sk = f = f ′ + v−1 ∈ R∗q and
a ciphertext c ∈ Rq as inputs, compute u = fc, and M ′ = Noise2Pt(u).
Finally, return the plaintext M ′ ∈ {0, 1}n/k.

Remark 6. Note that if one wants to use NEV-PKE′ as a passively secure KEM,
the encryption algorithm can be further simplified to directly sample a noise m
from the binomial distribution Bη, and then derive a pre-session key K̄ from the
first n/k coefficients of v̄m mod 2. By Lemma 8, this is actually equivalent to first
randomly choose a prekey K̄ ← {0, 1}n/k and then compute m = Pt2noise(K̄).
We prefer to describe it as a PKE scheme because it supports the generic FO
transformation in Sec. 3.3 to obtain an IND-CCA secure KEM.

Since we have the following decryption formula

w = fc = gr + (f ′ + v−1)m = gr + f ′m︸ ︷︷ ︸
= ẽ

+v−1m = ẽ+ v−1m.

the decryption is correct as long as ẽ satisfies the condition (2) in Lemma 8.
We will choose concrete parameters such that the decryption failure is negligibly
small in Sec. 5.2. For security, we have the following theorem.

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 21

Theorem 3. Let n, q, k, η ∈ Z and v = 1−xn/k, v̄ = (1+xn/k+· · ·+x(k−1)n/k) ∈
Rq be defined as above. Let χf , χg, χr be three probability distributions over
Rq. Then, under the DNTRUn,q,χf ,χg,v and sspRLWEn,q,χr,Bη,v̄ assumption,

the above PKE scheme NEV-PKE′ is provably OW-CPA secure in the standard
model.

This proof is very similar to that of Theorem 1, we omit the details. By applying
the same FO transformation in Sec. 3.3 to NEV-PKE′, we can obtain an IND-
CCA secure KEM NEV-KEM′ in the (quantum) random oracle model.

4.3 On the Hardness of the sspRLWE Problem

In this subsection, we provide more evidences on the hardness of the problem
sspRLWEn,q,χr,Bη,v̄ for binomial distribution Bη and v̄ = (1 + xn/k + · · · +
x(k−1)n/k) ∈ R2. Specifically, we will first show that for discrete Gaussian noise
distributions, the sspRLWEn,q,χr,DZn,γ ,v̄

problem is at least as hard as its stan-
dard decisional RLWE problem DRLWEn,q,χr,DZn,β

for sufficiently large param-
eters γ > β, which can be extended to binomial distributions (with sufficiently
large η) by a standard argument using Rényi divergence [5]. We will also prove
two theorems for special cases of sspRLWEn,q,χr,Bη,v̄, which apply to η that
is as small as 1. Formally, we have that following three theorems. A high-level
intuition of the proofs for the theorems is already given in Section 1.2.

Theorem 4. Let n, q, k, χr and v̄ be defined as above. Let α, β, γ be three pos-
itive reals satisfying α ≥ ω(

√
log n), γ =

√
α2 + 4β2, 2αβ/γ ≥

√
2 · ω(

√
log n)

and γ
√
n < q/2. Let DZn,β , DZn,γ be two discrete Gaussian distributions with

parameter β and γ, respectively. If there is a PPT algorithm A solving the
sspRLWEn,q,χr,DZn,γ ,v̄

problem (with probability negligibly close to 1), then there
is another PPT algorithm B solving the DRLWEn,q,χr,DZn,β

problem.

Proof. It is sufficient to give the description of B. Formally, given a DRLWE
tuple (a, b) ∈ Rq × Rq as input, B first randomly chooses a polynomial e′ ∈ Rq

from the distribution DZn,α, and sets (a′, b′) = (2a, 2b + e′) ∈ Rq × Rq. Then,
it runs algorithm A with input (a′, b′), and obtains w ∈ R2 from A. Finally, B
returns 1 if w = v̄e′ mod 2, otherwise returns 0.

We now analyze the behavior of algorithm B. First, if (a, b = ar + e) is
a real DRLWEn,q,χr,DZn,β

tuple, then we have that the coefficients of e are
chosen from DZn,β , which means that the coefficient distribution of 2e fol-
lows the distribution of D2Zn,2β . By Lemma 2, we have that the distribution
of ê = 2e + e′ is statistically close to DZn,γ . Since γ

√
n < q/2, we have that

∥ê∥∞ < q/2 with probability negligibly close to 1 by Lemma 1, which means that
ê mod q = ê holds with probability negligibly close to 1. Thus, the distribution of
(a′ = 2a, b′ = 2ar+ê) ∈ Rq×Rq is statistically close to an sspRLWEn,q,χr,DZn,γ ,v̄

tuple. Using the fact that w = v̄ê = v̄e′ mod 2, we have that B will return 1 with
probability negligibly close to 1. Second, if (a, b) is randomly chosen fromRq×Rq,
we have that (a′ = 2a, b′ = 2b+e′) is also randomly distributed over Rq×Rq. This

22 Jiang Zhang� , Dengguo Feng , and Di Yan

means that the probability for any A to output w ∈ R2 such that w = v̄e′ mod 2
is negligible in n/k by our choice of e′ ← DZn,α with α ≥ ω(

√
log n). In all, we

have shown that B is a valid distinguisher for DRLWEn,q,χr,DZn,β
problem. This

completes the proof.

Remark 7. As commonly seen in lattice-based cryptography, Theorem 4 does
not provide concrete guarantee for practical parameters with typically small η.
In the following, we show that for any η ≥ 1, the sspRLWEn,q,χr,Bη,v̄ problem
for k = 1 (resp., k = 2) is at least as hard as the standard RLWEn,q,χr,χe

problem with binomial distribution χe = B1 (resp., uniform binary distribution
χe = U(R2)), where the case k = 2 essentially corresponds to our concrete
parameter set NEV′-512.

Theorem 5. Let n, q, k, χr, η, v̄ be defined as above, and η < q
2 . If there is a

PPT algorithm A solving the sspRLWEn,q,χr,Bη,v̄ problem for k = 1 (with prob-
ability negligibly close to 1), then there is another PPT algorithm B solving the
RLWEn,q,χr,B1 problem.

Proof. We now give the description of B. Formally, given an RLWEn,q,χr,B1

instance (a, b = ar+ e) as input, B first randomly chooses a polynomial e′ ∈ Rq

with coefficients sampling from the distribution Bη−1, and sets b′ = b+ e′ ∈ Rq.
Since η ≤ q−1

2 , it is easy to check that the coefficients of ê = e+e′ mod q = e+e′

follows the distribution Bη, and that (a, b′ = ar + ê) is an sspRLWEn,q,χr,Bη,v̄

instance. Then, it runs algorithmA with input (a, b′), which is expected to return
v̄ê mod 2 in polynomial time. Next, B computes v̄ê+ v̄e′ = v̄e mod 2. Note that
v̄ = 1 for k = 1. Let u = v̄e = e, where u = u0 + u1 + · · · + un−1x

n−1 and
e = e0 + e1x+ · · ·+ en−1x

n−1. Since ei ∈ {−1, 0, 1}, we have that ui mod 2 = 0
if and only if ei = 0. Thus, B can expect to obtain n/2 equations on the n
variables consisting of the coefficients of the secret r from (a, b = ar + e). Let
d be the order of q modulo 2n, we have that xn + 1 modulo q factors into
n/d irreducible polynomials of the same degree d, the probability that a random
a← Rq is invertible is (1− 1

qd
)n/d ≥ 1/2. Thus, with probability greater than 1/2

we have that those obtained equations are linearly independent. By repeating
the above process using fresh RLWEn,q,χr,B1

instances at most a polynomial
number of times, B can collect n linearly independent equations to recover all
the n coefficients of r by using Gaussian elimination. In all, B can solve the
RLWEn,q,χr,B1 problem in polynomial time. This completes the proof.

Theorem 6. Let n, q, k, χr, η, v̄ be defined as above, and η < q
2 . If there is a

PPT algorithm A solving the sspRLWEn,q,χr,Bη,v̄ problem for k = 2 (with prob-
ability negligibly close to 1), then there is another PPT algorithm B solving the
RLWEn,q,χr,U(R2) problem.

Proof. In order to prove Theorem 6, it suffices to prove the following two claims:

Claim 1 sspRLWEn,q,χr,U(R2),v̄ ⇒ sspRLWEn,q,χr,Bη,v̄: If there is a PPT algo-
rithm A solving sspRLWEn,q,χr,Bη,v̄, then there is another PPT algorithm

Ā solving sspRLWEn,q,χr,U(R2),v̄.

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 23

Claim 2 RLWEn,q,χr,U(R2) ⇒ sspRLWEn,q,χr,U(R2),v̄: If there is a PPT algo-

rithm Ā solving sspRLWEn,q,χr,U(R2),v̄, then there is another PPT algorithm
B solving RLWEn,q,χr,U(R2).

For Claim 1, we construct an algorithm Ā as follows. Formally, given an
sspRLWEn,q,χr,U(R2),v̄ instance (a, b = ar + e) ∈ Rq × Rq as input, Ā first
randomly chooses a polynomial e′ ∈ Rq with coefficients sampling from the
following distribution

B′η =

{
η−1∑
i=0

(ai − bi) : (a0, . . . , aη−2, b0, . . . , bη−1)← {0, 1}2η−1
}

in time O(nη) and computes (a, b′ = b+ e′) = as+(e+ e′) ∈ Rq. Since η ≤ q−1
2 ,

it is easy to check that the coefficients of ê = e + e′ mod q = e + e′ follows
the distribution Bη, and that (a, b′) is an sspRLWEn,q,χr,Bη,v̄ instance. Then,
it runs algorithm A with input (a, b′), which is expected to return v̄ê mod 2 in
polynomial time. Finally, it returns v̄ê+ v̄e′ = v̄e mod 2. This shows that Ā can
output v̄e mod 2 in polynomial time. This completes the proof of Claim 1.

We now define an algorithm B for Claim 2 as follows. Formally, given an
RLWEn,q,χr,U(R2) instance (a, b = as + e) as input, it first runs algorithm Ā
with input (a, b) , which is expected to return v̄e mod 2 in polynomial time.
Note that v̄ = 1 + x

n
2 for k = 2. Let u = v̄e, we have

uj =

{
ej − en

2 +j ∈ {−1, 0, 1}, if j ∈ [n2]
ej + ej−n

2
∈ {0, 1, 2}, otherwise,

where u = u0 + u1 + · · · + un−1x
n−1 and e = e0 + e1x + · · · + en−1x

n−1 ∈ R2.
Thus, we have that uj mod 2 = 0 if and only if uj = 0 for all j ∈ [n2] and that
uj mod 2 = 1 if and only if uj = 1 for all j ≥ n

2 . Thus, B can expect to obtain
n/2 equations on the n variables consisting of the coefficients of secret s from
(v̄a, v̄b = v̄as+v̄e). Let d be the order of q modulo 2n, we have that xn+1 modulo
q factors into n/d irreducible polynomials of the same degree d, the probability
that a random a← Rq is invertible is (1− 1

qd
)n/d ≥ 1/2. Thus, with probability

greater than 1/2 we have that those obtained equations are linearly independent.
By repeating the above process using fresh RLWEn,q,χr,U(R2) instances a polyno-
mial number of times, B can collect n linearly independent equations to recover
all the n coefficients of s by using Gaussian elimination. In all, B can solve the
RLWEn,q,χr,U(R2) problem in polynomial time. This completes the proof.

5 Concrete Attacks and Parameters

As discussed in [18], the most efficient known attacks against the NTRU and
RLWE problems are lattice attacks. In this section, we mainly show how to
apply lattice attacks to our (variants of) NTRU and RLWE problems, and take
account of other relevant attacks by directly using the LWE estimator script [1]
to obtain the concrete security estimates for our recommended parameters.

24 Jiang Zhang� , Dengguo Feng , and Di Yan

5.1 Lattice Attacks against NTRU and (ssp)RLWE

In general, the lattice attacks against NTRU and RLWE problems work by
defining the same set

L⊥c (h) = {(u,w) ∈ Rq = Z[x]/(xn + 1) : hu+ w = c ∈ Rq}.

The NTRU problem correspond to the special case c = 0, and L⊥0 (h) essentially
forms a lattice. To solve the decisional NTRU problem, namely, to distinguish
the quotient h = g/(vf ′+1) ∈ Rq, where f ′, g have small coefficients noticeably

less than
√

q/3, from a uniformly-random h ∈ Rq, an algorithm can try to find
a good approximation to the shortest vector in L⊥0 (h) [18]. This is because the
vector (f = vf ′ + 1,−g) will be a short vector significantly less than

√
nq for

h = g/f (recall that v = 1−xn/k is small in our case), while a vector of ℓ2-norm
less than Ω(

√
nq) is very unlikely to exist in L⊥0 (h) for a random h ∈ Rq.

For RLWE problems, we have c ̸= 0 for (h, c = hr + e), and L⊥c (h) is a shift
of the lattice L⊥0 (h). Finding the shortest vector in it is known as the Bounded
Distance Decoding (BDD) problem, which in turn can be solved by finding the
short vector (e, r, 1) ∈ Z2n+1 in an embedding lattice with dimension 2n+1 and
basis

B =

 qIn Rot(h) c
0 In 0
0 0 1

 ∈ Z(2n+1)×(2n+1),

where Rot(h) ∈ Zn
q × Zn

q is the anti-circular matrix corresponding ring multipli-
cation in Rq, and c ∈ Zn

q is the coefficient vector of c ∈ Rq in column form. For
the same secret and noise distributions, the complexity of attacking the NTRU
and RLWE problems are typically identical for modulus q = O(n). Since for
RLWE problems we can directly use the LWE estimator to obtain concrete se-
curity estimates, it suffices to how to use the LWE estimator to obtain concrete
security estimates for our NTRU and sspRLWE problems.

On the DNTRUn,q,χf ,χg,v problem with v = 1 − xn/k over Rq = Z[x]/(xn + 1).

First, as discussed in Sec. 2.4, for the setting that v = 1−xn/k ∈ Rq is invertible,
our NTRU problem DNTRUn,q,χf ,χg,v is essentially equivalent to the standard
NTRU problem (with v = 3) up to the choices of the secret key distribution.
Second, the ℓ2-norm of vf ′ + 1 is only roughly about

√
2 times larger than that

of f ′, which is small as long as f ′ is chosen from a small distribution. Thus, one
can either solve the NTRU problem by taking f = vf ′ + 1 as whole just as in
the standard lattice attacks against the NTRU problem with secret distributions
(χ′f = vχf , χg) in lattice L⊥0 (h) for h = g/f , or solve the BDD problem on the

shifted lattice L⊥h (−vh) by treating it as an RLWE instance (vh, h = −vhf ′+g)
with secret distribution χf and noise distribution χg. We use the latter for
concrete estimates for our NTRU problems in the LWE estimator because the
norm of the short vector (g, f ′, 1) in the latter case (which is independent from
v) is smaller than that of (f = vf ′ + 1,−g) in the former case.

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 25

Table 4. Practical Parameters Sets for Our KEM Schemes

Parameters (n, q)
Key Dist. Enc Dist. Size Dec. BKZ Sizes LWE Estimator

(χf , χg) (χr, χe) (PK, CT) Failure (SK, CT) (SK, CT)

NEV-512 (512, 769) (B1, B1) (B1, T1/6) (615,615) 2−138 (426, 413) (145, 141)

NEV′-512 (512, 769) (B1, B1) (B1, B1) (615,615) 2−200 (426, 426) (145, 145)

NEV-1024 (1024, 769) (B1, B1) (B1, T1/6) (1229,1229) 2−152 (953, 929) (292, 281)

NEV′-1024 (1024, 769) (B1, B1) (B1, B1) (1229,1229) 2−200 (953, 953) (292, 292)

On the sspRLWEn,q,χr,Bη,v problem over Rq = Z[x]/(xn + 1). In Sec. 4.3, we
have shown that the sspRLWEn,q,χr,Bη,v problem is polynomially equivalent
to the standard RLWE problem (with different parameters). Although those
reductions are too loose to estimate concrete estimates on practical parameters,
we believe it is very reasonable to assume that the concrete hardness of the
sspRLWEn,q,χr,Bη,v problem with v = 1+xn/k+· · ·+x(k−1)n/k is the same as that
of RLWEn,q,χr,Bη

. Note that similar assumption for RLWE2 is also made in [18].
Thus, we estimate the concrete hardness of the sspRLWEn,q,χr,Bη,v problem by
treating it as a standard RLWE problem RLWEn,q,χr,Bη

in the LWE estimator.

5.2 Recommended Parameters

In Table 4, we present two parameter sets NEV-512 and NEV-1024 for NEV-PKE
and NEV-KEM, along with two parameter sets NEV′-512 and NEV′-1024 for
NEV-PKE′ and NEV-KEM′, aiming at NIST levels 1 and 5 security, respectively.
The fifth column gives the corresponding sizes of public key (PK) and cipher-
text (CT). The sixth column presents the decryption failure probability, which is
computed by using a python script adapted from the python script for Kyber [9].
Note that we make the same choice as Kyber [9] to set our decryption failure
probabilities < 2−128 with some margin so that it is infeasible to obtain a single
decryption failure using at most 264 decryption queries (see the directional fail-
ure boosting attacks [14]). The seventh column gives the BKZ blocksizes needed
to break the security of the secret key (SK) and ciphertext (CT) for each param-
eter set in the core-SVP model [3]. The last column presents concrete security
estimates obtained by running the LWE estimator [1]. As known schemes using
the power of 2 cyclotomic ring for both security and performance considerations
such as Newhope [3], we cannot find a proper parameter set for NIST level 3 se-
curity. Fortunately, as shown in Tables 1 and 2, the performance of our schemes
using the parameter sets at NIST level 5 security is already comparable to that
of known schemes using parameter sets aiming at NIST level 3 security. For ex-
ample, in the application of ephemeral key exchanges, our NEV-KEM using the
parameter set NEV-1024 has the same size as that of NTRU4096821 and is 4.10-
11.05X faster. Compared to Kyber768, our NEV-KEM using NEV-1024 has size
about 8.19% larger but is 1.2X faster. Thus, we do not think this security gaps
for our parameter sets will be a real problem for practical use: one can simply
use NEV-1024 (or NEV′-1024) for applications requiring NIST level 3 security.

26 Jiang Zhang� , Dengguo Feng , and Di Yan

6 Implementations

We made two implementations of our schemes: one uses the reference C lan-
guage, and the other is (partially) optimized by using AVX2 instructions. In
the following, we provide some implementation details that heavily affect the
performance of our schemes.

6.1 Partial NTT Multiplication

One costly arithmetic operation in our schemes is to do polynomial multiplication
in Rq. Since the use of small modulus q = 769, we cannot apply full NTT
multiplications in Rq = Z[x]/(xn+1) for both n = 512 and 1024. But because q−
1 mod 256 = 1, we can still speedup polynomial multiplications by first splitting
the polynomials in Rq to a set of sub-polynomials in R′q = Zq[y]/(y

128 + 1)
and then realize a single polynomial multiplication in Rq by using a number of
polynomial multiplications in R′q = Zq[y]/(y

128 + 1), which in turn can be done
efficiently using full NTT multiplications. Taking n = 512 as an example, by
letting y = x4 we can split any two polynomials a, b ∈ Rq = Z[x]/(x512 + 1) as
follows:

a(x) = a0(y) + xa1(y) + x2a2(y) + x3a3(y)
b(x) = b0(y) + xb1(y) + x2b2(y) + x3b3(y),

where all the ai’s and bi’s are polynomials in R′q = Zq[y]/(y
128 + 1). Since

multiplications between ai’s and bj ’s can be done using full NTT multiplications
in R′q, we can realize the multiplication between a(x) and b(x) by roughly using
16 NTT multiplications in R′q = Zq[y]/(y

128 + 1) as follows:

a(x) · b(x) = (a0b0 + y(a1b3 + a2b2 + a3b1))
+x(a0b1 + a1b0 + y(a2b3 + a3b2))
+x2(a0b2 + a1b1 + a2b0 + ya3b3)
+x3(a0b3 + a1b2 + a2b1 + a3b0).

We can further save 6 NTT multiplications in R′q by using the Karatsuba method
as observed in [46]. For example, to compute the term a1b3 + a3b1 in the first
row, we only need a single NTT multiplication by computing a1b3 + a3b1 =
(a1 + a3)(b1 + b3) − a1b1 − a3b3 given as inputs a1b1 and a3b3, which will be
computed in the third row.

To facilitate the above polynomial multiplications, we directly represent each
polynomial in Rq = Z[x]/(xn+1) by simply concatenating the coefficient vectors
of its split sub-polynomials, which are almost for free when all the coefficients are
identically chosen from the same distribution. Moreover, we will keep the split
sub-polynomials for the public key, secret key and ciphertext in their NTT forms
to save some forward and inverse NTT operations in R′q = Zq[y]/(y

128 + 1).

6.2 Partial NTT Inversion

The other costly arithmetic operation is to do polynomial inversion in Rq to
generate the public key. Note that if we can do full NTT multiplications in Rq,

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 27

this operation can be simply done by using n inversions in Zq using the NTT
representation. Fortunately, we can still speedup this operation by making full
use of partial NTT multiplications given above as shown in [20]. Specifically,
given a polynomial f ∈ Rq = Zq[x]/(x

n + 1), by letting z = x2 we can first

use Karatsuba with an even/odd split to obtain two sub-polynomials in R̂q =
Zq[z]/(z

n/2 + 1):
f(x) = f0(z) + xf1(z).

Then, the inversion of f in Rq can be done using one polynomial multiplication

in Rq and one polynomial inversion in R̂q because

1

f(x)
=

f0(z)− xf1(z)

(f0(z) + xf1(z))(f0(z)− xf1(z))
=

f0(z)− xf1(z)

f2
0 (z)− zf2

1 (z)
.

By repeating this process, we can finally reduce the inversion of f to a few
polynomial multiplications in Rq and a single polynomial inversion in R′q =
Zq[y]/(y

128 + 1), which in turn can be done using 128 inversions in Zq. Since
q = 769 is very small, we can simply precompute the inversion table for all the
elements in Zq. This is main reason why the key generation algorithm is much
faster than NTRU (and some of its variants not using NTT).

6.3 Symmetric Primitives

In our default implementations, we use SHA3 and SHAKE256 as the hash func-
tion and the pseudorandom generator (PRG), respectively, which are the same
as that of NTRU and Kyber in the NIST PQC submissions. Since the arithmetic
operation of our KEMs is so fast that the use of SHA3 and SHAKE256 become
the main bottleneck of our schemes: we actually observe a 1.82-2.27X speedup in
experiment by replacing SHA3 and SHAKE256 with BLAKE2 and AES256CTR
in the AVX2 implementation. For a fair comparison, we will use the same hash
and PRG functions as that of BAT and NTTRU in the comparison with them
(see Tables 5 and 6): BLAKE2 is used as both the hash and PRG functions in
the open source code of BAT [20]; SHA3 and AES256CTR are used as the hash
and PRG functions respectively in the open source code of NTTRU [33].

6.4 Multi-target Countermeasure

In the description of our IND-CCA transform in Sec. 3.3, we follow the strategy
of Kyber to hash the public key into a prekey K̄ and the random coins ρ,
aiming at improving the security against multi-target attacks. We also hash
the prekey together with the ciphertext into the final session key to make sure
that our KEMs are contributory. The above two countermeasures are applied
in our default implementations and in efficiency comparison with NTRU and
Kyber (see Table 2). Since the performance of symmetric primitives is a major
bottleneck of our schemes, those countermeasures will significantly reduce the
performance: we observe a 2.25-2.54X speedup in experiment by removing the

28 Jiang Zhang� , Dengguo Feng , and Di Yan

two countermeasures in the AVX2 implementation using SHA3 and SHAKE256
as the hash function and the pseudorandom generator (PRG), respectively. Since
both BAT [20] and NTTRU [33] do not apply those countermeasures, we turned
off the countermeasures in the comparison with them (see Tables 5 and 6).

6.5 Compressed Representation of Rq Elements

We apply the strategy of [20] to store an element in Rq in the compressed form.
In particular, we encode coefficients by groups of 5 in 48 bits: each coefficient is
split into a low 3 bits and a high 7 bits (value 0 to 96, inclusive); 5 “high bits”
are encoded using 33 bits in base 97. For n = 512 (resp., 1024), this will lead to
a reduction of 25 (resp., 51) bytes in storing a polynomial in Rq. The encoding
can be done very efficiently using about 300 (resp., 600) CPU cycles, but the
decoding is really costly, and will take about 1200 (resp., 2400) CPU cycles,
which is about 3.1X (resp., 1.6X) slower than a polynomial multiplication in the
same dimension. Thus, for applications that the few reduction in size is not very
crucial, we highly recommend to remove this encoding/decoding optimization,
and to obtain significantly speedup in efficiency especially when fast symmetric
primitives are used (see Table 6).

7 Benchmarks and Comparisons

We run the codes of our schemes and several related works on the same 64-
bit CentOS Linux 7.6 system (equipped with an Intel Core-i7 4790 3.6 GHz
CPU and 4GB memory), and present the average number of CPU cycles (over
100000 times) for running the corresponding algorithms in Tables 2, 5 and 6. All
the codes are complied using the same optimization flags “-O3 -march=native
-mtune=native -fomit-frame-pointer”.

In Table 2, we give an efficiency comparison between our NEV-KEMs, NTRU
and Kyber. The timings for our KEMs are obtained using our default implemen-
tations. In particular, we use SHA3 and SHAKE256 as the hash and PRG func-
tions, which are the same as that in the code of Kyber and NTRU, submitted
to the NIST PQC standardizations. We also use the multi-target countermea-
sures to hash the public key to generate the prekey and the random coins, and
hash the ciphertext to generate the final session key. From Table 2, one can
see that our scheme NEV-KEM (which is based on NEV-PKE from the stan-
dard NTRU and RLWE assumption) is 5.03-29.94X faster than NTRU (with
key generation being 13.56-88.28X faster, encapsulation being 1.42-2.63X faster,
and decapsulation being 2.39-2.99X faster) and 1.42-1.74X faster than Kyber,
in the round-trip time of ephemeral key exchange at the same security levels.
The efficiency improvement over Kyber is mainly because we do not have to
expand a random coins to a uniform matrix over Rq, which needs many calls to
the underlying symmetric primitives for rejection sampling. It is also worth to
note that our NEV-KEM using the parameter set NEV-1024 at NIST level 5 secu-
rity has the same public key and ciphertext size as that of NTRU-HPS4096821

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 29

at NIST level 3 security, but is 4.10-11.05X faster (with key generation being
11.96-31.94X faster, encapsulation being 1.36-1.51X faster, and decapsulation
being 1.08-1.55X faster). The main reason that our KEMs is much faster than
NTRU is that we allow (partial) NTT multiplications and inversions in Rq.

Table 5. Comparison between our NEV-KEMs and BAT in efficiency (CPU Cycles)

Schemes
KeyGen Encap Decap KeyGen Encap Decap Speedup

(Ref) (Ref) (Ref) (AVX2) (AVX2) (AVX2) (Ref/AVX2)

BAT-512 35 249k 55 930 297 472 33 305k 10 191 68 795 140.5/973.6X

NEV-512 79 465 69 244 104 760 8 202 12 661 13 424 -

NEV′-512 79 220 62 261 101 367 8 224 9 017 10 272 -

BAT-1024 182 931k 111 694 818 690 156 811k 20 387 144 357 334.7/2648.3X

NEV-1024 182 198 144 157 223 059 16 001 18 844 24 429 -

NEV′-1024 182 619 134 622 225 169 15 938 16 109 21 274 -

In Table 5, we give a comparison between our NEV-KEMs and BAT. The tim-
ings for our KEMs are obtained using BLAKE2 as the hash and PRG functions
without multi-target countermeasures, which are the same as that in the public
available code of BAT. The size of BAT is about 19.19% (resp., 9.03%) than our
ΠKEM at NIST level 1 (resp., 5) security (see Table 3), but our NEV-KEM is
about 140-973X (resp., 334-2648X) faster than BAT, with key generation being
443-4060X (resp., 1004-9800X) faster, and decapsulation being 2.84-5.12X(resp.,
3.67-5.90X) faster. Our encapsulation is slightly slower than that of BAT (es-
pecially in the reference implementation) mainly because BAT uses the strong
RLWR assumption with binary secret and only needs to generate a few random
bits in encapsulation. The efficiency improvement over BAT is mainly because we
do not use the heavy trapdoor inversion algorithm, which requires very complex
key generation and decryption operations.

Table 6. Comparison between our NEV schemes and NTTRU in efficiency (CPU
Cycles)

Schemes
KeyGen Encap Decap KeyGen Encap Decap

(PKE) (PKE) (PKE) (KEM) (KEM) (KEM)

NEV-512 4 439 3 636 1 378 5 107 (4 881) 6 419 (5 289) 9 612 (6 675)

NEV′-512 4 453 3 112 1 399 5 201 (4 800) 6 167 (4 683) 9 382 (6 565)

NTTRU-768 8 199 2 976 2 675 9 640 6 586 8 603

NEV-1024 9 467 7 595 3 484 10 715 (9 891) 11 534 (9 841) 19 340 (12 955)

NEV′-1024 9 211 6 733 3 275 10 887 (10 195) 10 281 (8 864) 17 803 (11 531)

30 Jiang Zhang� , Dengguo Feng , and Di Yan

In Table 6, we give a comparison with NTTRU using the AVX2 instructions.
The columns 2-4 present the timings for the corresponding OW/IND-CPA PKEs,
while columns 4-7 give the timings for the final IND-CCA KEMs. The timings
for our schemes are obtained using SHA3 and AES256CTR as the hash and PRG
functions without multi-target countermeasures, which are the same as that in
the public available code of NTTRU. The figures in the brackets give the timings
of our NEV-KEMs without using the compressed representation of Rq elements.
We note that NTTRU only supports the parameter of n = 768, q = 7681 in the
cyclotomic ring Zq[x]/(x

n− xn/2 +1), aiming at NIST level 3 security. A recent
paper [18] presents more parameter sets (see NTRU-A in Table 3) with reported
comparable efficiency over the same ring as NTTRU, but their implementation
is not publicly available. From Tables 3 and 6, we can expect that our schemes
would have comparable computational efficiency with NTTRU and NTRU-A,
but is at least 28% more compact, at the same security levels.

Acknowledgements We thank the anonymous reviewers of ASIACRYPT 2023
for their helpful comments and suggestions on earlier version of our paper. This
paper is supported by the National Natural Science Foundation of China (Grant
Nos. 62022018, 61932019), and by the National Key Research and Development
Program of China (Grant No. 2022YFB2702000).

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. In Journal of Mathematical Cryptology 9, 169–203 (oct 2015)

2. Alkim, E., Avanzi, R., Bos, J., Ducas, L., de la Piedra, A., Pöppelmann, T.,
Schwabe, P., Stebila, D., Albrecht, M.R., Orsini, E., Osheter, V., Paterson, K.G.,
Peer, G., Smart, N.P.: Newhope – submission to the NIST post-quantum project
(2020)

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a
new hope. In: USENIX Security Symposium 2016 (2016)

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: NewHope without reconcilia-
tion. Cryptology ePrint Archive, Report 2016/1157 (2016)

5. Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs
in lattice-based cryptography: Using the rényi divergence rather than the statistical
distance. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. pp. 3–24. Springer
(2015)

6. Bailey, D.V., Coffin, D., Elbirt, A., Silverman, J.H., Woodbury, A.D.: NTRU in
constrained devices. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. pp.
262–272. Springer (2001)

7. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen 296, 625–635 (1993)

8. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) Theory of Cryptography. pp. 61–90. Springer (2019)

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 31

9. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehle, D.: Crystals - Kyber: A CCA-secure module-lattice-
based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS
P). pp. 353–367 (2018)

10. Brakerski, Z., Döttling, N.: Lossiness and Entropic Hardness for Ring-LWE. In:
Theory of Cryptography Conference. pp. 1–27. Springer (2020)

11. Chen, C., Danba, O., Hoffstein, J., Hülsing, A., Rijneveld, J., Schanck, J.M., Saito,
T., Schwabe, P., Whyte, W., Xagawa, K., Yamakawa, T., Zhang, Z.: NTRU –
submission to the NIST post-quantum project (2019)

12. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO ’98, LNCS,
vol. 1462, pp. 13–25. Springer (1998)

13. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
Attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. pp. 329–358. Springer (2020)

14. D’Anvers, J.P., Rossi, M., Virdia, F.: (one) failure is not an option: Bootstrapping
the search for failures in lattice-based encryption schemes. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020. pp. 3–33. Springer, Cham (2020)

15. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quantum
random-oracle model. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT
2022. pp. 677–706. Springer (2022)

16. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. pp. 22–41.
Springer (2014)

17. Ducas, L., van Woerden, W.: NTRU fatigue: How stretched is overstretched? In:
ASIACRYPT 2021. pp. 3–32. Springer (2021)

18. Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G., Unruh, D.:
A thorough treatment of highly-efficient NTRU instantiations. Cryptology ePrint
Archive, Paper 2021/1352 (2021)

19. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-fourier lattice-based
compact signatures over NTRU (2016)

20. Fouque, P.A., Kirchner, P., Pornin, T., Yu, Y.: BAT: Small and fast kem over
NTRU lattices. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2022(2), 240–265 (Feb 2022)

21. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO’ 99. pp. 537–554. Springer (1999)

22. Gama, N., Nguyen, P.Q.: New chosen-ciphertext attacks on NTRU. In: Okamoto,
T., Wang, X. (eds.) PKC 2007. pp. 89–106. Springer (2007)

23. Hermans, J., Vercauteren, F., Preneel, B.: Speed records for NTRU. In: Pieprzyk,
J. (ed.) Topics in Cryptology - CT-RSA 2010. pp. 73–88. Springer (2010)

24. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. pp. 267–288. Springer,
Berlin, Heidelberg (1998)

25. Hoffstein, J., Silverman, J.H.: Optimizations for NTRU. In: Buhler, J.P. (ed.) Proc.
the Conf. on Public Key Cryptography and Computational Number Theory. p.
77–88. Springer (2000)

26. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography – TCC
2017. LNCS, vol. 10677, pp. 341–371. Springer (2017)

32 Jiang Zhang� , Dengguo Feng , and Di Yan

27. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of NTRU
encryption. In: Boneh, D. (ed.) CRYPTO 2003. pp. 226–246. Springer (2003)

28. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer
(2018)

29. Kirchner, P., Fouque, P.A.: Revisiting lattice attacks on overstretched NTRU pa-
rameters. In: EUROCRYPT 2017. pp. 3–26. Springer (2017)

30. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption.
In: Kiayias, A. (ed.) Topics in Cryptology – CT-RSA 2011, LNCS, vol. 6558, pp.
319–339. Springer (2011)

31. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC ’12. pp. 1219–
1234 (2012)

32. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010, LNCS, vol. 6110, pp. 1–23.
Springer (2010)

33. Lyubashevsky, V., Seiler, G.: NTTRU: Truly fast NTRU using NTT. Cryptology
ePrint Archive, Paper 2019/040 (2019)

34. Micciancio, D., Schultz, M.: Error correction and ciphertext quantization in lattice
cryptography. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. pp. 648–
681. Springer Nature Switzerland, Cham (2023)

35. Nguyen, P.Q., Pointcheval, D.: Analysis and improvements of NTRU encryption
paddings. In: Yung, M. (ed.) CRYPTO 2002. pp. 210–225. Springer (2002)

36. NIST: Post-Quantum Cryptography Standardization, http://csrc.nist.gov/

groups/ST/post-quantum-crypto/submission-requirements/index.html

37. NIST: Status report on the second round of the nist post-quantum cryptography
standardization process (2020), https://doi.org/10.6028/NIST.IR.8309

38. NIST: Status report on the third round of the nist post-quantum cryptography
standardization process (2022), https://doi.org/10.6028/NIST.IR.8413-upd1

39. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010, LNCS, vol. 6223, pp. 80–97. Springer (2010)

40. Pellet-Mary, A., Stehlé, D.: On the hardness of the NTRU problem. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. pp. 3–35. Springer (2021)

41. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) Se-
lected Areas in Cryptography – SAC 2013. pp. 68–85. Springer (2014)

42. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC ’05. pp. 84–93. ACM (2005)

43. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K. (ed.) EUROCRYPT 2011, LNCS, vol. 6632, pp. 27–47.
Springer (2011)

44. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009, LNCS, vol. 5912,
pp. 617–635. Springer (2009)

45. Zhang, J., Yu, Y., Fan, S., Zhang, Z., Yang, K.: Tweaking the asymmetry of
asymmetric-key cryptography on lattices: Kems and signatures of smaller sizes.
In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. pp. 37–65.
Springer (2020)

https://orcid.org/0000-0002-4787-0316
https://orcid.org/0000-0002-8515-7124
https://orcid.org/0000-0002-3372-1256
http://csrc.nist.gov/groups/ST/post-quantum-crypto/submission-requirements/index.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/submission-requirements/index.html
https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/NIST.IR.8413-upd1

NEV: Faster and Smaller NTRU Encryption using Vector Decoding 33

46. Zhu, Y., Liu, Z., Pan, Y.: When ntt meets karatsuba: Preprocess-then-ntt tech-
nique revisited. In: Gao, D., Li, Q., Guan, X., Liao, X. (eds.) Information and
Communications Security. pp. 249–264. Springer (2021)

	NEV: Faster and Smaller NTRU Encryption using Vector Decoding

