
Efficient Multiplicative-to-Additive Function from Joye-Libert
Cryptosystem and Its Application to Threshold ECDSA

Haiyang Xue

The Hong Kong Polytechnic

University

haiyangxc@gmail.com

Man Ho Au

The Hong Kong Polytechnic

University

man-ho-allen.au@polyu.edu.hk

Mengling Liu

The Hong Kong Polytechnic

University

mengling.liu@connect.polyu.hk

Kwan Yin Chan

The University of Hong Kong

kychan@cs.hku.hk

Handong Cui

The University of Hong Kong

hdcui@cs.hku.hk

Xiang Xie

Shanghai Qizhi Institute

PADO Labs

xiexiangiscas@gmail.com

Tsz Hon Yuen

The University of Hong Kong

thyuen@cs.hku.hk

Chengru Zhang

The University of Hong Kong

u3008875@connect.hku.hk

ABSTRACT
Threshold ECDSA receives interest lately due to its widespread

adoption in blockchain applications. A common building block of all

leading constructions involves a secure conversion of multiplicative

shares into additive ones, which is called the multiplicative-to-

additive (MtA) function. MtA dominates the overall complexity of

all existing threshold ECDSA constructions. Specifically, 𝑂 (𝑛2) in-
vocations of MtA are required in the case of 𝑛 active signers. Hence,

improvement of MtA leads directly to significant improvements

for all state-of-the-art threshold ECDSA schemes.

In this paper, we design a novel MtA by revisiting the Joye-

Libert (JL) cryptosystem. Specifically, we revisit JL encryption and

propose a JL-based commitment, then give efficient zero-knowledge

proofs for JL cryptosystem which are the first to have standard

soundness. Our new MtA offers the best time-space complexity

trade-off among all existing MtA constructions. It outperforms

state-of-the-art constructions from Paillier by a factor of 1.85 to

2 in bandwidth and 1.2 to 1.7 in computation. It is 7× faster than
those based on Castagnos-Laguillaumie encryption only at the

cost of 2× more bandwidth. While our MtA is slower than OT-

based constructions, it saves 18.7× in bandwidth requirement. In

addition, we also design a batch version of MtA to further reduce

the amortised time and space cost by another 25%.

KEYWORDS
Multiplicative-to-Additive function; Joye-Libert cryptosystem; Thresh-

old ECDSA; Zero-knowledge proof

1 INTRODUCTION
Threshold ECDSA. Threshold signature [24] distributes signing

power among 𝑛 participants in such a way that a message can

be signed if and only if 𝑡 + 1 or more participants agree to do

so. Elliptic Curve Digital Signature Algorithm (ECDSA) [19] is a

standardised digital signature scheme adopted widely in blockchain

and cryptocurrency applications. Due to the urgent need of private

key protection mechanism in blockchain applications, threshold

version of ECDSA draws huge attention from not only the academia

but also the industry. Its practical significance can also be seen from

the recent initiation from the National Institute of Standards and

Technology (NIST) [38], which calls for proposals of threshold

ECDSA.

However, ECDSA is widely perceived as “threshold-unfriendly”.

Specifically, it involves computing

𝑠 = 𝑘−1 (𝐻 (𝑚) + 𝑥𝑟) mod 𝑞,

where 𝑘 is the secret nonce, 𝑥 is the secret key, and 𝑟 is the public

nonce. The challenge of designing threshold ECDSA lies in the

computation of 𝑠 in a distributed way from shares of 𝑘 and 𝑥 among

the participants. That is, computing (additive) shares of 𝑘−1
and

𝑘−1𝑥 from secret shares of 𝑘 and 𝑥 . In recent years, a number of

new threshold ECDSA protocols have been proposed [10, 12, 25, 26,

29, 35, 44]. At a high level, they mostly involve constructing new

variants of multiplicative-to-additive functionality (denoted as MtA

hereafter). Roughly speaking, aMtA functionality is a secure two-

party computation that takes as inputs 𝑎 and 𝑏 from two parties,

and securely computes 𝛼 and 𝛽 such that 𝛼 + 𝛽 = 𝑎𝑏 mod 𝑞. With

the help of MtA, shares of 𝑘 , 𝑥 could be transformed to additive

shares of 𝑘−1
and 𝑘−1𝑥 , and further into the additive shares of 𝑠 .

MtA. ExistingMtAs can be classified into three categories according

to the cryptographic tools they are based on. These tools are Paillier

encryption (e.g. [10, 29, 35, 44]), Castagnos-Laguillaumie encryption

(CL, e.g. [12]), and oblivious transfer (OT, e.g.,[25, 26]). Table 1

presents a summary of their performance. CL-basedMtA [12, 23]

has the lowest bandwidth (less than 2KB), while it is computa-

tionally heavy (>1000ms). Those from OT [25, 26] are excellent

in terms of computation cost and enjoy the added advantage that

no extra assumptions are needed. While their computational cost

is very low, OT-based MtAs [26] require ≈ 90KB of bandwidth.

Those based on Paillier [10, 29, 35, 44] are the most popular ones

and are preferred by the industry [43], due to their better overall

performance (i.e., they offer a better trade-off between computation

and communication complexity).

We briefly review how aMtA can be realised using an additively

homomorphic encryption, such as Paillier [40]. Ciphertexts of

Paillier lies in Z𝑁 2 (with RSA modulus 𝑁 and message space Z𝑁)

1

such that Enc(𝑥1) ⊕ Enc(𝑥2) = Enc(𝑥1 + 𝑥2), and 𝑎 ⊙ Enc(𝑥) =
Enc(𝑎𝑥). Paillier-based MtA is roughly built as follows: participant

Bob with private input 𝑏 computes Enc(𝑏) under his public key,
and sends it to participant Alice. Alice with private input 𝑎 picks a

random 𝛼 , computes 𝑎 ⊙ Enc(𝑏) ⊕ Enc(−𝛼) and sends it back. Bob

decrypts the ciphertext and sets it as 𝛽 . The output of Alice and

Bob are 𝛼 and 𝛽 respectively. It is easy to see that 𝛼 + 𝛽 = 𝑎𝑏. There

are additional subtleties involved. Notably, due to the mismatch

between Paillier’s message space and ECDSA’s signature space,

zero-knowledge proofs (e.g. range proof) should be added to prevent

malicious behaviors (such as attacks presented in [42]).

Typically, threshold ECDSA involving 𝑛 parties to sign makes

𝑂 (𝑛2) calls to MtA, making MtA the most dominating factor of

the overall complexity of these schemes. As such, it is highly de-

sirable to develop efficient MtA since its improvements translate

directly to performance gains in many threshold ECDSA schemes.

This is also why NIST [39, page 25] intends to call for MtAs as

important building block. Although Paillier-based MtA has the

best trade-off among existing constructions, it is still relatively

expensive (compared with the cost of signing). A single Paillier-

based MtA requires a bandwidth of at least 20 log𝑁 bits and

computation of 23 full exponentiations modulo 𝑁 (refer to Table

1). We observe that some of the cost is “wasted”: the message

space (Z𝑁 , 3072-bit) of Paillier is typically much larger than that

of the signature space of ECDSA (256-bit). Furthermore, some

operations (e.g., zero-knowledge proofs) runs in Z𝑁 2 , which is

relatively expensive.

Our Idea. A natural idea is to look for a more efficient additively

homomorphic encryption. We identified the Joye-Libert (JL) cryp-

tosystem [31] as a suitable candidate. With a message space of

𝑘-bit, JL works directly over Z𝑁 for special RSA modulus 𝑁 =

(2𝑘𝑝′ + 1) (2𝑞′ + 1). Its security relies on the 𝑘 quadratic residuosity

(𝑘-QR) assumption, which is the standard QR assumption under

the special RSA modulus. The advantage of JL over Paillier in our

quest for an efficient MtA and threshold ECDSA is clear: it is more

efficient to work in Z𝑁 over Z𝑁 2 . The trade-off of reducing message

space from log𝑁 -bit to 𝑘-bit is acceptable since the signature space

of ECDSA is much smaller.

However, instantiating such an idea is challenging. For instance,

very little is known about efficient zero-knowledge proofs for JL

(e.g., correctness of encryption, range proof to deal with the mis-

match between the plaintext space and the ECDSA signature space).

There is not even a standard zero-knowledge proof of knowing the

plaintext in a ciphertext. Current state-of-the-art [14] only provides

non-standard soundness (i.e., it says nothing to the most significant

bits of the plaintext). Details are given in Sec. 1.2.

Motivated by the need of improving efficiency of MtA (and

threshold ECDSA), this paper investigates the following problems:

Could we design more efficientMtA (and threshold ECDSA) by replac-
ing Paillier with Joye-Libert? What exactly could we gain from this
replacement?

1.1 Our contributions
We give amodified JL encryption and a JL commitment, and propose

related zero-knowledge proofs. Built on these primitives, we design

a novel MtA protocol, which outperforms state-of-the-art MtA

based on Paillier. Further, we develop a batching technique which

further improves the amortised cost by 25%, making it much more

efficient than Paillier-based constructions when multiple MtAs are

executed in batch. Applying ourMtA to existing threshold ECDSAs

gives similar improvement in efficiency.

(1) We revisit the JL encryption and propose a variant, modified

JL, which is zero-knowledge friendly without affecting

its security. We propose a JL-based commitment scheme

satisfying the following properties. a) Its security relies on

the strong JL assumption which we prove to hold under

the standard 𝑘-QR assumption and the strong RSA assump-

tion. b) JL commitment can be publicly computed from a

modified JL ciphertext by raising to the power of 2
𝑘
. c) JL

commitment can be easily extended to commit a vector

(while maintaining the size of the commitment). Properties

b) and c) help to gain savings in ourMtA protocol.

(2) We design the first zero-knowledge proofs with standard

soundness for JL cryptosystem, including proof for JL (vec-

tor) commitment, proof for JL encryption and affine op-

eration, proof of equality between the encrypted value in

modified JL ciphertext and that committed in JL commit-

ment. It is one of our main technical contributions to prove

the standard soundness of these proofs.

(3) With all the above building block in place, we build a JL-

basedMtA and its batch version with less commitments and

zero-knowledge proofs. We benchmark our MtA in Rust

and compare it with those based on Paillier, CL encryption

and OT. Bandwidth of our MtA improves that based on

Paillier by a factor of 1.85 to 2. The running time of our

MtA outperforms that from Paillier by a factor of 1.2 to

1.7 depending on security levels (i.e., security parameter

𝜆 = 128, 192, 256). When batching is applied (e.g. batching

> 10 MtAs), our improvement in bandwidth goes up further

to a factor of 2.46 to 2.7, and the computational complexity

of ourMtA outperforms that of Paillier by a factor of 1.62

to 2.26. Details are given in Table 1, 4, and Figure 4.

(4) We also apply ourMtA to threshold ECDSA of LN18 [35]

and XAX+21 [44] by replacing Paillier-based MtA and give

an efficiency comparison with OT-based, CL-based and

Paillier-based schemes. Since MtA dominates their overall

complexity, new threshold ECDSA schemes outperform

Paillier-based schemes by a similar factor. Details are shown

in Table 6.

(5) We would like to remark that our zero-knowledge proofs

for JL cryptosystem and JL-based MtA have many other

applications. JL encryption with range proof could be used

to replace Paillier encryption with range proof in several

scenarios, e.g, voting schemes [20], Naor-Yung CCA secure

encryption [37]. OurMtA could be used to building more

efficient three-party TLS handshake [46].

1.2 Technical overview
Figure 1 depicts the construction of MtA between 𝑃1 and 𝑃2 from

additively homomorphic encryption (with Enc, Dec as encryption

and decryption algorithms), assuming the message space is much

larger than the input/output space (i.e., Z𝑞). We denote by 𝐶1 ⊕ 𝐶2

2

𝑃1 (𝑝𝑘2;𝑎 ∈ Z𝑞) 𝑃2 (𝑝𝑘2, 𝑠𝑘2;𝑏 ∈ Z𝑞)

𝐶2 = Enc(𝑝𝑘2, 𝑏), 𝑐2 = Commit(𝑏)

Check 𝜋2

𝐶2, 𝑐2 , 𝜋2

←−−−−−−−−−− 𝜋2 = ZK : {(𝐶2, 𝑐2;𝑏) | 𝑏 ∈ [0, 𝑞]}
𝐶1 = 𝑎 ⊙ 𝐶2 ⊕ Enc(𝑝𝑘2, 𝛼) = Enc(𝑝𝑘2, 𝑎𝑏 + 𝛼)

𝑐11 = Commit(𝑎), 𝑐12 = Commit(𝛼)

𝜋1 = ZK : {(𝐶1,𝐶2, 𝑐11, 𝑐12;𝑎, 𝛼) | 𝑎 ∈ [0, 𝑞], 𝛼 ∈ [0, 𝐾]}
𝐶1, 𝑐11 , 𝑐12 , 𝜋1

−−−−−−−−−−−−−−−−→ Check 𝜋1

𝛼 = −𝛼 mod 𝑞 𝛽 = Dec(𝑠𝑘2,𝐶1) mod 𝑞

Figure 1: Illustration of semi-honest MtA (without the gray boxes), Paillier-based MtA (including the gray boxes) against
malicious adversary, and our JL-based MtA (including the gray boxes but without the red values) against malicious adversary.

MtA Schemes Communication Computation

OT [25, 26] 32𝜆2 +𝑂 (𝜆) 2𝜆M

CL [12] 84𝜆 11E

Paillier [10, 29, 35] 20𝑁Pai 23E

JL 10𝑁JL 11E

Batch JL (7 + 3/𝑙)𝑁JL (8 + 3/𝑙)E
Table 1: Cost comparison of Multiplication phase inMtA. 𝜆
is the security parameter. E represents a full exponentiation
operation over Z𝑁Pai

in Paillier (one Paillier operation ≈ 2E),
a full exponentiation operation over Z𝑁JL

in JL, or in CL an
exponentiation over CL group. M refers to the elliptic curve
point multiplication. The cost in “Batch JL” is the average
cost perMtA when batching 𝑙 MtAs.

the addition of the plaintext in ciphertexts𝐶1,𝐶2, and by 𝑎 ⊙𝐶 the

multiplication of the plaintext in ciphertext 𝐶 by a scalar 𝑎.

Correctness of the semi-honestMtA is obvious. Let 𝑎, 𝑏 be the

private inputs of 𝑃1 and 𝑃2 respectively. With randomness 𝛼 and

ciphertext Enc(𝑝𝑘2, 𝑏) given by 𝑃2, 𝑃1 could compute ciphertext

Enc(𝑝𝑘2, 𝑎𝑏 + 𝛼) using additively homomorphic property. At last,

𝑃2 decrypts the ciphertext as 𝛽 . They set −𝛼 mod 𝑞 and 𝛽 mod 𝑞

as outputs respectively. It is easy to check that −𝛼 + 𝛽 = 𝑎𝑏 mod 𝑞.

The main challenge lies in upgrading the semi-honest proto-

col against malicious 𝑃1 or 𝑃2 since a malicious participant may

extract the secret value by maliciously crafting the ciphertext (as

in Alpha-rays attack [42]). This can be prevented by introducing

zero-knowledge proofs. Specifically, we require the participants to

prove the correct generation of 𝐶2, 𝐶1 and, especially, that 𝑏, 𝑎 and

𝛼 lie in a proper range.

However, designing zero-knowledge proof on the range of en-

crypted value is not an easy task, especially when the public key is

generated by the prover itself. Initiated by [8, 20], and later used

by [10, 35], a general approach is appending integer commitment

and transferring proof on the ciphertext to the commitment. We

first commit to the encrypted value, then, prove equality between

the encrypted value and committed value. At last, an efficient

range proof (e.g., [8]) is performed on the committed value. In

the following we use Paillier-based MtA to discuss the required

commitment and zero-knowledge proofs in details.

Paillier-Based MtA [35]. As illustrated in Figure 1, to guarantee

the range of 𝑏, 𝑎 and 𝛼 , participants additionally send their RSA

commitments [28]
1
i.e., Commit(𝑏), Commit(𝑎), and Commit(𝛼).

Zero-knowledge proofs (i.e., 𝜋1, 𝜋2) are then applied to these com-

mitments and ciphertexts to guarantee the equality of plaintext

and commited value, and that 𝑏, 𝑎, 𝛼 lie in a proper range. However,

these commitments and proofs are costly and contribute to the cost

of Paillier-basedMtA as listed in Table 1.

Our Idea: Replacing Paillier with Joye-Libert. We start from a

simple observation that we do not need the large message space of

Paillier. Joye-Libert (JL) encryption [31], on the other hand, has a

message space of {0, 1}𝑘 and operates on Z𝑁 where 𝑁 = (2𝑘𝑝′ +
1) (2𝑞′ + 1), which appears to suit our needs. In more details, the JL

cryptosystem operates as follows. In addition to 𝑁 , the public key

also includes 𝑦 ∈ Z𝑁 , a quadratic non-residue. JL scheme encrypts

any message𝑚 ∈ {0, 1}𝑘 using randomness 𝑟 ∈ Z∗
𝑁

as

𝐶 = 𝑦𝑚𝑟2
𝑘

mod 𝑁 .

The remaining challenge is to design commitments and appro-

priate zero-knowledge proofs to ensure that the ciphertexts are

well-formed. This is, however, non-trivial. Let us take the basic

case of proving knowledge of plaintext𝑚 in ciphertext 𝐶 using a

Schnorr-like protocol as an example. The prover starts by sending

a JL encryption 𝐴 of random plaintext 𝑣 . On receiving challenge

𝑒 ∈ {0, 1}𝑡 , the prover returns 𝑧𝑚 = 𝑒𝑚 + 𝑣 mod 2
𝑘
and 𝑧𝑟 as

respond such that 𝐶𝑒𝐴 = 𝑦𝑧𝑚𝑧2
𝑘

𝑟 mod 𝑁 . While this adapted

Schnorr-like protocol possesses correctness and (honest verifier)

zero-knowledgeness, it is unclear if soundness holds or not (i.e., it

is unknown if an extractor exists or not). More concretely, given

two accepting transcripts (𝐴; 𝑒; 𝑧𝑚, 𝑧𝑟), (𝐴; 𝑒′; 𝑧′𝑚, 𝑧
′
𝑟), one could

compute 𝐶𝑒−𝑒
′
= 𝑦𝑧𝑚−𝑧

′
𝑚𝑟2

𝑘
mod 𝑁 for some 𝑟 . However, it only

guarantees (𝑒−𝑒′)𝑚 = 𝑧𝑚−𝑧′𝑚 mod 2
𝑘
. We cannot always extract

𝑚 since 𝑒 − 𝑒′ is very likely to be non-invertible over Z
2
𝑘 .

State-of-the-art zero-knowledge proof for JL cyrptosystem [14]

circumvents this by allowing non-standard soundness, i.e., the ex-

tractor only extract the least significant 𝑘−𝑡 bits of𝑚, where 𝑡 is the

1
An integer commitment scheme which adapts Pedersen commitment [41] to an RSA

group of unknown order. Its security relies on the strong RSA assumption. It is also

known as Ring-Pedersen or Fujisaki-Okamoto commitment in the literature.

3

length of 𝑒 , i.e., the soundness parameter, for their applications. Non-

standard soundness, however, is insufficient in our case as it does

not prevent an attacker from generating a malformed ciphertext.

Our solution. We solve this by proposing a JL commitment which

could be publicly computed from a modified JL encryption, and

designing zero-knowledge proofs for JL cryptosystemwith standard

soundness.

Modified JL encryption and JL commitment. We first modify the

JL encryption, and give an equivalent scheme that is commitment

and zero-knowledge friendly. Concretely, let ℎ be the generator

of the 2
𝑘
-th power residue, i.e., ℎ = 𝑥2

𝑘
for a random quadratic

non-residue 𝑥 . The modified JL encrypts𝑚 ∈ {0, 1}𝑘 as

𝐶 = 𝑦𝑚ℎ𝑟 mod 𝑁,

where 𝑟 is the randomness from Z𝑁 .

Then, we give a JL commitment whose public parameter is

exactly the public key of JL encryption. The JL commitment of

any integer𝑚, denoted by JL.commit(𝑚), is

𝑐 = 𝑦2
𝑘𝑚ℎ2

𝑘𝑟
mod 𝑁,

with 𝑟 as the opening. Note that 𝑦2
𝑘
, ℎ2

𝑘
and ℎ belong to the

subgroup of 2
𝑘
-th power residues modulo 𝑁 , whose order 𝑝′𝑞′

is unknown to the committer. The JL commitment can be easily

extended to commit a vector of elements without increasing its size

by including more 𝑦-elements in the public parameter. We call the

resulting scheme JL vector commitment.

In this way, our JL (vector) commitment can be treated as an

integer commitment. Obviously, it is statistical hiding. We showed

that it is computationally binding under 𝑘-QR assumption and

another assumption which we called the strong JL assumption. In

Theorem 1, we prove that the strong JL assumption holds under

the standard 𝑘-QR and strong RSA assumptions.

Our main observation is that, by raising the power of 2
𝑘
, we

could transfer a modified JL ciphertext to a JL commitment, and

transfer any affine operation on a JL ciphertext to a JL vector

commitment. These transformations may allow to omit the sending

of commitment which contributes to the cost of Paillier-basedMtA.

Specifically, let 𝐶2 be a JL ciphertext and 𝐶𝑎
2
𝑦𝛼 mod 𝑁 be the

affine operation for some 𝑎 and 𝛼 . Then, (𝐶𝑎
2
𝑦𝛼)2𝑘 mod 𝑁 is a JL

vector commitment of 𝑎, 𝛼 . In other words, it can replace the role

of the additional RSA commitments in the Paillier-basedMtA (i.e,

𝑐11, 𝑐12 of Figure 1). Participant may simply sends the proof, and the

counterparty can locally generate the commitment by converting

the ciphertext. In addition, it offers better generality: the problem

of designing a zero-knowledge proof on a JL ciphertext could be

reduced to that of a JL commitment.

Standard zero-knowledge proofs for JL cryptosystem. We design

zero-knowledge proofs for our JL commitment / encryption with

standard soundness. The main barrier of designing zero-knowledge

proof for JL schemes is the small factor of 2
𝑘
in the order of Z∗

𝑁
. By

raising the power of 2
𝑘
, all the operations are computed over the

group of 2
𝑘
-th power residue, whose order 𝑝′𝑞′ is unknown and

has no small factors. In this way, we could borrow the technique

for RSA commitment (which also works on unknown-order group)

to argue the standard soundness of proofs for JL schemes, although

we need to handle a different mathematical structure. Finally, we

give zero-knowledge proofs for JL commitment, JL encryption, and

proof of equality between a JL commitment and a JL ciphertext.

These proofs also guarantee the range of the committed value or

plaintext (with slack).

JL-based MtA. With the above tools, i.e., modified JL encryption,

JL (vector) commitment and relevant zero-knowledge proofs, we

construct JL-basedMtA as illustrated in Figure 1. Compared with

Paillier-based MtA, our scheme utilizes compact encryption and

zero-knowledge proofs, and does not need to send the commitments

of 𝑎 and 𝛼 .

Extension to BatchMtA.We further apply batching technique

to improve the overall performance of JL-basedMtA. Specifically,

in 𝑙 MtAs, 𝑃2 could commits the 𝑙 𝑏-elements into one JL vector

commitment. This reduce the number of commitments needed. In

addition, the corresponding zero-knowledge proofs and verification

could be batched as well. Details are shown in Sec. 5.2.

1.3 Discussion

On Efficiency. Prior to our work, homomorphic encryption based

MtA uses either Paillier or CL. An advantage of CL encryption is

that its message space is exactly the same as the signature space

of ECDSA (Z𝑞) and thus no additional integer commitment and

range proof are needed. However, CL encryption is built on class

groups whose operation is very expensive. On the other hand, there

are “wasted” message space in Paillier encryption. Furthermore,

due to a mismatch between the signature space of ECDSA and the

message space of Paillier (Z𝑁), an additional integer commitment

(i.e., RSA commitments) and the expensive range proofs are needed.

Finally, while more efficient than operations in class groups, Paillier

still requires some operations in Z𝑁 2 which is also quite heavy.

The efficiency gain of our JL-based constructions (over Pailler-

based constructions) can be explained as follows:

• There is less “wasted” message space. Also, all operations

are in Z𝑁 .

• The JL ciphertext can be converted to JL commitment on

demand.We can reduce the number of integer commitments

and range proofs.

As such, it is natural to see our construction leads to the best

tradeoffs between time and space complexity.

• Space Complexity: CL-based MtA < Our MtA < Paillier-

basedMtA≪ OT-basedMtA

• Time Complexity: OT-based MtA ≪ Our MtA < Paillier-

basedMtA < CL-basedMtA

Please refer to Table 4 and Figure 4 for concrete comparison.

Other Applications. Our zero-knowledge proofs can be applied to

two-party computation to provide standard soundness and improve

performance, such as MonZ
2
𝑘 a [14]. Our JL-based MtA can be

used as a replacement of Paillier-basedMtA in several multiparty

computations, e.g., SPDZ [21, 22], SPDZ
2
𝑘 [18]. In addition, MPC

usually runs over a much smaller field, e.g., < 2
64
. Thus, a smaller

𝑘 and a tight modulus 𝑁 could be used, which further enlarge the

overall improvement. We leave this as a further work.

4

Our JL-based MtA could be used to build more efficient three-

party TLS handshake [46, Section 4.1] by replacing their Paillier-

basedMtA. Since 4MtAs are required in their protocol, our batch

technique can be applied to further enlarge the improvement.

We would like to remark that the technique of transforming

modified JL ciphertext to a JL commitment and related range proof

are of independent interest. It has potential applications to replace

Paillier encryption with range proof in several protocols, e.g., voting

scheme in [20], and Naor-Yung CCA secure encryption [37].

Limitations. Key generation phase of JL-based MtA is costly.

We need to prove that the key is generated properly. However,

correctness proof of the JL modulus is still not well-studied. The

proof could be extended from that of Camenisch et al. [9]. Appendix

E.1 gives a discussion. We leave efficient proof of correctness of JL

modulus as an open problem and future work. Fortunately, since

key generation is one-time only, an expensive key generation phase

is usually acceptable. Furthermore, as discussed in [1], we may

assume there exists a trusted dealer in the setup process in some

applications. This is reasonable, for instance, in cryptocurrency

applications when a client generates its own key and distributed

them to a number of servers to protect the security of his own key.

In addition, there are some subtle issues in the choice of pa-

rameters. Security of JL cryptosystem requires 𝑘 ≤ 1/4 log𝑁 − 𝜆,
where 𝜆 is a security parameter. In other words, for a small security

parameter, the message space of JL (i.e., 𝑘) maybe too small for

encryption of the shares in threshold ECDSA. Then we have to

increase 𝑁 to increase the message space. This happens when

the security parameter 𝜆 is 128. In this case, JL needs a 3360-bits

modulus. In contrast, a 3072-bit modulus would be secure enough

for Paillier. For 192-bit and 256-bit security, JL can use the same

modulus as Paillier.

Finally, when 𝑘 is large (e.g. ≈ 1000-bit), current decryption

of JL scheme is slower than that of Paillier. We propose a faster

decryption algorithm by adding lookup tables to secret key. Details

are given in Sec. 2.2. In case 𝜆 = 128, our decryption runs in 15 ms

at a cost of 1168.1 KB secret key.

1.4 Related works
This section presents related works on zero-knowledge proof for

JL encryption, constructions of MtA, and threshold ECDSAs.

Proofs on JL encryption. With the aim to design two-party

computation over Z
2
𝑘 , Catalano et al. [14] proposed several zero-

knowledge proofs on the original JL encryption. Their proofs in-

clude proving knowledge of a JL plaintext, and proof of multiplica-

tion of two JL encrypted values. However, these proofs only provide

non-standard soundness, i.e., only the least significant 𝑘 − 𝑡 bits are
extracted, and say nothing to the maximum significant 𝑡 bits.

Constructions of MtA. Aiming to design threshold ECDSA, sev-

eral MtAs have been proposed from Paillier encryption, CL en-

cryption, OT, etc. Paillier-based MtA can be traced back to [36]

and is subsequent improved in [10, 29, 35]. Due to the mismatch

of Paillier’s message space and ECDSA’s signature space, these

schemes require relatively expensive zero-knowledge range proofs.

Several techniques could be applied to simplify the proofs, such

as range proof with slack [35]. Castagnos et al. [11, 12] replaced

Paillier encryption with Castagnos and Laguillaumie (CL) [13]

encryption from the observation that CL’s message space matches

the signature space of ECDSA. While there are subsequent works to

improve efficiency [23, 45], CL-basedMtAs are still computationally

expensive. Doerner et al. [25, 26] built OT-basedMtA from simplest

OT [15] and OT extensions [32]. It is computationally efficient at a

cost of relatively high bandwidth requirement (e.g., 90 KB for 128

bits security). There are instantiations from other tools, such as

pseudorandom correlation generators [1], Ring-LWE [5], and noisy

Reed-Solomon encodings (RS) [30].

Threshold ECDSA.We give a brief account of threshold ECDSA

here. Interested readers may refer to a survey in [3].

Lindell et al. [35], and Gennaro and Goldfeder [29] proposed a

full threshold ECDSA protocol. They both require at least 𝑛(𝑛 −
1) +𝑛/2 MtAs when 𝑛 parties are involved. Later, Canetti et al. [10]

proposed an UC secure four-pass threshold ECDSA. We would like

to remark that Tymokhanov et al. [42] discovered a weakness in

the implementation of Gennaro and Goldfeder’s scheme [29] when

zero-knowledge proofs are eliminated. Following the blueprint of

Gennaro and Goldfeder [29], several works [12, 23, 45] designed

threshold ECDSA by replacing Paillier-basedMtA with that from

CL encryption. Doerner et al. [26] proposed a full threshold scheme

from oblivious transfer.

Recently, Abram et al. [1] built threshold ECDSA with low-

bandwidth from pseudorandom correlation generator (PCG). Their

bandwidth complexity is 1 ∼ 2 orders of magnitude smaller than

those based on Paillier encryption [10, 29, 35] or CL encryption

[12], however, their amortized computational cost is expensive (i.e,

1 ∼ 2 seconds per ECDSA signature).

There are schemes that only focus on the two-party case, and

some of them do not rely on MtA. Lindell [34] presented a com-

petitive two-party ECDSA from Paillier, which is subsequently

improved by Castagnos et al. [11]. Doerner et al. [25] achieved two-

party ECDSA supporting fast online computation with the help of

two MtAs from oblivious transfer. Xue et al. [44] further construct

a general online-friendly two-party ECDSA from a singleMtA.

1.5 Paper Organization.
We review preliminaries in Section 2, and propose JL commitment

and zero-knowledge proofs for JL cryptosystem in Section 3 and 4.

Section 5 presents the JL-basedMtA and batching technique. We

compare the complexity between our MtA and those from OT,

Paillier and CL in Section 6. Finally, Section 7 gives benchmarks of

JL-basedMtA in threshold ECDSA and comparisons.

2 PRELIMINARY
In this paper, we denote by 𝜆 the security parameter Given a finite

set 𝐷 , 𝑎 ← 𝐷 means sampling a uniformly random 𝑎 from set 𝐷 .

2.1 Mathematics and Assumptions
Let 𝑝 be an odd prime and let 𝑛 ≥ 2 such that 𝑛 |𝑝 − 1. The 𝑛-th

power residue symbol modulo 𝑝 is defined as(
𝑎

𝑝

)
𝑛

= 𝑎
𝑝−1

𝑛 mod 𝑝.

We abuse the notion 𝐽𝑝 (𝑎) =
(
𝑎
𝑝

)
2

. If 𝑁 = 𝑝𝑞 is RSA modulus,

𝐽𝑁 (𝑎) is defined as 𝐽𝑝 (𝑎) 𝐽𝑞 (𝑎).
5

Let 𝑁 = 𝑝𝑞 = (2𝑘𝑝′+1) (2𝑞′+1) where 𝑝, 𝑞 are primes, 𝑘 > 1,and

𝑝′, 𝑞′ are odd number. In the following, we denote such special RSA

modulus as JL modulus. Define

J𝑁 =
{
𝑎 ∈ Z∗𝑁 | 𝐽𝑁 (𝑎) = 1

}
, ¯J𝑁 =

{
𝑎 ∈ Z∗𝑁 | 𝐽𝑁 (𝑎) = −1

}
QR =

{
𝑎 ∈ Z∗𝑁 | ∃𝑥 ∈ Z

∗
𝑁 , 𝑎 = 𝑥2

mod 𝑁
}
,QNR = J𝑁 \ QR

QR
2
𝑘 = {𝑎 ∈ Z∗𝑁 | ∃𝑥 ∈ Z

∗
𝑁 , 𝑎 = 𝑥2

𝑘

mod 𝑁 }.

Fact 1. Let 𝑁 = 𝑝𝑞 be a JL modulus. We have

(1) −1 ∈ ¯J𝑁 since 𝐽𝑝 (−1) = 1 and 𝐽𝑞 (−1) = −1.
(2) QR

2
𝑘 is the cyclic subgroup of Z∗

𝑁
of order 𝑝′𝑞′.

(3) A random element fromQR
2
𝑘 is its generator with probability

(1 − 1/𝑝′) (1 − 1/𝑞′).
(4) Finding a non-trivial square root (i.e. ≠ ±1) of 1 is equivalent

to factoring the modulus 𝑁 .

Definition 1 (𝑘-QR Assumption [7]). Let 𝑁 = 𝑝𝑞 be a JL
modulus. The 𝑘-QR assumption asserts that AdvkQRA , defined as:

|Pr[A(𝑥, 𝑘) = 1|𝑥 ← QR] − Pr[A(𝑥, 𝑘) = 1|𝑥 ← QNR] |,

is negligible for any PPT distinguisher A. The probability is taken
over the randomness generating 𝑁 and choosing 𝑥 .

Lemma 1 (Theorem 3 in [7] for 𝑞 = 3 mod 4). Let 𝑁 = 𝑝𝑞 be a

JL modulus. For any PPT D, define AdvGap-2
𝑘

D as

|Pr[D(𝑥, 𝑘) = 1|𝑥 ← QR
2
𝑘] − Pr[D(𝑥, 𝑘) = 1|𝑥 ← QNR] |.

We have, for any PPT algorithm D, there exits a 𝑘-QR solver C such

that AdvGap-2
𝑘

D ≤ 3/2(𝑘 − 1/3)AdvkQRC .

We introduced a new assumption, namely, strong JL assumption,
which is needed in the security analysis of our proposed primitives.

Definition 2 (Strong JL assumption). Let𝑁 be the JL modulus.
The strong JL assumption states that, for a random element 𝑥 ∈ QR

2
𝑘 ,

it is hard to find the 𝑒-th root 𝑎 modulo 𝑁 , i.e., 𝑎𝑒 = 𝑥 mod 𝑁 , for
any PPT algorithm and an exponent 𝑒 > 1 of its choice.

Theorem 1. The strong JL assumption holds under 𝑘-QR assump-
tion and strong RSA assumption with JL modulus.

Proof is given in Appendix A.2.

2.2 Joye-Libert Encryption (Revisited)
The Joye-Libert encryption scheme [7] (an extension of [31]) con-

tains the tuple (JL.kgen, JL.enc, JL.dec) as follows.
(1) JL.kgen(1𝜆). It defines a proper integer 𝑘 , randomly gen-

erates primes 𝑝 = 2
𝑘𝑝′ + 1 and 𝑞 = 2𝑞′ + 1 where 𝑝′, 𝑞′

are odd numbers (see below for a discussion on the choice

of parameters), and set 𝑁 = 𝑝𝑞. It also picks a random

𝑦 ∈ QNR. Let 𝑝𝑘 = (𝑁,𝑦, 𝑘) and 𝑠𝑘 = 𝑝 be the public and

secret key pair.

(2) JL.enc(𝑝𝑘,𝑚). Choose a random 𝑟 ∈ Z∗
𝑁

and compute 𝐶 =

𝑦𝑚𝑟2
𝑘

mod 𝑁 as the ciphertext of𝑚 ∈ {0, 1}𝑘 (which is

taken as an integer in [0, · · · , 2𝑘 − 1]).
(3) JL.dec(𝑠𝑘,𝐶). Given secret key 𝑠𝑘 = 𝑝 , compute the 2

𝑘
-th

power residue symbol 𝑧 =

(
𝐶
𝑝

)
2
𝑘
. Find𝑚 ∈ {0, 1, · · · , 2𝑘 −

1} such that the relation 𝑧 =

[(
𝑦
𝑝

)
2
𝑘

]𝑚
mod 𝑝 holds. A

decryption algorithm is given in [31].

Under the 𝑘-QR assumption, the Joye-Libert encryption is IND-

CPA secure according to [7, Theorem 2]. We give a modified Joye-

Libert (JL) scheme which retains its security guarantee.

(1) In JL.kgen, choose 𝑦 ← QNR and ℎ ← QR
2
𝑘 . Let 𝑝𝑘 =

(𝑁,ℎ,𝑦, 𝑘) and 𝑠𝑘 = 𝑝 .

(2) In JL.enc, choose a random 𝑟 ∈ Z𝑁 , and compute ciphertext

𝐶 = 𝑦𝑚ℎ𝑟 mod 𝑁 .

We can choose ℎ ← QR
2
𝑘 by 𝑥 ← QNR and computing ℎ = 𝑥2

𝑘

mod 𝑁 . According to Fact 1, the order of ℎ is 𝑝′𝑞′ with overwhelm-

ing probability (1 − 1/𝑝′) (1 − 1/𝑞′).
Fast Decryption.We further give a fast decryption algorithm by

adding lookup tables to the secret key. Assume 𝑘 = 𝑙𝑛 for some

integers 𝑙 and 𝑛. We view the message as 𝑚 =
∑𝑛
𝑖=1

2
(𝑖−1)𝑙𝑚𝑖

where𝑚𝑖 ∈ [0, 2𝑙 − 1]. Then, given𝐶 = 𝑦𝑚ℎ𝑟 mod 𝑁 , we have for

𝑖 = 1, 2, · · · , 𝑛,(
𝐶

𝑝

)
2
𝑖𝑙

=

(
𝑦

𝑝

)𝑚1

2
𝑖𝑙

(
𝑦

𝑝

)𝑚2

2
(𝑖−1)𝑙
· · ·

(
𝑦

𝑝

)𝑚𝑖

2
𝑙

mod 𝑝.

Thus, we could find𝑚1, · · · ,𝑚𝑛 step by step using the following

lookup tables,

𝑇1 =

[(
𝑦

𝑝

)
0

2
𝑙

,

(
𝑦

𝑝

)
1

2
𝑙

, · · · ,
(
𝑦

𝑝

)
2
𝑙−1

2
𝑙

]
𝑇2 =

[(
𝑦

𝑝

)
0

2
2𝑙

,

(
𝑦

𝑝

)
1

2
2𝑙

, · · · ,
(
𝑦

𝑝

)
2
𝑙−1

2
2𝑙

]
· · ·

𝑇𝑛 =

[(
𝑦

𝑝

)
0

2
𝑛𝑙

,

(
𝑦

𝑝

)
1

2
𝑛𝑙

, · · · ,
(
𝑦

𝑝

)
2
𝑙−1

2
𝑛𝑙

]
.

Let 𝑇 = (𝑇1,𝑇2, · · · ,𝑇𝑛) and 𝑠𝑘 = (𝑝,𝑇) in JL.kgen. The fast

decryption algorithm runs as follows.

• For 𝑖 = 𝑛, · · · , 1, compute 𝑧𝑖 =

(
𝐶
𝑝

)
2
𝑖𝑙
.

• Set𝑚1 = 𝑗 if there exists 𝑗 s.t. 𝑇1 [𝑗] = 𝑧1, otherwise abort.

• For 𝑖 = 2, 3, · · · , 𝑛, do
– tempz = 𝑧𝑖 × (𝑇𝑖 [𝑚1] × · · · ×𝑇2 [𝑚𝑖−1])−1

mod 𝑝

– Set𝑚𝑖 = 𝑗 if ∃ 𝑗 s.t. 𝑇1 [𝑗] = tempz, otherwise abort.

• Output𝑚 =
∑𝑛
𝑖=1

2
(𝑖−1)𝑙𝑚𝑖 .

Choice of Parameters. The security analysis of Joye-Libert [7, 31]
requires that 𝑘 ≤ 1/4 log𝑁 −𝜆, and that 𝑝′ and 𝑞′ are odd numbers,

each of which has a large prime factor. Looking ahead, our zero-

knowledge proofs (e.g. knowledge soundness in Appendix C.1)

further require all factors of 𝑝′, 𝑞′ are not less than 2
𝑡
where 𝑡 is

the soundness parameter. This could be guaranteed by setting 𝑝′

and 𝑞′ to be primes (in this paper).

2.3 Commitment
A commitment Com is a 3-tuple (setup, commit, verify) with mes-

sage space Mcom, commitment space Ccom, and opening space

Rcom.
(1) Com.setup(1𝜆). Generate public parameters pp.

6

Setup: On receiving (setup) from 𝑃1 and 𝑃2

• Store and send (setup-complete) to 𝑃1 and 𝑃2.

Multiplication: On receiving (input, sid, 𝑎 ∈ Z𝑞) from 𝑃1,

(input, sid, 𝑏 ∈ Z𝑞) from 𝑃2 where sid has not been used, if (setup-

complete) exists:

• Sample 𝛼 ∈ Z𝑞 and compute 𝛽 = 𝑎𝑏 − 𝛼 mod 𝑞.

• Send (output-1, sid, 𝛼) to 𝑃1

• Send (output-2, sid, 𝛽) to 𝑃2.

Figure 2: Multiplicative-to-additive functionality FMtA.

(2) Com.commit(pp,𝑚). Compute a commitment 𝑐 to 𝑚 ∈
Mcom with its opening 𝑑 ∈ Rcom, and output pair (𝑐, 𝑑) as
the commitment and its opening.

(3) Com.verify(pp, 𝑐,𝑚,𝑑). Output a bit to indicate the valida-

tion of (𝑚,𝑑) with respect to commitment 𝑐 .

The correctness requires that for any pp← Com.setup(1𝜆), any
𝑚 ∈ Mcom, it holds that Com.verify(pp, 𝑐,𝑚,𝑑) = 1, if (𝑐, 𝑑) ←
Com.commit(pp,𝑚).

A commitment could be statistical hiding and computational

binding, or computational hiding and statistical hiding. We focus

on the first one.

• Hiding: For any 𝑚,𝑚′ ∈ Mcom, their commitments are

statistical indistinguishable.

• Binding: No probability polynomial time (PPT) adversary

could open a commitment 𝑐 on two different messages.

2.4 The Multiplicative-to-Additive
Functionality

Functionality FMtA runs between two parties, namely, 𝑃1 and 𝑃2.

The functionality, illustrated in Figure 2, is parameterized by a

number 𝑞 (In this paper, we focus on the prime group order 𝑞 in

ECDSA). 𝑃1 and 𝑃2 participate in the Setup phase once, and run the

Multiplication phases as many times as they wish. FMtA outputs 𝛼 ,

𝛽 on input 𝑎 and 𝑏 from 𝑃1 and 𝑃2 respectively, under the constraint

that 𝛼 + 𝛽 = 𝑎𝑏 mod 𝑞.

2.5 Zero-Knowledge Proof
An interactive proof for a language 𝐿 is an interactive protocol

between a prover P and a verifierV . Assume R is the associated

relation of 𝐿. We call (P,V) an interactive proof for R or 𝐿 if

it satisfies: completeness which says for every 𝑥 ∈ 𝐿, ⟨P,V⟩(𝑥)
always accepts; and soundness which says for every 𝑥 ∉ 𝐿 and

every prover P∗, Pr[⟨P∗,V⟩(𝑥) = 1] is negligible. When the

soundness holds for computationally bounded provers, the system

is usually called an “argument”. We abuse the notion and use proof

to represent both proof and argument.

An interactive proof is zero-knowledge if for every PPT𝑉 ∗ there
exists a PPT simulator Sim s. t. {𝑉𝑖𝑒𝑤PV∗ (𝑥)}𝑥∈𝐿 and {Sim(𝑥)}𝑥∈𝐿
are statistically indistinguishable. It is said to be honest-verifier zero-

knowledge if zero-knowledge holds for any PPT honest verifier.

Σ-protocol [17] is a special honest-verifier zero-knowledge proof.

Definition 3 (Σ-protocol). Σ-protocol is a special 3-move zero-
knowledge proof (P,V) and proceeds as follows: P with inputs
(𝑥,𝑤) ∈ R, computes (𝑎, 𝑠𝑡) and sends 𝑎 to V , who sends back a

random challenge 𝑒 ; P sends a response 𝑧 = P(𝑥,𝑤, 𝑎, 𝑒, 𝑠𝑡) toV ; On
input of (𝑎, 𝑒, 𝑧),V outputs 0 or 1.

• Completeness: If P andV follow the protocol on input (𝑥,𝑤)
to P where (𝑥,𝑤) ∈ R,V always outputs 1.

• Honest-verifier zero-knowledge: There exists a PPT simulator
Sim that on input 𝑥 ∈ 𝐿 and a challenge 𝑒 , outputs (𝑎, 𝑧) such
that (𝑎, 𝑒, 𝑧) is indistinguishable from a real transcript with
challenge 𝑒 .

• Special Soundness (proof of knowledge): There exists a PPT
knowledge extractor Ext that for any statement 𝑥 , on input of
two accepting transcripts (𝑎, 𝑒, 𝑧) and (𝑎, 𝑒′, 𝑧′) with 𝑒 ≠ 𝑒′,
outputs a witness𝑤 ′ such that (𝑥,𝑤 ′) ∈ R.

All zero-knowledge proofs in this paper are Σ-protocols and
could be converted into non-interactive form via Fiat-Shamir trans-

formation [27].

3 JL (VECTOR) COMMITMENT
In this section, we describe our JL (vector) commitment scheme

and its relation with modified JL encryption. The JL commitment

contains the tuple (JL.setup, JL.commit, JL.verify).
(1) JL.setup(1𝜆). Run JL.kgen of the modified JL encryption to

obtain public key 𝑝𝑘 = (𝑁 , ℎ, 𝑦, 𝑘), and set it as pp.

(2) JL.commit(pp,𝑚). For𝑚 ∈ Z, randomly choose 𝑟 ← Z𝑁 ,

compute

𝑐 = 𝑦2
𝑘𝑚ℎ2

𝑘𝑟
mod 𝑁,

and return (𝑐, 𝑟) as the commitment and its opening.

(3) JL.verify(pp, 𝑐,𝑚,𝑑). If 𝑐 = 𝑦2
𝑘𝑚ℎ2

𝑘𝑑
mod 𝑁 and 𝐽𝑁 (𝑐) =

1, output 1, otherwise 0. Note that checking the Jacobi

symbol is crucial for security.

Theorem 2. If strong JL and 𝑘-QR assumptions hold, JL com-
mitment (JL.setup, JL.commit, JL.verify) is a statistical hiding and
computational binding commitment.

Proof. The correctness is obvious. Hiding property comes from

the facts that ℎ2
𝑘
is also a generator of QR

2
𝑘 (whose order is 𝑝′𝑞′),

and 𝑦2
𝑘 ∈ QR

2
𝑘 . There exists a 𝛼 such that 𝑦2

𝑘
= ℎ2

𝑘𝛼
mod 𝑁 .

Thus, 𝑐 = 𝑦2
𝑘𝑚ℎ2

𝑘𝑟
mod 𝑁 could also be taken as the commitment

of𝑚′ with opening 𝑟 + 𝛼 (𝑚 −𝑚′).
Binding relies on the strong JL and 𝑘-QR assumptions. Given

an instance (𝑁,ℎ, 𝑘) for strong JL problem, the strong JL solver

generates𝑦 = ℎ𝛼 mod 𝑁 for a random 𝛼 ∈ Z𝑁 and sets (𝑁,ℎ,𝑦, 𝑘)
as public parameter of JL commitment. The only difference is the

generation of 𝑦 (i.e., 𝑦 ∈ QNR or 𝑦 ∈ QR
2
𝑘). The committer could

not find this difference due to the 𝑘-QR assumption (according to

Lemma 1). Then, from two different openings (𝑚,𝑑) and (𝑚′, 𝑑′)
of 𝑐 , the verification check guarantees that 𝑦2

𝑘𝑚ℎ𝑑 = 𝑦2
𝑘𝑚′ℎ2

𝑘𝑑 ′

mod 𝑁 . Denote Δ𝑚 =𝑚 −𝑚′, Δ𝑑 = 𝑑 − 𝑑′, then 𝑦2
𝑘Δ𝑚ℎ2

𝑘Δ𝑑 = 1

mod 𝑁 .

Recall the generation of 𝑦, we have 𝑦2
𝑘
= ℎ2

𝑘𝛼
mod 𝑁 . Thus,

ℎ2
𝑘 (𝛼Δ𝑚+Δ𝑑) = 1 mod 𝑁 . Let 𝑒 > 1 be any number that is co-

prime to 𝐸 = 2
𝑘 (𝛼Δ𝑚 + Δ𝑑). We have(

ℎ𝑒
−1

mod 𝐸
)𝑒

= ℎ mod 𝑁,

7

which finds ℎ𝑒
−1

mod 𝐸
as the 𝑒-th root of ℎ ∈ QR

2
𝑘 , i.e., a solution

of the strong JL problem. □

Extension to vector commitment. We generalize our scheme

to commit a vector. Looking ahead, vector commitment (JLv.setup,
JLv.commit, JL.verify) helps batchingMtA (details presented in the

next section).

(1) JLv.setup(1𝜆). As in JL.kgen of the modified JL encryption,

choose ℎ ∈ QR
2
𝑘 and generate many𝑦-elements𝑦1,𝑦2, · · · ,

𝑦𝑙 ∈ QNR. Then output (𝑁 , ℎ, 𝑦1, · · · , 𝑦𝑙 , 𝑘) as pp.
(2) JLv.commit(pp, ®𝑚). For vector ®𝑚 = (𝑚1, · · · ,𝑚𝑙) ∈ Z𝑙 ,

randomly choose 𝑟 ← Z𝑁 , and compute

𝑐 =

𝑙∏
𝑖=1

𝑦
2
𝑘𝑚𝑖

𝑖
· ℎ2

𝑘𝑟
mod 𝑁 .

Return (𝑐, 𝑟) as the commitment and its opening.

(3) JLv.verify(pp, 𝑐, ®𝑚,𝑑). If 𝑐 = ∏𝑙
𝑖=1

𝑦
2
𝑘𝑚𝑖

𝑖
·ℎ2

𝑘𝑑
mod 𝑁 and

𝐽𝑁 (𝑐) = 1, output 1, otherwise 0.

Theorem 3. Under the strong JL and 𝑘-QR assumptions, vector
commitment (JLv.setup, JLv.commit, JLv.verify) is a statistical hid-
ing and computational binding commitment.

Please refer to Appendix B for the proof.

Converting a JL Ciphertext to a JL (vector) commitment. Our
MtA in Section 5 builds on the following observations.

(1) One could convert a JL ciphertext 𝐶 = 𝑦𝑚ℎ𝑟 mod 𝑁 into

a JL commitment (under the same public key) of𝑚 with

opening 𝑟 by computing 𝑐 = 𝐶2
𝑘

mod 𝑁 . The conversion

does not require any private knowledge.

(2) Furthermore, affine operation on a JL ciphertext can also be

converted to our JL vector commitment with 𝑙 = 2. This will

be used in ourMtA (refer to Section 5). Specifically, let 𝐶

be the JL ciphertext under public key (𝑁 , ℎ, 𝑦, 𝑘), let𝐶
aff

=

𝐶𝑎𝑦𝛼ℎ𝑟 mod 𝑁 be an affine operation on 𝐶 , then 𝑐
aff

=

𝐶2
𝑘

mod 𝑁 could be taken as a JL vector commitment to

(𝑎, 𝛼) with bases (𝐶,𝑦, ℎ) and opening 𝑟 .

4 ZERO-KNOWLEDGE PROOFS FOR JL
CRYPTOSYSTEM

4.1 Proof for JL (vector) Commitment ZKJL-com /
ZKJLv-com

The public parameter pp and commitment 𝑐 = 𝑦2
𝑘𝑚ℎ2

𝑘𝑟
mod 𝑁

are the common input. The prover would like to prove the knowl-

edge of a𝑚 in range [0, 𝐵] such that the following relation holds:

RJL-com = {(𝑐;𝑚, 𝑟) | 𝑐 = 𝑦2
𝑘𝑚ℎ2

𝑘𝑟
mod 𝑁,𝑚 ∈ [0, 𝐵]}.

We define Σ-protocol ZKJL-com between P andV , where 𝑠 and

𝑡 are the statistical and soundness parameters respectively.

• P randomly chooses 𝑣 from [0, 2𝑠+𝑡𝐵], and𝑤 from [0, 2𝑠+𝑡𝑁].
P computes and sends 𝑑 = 𝑦2

𝑘 𝑣ℎ2
𝑘𝑤

mod 𝑁 toV .

• V chooses and sends 𝑒 ← {0, 1}𝑡 to P.
• P computes and sends 𝑧𝑚 = 𝑒𝑚 + 𝑣 and 𝑧𝑟 = 𝑒𝑟 + 𝑤 (as

integers) toV .

• V accepts the proof only if

– 𝐽𝑁 (𝑐) = 𝐽𝑁 (𝑑) = 1, 𝑐𝑒𝑑 = 𝑦2
𝑘𝑧𝑚ℎ2

𝑘𝑧𝑟
mod 𝑁 ,

– 𝑧𝑚 ∈ [0, 2𝑠+𝑡𝐵].
The completeness is trivial. The protocol is honest-verifier zero-

knowledge since simulator Sim can be constructed using standard

techniques: Sim chooses random responds 𝑧𝑚 ← [0, 2
𝑠+𝑡𝐵], 𝑧𝑟 ←

[0, 2
𝑠+𝑡𝑁], together with 𝑒 ← {0, 1}𝑡 , and sets 𝑑 = 𝑦2

𝑘𝑧𝑚ℎ2
𝑘𝑧𝑟 𝑐−𝑒

mod 𝑁 .

Showing that the above protocol has special soundness (proof-

of-knowledge) is more involved and requires the strong JL and

𝑘-QR assumptions. Briefly, we show that there exists a probabilistic

oracle machine to either extract witness𝑚, 𝑟 or solve the strong

JL or 𝑘-QR problems. Please refer to Appendix C.1 for a detailed

proof.

The proof guarantees the rangewith slack, i.e.,𝑚 ∈ [−2
𝑠+𝑡𝐵, 2𝑠+𝑡𝐵],

since for any𝑚 satisfying |𝑚 | > 2
𝑠+𝑡𝐵, the probability of guessing

the right 𝑣 such that 𝑒𝑚 + 𝑣 ∈ [0, 2𝑠+𝑡𝐵] is less then 1/2𝑡 .
Opening proof of JL vector commitment.TheZKJL-com protocol

can be extended to prove opening of JL vector commitment, i.e.,

the following relation

RJLv-com = {(𝑐; ®𝑚, 𝑟) |𝑐 = 𝑦2
𝑘𝑚1

1
· · ·𝑦2

𝑘𝑚𝑙

𝑙
ℎ2

𝑘𝑟
mod 𝑁,𝑚𝑖 ∈ [0, 𝐵𝑖]},

where𝑁,ℎ,𝑦1, · · · , 𝑦𝑙 , 𝑘 are public parameters, and ®𝑚 = (𝑚1, · · · ,𝑚𝑙).
We define Σ-protocol ZKJLv-com as follows, where 𝑠 and 𝑡 are the

statistical and soundness parameters respectively.

• P chooses random 𝑣𝑖 from [0, 2𝑠+𝑡𝐵𝑖] (for 1 ≤ 𝑖 ≤ 𝑙), and
random 𝑤 from [0, 2𝑠+𝑡𝑁]. P computes and sends 𝑑 =

𝑦
2
𝑘 𝑣1

1
· · ·𝑦2

𝑘 𝑣𝑙
𝑙

ℎ2
𝑘𝑤

mod 𝑁 toV .

• V chooses and sends 𝑒 ← {0, 1}𝑡 to P.
• P computes and sends 𝑧𝑖 = 𝑒𝑚𝑖 + 𝑣𝑖 for 1 ≤ 𝑖 ≤ 𝑙 , and
𝑧𝑟 = 𝑒𝑟 +𝑤 (as integers) toV .

• V accepts the proof only if the following holds

– 𝐽𝑁 (𝑐) = 𝐽𝑁 (𝑑) = 1, 𝑐𝑒𝑑 = 𝑦
2
𝑘𝑧1

1
· · ·𝑦2

𝑘𝑧𝑙
𝑙

ℎ2
𝑘𝑧𝑟

mod 𝑁 ,

– 𝑧𝑖 ∈ [0, 2𝑠+𝑡𝐵𝑖] for 1 ≤ 𝑖 ≤ 𝑙 .
The proof guarantees that every𝑚𝑖 ∈ [−2

𝑠+𝑡𝐵𝑖 , 2𝑠+𝑡𝐵𝑖]. The secu-
rity analysis is give in Appendix C.2.

4.2 Range Proof for JL Encryption / Affine
Operation ZKJL-enc / ZKJL-aff

Given a JL ciphertext 𝐶 satisfying 𝐽𝑁 (𝐶) = 1, we can use the

proof for JL commitment 𝑐 = 𝐶2
𝑘

mod 𝑁 to prove relations for JL

encryption. Concretely, define the following relation,

RJL-enc = {(𝐶;𝑚, 𝑟) | 𝐽𝑁 (𝐶) = 1,𝐶 = 𝑦𝑚ℎ𝑟 mod 𝑁,𝑚 ∈ [0, 𝐵]},
where 𝐶 is the common input.

Lemma 2. Under the factoring assumption, when 𝐽𝑁 (𝐶) = 1, by
setting 𝑐 = 𝐶2

𝑘
mod 𝑁 , ZKJL-com for relation RJL-com is exactly a

Σ-protocol, denoted by ZKJL-enc, for relation RJL-enc.

Proof. Completeness and honest-versifier zero-knowledge are

the same. We only need to analyse the soundness. The soundness of

ZKJL-com provides an extractor Ext to extract𝑚 and 𝑟 such that 𝑐 =

𝐶2
𝑘
= 𝑦2

𝑘𝑚ℎ2
𝑘𝑟

mod 𝑁 . Nowwe claim that this is also the witness

of relation RJL-enc. According to Fact 1 (1) and (4), (𝐶−1𝑦𝑚ℎ𝑟)2 = 1

mod 𝑁 , otherwise the prover provides a non-trivial square-root of

8

1 which violates the factoring assumption. Applying the factoring

assumption again, 𝐶−1𝑦𝑚ℎ𝑟 = ±1 mod 𝑁 . Since 𝐽𝑁 (𝐶) = 1, we

have 𝐶−1𝑦𝑚ℎ𝑟 = 1 mod 𝑁 . □

Range proof for JL affine operation. As mentioned at the end of

Section 3, let 𝐶
aff

= 𝐶𝑎𝑦𝛼ℎ𝑟 mod 𝑁 be an affine operation on JL

ciphertext𝐶 under public key (𝑁 ,ℎ,𝑦, 𝑘), we have 𝑐 = 𝐶2
𝑘

aff
mod 𝑁

is a JL vector commitment to (𝑎, 𝛼) with bases (𝐶,𝑦, ℎ). Thus, proof
for JL vector commitment could be used to prove affine operation

on a JL ciphertext. The Σ-protocol, denoted by ZK
JL-aff

, for relation

R
JL-aff

= {(𝐶
aff
,𝐶;𝑎, 𝛼, 𝑟) | 𝐽𝑁 (𝐶) = 1,𝐶

aff
= 𝐶𝑎𝑦𝛼ℎ𝑟 mod 𝑁

𝑎 ∈ [0, 𝐵1], 𝛼 ∈ [0, 𝐵2]},

is exactly ZKJLv-com for relation RJLv-com by setting 𝑙 = 2, 𝑐 = 𝐶2
𝑘

aff

mod 𝑁 , (𝑚1,𝑚2) = (𝑎, 𝛼), and (𝑦1, 𝑦2) = (𝐶,𝑦).
Similarly, we should analyse the soundness, i.e., the extractor for

ZKJLv-com extracts the witness of relation R
JL-aff

, i.e., (𝑎, 𝛼, 𝑟). We

only have 𝐶2
𝑘

aff
= 𝐶2

𝑘𝑎𝑦2
𝑘𝛼ℎ2

𝑘𝑟
mod 𝑁 from ZKJLv-com’s sound-

ness. As in Lemma 2, under the factoring assumption and condition

𝐽𝑁 (𝐶aff) = 1, 𝐶
aff

= 𝐶𝑎𝑦𝛼ℎ𝑟 mod 𝑁 .

4.3 Proof of Equality ZKJL-equ / ZKJLv-equ
We propose the proof of equality which allows the prover to demon-

strate that the plaintext of a JL ciphertext corresponds to the open-

ing of a JL commitment. Note that the JL encryption and the JL

commitment could be using a different modulus.

Let (𝑁0,ℎ0,𝑦0, 𝑘) be the public key of the modified JL encryption,

(𝑁 , ℎ, 𝑦, 𝑘) be the public parameter of the JL commitment. The

prover would like to prove knowing𝑚 ∈ [0, 𝐵] in ciphertext 𝐶 is

equal to the value committed in a JL commitment 𝑐 , i.e.,

RJL-equ = {(𝐶, 𝑐;𝑚) | 𝑐 = 𝑦2
𝑘𝑚ℎ2

𝑘𝑟
mod 𝑁,

𝐶 = 𝑦𝑚
0
ℎ
𝑟0

0
mod 𝑁0,𝑚 ∈ [0, 𝐵]}.

The protocol ZKJL-equ works as follows.

• P chooses random 𝑣 from [0, 2
𝑠+𝑡𝐵], and random 𝑤0, 𝑤

from [0, 2𝑠+𝑡𝑁].P computes and sends𝐷 = 𝑦𝑣
0
ℎ
𝑤0

0
mod 𝑁0,

𝑑 = 𝑦2
𝑘 𝑣ℎ2

𝑘𝑤
mod 𝑁 toV .

• V chooses and sends 𝑒 ← {0, 1}𝑡 to P.
• P computes and sends 𝑧𝑚 = 𝑒𝑚 + 𝑣 , 𝑧𝑅 = 𝑒𝑟0 + 𝑤0, and

𝑧𝑟 = 𝑒𝑟 +𝑤 (as integers) toV .

• Verification:V accepts the proof only if

– 𝐶𝑒𝐷 = 𝑦
𝑧𝑚
0
ℎ
𝑧𝑅
0

mod 𝑁0,

– 𝑐𝑒𝑑 = 𝑦2
𝑘𝑧𝑚ℎ2

𝑘𝑧𝑟
mod 𝑁 , 𝐽𝑁 (𝑐) = 𝐽𝑁 (𝑑) = 1.

Similar to proof of opening, both completeness and honest veri-

fier zero-knowledge are trivial. Special soundness holds under the 𝑘-

QR and strong JL assumptions, which is discussed in Appendix D.1.

Batch proof of equality to a JL vector commitment. Protocol
ZKJL-equ could be extended to prove equality of many ciphertext

to one JL vector commitment, i.e., proving the relation

RJLv-equ = {(®𝐶, 𝑐; ®𝑚) | 𝑐 = 𝑦2
𝑘𝑚1

1
· · ·𝑦2

𝑘𝑚𝑙

𝑙
ℎ2

𝑘𝑟
mod 𝑁,

𝐶𝑖 = 𝑦
𝑚𝑖

0
ℎ
𝑟0,𝑖

0
mod 𝑁0,𝑚𝑖 ∈ [0, 𝐵𝑖], 1 ≤ 𝑖 ≤ 𝑙}.

The extended protocol ZKJLv-equ is given in Appendix D.2.

𝑃1 (pp1
;𝑎 ∈ Z𝑞) 𝑃2 (𝑝𝑘2, 𝑠𝑘2;𝑏 ∈ Z𝑞)

𝐶2 = JL.enc(𝑝𝑘2, 𝑏)
𝐶2, 𝑐, 𝜋2←−−−−−− 𝑐2 = JL.commit(pp

1
, 𝑏)

𝐶1 =

(
𝐶2 · 𝑦2

𝑠+𝑡𝑞
2

)𝑎
𝑦𝛼
′

2
ℎ𝑟

2
mod 𝑁2

𝐶1, 𝜋1−−−−−−→ 𝛽 ′ = JL.dec(𝑠𝑘2,𝐶1)

𝛼 = −𝛼 ′ mod 𝑞 𝛽 = 𝛽 ′ mod 𝑞

Figure 3: Multiplication of Single JL-basedMtA.

5 MTA VIA JL CRYPTOSYSTEM
We first give a singleMtA scheme then present a batched one.

5.1 Single JL-basedMtA
The single JL-basedMtA, illustrated in Figure 3, runs between 𝑃1

and 𝑃2. They run Setup once and Multiplication phase as many

times as they want.

Setup. 𝑃𝑖 runs JL.setup to generate its public parameter pp𝑖 , i.e.,

JL public key 𝑝𝑘𝑖 = (𝑁𝑖 , ℎ𝑖 , 𝑦𝑖 , 𝑘). In additional, each party 𝑃𝑖
generates zero-knowledge proof on the correctness of JL modulus

𝑁𝑖 (i.e., ZKJLmod
from Appendix E), and zero-knowledge proofs

on ℎ ∈ QR
2
𝑘 and ∃𝛼 ∈ Z𝑁 s.t. 𝑦2

𝑘
= ℎ2

𝑘𝛼
mod 𝑁 (i.e., ZKQR

2
𝑘

and ZKQR2kdl given in Appendix E). 𝑃𝑖 takes its own secret key 𝑠𝑘𝑖
corresponding to 𝑝𝑘𝑖 as private.

Multiplication. 𝑃1 and 𝑃2 invoke the following protocol with their

inputs 𝑎 ∈ Z𝑞 and 𝑏 ∈ Z𝑞 , and receives 𝛼 , 𝛽 respectively, such that

𝛼 + 𝛽 = 𝑎𝑏 mod 𝑞.

(1) 𝑃2’s message

(a) Compute 𝐶2 = JL.enc(𝑝𝑘2, 𝑏) under its public key.
(b) Compute 𝑐 = JL.commit(pp

1
, 𝑏) under 𝑃1’s public

parameter.

(c) Generate 𝜋2 as the equality proof of 𝐶2 and 𝑐2 such

that 𝑏 ∈ [0, 𝑞] using ZKJL-equ of section 4.3.

(d) Send (𝐶2, 𝑐2, 𝜋2) to 𝑃1.

(2) 𝑃1’s message

(a) Check the validation of 𝜋2. Then, 𝛼
′ ← [0, 𝑞2

2
2𝑠+𝑡−1],

𝑟 ← [0, 𝑁2] and compute the affine operation

𝐶1 =

(
𝐶2 · 𝑦2

𝑠+𝑡𝑞
2

)𝑎
𝑦𝛼
′

2
ℎ𝑟

2
mod 𝑁2 .

(b) Generate range proof 𝜋1 on the affine operation such

that 𝑎 ∈ [0, 𝑞] and 𝛼 ′ ∈ [0, 𝑞2
2

2𝑠+𝑡−1] using ZK
JL-aff

in section 4.2.

(c) Send (𝐶1, 𝜋1) to 𝑃2, and output 𝛼 = −𝛼 ′ mod 𝑞.

(3) 𝑃2 checks the correctness of 𝜋1, computes and outputs 𝛽 =

JL.dec(𝑠𝑘2,𝐶1) mod 𝑞.

Correctness. By range proof, 𝑏 ∈ [−2
𝑠+𝑡𝑞, 2𝑠+𝑡𝑞], and the plain-

text of 𝐶1 is upper bounded by

(𝑏 + 2
𝑠+𝑡𝑞)𝑎 + 𝛼 ′ ≤ 2

2𝑠+2𝑡+1𝑞2 + 2
3𝑠+2𝑡−1𝑞2 < 2

3𝑠+2𝑡𝑞2 .

Protocol is correct if there is no reduction modulo 2
𝑘
, which means

𝑘 ≥ 2 log𝑞 + 3𝑠 + 2𝑡 . At the same time, the strong JL assumption

requires that 𝑘 ≤ 1/4 log𝑁 − 𝜆. We suggest choosing 𝑘 = 2 log𝑞 +
3𝑠 + 2𝑡 to give a good security margin.

9

Remark. Proof 𝜋2 only guarantees 𝑏 ∈ [−2
𝑠+𝑡𝑞, 2𝑠+𝑡𝑞]. Thus, 𝑃1

uses 𝐶2 · 𝑦2
𝑠+𝑡𝑞

2
rather than 𝐶2 to ensure the plaintext is positive

when generating 𝐶1.

Theorem 4. Under 𝑘-QR and strong JL assumptions, our MtA,
illustrated in Figure 3, securely computes FMtA in the presence of a
malicious static adversary under the ideal / real definition.

Proof. In Setup phase, on or before receiving public parameters

from the adversary indicating one participant, simulator S could

simulates adversary’s view via sampling a JL public key from

public key space and appending zero-knowledge proofs via zero-

knowledge simulators Sim.

We now need to handle the Multiplication phase. In ideal world,

simulator S could only learn the public parameters and make

queries to the ideal function FMtA. In the real world, the adversary,

having corrupted 𝑃1 or 𝑃2, will also see the interactions with non-

corrupted party. Thus, S must simulate adversary’s view of these

interactions.

The proof proceeds in two cases: adversary A corrupts 𝑃2, and

A corrupts 𝑃1.

S simulates 𝑃1-when 𝑃2 is corrupted. Simulator S receives the

encryption and commitment pair (𝐶2, 𝑐2) with equality and range

proofs 𝜋2, that adversary A instructs 𝑃2 to send with sid.

If the equality and range proofs are accepted, S could extracts 𝑏

from 𝜋2 via the knowledge extractor of 𝜋2. Then, S queries FMtA

with (sid, 𝑏) and receives (sid, 𝛽) as the output of 𝑃2. Then, S
samples 𝑟 ′ ← [0, 𝑞2

2𝑠+𝑡], and sends𝐶1 as the encryption of 𝛽 + 𝑟 ′𝑞
to A. A simulated proof 𝜋1 is also appended via zero-knowledge

simulator Sim.

The main difference between the simulation and a real execution

is the generation of 𝐶1 and zero-knowledge proof. Note that the

distribution of 𝑎(𝑏 + 2
𝑠+𝑡𝑞) + 𝛼 ′ are 1/2𝑠 -statistical close when

𝛼 ′ ← [0, 𝑞2
2

2𝑠+𝑡]. This implies that the view of a corrupted 𝑃2 is

the real execution is indistinguishable with that of the simulation.

S simulates 𝑃2-when 𝑃1 is corrupted. In session sid, S computes

𝐶2, 𝑐2 by encrypting and committing a random number, respectively.

It also appends the equality and range proof 𝜋2 via zero-knowledge

simulator. Then,S receives𝐶1 with a range proof 𝜋1 thatA invokes

𝑃1 to send out. S invokes the extractor of 𝜋1 to extractA’s input 𝑎

and 𝛼 ′ (if the proof is accepted). The output ofA could be computed

as −𝛼 ′ mod 𝑞.

The difference is the generation of 𝐶2, 𝑐2 and proof 𝜋2. By the

security of JL encryption (which holds under 𝑘-QR assumption)

and statistical hiding of commitment, any PPT adversary could not

distinguish simulated 𝐶2, 𝑐2 from the real ciphertext and commit-

ment. □

5.2 Batch JL-basedMtAs
Suppose 𝑃1 and 𝑃2 would like to invoke 𝑙 MtAs with input vectors

®𝑎 = (𝑎𝑖)1≤𝑖≤𝑙 and ®𝑏 = (𝑏𝑖)1≤𝑖≤𝑙 , and receives ®𝛼 = (𝛼𝑖)1≤𝑖≤𝑙 and
®𝛽 = (𝛽𝑖)1≤𝑖≤𝑙 respectively, such that 𝛼𝑖 + 𝛽𝑖 = 𝑎𝑖𝑏𝑖 mod 𝑞. Our

batch technique mainly combines proving equality of 𝑃2’s several

ciphertexts to a single JL vector commitment.

Setup. 𝑃𝑖 runs JLv.setup to generate its public parameter pp𝑖 , i.e.,

𝑝𝑘𝑖 = (𝑁𝑖 , ℎ𝑖 , 𝑦𝑖,1, 𝑘) and 𝑦𝑖,2, · · · , 𝑦𝑖,𝑙 ← QNR. Furthermore, 𝑃𝑖

MtAs

Communication Computation

𝑃1 𝑃2 𝑃1 𝑃2

Paillier [35] 11.5𝑁 8.5𝑁 12E 11E

JL 3.5𝑁 6.5𝑁 5E 6E

Batch JL 3.5𝑁 (3.5 + 3/𝑙)𝑁 (4 + 1/𝑙)E (4 + 2/𝑙)E
Table 2: Cost comparison of Multiplication in eachMtA.

generates necessary zero-knowledge proof on the correctness of

JL modulus 𝑁𝑖 , ℎ𝑖 ∈ QR2
𝑘 , and 𝑦2

𝑘

𝑖, 𝑗
∈< ℎ2

𝑘

𝑖
> for 1 ≤ 𝑗 ≤ 𝑙 . Each

party 𝑃𝑖 takes its secret key 𝑠𝑘𝑖 corresponding to 𝑝𝑘𝑖 as private.

Multiplication.
(1) 𝑃2’s message

(a) Compute a vector of 𝑙 ciphertexts under its public key,

i.e., {𝐶2,𝑖 = JL.enc(𝑝𝑘2, 𝑏𝑖)}1≤𝑖≤𝑙 .
(b) Compute 𝑐 = JLv.commit(pp

1
, ®𝑏) under 𝑃1’s public

parameter.

(c) Compute 𝜋2 on equality of 𝑏𝑖s in 𝐶2,𝑖 and the vector

commitment 𝑐 using ZKJLv-equ of section 4.3.

(d) Send ({𝐶2,𝑖 }1≤𝑖≤𝑙 , 𝑐 , 𝜋2) to 𝑃1.

(2) 𝑃1’s message

(a) Check 𝜋2. Choose 𝛼
′
𝑖
← [0, 𝑞2

2
2𝑠+𝑡−1], 𝑟𝑖 ← [0, 𝑁2]

and compute affine function on every 𝐶2,𝑖 and get

𝐶1,𝑖 = (𝐶2,𝑖 · 𝑦2
𝑠+𝑡𝑞

2,𝑖
)𝑎𝑖𝑦𝛼

′
𝑖

2,𝑖
ℎ
𝑟𝑖
2

mod 𝑁2 .

(b) Compute proof 𝜋1 consisting of (𝜋1,1, · · · , 𝜋1,𝑙), where
𝜋1,𝑖 is the proof on affine operation of 𝐶1,𝑖 such that

𝑎𝑖 ∈ [0, 𝑞] and 𝛼 ′𝑖 ∈ [0, 𝑞
2
2

2𝑠+𝑡−1].
(c) Send {𝐶1,𝑖 }1≤𝑖≤𝑙 , 𝜋1 to 𝑃2.

(d) Output {−𝛼 ′
𝑖

mod 𝑞}
1≤𝑖≤𝑙 .

(3) 𝑃2 checks 𝜋1, decrypts and outputs

{𝛽𝑖 = JL.dec(𝑠𝑘2,𝐶1,𝑖) mod 𝑞}
1≤𝑖≤𝑙 .

6 COMPARISON
In this section, we benchmark and compare our JL-basedMtA with

previous OT-based, Paillier-based, and OT-basedMtAs.

6.1 Theoretical Complexity
We analyse the theoretical complexity of our (batch) MtA and

compare them with Paillier-based scheme in Table 2 and 3. In both

tables, E represents a full exponentiation operation over Z𝑁 (one

full Paillier operation ≈ 2E). We note that ourMtA needs more cost

in Setup phase. Fortunately, it is a one-time shot.

Comment on the difference with the published version. Con-
sidering that not all exponentiation operations can be categorized

as complete exponentiations, in order to establish a more accurate

basis for comparison, it is imperative to precisely quantify the

number of full exponentiation operations. For example, during the

computation of𝐶2 = JL.enc(𝑝𝑘2, 𝑏) as in Section 5.1, the total count

of full exponentiation operations can be defined as 1 + log 𝑝/log𝑁 .

We also recalculate the communication cost.

Single JL-based MtA. In the multiplication phase, the message

sent out by 𝑃1 and 𝑃2 are 3.5 Z𝑁 and 6.5 Z𝑁 respectively, and they

10

MtA Communication Computation

Paillier [10, 29, 35] (6𝑡 + 11)𝑁 (4𝑡 + 15)E
JL (12𝑡 + 4)𝑁 (8𝑡 + 6)E
Batch JL (6(𝑙 + 1)𝑡 + 2𝑙 + 2)𝑁 ((4𝑙 + 4)𝑡 + 2𝑙 + 4)E

Table 3: Cost comparison of Setup phase in MtA. We do not
count the cost of proving correctness of 𝑁 in all three cases.

need to compute 5 and 6 full exponentiations, respectively. Cost in

setup phase includes public key, and proofs of ZKQR
2
𝑘
, ZKQR2kdl

and ZK
JLmod

. When ZK
JLmod

is not taken into account, (12𝑡 + 4)
Z𝑁 bandwidth and 8𝑡 + 6 exponentiation are required, where 𝑡 is

the sound parameter for zero-knowledge proof.

Batch JL-based MtA. In the multiplication phase, we could batch

𝑃2’s proof of equality and range proofs to a JL vector commitment,

which will reduce the total message sent by 𝑃2 from 6.5𝑙 Z𝑁 to

(3.5𝑙 +3) Z𝑁 , and the total computation from 5𝑙 (for 𝑃1) + 6𝑙 (for 𝑃2)

fully exponential computation to (4𝑙 + 1) + (4𝑙 + 2). The batch

technique increases the cost in the setup phase, since more 𝑦𝑖s are

needed. When ZK
JLmod

is not taken into account, (6(𝑙 +1)𝑡 +2𝑙 +2)
Z𝑁 elements and (4𝑙 + 4)𝑡 + 2𝑙 + 4 exponentiation are required.

Paillier-basedMtA.We evaluate the Paillier-basedMtA abstracted

by [44] from [10, 29, 35]. Paillier operation (resp. ciphertext) is

counted to be approximately two JL exponentiation (resp. Z𝑁
elements).

6.2 Benchmarking Results
We give a comprehensive implementation and comparison of JL,

Paillier, CL and and OT based MtAs in Table 4, Figure 4 when com-

puting 1, 10, 50, and 100 MtAs. We benchmark the implementation

under three parameter settings, i.e, (security parameter 𝜆, statis-

tical parameter 𝑠 , soundness parameter 𝑡 , 𝑘) are (128, 40, 40, 712),
(192, 80, 80, 1168), and (256, 128, 128, 1682) respectively.

Our benchmark is done using Rust on a MacBook Pro 13-inch

2017 with Intel Core i5@ 3.1 GHz CPU and 8 GB 2133MHz LPDDR3

RAM running macOS Monterey v12.0.1. We evaluate the protocols

on a laptop and do not take network latency into account, since

these protocols have the same communication rounds. All the

benchmark were taken over curves secp256k1, secp384r1, secp512r1

(as recommended by NIST [33]), and SHA256, SHA384, SHA512 are

used to instantiate hash functions, to achieve 𝜆 = 128, 192, 256 secu-

rity respectively. We implement Paillier-based, and CL-based MtAs

based on the elementary codes of [43] and [45], respectively. In

OT-basedMtA, we implement the curve operations using OpenSSL

3.0.2 15.

When 𝜆 = 192, 256, Paillier / JL based schemes use 𝑁 and ECDSA

group order 𝑞 of same size, i.e., log𝑁 = 7680, log𝑞 = 384, and

log𝑁 = 15360, log𝑞 = 521 as recommended by NIST [4]. When

𝜆 = 128, log𝑞 = 256, and Paillier uses 3072-bits modulus 𝑁 , while

(Batch) JL needs 3360-bits 𝑁 (due to the requirement 2 log𝑞 + 3𝑠 +
2𝑡 < 𝑘 ≤ 1/4 log𝑁 − 𝜆). Nevertheless, when 𝜆 = 128, our scheme

also outperforms Paillier-basedMtA. Parameters for CL scheme are

chosen according to [11, Sec. 5]

When 𝜆 = 128, our JL-basedMtA improves Paillier-basedMtA

in bandwidth by a factor of 1.85, in computation by a factor of

> 1.2. When 𝜆 = 128 and the batch number 𝑙 > 10, our scheme

improves Paillier-based MtA in bandwidth by a factor of 2.4 to 2.7,

in computation by a factor of > 1.62.

When 𝜆 = 192 or 256, our JL basedMtA outperforms the Paillier-

based MtA by a factor of roughly 2 in communication, and by a

factor of ≈ 1.7 in computation. When 𝜆 = 192 or 256, and the batch

number 𝑙 > 10, batch JL improves Paillier-based MtA by a factor of

> 2.68 in communication, and by a factor of > 2.26 in computation.

Table 5 presents the cost comparison of Setup phase between

OT-based CL-based, Paillier-based and our (batch) JL-basedMtAs.

When proving correctness of 𝑁 is taken into account, Setup of JL

scheme needs ×2 ∼ 3 cost than that of Paillier-basedMtA. When

preparing for batch JL (e.g. batching 10 JL MtA), the setup requires

more complexity.

7 APPLICATION IN THRESHOLD ECDSA
Our JL-based MtA could be directly plugged in many threshold

ECDSAs from Paillier, e.g., LN18 [35], CGG+20 [10], and XAX+21

[44]. The definitions of ECDSA signature and the functionality of

threshold ECDSA are given in Appendix F.

We test the JL-based MtA in LN18 [35] and XAX+21 [44] for

128, 192, and 256 bits security respectively, and compare their

performance with OT-based, CL-based, and Paillier-based schemes

in Table 6. The benchmarks were taken over curves scep256k1,

scep384r1 and secp521r1 respectively. Elliptic curve operations in

OT-based schemes DKLs18 [25], DKLs19 [26], and XAX+21 [44]

utilize OpenSSL 3.0.2 15. We implement CL-based schemes CCL+19

[12], XAX+21 [44] based on the code of [45], and Paillier-based

schemes LN18 [35], CGG+20 [10], XAX+21 [44] based on ZenGo

[43] respectively.

We benchmark threshold ECDSAs in the special two-party case.

Since threshold ECDSA involving 𝑛 parties needs 𝑛(𝑛 − 1) + 𝑛/2
computation of MtA (e.g., LN18 [35]), results would favor ours

when more parties are involved. According to their costruction,

LN18 [35] needs approximately 3 MtAs and XAX+21 [44] requires

a single MtA. We evaluate the protocols by only considering the

computation time. Latency is not taken into account.

8 CONCLUSION
We propose an efficientMtA from Joye-Libert cryptosystem. Bench-

mark shows that multiplication of our scheme outperforms state-of-

the-art constructions. Our MtA can be applied to improve existing

threshold ECDSAs.

The building blocks that we develop, namely, a JL-based commit-

ment scheme and its companion zero-knowledge proofs, may be

of independent interest. They can be used to improve multi-party

computation over Z
2
𝑘 , and build more efficient three-party TLS

handshake.

9 ACKNOWLEDGEMENT
Haiyang Xue is supported by the National Natural Science Foun-

dation of China (No. 62172412), and would like to thank LatticeX

Fundation andHuawei for their support. ManHoAu is supported by

the Research Grant Council of Hong Kong (No. 17201421, 15211120,

11

91 184 309

128 192 256

0

20

40

C
o
m
m
u
n
i
c
a
t
i
o
n
(
K
B
)

1 MtA

906 1839 3092

128 192 256

0

200

400

10MtAs

4530 9195 15459

128 192 256

0

1,000

2,000

50MtAs

9059 18389 30919

128 192 256

0

2,000

4,000

100MtAs

OT CL Paillier JL Batch JL

128 192 256

0

10

20

C
o
m
p
u
t
a
t
i
o
n
(
s
)

128 192 256

0

100

200

128 192 256

0

500

1,000

128 192 256

0

1,000

2,000

Figure 4: Bandwidth and computational comparison of Multiplications between CL, Paillier, (batch) JL based MtAs. The
communication is counted in KB. The computational cost is counted in seconds. 𝑥-axis indicates the security parameter 𝜆
which fits the settings (𝜆, 𝑠, 𝑡, 𝑘) = (128, 40, 40, 712), (192, 80, 80, 1168), or (256, 128, 128, 1682) respectively.

MtA Schemes

Communication (KB) Computation (ms)

𝑙 = 1 𝑙 = 10 𝑙 = 50 𝑙 = 100 𝑙 = 1 𝑙 = 10 𝑙 = 50 𝑙 = 100

𝜆 = 128

OT [25] 90.6 905.9 4529.7 9059.4 13.6 149.1 652.4 1326.6

CL [12] 1.41 14.1 70.6 141.2 1625 16610 73230 145902

Paillier [10, 35, 44] 7.5 75 375 750 255 2587 12849 26750

JL 4.10 41.0 205.1 410.1 209 2136 10392 21047

Batch JL 4.10 29.9 144.8 288.3 212 1574 7782 15872

𝜆 = 192

OT [25] 183.9 1838.9 9194.5 18389.1 16.8 190.6 916.8 1908.2

CL [12] 2.78 27.8 138.3 277.6 5705 56715 283261 567725

Paillier [10, 35, 44] 18.8 187.5 937.5 1875.0 2317 21766 109448 217429

JL 9.38 93.75 468.8 973.5 1292 13036 67694 131791

Batch JL 9.38 68.4 330.9 659.1 1283 10239 49069 98047

𝜆 = 256

OT [25] 309.2 3091.9 15459.4 30918.8 31.6 357.7 1578.0 2703.6

CL [12] 4.61 46.1 230.4 460.8 19324 193233 967834 1934574

Paillier [10, 35, 44] 37.5 375 1875 3750 12305 119950 623747 1228064

JL 18.75 187.5 937.5 1875 7279 71303 373088 737083

Batch JL 18.75 136.9 661.9 1318.1 7304 54414 257869 511789

Table 4: Comparison of Multiplication inMtAs. 𝑙 is the number of MtAs.

MtAs Communication (KB) Computation (ms)

OT

𝜆 = 128 40 268.9
𝜆 = 192 90.5 837.8
𝜆 = 256 160.7 836.5

CL

𝜆 = 128 5.5 22941

𝜆 = 192 10.5 168322

𝜆 = 256 17.2 1105557

Paillier

𝜆 = 128 94.1 952

𝜆 = 192 460.3 13324

𝜆 = 256 1460.6 142103

JL

𝜆 = 128 198.5 2432

𝜆 = 192 937.5 25936

𝜆 = 256 2887.5 283227

Batch 10 JL

𝜆 = 128 1020.8 11169

𝜆 = 192 4970.6 95041

𝜆 = 256 15881.2 708508

Table 5: Cost comparison of Setup phase in MtA. Setup of
Batch 10 JL supports 10 batches.

R1012-21), the National Natural Science Foundation of China (No.

61972332). Tsz Hon Yuen is supported by Huawei Shield Lab.

REFERENCES
[1] Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and Omer Shlomovits.

2022. Low-bandwidth threshold ECDSA via pseudorandom correlation genera-

tors. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2554–2572.
[2] Benedikt Auerbach and Bertram Poettering. 2018. Hashing solutions instead of

generating problems: On the interactive certification of RSA moduli. In IACR
International Workshop on Public Key Cryptography. Springer, 403–430.

[3] Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. 2020. A

Survey of ECDSA Threshold Signing. (2020). https://eprint.iacr.org/2020/1390.

pdf.

[4] Elaine Barker, Elaine Barker, William Burr, William Polk, Miles Smid, et al. 2006.

Recommendation for key management: Part 1: General. National Institute of

12

https://eprint.iacr.org/2020/1390.pdf
https://eprint.iacr.org/2020/1390.pdf

Threshold ECDSA

𝜆 = 128 𝜆 = 192 𝜆 = 256

Communication (KB) Computation (ms) Communication (KB) Computation (ms) Communication (KB) Computation (ms)

𝑙 = 1 𝑙 = 10 𝑙 = 1 𝑙 = 10 𝑙 = 1 𝑙 = 10 𝑙 = 1 𝑙 = 10 𝑙 = 1 𝑙 = 10 𝑙 = 1 𝑙 = 10

DKLs18 [25] OT 232.8 2328.4 36.4 249.1 481.3 4812.6 45.7 390.7 817.7 817.69 60.8 577.5

DKLs19 [26] OT 176.5 1765.6 39.8 325.2 342.8 3428.4 61.8 473.6 561.1 5611.2 76.8 788.9

CCL+20 [12] CL 6.3 6.34 4658 46723 11.3 113.1 14224 143650 17.6 176.9 39223 394364

CGG+20 [10] Paillier 44.2 442.4 2384 23734 111.3 1112.5 19855 198348 222.5 2225 102299 1039845

LN18 [35] Paillier 26.4 264.1 880 8821 59.8 598.4 7054 70493 126.2 1262.2 37510 374593

LN18 by using ourMtA

JL 15.7 156.7 735 7374 32.4 323.6 4407 44327 61.4 614.0 22876 228047

Batch JL 15.7 134.7 731 5988 32.4 250.9 4452 34855 61.4 445.1 22784 175593

XAX+21 [44]

OT 90.9 909.4 14.8 141.6 184.4 1844.1 19.1 201.0 309.9 3098.7 35.5 378.5

CL 1.8 186.5 1767 17541 3.45 34.6 5794 58045 5.5 55.3 19805 198560

Paillier 7.8 78.1 258 2563 18.7 186.6 2486 24604 38.4 384.4 12763 127394

XAX+21 by using ourMtA

JL 4.49 44.9 214 2146 10.1 100.5 1313 13117 21.6 216.9 6858 68493

Batch JL 4.49 33.8 218 1598 10.1 75.1 1310 10036 21.6 164.4 6891 49061

Table 6: Comparison of threshold (2-out-of-𝑛) ECDSAs.

Standards and Technology, Technology Administration.

[5] Carsten Baum, Daniel Escudero, Alberto Pedrouzo-Ulloa, Peter Scholl, and

Juan Ramón Troncoso-Pastoriza. 2020. Efficient Protocols for Oblivious Linear

Function Evaluation from Ring-LWE. In SCN. Springer, 130–149.
[6] Fabrice Benhamouda, Houda Ferradi, Rémi Géraud, and David Naccache. 2017.

Non-interactive provably secure attestations for arbitrary RSA prime generation

algorithms. In European Symposium on Research in Computer Security. Springer,
206–223.

[7] Fabrice Benhamouda, Javier Herranz Sotoca, Marc Joye, and Benoit Libert. 2017.

Efficient cryptosystems from 2
𝑘
-th power residue symbols. Journal of cryptology

30, 2 (2017), 519–549.

[8] Fabrice Boudot. 2000. Efficient proofs that a committed number lies in an interval.

In EUROCRYPT. Springer, 431–444.
[9] Jan Camenisch and Markus Michels. 1999. Proving in zero-knowledge that a

number is the product of two safe primes. In International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 107–122.

[10] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi

Peled. 2020. UC non-interactive, proactive, threshold ECDSA with identifiable

aborts. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. 1769–1787.

[11] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and

Ida Tucker. 2019. Two-party ECDSA from hash proof systems and efficient

instantiations. In Annual International Cryptology Conference. Springer, 191–221.
[12] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and

Ida Tucker. 2020. Bandwidth-efficient threshold EC-DSA. In IACR International
Conference on Public-Key Cryptography. Springer, 266–296.

[13] Guilhem Castagnos and Fabien Laguillaumie. 2015. Linearly homomorphic

encryption from DDH. In CT-RSA. Springer, 487–505.
[14] Dario Catalano, Mario Di Raimondo, Dario Fiore, and Irene Giacomelli. 2020.

MonZ
2
𝑘 a: Fast Maliciously Secure Two Party Computation on Z

2
𝑘 . In IACR

International Conference on Public-Key Cryptography. Springer, 357–386.
[15] Tung Chou and Claudio Orlandi. 2015. The simplest protocol for oblivious

transfer. In International Conference on Cryptology and Information Security in
Latin America. Springer, 40–58.

[16] Geoffroy Couteau, Thomas Peters, and David Pointcheval. 2017. Removing the

strong RSA assumption from arguments over the integers. InAnnual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
321–350.

[17] Ronald Cramer. 1996. Modular design of secure yet practical cryptographic

protocols. Ph. D. Thesis, CWI and University of Amsterdam (1996).

[18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping

Xing. 2018. SPDZ
2
𝑘 : Efficient MPC mod 2

𝑘
for Dishonest Majority. In Advances

in Cryptology–CRYPTO.
[19] William M Daley and Raymond G Kammer. 2000. Digital signature standard

(DSS). Technical Report. BOOZ-ALLEN AND HAMILTON INC MCLEAN VA.

[20] Ivan Damgård and Mads Jurik. 2002. Client/server tradeoffs for online elections.

In International Workshop on Public Key Cryptography. Springer, 125–140.
[21] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P Smart. 2013. Practical covertly secure MPC for dishonest majority–or:

breaking the SPDZ limits. In European Symposium on Research in Computer
Security. Springer, 1–18.

[22] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty

computation from somewhat homomorphic encryption. In Annual Cryptology
Conference. Springer, 643–662.

[23] Yi Deng, Shunli Ma, Xinxuan Zhang, HailongWang, Xuyang Song, and Xiang Xie.

2021. Promise Sigma-Protocol: How to Construct Efficient Threshold ECDSA

from Encryptions Based on Class Groups. In International Conference on the
Theory and Application of Cryptology and Information Security. Springer, 557–
586.

[24] Yvo Desmedt and Yair Frankel. 1989. Threshold cryptosystems. In Conference on
the Theory and Application of Cryptology. Springer, 307–315.

[25] JackDoerner, Yashvanth Kondi, Eysa Lee, andAbhi Shelat. 2018. Secure two-party

threshold ECDSA from ECDSA assumptions. In IEEE Symposium on Security and
Privacy. IEEE, 980–997.

[26] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. 2019. Threshold

ECDSA from ECDSA assumptions: the multiparty case. In IEEE Symposium on
Security and Privacy. IEEE, 1051–1066.

[27] Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical solutions to

identification and signature problems. In Conference on the theory and application
of cryptographic techniques. Springer, 186–194.

[28] Eiichiro Fujisaki and Tatsuaki Okamoto. 1997. Statistical zero knowledge

protocols to prove modular polynomial relations. In Annual International
Cryptology Conference. Springer, 16–30.

[29] Rosario Gennaro and Steven Goldfeder. 2018. Fast multiparty threshold ECDSA

with fast trustless setup. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 1179–1194.

[30] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. 2017. Maliciously secure

oblivious linear function evaluation with constant overhead. In International
Conference on the Theory and Application of Cryptology and Information Security.
Springer, 629–659.

[31] Marc Joye and Benoît Libert. 2013. Efficient cryptosystems from 2
𝑘
-th

power residue symbols. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 76–92.

[32] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2015. Actively secure OT

extension with optimal overhead. In Annual Cryptology Conference. Springer,
724–741.

[33] C Kerry and P Gallagher. 2013. FIPS PUB 186-4: Digital Signature Standard

(DSS). Federal Information Processing Standards Publication. National Institute of
Standards und Technology (2013).

[34] Yehuda Lindell. 2017. Fast secure two-party ECDSA signing. In Annual
International Cryptology Conference. Springer, 613–644.

[35] Yehuda Lindell and Ariel Nof. 2018. Fast secure multiparty ECDSA with practical

distributed key generation and applications to cryptocurrency custody. In

Proceedings of the 2018 ACM SIGSACConference on Computer and Communications
Security. 1837–1854. Refer https://eprint.iacr.org/2018/987.pdf for the full

version..

[36] Philip MacKenzie and Michael K Reiter. 2001. Two-party generation of DSA

signatures. In Annual International Cryptology Conference. Springer, 137–154.
[37] Moni Naor and Moti Yung. 1990. Public-key cryptosystems provably secure

against chosen ciphertext attacks. In Proceedings of the twenty-second annual
ACM symposium on Theory of computing. 427–437.

[38] NIST. 2022. Multi-Party Threshold Cryptography. https://csrc.nist.gov/Projects/

threshold-cryptography.

[39] NIST. 2023. IR 8214C (Initial Public Draft), First Call for Multi-Party Threshold

Schemes. https://nvlpubs.nist.gov/nistpubs/ir/2023/NIST.IR.8214C.ipd.pdf.

[40] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree

residuosity classes. In International conference on the theory and applications of

13

https://eprint.iacr.org/2018/987.pdf
https://csrc.nist.gov/Projects/threshold-cryptography
https://csrc.nist.gov/Projects/threshold-cryptography
https://nvlpubs.nist.gov/nistpubs/ir/2023/NIST.IR.8214C.ipd.pdf

cryptographic techniques. Springer, 223–238.
[41] Torben Pryds Pedersen. 1991. Non-interactive and information-theoretic secure

verifiable secret sharing. In Annual international cryptology conference. Springer,
129–140.

[42] Dmytro Tymokhanov and Omer Shlomovits. 2021. Alpha-rays: Key extraction

attacks on threshold ecdsa implementations. Cryptology ePrint Archive (2021).
[43] ZenGo X. 2021. multi-party-ecdsa. https://github.com/ZenGo-X/multi-party-

ecdsa.

[44] Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen, and Handong Cui. 2021.

Efficient Online-friendly Two-Party ECDSA Signature. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security. 558–573.

[45] Tsz Hon Yuen, Handong Cui, and Xiang Xie. 2021. Compact zero-knowledge

proofs for threshold ECDSAwith trustless setup. In IACR International Conference
on Public-Key Cryptography. Springer, 481–511.

[46] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels.

2020. Deco: Liberating web data using decentralized oracles for tls. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
1919–1938.

A STRONG RSA / JL ASSUMPTIONS
A.1 Strong RSA assumption

Definition 4 (Strong RSA Assumption [28]). Let 𝑁 be the
RSA modulus. The strong RSA assumption states that, for a random
element 𝑥 ∈ Z∗

𝑁
, it is hard to find the 𝑒-th root 𝑦 modulo 𝑁 , i.e.,

𝑦𝑒 = 𝑥 mod 𝑁 , for any PPT algorithm and an exponent 𝑒 > 1 of its
choice.

The following assumption is useful for proving Theorem 1.

Definition 5 (Strong RSA
∗
Assumption). Let 𝑁 be the RSA

modulus, QNR be the set of quadratic non-residuosity. The strong
RSA∗ assumption states that, for a random element 𝑥 ∈ QNR, it is
hard to find the 𝑒-th root 𝑦 modulo 𝑁 , i.e., 𝑦𝑒 = 𝑥 mod 𝑁 , for any
PPT algorithm and an exponent 𝑒 > 1 of its choice.

Let Adv
sRSA

A (resp. Adv
sRSA

∗
A) be algorithm A’s advantage of

solving Strong RSA problem (resp. Strong RSA
∗
problem). We have

Adv
sRSA

∗
A ≤ 4Adv

sRSA

A since that: |Z∗
𝑁
| = 4|QNR| and an algorithm

finding 𝑒-th roof of 𝑥 ∈ QNR with probability 𝜖 could be trivially

transferred to find 𝑒-th roof of 𝑥 ∈ Z∗
𝑁

with probability at least 𝜖/4.

A.2 Theorem 1: 𝑘-QR+strong RSA⇒ strong JL
Given an algorithm A solving the strong JL problem, we could

construct an algorithm B distinguishing element of QNR from that

of QR
2
𝑘 , which conflict the 𝑘-QR assumption (according to Lemma

1). Specifically, given an input (𝑁, 𝑥, 𝑘), B just feeds it to A. If an

𝑒-th roof of 𝑥 is outputted, returns 1 as the guess that 𝑥 ∈ QR
2
𝑘 ,

otherwise, return 0.

We have

Pr[B(𝑥, 𝑘) = 1|𝑥 ← QR
2
𝑘] − Pr[B(𝑥, 𝑘) = 1|𝑥 ← QNR]

= Adv
sJL

A − Adv
sRSA

∗
A .

Thus, we have Adv
sJL

A = Adv
Gap-2

𝑘

B + AdvsRSA∗A . By Lemma 1 and

Appendix A.1, we conclude that given any algorithmA, there exists

algorithms C and E such that

Adv
sJL

A ≤ 3/2(𝑘 − 1/3)AdvkQRC + 4Adv
sRSA

E .

B PROOF OF THEOREM 3
The correctness is obvious. Hiding property comes from the facts

that ℎ2
𝑘
is the generators of QR

2
𝑘 (whose order is 𝑝′𝑞′), and 𝑦2

𝑘

𝑖
∈

QR
2
𝑘 (1 ≤ 𝑖 ≤ 𝑙). For 1 ≤ 𝑖 ≤ 𝑙 , there exists 𝛼𝑖 s.t. 𝑦2

𝑘

𝑖
= ℎ2

𝑘𝛼𝑖

mod 𝑁 . Thus,

𝑦
2
𝑘𝑚1

1
· · ·𝑦2

𝑘𝑚𝑙

𝑙
ℎ2

𝑘𝑟 = ℎ2
𝑘 (∑𝑙

𝑖=1
𝛼𝑖𝑚𝑖+𝑟)

mod 𝑁 .

Computational binding relies on the strong JL and 𝑘-QR as-

sumptions. Given an instance (𝑁,ℎ, 𝑘) of strong JL problem, the

strong JL solver generates 𝑦𝑖 = ℎ𝛼𝑖 mod 𝑁 for 𝛼𝑖 ← Z𝑁 and

sets (𝑁,ℎ,𝑦1, · · · , 𝑦𝑙 , 𝑘) as public parameter of JL commitment. The

only difference is the generation of 𝑦𝑖 elements (i.e., 𝑦𝑖 ∈ QNR or

𝑦𝑖 ∈ QR2
𝑘). The committer could not find this difference due to

the 𝑘-QR assumption (according to Lemma 1). From two different

openings (𝑚1, · · · ,𝑚𝑙 , 𝑑) and (𝑚′1, · · · ,𝑚
′
𝑙
, 𝑑′) of 𝑐 , the verification

check guarantees that

𝑦
2
𝑘𝑚1

1
· · ·𝑦2

𝑘𝑚𝑙

𝑙
ℎ2

𝑘𝑑 = 𝑦
2
𝑘𝑚′

1

1
· · ·𝑦2

𝑘𝑚′
𝑙

𝑙
ℎ2

𝑘𝑑 ′
mod 𝑁 .

Denote Δ𝑚𝑖 = 𝑚𝑖 −𝑚′𝑖 (for every 1 ≤ 𝑖 ≤ 𝑙), Δ𝑑 = 𝑑 − 𝑑′. We

have ℎ2
𝑘 (∑𝑙

𝑖=1
𝛼𝑖Δ𝑚𝑖+Δ𝑑) = 1 mod 𝑁 since 𝑦2

𝑘

𝑖
= ℎ2

𝑘𝛼𝑖
mod 𝑁 .

Let 𝑒 > 1 be any number co-prime to 𝐸 = 2
𝑘 (∑𝑙

𝑖=1
𝛼𝑖Δ𝑚𝑖 + Δ𝑑).

We have (
ℎ𝑡
−1

mod 𝐸
)𝑒

= ℎ mod 𝑁,

which gives a solution of the strong JL problem.

C PROOF OF OPENING
C.1 Proof of knowledge for ZKJL-com.
This could be taken as an extension of the proof of knowledge for

RSA commitment from [16]. Here, we should handle a different

structure, and we do not aim to eliminate the strong JL assumption.

We assume the knowledge extractor Ext is given (𝑁,ℎ, 𝑘) as an
instance of strong JL problem. In setup for JL commitment, Ext sets

𝑦 = ℎ𝛼 mod 𝑁 for a random 𝛼 ← Z𝑁 , rather than 𝑦 ← QNR
in the real execution. Ext sets (𝑁,ℎ,𝑦, 𝑘) as the public parameter

of JL commitment. Any PPT adversary could not figure out this

difference due to the 𝑘-QR assumption (according to Lemma 1).

We consider an adversary 𝑃∗ who provides a convincing proof of

knowledge of opening for commitment 𝑐 with probability 𝜖 under

the parameter (𝑁,ℎ,𝑦, 𝑘).
The standard rewind technique on Sigma protocol would al-

low us to obtain two accepted challenge-respond pairs (𝑒; 𝑧𝑚, 𝑧𝑟),
(𝑒′; 𝑧′𝑚, 𝑧′𝑟), for a given committed 𝑑 , with probability grater than

𝜖2/4 in expected polynomial time. Assume 𝑒 > 𝑒′ (w.l.o.g) and
denote Δ𝑒 = 𝑒 − 𝑒′, Δ𝑚 = 𝑧𝑚 − 𝑧′𝑚 , and Δ𝑟 = 𝑧𝑟 − 𝑧′𝑟 . We would

have

𝑐Δ𝑒 = 𝑦2
𝑘Δ𝑚ℎ2

𝑘Δ𝑟
mod 𝑁 . (1)

Applying the rewind technique, one of two cases in the following

would happen.

• Case 1: Δ𝑒 | Δ𝑚 ∧ Δ𝑒 | Δ𝑟 with probability greater than

𝜖2/8.
• Case 2: Δ𝑒 ∤ Δ𝑚 ∨ Δ𝑒 ∤ Δ𝑟 with probability greater than

𝜖2/8.

In Case 1, if Δ𝑒 is odd, there is 𝑐 = (𝑦2
𝑘)Δ𝑚/Δ𝑒ℎ2

𝑘Δ𝑟/Δ𝑒
mod 𝑁

(since Δ𝑒 ≤ 2
𝑡
is co-prime to 𝑝′𝑞′). Thus, (Δ𝑚/Δ𝑒,Δ𝑟/Δ𝑒) is a valid

opening; if Δ𝑒 = 2
𝑣𝜌 for an odd 𝜌 and 𝑣 ≥ 1, it means 2

𝑣𝜌 | Δ𝑚
and 2

𝑣𝜌 | Δ𝑟 . Let Δ𝑚 = 2
𝑣Δ𝑚′, Δ𝑟 = 2

𝑣Δ𝑟 ′. Then, we have that
𝑐2

𝑣
= (𝑦2

𝑘)2𝑣Δ𝑚′/𝜌 (ℎ2
𝑘)2𝑣Δ𝑟 ′/𝜌 mod 𝑁 (since 𝜌 is co-prime to

14

https://github.com/ZenGo-X/multi-party-ecdsa
https://github.com/ZenGo-X/multi-party-ecdsa

𝑝′𝑞′). Define 𝑢 = (𝑦2
𝑘)Δ𝑚′/𝜌 (ℎ2

𝑘)Δ𝑟 ′/𝜌𝑐−1
mod 𝑁 , then 𝑢2

𝑣
= 1

mod 𝑁 . It falls into the following sub-cases.

(1) 𝑣 = 1.

(a) 𝑢 = −1. This would never happen since 𝐽𝑁 (𝑢) =

𝐽𝑁 (𝑐) = 1 and 𝐽𝑁 (−1) = −1.

(b) 𝑢 = 1. This indicates a valid opening.

(c) 𝑢 ≠ 1. From 4) of Fact 1, this leads to factoring 𝑁 .

(2) 𝑣 ≥ 2.

(a) 𝑢2
𝑣−1

= −1. Thiswould never happen since 𝐽𝑁 (𝑢2
𝑣−1) =

1 and 𝐽𝑁 (−1) = −1.

(b) 𝑢2
𝑣−1

= 1. This reduces to the case 𝑢2
𝑣−1

= 1 mod 𝑁 ,

which could be analysed via recursion.

(c) 𝑢2
𝑣−1

≠ ±1. From 4) of Fact 1, it leads to factoring 𝑁 .

Thus, Case 1 would give valid opening of 𝑐 or solution to the strong

JL problem (by factoring 𝑁).

For Case 2, by the generation of 𝑦, (1) could be rewritten as

𝑐Δ𝑒 = ℎ2
𝑘𝛼Δ𝑚+2𝑘Δ𝑟

mod 𝑁 (2)

If Δ𝑒 = 2
𝑣𝜌 for 𝑣 ≥ 1 and some odd number 𝜌 ,

[𝑐−𝜌ℎ2
𝑘−𝑣 (𝛼Δ𝑚+Δ𝑟)]2

𝑣

= 1 mod 𝑁 .

As the analysis in Case 1 (for the sub-cases), by recursion and under

the factoring assumption, we have

𝑐𝜌 = ℎ2
𝑘−𝑣 (𝛼Δ𝑚+Δ𝑟)

mod 𝑁 . (3)

If Δ𝑒 = 𝜌 for some odd number 𝜌 , i.e., 𝑣 = 0, (3) still hold.

Since odd number 𝜌 | Δ𝑒 , we have 𝜌 ∤ Δ𝑚 ∨ 𝜌 ∤ Δ𝑟 with

probability greater than 𝜖2/8.
We divide Case 2 into two sub-cases, accordingly.

• Case 2.1: 𝜌 ∤ 𝛼Δ𝑚 + Δ𝑟 .
• Case 2.2: 𝜌 | 𝛼Δ𝑚 + Δ𝑟 .

We first argue that, in Case 2.1, we could solve the strong JL

problem. Then we prove the fact that, for any unbounded adversary,

Case 2.2 happens with probability less than 1/3. Thus, Case 2.1

happens with probability > 2/3, which will help us to solve the

strong JL problem.

In Case 2.1, let 𝛽 = 𝑔𝑐𝑑 (𝜌, 2𝑘−𝑣 (𝛼Δ𝑚 + Δ𝑟)). There exists efficient

algorithm to find 𝑓 , 𝑔 such that 𝛽 = 𝑓 𝜌 +𝑔(2𝑘−𝑣 (𝛼Δ𝑚 +Δ𝑟)). Then,
according to (3),

ℎ𝛽 = ℎ𝑓 𝜌+𝑔 (2
𝑘−𝑣 (𝛼Δ𝑚+Δ𝑟)) = (ℎ𝑓 𝑐𝑔)𝜌 mod 𝑁 .

From the fact that 𝛽 is co-prime to 𝑝′𝑞′,

ℎ = (ℎ𝑓 𝑐𝑔)𝜌/𝛽 mod 𝑁 (4)

Due to odd 𝜌 ∤ 𝛼Δ𝑚 + Δ𝑟 , we have 𝜌 > 𝛽 and 𝜌/𝛽 > 1. Thus, (4)

gives us a solution of the strong JL problem.

We now handle Case 2.2. Let 𝜌𝑖 be the prime factor of 𝜌 and 𝑗 be

the integer such that (𝜌𝑖) 𝑗 | 𝜌 and (𝜌𝑖) 𝑗+1 ∤ 𝜌 . If (𝜌𝑖) 𝑗 | Δ𝑚, then

(𝜌𝑖) 𝑗 | Δ𝑟 , since 𝜌 | 𝛼Δ𝑚 + Δ𝑟 . Thus,
(𝜌𝑖) 𝑗 ∤ Δ𝑚. (5)

Note that 𝛼 could be written as 𝛼 mod 𝑝′𝑞′ + 𝛾𝑝′𝑞′ for some

totally random 𝛾 ∈ [0, 2𝑘+1] (from the view of the adversary). For

the prime factor 𝜌𝑖 in (5), we have (𝜌𝑖) 𝑗 | 𝛼Δ𝑚 + Δ𝑟 , i.e.,
(𝜌𝑖) 𝑗 | 𝛾𝑝′𝑞′Δ𝑚 + (𝛼 mod 𝑝′𝑞′)Δ𝑚 + Δ𝑟 . (6)

For this 𝜌𝑖 and totally random 𝛾 , (6) satisfies with probability less

than 1/𝜌𝑖 ≤ 1/3 (due to 𝜌𝑖 > 2).

C.2 Opening proof of JL vector commitment:
ZKJLv-com

The completeness is trivial. The protocol is honest-verifier zero

knowledge since simulator Sim just does as follows: Sim chooses

random responds 𝑧𝑚𝑖
← [0, 2𝑠+𝑡𝐵𝑖] (for 1 ≤ 𝑖 ≤ 𝑙), 𝑧𝑟 ← [0, 2𝑠+𝑡𝑁],

together with 𝑒 ← {0, 1}𝑡 . Sim sets 𝑑 =
∏𝑙

𝑖=1
𝑦

2
𝑘𝑧𝑚𝑖

𝑖
ℎ2

𝑘𝑧𝑟 𝑐−𝑒

mod 𝑁 .

Proof of knowledge is an extension of that for ZKJL-com. We

could get 𝑐Δ𝑒 = 𝑦
2
𝑘Δ𝑧1

1
· · ·𝑦2

𝑘Δ𝑧𝑙
𝑙

ℎ2
𝑘Δ𝑟

mod 𝑁 from two accepted

transcripts. Assume 𝑦2
𝑘

𝑖
= 𝑦2

𝑘𝑠𝑖ℎ2
𝑘𝑡𝑖

mod 𝑁 for random 𝑠𝑖 , 𝑡𝑖

(and 𝑦 = ℎ𝛼 mod 𝑁 for random 𝛼 ∈ Z𝑁). Then, we have 𝑐Δ𝑒 =

𝑦2
𝑘 (∑ 𝑠𝑖Δ𝑧𝑖)ℎ2

𝑘 (Δ𝑟+∑ 𝑡𝑖Δ𝑧𝑖)
mod 𝑁 . Thus, under strong JL assump-

tion, Δ𝑒 must divide

∑
𝑠𝑖Δ𝑧𝑖 and Δ𝑟 + ∑ 𝑡𝑖Δ𝑧𝑖 from analysis for

knowledge soundness of ZKJL-com (refer to Appendix C.1). Further-

more, due to the randomness of 𝑠𝑖 , 𝑡𝑖 , Δ𝑒 must divide all Δ𝑧𝑖 and
Δ𝑟 , which gives a valid opening.

The proof guarantees that every𝑚𝑖 ∈ [−2
𝑠+𝑡𝐵𝑖 , 2𝑠+𝑡𝐵𝑖], since

for any 𝑚𝑖 satisfying |𝑚𝑖 | > 2
𝑠+𝑡𝐵𝑖 and a random chosen 𝑒 , the

probability of guessing the right 𝑣𝑖 such that 𝑒𝑚𝑖 + 𝑣𝑖 ∈ [0, 2𝑠+𝑡𝐵𝑖]
is less then 1/2𝑡 .

D PROOF OF EQUALITY.
D.1 Knowledge soundness of ZKJL-equ
The completeness and honest verifier zero-knowledge are obvious.

We only need to argue proof of knowledge. As proof of opening,

let (𝑒; 𝑧𝑚, 𝑧𝑅, 𝑧𝑟), (𝑒′; 𝑧′𝑚, 𝑧′𝑅, 𝑧
′
𝑟) be two accepting transcripts. Let

Δ𝑒 = 𝑒 − 𝑒′, Δ𝑚 = 𝑧𝑚 − 𝑧′𝑚 , Δ𝑅 = 𝑧𝑅 − 𝑧′𝑅 , and Δ𝑟 = 𝑧𝑟 − 𝑧
′
𝑟 . Under

strong JL and 𝑘-QR assumptions, as in the proof-of-knowledge

analysis for ZKJL-com (refer to Appendix C.1), we have Δ𝑒 | Δ𝑚 and

Δ𝑒 | 2𝑘Δ𝑟 , and could extract𝑚 = Δ𝑚/Δ𝑒 and 2
𝑘Δ𝑟/Δ𝑒 such that

𝑐 = 𝑦2
𝑘𝑚ℎ2

𝑘Δ𝑟/Δ𝑒
mod 𝑁 .

We also have𝐶Δ𝑒 = 𝑦Δ𝑚
0
ℎΔ𝑅

0
mod 𝑁0. Since Δ𝑒 | Δ𝑚, we could

extract an𝑚 = Δ𝑚/Δ𝑒 such that 𝐶 = 𝑦𝑚
0
ℎ𝑥

0
for some 𝑥 . (Actually,

since Δ𝑒 ≤ 2
𝑡
is co-prime to 𝑝′

0
𝑞′

0
, 𝑥 is some value satisfying 𝑥 =

Δ𝑅Δ𝑒−1
mod 𝑝′

0
𝑞′

0
.)

D.2 Batch proof of equality to a JL vector
commitment ZKJLv-equ

The prover would like to prove the relation

RJLv-equ = {(®𝐶, 𝑐; ®𝑚) | 𝑐 = 𝑦2
𝑘𝑚1

1
· · ·𝑦2

𝑘𝑚𝑙

𝑙
ℎ2

𝑘𝑟
mod 𝑁,

𝐶𝑖 = 𝑦
𝑚𝑖

0
ℎ
𝑟0,𝑖

0
mod 𝑁0,𝑚𝑖 ∈ [0, 𝐵𝑖], 1 ≤ 𝑖 ≤ 𝑙}.

The protocol ZKJLv-equ runs as follows.

• P chooses random 𝑣1, · · · , 𝑣𝑙 from [0, 2𝑠+𝑡𝐵𝑖], and random

𝑤0,1, · · · ,𝑤0,𝑙 ,𝑤 from [0, 2𝑠+𝑡𝑁]. P computes and sends

{𝐷𝑖 = 𝑦
𝑣𝑖
0
ℎ
𝑤0,𝑖

0
mod 𝑁0}1≤𝑖≤𝑙 ,𝑑 =

∏𝑙
𝑖=1

𝑦
2
𝑘 𝑣𝑖

𝑖
·ℎ2

𝑘𝑤
mod 𝑁

toV .

• V chooses and sends 𝑒 ← {0, 1}𝑡 to P.
• P computes and sends 𝑧𝑚,𝑖 = 𝑒𝑚𝑖 + 𝑣𝑖 , 𝑧𝑅,𝑖 = 𝑒𝑟0,𝑖 +𝑤0,𝑖

for 1 ≤ 𝑖 ≤ 𝑙 , and 𝑧𝑟 = 𝑒𝑟 +𝑤 (as integers) toV .

15

KGen : On receiving KGen(1𝜅) from all parties 𝑃1, · · · , 𝑃𝑛
• Choose a random 𝑥 ← Z𝑞 and compute𝑄 = 𝑥 ·𝑃 . Set (𝑄, 𝑥)

as an ECDSA key pair and store (G, 𝐻, 𝑃,𝑄, 𝑥).
• Send (𝐻,𝑄) to all 𝑃1, · · · , 𝑃𝑛 .
• Ignore any further call to KGen.

Sign : On receiving Sign(sid, 𝑚) from all parties, if KGen was

already called and sid has not been used before:

• Choose a random 𝑘 ← Z𝑞 , compute 𝑅 = (𝑟𝑥 , 𝑟𝑦) = 𝑘 · 𝑃 .
• Compute 𝑟 = 𝑟𝑥 mod 𝑞 and 𝑠 = 𝑘−1 (𝐻 (𝑚) + 𝑟𝑥) mod 𝑞.

• Send (𝑟, 𝑠) to all parties 𝑃1, · · · , 𝑃𝑛 .
• Store (Complete, sid) in the memory.

Figure 5: Threshold ECDSA functionality FECDSA.

• V accepts the proof only if

– 𝐶𝑒
𝑖
𝐷𝑖 = 𝑦

𝑧𝑚,𝑖

0
ℎ
𝑧𝑅,𝑖
0

mod 𝑁0 for every 1 ≤ 𝑖 ≤ 𝑙 ,
– 𝑐𝑒𝑑 =

∏𝑙
𝑖=1

𝑦
2
𝑘𝑧𝑚,𝑖

𝑖
· ℎ2

𝑘𝑧𝑟
mod 𝑁 ,

– 𝐽𝑁 (𝑐) = 𝐽𝑁 (𝑑) = 1.

Completeness and honest verifier zero-knowledge are simple

extensions of ZKJL-equ. Proof of knowledge could also be similarly

argued. Roughly, under 𝑘-QR and strong JL assumptions, proof of

opening of JL vector commitment gives an extraction of𝑚1, · · · ,𝑚𝑙 ,

which also helps to give an extraction of plaintext in (𝐶1, · · · ,𝐶𝑙).

E ON GENERATING PUBLIC PARAMETERS
E.1 Proof on the correct JL modulus: ZKJLmod
In ZK

JLmod
, the prover would like to prove the following relation:

𝑅
JLmod

= {(𝑁,𝑘 ;𝑝, 𝑝′, 𝑞, 𝑞′) | 𝑁 = 𝑝𝑞,

𝑝 = 2
𝑘𝑝′ + 1, 𝑞 = 2𝑞′ + 1

𝑝, 𝑞, 𝑝′, 𝑞′ are primes.}.
In 1999, Camenisch et al. [9] proposed proofs on that a number is

the multiplication of two safe primes. Their protocol could be easily

extended to get ZK
JLmod

. The resulting protocols is rather costly.

Let 𝑡 be the soundness parameter. The proof needs 4𝜆𝑡2 log𝑁 bits.

Prover needs to computes 2𝑡 log𝑁 exponentiation and the verifier

needs to computes 6𝑡 log𝑁 exponentiation.

This is mainly due to proving wellness of JL modulus is not

well-studied. We believe that studies could be done to significantly

improve the efficiency, such as a recent work [2] proposed very

efficient proof for a wide of algebraic properties the RSA modulus

have. We also note that there is a compact proof [6] for arbitrary

RSA prime generation. Of course it could be applied here. However,

it seems to be computational expensive.

E.2 Proof for language QR
2
𝑘 : ZKQR

2
𝑘

Let𝑁 be the JLmodulus. The following protocolZKQR
2
𝑘
is a perfect

zero-knowledge proof for language QR
2
𝑘 with soundness error 1/2.

Repeating it 𝑡 times would achieve a soundness error of 2
−𝑡
. We

could transfer it into non-interactive via Fiat-Shamir [27].

Prover 𝑃 , holding witness 𝑥 s.t. ℎ = 𝑥2
𝑘
, runs the following to

prove that ℎ ∈ QR
2
𝑘 .

• Prover’s commitment: 𝑃 chooses 𝑟 ← Z𝑁 and computes

𝑎 = 𝑟2
𝑘

mod 𝑁 . Then, 𝑃 sends 𝑎 to 𝑉 .

• Challenge: 𝑉 chooses and sends 𝑒 ← {0, 1} to 𝑃 .
• Prover’s respond: 𝑃 computes and sends 𝑧 = 𝑥𝑒𝑟 to 𝑉 .

• Verification: 𝑉 accepts if 𝑧2
𝑘
= ℎ𝑒𝑎 mod 𝑁 .

E.3 Proof of discrete-log over QR
2
𝑘 : ZKQR2kdl

Let (𝑁,ℎ,𝑦, 𝑘) be the public key of modified JL encryption. The

following protocolZKQR2kdl is a 2
𝑠
statistical zero-knowledge proof

for relation

RQR2kdl = {(𝑁,ℎ,𝑦, 𝑘 ;𝛼 ∈ Z𝑁) | 𝑦2
𝑘

= ℎ2
𝑘𝛼

mod 𝑁 }
with soundness error 1/2. Repeating it 𝑡 times would achieve a

soundness error of 2
−𝑡
. We could transfer it into non-interactive

via Fiat-Shamir [27].

Prove 𝑃 , holding 𝛼 , runs as the following.

• Prover’s commitment: 𝑃 chooses a random even number

𝛽 from [1, 2𝑠𝑁] and computes 𝑎 = ℎ2
𝑘𝛽

mod 𝑁 . Then, 𝑃

sends 𝑎 to 𝑉 .

• Challenge: 𝑉 chooses and sends 𝑒 ← {0, 1} to 𝑃 .
• Prover’s respond: 𝑃 computes and sends 𝑧 = 𝑒𝛼 + 𝛽 (as

integer) to 𝑉 .

• Verification: 𝑉 accepts if ℎ2
𝑘𝑧 = 𝑦2

𝑘𝑒𝑎 mod 𝑁 .

F THE ECDSA SIGNATURE AND THRESHOLD
ECDSA

Let G be an elliptic curve group of prime order 𝑞 with base point

(generator) 𝑃 . ECDSA scheme [19] makes use of the hash function

𝐻 , and works as follows.

(1) KGen(1𝜆): on input 1
𝜆

(a) Choose 𝑥 ← Z𝑞 , set 𝑥 as the private key.

(b) Compute 𝑄 = 𝑥 · 𝑃 , and set 𝑄 as the public key.

(2) Sign(𝑥,𝑚): on input sign key 𝑥 and message𝑚

(a) Choose 𝑘 ← Z𝑞 , compute 𝑅 = (𝑟𝑥 , 𝑟𝑦) = 𝑘 · 𝑃 .
(b) Compute 𝑟 = 𝑟𝑥 mod 𝑞 and 𝑠 = 𝑘−1 (𝐻 (𝑚) + 𝑟𝑥)

mod 𝑞.

(c) Output (𝑟, 𝑠) as the signature.
(3) Verify(𝑚; (𝑟, 𝑠)) calculates

(𝑟𝑥 , 𝑟𝑦) = 𝑅 = 𝑠−1𝐻 (𝑚) · 𝑃 + 𝑠−1𝑟 ·𝑄,
and outputs 1 if and only if 𝑟 = 𝑟𝑥 mod 𝑞.

It is well known that for every valid signature (𝑟, 𝑠), the pair (𝑟,−𝑠)
is also a valid signature. To make (𝑟, 𝑠) unique, in this paper, we

mandate that the “smaller" of {𝑠,−𝑠} is the output.
Figure 5 presents the ideal functionality FECDSA for threshold

ECDSA. It consists of two functions, namely, a key generation

function KGen, called once, and a signing function Sign, called an

arbitrary number of times under the generated key.

16

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Technical overview
	1.3 Discussion
	1.4 Related works
	1.5 Paper Organization.

	2 Preliminary
	2.1 Mathematics and Assumptions
	2.2 Joye-Libert Encryption (Revisited)
	2.3 Commitment
	2.4 The Multiplicative-to-Additive Functionality
	2.5 Zero-Knowledge Proof

	3 JL (vector) Commitment
	4 Zero-knowledge proofs for JL cryptosystem
	4.1 Proof for JL (vector) Commitment ZKJL-com / ZKJLv-com
	4.2 Range Proof for JL Encryption / Affine Operation ZKJL-enc / ZKJL-aff
	4.3 Proof of Equality ZKJL-equ / ZKJLv-equ

	5 MtA via JL Cryptosystem
	5.1 Single JL-based MtA
	5.2 Batch JL-based MtAs

	6 Comparison
	6.1 Theoretical Complexity
	6.2 Benchmarking Results

	7 Application in Threshold ECDSA
	8 Conclusion
	9 Acknowledgement
	References
	A Strong RSA / JL Assumptions
	A.1 Strong RSA assumption
	A.2 Theorem 1: k-QR+strong RSA strong JL

	B Proof of Theorem 3
	C Proof of opening
	C.1 Proof of knowledge for ZKJL-com.
	C.2 Opening proof of JL vector commitment: ZKJLv-com

	D Proof of equality.
	D.1 Knowledge soundness of ZKJL-equ
	D.2 Batch proof of equality to a JL vector commitment ZKJLv-equ

	E On generating public parameters
	E.1 Proof on the correct JL modulus: ZKJLmod
	E.2 Proof for language QR2k: ZKQR2k
	E.3 Proof of discrete-log over QR2k: ZKQR 2kdl

	F The ECDSA Signature and Threshold ECDSA

