
The Grant Negotiation and Authorization Protocol:
Attacking, Fixing, and Verifying an Emerging Standard
Florian Helmschmidt
University of Stuttgart

Germany
flori@nhelmschmidt.de

Pedram Hosseyni
University of Stuttgart

Germany
pedram.hosseyni@sec.uni-

stuttgart.de

Ralf Küsters
University of Stuttgart

Germany
ralf.kuesters@sec.uni-stuttgart.de

Klaas Pruiksma
University of Stuttgart

Germany
klaas.pruiksma@sec.uni-stuttgart.de

Clara Waldmann
University of Stuttgart

Germany
clara.waldmann@sec.uni-

stuttgart.de

Tim Würtele
University of Stuttgart

Germany
tim.wuertele@sec.uni-stuttgart.de

ABSTRACT
The Grant Negotiation and Authorization Protocol (GNAP) is an
emerging authorization and authentication protocol which aims to
consolidate and unify several use-cases of OAuth 2.0 and many of
its common extensions while providing a higher degree of security.
OAuth 2.0 is an essential cornerstone of the security of authoriza-
tion and authentication for the Web, IoT, and beyond, and is used,
among others, by many global players, like Google, Facebook, and
Microsoft. Because of historically grown limitations and issues
of OAuth 2.0 and its various extensions, prominent members of
the OAuth community decided to create GNAP, a new and com-
pletely resigned authorization and authentication protocol. Given
GNAP’s advantages over OAuth 2.0 and its support within the
OAuth community, GNAP is expected to become at least as impor-
tant as OAuth 2.0.

In this paper, we present the first formal security analysis of
GNAP. We build a detailed formal model of GNAP, based on the
Web Infrastructure Model (WIM) of Fett, Küsters, and Schmitz.
Based on this model, we provide formal statements of the key se-
curity properties of GNAP, namely, authorization, authentication,
and session integrity for both authorization and authentication. In
the process of trying to prove these properties, we have discov-
ered several attacks on GNAP. We present these attacks as well
as modifications to the protocol that prevent them. These modifi-
cations have been incorporated into the GNAP specification after
discussion with the GNAP working group. We give the first formal
security guarantees for GNAP, by proving that GNAP, with our
modifications applied, satisfies the mentioned security properties.

GNAP was still an early draft when we started our analysis, but
is now on track to be adopted as an IETF standard. Hence, our
analysis is just in time to help ensure the security of this important
emerging standard.

1 INTRODUCTION
Delegated authorization is a common problem on the Web and
beyond. With some service providers holding a large amount of
data from their users, there are many cases where a user wants to
allow some other service to use some (but not all) of this data. For
example, a printing service may allow a user to directly print photos

from the user’s Google account. Authorization protocols provide a
way for a user to grant access to data, via an API provided by the
host of the data, without the user having to reveal credentials to the
service. In the example, the printing service might send a request
to Google asking to access the user’s data, and Google would then
forward this request to the user for authorization. The user could
then authorize the printing service to only get read-access to photos
stored at his/her Google account.

The OAuth 2.0 framework [33], developed by the IETF OAuth
Working Group (OAuth WG), is an omnipresent standard for dele-
gated authorization: A study by Yang et al. [70] found that about 80%
of the Alexa Top 500 websites for the US and China use OAuth 2.0.
For example, it is used by Google [32], Dropbox [18], Facebook [50],
Github [30], and even by financial institutions to provide third-
party services access to initiate transactions [44]. OAuth 2.0 is also
used for authorizing IoT devices [15, 31].

A closely related goal is authentication. Here a user wants to use
a single account for multiple services (single sign-on), see, e.g., the
many sites with “login with” buttons. While OAuth 2.0 is primarily
an authorization protocol, the OpenID Connect (OICD) [66] exten-
sion by the OpenID Foundation adds support for authentication.

A variety of other extensions of the OAuth 2.0 protocol have
been developed to improve its functionality in other ways. Some
of these extensions improve the security of certain aspects of the
protocol, e.g., by adding protection if specific tokens used in the
protocol leak [11, 67] or moving certain messages to direct server-
to-server communication [46] (instead of communication through
the user’s browser). Others, e.g. [61], add support for additional
features like management of clients (e.g., the printing service in
the above example) at service providers or new flows allowing
input-constrained devices to be authorized [15].

Motivated by many limitations and shortcomings of OAuth 2.0
and its extensions [55], both in terms of functionality and security,
in 2019, members of theOAuthWG– several of themhavingworked
on OAuth 2.0 and its extensions for many years – started to create
a new and completely redesigned protocol, the Grant Negotiation
and Authorization Protocol (GNAP) [56].

Unlike OAuth 2.0, GNAP includes several ways that a resource
owner can interact with an authorization server to authorize re-
source access. It also includes the ability for a client to renegotiate

https://orcid.org/0000-0001-5618-5663
https://orcid.org/0000-0002-9071-9312
https://orcid.org/0000-0002-6032-087X
https://orcid.org/0000-0001-6019-7130
https://orcid.org/0000-0002-4729-0629

an ongoing request, and the ability for a client to participate in the
protocol without being registered. In addition to the authorization
use case, GNAP aims to also provide authentication.

Many details necessary for a typical use case are underspecified
in OAuth 2.0, so extensions are needed to create a usable ecosystem.
The high number of (historically grown) extensions of OAuth 2.0 is
a problem by itself. There are currently 27 standards and nine active
drafts by the OAuth WG,1 16 standards and more than 20 drafts
from the OpenID Foundation,2 and even more standards related to
OAuth 2.0, like User-Managed Access 2.0 Grant (UMA) [47], which
originated outside these two main standardization organizations.
This makes it difficult for developers to choose the right set of
extensions for their use case, in particular, if the use case needs
more security than provided by OAuth 2.0. For example, OAuth
2.0 does not define the necessary details of security tokens—these
are instead defined in extensions such as [60] and [7]—, and how
a third-party service can register at a service provider (e.g., [62]).
Also, some of the OAuth 2.0 extensions overlap in functionality,
addressing similar problems in different ways. For example, cross-
site request forgery (CSRF) protection can be achieved in multiple
ways: using the OAuth 2.0 state parameter, using the OIDC nonce
value, or using the PKCE extension [67], to name just a few (see
also [45, Section 2.1]). Using multiple extensions in the same deploy-
ment leads to increasing complexity, and unintended interactions
between the extensions can lead to bugs, potentially including secu-
rity vulnerabilities. Diametrical to having too many options, some
of the original OAuth 2.0 flows are not recommended anymore:
the OAuth Security Best Current Practice document [45] discour-
ages the use of the implicit flow and the resource owner password
credentials flow, two of the four original OAuth 2.0 flows.

The GNAP project attempts to learn from OAuth 2.0 and its
extensions in several ways by creating a monolithic protocol that
incorporates concepts of several existing OAuth 2.0 extensions.
Furthermore, GNAP aims to provide more flexibility and a higher
degree of security than OAuth 2.0 and allows for a uniform base
for extensions. While GNAP is not designed to be backwards com-
patible with OAuth 2.0, and will not immediately replace it, its
additional expressive power makes it likely to coexist with and
gradually take over from OAuth 2.0.

In the past, several attacks on OAuth 2.0 and its extensions,
e.g., OpenID Connect, FAPI 1.0 [64, 65], and PKCE [67], have been
found [6, 21, 26, 28, 48, 51]. While GNAP is certainly inspired by
OAuth 2.0 and tries to cover many features of various OAuth 2.0
extensions, e.g., the Device Authorization Grant [15] and Pushed
Authorization Requests [46], altogether, it is a new and completely
redesigned authorization and authentication protocol. Thus, the
results from previous analyses of OAuth 2.0 and its extensions do
not carry over to GNAP.

In this paper, we provide the first formal security analysis of
GNAP, uncovering attacks and eventually proving the protocol se-
cure within a very detailed model. We set out to prove four common
security properties, which have also been considered in analyses
of OAuth 2.0 and related protocols [21, 26, 28]. While the formal
versions of these properties depend on the details of the protocol

1see https://datatracker.ietf.org/wg/oauth/documents/
2see https://openid.net/developers/specs/

being studied, they have quite simple intuitions. For instance, one
major property, security with respect to authorization, states that
an attacker cannot access resources of an honest user. Security with
respect to authentication states that an attacker cannot log in as
another user. We also consider reverse directions of these: session
integrity for authorization states that an attacker cannot force an-
other user to access the attacker’s resources (consider, for instance,
the attacker trying to spread malware), and session integrity for
authentication states that an attacker cannot force another user to
be logged in as the attacker (and thereby possibly leaking the user’s
search history etc. to the attacker).

In our analysis, we build a formal model of GNAP and prove
that it satisfies the aforementioned security properties. Our model
is based on the Web Infrastructure Model (WIM) [23]. The WIM is
a very detailed model of the web infrastructure, probably the most
comprehensive such model to date. It includes a detailed model
of browsers, servers and attacker processes, and communication
between processes using HTTP(S) requests and responses. For ex-
ample, the browser model supports many Web features, including
the execution of (honest and malicious) scripts, a complex window
and document structure (including iframes), cookies with their var-
ious attributes, different redirect methods, various other headers,
and in-browser communication using postMessaging. As illustrated,
for example in [21, 26, 28], analysis based on the WIM is effective
at finding flaws in web-based protocols and standards.

Our model is a pen-and-paper model and we do manual proofs.
While there are frameworks for mechanized security analyses, e.g.,
Tamarin [49] and ProVerif [9], there is currently no tool that directly
supports the WIM, and it is actually challenging to build such a
tool due to the limitations of current tools and the many features
of the WIM, including many complex recursive data structures and
computations (see also Section 5). Creating a tool for mechanizing
the WIM, while interesting and relevant future work, is hence out
of the scope of this work. Previous analyses carried out based on
the WIM have been pen-and-paper as well, and as mentioned, have
been successful in uncovering attacks on web-based protocols and
standards, and in establishing formal security guarantees for them.
Our Contributions. In this paper, we present the first extensive
formal security analysis of GNAP. Our analysis has led to the dis-
covery of several attacks. We propose changes to the specification
to fix these issues and formally prove that these changes are suffi-
cient to get strong security guarantees for GNAP. We have reported
these issues and fixes to the GNAP working group, which have
resulted in several changes to the specifications, following our rec-
ommendations. Our work has greatly improved on the security
of this emerging protocol, which has the potential to become as
widely used as OAuth 2.0 and its extensions. More specifically, our
contributions can be summarized as follows:
Formal Model of GNAP. We develop a formal model of parties in-
teracting according to GNAP, closely following the specification.
As our model is based on WIM, it covers many details of real world
implementations of GNAP. To model GNAP in detail, we also ex-
tended the WIM with the ability to use codes for the authorization
process and by HTTP Message Signatures [3], which is useful for
future analysis efforts and of independent interest.

2

Formal Security Properties. Based on our formal model, we precisely
define what the standard security properties authorization and
authentication as well as session integrity for authorization and
authentication mean in the context of GNAP.
Attacks and Fixes. While trying to prove that GNAP satisfies these
security properties, we found several attacks. Some of these attacks
are similar to known attacks on OAuth 2.0 and its extensions, under-
lying the importance of formal analysis of complex protocols such
as GNAP: even very experienced protocol designers are likely to
overlook attacks, even if similar problems have occurred in related
protocols (which they might even have co-developed).

We have proposed changes to the specification that prevent
these attacks, and have provided these suggestions to the GNAP
working group. The suggestions that we present in this paper have
been accepted and are included in the current version of the GNAP
specification [56].
Proof of Security of GNAP. Finally, we prove that GNAP with the
proposed fixes is secure w.r.t. standard security properties. This is
the first formal proof for GNAP, covering a wide range of attacks.
Structure of this Paper. Wefirst give a brief overview over GNAP
(Section 2). We then briefly and informally describe our security
properties and attacker model, before we present our attacks in
Section 3 that we have found as a result of our first attempt at
formally proving the desired security properties of the GNAP pro-
tocol. We also discuss fixes. The detailed formal treatment (of the
fixed version) of GNAP is then presented in Section 4, including our
model of GNAP, formal security properties, and the main security
theorem. Related work is discussed in Section 5. We conclude in
Section 6. Full details and proofs can be found in the appendix.

2 GRANT NEGOTIATION AND
AUTHORIZATION PROTOCOL

The Grant Negotiation and Authorization Protocol (GNAP) [56, 57]
specifies how the owner of some resources can give a piece of
software access to their resources and how subject information
about the owner can be conveyed to the software without the
need for the owner to reveal login credentials to that software.
Additionally, if the software lacks the rights to access the resources
it initially requests, GNAP provides means for this request to be
adjusted, via negotiations between the owner of the information
and the receiving software.

In this section, we give a detailed description of flows following
the GNAP specification. We begin with an overview of the main
concepts, which we explain by means of a concrete example of a
GNAP flow.

The GNAP specification consists of two documents: the core
specification and the resource server specification. When we started
our analysis, the most recent version of the core specification was
version 8 [58] and version 2 for the resource server specification
[59]. At the time of writing this paper, the current versions of
these documents are 15 [56] and 3 [57], respectively, and the core
specification is submitted to IESG for publication [69], indicating
that it is in its final stages.

Some of the (security-relevant) changes to the core specifica-
tion introduced since version 8 result from suggestions we have
proposed to the working group based on our analysis. We point

those out in Section 3. In the following, we describe the origi-
nally analyzed version 8 of the core and version 2 of the resource
server specifications. Note however that our final formal model
(for which we proved security as explained below) incorporates the
security-relevant changes introduced in versions 9-15 of the core
specification.
Roles. In GNAP, there are five roles that participants can take.
Firstly, there is the resource owner (RO) that authorizes access to
her protected resources. Together with the end user (EU), who
wants to access some protected resource, they describe the two
roles of non-software participants (for example natural persons).
Further, GNAP defines two server roles. The authorization server
(AS) delegates authorization of the resource owner by issuing access
tokens. The protected resources are handled by a resource server
(RS) that provides operations on these resources when presented
with a valid access token. Finally, there is the client instance (CI)
which is the central piece of software that communicates with ASs
to obtain access tokens and with RSs to obtain access to resources.
Two settings are differentiated depending on the operation of the
client instance. Either an end user is present that operates the
client instance (end-user case) or the client instance acts on its own
(software-only case).
Overview of a GNAP Flow.GNAP allows for a variety of concrete
protocol flows by supporting several options for some steps in
the flow. For example, interaction with the user and authorization
server depends on the capabilities of the client. In Figure 1, we give
an overview of the general structure of a GNAP flow, by looking at
one specific flow for authorization in the end-user case, where we
fix some of those choices; of course our formal analysis also covers
the other flows and choices (see also Section 4).

The flow is typically initiated by an EU (Step 1), who wants to
authorize a CI to access resources of an RO. The means by which
the EU does so are out of scope of the protocol. The CI then contacts
a suitable AS (e.g., pre-configured or specified by the EU) to get
authorization to access some resource 𝑟 (Step 2). When process-
ing this request, the AS might decide that interaction with the RO
is needed to approve this access and informs the CI accordingly
(Step 3). There are multiple ways for the AS to contact the RO,
so-called interaction start modes. For this illustration, we show the
case where the AS contacts the RO directly (Step 4). The RO then
authenticates at the AS and authorizes the access to 𝑟 for the CI
(Step 5). Once the RO has authorized access to 𝑟 , there are again
multiple options for the AS to notify the CI of the finished interac-
tion, so-called interaction finish methods. Figure 1 shows the case
in which the AS contacts the CI directly (Step 6). The CI can now
continue the request in Step 7 and request an access token at the
AS. The AS generates an access token AT (Step 8) and sends it to
the CI (Step 9). AT is used by the CI to get access to 𝑟 from the RS
(Step 10). When receiving AT , the RS has to verify that the access
token is valid, for example, by asking the AS about the validity of
the token (this method is called token introspection, see Steps 11

and 12). If AT is valid for 𝑟 , the RS provides access to 𝑟 (Step 13).
The protocol allows participants to take on several of the five

roles at the same time: for example, the AS and RS could be the
same server, and often the RO and EU are considered to be the same
person, in particular, for the authentication use case: If GNAP is

3

1 start authorization requeststart authorization request
eu-req

2 request access torequest access to
resource 𝑟resource 𝑟

grantReq

3 interaction neededinteraction needed
grantResp

4 push notificationpush notification
interaction-start

5 authentication + authorization of requestauthentication + authorization of request
ro-authn-authz

6 interaction finish notificationinteraction finish notification
interaction-finish

7 continuecontinue
contReq

9 access token ATaccess token AT
contResp

10 resource request using ATresource request using AT
resReq

11 token introspection of ATtoken introspection of AT
introReq

12 token is validtoken is valid
introResp

13 provide access to resource 𝑟provide access to resource 𝑟
resResp

ResultResult
eu-resp

End User
(EU)

Client Instance
(CI)

Authorization Server
(AS)

Resource Owner
(RO)

Resource Owner
(RO)

8 generate access token ATgenerate access token AT
genAT

Resource Server
(RS)

14 Process 𝑟Process 𝑟
eu-resp

End User
(EU)

Client Instance
(CI)

Authorization Server
(AS)

Resource Server
(RS)

grant reqestgrant reqest

grant responsegrant response

Interaction StartInteraction Start

Interaction FinishInteraction Finish

continuation reqestcontinuation reqest

continuation responsecontinuation response

resource reqestresource reqest

introspection reqestintrospection reqest

introspection responseintrospection response

resource responseresource response

Figure 1: Overview of a GNAP flow

used for authenticating an EU at a CI, then the CI requests subject
information on the EU in Step 2 , which the AS returns instead
of or in addition to the access token. Once the CI receives this
information, the EU is considered to be logged in at the CI.
Detailed Flow. In a bit more detail, a GNAP flow can be grouped
into four types of request-response-pairs. A grant request from a CI
to an AS starts each GNAP flow (Step 2). In this initial request, the
CI specifies the kind of access it requests and gives information to
the AS to identify the CI in subsequent requests. The CI may request
one or more access tokens to be used to access resources, as well as
subject information about the RO. For access tokens, the CI includes
details about what kind of token(s) it requests and which rights
the token(s) should have. Similarly, for subject information, the CI
specifies what kind of information it seeks, e.g., subject identifiers
[4], or SAML 2 assertions [12]. Furthermore, the CI has to include
the set of supported interaction start and may include an interaction
finish method, i.e., ways in which the CI can facilitate interaction
between the RO and AS (descried in more detail below). In addition,
the CI has to identify itself to the AS. This identification consists
of a key proof using the CI’s client instance key. Each subsequent
request from the CI to the AS must also include such a key proof
(see “Securing Client Requests”).

A grant request is answered by the AS with a grant response
(Step 3). If the CI requested access tokens and the AS grants the
request, the grant response contains the tokens, optionally together
with a reference to the key to which the respective token is bound, if
different from the key used by the CI in its grant request. Similarly,

the grant response may contain RO subject information if the CI
requested such information. If the request cannot immediately be
granted (or denied), some interaction with the RO has to happen
first (Steps 4 and 5). In this case, the grant response contains
information on whether the CI can facilitate interaction between
the RO and AS, and if so, how (see “Interaction Methods”). The AS
may allow the CI to continue the request, e.g., to check whether
interaction with the RO has finished, by including a continuation
URI, as well as a continuation access token bound to the key presented
by the CI in the grant request.

If the AS allows continuation of the grant, the CI may send a
continuation request (Step 7) to the continuation URI specified in
the grant response. In a continuation request, the CI includes both
the continuation access token that it received in the grant response
from the AS and a key proof for the key used by the CI in its initial
grant request (see “Securing Client Requests”). The corresponding
response from the AS has the same form as a grant response. To clar-
ify that a given message is a response to a continuation request, we
sometimes call it a continuation response. Continuation requests are
used to negotiate ongoing grants, poll whether interaction between
RO and AS has finished, and to continue a grant after interaction
with RO has finished. There can be a series of continuation requests
and responses before the CI and AS reach an agreement.

If the CI received an access token, it can send a resource request
to the RS (Step 10) including the token together with a key proof
for the key associated with the token (if such a proof is required, see
“Presentation of Access Tokens”). When receiving an access token,
the RS checks whether it is valid and sufficient for the requested
resource, and verifies the key proof (if required for the token). If
all checks are successful, the RS returns the resource to the CI in a
resource response (Step 13).

To check whether a given access token is valid and sufficient,
and to get information in the key to which the token is bound, the
RS can either examine the token itself (in case of a structured access
token, e.g., [7]), or by token introspection at the issuing AS. In the
latter case, the RS sends an introspection request with the token to
the AS (Step 11). The AS then checks whether the token is valid
and sends an introspection response to the RS (Step 12) including
the access rights associated with the token and information about
the key and proof method used by the CI (if any). The RS can then
check the key proof presented by the CI before providing access to
the resource.
Interaction Methods. A central part of many GNAP flows is get-
ting authorization from the RO (Step 5). To facilitate the necessary
interaction between the AS and RO, and to inform CI of completed
interaction, GNAP defines several interaction start and interaction
finish methods, marked by the blue boxes in Figure 1, which we
describe in the following.

To start interaction with the RO, the AS can contact the RO
directly, as shown in Step 4 of Figure 1. Note that GNAP does not
give details on this direct communication between the AS and RO.

If the RO and EU happen to be the same entity (which is often true
in practice), the CI can assist the AS in contacting the RO. GNAP
defines four additional interaction start methods for this case, the
CI has to indicate in its grant request which of those methods it
supports, it is up to the AS to select an appropriate one (or resort

4

to out-of-band communication). (1) With the redirect method, the
AS’s grant response contains an URI to which the CI then redirects
the RO, e.g., by displaying a QR code, or with a HTTP redirect (see
Steps 4 and 5 in Figure 2). (2) In the user code URI method, the AS
includes a short URI and user code in its grant response. The CI
then communicates (e.g., by displaying it) this URI and user code to
the RO, who visits the URI with a browser and enters the user code.
(3) An even simpler variant of (2) is the user code method, which
works the same, but the URI is static and can thus, e.g., be printed
onto a device implementing a CI. The two user code methods are
intended for CIs with a limited user interface, e.g., IoT devices. (4) If
the CI is able to launch applications, e.g., if CI is a smartphone app,
the application URI method can be used. For this method, the AS’s
grant response contains an app URI, which CI uses to launch the
associated application.

With all four methods, the URI or user code must uniquely iden-
tify the associated grant at the AS.

To notify the CI after interaction between the RO and AS is
complete, GNAP specifies two interaction finish methods. In its
grant request, the CI indicates which finish method it wants to
use (if any), it is up to the AS to decide between using that or no
finish method. With the push interaction finish method shown in
Step 6 of Figure 1, the CI includes a URI in its grant request. The AS
then sends a POST request to that URI to indicate that interaction
completed. In the redirect finish method, the CI again includes a
URI in its grant request, but this time, the AS redirects the RO to
that URI. As for the redirect start method, the means by which the
AS redirects the RO are not fixed by GNAP.

In both cases, the AS includes a nonce to its grant response
and adds an interaction reference as a parameter to the finish URIs.
The CI then includes the interaction reference in its subsequent
continuation request (Step 7 in Figure 1). In its response, the AS
includes an interaction hash, covering the nonces by CI and AS, the
grant endpoint at which the flow was started, and the interaction
reference. This hash is verified by the CI to protect against injection
attacks (e.g., CSRF attacks against ROs). Without a finish method,
the CI can send continuation requests to the AS, polling the current
status of the request.
Securing Client Requests. To guarantee that the AS talks to the
same CI in a flow, the CI must include a proof of possession of a key
in all requests. For the initial request, the CI selects a client instance
key (which also identifies the CI to the AS) and proof method. The
same key and method must then be used for all further requests to
the AS in this flow. GNAP supports HTTP Message Signatures [3],
Mutual TLS certificates [54], and JSONWeb Signatures [42] as proof
methods, where both symmetric and asymmetric keys are allowed.
Presentation of Access Tokens.When issuing an access token,
the AS has three options to sender-constrain the token: (1) The
token can be bound to the client instance key of the CI which started
the grant. (2) The token can be bound to a different key. In this case,
the AS includes a hint to the CI in the grant response, so the CI
knows which key to use with this token. The means by which such
keys are agreed upon between AS and CI are out of scope of GNAP.
(3) If requested by the CI, the token can also be a bearer token, i.e.,
not be bound to any key.

With options (1) and (2), the token can only be used at an RS
if accompanied by a key proof for the key to which the token is
bound. With option (3), the token can be used without a key proof.

3 ATTACKS AND FIXES
In this section, we first briefly and informally describe the security
properties GNAP is expected to fulfill, including a short overview
of our attacker model. Following this, we present the attacks we
found during our formal security analysis of GNAP and the fixes we
propose to make GNAP satisfy the security properties. We describe
the actual formal security analysis in Section 4.

3.1 Informal Security Properties
As already mentioned in the introduction, GNAP is supposed to
fulfill the following properties:
Security w.r.t. Authorization. An attacker should not be able to
access resources of an honest RO. This is a natural and one of the
main properties every authorization protocol should satisfy.
Session Integrity for Authorization. An honest end user should
not unwillingly access resources of the attacker. More specifically,
an end user accesses resources of a specific RO only if she explicitly
and willingly asked for these resources, given that the responsible
AS is honest.
Security w.r.t. Authentication. An attacker should not be able
to log in at an honest (i.e., not corrupted) CI under the identity of
an honest user, if that identity is governed by an honest AS.
Session Integrity for Authentication. An honest user should
only be logged in with a specific identity, if she explicitly and will-
ingly wanted to log in with this identity, given that the responsible
AS is honest.
Attacker Model. These security properties should hold in the
presence of a network attacker, which can also use Web features.
For example, the browser of an honest user may also open websites
of the attacker. Such an attacker website can deliver malicious
scripts, use postMessage communication within the honest user’s
browser, or even include websites of honest parties in iframes,
and try to exploit these and other Web features to launch attacks;
of course, vice versa honest websites can also include malicious
websites. Additionally, we assume that the attacker can get hold
of access tokens that are sender-constrained. This is an implicit
assumption when using token binding mechanisms, as otherwise,
there is no need to use token binding. Such a leak of access tokens
may happen for a number of reasons, e.g., due to a compromised
RS (the token may be valid for multiple RSs), or through unsecured
TLS intercepting proxy logs (considered, e.g., in [19]).

We refer to Section 4.4 for more details on the formalized security
properties, and to Section 4.1 for more details on the attacker model.

3.2 Client Instance Mix-Up Attack
The client instance mix-up attack enables an attacker to access re-
sources of an honest user, thus breaking the authorization property.
This attack has several variants, depending on which interaction
start and interaction finish methods are used.

5

1 start grant with ASstart grant with AS
eu-init-grant

2 start grant with ASstart grant with AS
att-init-grant

3 grant request for access to 𝑟grant request for access to 𝑟
grant-req

includes redirectUriCIincludes redirectUriCI

4 redirectUriASredirectUriAS
as-grant-res

5 redirect to redirectUriASredirect to redirectUriAS
att-grant-res

6 redirect to redirectUriASredirect to redirectUriAS
att-interaction-start

7 authenticate and authorizeauthenticate and authorize
authnz

8 redirect to redirectUriCI with interaction reference & hashredirect to redirectUriCI with interaction reference & hash
as-redir-eu

9 visit redirectUriCI with interaction reference & hashvisit redirectUriCI with interaction reference & hash
interaction-finish

10 continuation requestcontinuation request
continuation

11 access token ATaccess token AT
token-res

13 resource 𝑟resource 𝑟
r-leaks

EU Attacker (CI + EU) CI AS

12 use AT to retrieve resource 𝑟 of EUuse AT to retrieve resource 𝑟 of EUretrieve-r

Attacker (CI + EU) CI ASEU

Interaction StartInteraction Start

Interaction FinishInteraction Finish

Figure 2: Client Instance Mix-Up Attack

Redirect/Redirect Interaction. Figure 2 shows an example flow
of the attack using the redirect interaction start method and the
redirect interaction finish method.

In the first phase of the flow (up until Step 7), the attacker acts
as a man-in-the-middle between an honest EU and an honest CI:
an honest EU starts a flow at the attacker’s client instance and
wants to authorize it to access a resource 𝑟 managed by an honest
AS (Step 1). Instead of starting a grant with the AS, the attacker
poses as an EU, starting a flow with the AS at an honest CI to grant
CI access to 𝑟 (Step 2). The honest CI then sends a grant request
to the AS (Step 3). Since the redirect interaction finish method is
used, this grant request includes a URI redirectUriCI to which the
EU is redirected by the AS once interaction between AS and EU is
completed.

The grant response of AS contains a URI redirectUriAS which is
associated with the ongoing grant (Step 4). This second URI is part
of the redirect interaction start method. CI then instructs its end
user (i.e., the attacker), to visit redirectUriAS (Step 5).

The attacker, now again posing as a client instance towards the
honest EU, does not visit redirectUriAS , but instead instructs the EU
to do so (Step 6). The EU complies, authenticates and authorizes
the request (Step 7). Note that the EU expected to be asked to
authenticate and authorize access to 𝑟 at that exact AS.

However, from the AS’s point of view, redirectUriAS is associated
with the grant request sent by the CI in Step 3 . Therefore, the AS
now invokes the redirect interaction fininsh method and instructs
the EU to visit the CI at redirectUriCI , adding an interaction refer-
ence and interaction hash as URI parameters (Step 8). Once again,
the EU complies, thus providing the CI with interaction reference

and interaction hash (Step 9). The CI can now request an access
token (Step 10). After receiving the access token in Step 11 , the CI
can access resource 𝑟 of the honest EU (Step 12). However, from the
point of view of the CI, the access token, and thus 𝑟 , are associated
with the session between the CI and the attacker (posing as end
user), hence giving the attacker access to 𝑟 .
Redirect/Push Interaction. Similar problematic flows can occur
with other interaction methods as well: If the redirect interaction
start method is used with the push interaction finish method, the
attack flow is identical to the one in Figure 2 up to Step 7 —except
for the grant request, which does not contain a redirect URI. Further,
instead of redirecting the EU to the CI (Steps 8 and 9), the AS
sends a push notification with the interaction reference and hash
directly to the CI. Having received this push notification, CI sends
a continuation request and the flow finishes as described above.
User Code/Redirect Interaction. When using the user code in-
teraction start method with the redirect interaction finish method,
the attack starts as before, but instead of including a redirection
URI in its grant response (Step 4), AS includes a user code URI and
a user code. Similar to the redirection URI shown in Figure 2, these
values are passed on to the attacker and from there to the EU. The
EU then visits the user code URI, enters the user code, authenticates,
and authorizes the grant (similar to Step 7). From there, the attack
flow continues as depicted in Figure 2: The EU is redirected to the
CI, which sends a continuation request, receives an access token,
and ultimately gives the attacker access to the EU’s resources.
User Code/Push Interaction. If the user code interaction start
method is used with the push interaction finish method, the attack
flow starts as explained in the previous paragraph, up until interac-
tion is finished. From there on, the flow continues with the push
interaction finish as described above. This variant is an instance
of an illicit consent grant attack for cross-device flows described
in [43], conceptually similar attacks have also been described for
OAuth 2.0 extensions [15, 20, 63, 71].
Any Start/No Finish Interaction. If no interaction finish meth-
od is used, the CI has to poll at the AS with continuation requests
until interaction is finished and the AS issues an access token.
The interaction start method does not matter in this case, and the
attack flows for different start methods are identical to the ones
described above, up to and including the EU’s authentication and
authorization at the AS. While EU authenticates, CI polls the AS
with continuation requests until the AS’ continuation response
contains a token. The remainder of the attack flow is above.
UserCode Injection. Another notable variant of this attackworks
as follows: instead of having a malicious client that an honest EU
wants to authorize, the attacker can start a flow at an honest CI
with an honest AS, up to the point where the attacker receives a
user code. Note that from the point of view of the CI, this user
code is associated with a session between the CI and the attacker.
The attacker can then try to perform a social engineering attack
in which he convinces an honest EU to use the user code at AS
and authorize CI. For example, the attacker, claiming to be from
the technical support team of a company, can send an email to all
employees saying that due of a security breach they need to verify
their email accounts at the following QR-code with the user code.

6

Mitigations. There are conditions under which the described
attacks can be prevented: when using the redirect start and finish
interaction methods with EUs which use a single browser for the
whole interaction, the CI can establish a session with the EU’s
browser, e.g., by setting a session cookie, and verify that the browser
initiating the flow is the same browser which is redirected to the
CI by the AS. By implementing this fix for flows with browser-EUs
using the redirect start and finish methods in our fomal model, we
were able to prove effectiveness of this fix.

In all other cases, the only reliable way to prevent this class of
attacks is for the EU to only authorize CIs which the EU actually
wants to authorize (see Step 7 in Figure 2), which requires the AS
to provide enough (reliable) information about the CI, and the EU
has to carefully inspect this information. The lack of other fixes is
also evident from the fact that the attack variant with user code
and push interaction has been described before, but no general
protocol-level fix has been proposed so far (see, e.g., [20, Section
5.6.7] and [63]).

In order to prove security of GNAP, wemodel ASs to present such
information and model EUs to carefully compare this information
to what they expect for all cases except the one mentioned in the
previous paragraph in which a session between CI and EU’s browser
is sufficient to prevent the attack. We refer to Appendix A.3 for
details on the modeling.

We reported these findings, including the fix for the redirect
start/redirect finish case, to the GNAP Working Group [34], and
helped in developing corresponding security guidance [38], which
is now part of the GNAP specification [56, Section 13.22 & 13.23].

3.3 Attack on Authentication
In this attack, the attacker is able to log in at an honest CI under
the identiy of an honest end user, if the CI solely relies on subject
information provided by the AS to identify a user account, without
considering the issuing AS as part of the identifying information.
Subject information in GNAP can be either OpenID Connect ID
Tokens, SAML 2 assertions, or Subject Identifiers for Security Event
Tokens. While not all of these include a form of issuer authentication,
we note that this attack also works if subject information contains
issuer information, is signed by that issuer, and CIs verify these
signatures. Figure 3 shows an example flow.

First, an honest EU uses an identity 𝑢, which is governed by
an honest AS, to log in at an attacker CI (Steps 1 – 8): after EU
authenticated, AS sends subject information for 𝑢 to the attacker
CI (Step 8). Note that this is not yet an attack: after all, the EU
authorized release of subject information to the attacker CI.

However, the attacker can now use that subject information to
log in at an honest CI using an AS controlled by the attacker (AAS):
posing as an end user, the attacker initiates a (login) flow at the
honest CI, selecting AAS (Step 9). The honest CI then starts a grant
with AAS, requesting subject information (Step 10). AAS can now
inject the subject information which the attacker received in the
first phase of the attack (Step 11). The honest CI will subsequently
consider the attacker to be logged in as 𝑢, i.e., under the identity of
an honest user, hence breaking the authentication property.

The underlying cause is that the honest CI in the attack identifies
its users by subject information only, regardless of the issuer of that

1 start grant with ASstart grant with AS
start-honest-grant

2 grant request for subject informationgrant request for subject information

3 interaction needed, redirect URIinteraction needed, redirect URI

4 interaction needed, redirect to ASinteraction needed, redirect to AS

5 authentication (as owner of𝑢)authentication (as owner of𝑢)

6 interaction completedinteraction completed

7 continuation requestcontinuation request

8 subject information on𝑢subject information on𝑢
end-honest-grant

9 start grant with AASstart grant with AAS
start-att-grant

10 grant request for subject informationgrant request for subject information
att-grant-req

11 subject information on𝑢subject information on𝑢
end-att-grant

End User
(owner of id𝑢)

Attacker
CI

AS
(responsible for id𝑢)

End User
(owner of id𝑢)

Attacker
CI

AS
(responsible for id𝑢)

Attacker EU CI Attacker AS (AAS)

Attacker EU CI Attacker AS (AAS)

Figure 3: Authentication Attack

information. We note that even without an attacker, this behavior
can lead to problems when multiple (honest) ASs happen to use
the same subject identifier for different users (e.g., incremental
database record numbers). These issues can be fixed by mandating
CIs to identify their users by the pair (AS, subject information). We
reported the issue to the GNAP editors [13] and they added our fix
to the specification [56, Section 3.4].

3.4 Stolen Token Replay Attack
Recall that our attacker model allows for key-bound access tokens
to leak to the attacker (see Section 3.1). In the stolen token replay
attack, the attacker can use such a leaked access token that is bound
to a key of an honest CI to access resources of an honest RO, if
the CI uses the same key and proof method for several ASs (one of
which is controlled by the attacker). Note that CIs may support a
wide range of ASs, in particular in light of GNAP’s RS-first Method
of AS Discovery [56, Section 9.1], in which CIs can dynamically
discover and connect to ASs. Hence, a scenario in which an honest
CI interacts with honest as well as malicious ASs is realistic, even
without considering otherwise honest ASs being compromised.
This attack is similar to the Cuckoo’s Token Attack described for the
OpenID Financial-grade API in [21]. Figure 4 shows an example
flow of the attack for GNAP.

We assume that the attacker obtained an access tokenAT (Step 2)
which has been issued by an honest AS (HAS) for an honest CI to
access a resource 𝑟 of an honest RO, and that AT is bound to CI’s
key 𝑘 (Step 1). Note that the attacker cannot use AT directly to
access resource 𝑟 : when presenting AT to the RS, one also has to
provide a key proof for key 𝑘 – which the attacker cannot produce.
However, the attacker can start a flow at the CI as an end user,
specifying an AS controlled by the attacker (AAS), see Step 3 . We
assume that CI uses the same key 𝑘 and proof method for both HAS

7

3 start grant with AASstart grant with AAS
att-start-grant

4 grant request for access to 𝑟grant request for access to 𝑟

5 access token ATaccess token AT
aas-grant-resp

6 request for 𝑟 with AT and key proof for 𝑘request for 𝑟 with AT and key proof for 𝑘
attflow-resource-req

7 token introspection for ATtoken introspection for AT

AT is valid for 𝑟 and bound to 𝑘AT is valid for 𝑟 and bound to 𝑘

8 resource 𝑟 (of honest RO)resource 𝑟 (of honest RO)𝑟𝑟
att-gets-r

Honest AS (HAS) Attacker AS (AAS)Attacker EU CI

1
create access tokenAT , bound
to key 𝑘 of CI, for resource 𝑟
create access tokenAT , bound
to key 𝑘 of CI, for resource 𝑟

create-at
2 obtain

leaked AT
obtain
leaked AT
at-leak

Attacker AS (AAS)

RS

9 provide
access to 𝑟
provide
access to 𝑟

att-gets-r

Attacker EU CI RSHonest AS (HAS)

Figure 4: Stolen Token Replay Attack on GNAP

and AAS (e.g., by using a single client instance key for all ASs).
Instead of creating a fresh access token, AAS now responds with
the leaked AT (Step 5). Now, CI can use AT at the honest RS to
access 𝑟 (Step 6), thereby giving the attacker access to 𝑟 (Step 9).
Hence, this attack breaks the authorization property. This attack is
particularly interesting, as in GNAP, an AS can specify which key
CI should use to produce key proofs for a token, i.e., even if a CI
would use different keys for different ASs, the attacker may still be
able to force the CI to use a key associated with an honest AS.

A straightforward fix for this attack is to mandate CIs to use
different keys for all ASs they talk to: in the attack flow above, CI
would then use 𝑘AAS when presenting AT to the RS (Step 6), while
AT would in fact be bound to 𝑘HAS, i.e., the RS’s token binding
check would fail, preventing the attack. This fix was added to the
GNAP specification as a security consideration [56, Section 13.30].

3.5 307 Redirect Attack
A central goal of GNAP is security w.r.t. authorization. In particular,
GNAP should authorize CIs without revealing RO’s credentials at
ASs to CIs [58, Section 12.9].

We discovered that such leakage of RO credentials is possible
if the redirect finish method is used. If the attacker controls CI
to which RO credentials leak, it can then impersonate RO at AS.
The attack is similar to an attack on OAuth 2.0 [26] and works
as follows. During interaction, RO logs in at AS (see Step 5 of
Figure 1). When using a Web browser, the login typically happens
with the credentials being sent in a POST request to AS. After that,
AS redirects RO back to CI (redirect finish method, see Section 2).

When we started our analysis, GNAP did not restrict the HTTP
redirect method to be used by AS when redirecting RO back to
CI. However, if AS uses the 307 redirect status code, the browser
forwards the original POST request (sent by RO to AS) to CI, includ-
ing the request body with RO’s credentials; we note that the WIM
faithfully models various redirect methods including 307 redirects.

To avoid this, AS should instead use the 303 redirect code, which
rewrites the request to a GET request, dropping the request body.

We proposed a corresponding specification change to the GNAP
editors [37], which is now included in the GNAP specification.

4 FORMAL ANALYSIS
In this section, we present our formal security analysis of GNAP.
We first provide a brief overview of the Web Infrastructure Model
(WIM), which serves as a basis for our model of GNAP. We then
describe our GNAP model in Section 4.2, which follows the latest
version of the in-progress GNAP specifications for both the core
protocol [56] and for resource server behavior [57]. As already
noted, the core protocol has reached the Working Group Last Call,
and hence is considered to be stable. Our model includes the fixes
presented in Section 3, which, as mentioned, are now also included
in the core GNAP specification. We then present formal definitions
of the security properties sketched before (Section 4.4), followed
by our main theorem, stating that GNAP is secure with respect to
these properties. Full details of the security properties and proofs,
including formal definitions of clients, authorization servers, and
resource servers, are provided in the appendices of this paper.

4.1 WIM
Our model builds on the Web Infrastructure Model (WIM) of Fett,
Küsters, and Schmitz, which was introduced in [23], and has since
been extended and improved in later work [16, 21, 24–26, 28].Our
analysis is based on a consolidated version of the WIM [29]. We
here only give a brief description of the WIM, sufficient to follow
the paper, but all details can be found in [29]. We also note that
in order to model GNAP, we have extended the WIM slightly to
model the user-code interaction modes of GNAP, and by adding
HTTP Message Signatures [3], including the Signature-Input and
Signature HTTP headers (see Appendices A.1 and A.10). These
extensions to the WIM are of independent interest, as they can be
used for the analysis of other protocols.

The WIM is a formal model of the web infrastructure, designed
to be general-purpose and allow for modelling various (web-based)
applications. It closely follows published standards and specifica-
tions for the web, such as the HTTP/1.1 standard, for example. It
provides a general communication model, which models, among
other things, HTTP(S) requests and responses, including a variety of
headers, such as Origin, Referer, Location, STS, Authorization, and
Cookie headers. On top of this communication model, the WIM de-
fines models for several types of processes, including web browsers,
web servers, and DNS servers, as well as several forms of attacker
processes. For example, the browser model covers the concepts of
windows, documents, and iframes. It also has an abstract model
of executable JavaScript, which can be sent between processes
and executed by browsers, with access to a browser API, e.g., for
postMessages, session and local storage, setting and reading head-
ers, XMLHttpRequests, navigating and creating windows/iframes.
Users interacting with a browser, e.g., clicking on a link or entering
URLs, are modeled as non-deterministic actions of the browser
that can be triggered by the attacker. In particular, this means that
within our model, the GNAP end-user is subsumed by the browser.

In the WIM, a web system is a collection of (atomic) processes,
each of which represents a browser, server, or attacker. Each process
has a collection of (IP) addresses on which it listens for messages,

8

and processes communicate via events, which consist of a message
along with addresses indicating the sender and intended receiver of
the message (though attacker processes may tamper with this data,
for instance to spoof messages from another process). In every step
of execution of the model, an event is selected non-deterministically
from the set of waiting events, and delivered to one of the processes
that listens to the event’s receiver address. This process can then act
based on the contents of the event, possibly changing its internal
state and/or outputting some number of new events, which are
then added to the set of waiting events.

The WIM follows the Dolev-Yao approach [17], meaning that
messages are expressed as formal terms over a signature which con-
tains function symbols of various arity, representing, for instance,
addresses, strings, nonces, tupling and projection operations, en-
cryption and decryption, and signature creation and checking.

A Dolev-Yao process is a process that consists of a set of (IP)
addresses the process listens on, a set of terms representing the
possible states of the process, an initial state from that set, and a
relation that takes an event and a state as input and produces a
new state and a sequence of events as output. Note that this is a
relation rather than a function because it may be non-deterministic,
with the same message and initial state leading to multiple different
outputs. This relation models a computation step of the process,
and so it must be possible to compute the output of the relation (in
a formal sense) from the input event and state.

An attacker process in the WIM is a Dolev-Yao process that
records all messages it receives and outputs all sequences of events
it can possibly derive from its recorded messages. As such, an at-
tacker process can carry out any attack that any Dolev-Yao process
could possibly perform, without the details of the attack needing
to be specified in the model. There are two types of attackers. A
web attacker participates in the network as any other process, and
hence only receives messages sent to it directly. In contrast to that,
the network attacker can intercept and redirect any messages, i.e.,
listens to all IP addressses, and hence, sees all messages sent over
the network. But it cannot decrypt messages unless it has the corre-
sponding key. This network attacker, despite being a single process,
subsumes all other forms of attacker, as it can emulate any more
limited attacker or family of limited attacker processes. Attacker
processes may also corrupt other processes, both browsers and
servers, turning them into web attacker processes (retaining what-
ever state they had at the point of corruption, including secrets like
passwords or keys).

Scripts in the model represent JavaScript running in a browser,
and are defined similarly to processes, but rather than being able
to directly interact with the network by sending events, they only
interact with the browser they are run in. Similar to an attacker
process, an attacker script can perform any action that any script
could perform within a browser.

Now, a bit more formally, a web system W is then defined as a
set of Dolev-Yao processes, along with a set of scripts (those that
honest servers would send to browsers), plus the attacker script. In
a run of a web system, its state at any given time is a configuration
of the form (𝑆, 𝐸, 𝑁) where 𝑆 maps each process of the system to
its current state, 𝐸 is the set of waiting events, and 𝑁 is a set of
nonces which have not yet been used (and so are unknown to all

processes). By convention, we will write 𝑠0
𝑝 for the initial state of

process 𝑝 . A web system induces a set of runs, or sequences of
configurations, where each configuration is derived by delivering
one of the waiting events of the previous configuration to a process,
which then performs a computation step, potentially consuming
some nonces from 𝑁 , updating its own state (changing 𝑆), and/or
adding some number of events to 𝐸.

4.2 Modeling GNAP
Since the WIM already formalizes the web infrastructure, to model
applications we only need to specify application-specific processes,
including scripts they use. Our model of GNAP therefore provides
definitions of processes representing ASs, RSs, and CIs. Browsers
are already specified in the core WIM – we only need to make
some small modifications in order to model the user code interac-
tion mode of GNAP and HTTP Message Signature. End-users are
modelled by non-deterministic behaviour of browsers.

AGNAP web system, denoted by GWS , is a web system containing
some arbitrary (but finite) number of processes including ASs, RSs,
CIs, and browsers alongwith a network attacker process. Other than
the attacker, all processes are initially honest (that is, they follow
their given algorithms to take steps), but can become corrupted by
the attacker at any time.

CIs and ASs are modeled in a straightforward way according
to the specification of GNAP [56]. Our model includes a client
script that initiates the protocol, and an AS script for authenticating
the resource owner. For RSs we follow GNAP’s resource server
specification [57] for the pieces that are specified, and attempt to
make minimal assumptions about RS behaviour otherwise in order
to cover a wide variety of use cases.

As mentioned, the formal model presented in this section reflects
the security considerations presented in the GNAP specification to
avoid known attacks, particularly the fixes described in Section 3,
which are necessary for our security properties to be provable.

In a real-world GNAP environment, participants may have di-
verse setups. For example, each CI has its own set of supported
interaction methods. To account for all possible combination of se-
tups, we include these setups in two ways. Some parts are specified
in the initial configuration of each process, e.g., the private keys of
a process. Other parts are modeled by non-deterministic choices
during the execution of processes. For example, for each new grant
request, a CI chooses non-deterministically which interaction start
and finish method to offer to the AS from the set of all available
methods. We refer to Appendix A for our full formal model.

4.3 Modeling Considerations
There are several places in our model where we deviate from the
GNAP specification. In some places we use a simplification and con-
sider only a safe over-approximation. In others, we omit some pieces
of the specification that are not security-relevant or under-specified.
Additionally, our model covers relevant security considerations rec-
ommended in the specification and all of our fixes to the attacks as
described in Section 3. We will briefly discuss the key constraints
and choices for our model (a full list can be found in Appendix A.3).
Simplifications. GNAP does not specify any particular resource
accessmodel, and sowe use a simplemodel inwhich an access token

9

issued for a given resource owner grants access to all of that owner’s
resources. This allows our model to avoid details of token manage-
ment such as requests for multiple tokens, or requests to extend
the rights of a token, while still being a safe over-approximation of
real behavior. Since we use this simple resource access model, the
resource owner does not need to be informed during interaction
with the AS what access permissions it is being asked to authorize,
and so our model does not need to include an explicit authorization
step. As another safe over-approximation, we do not model token
expiry or revocation — once a token is issued, it is valid forever.
Omissions due to under-specification. While GNAP allows for
both structured access tokens or opaque access tokens used in
combination with token introspection, there is no specification for
the format of structured access tokens, and sowe have onlymodeled
the case of opaque tokens together with token introspection.

Further, we only consider the case where the end user attempting
to access a resource is the same as (or at least in direct out-of-band
contact with) the resource owner. Otherwise, we have to model the
case where an AS must get authorization from some third-party
RO in order to complete a grant request. However, the details of
such an interaction are out of scope of GNAP.
Security Considerations. We restrict the possible flows in our
model by requiring the use of an interaction finish method. Allow-
ing polling by the client instance can lead to AS mix-up attacks.
To avoid this, we follow the recommendation of the corresponding
security consideration [56, Section 13.22] and do not include polling
in our model.

4.4 Definitions and Security Properties
In this section, we formalize the security properties GNAP is sup-
posed to satisfy, i.e., security with respect to authorization and
authentication, and session integrity for both authorization and
authentication.
Security with respect to authorization. As mentioned before,
this property states that an attacker should not be able to access the
resources of an honest resource owner. There are several immediate
problems with this intuition.

Most obviously, if the resource owner stores its resources on an
RS that is corrupted by the attacker, there is no hope of security,
as the resource server can simply give the attacker access to any
resources it stores. Likewise, the resource owner and the authoriza-
tion server that is managing the resource need to be honest.

A few other simple problems can lead to security failures as
well. If a resource owner authorizes a corrupt client to access its
resources, then the attacker naturally can learn those resources.
Likewise, if the AS validly issues a bearer token (see Section 2) to a
client, and that client then attempts to use the token at a corrupt RS,
any security associated with that token is lost. Finally, and more
subtly, if a client shares a symmetric key with an honest AS and a
corrupted RS, that RS can take over a session between the client
and AS, by impersonating the client to the AS, and can thereby
gain access to resources that it should not be able to.

A few definitions will be useful in stating our security properties.
For simplicity of presentation, we elide some of the technical details
of the model. More precise definitions can be found in Appendices B,
E.1, E.2, F.1 and F.2.

Definition 4.1. We identify resource owners by identities. An
identity 𝑢 consists of a name and a domain for some process. We
think of this domain as indicatingwhat process manages an account,
and the name as some identifier of that account at the manager.

We also define a map governor, which maps an identity to the
AS responsible for managing access to resources belonging to that
identity.

Finally, we define a map ownerOfID, which takes an identity to
the browser controlling the identity (i.e., the browser used by the
end user to whom the identity corresponds). This can be formalized
by requiring that each identity𝑢 has an associated secret credential,
which is initially known only to the governor of𝑢 and some browser.
That browser is then ownerOfID(𝑢).

These definitions allow us to talk about identifiers for resource
owners, as well as what processes we expect to be responsible for
handling access to a given resource owner’s resources — namely, in
order for a client to access the resources belonging to an identity 𝑢,
it should request permission from the governor of𝑢, which will then
request authorization from the owner of the identity. It will also be
useful to be able to easily refer to the situation where the owner of
𝑢 attempts to authenticate at the governor of 𝑢, authorizing such a
grant request (Step 5 of Figure 1).

Definition 4.2. If, during step 𝑖 of a run 𝜌 , a browser 𝑏 attempts
to authenticate/log-in using identity 𝑢 at a process as, in order to
authorize a client 𝑐 , we write tryLogin𝑖𝜌 (𝑏, 𝑐,𝑢, as).

We can now define the authorization property for GNAP.

Definition 4.3 (Security with Respect to Authorization). Let GWS
be a GNAP web system, 𝜌 a run of GWS , and (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) a con-
figuration in 𝜌 . Suppose that 𝑢 is an identity (of some resource
owner), and RS rs stores a resource 𝑟𝑢 on behalf of 𝑢. We say that
GWS is secure with respect to authorization iff the following impli-
cation holds: Given conditions (1)–(5), the attacker cannot derive
𝑟𝑢 from its knowledge in 𝑆 𝑗 , where conditions (1)–(5) are defined
as follows: (1) rs is honest in 𝑆 𝑗 ; (2) governor(𝑢) is honest in 𝑆 𝑗 ;
(3) ownerOfID(𝑢) is honest in 𝑆 𝑗 ; (4) for every client instance 𝑐
which is honest in 𝑆 𝑗 , 𝑐 does not share a symmetric key with
governor(𝑢) and with a corrupted RS rs′; (5) if for some 𝑖 ≤ 𝑗 ,
tryLogin𝑖𝜌 (ownerOfID(𝑢), 𝑐,𝑢, governor(𝑢)), then 𝑐 is honest in 𝑆 𝑗
and, if this login succeeds and grants 𝑐 a bearer token, then 𝑐 does
not send this token to a corrupted RS rs′.

Note that each of the five premises in the implication above
corresponds to one of the situations described before where security
would necessarily fail. This property then states that other than the
simple, relatively apparent failures of security when some parties
in the protocol are dishonest, there is no way for an attacker to
derive a resource belonging to an honest user.
Security with respect to authentication. This property is sim-
ilar in many respects to security with respect to authorization.
Informally, we want to ensure that an attacker is not able to log in
to an honest client as an honest user. To make this more precise, we
need to define what it means for a user to be logged in at a client,
and what identifies who they are logged in as.

Formally, we identify each login, or service session, by a nonce
called the service session ID, which the client sets as a cookie to
the browser that is logged in.

10

The client generates a service session ID when it receives au-
thentication information (in the form of a subject identifier) from
an AS, indicating that the browser that the client is interacting with
is the owner of some identity 𝑢. This subject ID may be opaque
to the client, but the pair of the subject ID and the AS used can
uniquely identify an account on the client, and we use this pair to
identify what account is logged in.

Definition 4.4. We write loggedIn𝑖𝜌 (𝑏, 𝑐,𝑢, as) if in step 𝑖 of a run
𝜌 𝑐 sends to 𝑏 a service session ID cookie, say with value ssid, which
𝑐 associates with the account ⟨𝑛, as⟩ for some 𝑛, and as associates
𝑛 to the identity 𝑢.

With this definition, we can formalize the authentication prop-
erty for GNAP:

Definition 4.5 (Security with Respect to Authentication). Let GWS
be a GNAP web system, 𝜌 a run of GWS , and (𝑆, 𝐸, 𝑁) a configura-
tion in 𝜌 . Suppose that 𝑢 is an identity with loggedIn𝑖𝜌 (𝑏, 𝑐,𝑢, as),
and that ssid is the service session ID corresponding to this login.
We say that GWS is secure with respect to authentication iff the fol-
lowing implication holds: If 𝑐 , as, and ownerOfID(𝑢) are honest in
𝑆 , then the attacker cannot derive ssid from its knowledge in 𝑆 .

As with authorization, there are several cases where a corrupt
party can easily violate the intuitive security property: a corrupt
client can simply allow the attacker to log in as any user, a corrupt
end user can log in and then send its service session ID to the
attacker, and a corrupt AS can authenticate logins as any account
it manages, skipping any checks. Again, other than these obvious
(and essentially unavoidable) failures of the intuitive version of
authentication, if this property is provable, no attacks are possible.
Session integrity. In addition to these properties capturing that
the attacker should not be able to access honest user’s resources
or accounts, session integrity (for both authorization and authenti-
cation) captures the intuitive idea that an honest user should not
be forced to access the attacker’s resources or accounts. Informally,
if an honest user accesses a resource or is logged in with some
account, then the user authorized that resource access or authen-
ticated for that login. This idea is captured by the two definitions
below:

Definition 4.6. Let GWS be a GNAP web system, 𝜌 a run of GWS ,
and (𝑆, 𝐸, 𝑁) a configuration in 𝜌 . Suppose that 𝑢 is an identity (of
some resource owner), and an RS rs stores a resource 𝑟𝑢 on behalf
of 𝑢, and that a client 𝑐 sends 𝑟𝑢 to a browser 𝑏. We say that GWS
has session integrity for authorization iff the following implication
holds: If 𝑐 , rs, governor(𝑢), and ownerOfID(𝑢) are honest in 𝑆 , then
at some prior point, 𝑐 began a GNAP flow at some as on behalf of
𝑏. Moreover, if as is honest, then there is some earlier step 𝑖 in 𝜌
such that tryLogin𝑖𝜌 (𝑏, 𝑐,𝑢, governor(𝑢)).

Definition 4.7. Let GWS be a GNAP web system, 𝜌 a run of GWS ,
and (𝑆, 𝐸, 𝑁) a configuration in 𝜌 . Suppose that 𝑢 is an identity
with loggedIn𝑖𝜌 (𝑏, 𝑐,𝑢, as). We say that GWS has session integrity
for authentication iff the following implication holds: If 𝑐 , as, and
𝑏 are honest in 𝑆 , then there is some earlier step 𝑖 in 𝜌 such that
tryLogin(𝑏, 𝑐,𝑢, as).

Note that in the case of session integrity for authorization, we
need to mention two potentially different authorization servers.

This is because, in principle, nothing prevents a GNAP client from
being directed from one AS to another over the course of a GNAP
flow, and in particular, if the first AS a client interacts with is
an attacker, this attacker has a great deal of influence on what
steps the client continues to take. Without this constraint that the
initial AS in the flow is honest, some strange flows are possible,
in which, for instance, an attacker may be able to force the end
user to access resources which the attacker owns, but which are
controlled by an honest AS. We discussed this problematic flow
with the GNAP editors [14]. In their opinion, considering only cases
where the initial AS is honest, is not a restriction. However, they
will add a security consideration to the resource server specification
explaining the problematic flow.

4.5 Results
Our key result, captured by the following theorem, is that the
current GNAP specification including all our fixes satisfies the
security properties that we set out in Section 4.4.

Theorem 4.8. Every GNAP web system GWS is secure with respect
to authorization and authentication, and also has session integrity
with respect to authorization and authentication.

This means that even in the presence of a strong attacker which
controls the network, observing all messages and determiningwhen
and towhom they are delivered, andwhich can corrupt other parties
on the network (see Section 3.1 for details), GNAP ensures that
users are protected from a wide variety of attacks. In particular,
attackers cannot access a user’s resources or a user’s account unless
some failure which is outside the scope of the protocol occurs (e.g.
the user willingly gives their credentials to the attacker, or the
attacker takes over the server on which the user’s resources or
account data is stored). Similarly, a user cannot be forced to access
an attacker’s resources or account through the GNAP protocol.

We highlight that our analysis accounts for many Web features
that might possibly cause attacks, e.g., in-browser communication
using postMessages, cookie management, HTTP redirect behavior,
various headers, or thewindow and document structure of browsers,
including iframes. The 307 redirect attack is an example of where
seemingly irrelevant details matter. Furthermore, the web system
that our analysis considers can have an arbitrary number of CIs, ASs,
and RSs, each of them can be corrupted at any time by the attacker,
with parallel flows between these. Also, honest participants may
communicate with corrupted ones, e.g., we show the properties for
CIs, even if these CIs use dishonest ASs, and for honest ASs which
may support dishonest CIs.
Proof Sketch. The proof of this result is quite long, being broken
down into just under 30 lemmas, and relies on the technical details
of the model. However, we can give a high-level overview of the
main steps of the proof. First, we establish some basic properties
about leakage of information, proving that various secret values
are only known to the parties who are supposed to know them (e.g.
private keys are only known to their owners, see Lemmas D.1 and
D.2). Based on this, we then establish that key proofs (in several
different forms) can be used to authenticate the sender of a message
as the owner of a particular encryption key, and to validate that
the message has not been tampered with (see Lemma D.8). This is
a critical property, as key proofs are used in GNAP both to ensure

11

that the AS is talking to the same client throughout a GNAP flow
(i.e. the flow cannot be hijacked by the attacker) and to allow a
client to prove to an RS that it is entitled to use a token bound to
its private key.

Building on the ability to verify message integrity and prove-
nance with key proofs, we establish several lemmas about the in-
tegrity of communication between a client and an AS, for instance
showing that if the AS accepts a continuation request, it was sent
by the same client that started the flow at the AS (see Lemma D.10).
Similarly, we establish results showing that communication be-
tween a client and an end-user browser maintain continuity — that
the client can identify if a different end-user browser attempts to
take over a session (see Lemma D.14).

We can then combine these results about the continuity of flows
with details of the implementation of the various parties to prove
that access tokens and subject information are handled correctly.
For instance, to show security w.r.t. authorization, we prove that
resources are only sent from an RS to a client if that client presents
a valid access token for the corresponding resource, along with
proof that it is entitled to use the token (see Lemmas E.10 and E.11).
Similarly, we show that an AS will only issue a token for a resource
to a client if the owner of the resource authorizes this token to be
issued (see Lemma E.12). Security w.r.t. authorization then follows
by combining these — e.g. a client only receives a resource if it
provided a valid access token to the RS, and the client could only
have such a valid access token if it were issued by an AS, which
only occurs if the client is authorized by the resource owner, thus
ensuring that only authorized clients receive resources. The full
proof for the authorization property and the other properties can
be found in the appendix.

5 RELATEDWORK
To the best of our knowledge, our work is the first formal security
analysis of GNAP. Axeland and Oueidat [2] informally analyze
GNAP by testing the protocol against five attack classes known for
OAuth 2.0 and conclude that most of those do not apply to GNAP,
except for an AS mix-up attack (first discovered in [26]). They also
only consider the redirect interaction modes.

There are several formal security analyses of OAuth 2.0 and re-
lated protocols: Bansal et al. [5] use ProVerif [8] to analyzeOAuth 2.0,
considering some features of the Web infrastructure like cookies
and origins. However, they focus on finding attacks and do not
aim to provide security guarantees. Pai et al. [52] formally ana-
lyze OAuth 2.0 using the Alloy Analyzer [40] in a very limited
model that does not incorporate generic web features, showing that
their approach can be used to find known weaknesses. Arnaboldi
and Tschofenig [1] use Tamarin [49] to analyze an abstract model
of ACE-OAuth [68] (a flow specifically designed for IoT devices)
without considering generic web features. Hofmeier [39] models
OpenID Connect in Tamarin with a rudimentary browser model
and analyzes different grant types in isolation, discovering two
previously known attacks. However, the models created for these
analyses, as well as the models of the underlying web infrastructure,
are very limited. For example, the analysis in [52] does not cover
Web features, and [5] does not consider advanced Web features like
documents, iframes, and postMessages.

To date, the WIM is the most detailed and expressive model
of Web infrastructure, and as already mentioned, has successfully
been used to analyze a variety of protocols, including several in the
OAuth family ([21, 26, 28]), as well as Mozilla Browser ID [23, 24]
and the W3C Web Payment APIs [16]. All of the analyses using
the WIM, including ours, rely on manual proofs. To the best of our
knowledge, there is no mechanized model of the WIM with a level
of detail comparable to the WIM yet. Building such a model is a
challenging future task.

We refer the reader to [10] for an overview of formal methods
in web security.

6 CONCLUSION
In this paper, we performed the first formal security analysis of
GNAP. To this end, we built a detailed formal model of GNAP
based on the WIM, which includes several start and finish interac-
tion methods, both the software-only and end-user cases, arbitrary
numbers of continuation requests, grant negotiation between CI
and AS, token introspection, key-bound and bearer access tokens,
subject information grants, different key proof methods, all while
accounting for details of the Web infrastructure like different HTTP
redirection codes, JavaScript running in browsers, important HTTP
headers, and so on.

We formalized central security properties that are expected from
and have previously been applied to authorization and authentica-
tion protocols. We tried to prove these properties, but discovered
attacks that break them. These attacks were reported to the IETF’s
GNAP Working Group along with proposed fixes, which are now
part of the specifications.

We incorporated these fixes into our formal model and proved
that the fixed model fulfills the security properties. As our model
accounts for many Web features, our security proof excludes large
classes of attacks, even in the presence of a network attacker that
can use all web features, e.g., provide malicious scripts, manipulate
headers, etc., and can get hold of (sender-constrained) access tokens,
and even if an unlimited number of users, CIs, ASs, and RSs, all
of which the adversary can corrupt at any point, operate with an
unlimited number of parallel sessions.

Considering GNAP’s progress towards an IETF standard with
the core specification being in the Working Group Last Call at the
time of this writing, our analysis is just in time to support the
standardization of an important protocol in terms of its security.
Our work also shows that formal analysis in a meaningful and
rich model is necessary for complex protocols, like GNAP, as even
very experienced protocol designers easily overlook not only new
attacks but also attacks previously found on related protocols.

Acknowledgements: This research was supported by the DFG
through grant KU 1434/12-1.

REFERENCES
[1] Luca Arnaboldi and Hannes Tschofenig. 2019. A formal model for delegated

authorization of IoT devices using ACE-OAuth. https://homepages.inf.ed.ac.uk/
larnibol/img/publications/Paper-03.pdf 4th OAuth Security Workshop.

[2] Åke Axeland and Omar Oueidat. 2021. Security Analysis of Attack Surfaces on
the Grant Negotiation and Authorization Protocol. Master’s thesis. Chalmers
University of Technology, University of Gothenburg. https://odr.chalmers.se/
items/7d36a5d4-c295-4270-886b-d5ed1154a8e8

12

https://homepages.inf.ed.ac.uk/larnibol/img/publications/Paper-03.pdf
https://homepages.inf.ed.ac.uk/larnibol/img/publications/Paper-03.pdf
https://odr.chalmers.se/items/7d36a5d4-c295-4270-886b-d5ed1154a8e8
https://odr.chalmers.se/items/7d36a5d4-c295-4270-886b-d5ed1154a8e8

[3] Annabelle Backman, Justin Richer, and Manu Sporny. 2022. HTTP Message
Signatures. Internet-Draft draft-ietf-httpbis-message-signatures-15. Internet En-
gineering Task Force. https://datatracker.ietf.org/doc/draft-ietf-httpbis-message-
signatures/15/ Work in Progress.

[4] Annabelle Backman, Marius Scurtescu, and Prachi Jain. 2022. Subject Identifiers
for Security Event Tokens. Internet-Draft draft-ietf-secevent-subject-identifiers-
14. Internet Engineering Task Force. https://datatracker.ietf.org/doc/draft-ietf-
secevent-subject-identifiers/14/ Work in Progress.

[5] Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Sergio
Maffeis. 2014. Discovering Concrete Attacks onWebsite Authorization by Formal
Analysis. Journal of Computer Security 22, 4 (2014), 601–657.

[6] Chetan Bansal, Karthikeyan Bhargavan, and Sergio Maffeis. 2012. Discovering
Concrete Attacks on Website Authorization by Formal Analysis. In 25th IEEE
Computer Security Foundations Symposium, CSF 2012, Stephen Chong (Ed.). IEEE
Computer Society, 247–262.

[7] Vittorio Bertocci. 2021. JSON Web Token (JWT) Profile for OAuth 2.0 Access
Tokens. RFC 9068. https://doi.org/10.17487/RFC9068

[8] B. Blanchet. 2001. An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules. In Proceedings of the 14th IEEE Computer Security Foundations Workshop
(CSFW-14). IEEE Computer Society, 82–96.

[9] Bruno Blanchet. 2013. Automatic Verification of Security Protocols in the Sym-
bolic Model: The Verifier ProVerif. In Foundations of Security Analysis and Design
VII - FOSAD 2012/2013 Tutorial Lectures (Lecture Notes in Computer Science),
Vol. 8604. Springer, 54–87.

[10] Michele Bugliesi, Stefano Calzavara, and Riccardo Focardi. 2017. Formal methods
for web security. J. Log. Algebraic Methods Program. 87 (2017), 110–126. https:
//doi.org/10.1016/j.jlamp.2016.08.006

[11] Brian Campbell, John Bradley, Nat Sakimura, and Torsten Lodderstedt. 2020.
OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access To-
kens. RFC 8705. https://doi.org/10.17487/RFC8705

[12] Scott Cantor, John Kemp, Rob Philpott, Eve Maler, and Eric Goodman (ed.). 2015.
Assertions and Protocols for the OASIS Security Assertion Markup Language
(SAML) V2.0 – Errata Composite. https://www.oasis-open.org/committees/
download.php/56776/sstc-saml-core-errata-2.0-wd-07.pdf

[13] cwaldm. 2022. Issue 461 - Missing Details for Verificaton of Identity Information.
GitHub Issue. https://github.com/ietf-wg-gnap/gnap-core-protocol/issues/461

[14] cwaldm. 2022. Issue 56 - RS validation of access token. GitHub Issue. https:
//github.com/ietf-wg-gnap/gnap-resource-servers/issues/56

[15] William Denniss, John Bradley, Michael Jones, and Hannes Tschofenig. 2019.
OAuth 2.0 Device Authorization Grant. RFC 8628. https://doi.org/10.17487/
RFC8628

[16] Quoc Huy Do, Pedram Hosseyni, Ralf Küsters, Guido Schmitz, Nils Wenzler, and
Tim Würtele. 2022. A Formal Security Analysis of the W3C Web Payment APIs:
Attacks and Verification. In 43rd IEEE Symposium on Security and Privacy (S&P
2022), Vol. 1. IEEE Computer Society, 134–153. https://publ.sec.uni-stuttgart.de/
dohosseynikuestersschmitzwenzlerwuertele-sp-2022.pdf

[17] Danny Dolev and Andrew C. Yao. 1983. On the Security of Public-Key Protocols.
IEEE Transactions on Information Theory 29, 2 (1983), 198–208.

[18] Dropbox Platform Team. 2020. OAuth Guide. https://developers.dropbox.com/
oauth-guide.

[19] Daniel Fett. 2022. FAPI 2.0 Attacker Model, Draft 02. OpenID Foundation. https:
//openid.net/specs/fapi-2_0-attacker-model-02.html

[20] Daniel Fett. 2022. FAPI 2.0 Security Profile, Draft 02. OpenID Foundation. https:
//openid.net/specs/fapi-2_0-security-02.html

[21] Daniel Fett, Pedram Hosseyni, and Ralf Küsters. 2019. An Extensive Formal
Security Analysis of the OpenID Financial-Grade API. In 40th IEEE Symposium
on Security and Privacy (S&P 2019). IEEE Computer Society, Los Alamitos, CA,
USA, 1054–1072. https://doi.org/10.1109/SP.2019.00067

[22] Daniel Fett, PedramHosseyni, and Ralf Küsters. 2019. An Extensive Formal Security
Analysis of the OpenID Financial-grade API. Technical Report arXiv:1901.11520.
arXiv. Available at http://arxiv.org/abs/1901.11520.

[23] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2014. An Expressive Model for the
Web Infrastructure: Definition and Application to the BrowserID SSO System. In
35th IEEE Symposium on Security and Privacy (S&P 2014). IEEE Computer Society,
673–688.

[24] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2015. Analyzing the BrowserID SSO
System with Primary Identity Providers Using an Expressive Model of the Web.
In Computer Security - ESORICS 2015 - 20th European Symposium on Research
in Computer Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part I
(Lecture Notes in Computer Science), Vol. 9326. Springer, 43–65.

[25] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2015. SPRESSO: A Secure, Privacy-
Respecting Single Sign-On System for the Web. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
October 12-6, 2015. ACM, 1358–1369.

[26] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2016. A Comprehensive Formal
Security Analysis of OAuth 2.0. In Proceedings of the 23nd ACM SIGSAC Conference
on Computer and Communications Security (CCS 2016). ACM, 1204–1215.

[27] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2016. A Comprehensive Formal
Security Analysis of OAuth 2.0. Technical Report arXiv:1601.01229. arXiv. http:
//arxiv.org/abs/1601.01229

[28] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2017. The Web SSO Standard
OpenID Connect: In-Depth Formal Security Analysis and Security Guidelines. In
IEEE 30th Computer Security Foundations Symposium (CSF 2017). IEEE Computer
Society.

[29] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2022. TheWeb Infrastructure Model
(WIM). https://www.sec.uni-stuttgart.de/research/wim/WIM_V1.0.pdf

[30] GitHub Docs. 2023. Authorizing OAuth Apps. https://docs.github.com/en/
developers/apps/building-oauth-apps/authorizing-oauth-apps.

[31] Google. 2022. OAuth 2.0 for TV and Limited-Input Device Applications. https:
//developers.google.com/identity/protocols/oauth2/limited-input-device.

[32] Google. 2022. Using OAuth 2.0 to Access Google APIs. https://developers.google.
com/identity/protocols/oauth2.

[33] Dick Hardt (ed.). 2012. The OAuth 2.0 Authorization Framework. RFC 6749.
https://doi.org/10.17487/RFC6749

[34] Florian Helmschmidt. 2021. Issue 364 - End user/client instance mix-up attack.
GitHub Issue. https://github.com/ietf-wg-gnap/gnap-core-protocol/issues/364

[35] Florian Helmschmidt. 2021. Issue 47 - How does token introspection handle
symmetric keys? GitHub Issue. https://github.com/ietf-wg-gnap/gnap-resource-
servers/issues/47

[36] Florian Helmschmidt. 2021. Issue 48 - Security Consideration: Derivation of
Stolen Tokens. GitHub Issue. https://github.com/ietf-wg-gnap/gnap-resource-
servers/issues/48

[37] FlorianHelmschmidt. 2021. Pull Request 351 - Add redirection status code security
considerations. GitHub Pull Request. https://github.com/ietf-wg-gnap/gnap-
core-protocol/pull/351

[38] Florian Helmschmidt. 2022. Issue 390 - Clarified user presence on interaction
finish methods. GitHub Commit. https://github.com/ietf-wg-gnap/gnap-core-
protocol/pull/390/commits/b028a1e363e90ad1c2711bd8244ea76e3957f935

[39] Xenia Hofmeier. 2019. Formal Analysis of Web Single-Sign On Protocols using
Tamarin. Bachelor’s thesis, Swiss Federal Institute of Technology in Zurich,
Switzerland.

[40] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. 2000. Alcoa: the alloy con-
straint analyzer. In Proceedings of the 22nd International Conference on on Software
Engineering, ICSE 2000, Limerick Ireland, June 4-11, 2000, Carlo Ghezzi, Mehdi
Jazayeri, and Alexander L. Wolf (Eds.). ACM, 730–733. https://doi.org/10.1145/
337180.337616

[41] Michael Jones. 2015. JSON Web Key (JWK). RFC 7517. https://doi.org/10.17487/
RFC7517

[42] Michael Jones, John Bradley, and Nat Sakimura. [n.d.]. RFC7515 – JSON Web
Signature (JWS). IETF. May 2015. https://tools.ietf.org/html/rfc7515.

[43] Pieter Kasselman, Daniel Fett, and Filip Skokan. 2022. Cross-Device Flows: Security
Best Current Practice. Internet-Draft draft-ietf-oauth-cross-device-security-00.
Internet Engineering Task Force. https://datatracker.ietf.org/doc/draft-ietf-
oauth-cross-device-security/00/ Work in Progress.

[44] Open Banking Limited. 2022. Open Banking UK. https://www.openbanking.org.
uk/.

[45] Torsten Lodderstedt, John Bradley, Andrey Labunets, and Daniel Fett. 2022. OAuth
2.0 Security Best Current Practice. Internet-Draft draft-ietf-oauth-security-topics-
21. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-
ietf-oauth-security-topics-21 Work in Progress.

[46] Torsten Lodderstedt, Brian Campbell, Nat Sakimura, Dave Tonge, and Filip
Skokan. 2021. OAuth 2.0 Pushed Authorization Requests. RFC 9126. https:
//doi.org/10.17487/RFC9126

[47] Maciej Machulak and Justin Richer. 2018. User-Managed Access (UMA) 2.0 Grant
for OAuth 2.0 Authorization. https://docs.kantarainitiative.org/uma/wg/rec-
oauth-uma-grant-2.0.html.

[48] ChristianMainka, VladislavMladenov, Jörg Schwenk, and TobiasWich. 2017. SoK:
Single Sign-On Security – An Evaluation of OpenID Connect. In IEEE European
Symposium on Security and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017.

[49] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. 2013. The
TAMARIN Prover for the Symbolic Analysis of Security Protocols. In Computer
Aided Verification - 25th International Conference (CAV 2013) (Lecture Notes in
Computer Science), Natasha Sharygina andHelmut Veith (Eds.), Vol. 8044. Springer,
696–701.

[50] Meta for Developers Documents. 2023. Facebook Login for the Web with the
JavaScript SDK. https://developers.facebook.com/docs/facebook-login/web/.

[51] Vladislav Mladenov, Christian Mainka, Julian Krautwald, Florian Feldmann, and
Jörg Schwenk. 2016. On the security of modern Single Sign-On Protocols: Second-
Order Vulnerabilities in OpenID Connect. CoRR abs/1508.04324v2 (2016). http:
//arxiv.org/abs/1508.04324v2

[52] Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M. Pai, and Sanjay Singh. 2011.
Formal Verification of OAuth 2.0 Using Alloy Framework. In CSNT ’11 Proceedings
of the 2011 International Conference on Communication Systems and Network
Technologies. Proceedings of the International Conference on Communication
Systems and Network Technologies, 655–659.

13

https://datatracker.ietf.org/doc/draft-ietf-httpbis-message-signatures/15/
https://datatracker.ietf.org/doc/draft-ietf-httpbis-message-signatures/15/
https://datatracker.ietf.org/doc/draft-ietf-secevent-subject-identifiers/14/
https://datatracker.ietf.org/doc/draft-ietf-secevent-subject-identifiers/14/
https://doi.org/10.17487/RFC9068
https://doi.org/10.1016/j.jlamp.2016.08.006
https://doi.org/10.1016/j.jlamp.2016.08.006
https://doi.org/10.17487/RFC8705
https://www.oasis-open.org/committees/download.php/56776/sstc-saml-core-errata-2.0-wd-07.pdf
https://www.oasis-open.org/committees/download.php/56776/sstc-saml-core-errata-2.0-wd-07.pdf
https://github.com/ietf-wg-gnap/gnap-core-protocol/issues/461
https://github.com/ietf-wg-gnap/gnap-resource-servers/issues/56
https://github.com/ietf-wg-gnap/gnap-resource-servers/issues/56
https://doi.org/10.17487/RFC8628
https://doi.org/10.17487/RFC8628
https://publ.sec.uni-stuttgart.de/dohosseynikuestersschmitzwenzlerwuertele-sp-2022.pdf
https://publ.sec.uni-stuttgart.de/dohosseynikuestersschmitzwenzlerwuertele-sp-2022.pdf
https://developers.dropbox.com/oauth-guide
https://developers.dropbox.com/oauth-guide
https://openid.net/specs/fapi-2_0-attacker-model-02.html
https://openid.net/specs/fapi-2_0-attacker-model-02.html
https://openid.net/specs/fapi-2_0-security-02.html
https://openid.net/specs/fapi-2_0-security-02.html
https://doi.org/10.1109/SP.2019.00067
http://arxiv.org/abs/1901.11520
http://arxiv.org/abs/1601.01229
http://arxiv.org/abs/1601.01229
https://www.sec.uni-stuttgart.de/research/wim/WIM_V1.0.pdf
https://docs.github.com/en/developers/apps/building-oauth-apps/authorizing-oauth-apps
https://docs.github.com/en/developers/apps/building-oauth-apps/authorizing-oauth-apps
https://developers.google.com/identity/protocols/oauth2/limited-input-device
https://developers.google.com/identity/protocols/oauth2/limited-input-device
https://developers.google.com/identity/protocols/oauth2
https://developers.google.com/identity/protocols/oauth2
https://doi.org/10.17487/RFC6749
https://github.com/ietf-wg-gnap/gnap-core-protocol/issues/364
https://github.com/ietf-wg-gnap/gnap-resource-servers/issues/47
https://github.com/ietf-wg-gnap/gnap-resource-servers/issues/47
https://github.com/ietf-wg-gnap/gnap-resource-servers/issues/48
https://github.com/ietf-wg-gnap/gnap-resource-servers/issues/48
https://github.com/ietf-wg-gnap/gnap-core-protocol/pull/351
https://github.com/ietf-wg-gnap/gnap-core-protocol/pull/351
https://github.com/ietf-wg-gnap/gnap-core-protocol/pull/390/commits/b028a1e363e90ad1c2711bd8244ea76e3957f935
https://github.com/ietf-wg-gnap/gnap-core-protocol/pull/390/commits/b028a1e363e90ad1c2711bd8244ea76e3957f935
https://doi.org/10.1145/337180.337616
https://doi.org/10.1145/337180.337616
https://doi.org/10.17487/RFC7517
https://doi.org/10.17487/RFC7517
https://tools.ietf.org/html/rfc7515
https://datatracker.ietf.org/doc/draft-ietf-oauth-cross-device-security/00/
https://datatracker.ietf.org/doc/draft-ietf-oauth-cross-device-security/00/
https://www.openbanking.org.uk/
https://www.openbanking.org.uk/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-21
https://doi.org/10.17487/RFC9126
https://doi.org/10.17487/RFC9126
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://developers.facebook.com/docs/facebook-login/web/
http://arxiv.org/abs/1508.04324v2
http://arxiv.org/abs/1508.04324v2

[53] PedramHD. 2022. Issue 481 - Unguessability of User Codes. GitHub Pull Request.
https://github.com/ietf-wg-gnap/gnap-core-protocol/issues/481

[54] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. https://doi.org/10.17487/RFC8446

[55] Justin Richer. 2018. Moving On from OAuth 2: A Proposal. https://justinsecurity.
medium.com/moving-on-from-oauth-2-629a00133ade.

[56] Justin Richer and Fabien Imbault. 2023. Grant Negotiation and Authorization
Protocol. Internet-Draft draft-ietf-gnap-core-protocol-15. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/draft-ietf-gnap-core-protocol/15/
Work in Progress.

[57] Justin Richer and Fabien Imbault. 2023. Grant Negotiation and Authorization
Protocol Resource Server Connections. Internet-Draft draft-ietf-gnap-resource-
servers-03. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
draft-ietf-gnap-resource-servers/03/ Work in Progress.

[58] Justin Richer, Aaron Parecki, and Fabien Imbault. 2021. Grant Negotiation and
Authorization Protocol. Internet-Draft draft-ietf-gnap-core-protocol-08. Internet
Engineering Task Force. https://datatracker.ietf.org/doc/draft-ietf-gnap-core-
protocol/08/ Work in Progress.

[59] Justin Richer, Aaron Parecki, and Fabien Imbault. 2022. Grant Negotiation and
Authorization Protocol Resource Server Connections. Internet-Draft draft-ietf-gnap-
resource-servers-02. Internet Engineering Task Force. https://datatracker.ietf.
org/doc/draft-ietf-gnap-resource-servers/02/ Work in Progress.

[60] Justin Richer (ed.). 2015. OAuth 2.0 Token Introspection. RFC 7662. https:
//doi.org/10.17487/RFC7662

[61] Justin Richer (ed.), Michael Jones, John Bradley, and Maciej Machulak. 2015.
OAuth 2.0 Dynamic Client Registration Management Protocol. RFC 7592. https:
//doi.org/10.17487/RFC7592

[62] Justin Richer (ed.), Michael Jones, John Bradley, Maciej Machulak, and Phil Hunt.
2015. OAuth 2.0 Dynamic Client Registration Protocol. RFC 7591. https:
//doi.org/10.17487/RFC7591

[63] Nat Sakimura. 2022. Issue 543 - Browser swap attack explained on 2022-09-28.
Bitbucket Issue. https://bitbucket.org/openid/fapi/issues/543

[64] N. Sakimura, J. Bradley, and E. Jay. 2021. Financial-grade API Security Profile 1.0
- Part 1: Baseline. https://openid.net/specs/openid-financial-api-part-1-1_0.html.
OpenID Foundation.

[65] N. Sakimura, J. Bradley, and E. Jay. 2021. Financial-grade API Security Profile 1.0 -
Part 2: Advanced. https://openid.net/specs/openid-financial-api-part-2-1_0.html.
OpenID Foundation.

[66] N. Sakimura, J. Bradley, M. Jones, B. deMedeiros, and C. Mortimore. 2014. OpenID
Connect Core 1.0 incorporating errata set 1. http://openid.net/specs/openid-
connect-core-1_0.html. OpenID Foundation.

[67] Nat Sakimura (ed.), John Bradley, and Naveen Agarwal. 2015. Proof Key for Code
Exchange by OAuth Public Clients. RFC 7636. https://doi.org/10.17487/RFC7636

[68] Ludwig Seitz, Göran Selander, Erik Wahlstroem, Samuel Erdtman, and Hannes
Tschofenig. 2022. Authentication and Authorization for Constrained Envi-
ronments Using the OAuth 2.0 Framework (ACE-OAuth). RFC 9200. https:
//doi.org/10.17487/RFC9200

[69] Yaron Sheffer. 2023. GNAP core protocol - Publication has been re-
quested. GNAP Mailing List. https://mailarchive.ietf.org/arch/msg/txauth/
4q2W9cTho2chk4IunHKXztcorO0/.

[70] Ronghai Yang, Guanchen Li, Wing Cheong Lau, Kehuan Zhang, and Pili Hu. 2016.
Model-based Security Testing: An Empirical Study on OAuth 2.0 Implementations.
In Proceedings of the 11th ACM on Asia Conference on Computer and Communica-
tions Security (2016-05). ACM. https://doi.org/10.1145/2897845.2897874

[71] Kristina Yasuda. 2021. Issue 1269 - Add Security Considerations for Cross-device
SIOP. Bitbucket Issue. https://bitbucket.org/openid/connect/issues/1269

A FORMAL MODEL OF GNAP
This appendix contains our formal model of GNAP, which is used to
prove the security properties defined in Appendices E.2 and F.2. Our
model is based on the consolidated version of the WIM as described
in [29]. Here we only describe the details needed for our analysis
and refer the reader to [29] for the underlying model. Appendix A.1
will explain what adjustments were made to the WIM for model-
ing GNAP. Appendix A.2 provides an outline of the model, while
Appendix A.3 provides decisions and notes as well as limitations
regarding our modeling. The assignment of addresses and domain
names to processes is explained in Appendix A.4. Appendix A.5
explains which nonces are used in the model. Appendix A.6 de-
scribes how identities of resource owners are modeled. Corruption
of processes is discussed in Appendix A.7. Network attackers and

browsers are then covered in Appendix A.8 and Appendix A.9, re-
spectively. Appendix A.10 defines helper functions that are used in
the modeling of the servers. Modeled as servers are client instances,
authorization servers, and resource servers which are defined in
Appendix A.11, Appendix A.12 and Appendix A.13, respectively.

A.1 Adjustments to the Web Infrastructure
Model

A.1.1 Headers. GNAP uses several headers for signing and au-
thorizing requests. Since only certain headers with certain values
are defined in the WIM, we have to redefine the Authorization
header and add three more headers for modeling GNAP.

In our modeling of GNAP, the Authorization header is a term
of the form

⟨Authorization, ⟨scheme, 𝑛⟩⟩
with 𝑛 ∈ N and scheme ∈ {GNAP, Bearer}. The nonce 𝑛 models an
access token and scheme is the used HTTP Authentication scheme.
This header is used in continuation requests from client instances to
ASs and in resource requests from client instances to RSs. For con-
tinuation requests, the scheme is always GNAP, while for resource
requests it can be either GNAP or Bearer, depending on whether the
specified access token is a bound access token or a bearer token.

In addition, we use the following headers for signing requests:
• ⟨Digest, 𝑡⟩ with 𝑡 ∈ TN . In this header, 𝑡 is the hash value
of the body of the request 𝑚, with which this header is
sent, i.e., hash(𝑚.body). This header is used together with
the Signature-Input header and the Signature header to
simulate HTTP Message Signature key proofs.
• ⟨Signature-Input, 𝑡⟩ with 𝑡 ∈ TN . In this header, 𝑡 is a
sequence that denotes the input to the signature algorithm,
i.e., everything that is signed by the signature. This includes
the value of the Digest header, meaning that the body of
the request is also signed.
• ⟨Signature, 𝑡⟩ with 𝑡 ∈ TN . In this header, 𝑡 is the signature
value resulting from the execution of the signature algorithm.
If a symmetric key is used by the signer, this value can also
be a MAC.

A.1.2 Browser Model. To use the user code interaction start mode
we have adapted the browser model of the WIM [29]. These adap-
tations simulate that an end user receives a user code, remembers
it and then enters it as part of the login process on the user code
interaction page of the AS. For this we have made the following
changes.

To Definition 32 of theWIM, we add twomore types of references
for requests. ⟨START, nonce⟩ is usedwhen a browser prompts a client
instance to send a grant request to an AS, where nonce is a window
reference. ⟨UCL, nonce⟩ is used when a browser wants to perform
a login using a received user code, where nonce is also a window
reference.

To the definition of the set of states𝑍webbrowser of a web browser
atomic DY process in Definition 33 of theWIM,we add the following
new subterms:
• pendingInteractions ∈

[
N × URLs

]
is used to store received

user codes and the corresponding URLs of the user code
interaction pages

14

https://github.com/ietf-wg-gnap/gnap-core-protocol/issues/481
https://doi.org/10.17487/RFC8446
https://justinsecurity.medium.com/moving-on-from-oauth-2-629a00133ade
https://justinsecurity.medium.com/moving-on-from-oauth-2-629a00133ade
https://datatracker.ietf.org/doc/draft-ietf-gnap-core-protocol/15/
https://datatracker.ietf.org/doc/draft-ietf-gnap-resource-servers/03/
https://datatracker.ietf.org/doc/draft-ietf-gnap-resource-servers/03/
https://datatracker.ietf.org/doc/draft-ietf-gnap-core-protocol/08/
https://datatracker.ietf.org/doc/draft-ietf-gnap-core-protocol/08/
https://datatracker.ietf.org/doc/draft-ietf-gnap-resource-servers/02/
https://datatracker.ietf.org/doc/draft-ietf-gnap-resource-servers/02/
https://doi.org/10.17487/RFC7662
https://doi.org/10.17487/RFC7662
https://doi.org/10.17487/RFC7592
https://doi.org/10.17487/RFC7592
https://doi.org/10.17487/RFC7591
https://doi.org/10.17487/RFC7591
https://bitbucket.org/openid/fapi/issues/543
https://openid.net/specs/openid-financial-api-part-1-1_0.html
https://openid.net/specs/openid-financial-api-part-2-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.17487/RFC7636
https://doi.org/10.17487/RFC9200
https://doi.org/10.17487/RFC9200
https://mailarchive.ietf.org/arch/msg/txauth/4q2W9cTho2chk4IunHKXztcorO0/
https://mailarchive.ietf.org/arch/msg/txauth/4q2W9cTho2chk4IunHKXztcorO0/
https://doi.org/10.1145/2897845.2897874
https://bitbucket.org/openid/connect/issues/1269

• usedCIs ∈
[
N × Doms

]
is used to store the domains of the

client instances through which a user code was obtained
In the upcoming code sections, old code taken from the WIM is

shown in this color, while new or changed code is shown in black.
To RUNSCRIPT (Algorithm A.1) we have added a new command

⟨STARTGRANT, url, as⟩. This is used by the index page of the client
instances to send a request to the client instance at the URL url,
which then sends a grant request to the AS at the domain as (if
the client instance is configured to use this AS). Thereby the new
START reference type is used.

Algorithm A.1 Web Browser Model: Execute a script.

1: function RUNSCRIPT(w, d, 𝑠 ′)
.
.
.

18: switch command do
19: case ⟨STARTGRANT, url, as⟩
20: let reference := ⟨START, 𝑠 ′.w.nonce⟩
21: let req := ⟨HTTPReq, 𝜈4, POST, 𝑢𝑟𝑙 .host, 𝑢𝑟𝑙 .path,

↩→ 𝑢𝑟𝑙 .parameters, ⟨⟩, as⟩
22: let 𝑠 ′ := CANCELNAV(reference, 𝑠 ′)
23: call HTTP_SEND(reference, req, url, docorigin,

↩→ referrer, referrerPolicy, 𝑠 ′)
24: case ⟨HREF, url, hrefwindow, noreferrer⟩

.

.

.

In PROCESSRESPONSE (Algorithm A.2) we change the refer-
ence type of a START type request to REQ (Line 28) when handling
redirects, since the redirect interaction start mode is used when
receiving a redirect, but we only need the START type for user code
interactions. Since the interaction start mode used is not known to
the browser when sending the request, we always use the START
type for the request and then change the type if the redirect inter-
action start mode is used.

If the user code interaction start mode is used, the browser stores
the user code together with the URL of the user code interaction
page in pendingInteractions (Line 37), and the user code together
with the domain of the client instance used for the request in usedCIs
(Line 38).

The stored user codes are then used in the main algorithm of
the browser (Algorithm A.3). To simulate a login, we have added
the login case to the possible actions a browser can perform when
triggered. When login is chosen in Line 8 and there is an entry in
pendingInteractions, the browser sends a GET request to the user
code interaction page from the entry. In the request, the browser
includes the user code as a parameter. The UCL reference type is
used for this request. The AS uses the user code to identify the
domain of the client instance that sent the corresponding grant
request to the AS and transmits this domain to the browser in the
response. This is done to prevent the client instance mix-up attack
(see Section 3.2). For details on how we handle this attack in our
model, see Appendix A.3.

In the main algorithm, we also set the two new subterms
pendingInteractions and usedCIs to ⟨⟩ if the browser is closed
(Lines 60f.).

In PROCESSRESPONSE (Algorithm A.2), when a response is
received to a request with reference type UCL, the user code used
is obtained from the parameters in requestUrl. The user code can
then be used to obtain the domain of the client instance used by
the browser from usedCIs. The browser takes the domain of the
client instance that sent the grant request to the AS from the body
of the response. If the two domains match, the script selected by
the AS receives the used user code as input via scriptinputs. Oth-
erwise, scriptinputs remains empty (Lines 46ff.). In Lines 50f. the
used entries from pendingInteractions and usedCIs are removed so
that they are not used again.

A.1.3 Definition of stored in and initially stored in. We addition-
ally introduce the following formulation that is used to describe
the states of processes:

Definition A.1. We say that a term 𝑡 is stored in an atomic DY
process 𝑝 in a state 𝑆 if 𝑡 is a subterm of 𝑆 (𝑝). If 𝑆 = 𝑠0, we say that
𝑡 is initially stored in 𝑝 .

In addition to stored in and initially stored in, we will also use the
formulation appears only as a public key from Definition 50 in [29]
to describe states.

A.2 Outline
We model GNAP as a web system in the WIM as defined in [29].

We call a web system GWS = (W , S , script, 𝐸0) a GNAP web
system if it is of the form described in this and the following sections.

Similar to the work of Fett et al. [27], the system W = Hon∪Net
consists of a network attacker process (in Net), a finite set B of web
browsers, a finite set CI of web servers for client instances, a finite
set AS of web servers for authorization servers, and a finite set RS
of web servers for resource servers with Hon = B ∪ CI ∪ AS ∪ RS.
More details on the processes in W are provided below. We do not
model DNS servers, as they are subsumed by the network attacker.
Table 1 shows the set of scripts Scripts and their respective string
representations that are defined by the mapping script. The set 𝐸0

contains only trigger events.

𝑠 ∈ S script(𝑠)
𝑅att att_script
script_ci_index script_ci_index
script_as_login script_as_login

Table 1: List of scripts in S and their respective string repre-
sentations.

A.3 Modeling Remarks and Limitations
This section contains comments on our overall modeling of GNAP
and its limitations. See the descriptions of the algorithms in Ap-
pendix A.11, Appendix A.12, and Appendix A.13 for role-specific
modeling remarks.
Preventing Client Instance Mix-Up Attacks. As described in
Section 3.2, most variants of the client instance mix-up attack can
only be prevented if the AS provides EU with enough reliable in-
formation on the CI which is about the be authorized and the EU

15

Algorithm A.2 Web Browser Model: Process an HTTP response.

1: function PROCESSRESPONSE(response, reference, request, requestUrl, key, 𝑓 , 𝑠 ′)
.
.
.

26: let referrerPolicy := response.headers[ReferrerPolicy]
27: if 𝜋1 (reference) ≡ START then
28: let reference := ⟨REQ, 𝜋2 (reference)⟩ ⊲ Redirect interaction start mode is used
29: call HTTP_SEND(reference, req, url, origin, referrer, referrerPolicy, 𝑠 ′)

else stop ⟨⟩, 𝑠 ′

30: switch 𝜋1 (reference) do
31: case START
32: if userCode ∉ response ∨ userCodeUrl ∉ response then
33: stop ⟨⟩, 𝑠 ′ ⊲ The response must contain a user code and the URI of the user code interaction page
34: let userCode := response[userCode]
35: let userCodeUrl := response[userCodeUrl]
36: let domainCI := requestUrl.host
37: let 𝑠 ′.pendingInteractions := 𝑠 ′.pendingInteractions +⟨⟩ ⟨userCode, userCodeUrl⟩
38: let 𝑠 ′.usedCIs := 𝑠 ′.usedCIs +⟨⟩ ⟨userCode, domainCI⟩
39: case UCL
40: let w← Subwindows(𝑠 ′) such that 𝑠 ′.w.nonce ≡ 𝜋2 (reference) if possible; otherwise stop
41: if response.body ≁ ⟨∗, ∗⟩ then stop ⟨⟩, 𝑠 ′

42: let script := 𝜋1 (response.body)
43: let domainCI := 𝜋2 (response.body)
44: let userCode := requestUrl.parameters[user-code]
45: let domainUsedCI := 𝑠 ′.usedCIs[userCode]
46: if domainCI ≡ domainUsedCI then
47: let scriptinputs := [userCode:userCode]
48: else
49: let scriptinputs := ⟨⟩
50: let 𝑠 ′.pendingInteractions := 𝑠 ′.pendingInteractions − userCode
51: let 𝑠 ′.usedCIs := 𝑠 ′.usedCIs − userCode
52: let 𝑑 := ⟨𝜈7, requestUrl, response.headers, referrer, script, ⟨⟩, scriptinputs, ⟨⟩,⊤⟩
53: if 𝑠 ′.w.documents ≡ ⟨⟩ then
54: let 𝑠 ′.w.documents := ⟨𝑑⟩
55: else
56: let i← N such that 𝑠 ′.w.documents.i.active ≡ ⊤
57: let 𝑠 ′.w.documents.i.active := ⊥
58: remove 𝑠 ′.w.documents.(i + 1) and all following documents from 𝑠 ′.w.documents
59: let 𝑠 ′.w.documents := 𝑠 ′.w.documents +⟨⟩ 𝑑
60: stop ⟨⟩, 𝑠 ′

61: case REQ
.
.
.

carefully checks this information. We model this as part of our
browser and AS models: The browser used by EU stores the CI it
talks to, and in the authorization step, AS includes the CI it asso-
ciates with the ongoing request. If the two mismatch, the browser
(i.e., the end user we model as part of the browser) aborts the flow.
Modeling of MTLS. GNAP uses MTLS as one of its key proofing
methods. MTLS has already been modeled within the WIM by Fett
et al. [21], which is why we adopt the modeling provided there.
Unique URLs. In GNAP, unique URLs are used in various places
to associate a request with a particular flow. The examples in the

protocol use random values within the path. However, since GNAP
does not prohibit using the query string for this purpose, we use a
parameter whose value contains a nonce to uniquely associate a
URL.
Empty HTTP Responses and Error Messages. Using the push
interaction finish mode results in two empty HTTP responses that
do not convey any information except that the associated request
was successful. The model does not include these responses because
an attacker cannot extract any information from them. We do not
model error messages.

16

Algorithm A.3 Web Browser Model: Main algorithm.

Input: ⟨𝑎, 𝑓 ,𝑚⟩, 𝑠
.
.
.

7: if 𝑚 ≡ TRIGGER then
8: let switch← {script, login, urlbar, reload, forward, back}
9: if switch ≡ script then

.

.

.

12: call RUNSCRIPT(w, d, 𝑠 ′)
13: else if switch ≡ login then ⊲ Perform login using user code
14: if 𝑠 ′.pendingInteractions ≡ ⟨⟩ then stop ⊲ No user code has been received yet or all received user codes have been used
15: let newwindow← {⊤,⊥}
16: if newwindow ≡ ⊤ then ⊲ Create a new window
17: let windownonce := 𝜈1
18: let𝑤 ′ := ⟨windownonce, ⟨⟩,⊥⟩
19: let 𝑠 ′.windows := 𝑠 ′.windows +⟨⟩ 𝑤 ′
20: else ⊲ Use existing top-level window
21: let windownonce := 𝑠 ′.tlw.𝑛𝑜𝑛𝑐𝑒
22: let ⟨userCode, userCodeUrl⟩ ← 𝑠 ′.pendingInteractions
23: let req := ⟨HTTPReq, 𝜈2, GET, userCodeUrl.host, userCodeUrl.path, [user-code:userCode], ⟨⟩, ⟨⟩⟩
24: call HTTP_SEND(⟨UCL,windownonce⟩, req, url,⊥,⊥,⊥, 𝑠 ′)
25: else if switch ≡ urlbar then

.

.

.

59: else if 𝑚 ≡ CLOSECORRUPT then
60: let 𝑠 ′.pendingInteractions := ⟨⟩
61: let 𝑠 ′.usedCIs := ⟨⟩
62: let 𝑠 ′.secrets := ⟨⟩

.

.

.

Cross Domain Referrer Header Leakage. If the redirect inter-
action start mode is used, the RO may click on a link on the AS’s
interaction page after being redirected to the AS. This can leak
information found in the URL to an attacker through the HTTP
Referer header. To prevent this, GNAP recommends redirecting
the RO to an internal interstitial page without any identifying or
sensitive information in the URL before the actual redirect is per-
formed. This way, after the second redirect, no part of the original
interaction URL will be found in the Referer header (cf. [56]). For
simplicity, we prevent such a leak not by using interstitial pages,
but by using the HTTP Referrer-Policy header with the origin
directive, which also prevents the described problem.
Key References and Instance Identifiers. In GNAP both key
references and instance identifiers are used. A key reference refers to
a specific key, as the name implies, while an instance identifier can
also have additional information associated. This information can be
displayed to the RO when authorizing a request, for example. Since
modeling this information in the WIM would not be meaningful,
we do not model it so that an instance identifier encompasses the
same information as a key reference. Therefore, we do not explicitly
model key references, but instead sometimes use instance identifiers
as key references.
Keys Used for Access Tokens. As recommended by GNAP in
response to the stolen token replay attack described in Section 3.4,

we use each client instance key with only one AS. Therefore, for
MTLS, we do not use the TLS keys that a server following theWIM’s
generic HTTPS server model has, but keys specifically intended for
key proofing methods. This models the use of self-signed certifi-
cates for MTLS as allowed by GNAP. It may not be possible to use
the TLS keys for MTLS, since the number of domains of a client in-
stance may be smaller than the number of ASs the client instance is
configured to use. For binding access tokens to keys different from
the client instance’s key, the GNAP specification does not specify
how the corresponding (private) keys can be distributed between
AS and CI. Thus we only allow this option for pre-registered client
instances, and assume that the AS and the CI have a shared set of
keys for this purpose. Again, to prevent a variant of the stolen token
replay attack, we require this sets of keys to be pairwise disjoint
for different ASs.
Modeled Interaction StartModes. Of the interaction startmodes
existing at the time of this work, we only model the redirect mode
and the user code mode.
Resource Access Rights. For simplicity, we do not model a partic-
ular resource access model (of which GNAP also does not prescribe
a particular one). Therefore, the grant requests in our model do not
describe which resources and rights should be associated with a re-
quested access token. Instead, an access token is always associated
with the RO for which the access token is issued, and an access

17

token can always be used to access all resources of the associated
RO. Introspection responses thus only specify which RO’s resources
can be accessed with an access token. If the RO is an end user, it
is identified by its identity (see Appendix A.6). A client instance is
identified by its instance identifier at the respective AS.

Since all resources of the RO can always be accessed with an
access token, we do not model the possibilities of access token
splitting and requesting multiple access tokens using a single grant
request. This also means that a client instance cannot extend or
restrict the requested rights or resources through a continuation
request. However, in our model, a continuation request can be used
to request different values than before, for example, a bearer token
instead of a key-bound access token or the request is extended to
include a subject identifier of the RO.
Authorization During Interaction with the RO. Since we do
not model a particular resource access model, the RO does not need
to be informed during the interaction with the AS which resources
the client instance wants to access. Therefore, in our model, there
is no explicit authorization of grant requests by the RO. Instead, a
login by the RO at the AS also means that the grant request of the
client instance is authorized.

Since there is no possibility to extend the requested rights or
resources through a continuation request, in our model the interac-
tion with the resource owner is always only required for the first
grant request of a flow, all subsequent continuation requests are
automatically accepted by the AS.
Not Using an Interaction Finish Mode. Using active polling
instead of an interaction finish mode is insecure, since in this case,
an AS mix-up attack is possible. Therefore, GNAP recommends
using an interaction finish mode whenever possible, which is why
we have not included the possibility of polling in our model.
Token Management. In our model, once issued, access tokens
are valid forever since in a secure protocol an attacker should never
succeed in using an access token not issued to him. Therefore, we
do not model the token management functions offered by GNAP,
such as rotating and revoking access tokens. We therefore also do
not model the durable flag, since our modeling behaves as if the
durable flag is always set.
Relation between End User and RO. In our modeling, the end
user always corresponds to the RO. Thus, we do not model a sce-
nario where an AS determines that a particular RO is needed to
authorize a grant request and contacts it, for example, via asynchro-
nous authorization. This is also because a concrete implementation
of asynchronous authorization is out of scope for GNAP. Conse-
quently, there is no scenario in our modeling where multiple ROs
have to approve a grant request.

Note that this does not mean that an RO is always an end user
since in the case of software-only authorization an RO can also be
a client instance.
Access Token Formats. GNAP allows both the use of nonces as
access tokens in combination with token introspection and the use
of structured access tokens, both of which have their advantages
and disadvantages. We chose to use nonces as access tokens in our
modeling because it allows us to model token introspection as well,

while GNAP does not specify a particular format for structured
access tokens, which would make it more difficult to model them.
Downstream Tokens. We did not include the possibility of de-
riving downstream tokens in our model because, at the time of this
work, it was not yet fully specified and still subject to the issue [36].
Transfer of Subject Identifiers from CI to AS. GNAP allows
a client instance to transfer a subject identifier of its current end
user within a grant request to the AS if the client instance knows
such a subject identifier (e.g., from a previous grant response of the
same AS). The AS can use this subject identifier, for example, to
reject a login of the end user during the interaction if the end user
logs in with a different subject identifier than the one submitted
by the client instance in the grant request. In our model, if a client
instance receives a request to start a grant request from a browser
and this request includes a session ID for which the client instance
has already received a subject ID from the used AS in the past,
the client instance will send the subject ID to the AS in the grant
request and the AS will reject the login if the end user logs in with
a different subject ID. We decided to reject the login in this case
because an end user cannot usually log in to an AS with different
identities within a single session at the client instance. Instead,
we modeled a logout endpoint that allows an end user to logout
from the client instance so that a new session ID is assigned to
the browser, preventing the client instance from associating an old
subject identifier with a new request from that browser and thus
allowing the end user to log in to the AS under a different identity.
User Codes. In our model we choose user codes to be fresh nonces.
The GNAP specification recommends user codes to be no more than
eight characters long and requires them to consist only of easily
typeable characters. Since user codes are supposed to be unguess-
able [53], choosing them as nonces is a safe over-approximation.
AS Proxy Setting. GNAP allows an AS proxy setting, where the
AS the client talks to delegates access control to another AS. The
initial AS acts itself as a client instance towards the other AS, gets
an access token from the second AS and passes that token on to
the client instance. The client instance can use this token as usual
at an RS. The RS will do token introspection at the issuing AS (not
the initial AS).

This immediately works for bearer tokens and tokens bound to
a new key chosen by the issuing AS. In the latter case, the initial
AS just passes this new key along with the token to the client
instance. If, however, the token is bound to the key of the proxy
AS, the client instance can not provide a key proof for this key
when using the token. To still allow this setting, the initial AS and
the issuing AS both have to know the key of the client instance
and when the initial AS starts a flow at the issuing AS it has to tell
the other AS which client instance the token is for. This additional
communication between the two ASs is outside the scope of GNAP.

In our model, we allow this setting by considering the two ASs
to be the same protocol participant. This guarantees that both ASs
know the client instance’s key without having to specify the inter
AS communication.

With this we potentially “overlook” flows where only one of the
two ASs in the original setting is corrupted. If the issuing AS is
corrupt, no additional attacks are possible in the proxy setting that
are not already possible in the usual case, where there is only one

18

AS. (I.e., the honest initial AS cannot prevent attacks that would not
be possible otherwise.) We discussed the case where only the initial
AS is corrupt (but the issuing AS is honest) with the GNAP editors.
The result was that they only consider flows where the initial AS is
honest, and hence do not expect any security guarantees in that case.
Thus, our way of modeling the proxy scenario does not overlook
new attacks.

A.4 Addresses and Domain Names
We will now define the atomic Dolev-Yao processes in GWS and
their addresses, domain names, keys and secrets in more detail.

Similar to [26], the set IPs contains for the network attacker in
Net, every client instance in CI, every authorization server in AS,
every resource server in RS, and every browser in B a finite set of
addresses each. The set Doms contains a finite set of domains for
every client instance in CI, every authorization server in AS, every
resource server in RS, and the network attacker in Net. Browsers
(in B) do not have a domain.

By addr and dom we denote the assignments from atomic pro-
cesses to sets of IPs and Doms, respectively.

A.5 Keys and Secrets
Also similar to [26], the set N of nonces is partitioned into six
sets, the infinite sequence 𝑁 and finite sets 𝐾TLS, 𝐾KP, KeyIDs,
Passwords, and ProtectedResources. We thus have

N = 𝑁︸︷︷︸
infinite sequence

¤∪ 𝐾TLS︸︷︷︸
finite

¤∪ 𝐾KP︸︷︷︸
finite

¤∪KeyIDs︸ ︷︷ ︸
finite

¤∪

Passwords︸ ︷︷ ︸
finite

¤∪ProtectedResources︸ ︷︷ ︸
finite

.

These sets are used as follows:

• The set 𝑁 contains the nonces that are available for each DY
process in W (it can be used to create a run of W).
• The set 𝐾TLS contains the keys that will be used for TLS en-
cryption. Let tlskey : Doms→ 𝐾TLS be an injective mapping
that assigns a (different) private key to every domain. For an
atomic DY process 𝑝 we define:
tlskeys𝑝 = ⟨{⟨𝑑, tlskey(𝑑)⟩ | 𝑑 ∈ dom(𝑝)}⟩.
• The set 𝐾KP contains the keys that will be used for the key
proofing methods.
• The set KeyIDs contains identifiers that will be used by the
client instances, the ASs, and the RSs to identify keys used
by the client instances and the RSs to sign their requests.
• The set Passwords is the set of passwords (secrets) the brows-
ers share with the ASs. These are the passwords the ROs use
to log in at the ASs (if the RO is not a client instance).
• The set ProtectedResources contains a secret for each com-
bination of AS, RO, and RS. These are thought of as protected
resources that only the RO should be able to access. An RO
can thus access exactly one resource at a given RS using
a given AS. This resource subsumes all possible resources
for which the RO may request access using GNAP since, as
mentioned above, we do not model a specific resource access
model. Note that in our model, an RO can be not only an

end user but also a client instance accessing resources using
software-only authorization.

A.6 Identities and Passwords
As in [26], we use identities to model an RO logging in at an AS.
Identities consist, similar to email addresses, of a username and a
domain part. They are defined as follows:

Definition A.2. An identity 𝑖 is a term of the form ⟨name, domain⟩
with name ∈ S and domain ∈ Doms. We set ID to be the set of all
identities and refer to the set {⟨name, domain⟩ ∈ ID | domain ∈
dom(𝑦)} by ID𝑦 .

We say that an ID is governed by the DY process to which
the domain of the ID belongs. Formally, we define the mapping
governor : ID→W , ⟨name, domain⟩ ↦→ dom−1 (domain).

The governor of an ID will usually be an AS, but could also be
the attacker. Besides governor, we define the following mappings:
• By secretOfID : ID → Passwords we denote the bijective
mapping that assigns secrets to all identities.
• Let ownerOfSecret : Passwords → B denote the mapping
that assigns to each secret a browser that owns this secret.
Now, we define the mapping ownerOfID : ID → B, 𝑖 ↦→
ownerOfSecret(secretOfID(𝑖)), which assigns to each iden-
tity the browser that owns this identity (we say that the
identity belongs to the browser).

Identities will also be used when an AS returns subject identifiers
requested by a client instance. In this case, the AS returns the
identity of the RO that logged in to the AS, which subsumes the
different types of subject identifiers specified in [4] .

A.7 Corruption
Similar to [26], client instances, ASs, and RSs can become corrupted:
If they receive the message CORRUPT, they start collecting all incom-
ing messages in their state and (upon triggering) send out messages
that are non-deterministically chosen from the set of all messages
that are derivable from their state and collected input messages,
just like the attacker process. We say that an AS, a client instance,
or an RS is honest if the according part of their state (𝑠 .corrupt) is
⊥, and that they are corrupted otherwise.

A.8 Network Attackers
As mentioned, the network attacker na is modeled to be a network
attacker as specified in [29]. As in [26], we allow it to listen to/spoof
all available IP addresses, and hence, define 𝐼na = IPs. The initial
state is 𝑠na0 = ⟨attdoms, tlskeys, keyproofkeys⟩, where attdoms is a
sequence of all domains along with the corresponding private keys
owned by the attacker na, tlskeys is a sequence of all domains
and the corresponding public keys, and keyproofkeys is a sequence
containing the public keys of all private keys in 𝐾KP (i.e., all keys
used for signatures or MTLS, but not the keys used for MACs, see
Appendix A.11).

A.9 Browsers
Each 𝑏 ∈ B is a web browser as defined in [29], with 𝐼𝑏 := addr(𝑏)
being its addresses.

19

We define the initial state similar to [28]. We denote the set of
all IDs of 𝑏 by ID𝑏 := ownerOfID−1 (𝑏). The set of passwords that
a browser 𝑏 gives to an origin 𝑜 is defined as follows: If the origin
belongs to an AS, then the user’s passwords of this AS are contained
in the set. To define this mapping in the initial state, we first define
for some process 𝑝

Secrets𝑏,𝑝 =

{
𝑠

���𝑏 = ownerOfSecret(𝑠)∧(
∃ 𝑖 : 𝑠 = secretOfID(𝑖) ∧ 𝑖 ∈ ID𝑝) } .

Then, the initial state 𝑠𝑏0 is defined as follows: keyMapping maps
every domain to its public (TLS) key, according to the mapping
tlskey; DNSaddress is an address of the network attacker; the list
of secrets secrets contains an entry ⟨⟨𝑑, S⟩, ⟨Secrets𝑏,𝑝 ⟩⟩ for each
𝑝 ∈ AS and 𝑑 ∈ dom(𝑝); ids is ⟨ID𝑏⟩; sts, pendingInteractions, and
usedCIs are empty.

A.10 Helper Functions
In our modeling, the following key proof related helper functions
are used, which can be used by all servers.

A.10.1 SIGN_AND_SEND. This algorithm inserts the headers used
for key proofs into an HTTP request and then sends this request
via the HTTPS_SIMPLE_SEND algorithm of the generic HTTPS
server model from [29]. The algorithm simulates the HTTPMessage
Signature (httpsig) key proofing method [3]. We do not model
the JWS-based methods (jwsd and jws) that are currently also sup-
ported by GNAP, because they differ primarily syntactically at the
abstraction level of the WIM and the few semantic differences do
not affect the security properties. 𝜈𝑛3 and 𝜈𝑛4 denote placeholders
for nonces that are not used elsewhere by any of the processes that
use this algorithm.

The input parameters are used as follows: HTTPMethod is the
HTTP method that will be used to send the request. url is the URL
to which the request will be sent. If keyProof ≡ sign, key is used
to sign the message. If keyProof . sign (e.g. mac), key is used
to create a MAC for the message. keyID models the kid property
of JSON Web Keys [41]. body is the body of the HTTP request.
Through authHeader an Authorization header can be included in
the request. If no Authorization header is to be used, authHeader
must be ⊥. reference, 𝑠 ′, and 𝑎 are required as input parameters for
HTTPS_SIMPLE_SEND.

A.10.2 VALIDATE_KEY_PROOF. This algorithm can be used to
validate key proofs. If the key proof is invalid, the algorithm stops,
otherwise it returns.

The input parameters are used as follows:𝑚 is the HTTP request
for which the key proof should be validated. method is the key
proofing method. If method ≡ sign, this algorithm simulates the
validation of anHTTPMessage Signature key proof using the public
key key. If method ≡ mac, this algorithm simulates the validation
of an HTTP Message Signature key proof with a symmetric key
key. In these two cases, keyID models the kid property of JSON
Web Keys [41]. If method ≡ mtls, this algorithm finishes an MTLS
key proof by verifying the MTLS nonce sent by the requester3 and
3See Fett et al. [21] for an explanation of how MTLS is modeled within the WIM.

checking that the key used matches key. keyID is ignored in this
case. When validating signatures or MACs, the state 𝑠 ′ is used to
store nonces that are used as replay protection. This is because the
security considerations of GNAP recommend using some form of
replay protection for signatures/MACs [56].

20

Algorithm A.4 Helper Functions: Signing and sending requests.

1: function SIGN_AND_SEND(HTTPMethod, url, keyID, key, keyProof , authHeader, body, reference, 𝑠 ′, 𝑎)
2: let sigInput := [method:HTTPMethod, targetURI:url]
3: let sigParams := [covered:⟨method, targetURI⟩, keyID:keyID, nonce:𝜈𝑛3]
4: if body . ⟨⟩ then ⊲ If the message contains a body, its digest must be signed
5: let sigInput [contentDigest] := hash(body)
6: let sigParams[covered] := sigParams[covered] +⟨⟩ contentDigest
7: if authHeader . ⊥ then ⊲ If present, the AuthZ header must be covered by the signature
8: let sigInput := sigInput +⟨⟩ authHeader
9: let sigParams[covered] := sigParams[covered] +⟨⟩ authorization
10: let sigInput [sigParams] := sigParams
11: if keyProof ≡ sign then
12: let signature := sig(sigInput, key)
13: else
14: let signature := mac(sigInput, key)
15: let headers := [Signature-Input:sigParams, Signature:signature]
16: if body . ⟨⟩ then
17: let headers[Digest] := hash(body)
18: if authHeader . ⊥ then
19: let headers := headers +⟨⟩ authHeader
20: let req := ⟨HTTPReq, 𝜈𝑛4,HTTPMethod, url.host, url.path, ⟨⟩, headers, body⟩
21: call HTTPS_SIMPLE_SEND(reference, req, 𝑠 ′, 𝑎)

21

Algorithm A.5 Helper Functions: Validating key proofs.

1: function VALIDATE_KEY_PROOF(method,𝑚, keyID, key, 𝑠 ′)
2: if method ≡ sign ∨method ≡ mac then ⊲ HTTP Message Signature
3: if 𝑚.body . ⟨⟩ then
4: let digest :=𝑚.headers[Digest]
5: if digest . hash(𝑚.body) then stop
6: let sigParams :=𝑚.headers[Signature-Input]
7: let signature :=𝑚.headers[Signature]
8: if keyID . sigParams[keyID] then stop
9: let covered := sigParams[covered]
10: if method ̸∈ ⟨⟩ covered ∨ targetURI ̸∈ ⟨⟩ covered ∨ (𝑚.body . ⟨⟩ ∧ contentDigest ̸∈ ⟨⟩ covered)

↩→ ∨ (Authorization ∈𝑚.headers ∧ authorization ̸∈ ⟨⟩ covered) then stop ⊲ Not all required parts covered by signature
11: if nonce ∉ sigParams ∨ sigParams[nonce] ∈ ⟨⟩ 𝑠 ′.sigNonces then stop ⊲ Replay protection
12: let controlURL := ⟨URL, S,𝑚.host,𝑚.path,𝑚.parameters, ⟨⟩⟩
13: let controlInput := [method:𝑚.method, targetURI:controlURL]
14: if 𝑚.body . ⟨⟩ then
15: let controlInput [contentDigest] := hash(𝑚.body)
16: if Authorization ∈𝑚.headers then
17: let controlInput := controlInput +⟨⟩ ⟨Authorization,𝑚.headers[Authorization]⟩
18: let controlInput [sigParams] := sigParams
19: if controlInput . extractmsg(signature) then stop ⊲ The signature was not created for the correct input
20: if method ≡ sign then
21: if checksig(signature, key) . ⊤ then stop ⊲ Invalid signature
22: else ⊲ method ≡ mac
23: if checkmac(signature, key) . ⊤ then stop ⊲ Invalid MAC
24: let 𝑠 ′.sigNonces := 𝑠 ′.sigNonces +⟨⟩ sigParams[nonce]
25: else if method ≡ mtls then
26: let mtlsNonce :=𝑚.body[mtlsNonce]
27: let mtlsInfo such that mtlsInfo ∈ ⟨⟩ 𝑠 ′.mtlsRequests ∧mtlsInfo.1 ≡ mtlsNonce if possible; otherwise stop
28: let 𝑠 ′.mtlsRequests := 𝑠 ′.mtlsRequests −mtlsInfo.1
29: if mtlsInfo.2 . key then stop ⊲ Key used for MTLS does not match the key of the sender
30: else stop ⊲ Unsupported method
31: return 𝑠 ′

22

A.11 Client Instances
A client instance 𝑐 ∈ CI is a web server modeled as an atomic DY
process (𝐼𝑐 , 𝑍𝑐 , 𝑅𝑐 , 𝑠𝑐0) with the addresses 𝐼𝑐 B addr(𝑐).

In the client instance state, key records are used to store informa-
tion about the keys required by the client instance for key proofs.

Definition A.3. A key record is a term of one of the following
forms
• ⟨sign, keyID, key, instanceID⟩
• ⟨mac, keyID, key, instanceID, rs⟩
• ⟨mtls, key, instanceID⟩

with keyID ∈ KeyIDs, key ∈ 𝐾KP, instanceID ∈ S ∪ {⊥}, and rs ∈
Doms.

For a key record 𝑟 we use 𝑟 .method as notation for 𝑟 .1. If
instanceID . ⊥, instanceID is the instance identifier with which the
client instance is registered with an AS using the key key and (if
applicable) the key ID keyID. Otherwise, this key is used without an
existing registration, i.e. the key is not known to the AS in advance.
If 𝑟 .method ≡ mac, instanceID must not be ⊥. This is because key
is a symmetric key in this case and GNAP requires that symmetric
keys can be dereferenced by the AS. Thus, to use a symmetric key, a
client instance must already be registered with the AS. If symmetric
keys are used, rs is the domain of the RS with which this key is
additionally shared (besides the AS). We only allow client instances
to use symmetric keys in combination with a specific AS and a
specific RS, since using them with multiple RSs carries a high risk,
since any of the RSs used could impersonate the client instance at
the AS or other RSs.

Next, we define the set 𝑍𝑐 of states of 𝑐 and the initial state 𝑠𝑐0 of
𝑐 .

Definition A.4. A state 𝑠 ∈ 𝑍𝑐 of client instance 𝑐 is a term
of the form ⟨DNSaddress, pendingDNS, corrupt, pendingRequests,
keyMapping, tlskeys, keyRecords, authServers, resourceServers,
sessions, grants, receivedValues, browserRequests⟩ with
DNSaddress ∈ IPs, pendingDNS ∈

[
N × TN

]
, corrupt ∈ TN ,

pendingRequests ∈
[
N × TN

]
, keyMapping ∈

[
Doms × TN

]
,

tlskeys ∈ [Doms × 𝐾TLS], keyRecords ∈
[
Doms × TN

]
,

tokenKeys ∈
[
Doms × TN

]
, authServers ∈ TN , resourceServers ∈

TN ,

sessions ∈
[
N × TN

]
, grants ∈

[
N ×

[
S × TN

]]
, receivedValues ∈[

N ×
[
S × TN

]]
, and browserRequests ∈

[
N ×

[
S × TN

]]
,

An initial state 𝑠𝑐0 of 𝑐 is a state of 𝑐 with 𝑠𝑐0 .pendingDNS ≡ ⟨⟩,
𝑠𝑐0 .corrupt ≡ ⊥, 𝑠

𝑐
0 .pendingRequests ≡ ⟨⟩, 𝑠

𝑐
0 .keyMapping being

the same as the keymapping for browsers, 𝑠𝑐0 .tlskeys ≡ tlskeys𝑐 ,
𝑠𝑐0 .sessions ≡ ⟨⟩, 𝑠

𝑐
0 .grants ≡ ⟨⟩, 𝑠

𝑐
0 .receivedValues ≡ ⟨⟩, and

𝑠𝑐0 .browserRequests ≡ ⟨⟩.
sessions will contain a dictionary that maps from session identi-

fiers to information about that session. The session identifiers are
nonces that are stored in the browser via the Set-Cookie header
so that a particular browser session can be recognized in a further
request by the same browser. sessions is used to store the subject
identifiers received from the different ASs for the different browser

instances that started grants using 𝑐 . A subject identifier stored
for a particular browser instance can be included in a new grant
request to the same AS within the user field of the grant request.
sessions is also used to store at which AS the browser instance is
currently logged in with which identity. A corresponding service
session ID is also stored in sessions.

grants will store various information about ongoing grants. The
different grants are distinguished by a nonce called grantID, which
acts as a key for the outer dictionary.

receivedValues will store the access tokens and subject identifiers
received by 𝑐 . The key for the outer dictionary is the grantID of
the grant process in which the values were received. The values
of the outer dictionary are dictionaries in which the access tokens
and subject identifiers are stored under the keys accessToken and
subjectID. An access token contains both the actual value of the
access token in the form of a nonce and information needed to use
the access token, such as which key the access token bound to, if
any. Received access tokens can be used by 𝑐 at any time when a
trigger message is received.

browserRequests stores requests from browsers in order to be
able to answer them at a later time. The key for the outer dictionary
is the grantID of the grant process in which the requests were
sent. The strings startRequest and finishRequest are used as
keys for the inner dictionaries. The values under startRequest
contain requests sent by browsers to start a grant request and the
values under finishRequest contain requests sent after the RO
has finished its interaction with the AS.
𝑠𝑐0 .authServers is a non-empty sequence of domains represent-

ing the authorization servers 𝑐 is configured to use. For all do-
mains 𝑑 ∈ ⟨⟩ 𝑠𝑐0 .authServers there must be an AS as ∈ AS with
𝑑 ∈ dom(as).
𝑠𝑐0 .resourceServers is a non-empty sequence of domains repre-

senting the resource servers 𝑐 is configured to use. For all domains
𝑑 ∈ ⟨⟩ 𝑠𝑐0 .resourceServers there must be an RS rs ∈ RS with
𝑑 ∈ dom(rs).
𝑠𝑐0 .keyRecords is a non-empty dictionary mapping domains of

ASs to sequences of key records. For all domains𝑑 ∈ 𝑠𝑐0 .keyRecords
it must hold that 𝑑 ∈ ⟨⟩ 𝑠𝑐0 .authServers. The sequence
𝑠𝑐0 .keyRecords[𝑑] then contains the key records 𝑐 will use when in-
teracting with the AS as = dom−1 (𝑑) when using the domain𝑑 . The
values of 𝑠𝑐0 .keyRecords must be non-empty, so there must be at
least one key record for each domain. 𝑠𝑐0 .keyRecords must contain
a value for each𝑑 ∈ ⟨⟩ 𝑠𝑐0 .authServers. We collect all key records in

𝑠𝑐0 .keyRecords in 𝑅 B
〈⋃

𝑑∈𝑠𝑐0 .keyRecords
⋃

𝑟 ∈⟨⟩𝑠𝑐0 .keyRecords[𝑑]
𝑟

〉
.

For any two distinct key records 𝑟, 𝑟 ′ ∈ ⟨⟩ 𝑅 it must hold that 𝑟 .key .
𝑟 ′.key. If 𝑟 .method ∈ {sign, mac} ∧ 𝑟 ′.method ∈ {sign, mac}, it
must hold that 𝑟 .keyID . 𝑟 ′.keyID. For all key records 𝑟 ∈ ⟨⟩ 𝑅 with
𝑟 .method ≡ mac it must hold that 𝑟 .rs ∈ ⟨⟩ 𝑠𝑐0 .resourceServers.
Given a domain 𝑑 ∈ 𝑠𝑐0 .keyRecords, it must hold for any two dis-
tinct key records 𝑟, 𝑟 ′ ∈ ⟨⟩ 𝑠𝑐0 .keyRecords[𝑑] that 𝑟 .instanceID .
𝑟 ′.instanceID. For two distinct domains 𝑑,𝑑 ′ ∈ 𝑠𝑐0 .keyRecords,
which both belong to the same AS as (i.e., 𝑑 ∈ dom(as) ∧ 𝑑 ′ ∈
dom(as)), it must hold for all key records 𝑟 ∈ ⟨⟩ 𝑠𝑐0 .keyRecords[𝑑]
and all key records 𝑟 ′ ∈ ⟨⟩ 𝑠𝑐0 .keyRecords[𝑑

′] that 𝑟 .instanceID .
𝑟 ′.instanceID. For all processes 𝑝 ≠ 𝑐 it must hold that the key

23

𝑟 .key of each key record 𝑟 ∈ ⟨⟩ 𝑅 with 𝑟 .method ∈ {sign, mtls}
appears only as a public key in 𝑠𝑝0 . If 𝑟 .method ≡ mac, 𝑟 .key must
only be initially stored in 𝑐 , dom−1 (𝑟 .rs), and the AS as that has
the domain 𝑑 in dom(as) for which 𝑟 ∈ ⟨⟩ 𝑠𝑐0 .keyRecords[𝑑].
𝑠𝑐0 .tokenKeys is a non-empty dictionary mapping domains of

ASs to sequences of key records. This dictionary stores keys that
can be used by an AS to bind an access token to a key different
than the client instance’s key. For all domains 𝑑 ∈ 𝑠𝑐0 .tokenKeys
it must hold that 𝑑 ∈ ⟨⟩ 𝑠𝑐0 .authServers. We further require that
those keys are all distinct, in particular for different ASs. Formally
we have, for all domains 𝑑 and 𝑑 ′ in 𝑠𝑐0 .tokenKeys and key records
𝑘 ∈ ⟨⟩ 𝑠𝑐0 .tokenKeys[𝑑] and 𝑘

′ ∈ ⟨⟩ 𝑠𝑐0 .tokenKeys[𝑑
′] with 𝑘 . 𝑘 ′

that 𝑘.key . 𝑘 ′.key. The keys stored in this field should only be
known to the CI 𝑐 , i.e., for every domain 𝑑 ∈ 𝑠𝑐0 .tokenKeys, every
key record 𝑟 ∈ ⟨⟩ 𝑠𝑐0 .tokenKeys[𝑑], and every processes 𝑝 ≠ 𝑐 it
must hold that the key 𝑟 .key appears only as a public key in 𝑠𝑝0 .
We only allow sign and mtls for the methods of the key records
in 𝑠𝑐0 .tokenKeys. We do not allow the use of MACs here, since the
symmetric key would then have to be transmitted to the resource
servers for MAC validation during token introspection. Since sym-
metric keys should not be transmitted via token introspection, it
is unclear at the time of this work how this could be implemented.
We started a discussion [35] to clarify this with the editors of the
GNAP specification, which is still ongoing at the time this work
was completed.

We now specify the relation 𝑅𝑐 : This relation is based on the
generic HTTPS server model defined in [29]. Hence, we only need
to specify algorithms that differ from or do not exist in the generic
server model. These algorithms are defined in Algorithms A.6–
A.11. Note that in several places throughout these algorithms we
use placeholders to generate “fresh” nonces. Table 2 shows a list of
all placeholders used.

Usage

𝜈1 new grant ID
𝜈2 nonce to generate a unique interaction finish URL
𝜈3 nonce for the calculation of the interaction finish hash
𝜈4 new session identifier for the browser
𝜈5 new HTTP request nonce
𝜈6 new HTTP request nonce
𝜈7 new grant ID
𝜈8 new HTTP request nonce
𝜈9 new HTTP request nonce
𝜈10 new HTTP request nonce
𝜈11 new service session identifier

Table 2: List of placeholders used in the client instance algo-
rithms.

The script that is used by the client instance is described in Algo-
rithm A.12. In this script, to extract the current URL of a document,
the function GETURL(tree, docnonce) is used which is also defined
in [29].

The following algorithms are used for modeling the client in-
stances:

• Algorithm A.6 processes requests to the client instance. A
browser can obtain the index page of 𝑐 by sending a GET
request𝑚 to 𝑐 with𝑚.path ≡ /. The index page contains a
script that sends a request to the /startGrantRequest path,
which causes 𝑐 to send a grant request to an AS chosen by
the browser if 𝑐 is configured to use this AS. Furthermore,
the algorithm accepts requests sent as part of the interaction
finish modes. These originate from a browser when using
the redirect interaction finish mode (/finish) or from an
AS when using the push interaction finish mode (/push). 𝑐
can also accept a request for data from a browser (/getData).
This is used for the push interaction finish mode. While in
the redirect interaction finish mode the browser receives the
resource and/or the service session ID as a response to the
redirect by the AS, this is not possible when using the push
interaction finish mode, since here the AS informs the client
instance about the completion of the interaction and not the
browser. Therefore, in the push interaction finish mode, we
let the AS redirect the browser to the /getData endpoint
to return the data received from the AS in response to this
redirect. For this, we use the nonce from the interaction
finish URL so that 𝑐 can uniquely associate the request with
the associated grant. A request to /logout allows a browser
instance to log out from the client instance. For this, 𝑐 creates
a new session identifier and returns it as a cookie. If data
was stored for an old session identifier, it will be deleted.
• Algorithm A.7 processes responses to the client instance.
These can be grant responses fromASs or resource responses
from RSs. Additionally, responses fromASs or RSs can be pro-
cessed for the purpose of modeling MTLS. If a grant response
contains a subject identifier, this is stored in 𝑠 ′.sessions un-
der the corresponding session ID and the domain of the AS
used, so that it can be specified in the user field in further
grant requests in the same browser session and to the same
AS. If a grant response contains an access token, it is stored
in 𝑠 ′.receivedValues so that it can be used later in requests
to resource servers. We do not use received access tokens
directly, because continuation requests can also be sent to
the AS in response to a grant response, so we would possibly
have to emit both a resource request to an RS and a continu-
ation request to an AS in one processing step. This would
unnecessarily complicate the algorithms used for sending
these requests, such as SIGN_AND_SEND. Moreover, this
modeling is closer to reality, since an access token can be
used at any time (as long as it has not been revoked).
• Algorithm A.8 non-deterministically does one of two things.
Either it is used to enable a client instance to send a grant re-
quest to an AS without the presence of an end user (software-
only authorization), or the client instance uses a received
access token to request a resource. In the first case, the client
instance sends a grant request to a non-deterministically
chosen AS with which it is registered. Since no interaction
can take place without an end user, neither an interaction
entry nor a finish entry is transmitted in the grantRequest
dictionaries for these grant requests. In our modeling, we
only allow client instances that are already registered with
the AS to use software-only authorization, since otherwise

24

client instances unknown to the AS could also request access
to resources protected by the AS. Thus, arbitrary client in-
stances could access resources, which makes these resources
irrelevant for a security analysis. In the second case, the client
instance non-deterministically chooses one of the received
access tokens and one of the RSs from the resourceServers
subterm. Then it sends a resource request to the chosen re-
source server using the chosen access token. If the access
token is bound to a symmetric key, the RS is not chosen
non-deterministically, but the RS specified in the key record
of that key is used. If only a subject identifier and no access
token was requested, the associated service session identifier
is returned to the browser directly, since a resource does not
have to be requested from an RS first.
• Algorithm A.9 is used to non-deterministically select the
information requested by the client instance from an AS. A
client instance can request an access token and/or a subject
identifier. A subject identifier can only be requested when
an end user is present, i.e., not when a grant request has
been triggered by a trigger message to the client instance
and thus software-only authorization is used. If an access
token is requested, it can be either a bearer access token or
a key-bound access token. We do not allow a client instance
to request neither an access token nor a subject identifier,
since in this case the client instance would have no reason
to send the grant request.
• Algorithm A.10 comes into play after the interaction with
the RO is completed by one of the interaction finish modes.
First, the transmitted hash value is checked. If successful, a
continuation request is sent to the AS including the inter-
action reference. The client instance may decide to change
the values requested from the AS. If this is the case, the
continuation request is an HTTP PATCH request and Al-
gorithm A.9 is called again, otherwise it is an HTTP POST
request. The key proofing method used corresponds to that
of the corresponding grant request.
• Algorithm A.11 is used to answer the browser’s request after
the interaction is finished. If an access token was requested
with the grant request, a resource received from an RS is
returned in the body of the response. If a subject identifier
was requested with the grant request, this subject identifier
is used as the subject identifier under which the browser
instance is currently logged in and the associated service
session ID is returned within the Set-Cookie header.

25

Algorithm A.6 Relation of a Client Instance 𝑅𝑐 : Processing HTTPS requests.

1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠 ′)
⊲ Process an incoming HTTPS request.𝑚 is the incoming message, 𝑘 is the encryption key for the response, 𝑎 is the receiver, 𝑓

the sender of the message. 𝑠 ′ is the current state of the atomic DY process 𝑐 .
2: if 𝑚.path ≡ / ∧𝑚.method ≡ GET then ⊲ Serve index page
3: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, ⟨script_ci_index, ⟨⟩⟩⟩, 𝑘) ⊲ Send script_ci_index in HTTP response.
4: stop ⟨⟨𝑓 , 𝑎,𝑚′⟩⟩, 𝑠 ′
5: else if 𝑚.path ≡ /startGrantRequest ∧𝑚.method ≡ POST then ⊲ Start a new grant request
6: let domainAS :=𝑚.body ⊲ Domain of the AS to send the grant request to
7: if domainAS ̸∈ ⟨⟩ 𝑠 ′.authServers then stop ⊲ 𝑐 is not configured to use this AS
8: let endpoint := ⟨URL, S, domainAS, /requestGrant, ⟨⟩⟩ ⊲ Endpoint for the grant request
9: let grantID := 𝜈1 ⊲ Identifier for this grant request
10: let inquiredValues := GENERATE_INQUIRED_VALUES(⊤)
11: let finishMode← {redirect, push} ⊲ Non-det. select the used interaction finish mode
12: let finishURLnonce := 𝜈2
13: let CIfinishNonce := 𝜈3
14: if finishMode ≡ redirect then
15: let finishURL := ⟨URL, S,𝑚.host, /finish, [request:finishURLnonce]⟩
16: else
17: let finishURL := ⟨URL, S,𝑚.host, /push, [request:finishURLnonce]⟩
18: let finish := [finishMode:finishMode, finishURL:finishURL, nonce:CIfinishNonce]
19: let grantRequest := [inquiredValues:inquiredValues, finish:finish, interaction:⊤] ⊲ Interaction with RO possible
20: let 𝑠 ′.browserRequests[grantID] [startRequest] := ⟨𝑘, 𝑎, 𝑓 ,𝑚.nonce⟩
21: if ⟨__Host, sessionID⟩ ∈𝑚.headers[Cookie] then ⊲ The browser sent a session ID
22: let sessionID :=𝑚.headers[Cookie] [⟨__Host, sessionID⟩]
23: if domainAS ∈ 𝑠 ′.sessions[sessionID] then ⊲ Check if a subject identifier is stored for this session ID and this AS
24: let grantRequest [user] := 𝑠 ′.sessions[sessionID] [domainAS] ⊲ Include previously received subject identifier
25: else
26: let sessionID := 𝜈4
27: let keyRecord ← 𝑠 ′.keyRecords[domainAS] ⊲ Non-det. select key record for this AS
28: let 𝑠 ′.grants[grantID] := [AS:domainAS, sessionID:sessionID, keyRecord:keyRecord,

↩→ finishURLnonce:finishURLnonce, CIfinishNonce:CIfinishNonce, requested:inquiredValues]
29: if keyRecord .instanceID . ⊥ then ⊲ key is registered at the AS used
30: let grantRequest [instanceID] := keyRecord .instanceID
31: let 𝑠 ′.grants[grantID] [request] := grantRequest
32: if keyRecord .method . mtls then
33: let reference := [responseTo:grantResponse, grantID:grantID, sentTo:domainAS]
34: call SIGN_AND_SEND(POST, endpoint, keyRecord .keyID, keyRecord .key, keyRecord .method,

↩→ ⊥, grantRequest, reference, 𝑠 ′, 𝑎)
35: else
36: let body := [instanceID:keyRecord .instanceID]
37: let message := ⟨HTTPReq, 𝜈5, POST, domainAS, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
38: let reference := [responseTo:MTLS_GR, grantID:grantID]
39: call HTTPS_SIMPLE_SEND(reference,message, 𝑠 ′, 𝑎)

This algorithm is continued on the next page.

26

Continuation of Algorithm A.6 (Client PROCESS_HTTPS_REQUEST)

40: else ⊲ 𝑐 is not registered with the AS used
41: let key := keyRecord .key
42: if keyRecord .method ≡ sign then
43: let keyID := keyRecord .keyID
44: let grantRequest [client] := [keyID:keyID, key:pub(key), method:sign]
45: let 𝑠 ′.grants[grantID] [request] := grantRequest
46: let reference := [responseTo:grantResponse, grantID:grantID, sentTo:domainAS]
47: call SIGN_AND_SEND(POST, endpoint, keyID, key, sign,⊥, grantRequest, reference, 𝑠 ′, 𝑎)
48: else ⊲ MTLS is used as key proofing method
49: let grantRequest [client] := [key:pub(key), method:mtls]
50: let 𝑠 ′.grants[grantID] [request] := grantRequest
51: let body := [publicKey:pub(key)]
52: let message := ⟨HTTPReq, 𝜈5, POST, domainAS, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
53: let reference := [responseTo:MTLS_GR, grantID:grantID]
54: call HTTPS_SIMPLE_SEND(reference,message, 𝑠 ′, 𝑎)
55: else if 𝑚.path ≡ /finish ∧𝑚.method ≡ GET then ⊲ Redirect interaction finish mode
56: let finishURLnonce :=𝑚.parameters[request]
57: let grantID such that 𝑠 ′.grants[grantID] [finishURLnonce] ≡ finishURLnonce if possible; otherwise stop
58: if 𝑠 ′.grants[grantID] [request] [finish] [finishMode] . redirect then stop ⊲ Wrong interaction finish mode was used
59: if 𝑚.headers[Cookie] [⟨__Host, sessionID⟩]. 𝑠 ′.grants[grantID] [sessionID] then
60: stop ⊲ Browsers session identifier does not match the one from the grant request
61: let 𝑠 ′.browserRequests[grantID] [finishRequest] := ⟨𝑘, 𝑎, 𝑓 ,𝑚.nonce⟩
62: let interactRef :=𝑚.parameters[interactRef]
63: let hash :=𝑚.parameters[hash]
64: call SEND_CONTINUATION_REQUEST(grantID, interactRef , hash, 𝑠 ′, 𝑎)
65: else if 𝑚.path ≡ /push ∧𝑚.method ≡ POST then ⊲ Push interaction finish mode
66: let finishURLnonce :=𝑚.parameters[request]
67: let grantID such that 𝑠 ′.grants[grantID] [finishURLnonce] ≡ finishURLnonce if possible; otherwise stop
68: if 𝑠 ′.grants[grantID] [request] [finish] [finishMode] . push then stop ⊲ Wrong interaction finish mode was used
69: let interactRef :=𝑚.body[interactRef]
70: let hash :=𝑚.body[hash]
71: call SEND_CONTINUATION_REQUEST(grantID, interactRef , hash, 𝑠 ′, 𝑎)
72: else if 𝑚.path ≡ /getData ∧𝑚.method ≡ GET then
73: let finishURLnonce :=𝑚.parameters[request]
74: let grantID such that 𝑠 ′.grants[grantID] [finishURLnonce] ≡ finishURLnonce if possible; otherwise stop
75: if 𝑠 ′.grants[grantID] [request] [finish] [finishMode] . push then
76: stop ⊲ This endpoint is only used when the push interaction finish mode is used
77: if 𝑚.headers[Cookie] [⟨__Host, sessionID⟩] . 𝑠 ′.grants[grantID] [sessionID] then
78: stop ⊲ Browsers session identifier does not match the one from the grant request
79: let 𝑠 ′.browserRequests[grantID] [finishRequest] := ⟨𝑘, 𝑎, 𝑓 ,𝑚.nonce⟩
80: if domainFirstRS ∈ 𝑠 ′.grants[grantID] ∧ 𝑠 ′.grants[grantID] [domainFirstRS] ∈ 𝑠 ′.grants[grantID] [resources] then

⊲ Resource has already been received from the RS
81: call SEND_RESPONSE_TO_BROWSER(grantID, 𝑠 ′)
82: else stop ⟨⟩, 𝑠 ′

83: else if 𝑚.path ≡ /logout ∧𝑚.method ≡ POST then
⊲ Set a new session ID so that the browser instance can log in with a different identity at already used ASs

84: if ⟨__Host, sessionID⟩ ∈𝑚.headers[Cookie] then ⊲ The browser sent a session ID
85: let oldSessionID :=𝑚.headers[Cookie] [⟨__Host, sessionID⟩]
86: if oldSessionID ∈ 𝑠 ′.sessions then
87: let 𝑠 ′.sessions := 𝑠 ′.sessions − oldSessionID ⊲ Delete data of the old session
88: let headers := [Set-Cookie:⟨⟨⟨__Host, sessionID⟩, ⟨𝜈4,⊤,⊤,⊤⟩⟩⟩]
89: let𝑚′ := encs (HTTPResp,𝑚.nonce, 200, headers, ⟨script_ci_index, ⟨⟩⟩, 𝑘)
90: stop ⟨⟨𝑓 , 𝑎,𝑚′⟩⟩, 𝑠 ′
91: else stop ⊲ Unsupported operation

27

Algorithm A.7 Relation of a Client Instance 𝑅𝑐 : Processing HTTPS responses.

1: function PROCESS_HTTPS_RESPONSE(𝑚, reference, request, 𝑎, 𝑓 , 𝑠 ′)
2: let grantID := reference[grantID]
3: let grantRequest := 𝑠 ′.grants[grantID]
4: let domainAS := grantRequest [AS]
5: let sessionID := grantRequest [sessionID]
6: let keyRecord := grantRequest [keyRecord]
7: if reference[responseTo] ≡ grantResponse then
8: let grantResponse :=𝑚.body
9: if instanceID ∈ grantResponse then ⊲ The AS has registered 𝑐
10: if keyRecord .instanceID ≡ ⊥ then ⊲ 𝑐 was not already registered
11: let 𝑖 ← N such that 𝑠 ′.keyRecords[domainAS] .𝑖 ≡ keyRecord
12: let 𝑠 ′.keyRecords[domainAS] .𝑖 .instanceID := grantResponse[instanceID]
13: if subjectID ∈ grantResponse then
14: if subjectID ̸∈ ⟨⟩ grantRequest [requested] then stop ⊲ AS returned subject identifier that was not requested
15: let subjectID := grantResponse[subjectID]
16: let domainAS′ := reference[sentTo] ⊲ Store subject identifier of this end user at the AS we sent the request to
17: let s′.sessions[sessionID] [domainAS′] := subjectID
18: let 𝑠 ′.receivedValues[grantID] [subjectID] := ⟨subjectID, domainAS′⟩
19: if accessToken ∈ grantResponse then
20: let AT := [grantResponse] [accessToken]
21: if accessToken ̸∈ ⟨⟩ grantRequest [requested] ∨ bearerToken ̸∈ ⟨⟩ grantRequest [requested] then
22: stop ⊲ No (bearer) access token was requested
23: if accessToken ∈ ⟨⟩ grantRequest [requested] ∧ AT [flags] ≡ bearer then
24: stop ⊲ Access token was requested, but bearer token was issued
25: if bearerToken ∈ ⟨⟩ grantRequest [requested] ∧ AT [flags] . bearer then
26: stop ⊲ Bearer token was requested, but access token was issued
27: if key ∈ ⟨⟩ AT ∧ �kr ∈ ⟨⟩ 𝑠 ′.tokenKeys[domainAS] : pub(𝑘𝑟 .key) ≡ AT [key] [pubKey] then
28: stop ⊲ The key sent by AS for the token does not belong to AS
29: let 𝑠 ′.receivedValues[grantID] [accessToken] := grantResponse[accessToken]
30: if interact ∈ grantResponse then ⊲ Interaction is required
31: if finishedInteraction ∈ grantRequest then stop ⊲ Interaction has already been completed
32: if interaction ∉ grantRequest [request] then stop ⊲ Interaction is required, but 𝑐 did not indicate support for interaction
33: if continue ∉ grantResponse then stop ⊲ 𝑐 needs to be allowed to continue once the interaction is finished
34: let 𝑠 ′.grants[grantID] [continueAT] := grantResponse[continue] [accessToken]
35: let 𝑠 ′.grants[grantID] [continueURL] := grantResponse[continue] [url]
36: let 𝑠 ′.grants[grantID] [ASfinishNonce] := grantResponse[interact] [finish]
37: let ⟨key, receiver, sender, nonce⟩ := 𝑠 ′.browserRequests[grantID] [startRequest]
38: let cookies := ⟨⟨⟨__Host, sessionID⟩, ⟨sessionID,⊤,⊤,⊤⟩⟩⟩
39: let startMode← {redirect, userCode}
40: if startMode ≡ redirect then
41: let redirectURL := grantResponse[interact] [redirect]
42: let 𝑠 ′.grants[grantID] [redirectNonce] := redirectURL.parameters[request]
43: let𝑚′ := encs (⟨HTTPResp, nonce, 303, [Location:redirectURL, Set-Cookie:cookies], ⟨⟩⟩, key)
44: stop ⟨⟨sender, receiver,𝑚′⟩⟩, 𝑠 ′
45: else ⊲ user code interaction start mode
46: let url := ⟨URL, S, domainAS, /interactUC, ⟨⟩⟩
47: let userCode := grantResponse[interact] [userCode]
48: let 𝑠 ′.grants[grantID] [userCode] := userCode
49: let𝑚′ := encs (⟨HTTPResp, nonce, 200, [Set-Cookie:cookies], [userCodeUrl:url, userCode:userCode]⟩, key)
50: stop ⟨⟨sender, receiver,𝑚′⟩⟩, 𝑠 ′

This algorithm is continued on the next page.

28

Continuation of Algorithm A.7 (Client PROCESS_HTTPS_RESPONSE)

51: else if continue ∈ grantResponse then ⊲ 𝑐 can continue and no interaction is required
52: let continue← {⊤,⊥} ⊲ Non-det. decide whether to continue
53: if continue ≡ ⊤ then ⊲ Request values again using a PATCH request
54: if interaction ∈ grantRequest [request] then
55: let inquiredValues := GENERATE_INQUIRED_VALUES(⊤)
56: else
57: let inquiredValues := GENERATE_INQUIRED_VALUES(⊥)
58: let 𝑠 ′.grants[grantID] [requested] := inquiredValues
59: let continueAT := grantResponse[continue] [accessToken]
60: let continueURL := grantResponse[continue] [url]
61: let authHeader := ⟨Authorization, ⟨GNAP, continueAT ⟩⟩
62: let body := [inquiredValues:inquiredValues]
63: if keyRecord .method . mtls then
64: let ref := [responseTo:grantResponse, grantID:grantID, sentTo:continueURL.host]
65: call SIGN_AND_SEND(PATCH, continueURL, keyRecord .keyID, keyRecord .key,

↩→ keyRecord .method, authHeader, body, ref , 𝑠 ′, 𝑎)
66: else ⊲ MTLS is used as key proofing method
67: let 𝑠 ′.grants[grantID] [patchRequest] := ⟨authHeader, body, continueURL⟩
68: if keyRecord .instanceID . ⊥ then
69: let body := [instanceID:keyRecord .instanceID]
70: else
71: let body := [publicKey:pub(keyRecord .key)]
72: let message := ⟨HTTPReq, 𝜈6, POST, continueURL.host, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
73: let ref := [responseTo:MTLS_PR, grantID:grantID]
74: call HTTPS_SIMPLE_SEND(ref ,message, 𝑠 ′, 𝑎)
75: else stop ⊲ AS rejected request without possibility to continue or grant response is invalid
76: else if reference[responseTo] ≡ resourceResponse then
77: let domainRS := reference[domainRS]
78: let 𝑠 ′.grants[grantID] [resources] [domainRS] :=𝑚.body
79: if finishRequest ∈ 𝑠 ′.browserRequests[grantID] ∧ domainRS ≡ 𝑠 ′.grants[grantID] [domainFirstRS] then

⊲ Browser awaits response and the resource of the first used RS was obtained
80: call SEND_RESPONSE_TO_BROWSER(grantID, 𝑠 ′)
81: else stop ⟨⟩, 𝑠 ′

82: else if reference[responseTo] ≡ MTLS_GR then ⊲ A new grant request is to be sent
83: let𝑚dec := deca (𝑚.body, keyRecord .key)
84: let mtlsNonce, pubKey such that ⟨mtlsNonce, pubKey⟩ ≡𝑚dec if possible; otherwise stop
85: if pubKey ≡ 𝑠 ′.keyMapping[request .host] then
86: let body := grantRequest [request]
87: let body [mtlsNonce] := mtlsNonce
88: let req := ⟨HTTPReq, 𝜈6, POST, domainAS, /requestGrant, ⟨⟩, ⟨⟩, body⟩
89: let ref := [responseTo:grantResponse, grantID:grantID, sentTo:domainAS]
90: call HTTPS_SIMPLE_SEND(ref , req, 𝑠 ′, 𝑎)
91: else stop ⊲ Send nonce only to the process that created it

This algorithm is continued on the next page.

29

Continuation of Algorithm A.7 (Client PROCESS_HTTPS_RESPONSE)

92: else if reference[responseTo] ≡ MTLS_CR then ⊲ A new continuation request is to be sent
93: let𝑚dec := deca (𝑚.body, keyRecord .key)
94: let mtlsNonce, pubKey such that ⟨mtlsNonce, pubKey⟩ ≡𝑚dec if possible; otherwise stop
95: if pubKey ≡ 𝑠 ′.keyMapping[request .host] then
96: let authHeader := ⟨Authorization, ⟨GNAP, 𝑠 ′.grants[grantID] [continueAT]⟩⟩
97: let interactRef := 𝑠 ′.grants[grantID] [interactRef]
98: let url := 𝑠 ′.grants[grantID] [continueURL]
99: let ref := [responseTo:grantResponse, grantID:grantID, sentTo:url.host]
100: if adjustedInquiredValues ∉ 𝑠 ′.grants[grantID] then
101: let body := [interactRef:interactRef , mtlsNonce:mtlsNonce]
102: let req := ⟨HTTPReq, 𝜈6, POST, url.host, url.path, ⟨⟩, ⟨authHeader⟩, body⟩
103: else
104: let inquiredValues := 𝑠 ′.grants[grantID] [requested]
105: let body := [interactRef:interactRef , inquiredValues:inquiredValues, mtlsNonce:mtlsNonce]
106: let req := ⟨HTTPReq, 𝜈6, PATCH, url.host, url.path, ⟨⟩, ⟨authHeader⟩, body⟩
107: call HTTPS_SIMPLE_SEND(ref , req, 𝑠 ′, 𝑎)
108: else stop ⊲ Send nonce only to the process that created it
109: else if reference[responseTo] ≡ MTLS_PR then ⊲ 𝑐 modifies its grant request
110: let𝑚dec := deca (𝑚.body, keyRecord .key)
111: let mtlsNonce, pubKey such that ⟨mtlsNonce, pubKey⟩ ≡𝑚dec if possible; otherwise stop
112: if pubKey ≡ 𝑠 ′.keyMapping[request .host] then
113: let ⟨authHeader, body, url⟩ := 𝑠 ′.grants[grantID] [patchRequest]
114: let body [mtlsNonce] := mtlsNonce
115: let req := ⟨HTTPReq, 𝜈6, PATCH, url.host, url.path, ⟨⟩, ⟨authHeader⟩, body⟩
116: let ref := [responseTo:grantResponse, grantID:grantID, sentTo:url.host]
117: call HTTPS_SIMPLE_SEND(ref , req, 𝑠 ′, 𝑎)
118: else stop ⊲ Send nonce only to the process that created it
119: else if reference[responseTo] ≡ MTLS_RR then ⊲ A new resource request is to be sent
120: if key ∈ reference then ⊲ Access token is bound to its own key
121: let𝑚dec := deca (𝑚.body, reference[key])
122: else ⊲ Access token is bound to key from key record
123: let𝑚dec := deca (𝑚.body, keyRecord .key)
124: let mtlsNonce, pubKey such that ⟨mtlsNonce, pubKey⟩ ≡𝑚dec if possible; otherwise stop
125: if pubKey ≡ 𝑠 ′.keyMapping[request .host] then
126: let ref := reference[reference]
127: let req := reference[request]
128: let req.body := [mtlsNonce:mtlsNonce]
129: call HTTPS_SIMPLE_SEND(ref , req, 𝑠 ′, 𝑎)
130: else stop ⊲ Send nonce only to the process that created it

30

Algorithm A.8 Relation of a Client Instance 𝑅𝑐 : Processing trigger messages.

1: function PROCESS_TRIGGER(𝑠 ′)
2: let startGrantRequest ← {⊤,⊥}
3: if startGrantRequest ≡ ⊤ then ⊲ Start software-only authorization
4: let domainAS, 𝑖 such that 𝑠 ′.keyRecords[domainAS] .𝑖 .instanceID . ⊥ if possible; otherwise stop
5: let keyRecord := 𝑠 ′.keyRecords[domainAS] .𝑖
6: let inquiredValues := GENERATE_INQUIRED_VALUES(⊥)
7: let grantID := 𝜈7 ⊲ Identifier for this grant request
8: let instanceID := keyRecord .instanceID
9: let grantRequest := [inquiredValues:inquiredValues, instanceID:instanceID]
10: let 𝑠 ′.grants[grantID] := [request:grantRequest, AS:domainAS, keyRecord:keyRecord, requested:inquiredValues]
11: if keyRecord .method . mtls then
12: let endpoint := ⟨URL, S, domainAS, /requestGrant, ⟨⟩⟩
13: let reference := [responseTo:grantResponse, grantID:grantID, sentTo:domainAS]
14: call SIGN_AND_SEND(POST, endpoint, keyRecord .keyID, keyRecord .key, keyRecord .method,

↩→ ⊥, grantRequest, reference, 𝑠 ′, 𝑎)
15: else
16: let body := [instanceID:instanceID]
17: let message := ⟨HTTPReq, 𝜈8, POST, domainAS, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
18: let reference := [responseTo:MTLS_GR, grantID:grantID]
19: call HTTPS_SIMPLE_SEND(reference,message, 𝑠 ′, 𝑎)
20: else ⊲ Use received access token and/or subject identifier
21: let grantID such that grantID ∈ 𝑠 ′.receivedValues if possible; otherwise stop
22: let originallyInqValues := 𝑠 ′.grants[grantID] [request] [inquiredValues]
23: if accessToken ̸∈ ⟨⟩ originallyInqValues ∧ bearerToken ̸∈ ⟨⟩ originallyInqValues

↩→ ∧ finishRequest ∈ 𝑠 ′.browserRequests[grantID] then
⊲ Originally only a subject identifier was requested and browser is not yet logged in

24: call SEND_RESPONSE_TO_BROWSER(grantID, 𝑠 ′)
25: else ⊲ An access token was requested. If applicable, the response to the browser is sent once the resource is received.
26: if accessToken ∉ 𝑠 ′.receivedValues[grantID] then stop ⊲ No access token has been received yet
27: let domainRS← 𝑠 ′.resourceServers ⊲ Non-det. choose an RS
28: if (accessToken ∈ ⟨⟩ originallyInqValues ∨ bearerToken ∈ ⟨⟩ originallyInqValues)

↩→ ∧ domainFirstRS ∉ 𝑠 ′.grants[grantID] then
29: let 𝑠 ′.grants[grantID] [domainFirstRS] := domainRS

⊲ Store domain of the first RS used in this flow to be able to return the resource stored on this RS to the browser later on
30: let accessToken := 𝑠 ′.receivedValues[grantID] [accessToken]
31: let reference := [responseTo:resourceResponse, grantID:grantID, domainRS:domainRS]
32: if accessToken[flags] ≡ bearer then ⊲ Access token is a bearer token
33: let 𝑠 ′.grants[grantID] [bearerRSs] := 𝑠 ′.grants[grantID] [bearerRSs] +⟨⟩ domainRS ⊲ Store RSs receiving bearer tkns
34: let authHeader := ⟨Authorization, ⟨Bearer, accessToken⟩⟩
35: let request := ⟨HTTPReq, 𝜈8, GET, domainRS, /resource, ⟨⟩, ⟨authHeader⟩, ⟨⟩⟩
36: call HTTPS_SIMPLE_SEND(reference, request, 𝑠 ′, 𝑎)

This algorithm is continued on the next page.

31

Continuation of Algorithm A.8 (Client PROCESS_TRIGGER)

37: else ⊲ Access token is key-bound
38: let url := ⟨URL, S, domainRS, /resource, ⟨⟩⟩
39: let authHeader := ⟨Authorization, ⟨GNAP, accessToken⟩⟩
40: if key ∈ accessToken then ⊲ Access token is bound to its own key
41: let keyData ∈ ⟨⟩ 𝑠 ′.tokenKeys[domainAS] such that pub(𝑘𝑒𝑦𝐷𝑎𝑡𝑎.key) ≡ accessToken[key] [pubKey]
42: let method := keyData.method
43: let privateKey := keyData.key
44: if method ≡ sign then
45: let keyID := keyData.keyID
46: call SIGN_AND_SEND(GET, url, keyID, privateKey, sign, authHeader, ⟨⟩, reference, 𝑠 ′, 𝑎)
47: else if method ≡ mtls then
48: let request := ⟨HTTPReq, 𝜈8, GET, domainRS, /resource, ⟨⟩, ⟨authHeader⟩, ⟨⟩⟩
49: let body := [publicKey:pub(privateKey)]
50: let message := ⟨HTTPReq, 𝜈9, POST, domainRS, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
51: let ref := [responseTo:MTLS_RR, grantID:grantID, key:privateKey, reference:reference, request:request]
52: call HTTPS_SIMPLE_SEND(ref ,message, 𝑠 ′, 𝑎)
53: else stop ⊲ Unsupported method
54: else ⊲ Access token is bound to client instance key
55: let keyRecord := 𝑠 ′.grants[grantID] [keyRecord]
56: let key := keyRecord .key
57: if keyRecord .method ≡ sign then
58: let keyID := keyRecord .keyID
59: call SIGN_AND_SEND(GET, url, keyID, key, sign, authHeader, ⟨⟩, reference, 𝑠 ′, 𝑎)
60: else if keyRecord .method ≡ mac then
61: let keyID := keyRecord .keyID ⊲ We have to use the RS with which this symmetric key is shared
62: let domainRS := keyRecord .rs
63: let reference[domainRS] := domainRS
64: let url′ := ⟨URL, S, domainRS, /resource, ⟨⟩⟩
65: call SIGN_AND_SEND(GET, url′, keyID, key, mac, authHeader, ⟨⟩, reference, 𝑠 ′, 𝑎)
66: else ⊲ keyRecord .method ≡ mtls
67: let request := ⟨HTTPReq, 𝜈8, GET, domainRS, /resource, ⟨⟩, ⟨authHeader⟩, ⟨⟩⟩
68: let body := [publicKey:pub(key)]
69: let message := ⟨HTTPReq, 𝜈9, POST, domainRS, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
70: let ref := [responseTo:MTLS_RR, grantID:grantID, reference:reference, request:request]
71: call HTTPS_SIMPLE_SEND(ref ,message, 𝑠 ′, 𝑎)

32

Algorithm A.9 Relation of a Client Instance 𝑅𝑐 : Generating inquired values.

1: function GENERATE_INQUIRED_VALUES(ROpresent)
2: let inquiredValues := ⟨⟩
3: let requestAccessToken← {⊤,⊥}
4: if requestAccessToken ≡ ⊤ ∨ ROpresent ≡ ⊥ then
5: let setBearerFlag← {⊤,⊥}
6: if setBearerFlag ≡ ⊤ then
7: let inquiredValues := inquiredValues +⟨⟩ bearerToken ⊲ Requested access token is a bearer token
8: else
9: let inquiredValues := inquiredValues +⟨⟩ accessToken ⊲ Requested access token is bound to a key
10: if ROpresent ≡ ⊤ then

⊲ Subject identifiers can only be requested if an RO is present. In software-only authorization there are no subject identifiers
11: let requestSubjectID← {⊤,⊥}
12: if requestSubjectID ≡ ⊤ ∨ requestAccessToken ≡ ⊥ then
13: let inquiredValues := inquiredValues +⟨⟩ subjectID
14: return inquiredValues

33

Algorithm A.10 Relation of a Client Instance 𝑅𝑐 : Sending a continuation request to finish interaction.

1: function SEND_CONTINUATION_REQUEST(grantID, interactRef , hash, 𝑠 ′, 𝑎)
2: let CIfinishNonce := 𝑠 ′.grants[grantID] [CIfinishNonce]
3: let ASfinishNonce := 𝑠 ′.grants[grantID] [ASfinishNonce]
4: let domainAS := 𝑠 ′.grants[grantID] [AS]
5: let grantEndpoint := ⟨URL, S, domainAS, /requestGrant, ⟨⟩⟩
6: let controlHash := hash(⟨CIfinishNonce,ASfinishNonce, interactRef , grantEndpoint⟩)
7: if hash . controlHash then stop
8: let continueURL := 𝑠 ′.grants[grantID] [continueURL]
9: let 𝑠 ′.grants[grantID] [finishedInteraction] := ⊤ ⊲ Save the information that the interaction is complete
10: let adjustInquiredValues← {⊤,⊥}
11: if adjustInquiredValues ≡ ⊤ then
12: let inquiredValues := GENERATE_INQUIRED_VALUES(⊤)
13: let 𝑠 ′.grants[grantID] [requested] := inquiredValues
14: let keyRecord := 𝑠 ′.grants[grantID] [keyRecord]
15: if keyRecord .method . mtls then
16: let authHeader := ⟨Authorization, ⟨GNAP, 𝑠 ′.grants[grantID] [continueAT]⟩⟩ }
17: let reference := [responseTo:grantResponse, grantID:grantID, sentTo:continueURL.host]
18: if adjustInquiredValues ≡ ⊥ then
19: let body := [interactRef:interactRef]
20: call SIGN_AND_SEND(POST, continueURL, keyRecord .keyID, keyRecord .key, keyRecord .method,

↩→ authHeader, body, reference, 𝑠 ′, 𝑎)
21: else
22: let body := [interactRef:interactRef , inquiredValues:inquiredValues]
23: call SIGN_AND_SEND(PATCH, continueURL, keyRecord .keyID, keyRecord .key, keyRecord .method,

↩→ authHeader, body, reference, 𝑠 ′, 𝑎)
24: else ⊲ MTLS was used for grant request
25: let 𝑠 ′.grants[grantID] [interactRef] := interactRef
26: if adjustInquiredValues ≡ ⊤ then
27: let 𝑠 ′.grants[grantID] [adjustedInquiredValues] := ⊤
28: if keyRecord .instanceID . ⊥ then
29: let body := [instanceID:keyRecord .instanceID]
30: else
31: let body := [publicKey:pub(keyRecord .key)]
32: let message := ⟨HTTPReq, 𝜈10, POST, continueURL.host, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
33: let reference := [responseTo:MTLS_CR, grantID:grantID]
34: call HTTPS_SIMPLE_SEND(reference,message, 𝑠 ′, 𝑎)

34

Algorithm A.11 Relation of a Client Instance 𝑅𝑐 : Returning resources and service session identifiers to browsers.

1: function SEND_RESPONSE_TO_BROWSER(grantID, 𝑠 ′)
2: if subjectID ∈ 𝑠 ′.receivedValues[grantID] then
3: let ⟨subjectID, domainAS⟩ := 𝑠 ′.receivedValues[grantID] [subjectID]
4: let sessionID := 𝑠 ′.grants[grantID] [sessionID]
5: let 𝑠 ′.sessions[sessionID] [loggedInAs] := ⟨subjectID, domainAS⟩
6: let 𝑠 ′.sessions[sessionID] [serviceSessionID] := 𝜈11
7: let headers := ⟨Set-Cookie, ⟨⟨⟨__Host, serviceSessionID⟩, ⟨𝜈11,⊤,⊤,⊤⟩⟩⟩⟩
8: else
9: let headers := ⟨⟩
10: if domainFirstRS ∈ 𝑠 ′.grants[grantID] then
11: let domainFirstRS := 𝑠 ′.grants[grantID] [domainFirstRS]
12: let body := 𝑠 ′.grants[grantID] [resources] [domainFirstRS]
13: else
14: let body := ok

15: let ⟨key, receiver, sender, nonce⟩ := 𝑠 ′.browserRequests[grantID] [finishRequest]
16: let𝑚′ := encs (⟨HTTPResp, nonce, 200, headers, body⟩, key)
17: let 𝑠 ′.browserRequests[grantID] := 𝑠 ′.browserRequests[grantID] − finishRequest

⊲ Remove browser request to avoid re-sending a response in case of another grant response in response to a continuation request
18: stop ⟨⟨sender, receiver,𝑚′⟩⟩, 𝑠 ′

Algorithm A.12 Relation of script_ci_index.

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
⊲ Script that models the index page of a client instance

1: let switch← {start, logout, link} ⊲ Non-deterministically decide whether to start a grant request or to follow some link
2: if switch ≡ start then ⊲ Start grant request
3: let url := GETURL(tree, docnonce)
4: let ⟨username, domain⟩ ← ids ⊲ Non-det. select identity to specify its domain as AS
5: let url′ := ⟨URL, S, url.host, /startGrantRequest, ⟨⟩⟩
6: let command := ⟨STARTGRANT, url′, domain⟩
7: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩
8: else if switch ≡ logout then ⊲ Log out from the client instance to get a new session ID
9: let url := GETURL(tree, docnonce)
10: let url′ := ⟨URL, S, url.host, /logout, ⟨⟩⟩
11: let command := ⟨FORM, url′, POST, ⟨⟩,⊥⟩
12: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩
13: else ⊲ Follow link
14: let protocol← {P, S} ⊲ Non-det. select protocol (HTTP or HTTPS)
15: let host ← Doms ⊲ Non-det. select host
16: let path← S ⊲ Non-det. select path
17: let fragment ← S ⊲ Non-det. select fragment part
18: let parameters← [S × S] ⊲ Non-det. select parameters
19: let url := ⟨URL, protocol, host, path, parameters, fragment⟩ ⊲ Assemble URL
20: let command := ⟨HREF, url,⊥,⊥⟩ ⊲ Follow link to the selected URL
21: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩

35

A.12 Authorization Servers
An authorization server as ∈ AS is a web server modeled as an
atomic DY process (𝐼as, 𝑍as, 𝑅as, 𝑠as0) with the addresses
𝐼as B addr(as).

Definition A.5. We denote by (public) key data, a term of one of
the following forms:
• ⟨sign, publicKey, keyID⟩
• ⟨mac, key, keyID⟩
• ⟨mtls, publicKey⟩

with keyID ∈ KeyIDs, key ∈ 𝐾KP, and publicKey ∈ TN . keyID is
the key ID that will be used by the client instance if signatures or
MACs are used. If the client instance uses signatures or MTLS key
proofs, publicKey is the public key that as will use to verify them. If
MACs are used, key is the symmetric key that will be used to verify
them.

For a key data 𝑟 , we will use 𝑟 .method as notation for 𝑟 .1 and
𝑟 .pubKey as notation for 𝑟 .2 .

In our modeling, ASs store data about registered client instances
in client registration records and data about their users in user records:

Definition A.6. A client registration record is a term of the form
⟨instanceID, kd⟩ with instanceID ∈ S and kd public key data.

instanceID is the instance identifier that the registered client
instance will use. For a client registration record 𝑟 we will use
𝑟 .keyData as notation for 𝑟 .2.

Definition A.7. A user record is a term of the form

⟨identity, password⟩
with identity ∈ ID and password ∈ Passwords, where password ≡
secretOfID(identity).

User records are used to store the credentials of the ROs that
own resources protected by as.

Next, we define the set 𝑍as of states of as and the initial state 𝑠as0
of as.

Definition A.8. A state 𝑠 ∈ 𝑍as of AS as is a term of the form
⟨DNSaddress, pendingDNS, corrupt, pendingRequests, keyMapping,
tlskeys, registrations, users, mtlsRequests, sigNonces, grantRequests,
tokenBindings⟩ with DNSaddress ∈ IPs, pendingDNS ∈

[
N × TN

]
,

corrupt ∈ TN , pendingRequests ∈
[
N × TN

]
, keyMapping ∈[

Doms × TN

]
, tlskeys ∈ [Doms × 𝐾TLS], registrations ∈

[
S × TN

]
,

clientTokenKeys ∈
[
S × TN

]
, users ∈

[
ID ×N

]
, mtlsRequests ∈[

N ×N
]
, sigNonces ∈ TN , grantRequests ∈

[
N ×

[
S × TN

]]
, and

tokenBindings ∈
[
N ×

[
S × TN

]]
.

An initial state 𝑠as0 of as is a state of as with 𝑠as0 .pendingDNS ≡
⟨⟩, 𝑠as0 .corrupt ≡ ⊥, 𝑠

as
0 .pendingRequests ≡ ⟨⟩, 𝑠

as
0 .keyMapping

being the same as the keymapping for browsers, 𝑠as0 .tlskeys ≡
tlskeysas , and 𝑠as0 .mtlsRequests ≡ 𝑠as0 .sigNonces ≡
𝑠as0 .grantRequests ≡ 𝑠

as
0 .tokenBindings ≡ ⟨⟩.

mtlsRequests is a dictionary that maps MTLS nonces to the keys
used for MTLS. It is used to store the information required for
validating MTLS key proofs.

sigNonces stores all nonces obtained from received valid signa-
tures or MACs, thus enabling the replay protection required by
GNAP’s security considerations.

grantRequests works like the grants dictionary of the client in-
stances, except that here information required by the AS is stored.
As key for the outer dictionary again a nonce called grantID is used.
Note that the grant IDs used for grantRequests are only used by as
to internally distinguish grant requests. They are not equivalent
(w.r.t. the equational theory) to the grant IDs of any client instances.
Generally, grant IDs are not sent from any honest process to any
other process.

tokenBindings maps from the values of issued access tokens
(nonces) to dictionaries containing the information required by
as for token introspection, such as the key proofing method to
which the access token is bound or whether it is a bearer token.
𝑠as0 .registrations is a dictionary containing client registra-

tion records, with the instance identifiers of the client registra-
tion records functioning as keys. For any two distinct client reg-
istration records 𝑟, 𝑟 ′ ∈ ⟨⟩ 𝑠as0 .registrations it must hold that
𝑟 .instanceID . 𝑟 ′.instanceID. For each client registration record
𝑟 ∈ ⟨⟩ 𝑠as0 .registrations there must be exactly one client instance
𝑐 ∈ CI such that for a domain 𝑑 ∈ dom(as) there is a key record
𝑟 ′ ∈ ⟨⟩ 𝑠𝑐0 .keyRecords[𝑑] with 𝑟

′.instanceID ≡ 𝑟 .instanceID. If
𝑟 .keyData.method ≡ sign it must hold that

𝑟 ′.method ≡ sign

∧ 𝑟 .keyData.keyID ≡ 𝑟 ′.keyID
∧ 𝑟 .keyData.publicKey ≡ pub(𝑟 ′.key) .

If 𝑟 .keyData.method ≡ mac it must hold that

𝑟 ′.method ≡ mac

∧ 𝑟 .keyData.keyID ≡ 𝑟 ′.keyID
∧ 𝑟 .keyData.key ≡ 𝑟 ′.key .

If 𝑟 .keyData.method ≡ mtls it must hold that

𝑟 ′.method ≡ mtls

∧ 𝑟 .keyData.publicKey ≡ pub(𝑟 ′.key) .

𝑠as0 .clientTokenKeys is a dictionary containing a sequence of
public key data that can be used to bind access tokens to. The key
is the client instance identifier. We only have entries for registered
clients. That is, we require for every id ∈ 𝑠as0 .clientTokenKeys that
there is an entry 𝑟 ∈ 𝑠as0 .registrations with id ≡ 𝑟 .instanceID.
Further, every public key in this set has to have a corresponding pri-
vate key at the associated CI: For every id ∈ 𝑠as0 .clientTokenKeys
and every kd ∈ 𝑠as0 .clientTokenKeys[id] there has to be exactly
one client instance 𝑐 with a token key record kr ∈ 𝑠c0 .tokenKeys[as]
such that 𝑘𝑟 .instanceID ≡ id and pub(𝑘𝑟 .key) ≡ 𝑘.pubKey. Fur
such associated key records kr and key data kd, we need the method
to be the same. Let kd ∈ 𝑠as0 .clientTokenKeys[id] be a key data
stored at as for some client instance 𝑐 with the instance ID id, and
kr ∈ 𝑠c0 .tokenKeys[as] be the corresponding key record stored at 𝑐
for as, then we have 𝑘𝑑.method ≡ 𝑘𝑟 .method .
𝑠as0 .users is a dictionary containing user records. For each user

record 𝑢 ∈ ⟨⟩ 𝑠as0 .users it must hold that 𝑢.identity.domain ∈
36

dom(as). We also require that for all users 𝑢 ≠ 𝑢 ′ in 𝑠as0 .users we
have 𝑢.identity . 𝑢 ′.identity.

For each 𝑏 ∈ B, 𝑖 ∈ ⟨⟩ 𝑠𝑏0 .ids there must be an AS as that contains
a user record 𝑢 ∈ ⟨⟩ 𝑠as0 .users such that 𝑖 ≡ 𝑢.identity and vice
versa. secretOfID(𝑖) must initially be stored only in 𝑏 and as.

To allow us to examine whether GNAP satisfies our security
properties even when key-bound access tokens leak, we have the
ASs send them not only to the client instance whose key the access
token is bound to, but also to another randomly chosen IP address.
For this we use an arbitrary IP address leak ∈ IPs as in Fett et al. [21].
We leak all continuation access tokens, because they are always
bound to the client instances key, as well as all access tokens for
accessing resources that are not bearer tokens.

We now specify the relation 𝑅as : This relation is again based on
the generic HTTPS server model defined in [29]. Table 3 shows a
list of all placeholders used in the algorithms.

Usage

𝜈1 new grant ID
𝜈2 new continuation access token
𝜈3 nonce to generate a unique redirect URL
𝜈4 new user code
𝜈5 nonce for the calculation of the interaction finish hash
𝜈6 nonce for MTLS
𝜈7 new interaction reference
𝜈8 new HTTP request nonce
𝜈9 new key for the pendingDNS dictionary
𝜈10 new access token
𝜈11 new continuation access token

Table 3: List of placeholders used in the AS algorithms.

The script that is used by the authorization server is described
in Algorithm A.19. It is used when the RO logs in to the AS after a
redirect or using a user code.

The following algorithms are used for modeling the authoriza-
tion servers:
• Algorithm A.13 processes HTTPS requests to AS originating
either from a client instance or, in the case of introspection
requests, from an RS.
For the AS, each flow starts with the reception of a grant
request. How a grant request is handled depends on the
information in it. If neither an access token nor a subject
identifier is requested, the request can be answered directly,
since no values are returned. If an access token for an RO
or a subject identifier of an RO is requested, the AS initiates
the interaction with the RO. In case the client instance uses
software-only authorization, the AS returns the requested
values directly if the client instance is registered and the key
proof has been validated successfully.
Continuation requests can be either HTTP POST requests
or HTTP PATCH requests. A POST request finishes an inter-
action, while a PATCH request adjusts the values requested
by the client instance. A PATCH request can also be used to
finish the interaction along with the adjustment of the grant
request. In this case, the correct interaction reference must

be included in the PATCH request, as it is the case with a
POST request. Continuation requests must always contain
the continuation access token in the Authorization header.
At the /interact path, the AS accepts redirects that are
sent as part of the redirect interaction start mode. The login
process is then simulated by the script script_as_login. We do
not model a specific authorization process for grant requests,
since such a process is out of scope for GNAP. Instead, in
our model, the RO automatically authorizes the request by
successfully logging in. The nonce with which the AS can
associate the login process with the grant request is passed
to script_as_login via the scriptstate. The script then sends
the login data to the /redirectLogin path and includes that
nonce in the body of the login request.
The /interactUC path enables logins using user codes. The
user code is modeled similarly to the nonce used to uniquely
identify the request when using the redirect interaction start
mode since the user code essentially has the same function.
The user code is passed to script_as_login via the scriptinputs
and then included in the body when logging in via the
/userCodeLogin path.
For requests to the introspection endpoint (/introspect),
the key proof of the requesting RS is validated first. If suc-
cessful, the access token is taken from the request body and
the values stored in the tokenBindings subterm for this access
token are returned to the RS.
• Algorithm A.14 performs key proofing methods using
VALIDATE_KEY_PROOF to validate that a request received
by as was actually sent by the owner of the key specified in
the corresponding grant request. In order to call
VALIDATE_KEY_PROOF, in the case of a grant request, the
algorithm extracts the key information contained in the re-
quest and stores it in the grantRequests subterm. In the case
of a continuation request, the algorithm then reloads the
previously stored key information from grantRequests using
the grant ID.
• Algorithm A.15 checks the RO’s login credentials and, if
successful, performs the interaction finish mode specified by
the client instance in the grant request. For this purpose, the
algorithm creates a new interaction reference in the form of
a nonce and uses it to calculate the hash value that is used by
the client instance for verification of the interaction finish.
• Algorithm A.16 is used when the AS needs to send a grant
response to a client instance after completing the interaction
with the RO.
• Algorithm A.17 creates grant responses depending on the
values requested in the grant request. If an access token
is generated, the algorithm stores the values required for
token introspection in the tokenBindings subterm. If a sub-
ject identifier is requested, the identity with which the RO
has logged in to as is included in the grant response. If the
client instance requests a key-bound access token, a non-
deterministic decision is made whether to bind it to the client
instance’s key and key proofing method or to bind the access
token to its own key. In the latter case, a key is chosen non-
deterministically from the clientTokenKeys entry of the
respective CI. Hence, this is only possible for pre-registered

37

CIs. Otherwise, the CI had to send the corresponding allowed
keys to AS during the initial grant request. However, GNAP
does not specify how this sharing of keys should be handled.
• Algorithm A.18 emits grant responses and leaks access to-
kens in doing so. If the grant response contains a continu-
ation access token, it is leaked. If it contains a key-bound
access token for resources, this is also leaked. The receiver
address of the events with which access tokens are leaked is
leak.

38

Algorithm A.13 Relation of an AS 𝑅as : Processing HTTPS requests.

1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠 ′)
2: if 𝑚.path ≡ /requestGrant ∧𝑚.method ≡ POST then ⊲ New grant request
3: let grantID := 𝜈1
4: let 𝑠 ′ := PERFORM_KEY_PROOF(𝑚, grantID, 𝑠 ′)
5: let grantRequest :=𝑚.body
6: let grantResponse := []
7: let continueAT := 𝜈2
8: let continueURL := ⟨URL, S,𝑚.host, /continue, ⟨⟩⟩
9: let 𝑠 ′.grantRequests[grantID] := [inquiredValues:grantRequest [inquiredValues]]
10: if grantRequest [inquiredValues] ≡ ⟨⟩ then ⊲ Client instance requested nothing
11: let allowContinuation← {⊤,⊥}
12: if allowContinuation ≡ ⊤ then
13: let grantResponse[continue] := [accessToken:continueAT , url:continueURL]
14: let 𝑠 ′.grantRequests[grantID] [continueAT] := continueAT
15: else if grantRequest [interaction] ≡ ⊤ then ⊲ Interaction with RO is possible
16: let grantResponse[continue] := [accessToken:continueAT , url:continueURL]
17: let redirectNonce := 𝜈3
18: let userCode := 𝜈4
19: let ASfinishNonce := 𝜈5
20: let redirectURL := ⟨URL, S,𝑚.host, /interact, [request:redirectNonce]⟩
21: let grantResponse[interact] := [redirect:redirectURL, userCode:userCode, finish:ASfinishNonce]
22: let 𝑠 ′.grantRequests[grantID] [continueAT] := continueAT
23: let 𝑠 ′.grantRequests[grantID] [redirectNonce] := redirectNonce
24: let 𝑠 ′.grantRequests[grantID] [userCode] := userCode
25: let 𝑠 ′.grantRequests[grantID] [ASfinishNonce] := ASfinishNonce
26: let 𝑠 ′.grantRequests[grantID] [CIfinishNonce] := grantRequest [finish] [nonce]
27: let 𝑠 ′.grantRequests[grantID] [finishMode] := grantRequest [finish] [finishMode]
28: let 𝑠 ′.grantRequests[grantID] [finishURL] := grantRequest [finish] [finishURL]
29: let 𝑠 ′.grantRequests[grantID] [grantEndpoint] := ⟨URL, S,𝑚.host,𝑚.path, ⟨⟩⟩
30: if user ∈ grantRequest then ⊲ Client instance included subject identifier
31: let 𝑠 ′.grantRequests[grantID] [user] := grantRequest [user]
32: else ⊲ No end user is present at the client instance
33: if instanceID ∉ grantRequest then stop ⊲ Only a registered client instance can get an access token for its resources
34: let ⟨grantResponse, s′⟩ := CREATE_GRANT_RESPONSE(grantID, CI,grantRequest [inquiredValues],⊥,𝑚.host, 𝑠 ′)
35: if client ∈ grantRequest then ⊲ Client instance is not registered
36: let registerCI ← {⊤,⊥} ⊲ Non-det. decide whether to register the client instance
37: if registerCI ≡ ⊤ then
38: let instanceID← S such that instanceID ∉ 𝑠 ′.registrations
39: if grantRequest [client] [method] ≡ sign then
40: let keyID := grantRequest [client] [keyID]
41: let publicKey := grantRequest [client] [key]
42: let 𝑠 ′.registrations[instanceID] := ⟨sign, keyID, publicKey⟩
43: else ⊲ grantRequest [client] [method] ≡ mtls
44: let publicKey := grantRequest [client] [key]
45: let 𝑠 ′.registrations[instanceID] := ⟨mtls, publicKey⟩
46: let grantResponse[instanceID] := instanceID
47: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, grantResponse⟩, 𝑘)
48: call STOP_WITH_LEAKS(𝑓 , 𝑎,𝑚′, grantResponse, 𝑠 ′)

This algorithm is continued on the next page.

39

Continuation of Algorithm A.13 (AS PROCESS_HTTPS_REQUEST)

49: else if 𝑚.path ≡ /continue ∧𝑚.method ≡ POST then ⊲ Continuation request after interaction completed
50: if 𝑚.headers[Authorization] .1 . GNAP then stop ⊲ Wrong Authentication scheme was used
51: let continueAT :=𝑚.headers[Authorization] .2
52: if continueAT ≡ ⟨⟩ then stop ⊲ Access token for continuation must be a nonce
53: let grantID such that 𝑠 ′.grantRequests[grantID] [continueAT] ≡ continueAT if possible; otherwise stop
54: call PERFORM_KEY_PROOF(𝑚, grantID, 𝑠 ′)
55: if interactRef ∉ 𝑠 ′.grantRequests[grantID] then stop ⊲ An interaction reference must exist when using this endpoint
56: if interactRef ∉𝑚.body then stop ⊲ The client instance must specify an interaction reference
57: let interactRef :=𝑚.body[interactRef]
58: let inquiredValues := 𝑠 ′.grantRequests[grantID] [inquiredValues]
59: call SEND_GRANT_RESPONSE(grantID, interactRef , inquiredValues,𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠 ′)
60: else if 𝑚.path ≡ /continue ∧𝑚.method ≡ PATCH then ⊲ Grant request modification
61: if 𝑚.headers[Authorization] .1 . GNAP then stop ⊲ Wrong Authentication scheme was used
62: let continueAT :=𝑚.headers[Authorization] .2
63: if continueAT ≡ ⟨⟩ then stop ⊲ Access token for continuation must be a nonce
64: let grantID such that 𝑠 ′.grantRequests[grantID] [continueAT] ≡ continueAT if possible; otherwise stop
65: call PERFORM_KEY_PROOF(𝑚, grantID, 𝑠 ′)
66: let inquiredValues :=𝑚.body[inquiredValues]
67: if interactRef ∈ 𝑠 ′.grantRequests[grantID] then ⊲ Interaction is not yet complete
68: if interactRef ∉𝑚.body then stop ⊲ The interaction reference is required to finish the interaction
69: let interactRef :=𝑚.body[interactRef]
70: call SEND_GRANT_RESPONSE(grantID, interactRef , inquiredValues,𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠 ′)
71: else ⊲ Interaction has already been completed or software-only authorization
72: if interactRef ∈𝑚.body then stop ⊲ Request is not allowed to contain an interaction reference
73: let 𝑠 ′.grantRequests[grantID] := 𝑠 ′.grantRequests[grantID] − continueAT
74: if finishMode ∈ 𝑠 ′.grantRequests[grantID] then ⊲ End user is present
75: let ⟨grantResponse, s′⟩ := CREATE_GRANT_RESPONSE(grantID, endUser, inquiredValues, continueAT ,𝑚.host, 𝑠 ′)
76: else ⊲ Software-only authorization
77: let ⟨grantResponse, s′⟩ := CREATE_GRANT_RESPONSE(grantID, CI, inquiredValues, continueAT ,𝑚.host, 𝑠 ′)
78: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, grantResponse⟩, 𝑘)
79: call STOP_WITH_LEAKS(𝑓 , 𝑎,𝑚′, grantResponse, 𝑠 ′)
80: else if 𝑚.path ≡ /interact ∧𝑚.method ≡ GET then ⊲ Interaction using redirect
81: if request ∈𝑚.parameters then
82: let headers := [ReferrerPolicy:origin]
83: let request :=𝑚.parameters[request]
84: let referrer :=𝑚.headers[Referer]
85: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, headers, ⟨script_as_login, [request:request, referrer:referrer]⟩⟩, 𝑘)
86: stop ⟨⟨𝑓 , 𝑎,𝑚′⟩⟩, 𝑠 ′
87: else stop ⊲ The parameters need to contain a request identifier
88: else if 𝑚.path ≡ /interactUC ∧𝑚.method ≡ GET then ⊲ Interaction using user code
89: if user-code ∉𝑚.parameters then stop ⊲ The parameters need to contain a user code
90: let headers := [ReferrerPolicy:origin]
91: let userCode :=𝑚.parameters[user-code]
92: let grantID such that 𝑠 ′.grantRequests[grantID] [userCode] ≡ userCode if possible; otherwise stop
93: let domainCI := 𝑠 ′.grantRequests[grantID] [finishURL] .host
94: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, headers, ⟨script_as_login, domainCI⟩⟩, 𝑘)
95: stop ⟨⟨𝑓 , 𝑎,𝑚′⟩⟩, 𝑠 ′
96: else if 𝑚.path ≡ /redirectLogin ∧𝑚.method ≡ POST ∧ 𝑚.headers[Origin] ≡ ⟨𝑚.host, S⟩ then
97: let redirectNonce :=𝑚.body[request]
98: let grantID such that 𝑠 ′.grantRequests[grantID] [redirectNonce] ≡ redirectNonce if possible; otherwise stop
99: if 𝑠 ′.grantRequests[grantID] [finishMode] ≡ push

↩→ ∧𝑚.body[referrer] .host . 𝑠 ′.grantRequests[grantID] [finishURL] .host then
100: stop ⊲ Check that browser was redirected by the client that sent the grant request to prevent client instance mix-up attack
101: call FINISH_INTERACTION(grantID,𝑚, 𝑘, 𝑎, 𝑓 , 𝑠 ′)

This algorithm is continued on the next page.

40

Continuation of Algorithm A.13 (AS PROCESS_HTTPS_REQUEST)

102: else if 𝑚.path ≡ /userCodeLogin ∧𝑚.method ≡ POST ∧𝑚.headers[Origin] ≡ ⟨𝑚.host, S⟩ then
103: let userCode :=𝑚.body[userCode]
104: let grantID such that 𝑠 ′.grantRequests[grantID] [userCode] ≡ userCode if possible; otherwise stop
105: call FINISH_INTERACTION(grantID,𝑚, 𝑘, 𝑎, 𝑓 , 𝑠 ′)
106: else if 𝑚.path ≡ /introspect ∧𝑚.method ≡ POST then ⊲ Token introspection
107: let method :=𝑚.body[RS] [method]
108: let key :=𝑚.body[RS] [key]
109: if method ≡ sign then
110: let keyID :=𝑚.body[RS] [keyID]
111: let 𝑠 ′ := VALIDATE_KEY_PROOF(method,𝑚, keyID, key, 𝑠 ′)
112: else if method ≡ mtls then
113: let 𝑠 ′ := VALIDATE_KEY_PROOF(method,𝑚,⊥, key, 𝑠 ′)
114: else stop ⊲ Unsupported method
115: let accessToken :=𝑚.body[accessToken]
116: if accessToken ∉ 𝑠 ′.tokenBindings then
117: let body := [active:⊥] ⊲ Unknown access token
118: else
119: let body := [active:⊤]
120: let binding := 𝑠 ′.tokenBindings[accessToken]
121: let type := binding[type]
122: let grantID := binding[grantID]
123: let grantRequest := 𝑠 ′.grantRequests[grantID]
124: if type ≡ newSign then
125: let body [key] := [keyID:binding[keyID], key:binding[publicKey], method:sign]
126: else if type ≡ newMTLS then
127: let body [key] := [key:binding[publicKey], method:mtls]
128: else if type ≡ CIKey then
129: let method := grantRequest [method]
130: if method ≡ sign then
131: let body [key] := [keyID:grantRequest [keyID], key:grantRequest [publicKey], method:sign]
132: else if method ≡ mac then ⊲ RS must already know the key since a symmetric key is used
133: let body [instanceID] := grantRequest [instanceID]
134: else ⊲ method ≡ mtls
135: let body [key] := [key:grantRequest [clientKey], method:mtls]
136: else ⊲ type ≡ bearer
137: let body [flags] := bearer

138: if binding[for] ≡ endUser then ⊲ Access token is used to access resources of an end user
139: let body [access] := [identity:grantRequest [subjectID]]
140: else ⊲ Access token is used to access resources of a client instance
141: let body [access] := [instanceID:grantRequest [instanceID]]
142: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, body⟩, 𝑘)
143: stop ⟨⟨𝑓 , 𝑎,𝑚′⟩⟩, 𝑠 ′
144: else if 𝑚.path ≡ /MTLS-prepare ∧𝑚.method ≡ POST then
145: let mtlsNonce := 𝜈6
146: if instanceID ∈𝑚.body then ⊲ Client instance is registered
147: let instanceID :=𝑚.body[instanceID]
148: if instanceID ∉ 𝑠 ′.registrations then stop ⊲ as does not know this instance identifier
149: if 𝑠 ′.registrations[instanceID] .method . mtls then stop ⊲ This client instance does not use MTLS
150: let clientKey := 𝑠 ′.registrations[instanceID] .publicKey
151: else if publicKey ∈𝑚.body then ⊲ Client instance is not registered
152: let clientKey :=𝑚.body[publicKey]
153: else stop ⊲ Information to determine clientKey is missing
154: let 𝑠 ′.mtlsRequests := 𝑠 ′.mtlsRequests +⟨⟩ ⟨mtlsNonce, clientKey⟩
155: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, enca (⟨mtlsNonce, 𝑠 ′.keyMapping[𝑚.host]⟩, clientKey)⟩, 𝑘)
156: stop ⟨⟨𝑓 , 𝑎,𝑚′⟩⟩, 𝑠 ′
157: else stop ⊲ Unsupported operation

41

Algorithm A.14 Relation of an AS 𝑅as : Check signature or MTLS nonce.

1: function PERFORM_KEY_PROOF(𝑚, grantID, 𝑠 ′)
2: if grantID ∉ 𝑠 ′.grantRequests then ⊲ New grant request
3: let grantRequest :=𝑚.body
4: if instanceID ∈ grantRequest ∧ client ∉ grantRequest then
5: let instanceID := grantRequest [instanceID]
6: if instanceID ∉ 𝑠 ′.registrations then stop ⊲ Instance identifier is unknown to as
7: let 𝑠 ′.grantRequests[grantID] [instanceID] := instanceID
8: let keyData := 𝑠 ′.registrations[instanceID]
9: let method := keyData.method
10: if method ≡ sign then
11: let keyID := keyData.keyID
12: let publicKey := keyData.publicKey
13: else if method ≡ mac then
14: let keyID := keyData.keyID
15: let key := keyData.key
16: else ⊲ MTLS
17: let clientKey := keyData.publicKey
18: else if instanceID ∉ grantRequest ∧ client ∈ grantRequest then
19: let method := grantRequest [client] [method]
20: if method ≡ sign then
21: let keyID := grantRequest [client] [keyID]
22: let publicKey := grantRequest [client] [key]
23: else if method ≡ mtls then
24: let clientKey := grantRequest [client] [key]
25: else stop ⊲ Invalid method or no method specified
26: else stop ⊲ client or instanceID must be specified, but not both
27: let 𝑠 ′.grantRequests[grantID] [method] := method
28: if method ≡ sign then
29: let 𝑠 ′.grantRequests[grantID] [keyID] := keyID
30: let 𝑠 ′.grantRequests[grantID] [publicKey] := publicKey
31: else if method ≡ mac then
32: let 𝑠 ′.grantRequests[grantID] [keyID] := keyID
33: let 𝑠 ′.grantRequests[grantID] [key] := key
34: else ⊲ MTLS
35: let 𝑠 ′.grantRequests[grantID] [clientKey] := clientKey
36: else ⊲ Continuation request
37: let method := 𝑠 ′.grantRequests[grantID] [method]
38: if method ≡ sign then
39: let keyID := 𝑠 ′.grantRequests[grantID] [keyID]
40: let publicKey := 𝑠 ′.grantRequests[grantID] [publicKey]
41: else if method ≡ mac then
42: let keyID := 𝑠 ′.grantRequests[grantID] [keyID]
43: let key := 𝑠 ′.grantRequests[grantID] [key]
44: else ⊲ MTLS
45: let clientKey := 𝑠 ′.grantRequests[grantID] [clientKey]
46: if method ≡ sign then
47: return VALIDATE_KEY_PROOF(method,𝑚, keyID, publicKey, 𝑠 ′)
48: else if method ≡ mac then
49: return VALIDATE_KEY_PROOF(method,𝑚, keyID, key, 𝑠 ′)
50: else ⊲ MTLS
51: return VALIDATE_KEY_PROOF(method,𝑚,⊥, clientKey, 𝑠 ′)

42

Algorithm A.15 Relation of an AS 𝑅as : Check login and perform interaction finish mode.

1: function FINISH_INTERACTION(grantID,𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠 ′)
2: if subjectID ∈ 𝑠 ′.grantRequests[grantID] then stop ⊲ Interaction has already been completed for this request
3: let identity :=𝑚.body[identity]
4: let password :=𝑚.body[password]
5: if identity ∉ 𝑠 ′.users then stop ⊲ Identity is not registered at this AS
6: if user ∈ 𝑠 ′.grantRequests[grantID] ∧ identity . 𝑠 ′.grantRequests[grantID] [user] then
7: stop ⊲ Identity that logged in does not match identity specified in grant request
8: if password . 𝑠 ′.users[identity] then stop ⊲ Incorrect password was provided
9: let interactRef := 𝜈7
10: let CIfinishNonce := 𝑠 ′.grantRequests[grantID] [CIfinishNonce]
11: let ASfinishNonce := 𝑠 ′.grantRequests[grantID] [ASfinishNonce]
12: let finishMode := 𝑠 ′.grantRequests[grantID] [finishMode]
13: let finishURL := 𝑠 ′.grantRequests[grantID] [finishURL]
14: let grantEndpoint := 𝑠 ′.grantRequests[grantID] [grantEndpoint]
15: let hash := hash(⟨CIfinishNonce,ASfinishNonce, interactRef , grantEndpoint⟩)
16: let 𝑠 ′.grantRequests[grantID] [interactRef] := interactRef
17: let 𝑠 ′.grantRequests[grantID] [subjectID] := identity ⊲ Once subject ID is set, interaction is treated as complete.
18: if finishMode ≡ redirect then
19: let finishURL.parameters[interactRef] := interactRef
20: let finishURL.parameters[hash] := hash
21: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 303, [Location:finishURL], ⟨⟩⟩, 𝑘)
22: stop ⟨⟨𝑓 , 𝑎,𝑚′⟩⟩, 𝑠 ′
23: else if finishMode ≡ push then
24: let body := [interactRef:interactRef , hash:hash]
25: let message := ⟨HTTPReq, 𝜈8, POST, finishURL.host, finishURL.path, finishURL.parameters, ⟨⟩, body⟩
26: let 𝑠 ′.pendingDNS[𝜈9] := ⟨⊥,message⟩ ⊲ Simulate HTTPS_SIMPLE_SEND because we have to emit two events
27: let dataURL := ⟨URL, S, finishURL.host, /getData, finishURL.parameters⟩
28: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 303, [Location:dataURL], ⟨⟩⟩, 𝑘)

⊲ Redirect browser to client instance in order to be able to send data to browser
29: stop ⟨⟨𝑠 ′.DNSaddress, 𝑎, ⟨DNSResolve,message.host, 𝜈9⟩⟩, ⟨𝑓 , 𝑎,𝑚′⟩⟩, 𝑠 ′
30: else stop ⊲ Invalid interaction finish mode

Algorithm A.16 Relation of an AS 𝑅as : Send grant response after interaction has finished.

1: function SEND_GRANT_RESPONSE(grantID, interactRef , inquiredValues,𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠 ′)
2: if interactRef . 𝑠 ′.grantRequests[grantID] [interactRef] then
3: stop ⊲ Received interaction reference does not match the stored one
4: let ⟨grantResponse, s′⟩ := CREATE_GRANT_RESPONSE(grantID, endUser, inquiredValues,

↩→ 𝑠 ′.grantRequests[grantID] [continueAT],𝑚.host, 𝑠 ′)
5: let 𝑠 ′.grantRequests[grantID] := 𝑠 ′.grantRequests[grantID] − interactRef ⊲ Prevent reuse
6: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, grantResponse⟩, 𝑘)
7: call STOP_WITH_LEAKS(𝑓 , 𝑎,𝑚′, grantResponse, 𝑠 ′)

43

Algorithm A.17 Relation of an AS 𝑅as : Creating a grant response.

1: function CREATE_GRANT_RESPONSE(grantID, for , inquiredValues, oldContinueAT , host, 𝑠 ′)
2: if subjectID ∉ 𝑠 ′.grantRequests[grantID] then stop ⊲ Interaction for this request is not yet complete
3: if subjectID ∈ ⟨⟩ inquiredValues ∧ for ≡ CI then stop ⊲ No request of subject identifiers when using software-only authorization
4: let grantResponse := []
5: if accessToken ∈ ⟨⟩ inquiredValues then
6: let accessToken := 𝜈10
7: let grantResponse[accessToken] := [value:accessToken]
8: if instanceID ∈ ⟨⟩ 𝑠 ′.grantRequests[grantID] then
9: let bindToNewKey← {⊤,⊥} ⊲ Non-det. decide to bind access token to different key for pre-registered CIs
10: if bindToNewKey ≡ ⊤ then ⊲ Access token is bound to its own key
11: let instanceID := 𝑠 ′.grantRequests[grantID] [instanceID]
12: let keyData← 𝑠 ′.clientTokenKeys[instanceID] ⊲ Non-det. choose a key from this client
13: let pubKey := 𝑘𝑒𝑦𝐷𝑎𝑡𝑎.pubKey
14: let keyID := 𝑘𝑒𝑦𝐷𝑎𝑡𝑎.keyID
15: if 𝑘𝑒𝑦𝐷𝑎𝑡𝑎.method ≡ sign then
16: let 𝑠 ′.tokenBindings[accessToken] := [grantID:grantID, for:for, type:newSign, keyID:keyID,

↩→ publicKey:pubKey]
17: let grantResponse[accessToken] [key] := [pubKey:pubKey]
18: else
19: let 𝑠 ′.tokenBindings[accessToken] := [grantID:grantID, for:for, type:newMTLS, publicKey:pubKey)]
20: let grantResponse[accessToken] [key] := [pubKey:pubKey]
21: else ⊲ Access token is bound to client instances key
22: let 𝑠 ′.tokenBindings[accessToken] := [grantID:grantID, for:for, type:CIKey]
23: else if bearerToken ∈ ⟨⟩ inquiredValues then
24: let bearerToken := 𝜈10
25: let 𝑠 ′.tokenBindings[bearerToken] := [grantID:grantID, for:for, type:bearer]
26: let grantResponse[accessToken] := [value:bearerToken, flags:bearer]
27: if subjectID ∈ ⟨⟩ inquiredValues then
28: let grantResponse[subjectID] := [value:𝑠 ′.grantRequests[grantID] [subjectID]]
29: let allowContinuation← {⊤,⊥}
30: if allowContinuation ≡ ⊤ then
31: let keepOldAT ← {⊤,⊥}
32: if keepOldAT ≡ ⊤ ∧ oldContinueAT . ⊥ then
33: let continueAT := oldContinueAT ⊲ Continue access token does not change
34: else
35: let continueAT := 𝜈11
36: let continueURL := ⟨URL, S, host, /continue, ⟨⟩⟩
37: let grantResponse[continue] := [accessToken:continueAT , url:continueURL]
38: let 𝑠 ′.grantRequests[grantID] [continueAT] := continueAT ⊲ Overwrites old continueAT
39: return ⟨grantResponse, s′⟩

Algorithm A.18 Relation of an AS 𝑅as : Leaking access tokens.

1: function STOP_WITH_LEAKS(𝑓 , 𝑎,𝑚′, grantResponse, 𝑠 ′)
2: let events := ⟨⟨𝑓 , 𝑎,𝑚′⟩⟩
3: if continue ∈ grantResponse then ⊲ Leakage of continuation access token
4: let events := events +⟨⟩ ⟨leak, 𝑎, ⟨LEAK, grantResponse[continue] [accessToken]⟩⟩
5: if accessToken ∈ grantResponse ∧ grantResponse[accessToken] [type] . bearer then ⊲ Leakage of key-bound access token
6: let events := events +⟨⟩ ⟨leak, 𝑎, ⟨LEAK, grantResponse[accessToken]⟩⟩
7: stop events, 𝑠 ′

44

Algorithm A.19 Relation of script_as_login.

Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
⊲ Script that models the login page of an AS

1: let switch← {login, link} ⊲ Non-deterministically decide whether to log in or to follow some link
2: if switch ≡ login then ⊲ Log in to the AS
3: let url := GETURL(tree, docnonce)
4: if request ∈ scriptstate then ⊲ redirect interaction finish mode is used
5: let url′ := ⟨URL, S, url.host, /redirectLogin, ⟨⟩⟩
6: let formData := scriptstate ⊲ Contains redirect request identifier + referrer
7: else ⊲ user code interaction start mode is used
8: let url′ := ⟨URL, S, url.host, /userCodeLogin, ⟨⟩⟩
9: let formData := scriptinputs ⊲ Contains user code if client instance domain matched
10: let identity← ids
11: let secret ← secrets
12: let formData[identity] := identity
13: let formData[password] := secret
14: let command := ⟨FORM, url′, POST, formData,⊥⟩
15: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩
16: else ⊲ Follow link
17: let protocol← {P, S} ⊲ Non-det. select protocol (HTTP or HTTPS)
18: let host ← Doms ⊲ Non-det. select host
19: let path← S ⊲ Non-det. select path
20: let fragment ← S ⊲ Non-det. select fragment part
21: let parameters← [S × S] ⊲ Non-det. select parameters
22: let url := ⟨URL, protocol, host, path, parameters, fragment⟩ ⊲ Assemble URL
23: let command := ⟨HREF, url,⊥,⊥⟩ ⊲ Follow link to the selected URL
24: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩

45

A.13 Resource Servers
A resource server rs ∈ RS is a web server modeled as an atomic DY
process (𝐼 rs, 𝑍 rs, 𝑅rs, 𝑠rs0) with the addresses 𝐼 rs B addr(rs).

To verify MACs created by client instances, the RSs store sym-
metric key records:

Definition A.9. A symmetric key record is a term of the form

⟨instanceID, ⟨keyID, key⟩⟩

with instanceID ∈ S, keyID ∈ KeyIDs, and key ∈ 𝐾KP.
Symmetric key records are used to store the symmetric keys

of the client instances registered with the various ASs that rs is
configured to use.

Next, we define the set 𝑍 rs of states of rs and the initial state 𝑠rs0
of rs.

Definition A.10. A state 𝑠 ∈ 𝑍 rs of RS rs is a term of the form
⟨DNSaddress, pendingDNS, corrupt, pendingRequests, keyMapping,
tlskeys, authServers, symKeys, signingKeyID, signingKey, mtlsKey,
identities, instanceIDs, userResources, clientResources,
resourceRequests, mtlsRequests, sigNonces⟩ with DNSaddress ∈ IPs,
pendingDNS ∈

[
N × TN

]
, corrupt ∈ TN , pendingRequests ∈[

N × TN

]
, keyMapping ∈

[
Doms × TN

]
,

tlskeys ∈ [Doms × 𝐾TLS], authServers ∈ TN ,

symKeys ∈
[
Doms ×

[
S × TN

]]
, signingKeyID ∈ N , signingKey ∈

N , mtlsKey ∈ N ,
identities ∈

[
Doms × TN

]
, instanceIDs ∈

[
Doms × TN

]
,

userResources ∈
[
ID ×N

]
, clientResources ∈

[
Doms ×

[
S ×N

]]
,

resourceRequests ∈
[
N ×

[
S × TN

]]
, mtlsRequests ∈

[
N ×N

]
,

and sigNonces ∈ TN .
An initial state 𝑠rs0 of rs is a state of rs with

𝑠rs0 .pendingDNS ≡ ⟨⟩, 𝑠
rs
0 .corrupt ≡ ⊥, 𝑠

rs
0 .pendingRequests ≡ ⟨⟩,

𝑠rs0 .keyMapping being the same as the keymapping for browsers,
𝑠rs0 .tlskeys ≡ tlskeysrs , and 𝑠rs0 .resourceRequests ≡
𝑠rs0 .mtlsRequests ≡ 𝑠

rs
0 .sigNonces ≡ ⟨⟩.

resourceRequests will store various information about ongoing
requests. The different requests are distinguished by a nonce called
requestID, which acts as a key for the outer dictionary.

mtlsRequests and sigNonces work the same way as for the autho-
rization servers in Appendix A.12.
𝑠rs0 .authServers is a sequence of domains representing the ASs

that rs is configured to use. rs thus manages resources for the ASs in
𝑠rs0 .authServers and sends introspection requests to them. For all
domains 𝑑 ∈ ⟨⟩ 𝑠rs0 .authServers there must be an AS as ∈ AS with
𝑑 ∈ dom(as). To simplify the following notations and algorithms,
we assume that each RS uses each AS under only one domain,
i.e., for all domains 𝑑, 𝑑 ′ ∈ ⟨⟩ 𝑠rs0 .authServers, 𝑑 . 𝑑

′ it holds that
dom−1 (𝑑) ≠ dom−1 (𝑑 ′).
𝑠rs0 .symKeys is used to store the symmetric keys of the client

instances registered with the ASs in 𝑠rs0 .authServers. GNAP only
requires that an RS must be able to dereference key references (sub-
sumed with instance identifiers in our model) provided by the client
instances. However, the protocol does not specify how this derefer-
encing should work. Since symmetric keys cannot be transmitted

from an AS to an RS as part of token introspection (because GNAP
allows arbitrary servers to use the token introspection endpoint
and thus the symmetric keys could otherwise be leaked to arbitrary
servers via token introspection), we store the keys in 𝑠rs0 .symKeys
using symmetric key records. The keys of the outer dictionary are
the domains of the various ASs that rs is configured to use. For each
domain 𝑑 ∈ 𝑠rs0 .symKeys it must hold that 𝑑 ∈ ⟨⟩ 𝑠rs0 .authServers.
The inner dictionaries, which are the values of the outer dictionary,
consist of symmetric key records.

For each client instance 𝑐 ∈ CI, each domain 𝑑 ∈ ⟨⟩
𝑠c0 .authServers, and each key record 𝑟 ∈ ⟨⟩ 𝑠𝑐0 .keyRecords[𝑑]
with 𝑟 .method ≡ mac ∧ 𝑟 .rs ∈ dom(rs) there must be exactly
one symmetric key record 𝑟 ′ ∈ ⟨⟩ 𝑠rs0 .symKeys[𝑑

′] for the 𝑑 ′ ∈ ⟨⟩
𝑠rs0 .authServers which is in dom(dom−1 (𝑑)) (if such a 𝑑 ′ exists)
such that

𝑟 ′.instanceID ≡ 𝑟 .instanceID
∧ 𝑟 ′.2.keyID ≡ 𝑟 .keyID
∧ 𝑟 ′.2.key ≡ 𝑟 .key .

For all domains 𝑑 ∈ 𝑠rs0 .symKeys, there should be no symmetric key
records in 𝑠rs0 .symKeys[𝑑] other than those mentioned above.
𝑠rs0 .signingKeyID ∈ keyIDs represents the key ID for the key

𝑠rs0 .signingKey.
𝑠rs0 .signingKey is a key in 𝐾KP that must initially be stored in

rs only. It will be used by rs to sign its introspection requests to the
ASs, if MTLS is not used.
𝑠rs0 .mtlsKey is a key in 𝐾KP that must initially be stored in rs

only. It will be used by rs for MTLS key proofs for its introspection
requests to the ASs, if signatures are not used.

In 𝑠rs0 .identities rs stores the identities for which it stores
resources. The keys are domains of the ASs rs is configured to
use. The values are sequences of identities. For each domain 𝑑 ∈
𝑠rs0 .identities it must hold that 𝑑 ∈ ⟨⟩ 𝑠rs0 .authServers. For each
identity 𝑖 ∈ ⟨⟩ 𝑠rs0 .identities[𝑑] it must hold that there is a user

record 𝑟 ∈ ⟨⟩ 𝑠dom
−1 (𝑑)

0 .users such that 𝑖 ≡ 𝑟 .identity.
𝑠rs0 .instanceIDs stores the instance identifiers of the client in-

stances for which rs stores resources. The keys are domains of
the ASs that rs is configured to use. The values are sequences of
instance identifiers used by the AS that belongs to the domain
used as key. For each domain 𝑑 ∈ 𝑠rs0 .instanceIDs it must hold
that 𝑑 ∈ ⟨⟩ 𝑠rs0 .authServers. For each instance identifier 𝑖 ∈ ⟨⟩
𝑠rs0 .instanceIDs[𝑑] it must hold that there is a client registration

record 𝑟 ∈ ⟨⟩ 𝑠dom
−1 (𝑑)

0 .registrations such that 𝑖 ≡ 𝑟 .instanceID.
If 𝑟 .keyData.method ≡ mac it must additionally hold that 𝑖 ∈
𝑠rs0 .symKeys[𝑑]. This is because when using symmetric keys, only
the RS with which the client instance shares its symmetric key can
manage resources for that client instance (when using 𝑖 as instance
ID), since the other RSs do not know the client instance’s symmetric
key and thus cannot validate key proofs of that client instance.
𝑠rs0 .userResources contains the nonces representing the

resources rs manages for specific identities. 𝑠rs0 .userResources
maps identities to nonces in ProtectedResources. All nonces in
ProtectedResources that are subterms of 𝑠rs0 .userResources must
only be stored in rs initially. For each 𝑑 ∈ 𝑠rs0 .identities and each
𝑖 ∈ ⟨⟩ 𝑠rs0 .identities[𝑑] there must be a nonce

46

𝑛 ∈ ProtectedResources such that 𝑠rs0 .userResources[𝑖] ≡ 𝑛.
For each 𝑖 ∈ 𝑠rs0 .userResources there must be a domain
𝑑 ∈ 𝑠rs0 .identities such that 𝑖 ∈ ⟨⟩ 𝑠rs0 .identities[𝑑].
For all 𝑖, 𝑖 ′ ∈ 𝑠rs0 .userResources, 𝑖 . 𝑖 ′ we require that
𝑠rs0 .userResources[𝑖] . 𝑠

rs
0 .userResources[𝑖

′].
𝑠rs0 .clientResources contains the nonces representing the re-

sources rs manages for the client instances that are registered at
the ASs that rs is configured to use. 𝑠rs0 .clientResourcesmaps do-
mains representing ASs to dictionaries that map the instance iden-
tifiers used by the AS to nonces in ProtectedResources. All nonces
in ProtectedResources that are subterms of 𝑠rs0 .clientResources
must only be stored in rs initially. For each 𝑑 ∈ 𝑠rs0 .instanceIDs
and each 𝑖 ∈ ⟨⟩ 𝑠rs0 .instanceIDs[𝑑] there must be a nonce 𝑛 ∈
ProtectedResources such that 𝑠rs0 .clientResources[𝑑] [𝑖] ≡ 𝑛.
For all 𝑑 ∈ 𝑠rs0 .clientResources and 𝑖 ∈ 𝑠rs0 .clientResources[𝑑]
it must hold that 𝑖 ∈ ⟨⟩ 𝑠rs0 .instanceIDs[𝑑]. For each client in-
stance to have its own resource, the following must apply: For
all domains 𝑑 ∈ 𝑠rs0 .clientResources and all identities 𝑖, 𝑖 ′ ∈
𝑠rs0 .clientResources[𝑑], with 𝑖 . 𝑖 ′ we require that
𝑠rs0 .clientResources[𝑑] [𝑖] . 𝑠rs0 .clientResources[𝑑] [𝑖

′]. Fur-
thermore, for all domains 𝑑, 𝑑 ′ ∈ 𝑠rs0 .clientResources, 𝑑 . 𝑑 ′,
every identity 𝑖 ∈ 𝑠rs0 .clientResources[𝑑], and every identity
𝑖 ′ ∈ 𝑠rs0 .clientResources[𝑑

′] it must hold that:
𝑠rs0 .clientResources[𝑑] [𝑖] . 𝑠

rs
0 .clientResources[𝑑

′] [𝑖 ′].
There must not be a nonce 𝑛 ∈ ProtectedResources that is a

subterm of both 𝑠rs0 .userResources and 𝑠
rs
0 .clientResources.

Since we allow rs to use multiple ASs in our modeling, rs must
be able to determine which of the ASs in 𝑠rs0 .authServers to use
for token introspection for a given access token. Since determining
this is out of scope for GNAP, we define the function is_issuer to
determine the issuer of an access token in a state 𝑆 of a configuration
(𝑆, 𝐸, 𝑁) of a run as follows:

Definition A.11. Given a nonce 𝑛 and a domain 𝑑 ,

is_issuer(𝑛,𝑑) ≡ ⊤ ⇔ 𝑛 ∈ 𝑆 (dom−1 (𝑑)).tokenBindings .

is_issuer can be used by all processes and is the only such function
in our model.

We now specify the relation 𝑅rs : This relation is again based on
the generic HTTPS server model defined in [29]. Table 4 shows a
list of all placeholders used in the algorithms.

Usage

𝜈1 new request identifier used as key for the
resourceRequests subterm

𝜈2 new HTTP request nonce
𝜈3 new nonce for MTLS
𝜈4 new protected resource for a client instance
𝜈5 new HTTP request nonce

Table 4: List of placeholders used in the RS algorithms.

The following algorithms are used for modeling the resource
servers:

• Algorithm A.20 accepts requests to rs. If rs receives a request
for a resource, rs first uses is_issuer to determine to which
of the ASs in the authServers subterm it must send the intro-
spection request to. Then it sends the introspection request
to this AS, where it is non-deterministically decided whether
a signature or MTLS is used as key proofing method. MACs
are not modeled here, since rs would have to be registered
with the AS in order for them to have shared symmetric keys.
However, GNAP also allows arbitrary RSs to send introspec-
tion requests, so we do not model RSs that are pre-registered
at an AS. The information required to process the response
to the introspection request is stored in the resourceRequests
subterm.
• Algorithm A.21 processes responses received by rs. If rs
receives an introspection response, it checks that the authen-
tication scheme used by the client instance in its resource
request is correct, and if dealing with a key-bound access to-
ken, it validates the key proof. If the key proof was validated
successfully or a valid bearer token was used, the associated
resource is returned from either the userResources subterm or
the clientResources subterm, depending on whether software-
only authorization was used.

47

Algorithm A.20 Relation of an RS 𝑅rs : Processing HTTPS requests.

1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠 ′)
2: if 𝑚.path ≡ /resource ∧𝑚.method ≡ GET then ⊲ Client instance wants to receive a resource
3: let type, accessToken such that ⟨type, accessToken⟩ ≡𝑚.headers[Authorization] if possible; otherwise stop
4: let requestID := 𝜈1
5: let domainAS← 𝑠 ′.authServers such that is_issuer(accessToken, domainAS) ≡ ⊤ if possible; otherwise stop
6: let introspectionEndpoint := ⟨URL, S, domainAS, /introspect, ⟨⟩,⊥⟩
7: let 𝑠 ′.resourceRequests[requestID] := [request:𝑚, key:𝑘, receiver:𝑎, sender:𝑓 , type:type, AS:domainAS]
8: let method ← {sign, mtls} ⊲ Key proofing method for introspection request
9: if method ≡ sign then
10: let keyEntry := [keyID:𝑠 ′.signingKeyID, key:pub(𝑠 ′.signingKey), method:sign]
11: let body := [accessToken:accessToken[value], RS:keyEntry]
12: let reference := [responseTo:introspection, requestID:requestID]
13: call SIGN_AND_SEND(POST, introspectionEndpoint, 𝑠 ′.signingKeyID, 𝑠 ′.signingKey,⊥,⊥, body, reference, 𝑠 ′, 𝑎)
14: else
15: let keyEntry := [key:pub(𝑠 ′.mtlsKey), method:mtls]
16: let body := [accessToken:accessToken[value], RS:keyEntry]
17: let 𝑠 ′.resourceRequests[requestID] [body] := body
18: let request := ⟨HTTPReq, 𝜈2, POST, domainAS, /MTLS-prepare, ⟨⟩, ⟨⟩, [publicKey:pub(𝑠 ′.mtlsKey)]⟩
19: let reference := [responseTo:MTLS, requestID:requestID]
20: call HTTPS_SIMPLE_SEND(reference, request, 𝑠 ′, 𝑎)
21: else if 𝑚.path ≡ /MTLS-prepare ∧𝑚.method ≡ POST then
22: let mtlsNonce := 𝜈3
23: if publicKey ∈𝑚.body then
24: let clientKey :=𝑚.body[publicKey]
25: else stop ⊲ clientKey is missing
26: let 𝑠 ′.mtlsRequests := 𝑠 ′.mtlsRequests +⟨⟩ ⟨mtlsNonce, clientKey⟩
27: let𝑚′ := encs (⟨HTTPResp,𝑚.nonce, 200, ⟨⟩, enca (⟨mtlsNonce, 𝑠 ′.keyMapping[𝑚.host]⟩, clientKey)⟩, 𝑘)
28: stop ⟨⟨𝑓 , 𝑎,𝑚′⟩⟩, 𝑠 ′
29: else stop ⊲ Unsupported operation

48

Algorithm A.21 Relation of an RS 𝑅rs : Processing HTTPS responses.

1: function PROCESS_HTTPS_RESPONSE(𝑚, reference, request, 𝑎, 𝑓 , 𝑠 ′)
2: let requestID := reference[requestID]
3: if reference[responseTo] ≡ introspection then
4: let response :=𝑚.body
5: if response[active] ≡ ⊥ then stop ⊲ Access token is invalid
6: else
7: let resourceReq := 𝑠 ′.resourceRequests[requestID] [request]
8: let type := 𝑠 ′.resourceRequests[requestID] [type]
9: let domainAS := 𝑠 ′.resourceRequests[requestID] [AS]
10: if response[flags] . bearer then ⊲ Access token is bound to a specific key
11: if type . GNAP then stop ⊲ Wrong authentication scheme was used
12: if instanceID ∈ response then ⊲ A MAC must be validated
13: if response[instanceID] ∈ 𝑠 ′.symKeys[domainAS] then
14: let ⟨keyID, key⟩ := 𝑠 ′.symKeys[domainAS] [response[instanceID]]
15: let 𝑠 ′ := VALIDATE_KEY_PROOF(mac, resourceReq, keyID, key, 𝑠 ′)
16: else stop ⊲ rs does not know the symmetric key
17: else
18: let method := response[key] [method]
19: let key := response[key] [key]
20: if method ≡ sign then
21: let keyID := response[key] [keyID]
22: let 𝑠 ′ := VALIDATE_KEY_PROOF(sign, resourceReq, keyID, key, 𝑠 ′)
23: else if method ≡ mtls then
24: let 𝑠 ′ := VALIDATE_KEY_PROOF(mtls, resourceReq,⊥, key, 𝑠 ′)
25: else stop ⊲ Unsupported method
26: else ⊲ Access token is a bearer token
27: if type . Bearer then stop ⊲ Wrong Authentication scheme was used
28: if key ∈ response then stop ⊲ For a bearer token no key may be included
29: if identity ∈ response[access] then
30: let identity := response[access] [identity] ⊲ Identity of the RO
31: if identity ̸∈ ⟨⟩ 𝑠 ′.identities[domainAS] then stop ⊲ no resources stored for this RO or identity not managed by this AS
32: let resource := 𝑠 ′.userResources[identity]
33: else if instanceID ∈ response[access] then
34: let instanceID := response[access] [instanceID]
35: if instanceID ̸∈ ⟨⟩ 𝑠 ′.instanceIDs[domainAS] then ⊲ rs does not yet store resources for this client instance
36: let resource := 𝜈4
37: let 𝑠 ′.instanceIDs[domainAS] := 𝑠 ′.instanceIDs[domainAS] +⟨⟩ instanceID
38: let 𝑠 ′.clientResources[domainAS] [instanceID] := resource
39: else ⊲ rs already stores a resource for this client instance
40: let resource := 𝑠 ′.clientResources[domainAS] [instanceID]
41: else stop ⊲ Invalid response
42: let responseKey := 𝑠 ′.resourceRequests[requestID] [key]
43: let sender := 𝑠 ′.resourceRequests[requestID] [sender]
44: let receiver := 𝑠 ′.resourceRequests[requestID] [receiver]
45: let𝑚′ := encs (⟨HTTPResp, resourceReq.nonce, 200, ⟨⟩, resource⟩, responseKey)
46: stop ⟨⟨sender, receiver,𝑚′⟩⟩, 𝑠 ′

This algorithm is continued on the next page.

49

Continuation of Algorithm A.21 (RS PROCESS_HTTPS_RESPONSE)

47: else if reference[responseTo] ≡ MTLS then
48: let𝑚dec := deca (𝑚.body, 𝑠 ′.mtlsKey)
49: let mtlsNonce, pubKey such that ⟨mtlsNonce, pubKey⟩ ≡𝑚dec if possible; otherwise stop
50: if pubKey ≡ 𝑠 ′.keyMapping[request .host] then ⊲ Send nonce only to the process that created it
51: let domainAS := 𝑠 ′.resourceRequests[requestID] [AS]
52: let body := 𝑠 ′.resourceRequests[requestID] [body]
53: let body [mtlsNonce] := mtlsNonce
54: let introspectionRequest := ⟨HTTPReq, 𝜈5, POST, domainAS, /introspect, ⟨⟩, ⟨⟩, body⟩
55: let ref := [responseTo:introspection, requestID:requestID]
56: call HTTPS_SIMPLE_SEND(ref , introspectionRequest, 𝑠 ′, 𝑎)
57: else stop

50

B GENERAL DEFINITIONS
Definition B.1 (Sending Requests). We say that a DY process 𝑝 sent

a request 𝑟 ∈ HTTPRequests (at some point) in a run if 𝑝 emitted
an event ⟨𝑥,𝑦, enca (⟨𝑟, 𝑘⟩, 𝑘 ′)⟩ in some processing step for some
addresses 𝑥 , 𝑦, some 𝑘 ∈ N , and some 𝑘 ′ ∈ TN .

Definition B.2 (End user attempted to authenticate at an AS). For
a run 𝜌 of a GNAP web system GWS we say that the end user of
the browser 𝑏 attempted to authenticate to an authorization server
as using an identity 𝑢 in a GNAP flow identified by a nonce CIgid
at the client instance 𝑐 if there is a processing step 𝑄 in 𝜌 with

𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆 ′, 𝐸 ′, 𝑁 ′)

(for some 𝑆, 𝑆 ′, 𝐸, 𝐸 ′, 𝑁 , 𝑁 ′) in which the browser 𝑏 was triggered,
selected a document loaded from an origin of as, executed the script
script_as_login in that document, and in that script, in Line 10 of
Algorithm A.19, selected the identity 𝑢. If the scriptstate of that
document, when triggered, contained the key request, let 𝑠 ≡
scriptstate[request]. Otherwise, let 𝑠 ′ ≡ scriptinputs[userCode].
With ASgid as the grant ID of as, for which
𝑆 (as) .grantRequests[ASgid] [redirectNonce] ≡ 𝑠 respectively
𝑆 (as) .grantRequests[ASgid] [userCode] ≡ 𝑠 ′, 𝑐 is the client in-
stance that sent the request𝑚 that led to the creation of ASgid in
Line 3 of Algorithm A.13. CIgid is the grant ID of 𝑐 that was created
in Line 9 of Algorithm A.6 in the processing step in which𝑚 was
sent by 𝑐 . We then write tryLogin𝑄𝜌 (𝑏, 𝑐,𝑢, as,CIgid,ASgid).

Definition B.3 (End user successfully authenticated at an AS). For
a run 𝜌 of a GNAP web system GWS , we say that the end user of the
browser 𝑏 successfully authenticated to an authorization server as
using an identity 𝑢 in a GNAP flow identified by a nonce CIgid at
the client instance 𝑐 and a nonce ASgid at as if there is a processing
step 𝑄 in 𝜌 with

𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆 ′, 𝐸 ′, 𝑁 ′)

such that:
• At some step 𝑄 ′ before 𝑄 , we have that tryLogin𝑄

′
𝜌 (𝑏, 𝑐,𝑢,

as,CIgid,ASgid) holds.
• In the step 𝑄 , as calls FINISH_INTERACTION, with ASgid as
the first argument and the message𝑚 sent by 𝑏 in step 𝑄 ′
as the second argument.
• In the step 𝑄 , FINISH_INTERACTION successfully returns,
outputting at least one event. In particular, Line 17 of Algo-
rithm A.15 gets executed, and the state change that it causes
is saved.

We then write finishLogin𝑄𝜌 (𝑏, 𝑐,𝑢, as,CIgid,ASgid).

Definition B.4 (End user started a GNAP flow). For a run 𝜌 of a
GNAP web system GWS we say that the end user of the browser 𝑏
started a GNAP flow identified by a nonce gid at the client instance
𝑐 using the AS as in a processing step 𝑄 in 𝜌 if

(1) in that processing step, the browser 𝑏 was triggered, selected
a document loaded from an origin of 𝑐 , executed the script
script_ci_index in that document, and in that script, chose a
domain of as in Line 4 and executed Line 6 of AlgorithmA.12,
and

(2) the request from 𝑏 to the /startGrant endpoint of 𝑐 re-
sulting from (1) leads to the creation of gid in Line 9 of
Algorithm A.6 at 𝑐 .

We then write started𝑄𝜌 (𝑏, 𝑐, gid, as).

Definition B.5 (Client Instance started GNAP flow). Suppose 𝜌 is
a run of a GNAP web system GWS , and 𝑄 is a processing step in 𝜌
from (𝑆, 𝐸, 𝑁) to (𝑆 ′, 𝐸 ′, 𝑁 ′) in which a message𝑚 is emitted. We
say that a client 𝑐 starts a GNAP flow at the AS as, identified by
the nonces CIgid and ASgid on the client and AS side, respectively,
written

client_started𝑄𝜌 (𝑐,CIgid,𝑚, as,ASgid),
if:

(1) 𝑐 sent an HTTP request𝑚 to the /requestGrant path of as
(2) The reference for 𝑚 contains the mappings responseTo :

grantResponse and grantID : CIgid.
(3) When processing𝑚, as chooses grantID := ASgid in Line 3

of Algorithm A.13.

C PROPERTIES OF COREWIM
The following lemma was adapted from [21].

Lemma C.1 (Host of HTTP Reqest). For any run 𝜌 of a GNAP
web system GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌 , and every process
𝑝 ∈ CI ∪ AS ∪ RS that is honest in 𝑆 it holds true that if the generic
HTTPS server calls PROCESS_HTTPS_REQUEST(𝑚dec, 𝑘, 𝑎, 𝑓 , 𝑠

′)
in Algorithm 18 of the WIM [29], then𝑚dec .host ∈ dom(𝑝), for all
values of 𝑘 , 𝑎, 𝑓 , and 𝑠 ′.

Proof. For the proof we refer to [21] as it is the same. □

Lemma C.2 (Every response processed has a matching re-
qest.). Let 𝜌 be a run of a web system WS , and 𝑝 be an honest
instance of the generic HTTPS server model.

Suppose that:
(1) In a processing step 𝑠𝑖 → 𝑠𝑖+1, 𝑝 accepts a response resp and ex-

ecutes PROCESS_HTTPS_RESPONSE(resp, ref , req, _, 𝑓 , _)
for some ref , req, 𝑓 .

(2) The instance model for 𝑝 does not read or write the
pendingRequests or pendingDNS subterms of its state.

(3) The instance model for 𝑝 only emits messages in the procedure
HTTPSRequests via HTTPS_SIMPLE_SEND.

(4) The instance model for 𝑝 does not call the procedure
PROCESS_HTTPS_RESPONSE.

Then, 𝑝 previously calledHTTPS_SIMPLE_SEND(ref , req, _, _), and
req.nonce ≡ resp.nonce.

Let 𝑞 be the process such that 𝑓 ∈ 𝐼𝑞 , and let 𝑟 be the process
such that req.host ∈ dom(𝑟). If 𝑝 and 𝑟 satisfy the preconditions of
Lemma 4 of [29] (Note that (I) is given by the above, while (IV) and (V)
are implied by preconditions of this lemma), then we also have that
the response resp was created by the process 𝑟 that the corresponding
request was sent to.

Proof. This proof refers to Algorithms 18 and 13 in [29].
If PROCESS_HTTPS_RESPONSE is called by an honest instance

of the generic HTTPS server model, and the instance model does
not call this function, then the check on Line 21 of Algorithm 18

51

must succeed, and so resp.nonce ≡ req.nonce, giving the second
condition that we wish to verify.

Additionally, the check on Line 19 must have also succeeded,
meaning in particular that resp was received encrypted with some
key 𝑘 stored in pendingRequests. The entry in pendingRequests
containing 𝑘 (and also ref and req) can only have been written on
Line 15, as 𝑝 does not modify pendingRequests except in the core
model. This line is only reached upon receipt of a DNS response
(Line 10) whose nonce occurs in pendingDNS, and the correspond-
ing entry in pendingDNS is used to load ref and req before stor-
ing them into pendingRequests. This entry in pendingDNS can
only be written on Line 2 in HTTPS_SIMPLE_SEND (Algorithm
13). Here, the ref and req stored are passed in as arguments to
HTTPS_SIMPLE_SEND, and so we have, as desired, that 𝑝 must
have called HTTPS_SIMPLE_SEND(ref , req, _, _).

Now, if the conditions of Lemma 4 are satisfied, we can simply
invoke Lemma 4, case (4) and get that 𝑟 must be the creator of
resp. □

As our model of GNAP generally avoids breaking the abstrac-
tions of the WIM, the implementations of client instances and
resource servers both satisfy the preconditions of Lemma 4 of [29].
Most of these preconditions can be checked by simply observ-
ing that our model does not read or write particular subterms
of its state that are used by the underlying WIM. The remaining
preconditions are also easily checked, but slightly less immedi-
ate. For instance, clients and resource servers do not emit mes-
sages in HTTPSRequests because all HTTPS requests are sent via
HTTPS_SIMPLE_SEND, a function of the WIM, rather than of the
instance model built on top of the WIM.

Similarly, the preconditions of Lemma C.2 are all satisfied in
the case where the process 𝑝 is a client instance or a resource
server. Note that in Algorithm A.15, the authorization server model
modifies the pendingDNS field of its state, so the preconditions
of this lemma are not met in the case of authorization servers.
However, we do not use either of these lemmas in the case of
authorization servers, as the authorization server does not expect a
response to the requests it sends out.

For all request/response pairs in our model, then, we can apply
both Lemma C.2 and Lemma 4 of [29]. We will use these lemmas
implicitly through the rest of this document, in order to justify that
every response has a corresponding request (related to it via the
reference associated with the request), and that the response comes
from the same process to which the request is sent.

D GENERAL PROPERTIES
D.1 Things that don’t leak

Lemma D.1 (Private Keys of Client Instances do not leak).
For any run 𝜌 of a GNAP web system GWS = (W , S , script, 𝐸0),
every configuration (𝑆, 𝐸, 𝑁) in 𝜌 , every 𝑐 ∈ CI that is honest in
𝑆 , every domain dmn ∈ 𝑆 (𝑐) .keyRecords, every key record 𝑟 ∈ ⟨⟩
𝑆 (𝑐) .keyRecords[dmn] with 𝑟 .method ≡ sign ∨ 𝑟 .method ≡ mtls,
and every process 𝑝 ∈ W \ {𝑐} it holds true that 𝑟 .key ∉ 𝑑∅ (𝑆 (𝑝)).

Proof. There is no code section in which the value of 𝑟 .method
or the value of 𝑟 .key could change. Thus, it must hold that these
values are unchanged since the initial state. By the definitions of

the initial states of the processes, it must hold that for all processes
𝑝 ∈ W \ {𝑐} the nonce 𝑟 .key appears only as a public key in 𝑠𝑝0 .
As the equational theory does not allow the extraction of a private
key 𝑥 from a public key pub(𝑥), it must hold that 𝑟 .key ∉ 𝑑∅ (𝑠

𝑝

0)
for all 𝑝 ∈ W \ {𝑐}. Thus, for 𝑝 to know 𝑟 .key in 𝑆 , there must
have been a processing step in which 𝑐 leaked 𝑟 .key to another
process. Whenever 𝑟 .key is a subterm of a message emitted by
𝑐 , the public key to that private key, i.e. pub(𝑟 .key) is sent since
there is no code section in which an honest client instance sends a
private key. However, since pub(𝑟 .key) cannot be used to derive
𝑟 .key, 𝑟 .key ∉ 𝑑∅ (𝑆 (𝑝)) must hold for all 𝑝 ∈ W \ {𝑐}. □

Lemma D.2 (Private Keys of Resource Servers do not leak).
For any run 𝜌 of a GNAP web system GWS = (W , S , script, 𝐸0), every
configuration (𝑆, 𝐸, 𝑁) in 𝜌 , every rs ∈ RS that is honest in 𝑆 , and
every process 𝑝 ∈ W \ {rs} it holds true that 𝑆 (rs).signingKey ∉

𝑑∅ (𝑆 (𝑝)) ∧ 𝑆 (rs).mtlsKey ∉ 𝑑∅ (𝑆 (𝑝)).

Proof. There is no code section in which the value of the keys
in 𝑠rs0 .signingKey and 𝑠rs0 .mtlsKey could change. Thus, it must
hold that these keys are unchanged since the initial state. That is
𝑠rs0 .signingKey ≡ 𝑆 (rs) .signingKey and analogously
𝑠rs0 .mtlsKey ≡ 𝑆 (rs) .mtlsKey. By the definitions of the initial states
of the processes, the nonces 𝑠rs0 .signingKey and 𝑠rs0 .mtlsKey are
initially only stored in rs, which means 𝑠rs0 .signingKey ∉ 𝑑∅ (𝑠

𝑝

0)
and 𝑠rs0 .mtlsKey ∉ 𝑑∅ (𝑠

𝑝

0) for all 𝑝 ∈ W \ {rs}. Thus, for 𝑝 to
know 𝑠rs0 .signingKey or 𝑠

rs
0 .mtlsKey in 𝑆 , there must have been a

processing step in which rs leaked 𝑠rs0 .signingKey or 𝑠
rs
0 .mtlsKey

to another process. rs only includes 𝑠rs0 .signingKey as a subterm
of an emitted event in Line 10 of Algorithm A.20 and 𝑠rs0 .mtlsKey
in Line 15 of Algorithm A.20. However, in both lines only the
corresponding public key is included (pub(𝑠rs0 .signingKey) and
pub(𝑠rs0 .mtlsKey)). The public keys cannot be used to derive the
private keys 𝑠rs0 .signingKey and 𝑠rs0 .mtlsKey because the equa-
tional theory does not allow the extraction of a private key 𝑥
from a public key pub(𝑥). So it must hold that 𝑆 (rs).signingKey ∉

𝑑∅ (𝑆 (𝑝)) ∧ 𝑆 (rs).mtlsKey ∉ 𝑑∅ (𝑆 (𝑝)) for all 𝑝 ∈ W \ {rs}. □

Lemma D.3 (Symmetric Keys do not leak). For any run 𝜌 of
a GNAP web system GWS = (W , S , script, 𝐸0), every configuration
(𝑆, 𝐸, 𝑁) in 𝜌 , every 𝑐 ∈ CI that is honest in 𝑆 , every domain dmn ∈
𝑆 (𝑐) .keyRecords, every key record 𝑟 ∈ ⟨⟩ 𝑆 (𝑐) .keyRecords[dmn]
with 𝑟 .method ≡ mac, and every process 𝑝 ∈ W it holds true that if
as = dom−1 (dmn) is honest in 𝑆 , rs = dom−1 (𝑟 .rs) is honest in 𝑆 ,
and 𝑝 ∉ {𝑐, as, rs}, then 𝑟 .key ∉ 𝑑∅ (𝑆 (𝑝)).

Proof. Let i be an integer (used as a pointer) such that
𝑆 (𝑐) .keyRecords[dmn] .i ≡ 𝑟 . Since keys stored in key records
never change, we have 𝑟 .key ≡ 𝑆 (𝑐) .keyRecords[dmn] .i.key ≡
𝑠𝑐0 .keyRecords[dmn] .i.key. By definition, only 𝑐 , as, and rs initially
store the value of 𝑠𝑐0 .keyRecords[dmn] .i.key. This means it must
hold that 𝑠𝑐0 .keyRecords[dmn] .i.key ∉ 𝑑∅ (𝑠

𝑝

0) for all 𝑝 ∉ {𝑐, as, rs}.
Thus, for 𝑝 to know 𝑟 .key in 𝑆 , there must have been a processing
step in which 𝑐 , as, or rs leaked 𝑟 .key to another process. How-
ever, this is not possible because symmetric keys are used by client
instances only to generate MACs, while they are used by honest
authorization servers and honest resource servers only to validate

52

these MACs. Therefore, there is no code section in which 𝑐 emits
𝑆 (𝑐) .keyRecords[dmn] .i.key, no code section in which as emits
𝑆 (as) .registrations[𝑆 (𝑐).keyRecords[dmn] .i.instanceID] .key,
and no code section in which rs emits 𝑆 (rs) .symKeys[dmn′]
[𝑆 (𝑐).keyRecords[dmn] .i.instanceID] .key (for some dmn′) as a
subterm of an event. Thus, 𝑟 .key cannot be leaked to another pro-
cess in any processing step, so it must hold that 𝑟 .key ∉ 𝑑∅ (𝑆 (𝑝)).

□

Lemma D.4 (Keys for Access Tokens do not leak). For any
run 𝜌 of a GNAP web system GWS , every configuration (𝑆, 𝐸, 𝑁) in
𝜌 , every client instance 𝑐 ∈ CI that is honest in 𝑆 , every domain 𝑑 ∈
𝑆 (𝑐) .tokenKeys, every token key record 𝑟 ∈ ⟨⟩ 𝑆 (𝑐) .tokenKeys[𝑑],
and every process 𝑝 ∈ W \ {𝑐} it holds true that 𝑟 .key ∉ 𝑑∅ (𝑆 (𝑝)).

Proof. Similar to Lemma D.1, there is no place, where the pri-
vate key 𝑟 .key is sent out. Since initially 𝑟 .key appears only as
public key for other processes than 𝑐 , the proof is complete. □

The following lemma and its proof are based on Lemma 7 from
Fett et al. [22].

Lemma D.5 (MTLS Nonces do not leak to Third Parties). For
any run 𝜌 of a GNAP web system GWS , every configuration (𝑆, 𝐸, 𝑁)
in 𝜌 , every process p ∈ AS ∪ RS that is honest in 𝑆 , every process
𝑐 ∈ CI ∪ RS that is honest in 𝑆 , every mtlsNonce created in Line 145
of Algorithm A.13 resp. Line 22 of Algorithm A.20 in consequence
of a request 𝑚 received at the /MTLS-prepare path of 𝑝 that was
sent by 𝑐 , and every process 𝑝 ′ with 𝑝 ≠ 𝑝 ′ ≠ 𝑐 it holds true that
mtlsNonce ∉ 𝑑∅ (𝑆 (𝑝 ′)).

Proof. We start by showing that themtlsNonce is sent by 𝑝 only
asymmetrically encrypted and only 𝑐 knows the corresponding
private key. In doing so, we distinguish whether 𝑝 is an AS or an
RS.

If 𝑝 is an authorization server, it sends an mtlsNonce created in
Line 145 of Algorithm A.13 only in Line 156, where it is asymmetri-
cally encrypted with either the public key

clientKey

≡ 𝑆 (𝑝) .registrations[instanceID] .publicKey
≡ 𝑆 (𝑝) .registrations[𝑚.body[instanceID]] .publicKey

(using Lines 150 and 147) or the public key 𝑚.body[publicKey]
(Line 152).

First, we look at the latter case. There are various code sections
where the honest process 𝑐 can send amessage to the /MTLS-prepare
path that contains the public key under the key publicKey in its
body. Thereby the following values are sent:

(1) In Line 51 of Algorithm A.6:

pub(key)
≡ pub(keyRecord .key)
≡ pub(𝑆 ′(𝑐) .keyRecords[domainAS] .i.key)

(using Lines 41 and 27) for a previous state 𝑆 ′, a domain
domainAS ∈ Doms, and an i ∈ N.

(2) In Line 71 of Algorithm A.7:

pub(keyRecord .key)
≡ pub(grantRequest [keyRecord] .key)
≡ pub(𝑆 ′(𝑐).grants[grantID] [keyRecord] .key)

(using Lines 6 and 3) for a previous state 𝑆 ′ and a grant ID
grantID ∈ N . The keyRecord entry of 𝑆 ′(𝑐) .grants[grantID]
must have been stored in Line 28 of Algorithm A.6 or Line 10
of Algorithm A.8. In both cases the stored value keyRecord is
a key record from 𝑆 ′′(𝑐) .keyRecords[domainAS] for a pre-
vious state 𝑆 ′′ and a domain domainAS ∈ Doms (Line 27 of
Algorithm A.6 resp. Line 5 of Algorithm A.8).

(3) In Line 31 of Algorithm A.10:

pub(keyRecord .key)
≡ pub(𝑆 ′(𝑐).grants[grantID] [keyRecord] .key)

(using Line 14) for a previous state 𝑆 ′ and a grant ID grantID ∈
N . Using the same reasoning as for the second point, the
stored key record must again have been taken from
𝑆 ′′(𝑐) .keyRecords[domainAS].

(4) In Line 18 of Algorithm A.20: pub(𝑆 ′(𝑐) .mtlsKey) for a pre-
vious state 𝑆 ′.

In cases 1 to 3,𝑚.body[publicKey] equals the public key of a
private key from a key record in 𝑆 ′(𝑐) .keyRecords[domainAS] for
a previous state 𝑆 ′ and a domain domainAS ∈ Doms. By LemmaD.1,
this private key can only be known to the honest process 𝑐 . In case
4, the private key is the key used for MTLS by the RS 𝑐 , which can
only be known to 𝑐 due to Lemma D.2.

Now let’s look at the former case. There are two code sections
where the honest process 𝑐 can send amessage to the /MTLS-prepare
path of an AS 𝑝 that contains the instanceID key. Thereby the
following instance identifiers are sent:

(1) In Line 36 of Algorithm A.6:

keyRecord .instanceID

≡ 𝑆 ′(𝑐) .keyRecords[domainAS] .i.instanceID

(using Line 27) for a previous state 𝑆 ′, a domain domainAS ∈
Doms, and an integer i ∈ N.

(2) In Line 16 of Algorithm A.8:

instanceID

≡ keyRecord .instanceID

≡ 𝑆 ′(𝑐) .keyRecords[domainAS] .i.instanceID

(using Lines 8 and 5) for a previous state 𝑆 ′, a domain
domainAS ∈ Doms, and an integer i ∈ N.

Thus, in both cases, the instance identifier sent by 𝑐 is an instance
identifier from a key record 𝑟 ∈ ⟨⟩ 𝑆 ′(𝑐).keyRecords[domainAS].
Since domainAS is used as the host of 𝑐’s request in both cases, it
must hold that domainAS ∈ dom(𝑝).

Note that key records are preconfigured in the client, and can
only be updated once, to add an instance ID to a key record that
was not yet registered at an AS. In particular, this means that a key
record either matches the initial state or had its instance identifier
set when registering the key at an AS.

53

If 𝑟 ∈ ⟨⟩ 𝑠𝑐0 .keyRecords[domainAS] (𝑐 was pre-registered at 𝑝),
it must hold by definition that

𝑆 (𝑝) .registrations[𝑚.body[instanceID]] .publicKey
≡ 𝑆 (𝑝) .registrations[𝑟 .instanceID] .publicKey
≡ pub(𝑟 .key)

𝑟 .key can only be known to 𝑐 due to Lemma D.1.
If 𝑟 ̸∈ ⟨⟩ 𝑠𝑐0 .keyRecords[domainAS], the instance identifier

𝑟 .instanceIDmust have been set in Line 12 of AlgorithmA.7. Since
domainAS ∈ dom(𝑝) and because of Lemma D.94, it must hold that
𝑆 (𝑝).registrations[𝑚.body[instanceID]] .publicKey ≡
pub(𝑟 .key). Again, 𝑟 .key can only be known to 𝑐 due to Lemma D.1.

If 𝑝 is a resource server, it sends an mtlsNonce created in Line 22
of Algorithm A.20 only in Line 28, where it is asymmetrically en-
crypted with the public key 𝑚.body[publicKey] (Line 24). Mes-
sages to the /MTLS-prepare path of an RS are only sent at the
following lines:

(1) In Line 68 of Algorithm A.8:

pub(key)
≡ pub(keyRecord .key)
≡ pub(𝑆 ′(𝑐).grants[grantID] [keyRecord] .key)

(using Lines 56 and 55) for a previous state 𝑆 ′ and a grant
ID grantID ∈ N . Using the same reasoning as for case 2 of
𝑝 being an AS, the stored key record must again have been
taken from 𝑆 ′′(𝑐).keyRecords[domainAS].

(2) In Line 49 of Algorithm A.8: The public key used is
pub(privateKey) ≡ pub(keyData.key), where keyData is an
entry of 𝑆 ′(𝑐) .tokenKeys[domainAS] (Lines 41 and 43) for
a previous state 𝑆 ′.

As for the case of 𝑝 being an authorization server, in case 1 the key
is a public key of a private key from a key record, and hence by
Lemma D.1 only 𝑐 knows this key. In case 2, due to Lemma D.4,
only 𝑐 can know the private key associated with the public key.

We have now shown for all possible cases that themtlsNonce sent
by 𝑝 can only be decrypted by 𝑐 since only 𝑐 can know the required
private key. Now we show that 𝑐 sends the receivedmtlsNonce back
to 𝑝 only. For this we show that after decrypting the mtlsNonce
it is always sent to the same domain to which the request to
the /MTLS-prepare path was sent that led to the receipt of the
mtlsNonce. Thus, due to the use of HTTPS for all requests, the
mtlsNonce can only be sent back to 𝑝 .

The received mtlsNonce can be decrypted only in one of the
following sections:

(1) Line 82 of Algorithm A.7:
In this section, the mtlsNonce is sent to domainAS ≡
𝑆 ′(𝑐) .grants[grantID] [AS] (for a state 𝑆 ′ and a grant ID
grantID that is taken from the reference). The MTLS_GR refer-
ence type is used only in the Lines 53 and 38 of AlgorithmA.6
and Line 18 of Algorithm A.8.
In Line 53 and 38 of Algorithm A.6, the request goes to
domainAS, which is stored in Line 28 under

4Note, that Lemma D.9 only depends on Lemma C.2 which in turn does not depend on
any other lemma. Hence, we do not introduce a circular dependency at this point.

𝑆 ′′(𝑐) .grants[grantID] [AS]. Here, 𝑆 ′′ is a state before 𝑆 ′
and grantID is the grant ID from the reference.
In Line 18 of Algorithm A.8, the request goes to domainAS,
which in Line 10 is also stored in 𝑆 ′′(𝑐) .grants[grantID] [AS].
𝑆 ′′ is again a state before 𝑆 ′ and grantID is the grant ID from
the reference.
It must hold that 𝑆 ′′(𝑐) .grants[grantID] [AS] ≡
𝑆 ′(𝑐) .grants[grantID] [AS], since this value is not overwrit-
ten anywhere. Thus, the mtlsNonce is sent to the same do-
main as the request to the /MTLS-prepare path.

(2) Line 92 of Algorithm A.7:
Here, the mtlsNonce is sent to the domain url.host ≡
𝑆 ′(𝑐) .grants[grantID] [continueURL] .host (for a state 𝑆 ′
and a grant ID grantID that is taken from the reference).
The MTLS_CR reference type is used only in Line 33 of Algo-
rithm A.10. In this section, the request is sent to
continueURL.host which has the same value as
𝑆 ′′(𝑐) .grants[grantID] [continueURL] .host. Here, 𝑆 ′′ is a
state before 𝑆 ′ and grantID is the grant ID used in the refer-
ence.
It must hold true that the continue URL stored in 𝑆 ′′(𝑐) and
𝑆 ′(𝐶) are equivalent since the continueURL field is never
overwritten after its initialization in Line 35 of AlgorithmA.7.
Thus, themtlsNonce is sent to the same domain as the request
to the /MTLS-prepare path.

(3) Line 109 of Algorithm A.7:
The mtlsNonce is sent to url.host ≡ 𝑆 ′(𝑐).grants[grantID]
[patchRequest] .3.host (for a state 𝑆 ′ and a grant ID grantID
that is taken from the reference). The MTLS_PR reference
type is used only in Line 73 of Algorithm A.7. In this section,
the request goes to continueURL.host, where continueURL is
stored under 𝑆 ′′(𝑐).grants[grantID] [patchRequest] .3 in
Line 67. Here, 𝑆 ′′ is a state before 𝑆 ′ and grantID is the grant
ID used in the reference.
It must hold true that the patch URLs stored in 𝑆 ′′(𝑐) and
𝑆 ′(𝑐) are equivalent since the patchRequest value can only
be overwritten by a new PATCH request, but 𝑐 can send a
new patch request only after it received a grant response for
the previous PATCH request. Thus, the mtlsNonce is sent to
the same domain as the request to the /MTLS-prepare path.

(4) Line 119 of Algorithm A.7:
In this code section, the request into which the mtlsNonce is
inserted is loaded from the reference in Line 127. The request
must have been inserted into the reference in Line 51 of
Algorithm A.8 or in Line 70 of Algorithm A.8. In both cases,
the host of the inserted request is domainRS (Line 48 resp.
Line 67 of Algorithm A.8), which is also used as the host
for the request to the /MTLS-prepare path in Line 50 resp.
Line 69. Thus, the mtlsNonce is sent to the same domain as
the request to the /MTLS-prepare path.

(5) Line 47 of Algorithm A.21:
The mtlsNonce here is sent to domainAS ≡
𝑆 ′(𝑐).resourceRequests[requestID] [AS] (for a state 𝑆 ′ and
a request ID requestID that is taken from the reference). The
MTLS reference type is used only in Line 19 of AlgorithmA.20.
In this section, the request goes to domainAS, which is stored
in Line 7 in 𝑆 ′′(𝑐).resourceRequests[requestID] [AS]. Here,

54

𝑆 ′′ is a state before 𝑆 ′ and requestID is the request ID from
the reference.
It must hold true that the URLs stored in 𝑆 ′′(𝑐) and 𝑆 ′(𝑐) are
equivalent since the AS value cannot be overwritten. Thus,
the mtlsNonce is sent to the same domain as the request to
the /MTLS-prepare path.

We have now shown for all cases that 𝑐 sends the mtlsNonce
only to the same domain of 𝑝 to which it sent the request to the
/MTLS-prepare path (using HTTPS for both requests). Since 𝑝 is
honest in 𝑆 , 𝑝 uses the received mtlsNonce only to validate the key
proof and does not emit it as a subterm in any further events. So,
in summary, the mtlsNonce is leaked by its creator 𝑝 only to 𝑐 and
by 𝑐 only to 𝑝 . Thus, for all processes 𝑝 ′ for which 𝑝 ≠ 𝑝 ′ ≠ 𝑐 , it
must hold that mtlsNonce ∉ 𝑑∅ (𝑆 (𝑝 ′)). □

Lemma D.6 (Bearer Tokens do not leak). For any run 𝜌 of a
GNAP web system GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌 , every AS
as ∈ AS that is honest in 𝑆 , and every access token accessToken ∈
𝑆 (as) .tokenBindings with 𝑆 (as).tokenBindings[accessToken]
[type] ≡ bearer it holds true that if

(1) the client instance 𝑐 that sent the grant request that led to
the creation of the grant ID grantID ≡ 𝑆 (as).tokenBindings
[accessToken] [grantID] in Line 3 of Algorithm A.13 is honest
in 𝑆 ,

(2) if 𝑐 used a key record 𝑟 with 𝑟 .method ≡ mac for this grant
request, it holds true that dom−1 (𝑟 .rs) is honest in 𝑆 , and

(3) all RSs rs ∈ {rs ∈ RS | ∃dmnRS ∈ ⟨⟩ 𝑆 (𝑐) .grants[grantID]
[bearerRSs] : dmnRS ∈ dom(rs)} are honest in 𝑆 ,

then accessToken is only derivable by proccesses in {as, 𝑐} ∪ {rs ∈
RS | ∃dmnRS ∈ ⟨⟩ 𝑆 (𝑐) .grants[grantID] [bearerRSs] : dmnRS ∈
dom(rs)}.

Proof. We first show that an access token created by as is sent
by as only to 𝑐 . New access tokens are created only in Line 6 of Algo-
rithm A.17 (CREATE_GRANT_RESPONSE). The generated grant
response is returned by Algorithm A.17 in Line 39 and then sent
by as in one of the following lines of Algorithm A.13 (since only in
these sections CREATE_GRANT_RESPONSE is called):

(1) Line 48: grant response in response to a continuation request
(2) Line 79: adjustment of the requested values via a PATCH

request
(3) Line 70 (CREATE_GRANT_RESPONSE is called via Algo-

rithm A.16): adjustment of the requested values via a PATCH
request including interaction finish

(4) Line 59 (CREATE_GRANT_RESPONSE is called via Algo-
rithm A.16): completion of interaction via a POST request

In the first case, it is obvious that the grant response is returned
to 𝑐 , since this response is sent directly in response to the grant
request from 𝑐 . In cases 2, 3, and 4, the grant response is sent in
response to a continuation request, which by Lemma D.105 must
have been sent by 𝑐 . Thus, as sends the accessToken back to 𝑐 in all
cases. Due to the use of HTTPS it must hold true in all cases that

5Note that Lemma D.10 depends on Lemma D.8 which in turn uses Lemmas D.1, D.3
and D.5. The first two don’t have dependencies, and for Lemma D.5 we argued in a
previous footnote that there are no circular dependencies.

only 𝑐 can decrypt the response containing the accessToken. Thus,
as does not leak the accessToken to any process other than 𝑐 .

Since 𝑐 is honest by precondition, 𝑐 sends the obtained accessToken
only when executing Algorithm A.8. Since 𝑆 (as).tokenBindings
[accessToken] [type] ≡ bearer, as must have set the value of
grantResponse[accessToken] [flags] to bearer in Line 26 of Algo-
rithm A.17 (since 𝑆 (as).tokenBindings[accessToken] [type] can-
not change). Thus, when executing Algorithm A.8, if accessToken
is chosen in Line 30, it must hold that the if statement in Line 32 is
true, so the accessToken can only be sent by 𝑐 in Line 36. In this case,
accessToken is sent to domainRS, which is added to 𝑆 ′(𝑐) .grants
[grantID] [bearerRSs] in Line 33 for some state 𝑆 ′. Since a domain
can never be removed from 𝑆 ′(𝑐) .grants[grantID] [bearerRSs], it
must hold that 𝑐 sends accessToken only to RSs in
{rs ∈ RS | ∃dmnRS ∈ ⟨⟩ 𝑆 (𝑐).grants[grantID] [bearerRSs] :
dmnRS ∈ dom(rs)} (using HTTPS).

Since all rs in this set are honest by precondition, they send the
accessToken after receiving the request from 𝑐 only to the domainAS
for which it holds that is_issuer(accessToken, domainAS) ≡ ⊤ (due
to Line 5 of Algorithm A.20). However, since only honest RSs, as,
and 𝑐 are able to derive the accessToken, it must hold that domainAS ∈
dom(as), as by definition is_issuer(accessToken, domainAS) ≡ ⊤ ⇔
accessToken ∈ 𝑆 (dom−1 (domainAS)).tokenBindings and
domainAS must be a domain of an AS, since domainAS is chosen
from the authServers subterm (Line 5 of Algorithm A.20).

Thus, the accessToken is sent only to as by all resource servers
that received the access token from 𝑐 , also using HTTPS. as uses
an access token received via token introspection only to determine
the associated entry of the tokenBindings subterm in Line 120 of
Algorithm A.13 and then discards it.

Thus, in total, only processes in

{rs ∈ RS | ∃dmnRS ∈ ⟨⟩ 𝑆 (𝑐) .grants[grantID] [bearerRSs] :
dmnRS ∈ dom(rs)} ∪ {as, 𝑐}

are able to derive accessToken in 𝑆 , so for all processes 𝑝 not in that
set it must hold that accessToken ∉ 𝑑∅ (𝑆 (𝑝)) as long as the first
three conditions from the lemma are given as well. □

Lemma D.7 (Passwords do not leak). For any run 𝜌 of a GNAP
web system GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌 , every AS as ∈ AS
that is honest in 𝑆 , every identity 𝑢 ∈ IDas , and every process 𝑝 ∉

{as, ownerOfID(𝑢)} it holds true that secretOfID(𝑢) ∉ 𝑑∅ (𝑆 (𝑝)) as
long as ownerOfID(𝑢) is not fully corrupted in 𝑆 .

Proof. This proof is loosely based on the proof of Lemma 4
from [27]. Let 𝑧 = secretOfID(𝑢). According to the definitions of
the initial states, 𝑧 is initially stored only in ownerOfID(𝑢) and as.
as uses the passwords of its users only in Line 8 of Algorithm A.15
to check whether a submitted password matches the password of
the provided identity. Since 𝑧 is not used elsewhere by as, 𝑧 cannot
be leaked by as to another process during this process.

In our browser model, only scripts loaded from the origin
⟨dmnAS, S⟩ for a domain dmnAS ∈ dom(as) can access 𝑧. Since
as is honest, only script_as_login is eligible for this. Also, since
ownerOfID(𝑢) is not fully corrupted, it does not use or leak 𝑧 in
any other way.

55

If script_as_login was loaded and has access to 𝑧, it must have
been loaded from an origin ⟨dmnAS, S⟩ for a domain dmnAS of
as. The script sends 𝑧 to dmnAS in an HTTPS POST request. If
ownerOfID(𝑢) sends this request, as is the only party able to de-
crypt it due to the use of HTTPS. as uses the received password only
for the aforementioned comparison in Line 8 of Algorithm A.15
and then discards it. ownerOfID(𝑢) is then redirected to the client
instance by as in Line 21 or Line 28. Since the 303 redirect status
code is used in both cases, ownerOfID(𝑢) drops the body of the
POST request in the resulting request to the client instance and
rewrites it to a GET request, so 𝑧 is not leaked to the client instance
with this redirect.

Thus, there is no way 𝑧 could be leaked to a process 𝑝 not in
{as, ownerOfID(𝑢)}, which proves the lemma. □

D.2 Message Integrity
Lemma D.8 (Key Proofs authenticate the Signer and guar-

antee Integrity). For any run 𝜌 of a GNAP web system GWS , every
configuration (𝑆, 𝐸, 𝑁) in 𝜌 , and every process 𝑝 ∈ AS∪RS that is hon-
est in 𝑆 it holds true that if 𝑝 calls VALIDATE_KEY_PROOF(method,
𝑚, keyID, key, 𝑠 ′) for some method ∈ {sign, mac, mtls}, an HTTP
request𝑚 ∈ HTTPRequests, some keyID ∈ N , some state 𝑠 ′, and

• some key ≡ pub(𝑆 (𝑐) .keyRecords[domainAS] .i.key) or
key ≡ pub(𝑆 (𝑐) .tokenKeys[domainAS] .i.key) (if method ∈
{sign, mtls}) or
key ≡ 𝑆 (𝑐) .keyRecords[domainAS] .i.key (if method ≡ mac)
for some process 𝑐 ∈ CI, some domainAS ∈ Doms, and some
i ∈ N,
• that 𝑐 is honest in 𝑆 , and
• the call to VALIDATE_KEY_PROOF returns (i.e. it does not
stop),

then 𝑐 previously sent an HTTP request𝑚′ with
(1) 𝑚′.method ≡𝑚.method,
(2) 𝑚′.body ≡𝑚.body,
(3) 𝑚′.host ≡𝑚.host,
(4) 𝑚′.path ≡𝑚.path,
(5) 𝑚′.parameters ≡𝑚.parameters, and
(6) 𝑚′.headers[Authorization] ≡

𝑚.headers[Authorization]
(if Authorization ∈𝑚.headers).

If method ≡ mac we additionally require that
the AS as = dom−1 (domainAS) and
the RS rs = dom−1 (𝑆 (𝑐).keyRecords[domainAS] .i.rs) are honest
in 𝑆 (this is already given for as or rs if 𝑝 = as respectively 𝑝 = rs).

Proof. VALIDATE_KEY_PROOF (Algorithm A.5) only returns
in Line 31. Line 31 is reached due to Line 30 only if method ≡ mtls
(Line 25) or if method ∈ {sign, mac} (Line 2).

For the algorithm to return in the former case, it must hold
that there exists an mtlsInfo ∈ ⟨⟩ 𝑆 (𝑝) .mtlsRequests such that
mtlsInfo.1 ≡𝑚.body[mtlsNonce] ∧mtlsInfo.2 ≡ key. ThismtlsInfo
must have been stored in Line 154 of Algorithm A.13 (in case of
an AS) or in Line 26 of Algorithm A.20 (in case of an RS). In both
cases, the mtlsNonce ≡ mtlsInfo.1 ≡ 𝑚.body[mtlsNonce] is sent
only encrypted with the clientKey ≡ mtlsInfo.2 ≡ key. Thus, due
to Lemmas D.1 and D.4, only 𝑐 can decrypt the mtlsNonce, since

only 𝑐 can know the matching private key. Since mtlsNonce ≡
𝑚.body[mtlsNonce], for the sender 𝑝 ′ of 𝑚, it must hold that
mtlsNonce ∈ 𝑑∅ (𝑆 (𝑝 ′)). Thus, due to Lemma D.5, 𝑝 ′ must be 𝑐
or as. Since the honest AS as does not send HTTP requests, the
message𝑚 must have been sent by 𝑐 . Choosing𝑚′ =𝑚 then shows
the statement for the MTLS case.

In the case that method ∈ {sign, mac}, it must hold that
checksig(𝑚.headers[signature], key) ≡ ⊤ (if method ≡ sign)
or that checkmac(𝑚.headers[signature], key) ≡ ⊤ (if method ≡
mac). It also must hold that controlInput ≡
extractmsg(𝑚.headers[signature]). If we have that
checksig(𝑚.headers[signature], key) ≡ ⊤, the signature must
have been created by 𝑐 due to Lemmas D.1 and D.4.
If checkmac(𝑚.headers[signature], key) ≡ ⊤, the MAC must
have been created by 𝑐 due to Lemma D.3 and the assumption that
as and rs are honest, since according to the lemma only 𝑐 , as, and rs
can know the symmetric key, but as and rs do not use it to generate
MACs. Since the signature or MAC must have been created by 𝑐
and 𝑐 only creates signatures or MACs when calling Algorithm A.4
and controlInput ≡ extractmsg(𝑚.headers[signature]), 𝑐 must
have sent an HTTP request𝑚′ using SIGN_AND_SEND for which
the following holds true:

(1) 𝑚′.method ≡𝑚.method, since the HTTP method is always
covered by the controlInput (Line 13 of Algorithm A.5),

(2) 𝑚′.body ≡ 𝑚.body, since if 𝑚.body . ⟨⟩ the body is cov-
ered by the controlInput using a hash of it (Line 15 of Algo-
rithm A.5) and if𝑚.body ≡ ⟨⟩ it must hold that𝑚′.body ≡ ⟨⟩
as otherwise 𝑐 would have included the hash of the body in
the signature in Line 5 of AlgorithmA.4 and thus controlInput
would not match extractmsg(𝑚.headers[signature]),

(3) 𝑚′.host ≡𝑚.host, since the host is always covered by the
controlInput via the controlURL (Line 12 of Algorithm A.5),

(4) 𝑚′.path ≡𝑚.path, since the path is always covered by the
controlInput via the controlURL (Line 12 of Algorithm A.5),

(5) 𝑚′.parameters ≡𝑚.parameters, since the parameters are
always covered by the controlinput via the controlURL (see
Line 12 of Algorithm A.5), and

(6) if Authorization ∈ 𝑚.headers, it must hold that
𝑚′.headers[Authorization] ≡ 𝑚.headers[Authorization]
since when using the Authorization header, the header
is covered by the controlInput (Line 8 of Algorithm A.5).

Therefore, all equivalences required by the lemma must hold in this
case as well, which proves the lemma. □

D.3 AS - CI flow continuity
Lemma D.9 (Public Key stored during Registration belongs

to Client Instance). For any run 𝜌 of a GNAP web system GWS ,
every configuration (𝑆, 𝐸, 𝑁) in 𝜌 , every client instance 𝑐 ∈ CI that
is honest in 𝑆 , every AS as ∈ AS that is honest in 𝑆 , and every in-
stance identifier instanceID that has been stored in 𝑆 ′(𝑐) .keyRecords
[domainAS] .i in Line 12 of Algorithm A.7 for some previous state 𝑆 ′,
a domain domainAS ∈ dom(as), and some i ∈ N, it holds true that

pub(𝑆 (𝑐) .keyRecords[domainAS] .i.key)
≡ 𝑆 (as) .registrations[instanceID] .publicKey.

56

Proof. If an instance identifier is stored in Line 12 of Algo-
rithm A.7, it must hold that instanceID ∈ 𝑚.body (due to Line 9
and Line 8).𝑚 is a response to an HTTP request sent to domainAS,
since domainAS ≡ 𝑆 ′(𝑐) .grants[grantID] [AS] (Lines 3 and 4), all
grant requests are sent to the domain stored in this value, and this
value never changes once it is set. By Lemma C.2, the grant response
processed by 𝑐 must originate from as.

as only uses the instanceID key in a response in Lines 46 and
133 of Algorithm A.13. Since 𝑐 is honest, it doesn’t send requests
to the /introspect endpoint of as, and hence𝑚 can not contain
the instanceID key from 133. Under the returned instanceID, as
stores the value publicKey in the registrations subterm (Line 42 resp.
Line 45), which is why it must hold that

𝑆 ′(as) .registrations[instanceID] .publicKey
≡ publicKey (L. 42/45)
≡ grantRequest [client] [key] (L. 41/44)
≡𝑚.body[client] [key] (Line 5)

Note that Line 38 of Algorithm A.13 prevents the stored client regis-
tration record from being overwritten (this is the only code section
where the client registration records are written to), so it must hold
that the value of the registration[instanceID] entry in 𝑆 ′(as)
and 𝑆 (as) are equivalent. This means that 𝑆 (as).registrations
[instanceID] .publicKey must be the value𝑚.body[client] [key]
from the HTTP request𝑚 sent by 𝑐 to domainAS (using HTTPS).
The only lines where 𝑐 sends such a message (a grant request con-
taining a client entry) are Line 44 and Line 49 of Algorithm A.6.
In both cases, the public key

pub(key)
≡ pub(keyRecord .key) (Line 41)

≡ pub(𝑆 ′′(𝑐).keyRecords[domainAS] .i.key) (Line 27)

(for a previous state 𝑆 ′′ and some i ∈ N) is transmitted in the grant
request. The key record used in Line 27 is stored in 𝑆 ′′(𝑐) .grants
[grantID] [keyRecord] in Line 28 and this value cannot change.
grantID thereby is the grant IDwhich is used under the grantID key
in the reference for the request (in Line 46 of Algorithm A.6 resp. in
Line 53 of AlgorithmA.6 and then again in Line 89 of AlgorithmA.7).
Thus, the key record read when processing the response from as
in Line 6 of Algorithm A.7 is the key record chosen in Line 27 of
Algorithm A.6 (𝑆 ′′(𝑐).keyRecords[domainAS] .i), since

keyRecord

≡ grantRequest [keyRecord] (Line 6)
≡ 𝑆 ′(𝑐).grants[grantID] .keyRecord (Line 3)
≡ 𝑆 ′(𝑐).grants[reference[grantID]] .keyRecord (Line 2)

Thus, in Line 12 of Algorithm A.7, the instanceID returned by as is
stored in the key record whose public key was stored at as when 𝑐
was registered. Due to the check in Line 10, this key record cannot
change anymore (this is the only code section where key records

are written). Thus, it holds that

𝑆 (as) .registrations[instanceID] .publicKey
≡ pub(𝑆 ′(𝑐) .keyRecords[domainAS] .i.key)
≡ pub(𝑆 (𝑐).keyRecords[domainAS] .i.key) .

□

Lemma D.10 (Continuation Reqest must stem from the
same Client Instance). For any run 𝜌 of a GNAP web system GWS ,
every configuration (𝑆, 𝐸, 𝑁) in 𝜌 , and every AS as ∈ AS that is honest
in 𝑆 , it holds true that if as callsPERFORM_KEY_PROOF(𝑚, grantID,
𝑠 ′) (for some𝑚, grantID, 𝑠 ′) in Line 54 of Algorithm A.13 or in Line 65
of Algorithm A.13 (i.e. when as receives a continuation request) and
this call returns, then the request𝑚 must have been sent by the client
instance 𝑐 that sent the grant request that led to the creation of the
grant ID grantID in Line 3 of Algorithm A.13 as long as 𝑐 is an honest
client instance in 𝑆 . If 𝑐 used a key record 𝑟 with 𝑟 .method ≡ mac for
this grant request, we additionally require that rs = dom−1 (𝑟 .rs) is
honest in 𝑆 .

Proof. If as calls PERFORM_KEY_PROOF (Algorithm A.14) in
one of these lines, it must hold, based on the checks in Line 53 and
Line 64 respectively, that grantID ∈ 𝑆 (as).grantRequests. grantID
must have been stored in 𝑆 ′(as) .grantRequests in Line 9 of Algo-
rithm A.13 for a previous state 𝑆 ′, because only in this code section
new grant IDs are assigned by anAS. This can only have happened if
the call to PERFORM_KEY_PROOF in Line 4 returned, so if the key
proof for the grant request was successfully validated. During this
call to PERFORM_KEY_PROOF, it must have held in Line 2 of Algo-
rithm A.14 that 𝑆 ′(as).grantRequests[grantID] ≡ ⟨⟩, since as just
created the grantID in Line 3 of Algorithm A.13. Thus, in this call,
the key proofingmethod and the key used by 𝑐 are stored in Lines 27-
35 of AlgorithmA.14 in 𝑆 ′(as).grantRequests[grantID]. Since this
is the only code section where these subterms are written to and this
write operation implies that the condition 𝑆 (as).grantRequests
[grantID] ≡ ⟨⟩ now no longer holds, this information cannot be
overwritten. This means that in 𝑆 it must hold that the key proofing
method and the key stored in 𝑆 (as).grantRequests[grantID] are
still the same.

In the calls to PERFORM_KEY_PROOF in Lines 54 and 65 of
Algorithm A.13 it thus must still hold that 𝑆 (as).grantRequests
[grantID] . ⟨⟩, so now the previously stored key proofing method
and the used key are loaded again from 𝑆 (as).grantRequests
[grantID] in Lines 37-45 of Algorithm A.14.
So PERFORM_KEY_PROOF calls VALIDATE_KEY_PROOF in
Lines 47-51 with the same method and key as when handling
the grant request. Since PERFORM_KEY_PROOF returns only if
VALIDATE_KEY_PROOF returns and 𝑐 , as, and possibly rs are hon-
est by precondition, it must thus hold according to Lemma D.8 that
𝑚 was sent by 𝑐 .6 It is also not possible that𝑚 is a continuation
request replayed by the attacker, since replays are detected within
VALIDATE_KEY_PROOF (Algorithm A.5) as follows. If MTLS is
used, a replay is not possible because a new mtlsNonce is used by
the AS for each request. If signatures or MACs are used, a replay of
6Regarding headers, according to Lemma D.8, only the Authorization header must
be equivalent, others can potentially differ. However, since as only accesses the
Authorization header here, this is sufficient.

57

the request is detected in Line 11, since the replayed request must
contain the same nonce in sigParams as the original request, this
nonce was already stored in Line 24 in the sigNonces subterm of
the state of as when the original request was validated, and there
is no code section where nonces are removed from sigNonces. □

Lemma D.11 (Only one AS for each Client Flow). Let 𝜌 be a
run of a GNAP web system GWS , with 𝑖 ≤ 𝑗 and 𝑆𝑖 , 𝑆 𝑗 two states of
𝜌 . Suppose 𝑐 is a client instance and as is an AS, both honest in 𝑆 𝑗 .

Suppose also that in step 𝑖 , 𝑐 sends a grant request𝑚𝑖 to as and that
in step 𝑗 , 𝑐 sends a grant or continuation request𝑚 𝑗 to some process
𝑝 , both with references containing the mapping grantID : 𝐶𝐼𝑔𝑖𝑑 .

Then, 𝑝 = as.

Proof. We will argue by induction on 𝑗 , assuming for induction
that all grant or continuation requests𝑚𝑘 sent by 𝑐 at times 𝑘 with
𝑘 < 𝑗 in the flow identified by CIgid were sent to as.

An honest client instance 𝑐 only sets the reference for a grant
request on Lines 33,46 of Algorithm A.6, Line 89 of Algorithm A.7,
or Line 13 of Algorithm A.8, and the reference for a continuation
request on Lines 64,99,116 of Algorithm A.7 or Line 17 of Algo-
rithm A.10.

First, we consider the case of grant requests. We claim that an
honest client 𝑐 will only send one grant request per grant ID CIgid,
and so since𝑚𝑖 and𝑚 𝑗 are sent with the same grant ID,𝑚𝑖 ≡𝑚 𝑗

and 𝑖 ≡ 𝑗 . This then immediately gives that 𝑝 = as.
In three of the places that a grant request reference can be set

(Lines 33,46 of Algorithm A.6 and Line 13 of Algorithm A.8), the
grant ID used is freshly generated shortly earlier (Line 9 of Algo-
rithm A.6, or Line 7 of Algorithm A.8), and so cannot be a reuse of
some other grant ID. The fourth, Line 89 of Algorithm A.7, is used
to send out a grant request after completing an MTLS handshake.
Here, 𝑐 is processing a response to some prior request, whose ref-
erence satisfied reference[responseTo] ≡ MTLS_GR and reference
[grantID] ≡ CIgid (Line 2 of Algorithm A.7). Such references are
set in three places, each of which is immediately followed by send-
ing the corresponding message: Lines 38,53 of Algorithm A.6 and
Line 18 of Algorithm A.8. An honest client 𝑐 will only handle one
response to each request, and so it suffices to show that each of
these requests does not reuse a grant ID that was previously used
for a grant request. This is easy to see, as in each case, the grant ID
used is freshly generated shortly earlier, as in the case of directly
sent grant requests.

Next, we will show that for each type of continuation request,
the request𝑚 𝑗 is sent to a domain𝑚.body[continue] [url] .host,
where𝑚 is a response to a grant or continuation request sent in
the flow identified by CIgid.
• If the reference for𝑚 𝑗 is set on Line 64 of Algorithm A.7,
then 𝑚 𝑗 is sent in the next line to a domain continueURL,
which is loaded on Lines 60 and 8 from𝑚.body[continue]
[url] for some response𝑚 being processed. We know from
the check on Line 7 that the request𝑚𝑘 corresponding to this
response is either a grant request or a continuation request,
and that (from Line 2) it was sent in the flow identified
by CIgid. Moreover, since the check on Line 51 must have
succeeded, the continue field of𝑚.bodymust have been set.
If𝑚𝑘 is a grant request, then we know that 𝑘 = 𝑖 , and so𝑚𝑘

is sent to as. If𝑚𝑘 is instead a continuation request, since
𝑘 < 𝑗 , the induction hypothesis applies and tells us that𝑚𝑘

is sent to as. In either case, the corresponding response𝑚 is
sent by as.
• If the reference for𝑚 𝑗 is set on Line 99 of Algorithm A.7,
then𝑚 𝑗 is sent on Line 107 to a domain loaded on Line 98
from 𝑆 𝑗 (𝑐).grants[CIgid] [continueURL]. This field of the
state is only written to on Line 35, when 𝑐 is processing a
response 𝑚 to a grant or continuation request. As shown
before, it must be the case that this𝑚 was sent by as and
processed in the flow identified by CIgid.
• If the reference for𝑚 𝑗 is set on Line 116 of Algorithm A.7,
then 𝑚 𝑗 is sent to a domain loaded on Line 113 from
𝑆 𝑗 (𝑐) .grants[CIgid] [patchRequest] .3.host. This field of
the state is only written to on Line 67, and a similar ar-
gument to the previous case shows that the value of this
field is received in an𝑚 sent by as as desired.
• If the reference for𝑚 𝑗 is set on Line 17 of Algorithm A.10,
then on Line 20 or 23,𝑚 𝑗 is sent to continueURL, which was
loaded on Line 8 from 𝑆 𝑗 (𝑐).grants[CIgid] [continueURL].
As shown before, it must be the case that this URL is loaded
from a message𝑚 sent by as and processed in the flow iden-
tified by CIgid.

In each case, we have that the domain to which𝑚 𝑗 was sent is
loaded from 𝑚.body[continue] [url] .host for some response 𝑚
received from as in response to a grant or continuation request
sent in the flow identified by CIgid. We can therefore examine the
behaviour of an honest AS to see what values this domain can have.
In particular, if an honest AS only ever sets this field of a response
to domains that it controls, we obtain our result, as we then ensure
that𝑚 𝑗 can only be sent to a domain belonging to as. There are
two places where the continue field of a response can be set.

If the [continue] [url] field is set at Line 13 or 16 of Algo-
rithm A.13, the host used for this URL is𝑚.host, where𝑚 is the
request currently being processed by as. By Lemma C.1, this is
necessarily a domain belonging to as.

If the [continue] [url] field is set at Line 37 of Algorithm A.17,
its host is simply taken from the argument of the call to
CREATE_GRANT_RESPONSE, and we need to examine in turn the
callsites of this algorithm. One of these is contained in
SEND_GRANT_RESPONSE, where the host passed in is𝑚.host,
with𝑚 being the fourth argument to SEND_GRANT_RESPONSE
itself. Between these two functions, there are five callsites, which
we consider in turn:
• On Lines 34,75,77 of Algorithm A.13:
CREATE_GRANT_RESPONSE is called, with host argument
being taken directly from the request that as is processing.
We can apply Lemma C.1 and immediately conclude that
this must be a domain of as.
• On Lines 59 and 70 of Algorithm A.13:
SEND_GRANT_RESPONSE is called, with its fourth argu-
ment being exactly the request that as is processing. As
in the previous case, Lemma C.1 ensures that the domain
passed in to CREATE_GRANT_RESPONSE is a domain of
as as desired.

□

58

Lemma D.12 (Client-perspective flows agree with AS-per-
spective flows). Let 𝜌 be a run of a GNAP web system GWS , with
𝑖 < 𝑗 and 𝑆𝑖 , 𝑆 𝑗 two states of 𝜌 . Suppose 𝑐 is a client instance and as
is an AS, both honest in 𝑆 𝑗 .

Suppose also that in step 𝑖 , 𝑐 sends a grant start request𝑚𝑖 to the
/requestGrant endpoint of as and that in step 𝑗 , 𝑐 sends a continu-
ation request𝑚 𝑗 to the /continue path of as, both with references
containing the mapping grantID : 𝐶𝐼𝑔𝑖𝑑 .

If 𝑚 𝑗 contains a continuation access token AT with
AT ≡ 𝑆 (as) .grantRequests[ASgid] [continueAT], then ASgid was
created on Line 3 of Algorithm A.13 while as was processing𝑚𝑖 .

Proof. We proceed by induction on 𝑗 .
Since 𝑐 is honest,𝑚 𝑗 can only be sent at Lines 65 and 107 of Algo-

rithm A.7 or Lines 20 and 23 of Algorithm A.10. We will examine in
each case where 𝑐 loads AT . We claim that in each case, AT is orig-
inally received by 𝑐 in grantResponse[continue] [accessToken]
in a response whose corresponding reference satisfies reference
[grantID] ≡ CIgid and reference[responseTo] ≡ grantResponse
— that is, either another, earlier continuation request or a grant start
request.

In the first case, where𝑚 𝑗 is sent on Line 65 of Algorithm A.7,
this is direct, with AT being received on Line 59.

In the case where𝑚 𝑗 is sent on Line 117 of Algorithm A.7, the
AT that is sent is loaded (along with the rest of the authoriza-
tion header containing it) on Line 113 from 𝑆 𝑗 (𝑐) .grants[CIgid]
[patchRequest]. This field is only written to on Line 67, with the
stored authorization header coming from Line 61 , using the access
token received on Line 59.

In the three remaining cases, AT is loaded from 𝑆 𝑗 (𝑐) .grants
[CIgid] [continueAT], either on Line 96 of AlgorithmA.7 or Line 16
of Algorithm A.10. This field is only written to on Line 34 of Al-
gorithm A.7, where the value written is taken directly from an
appropriate grant response.

The request corresponding to this response must have been
either a grant start request or a continuation request (as these
are exactly the request types for which reference[responseTo] ≡
grantResponse), and must have been sent at some earlier time
𝑘 < 𝑗 . Moreover, this request must have been sent in the same
grant ID CIgid.

We first consider the case where this request,𝑚𝑘 , is a contin-
uation request. By Lemma D.11, since𝑚𝑖 was sent to as, so was
𝑚𝑘 . Since 𝑚𝑘 is sent to as and we know that as responds to 𝑚𝑘

(yielding AT), it must be the case that as successfully executed
CREATE_GRANT_RESPONSE at one of the four lines 59,70,75 or
77 of Algorithm A.13 (with the first two being indirect, within
SEND_GRANT_RESPONSE). In each case,𝑚𝑘 must contain a cont.
access token AT ′ such that 𝑆𝑘 (as).grantRequests[ASgid ′]
[continueAT] ≡ AT ′ for some ASgid ′, due to checks on Lines 53
and 64. Moreover, we know that the reference corresponding to𝑚𝑘

satisfies reference[grantID] ≡ CIgid. At this point, it will suffice
to show that ASgid ′ ≡ ASgid, as this will allow us to invoke the
inductive hypothesis (with 𝑘 < 𝑗 , and using AT ′ as the token) and
immediately reach the desired result.

For each case of CREATE_GRANT_RESPONSE where contin-
uation is allowed (which must be the case — otherwise the re-
sponse to𝑚𝑘 would not contain AT), the new token AT is stored in

𝑆𝑘 (as).grantRequests[ASgid ′] [continueAT] on Line 38 of Algo-
rithm A.17. Since we also know that AT ≡ 𝑆 𝑗 (as).grantRequests
[ASgid] [continueAT], we can conclude that ASgid ′ ≡ ASgid if a
given continuation access token can never be stored under two
different grant IDs. Continuation access tokens are stored in three
places: Lines 14 and 22 of Algorithm A.6 and Line 38 of Algo-
rithm A.17. The first two of these only store freshly generated
continuation access tokens, which therefore cannot already be
stored under a different grant ID. The final case, can either store
a freshly generated token, or a reused token coming from Line 38
of Algorithm A.17. This reused token is passed in as an argument
to CREATE_GRANT_RESPONSE, as is the grant ID under which
the reused token may be stored. We therefore must show that
all calls to CREATE_GRANT_RESPONSE that provide an old con-
tinuation access token for potential reuse also pass in the grant
ID under which that token is stored, ensuring that it can only be
re-stored under the same grant ID. There are four places where
CREATE_GRANT_RESPONSE is called: Lines 34 ,75 and 77 of Algo-
rithm A.13 and Line 4 of Algorithm A.16. The first of these, passes
⊥ in place of an old continuation access token. This cannot be
reused, and so no check is needed. The next two, pass in the correct
grant ID for the token, as validated by the check on Line 64. Finally,
Line 4 of Algorithm A.16 loads the continuation access token that it
uses as an argument directly from 𝑆 (as).grantRequests[grantID]
[continueAT], ensuring that the token and grant ID arguments
match. As such, we have that ASgid ′ ≡ ASgid, since the same ac-
cess token was stored under both grant IDs, and this tells us that
AT ′ is stored under the correct ASgid to allow us to invoke our
inductive hypothesis, concluding the case where AT was received
in a response to a continuation request.

If, instead, AT is received in response to a grant start request, we
claim that this request is𝑚𝑖 , which immediately gives the desired
result. We will show that this grant start request must be𝑚𝑖 by
showing that an honest client instance 𝑐 never sends two distinct
grant start requests with the same grant ID CIgid.

Grant start requests are sent at four places, three of which
(Lines 34 and 47 of Algorithm A.6 and Line 14 of Algorithm A.8)
immediately follow the creation of a fresh grant ID. The remain-
ing source of grant start requests, Line 90 of Algorithm A.7, is
only reached when receiving a response with reference contain-
ing responseTo : MTLS_GR. Corresponding requests are only sent
in three places (Lines 39 and 54 of Algorithm A.6 and Line 19 of
Algorithm A.8), all of which immediately follow the creation of a
fresh grant ID. Moreover, each of these cases is mutually exclusive
with the immediate sent of a grant start request on Lines 34 and
47 of Algorithm A.6 and Line 14 of Algorithm A.8, respectively.
It will therefore suffice to show that only one start grant request
is sent per MTLS_GR request. Because 𝑐 only handles one response
to each MTLS_GR request, it sends only one start grant request per
MTLS_GR request. As such, the start grant request whose response
contained AT must have been exactly𝑚𝑖 , and so we have the de-
sired result in the case where AT is received in response to a start
grant request. □

Lemma D.13 (Access Tokens and Subject IDs are returned
only to authorized Client Instances). Suppose 𝜌 is a run of a

59

GNAP web system GWS , and 𝑄 : (𝑆, 𝐸, 𝑁) → (𝑆 ′, 𝐸 ′, 𝑁 ′) is a step in
𝜌 . Let 𝑐 be a client instance and as an AS, both honest in 𝑆 .

Suppose

• 𝑐 receives a message𝑚 from as in step 𝑄 .
• Either accessToken ∈ 𝑚.body or subjectID ∈ 𝑚.body. Let
data =𝑚.body[accessToken] or data =𝑚.body[subjectID]
(if both exist, either can be chosen).
• 𝑐 stores data under 𝑆 (𝑐) .receivedValues[CIgid].
• For all client instances 𝑐 ′ that are honest in 𝑆 and all key records
𝑟 ∈ 𝑠𝑐0 .keyRecords[dmnAS] (for some domain dmnAS ∈
dom(governor(𝑢))) with 𝑟 .method ≡ mac, it holds that
dom−1 (𝑟 .rs) is honest in 𝑆 . (honest client instances share sym-
metric keys only with governor(𝑢) and honest RSs), and

In the case of data being an access token we further require that
as is the issuer of data and 𝑆 (as) .tokenBindings[data] [for] ≡
endUser.
We then set ASgid = 𝑆 (as) .tokenBindings[data] [grantID] and
𝑢 = 𝑆 (as) .grantRequests[ASgid] [subjectID].

In the other case, where data is a subject ID, we require that 𝑐
stores ⟨data, 𝑑⟩ in 𝑆 (𝑐) .receivedValues[CIgid] for a domain 𝑑 of
as, and set 𝑢 = data and ASgid with 𝑆 (as) .grantRequests[ASgid]
[subjectID] ≡ 𝑢.

Then, at some step 𝑄 ′ before 𝑄 , finishLogin𝑄
′

𝜌 (ownerOfID (𝑢) , 𝑐,
𝑢, as,CIgid,ASgid).

Proof. Since as is an honest AS, it only generates a message
with the subjectID flag on Line 28 of Algorithm A.17, and likewise
only generates a message with the accessToken flag on Line 7 of
Algorithm A.17.

If we take data = 𝑚.body[accessToken], we note that the
tokenBindings field of the state of as is only set in
CREATE_GRANT_RESPONSE, and in each case, the for field of
this dictionary is set to the for parameter passed in to the algorithm.
As such, the for parameter must be endUser.

If instead, data = 𝑚.body[subjectID], we see from the check
on Line 3 of Algorithm A.17 that for . CI.

In either case, then, we have that CREATE_GRANT_RESPONSE
must have been called with the for parameter not being CI.

Moreover, from the check on Line 2 of Algorithm A.17, we see
that subjectID ∈ 𝑆 (as).grantRequests[gid] for gid being the
grant ID from the call of Algorithm A.17. We show that gid = ASgid.
If data is an access token, this token is newly generated in this
function and associated with gid (the first argument of the function
call) by tokenBindings[data] [grantID] : gid. By the definition
of ASgid, we thus have gid = ASgid. If data is a subject ID, then
the value is chosen according to gid (Line 28) and the definition of
ASgid shows the claim.

The subjectID field of 𝑆 (as) .grantRequests[ASgid] is only
written to in Algorithm A.15, on Line 17, and we know from the
preconditions of the lemma that this subject ID is 𝑢. As such, at
some previous step 𝑄 ′, as executed Algorithm A.15, and since the
state change must have been persistent, as it is visible in 𝑆 , the
algorithm must have returned successfully.

Since 𝑢 is stored on Line 17, the password check on Line 8 must
have succeeded, so themessage𝑚′ passed to FINISH_INTERACTION
must contain secretOfID(𝑢). This message𝑚′ must be a request

received by as at one of its Login endpoints, as these are the
only places where FINISH_INTERACTION is called. By Lemma D.7,
secretOfID(𝑢) is only derivable by as and ownerOfID (𝑢), and as
as is honest, it does not send requests, so𝑚′ must have been sent
by ownerOfID (𝑢), which, being honest, will only send a request to
one of the Login endpoints of as while executing script_as_login.
At this point, we know the second and third parts of
finishLogin𝑄

′
𝜌 (ownerOfID (𝑢) , 𝑐 ′, 𝑢, as,CIgid ′,ASgid) for some 𝑐 ′

and CIgid ′, and that for some prior step 𝑄 ′′,
tryLogin𝑄

′′
𝜌 (ownerOfID (𝑢) , 𝑐 ′, as,CIgid ′,ASgid,).

It now remains to show that 𝑐 ′ = 𝑐 and CIgid ′ = CIgid. We
know that 𝑐 stores data under 𝑆 (𝑐) .receivedValues[CIgid], and
that as must have created the message 𝑚 containing data in a
call to CREATE_GRANT_RESPONSE for which the for parame-
ter was not CI. This restricts the set of possible places that this
call could have happened to two places, one of which is inside
SEND_GRANT_RESPONSE, which is in turn called in two places.
The three resulting callsites are on Lines 59, 70, and 75, each of
which can only be reached in response to as receiving a request
𝑚̂ to its /continue endpoint, and after successfully executing
PERFORM_KEY_PROOF(𝑚̂,ASgid, 𝑠 ′) on one of Lines 54 and 65.
Since the response𝑚 to 𝑚̂ is sent to 𝑐 , 𝑚̂ must have been sent by 𝑐 ,
and as 𝑐 is honest, it will only use its own keys in key proofs. As
PERFORM_KEY_PROOF succeeds, so doesVALIDATE_KEY_PROOF
called inside, which uses as its key argument the public key sent
to as by 𝑐 ′ initially when ASgid was created. As in the proof of
Lemma D.8, we can check that in all cases, the key proof succeed-
ing means that the key proof created by 𝑐 for 𝑚̂ must use the private
key corresponding to the public key sent to as by 𝑐 ′, and as a key
proof must succeed initially for this public key to be stored, 𝑐 ′ must
have this same private key. As such, 𝑐 = 𝑐 ′, and it only remains
to show that CIgid = CIgid ′. By definition, CIgid ′ is the grant ID
of 𝑐 that was created in the processing step in which 𝑐 sent the
initial grant request to as that created ASgid. Since 𝑐 and as are
both honest, and both the initial grant request and the continuation
request 𝑚̂ are handled by as in ASgid, both must have been sent
in the same CIgid (as 𝑐 , being honest, will only use continuation
access tokens in the same flow, as identified by CIgid, in which it
received them). □

D.4 CI - Browser flow continuity
Lemma D.14 (Same End User must be present after Inter-

action). For any run 𝜌 of a GNAP web system GWS , every con-
figuration (𝑆, 𝐸, 𝑁) in 𝜌 , and every client instance 𝑐 ∈ CI that is
honest in 𝑆 it holds true that if in Line 61 or Line 79 of Algorithm A.6
𝑐 stores ⟨𝑘, 𝑎, 𝑓 ,𝑚.nonce⟩ under 𝑆 (𝑐) .browserRequests[grantID]
[finishRequest] (for some grantID, 𝑘 , 𝑎, 𝑓 ,𝑚), then the request𝑚
must have been sent by the browser 𝑏 that sent the request to the
/startGrantRequest path of 𝑐 that led to the creation of grantID in
Line 9 of Algorithm A.6 as long as 𝑏 is not fully corrupted in 𝑆 .

Proof. If 𝑐 executes Line 61 or Line 79 of Algorithm A.6, it must
hold that

𝑚.headers[Cookie] [⟨__Host, sessionID⟩]
≡ 𝑆 (𝑐) .grants[grantID] [sessionID]

60

due to the check in Line 59 resp. Line 77. So the session ID trans-
ferred by 𝑏 to 𝑐 in the headers of 𝑚 is sent in a cookie with the
__Host prefix set. Since the __Host prefix is set, this cookie must
have been transmitted by 𝑐 to 𝑏 using HTTPS and with the secure
attribute set. The ⟨__Host, sessionID⟩ cookie is set by honest client
instances only when answering a browsers request to start a grant
in Line 38 of Algorithm A.7 and in case of a logout in Line 88 of
Algorithm A.6. In both cases the secure attribute, the session
attribute and the httpOnly attribute are set. Thus, only 𝑏 is able to
decrypt a session ID when it is transmitted within the Set-Cookie
header from 𝑐 to 𝑏. Since 𝑏 is not fully corrupted by precondition, 𝑏
again only transmits the session ID to 𝑐 and does so using HTTPS.
In case of a close corruption of 𝑏, the session ID cannot get leaked
to the attacker because the session attribute is set. Furthermore,
honest client instances transmit session IDs only to the browser for
which they were issued and only using the ⟨__Host, sessionID⟩
cookie. Thus, a session ID created by 𝑐 for 𝑏 can only be derivable
for 𝑐 and 𝑏 in 𝑆 under the assumed conditions.

The value to which the session ID transferred by 𝑏 is compared,
𝑆 (𝑐) .grants[grantID] [sessionID], must have been stored during
a call to the /startGrantRequest path of 𝑐 in Line 28 of Algo-
rithm A.6, since this is the only line where this entry is written
to. Since grant IDs do not change, this must also have been the
call to the /startGrantRequest path in which grantID was cre-
ated in Line 9 of Algorithm A.6. The value stored in Line 28 of
Algorithm A.6 is either a session ID that was transferred by the
process that called the /startGrantRequest path (Line 22) or a
new session ID generated by 𝑐 for this session (Line 26) that is later
transferred to the browser in Line 38 of Algorithm A.7. So in any
case, it must be a session ID that was transferred to the caller in
a ⟨__Host, sessionID⟩ cookie. As seen, only 𝑏 and 𝑐 are able to
derive this value in 𝑆 , so if Line 61 or Line 79 of Algorithm A.6 is
executed by 𝑐 , it must hold that𝑚 was sent by the browser that
sent the request to the /startGrantRequest path that led to the
creation of grantID, otherwise the corresponding session ID could
not have been included in the headers of𝑚. □

LemmaD.15 (GrantedGrantReqestmust have been started
by RO). For any run 𝜌 of a GNAP web system GWS , every configura-
tion (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) in 𝜌 , every client instance 𝑐 ∈ CI that is honest in
𝑆 𝑗 , every grant ID grantID ∈ 𝑆 𝑗 (𝑐).grants, and every identity 𝑢 ∈
ID it holds true that if tryLogin𝑄𝜌 (ownerOfID(𝑢), 𝑐,𝑢, governor(𝑢),
grantID,ASgid) (for some grant ID ASgid and a previous process-
ing step 𝑄 = (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖) → (𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1) and some integer
𝑖 < 𝑗) and 𝑐 calls SEND_CONTINUATION_REQUEST(grantID,
interactRef , hash, 𝑠 ′, 𝑎) (for some interactRef , hash, 𝑠 ′, 𝑎) in the pro-
cessing step (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) → (𝑆 𝑗+1, 𝐸 𝑗+1, 𝑁 𝑗+1), then ownerOfID(𝑢)
must have sent the request to the /startGrantRequest path of 𝑐 that
led to the creation of grantID in Line 9 of Algorithm A.6 as long as
ownerOfID(𝑢) is not fully corrupted in 𝑆 𝑗 and governor(𝑢) is honest
in 𝑆 𝑗 .

Proof. For this proof, we need to distinguish the different in-
teraction modes that can get used.

Redirect Start Mode + Redirect Finish Mode: We have
tryLogin𝑄𝜌 (ownerOfID(𝑢), 𝑐,𝑢, governor(𝑢), grantID,ASgid) and 𝑐
has thereupon called SEND_CONTINUATION_REQUEST(grantID,

interactRef ,
hash, 𝑠 ′, 𝑎). Since the redirect interaction finish mode is used, the
call to SEND_CONTINUATION_REQUEST must have occurred in
Line 64 of Algorithm A.6. So there must have been a call to the
/finish path of 𝑐 (Line 55). We will now show that this call must
have been made by ownerOfID(𝑢). In Line 57, the grantID is deter-
mined using the finishURLnonce from the parameters of the request.
The finishURLnonce is created by 𝑐 in Line 15 of Algorithm A.6 and
then transferred to the AS within the grant request using HTTPS.
Since the AS governor(𝑢) is honest by precondition, governor(𝑢)
must have forwarded ownerOfID(𝑢) to the finish URL with the
finishURLnonce of 𝑐 immediately after the authentication in pro-
cessing step 𝑄 , which happens in Line 21 of Algorithm A.15. Since
𝑐 and governor(𝑢) are honest and the finishURLnonce is not oth-
erwise used or sent, the call to the /finish path must thus have
been made by ownerOfID(𝑢), otherwise it could not contain the
finishURLnonce in the parameters.

If SEND_CONTINUATION_REQUEST is called in Line 64 of
Algorithm A.6, Line 61 must also have been executed. Thus, by
Lemma D.14, the call to the /finish path must have been made
by the same browser that sent the associated grant request to the
/startGrantRequest path, which, as seen, must be ownerOfID(𝑢).

Redirect Start Mode + Push Finish Mode:
Since the push interaction finish mode is used, the call to
SEND_CONTINUATION_REQUESTmust have occurred in Line 71
of Algorithm A.6. So there must have been a call to the /push path
of 𝑐 (Line 65). This call must come from the AS to which 𝑐 sent
the grant request with the grant ID grantID, since only this AS can
know the finishURLnonce, which is used in Line 67 to determine the
grant ID, since 𝑐 created this nonce (in Line 15 of Algorithm A.6)
and only transmits it within the grant request.

Since tryLogin𝑄𝜌 (ownerOfID(𝑢), 𝑐,𝑢, governor(𝑢), grantID,ASgid),
this AS must be governor(𝑢), as an honest client instance 𝑐 will
only send a grant request with a given grant ID to one AS, and
we know that 𝑐 sends a grant request with the grant ID grantID to
governor(𝑢). The request to the /push path made by governor(𝑢),
which is honest by precondition, is sent in Line 25 of AlgorithmA.15
(FINISH_INTERACTION). FINISH_INTERACTIONmust have been
called in Line 101 of Algorithm A.13 due to the use of the redi-
rect interaction start mode, i.e., as a result of a request to the
/redirectLogin path of governor(𝑢).
Since tryLogin𝑄𝜌 (ownerOfID(𝑢), 𝑐,𝑢, governor(𝑢), grantID,ASgid)
holds, this request to the /redirectLogin path of governor(𝑢)
must have been sent by ownerOfID(𝑢) in processing step𝑄 . When
a request to the /redirectLogin path is received, Line 99 ensures
that ownerOfID(𝑢) was redirected from the client instance that
sent the grant request by verifying that the host of the Referer
header matches the host of the finish URL from the grant request
(the value of the Referer header is transmitted in the body of
the request by script_as_login after being passed to script_as_login
via the scriptstate in Line 85 of Algorithm A.13). The host of the
finish URL must be a domain of the client instance that sent the
grant request, which follows from Line 15 of Algorithm A.6 using
Lemma C.1. Thus, ownerOfID(𝑢) must have been forwarded by 𝑐
in the context of this grant (which is uniquely identified by the
redirectNonce in Line 98 of Algorithm A.13).

61

This redirect happens in Line 44 of Algorithm A.7. The recip-
ient of the response that receives the redirect is thereby loaded
in Line 37 from the startRequest entry. This entry must have
been written in Line 20 of Algorithm A.6, as this is the only line
where this happens. This is done when processing the request to
the /startGrantRequest path of 𝑐 which led to the creation of
grantID in Line 9. Thus, the browser forwarded to governor(𝑢)
must thus have sent this request. Since the forwarded browser is
ownerOfID(𝑢), ownerOfID(𝑢) must have sent the request to the
/startGrantRequest path of 𝑐 that led to the creation of grantID
in Line 9.

User Code Start Mode: In the case of the user code interaction
start mode, the proof is independent of the chosen interaction finish
mode. Since tryLogin𝑄𝜌 (ownerOfID(𝑢), 𝑐,𝑢, governor(𝑢), grantID,
ASgid) and SEND_CONTINUATION_REQUEST is called by 𝑐 , the
interaction for the grant with grant ID grantID must have finished
successfully. Since the user code interaction start mode is used, a
user code uc must have been included in the scriptinputs under the
userCode key during authentication when script_as_login was run.
The user code is read in Line 9 of Algorithm A.19 (script_as_login)
and then transferred inside formData in the request to the
/userCodeLogin path of governor(𝑢) (Line 14). governor(𝑢) re-
trieves the user code uc from the request to the /userCodeLogin
path in Line 103 of Algorithm A.13. Since the interaction completed
successfully, uc must be the user code that governor(𝑢) generated
in Line 24 of Algorithm A.13 upon receiving the grant request. Oth-
erwise, Algorithm A.13 would have stopped in Line 104 and the
interaction would not have been finished.

The user code must have been included in the scriptinputs in
Line 47 of Algorithm A.2 since only in this line such an entry can
be added to the scriptinputs. Due to Line 46 this happens only if
domainCI ≡ domainUsedCI . domainCI is the domain of the client
instance that sent the grant request associatedwith uc to governor(𝑢).
This valuewas returned by governor(𝑢) alongwith script_as_login
in Line 94 of Algorithm A.13. domainUsedCI is the domain of the
client instance to which ownerOfID(𝑢) sent the request to start a
grant request (to the /startGrantRequest path) that resulted in
receiving the user code uc. This domain is stored in Line 38 of Algo-
rithm A.2 in the usedCIs subterm under the key uc. Since domainCI
must be equivalent to domainUsedCI , the client instance to which
ownerOfID(𝑢) sent the request to the /startGrantRequest path
must be the client instance that sent the grant request associated
with uc to governor(𝑢), which is 𝑐 . Because 𝑐 is honest, it leaks
the user code uc only to the browser that sent the request to the
/startGrantRequest path (in Line 49 of Algorithm A.7 and using
HTTPS). This holds true because the sender of the grant request
is stored in Line 20 of Algorithm A.6 in the browserRequests sub-
term, and the recipient of the response in which uc is returned by
𝑐 is loaded in Line 37 of Algorithm A.7 from this browserRequests
entry, which cannot be overwritten. Since ownerOfID(𝑢) has re-
ceived uc, ownerOfID(𝑢) thus must have sent the request to the
/startGrantRequest path of 𝑐 . Hence, ownerOfID(𝑢) must be re-
sponsible for the creation of grantID in Line 9 of Algorithm A.6.

The lemma could be shown for all possible combinations of
interaction start modes and interaction finish modes covered by

our model, so it must hold regardless of the interaction modes
used. □

E AUTHORIZATION
E.1 Definitions
We will use the function ownerOfResource to determine the owner
of a protected resource stored at an honest resource server.

Definition E.1 (ownerOfResource). Given a GNAP web system
GWS = (W , S , script, 𝐸0), a run 𝜌 of GWS , a configuration (𝑆, 𝐸, 𝑁)
in 𝜌 , an RS rs ∈ RS that is honest in 𝑆 , and a nonce 𝑛 ∈ N
that is either a subterm of 𝑆 (rs) .clientResources or a subterm of
𝑆 (rs) .userResources, ownerOfResource : N → W is defined as
follows:
• If 𝑛 ≡ 𝑆 (rs).clientResources[𝑑] [𝑖] for a domain 𝑑 and an
instance identifier 𝑖 , then ownerOfResource(𝑛) depends on
whether 𝑖 ∈ 𝑠rs0 .clientResources[𝑑].
If 𝑖 ∈ 𝑠rs0 .clientResources[𝑑], ownerOfResource(𝑛) is de-
fined to be the client instance 𝑐 for which there is a key record
𝑟 ∈ ⟨⟩ 𝑠𝑐0 .keyRecords[𝑑

′] for some 𝑑 ′ ∈ dom(dom−1 (𝑑))
such that 𝑟 .instanceID ≡ 𝑖 . Otherwise, 𝑛 must have been
stored in 𝑆 (rs) .clientResources[𝑑] [𝑖] in Line 38 of Algo-
rithm A.21. In this case, ownerOfResource(𝑛) is the process
to which rs returned the newly created 𝑛 in Line 46 of Algo-
rithm A.21, i.e., ownerOfResource(𝑛) = addr−1 (sender) for
the address sender from that line.
• If 𝑛 ≡ 𝑆 (rs).userResources[𝑢] for an identity 𝑢,
ownerOfResource(𝑛) is defined to be ownerOfID(𝑢).

Definition E.2 (Successful Use of Token). For a run 𝜌 of a GNAP
web system GWS , a client instance 𝑐 , an RS rs, an AS as, a grant ID
CIgid, and an access token AT we say that “𝑐 successfully used the
token AT at rs under CIgid in processing step 𝑄” written

successfulUseOfToken𝑄 (𝑐,CIgid,AT , rs, as)

if
(1) there is a processing step 𝑄 ′ before 𝑄 in 𝜌 where 𝑐 sends an

HTTPS request𝑚 to the /resource path of a domain of rs
with
a) 𝑚 contains an Authorization header with the access to-

ken AT
b) the reference of𝑚 contains grantID : CIgid, and

(2) as is the issuer of the token AT ,
(3) when processing𝑚 in A.20, rs sends an introspection request

𝑚
req
intro to as andwhen processing the corresponding response

𝑚
resp
intro from as in step𝑄 , rs reaches Line 45 of AlgorithmA.21.

Definition E.3 (Resource Access). For a run 𝜌 of a GNAP web
system GWS we say that a browser 𝑏 accesses a resource of identity
𝑢 stored at resource server rs in a GNAP flow identified by the
nonce gid by client instance 𝑐 in processing step 𝑄 with state 𝑆 in
𝜌 written as

accessResource𝑄𝜌 (𝑏, 𝑟,𝑢, 𝑐, rs, gid)

if
(1) 𝑟 ≡ 𝑠rs0 .userResources[𝑢],

62

(2) 𝑆 (𝑐).grants[gid] [resources] [domainRS] ≡ 𝑟 with
domainRS ∈ dom(rs), and

(3) in processing step 𝑄 , 𝑐 emits a message𝑚 that is an HTTPS
response sent from 𝑐 to 𝑏 in Line 18 of Algorithm A.11 with
𝑚.body ≡ 𝑟 .

Definition E.4 (Client Instance Resource Access). Suppose 𝜌 is a run
of a GNAP web system GWS , and 𝑄 is a processing step in 𝜌 from
(𝑆, 𝐸, 𝑁) to (𝑆 ′, 𝐸 ′, 𝑁 ′). We say that a client 𝑐 accesses a resource
𝑟 stored at a resource server rs under the identifier instanceID and
managed by an AS as in a GNAP flow identified at 𝑐 by the nonce
CIgid, written

sw_accessesResource𝑄𝜌 (𝑐, 𝑟,CIgid, rs, as, instanceID)
if:

(1) There is some domAS ∈ dom(as) such that
𝑟 = 𝑆 (𝑟𝑠) .clientResources[domAS] [instanceID]

(2) There is some domainRS ∈ dom(rs) such that 𝑐 stores the
resource 𝑟 under 𝑠 ′.grants[CIgid] [resources] [domainRS]
in Line 78 of Algorithm A.7

E.2 Security Properties
Definition E.5 (Authorization Property for Software-only Authoriza-

tion). Let GWS be a GNAP web system. We say that GWS fulfills the
authorization property for software-only authorization iff for every
run 𝜌 of GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌 , every RS rs ∈ RS
that is honest in 𝑆 , every domain dmnAS ∈ 𝑆 (rs).clientResources,
and every instance identifier 𝑖 ∈
𝑆 (rs) .clientResources[dmnAS] it holds true that if 𝑛 ≡
𝑆 (rs) .clientResources[dmnAS] [𝑖] is derivable from the attacker’s
knowledge in 𝑆 (i.e., 𝑛 ∈ 𝑑∅ (𝑆 (na))), it follows that

(1) dom−1 (dmnAS) (the responsible AS) is corrupted in 𝑆 , or
(2) the client instance 𝑐 = ownerOfResource(𝑛) that owns this

resource is corrupted in 𝑆 , or
(3) there exists a key record 𝑘 in 𝑠𝑐0 .keyRecords[dmnAS′] (for

some domain dmnAS′ ∈ dom(dom−1 (dmnAS))) such that
𝑘.method ≡ mac and dom−1 (𝑘.rs) is corrupted in 𝑆 (𝑐 shares
a symmetric key with the responsible AS and a corrupted
RS), or

(4) there exist a grant ID gid and a domain 𝑦 ∈ ⟨⟩ 𝑆 (𝑐) .grants
[gid] [bearerRSs] such that sessionID ∉ 𝑆 (𝑐).grants[gid]
(software-only authorization was used) and dom−1 (𝑦) is cor-
rupted in 𝑆 (a bearer token was sent to a corrupted resource
server).

Definition E.6 (Authorization Property for End Users). Let GWS
be a GNAP web system. We say that GWS fulfills the authorization
property for end users iff for every run 𝜌 of GWS , every configuration
(𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) in 𝜌 , every RS rs ∈ RS that is honest in 𝑆 𝑗 , and every
identity 𝑢 ∈ 𝑆 𝑗 (rs).userResources it holds true that if

(1) governor(𝑢) (the responsible AS) is honest in 𝑆 𝑗 ,
(2) the browser 𝑏 = ownerOfResource(𝑛) that owns this re-

source is not fully corrupted in 𝑆 𝑗 ,
(3) for all client instances 𝑐 that are honest in 𝑆 𝑗 and all key

records 𝑘 ∈ 𝑠𝑐0 .keyRecords[dmnAS] (for some domain
dmnAS ∈ dom(governor(𝑢))) it holds true that 𝑘.method .
mac or dom−1 (𝑘.rs) is honest in 𝑆 𝑗 (honest client instances

share symmetric keys only with governor(𝑢) and honest
RSs), and

(4) there do not exist a client instance 𝑐 , two grant IDs CIgid and
ASgid, and a processing step 𝑄 = (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖) →
(𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1), such that 𝑖 < 𝑗 , tryLogin𝑄𝜌 (ownerOfID(𝑢),
𝑐,𝑢, governor(𝑢),CIgid,ASgid), and
(a) 𝑐 is corrupted in 𝑆 𝑗 (a grant request from a corrupted client

instance was granted), or
(b) there exists a domain𝑦 ∈ ⟨⟩ 𝑆 𝑗 (𝑐).grants[gid] [bearerRSs]

such that dom−1 (𝑦) is corrupted in 𝑆 𝑗 (an authorized client
instance sent a bearer token to a corrupted RS),

then 𝑛 ≡ 𝑆 𝑗 (rs).userResources[𝑢] is not derivable from the at-
tacker’s knowledge in 𝑆 𝑗 (i.e., 𝑛 ∉ 𝑑∅ (𝑆 𝑗 (na))).

Definition E.7 (Session Integrity Property for Authorization (Soft-
ware-only)). Let GWS be a GNAP web system. We say that GWS is
secure w.r.t. session integrity for software-only authorization iff for
every run 𝜌 of GWS , every processing step 𝑄 in 𝜌 with

𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆 ′, 𝐸 ′, 𝑁 ′)
(for some 𝑆, 𝑆 ′, 𝐸, 𝐸 ′, 𝑁 , 𝑁 ′), every client instance 𝑐 ∈ CI that is hon-
est in 𝑆 , every rs that is honest in 𝑆 , every nonces 𝑟 and CIgid, every
AS as, every instance ID instanceID if sw_accessesResource𝑄𝜌 (𝑐, 𝑟,
CIgid, rs, as, instanceID) then

(1) In some processing step 𝑄 ′ earlier than 𝑄 , there are a mes-
sage 𝑚, an AS as′ and a grant ID ASgid such that
client_started𝑄

′
𝜌 (𝑐,CIgid,𝑚, as′,ASgid)

(2) If, additionally, as′ is honest in 𝑆 , then:
(a) as = as′ — that is, the AS to which the client instance sent

its initial request is the same as the AS controlling access
to the resource that was sent to the client instance.

(b) 𝑚 contains the mapping instanceID : instanceID — that
is,𝑚 was a request beginning a software-only GNAP flow
for the client instance identified by instanceID.

Intuitively, if a client instance accesses some resource, then it
previously started a flow requesting a resource. If the AS that it
requested a resource from is honest, then the accessed resource is
governed by the AS to which the initial request was made, and has
the same instance ID that was used in the initial request.

This security property captures that (a) an end user of a client
instance should only access resources when the end user actually
expressed the wish to start a GNAP flow before and (b) if the end
user expressed the wish to start a GNAP flow using some honest
authorization server and a specific identity, then the end user is not
accessing resources owned by a different identity. We note that for
this, we require that the resource server which the client instance
uses is honest, as otherwise, the attacker can trivially return any
resource.

Definition E.8 (Session Integrity Property for Authorization
(End-User)). Let GWS be a GNAP web system. We say that GWS is
secure w.r.t. session integrity for authorization for end users iff for
every run 𝜌 of GWS , every processing step 𝑄 in 𝜌 with

𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆 ′, 𝐸 ′, 𝑁 ′)
(for some 𝑆, 𝑆 ′, 𝐸, 𝐸 ′, 𝑁 , 𝑁 ′), every browser 𝑏 that is honest in 𝑆 ,
every as ∈ AS, every identity 𝑢, every client instance 𝑐 ∈ CI that is

63

honest in 𝑆 , every rs ∈ RS that is honest in 𝑆 , every nonce 𝑟 , and
every nonce CIgid, we have that if accessesResource𝑄𝜌 (𝑏, 𝑟,𝑢, 𝑐, rs,
CIgid), then

(1) there exists a processing step 𝑄 ′ in 𝜌 (before 𝑄) such that
started𝑄

′
𝜌 (𝑏, 𝑐,CIgid, as), and

(2) Suppose that additionally, as and governor(𝑢) are honest
in 𝑆 and for all client instances 𝑐 ′ that are honest in 𝑆 and
all key records 𝑟 ∈ 𝑠𝑐0 .keyRecords[dmnAS] (for some do-
main dmnAS ∈ dom(as)) with 𝑟 .method ≡ mac, it holds that
dom−1 (𝑟 .rs) is honest in 𝑆 . Then there exists a grant ID
ASgid and a processing step 𝑄 ′′ in 𝜌 (before 𝑄) such that
finishLogin𝑄

′′
𝜌 (𝑏, 𝑐,𝑢, as,CIgid,ASgid).

E.3 Auxiliary Lemmas
Lemma E.9 (Tokens are only issued to clients that reqest

them). Suppose 𝜌 is a run of a GNAP web system GWS , and 𝑄 is a
processing step in 𝜌 from (𝑆, 𝐸, 𝑁) to (𝑆 ′, 𝐸 ′, 𝑁 ′). Suppose also that
𝑐 is a client instance honest in S. We will suggestively denote by as1,
as2, and as3 several other processes that 𝑐 treats as AS’s.

Suppose that in 𝑄 ,

• 𝑐 receives a message 𝑚̃ from some process as3, containing an
access token tok.
• 𝑐 stores tok into 𝑆 (𝑐).receivedValues[CIgid] [accessToken]
on Line 29 of Algorithm A.7
• 𝑆 (as2) .tokenBindings[tok] [grantID] ≡ ASgid (Note that
this requires that as2 was honest at the time that it issued tok).

In other words, during step𝑄 , 𝑐 receives an access token issued by as2

from as3 and stores it.
Then,

• There is an earlier step𝑄 ′, a message 𝑚̂, an AS as1 and a grant
IDASgid ′ such that client_started𝑄

′
𝜌 (𝑐,CIgid, 𝑚̂, as1,ASgid ′).

• If as1 is honest in 𝑆 , then also as1 = as2 = as3, and ASgid ≡
ASgid ′.

In other words, 𝑐 previously requested an access token from some as1,
and if as1 is honest, 𝑐 indeed received a token from as1 and the token
was issued by as1 for the same flow in which 𝑐 received it.

Proof. Suppose 𝑐 stores tok into 𝑠 ′.receivedValues[CIgid]
[accessToken] on Line 29 of Algorithm A.7 and that
𝑆 (as2).tokenBindings[tok] [grantID] ≡ ASgid, for some nonces
CIgid and ASgid.

In order to reach this line, the check on Line 7 must succeed, and
so we know that reference[responseTo] ≡ grantResponse. From
Line 2, we learn that also reference[grantID] ≡ CIgid.

By Lemma C.2, 𝑐 previously called HTTPS_SIMPLE_SEND with
reference and some request𝑚 as the first two arguments. Moreover,
if the process 𝑝 such that 𝑚.host ∈ dom(𝑝) is honest, we can
conclude that 𝑝 = as3. The reference for such a message can be
set in eight different places: Lines 33 and 46 of Algorithm A.6,
Lines 64 , 89, 99, 116 of Algorithm A.7, Line 13 of Algorithm A.8,
and Line 17 of Algorithm A.10. In each case, the request𝑚 is either
a grant request (sent to the /requestGrant endpoint of 𝑝) or a
continuation request (sent to some other endpoint of 𝑝).

We consider first the cases where𝑚 is a grant request, and note
that in this case, we can take 𝑚̂ = 𝑚 and as1 = 𝑝 to conclude the

first part of our result. Moreover, by Lemma D.11, as1 = as3. We
then also claim that in each such case, if as1 = as3 is honest, then
ASgid is created in response to𝑚. First, we observe that an hon-
est AS, upon receiving a grant request, immediately creates a new
grant ID ASgid ′ on Line 3 of Algorithm A.13. Now, if the response
to 𝑚 contains an access token, since the accessToken field of a
grant response is only written to in CREATE_GRANT_RESPONSE,
and only a single call to this function exists in the /requestGrant
endpoint, we see that CREATE_GRANT_RESPONSE must have
been called on Line 34 of Algorithm A.13, with ASgid ′ as the first
argument. Since CREATE_GRANT_RESPONSE uses this first ar-
gument as the grant ID associated with newly created tokens in
tokenBindings (on Lines 16 ,19 or 25 of Algorithm A.17), we see
that 𝑆 (as) .tokenBindings[tok] [grantID] ≡ ASgid ′ (Implicitly us-
ing that tokenBindings entries are never modified once written).
This then means that ASgid ′ ≡ ASgid, and so we are done in this
case (Note that as2 = as3, as an honest AS only emits tokens that it
issued itself).

Now, we consider the cases where𝑚 is a continuation request.
We claim in this case that there is some earlier processing step
𝑄 ′, an AS as1 with a grant ID ASgid, and a message𝑚′ such that
client_started𝑄

′
𝜌 (𝑐,CIgid,𝑚′, as1,ASgid). Moreover, if as1 is honest,

we see by Lemma D.11 that as1 = 𝑝 (and so also 𝑝 = as3).
We then wish to invoke Lemma D.12 to show that 𝑚 and 𝑚′

are handled by as1 under the same ASgid. For this, we need to
know that 𝑚 contains a continuation access token contAT with
𝑆 (as).grantRequests[ASgid] [continueAT] ≡ contAT .
At this point, we are done, concluding that𝑚 is the message that
led to the creation of ASgid.

We will therefore proceed to show that 𝑐 sent such an𝑚′. If𝑚
is a continuation request, its reference was set in one of Lines 64,
99, 116 of Algorithm A.7, or Line 17 of Algorithm A.10, as the other
four possible locations correspond to grant requests. We examine
each of these cases in turn:

(1) Case Line 64 of Algorithm A.7: In this case, we are again
receiving a response with the same fields set in the reference,
and simply fall back to that previous request, which is either
again a continuation request (and we continue the argument
with that request) or a grant request (which is then as de-
sired). Formally, we can give an inductive argument to show
that we eventually get back to the first such request, which
must be as desired.

(2) Case Line 99 of Algorithm A.7: In this case, we have received
a response with reference[responseTo] ≡ MTLS_CR and the
same CIgid as before. The request corresponding to this
response can only have been sent on Line 73, and we fall
back to the previous case.

(3) Case Line 17 of Algorithm A.10: In this case, we are in the
SEND_CONTINUATION_REQUEST function, which is only
called at Lines 64 or 71 of Algorithm A.6. In both cases,
this call only happens if the check on Lines 57 or 67 suc-
ceeds, meaning that 𝑠 ′.grants[CIgid] [finishURLnonce] ex-
ists and matches some specified nonce. In particular, this
means that 𝑐 must have written the finish URL nonce at
Line 28, the only line where this field is written, at some
earlier step.

64

Moreover, the request being processed must contain the
same finish URL nonce. This means that 𝑐 must have emitted
the nonce at some prior step. There are only two places this
can occur. In the first case, the nonce is emitted directly in a
grant request in the first case of Algorithm A.6. The refer-
ence of this grant request contains CIgid, as we know that
the grant ID used for this reference is the same as the grant
ID used to store the finish URL nonce under grants. Other-
wise, 𝑐 stores the nonce (inside grantRequest) into 𝑠 ′.grants
[CIgid] [request] This field is only read from in full (or in
portions that contain the finish URL nonce) on Line 86 of
Algorithm A.7, after which the nonce is emitted (as part of
the request) on Line 90, where it is part of a grant request.
Here, again, the reference of this request contains CIgid, as
the nonce is loaded from 𝑠 ′.grants (on Line 3) using the
same grant ID that is included in the reference.

(4) Case 116 of Algorithm A.7: In this case, we have received
a response with reference[responseTo] ≡ MTLS_CR and the
same CIgid as before. The request corresponding to this
response is only sent in Line 33 of Algorithm A.10, and we
can fall back to the previous case.

As in the case of a grant request, since we know that as1 = as3

and 𝑐 receives an access token from as3, if as1 = as3 is honest, it is
also the case that as1 = as2 = as3.

We now need only show that𝑚 contains a continuation access
token contAT with 𝑆 (as).grantRequests[ASgid] [continueAT] ≡
contAT , and then Lemma D.12 tells us that ASgid was created in
response to 𝑚̂.

We know already that 𝑐 received an access token tok from as3

in response to the message𝑚, and that (in this case)𝑚 is a con-
tinuation request. When handling𝑚, an honest AS will attempt
to load a continuation access token contAT from𝑚 Line 51 or 62
of Algorithm A.13, and then only proceeds to potentially emit a
message if contAT ≡ 𝑠 ′.grantRequests[ASgid ′] [continueAT] for
some ASgid ′, as enforced by checks on Lines 53 and 64. As such,
since as3 replied to 𝑚, we can conclude that 𝑚 contains such a
continuation access token contAT , and we conclude. □

E.3.1 Software-only.

Lemma E.10 (Client Resources are returned only to own-
ing Client Instance). For any run 𝜌 of a GNAP web system GWS ,
every configuration (𝑆, 𝐸, 𝑁) in 𝜌 , every RS rs ∈ RS that is honest
in 𝑆 , every dmn ∈ 𝑆 (rs) .clientResources, and every instanceID ∈
𝑆 (rs) .clientResources[dmn] it holds true that if
𝑆 (rs) .clientResources[dmn] [instanceID] is included as resource
in the response𝑚′ in Line 45 of Algorithm A.21 by rs, then𝑚′ is a re-
sponse to anHTTP request𝑚 sent by 𝑐 = ownerOfResource(resource)
as long as

(1) 𝑐 is honest in 𝑆 ,
(2) the AS as = dom−1 (dmn) is honest in 𝑆 ,
(3) for all domains dmnAS ∈ dom(as) with

dmnAS ∈ 𝑠𝑐0 .keyRecords and all key records
𝑟 ∈ 𝑠𝑐0 .keyRecords[dmnAS] with 𝑟 .method ≡ mac it holds
true that dom−1 (𝑟 .rs) is honest in 𝑆 , and

(4) for every grant ID gid in 𝑆 (𝑐) .grants for which it holds that
sessionID ∉ 𝑆 (𝑐).grants[gid] (software-only authorization

is used) and that 𝑆 (𝑐) .grants[gid] [AS] ∈ dom(dom−1 (dmn)),
and every dmnRS ∈ 𝑆 (𝑐).grants[gid] [bearerRSs] it holds
true that dom−1 (dmnRS) is honest in 𝑆 .

Proof. If resource ≡ 𝑆 (rs) .clientResources[dmn] [instanceID]
in Line 45 of Algorithm A.21, then dmn is the domain of the AS as
to which rs sent the token introspection request in response to the
resource request𝑚. instanceID is the instance identifier returned
by as in the response to the token introspection request under
[access] [instanceID] (Line 34).

If Line 45 of Algorithm A.21 is executed, it must hold that in
the introspection response the bearer flag has been set (Line 26)
or as has returned information about the key to which the used
access token is bound and rs has successfully validated the key
proof against it (i.e. the call to VALIDATE_KEY_PROOF in Line 15,
22 or 24 has returned).

The introspection response that rs received in response to its
introspection request must have been sent by as since only HTTPS
is used for introspection requests (as for all requests). The introspec-
tion request contains the access token accessToken that rs received
from the Authorization header of the resource request𝑚 (Line 11
resp. Line 16 of Algorithm A.20).

First, we consider the case that the resource request𝑚 was au-
thorized using a bearer token. Since as is honest by precondition,
as must have set the bearer flag in the introspection response in
Line 137 of Algorithm A.13.
This only happens if 𝑆 ′(as) .tokenBindings[accessToken] [type] ≡
bearer for some previous state 𝑆 ′ (in Line 136 bearer is the only
remaining type used). The sender of𝑚 must know the bearer to-
ken accessToken in 𝑆 , otherwise it could not have included it inside
the Authorization header. By Lemma D.6, only as, certain honest
RSs, and the client instance that sent the grant request that led to
the creation of the grant ID in 𝑆 ′(as).tokenBindings[accessToken]
[grantID] are able to derive this bearer token. Thus,𝑚 must also
have been sent by this client instance, since honest RSs and honest
ASs do not send resource requests. During token introspection, this
grant ID is loaded by as in Line 122 of Algorithm A.13 and then used
in Line 123 to load the grant request. The stored instance identifier is
then loaded from the grant request in Line 141, which is then sent to
rs under [access] [instanceID], so this is the instanceID used by
rs. This instance identifier must have been stored in Line 7 of Algo-
rithm A.14 (PERFORM_KEY_PROOF) when the grant request was
processed by as (since this is the only place where this happens). So
instanceID must be the instance identifier of the client instance that
sent the grant request to as and this client instance must have sent
𝑚 (headers other than the Authorization header may differ, but
are irrelevant). Together this means that the sender of𝑚 must also
be ownerOfResource(resource): If resource is not in the initial state
of rs, this follows immediately as rs sends resource to 𝑐 in𝑚′ as a re-
sponse to𝑚. If resource ≡ 𝑠rs0 .clientResources[dmn] [instanceID],
then, by the definition of the initial state of rs, instanceID is an entry
in 𝑠rs0 .instanceIDs[dmn], and further there has to be a client regis-
tration record 𝑟 in 𝑠as0 .registrations with instanceID ≡
𝑟 .instanceID. Finally, from the initial state of as, there must be ex-
actly one client instance 𝑐 ′ with a key record 𝑟 ′ in
𝑠𝑐
′

0 .keyRecords[dmn] where 𝑟 .instanceID ≡ 𝑟 ′.instanceID ≡
65

instanceID. This CI is the sender of 𝑚 and at the same time the
owner of resource.

Now we consider the case that the resource request𝑚 was autho-
rized using a key-bound access token. In this case,
VALIDATE_KEY_PROOF must have returned in on one of the fol-
lowing lines of Algorithm A.21:

• Line 15: In this line, VALIDATE_KEY_PROOF validates a
MAC. The key for this key proof is loaded by rs in Line 14
from the symKeys subterm. The instance identifier used
was returned by as in the introspection response in the
[instanceID] entry (using HTTPS). This must be the same
instance identifier that was returned by as under [access]
[instanceID] (instanceID), since as uses the value of
grantRequest [instanceID] for both (Line 133 and Line 141
of Algorithm A.13). Thus, the instance identifier for whose
key the key proof is validated is the instance identifier whose
resource is returned. Since VALIDATE_KEY_PROOF must
have returned, it thus holds, using Lemma D.8, that𝑚 was
sent by ownerOfResource(resource) (headers other than the
Authorization header may differ, but are irrelevant).
• Line 22: In this line, VALIDATE_KEY_PROOF validates a sig-
nature. The key for this key proof is returned by as in the
introspection response under [key] [key] (Line 19). This can
be either the key used by the client instance in the grant re-
quest (returned by as in Line 131 of Algorithm A.13 whereby
the returned value was stored in Line 30 of Algorithm A.14)
or a different key chosen by AS for binding to this access
token (returned in Line 125 of Algorithm A.13).
If the key is the key from the grant request, this must be the
key associated with instanceID. As before, the instance iden-
tifier whose key is used in the key proof is the instance identi-
fierwhose resource is returned. SinceVALIDATE_KEY_PROOF
returned using this key, it must hold according to Lemma D.8
that 𝑚 was sent by the client whose resource is returned
(again, headers other than the Authorization header may
differ, but are irrelevant).
If the key is a different key chosen by as for this access token,
it must have been loaded in Line 125 of Algorithm A.13 from
𝑆 ′(as).tokenBindings[accessToken] [publicKey] for a pre-
vious state 𝑆 ′. This key is chosen from a clientTokenKeys
entry in Line 12 of Algorithm A.17. The used instance iden-
tifier is taken from grantRequests[grantID] [instanceID],
which is instanceID. SinceVALIDATE_KEY_PROOF returned,
the signature validation in Line 21 of the algorithm must
have been successful. In particular, the request𝑚 must have
been sent by a process, knowing the corresponding private
key. By Lemma D.4 and the initial states of ASs and CIs, only
the client instance associated with instanceID knows this
private key. As before, using Lemma D.8 yields that𝑚 must
thus have been sent by this client instance. At the same time
instanceID is used by rs to chose the right resource. In total,
we obtain that𝑚 was sent by ownerOfResource(resource).
• Line 24: In this line, VALIDATE_KEY_PROOF validates an
MTLS key proof, which in this context behaves like a key
proof for a signature (see the previous point), since public
keys are used in both cases and the lemmas used for the

proof are independent of whether the key proof is based on
MTLS or signatures.

Overall, the lemmamust apply to both bearer tokens and key-bound
access tokens, and thus all forms of access tokens. □

E.3.2 End-User.

Lemma E.11 (User Resource is returned only if Reqest
contains matching Access Token). For any run 𝜌 of a GNAP web
system GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌 , every RS rs ∈ RS that
is honest in 𝑆 , and every identity 𝑢 ∈ 𝑆 (rs) .userResources it holds
true that if 𝑆 (rs) .userResources[𝑢] is included as resource in the
response𝑚′ in Line 45 of Algorithm A.21 by rs, then𝑚′ is a response
to an HTTP request𝑚 for which the following holds true

(1) 𝑚 contains an Authorization header ⟨type,AT ⟩,
(2) when processing𝑚 in A.20, rs sends an introspection request

𝑚
req
intro to as = governor (𝑢), and when processing the corre-

sponding response𝑚resp
intro from as, rs reaches Line 45 of Algo-

rithm A.21,
(3) if as is honest in 𝑆 , as is the issuer of the token AT, and
(4) if as is honest in 𝑆 we have for

gid ≡ 𝑆 (as) .tokenBindings[AT] [grantID] that
𝑆 (as) .grantRequests[gid] [subjectID] ≡ 𝑢.

Proof. If 𝑆 (rs) .userResources[𝑢] is included as resource in the
response𝑚′ in Line 45 of Algorithm A.21 by rs, it must hold that
resource was loaded in Line 32, since this is the only line where rs
loads a user resource. rs reaches this line only when processing an
introspection response𝑚resp

intro. The corresponding introspection re-
quest𝑚req

intro must have been sent by rs in Line 13 of Algorithm A.20
or Line 56 of Algorithm A.21, since these are the only lines where
introspection requests are sent. Those lines are only reached if𝑚
contains an Authorization header ⟨type,AT ⟩ including an access
token AT : For Line 13 of A.20 this is immediate from the check
in Line 3. For Line 56 of A.21 we observe that the corresponding
MTLS request must have been sent in Line 19 of A.20 and thus the
same check in Line 3 shows Item (1).

We further observe that the introspection request𝑚req
intro must

have been sent to governor (𝑢): The identity used in Line 32 of
A.21 is 𝑢, and hence by the check in Line 31 𝑢 is an element of
𝑆 (rs) .identities[domainAS] where domainAS is
𝑆 (rs) .resourceRequests[requestID] [AS]. As the identities subterm
cannot change we have from the conditions on the initial states
of rs and as′ = dom−1 (domainAS) that there is a user record rec ∈
𝑠as
′

0 .users with 𝑢 ≡ rec.identity and 𝑢.domain ≡
rec.identity.domain ∈ dom(as′). Thus domainAS is a domain
of governor (𝑢).
Further, the domain saved in resourceRequests[requestID] [AS]
is the same domain that is used to send the introspection request
to. Hence, when processing𝑚 in A.20, rs sends an introspection
request𝑚req

intro to as = governor (𝑢). And since rs reaches Line 45 of
Algorithm A.21, we get Item (2).

In particular, since rs reaches Line 32 of Algorithm A.21, the
response must have included active : ⊤. If as is honest, it only
includes active : ⊤ in the response if it is the issuer of the token
AT , showing Item (3).

66

For Item (4) we see that the identity 𝑢 used in Line 32 of A.21
is retrieved from response[access] [identity] (Line 30), where
response = 𝑚

resp
intro is the introspection response received by rs

from as. Since as is honest by precondition, as must have included
the identity 𝑢 in the introspection response in Line 139 of Algo-
rithm A.13. The value used here for 𝑢 is taken from
𝑆 ′(as) .grantRequests[grantID] [subjectID], where grantID ≡
𝑆 ′(as) .tokenBindings[accessToken] [grantID] (Line 122) for some
previous state 𝑆 ′ and the accessToken that was transmitted to as by
rs. As seen in Line 11 resp. Line 16 and Line 3 of A.20, this access to-
ken passed from rs to as is the token taken from the Authorization
header of𝑚, i.e., accessToken = AT . This proves the lemma, since
the values of 𝑆 ′(as).grantRequests[grantID] [subjectID] and
𝑆 ′(as) .tokenBindings[AT] [grantID] cannot be overwritten and
thus must still be the same in 𝑆 . □

Lemma E.12 (User Resources are returned only to autho-
rized Client Instances). For any run 𝜌 of a GNAP web system
GWS , every configuration (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) in 𝜌 , every RS rs ∈ RS that
is honest in 𝑆 𝑗 , and every identity 𝑢 ∈ 𝑆 𝑗 (rs) .userResources it
holds true that if 𝑆 𝑗 (rs).userResources[𝑢] is included as resource
in the response 𝑚′ in Line 45 of Algorithm A.21 by rs, then 𝑚′ is
a response to an HTTP request 𝑚 sent by a client instance 𝑐 for
which it holds true that there exists a grant ID ASgid and a pro-
cessing step 𝑄 = (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖) → (𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1), such that 𝑖 < 𝑗

and tryLogin𝑄𝜌 (ownerOfID(𝑢), 𝑐,𝑢, governor(𝑢), gid,ASgid) (with
gid being the grant ID of the grant in whose context 𝑐 sent𝑚) as long
as

(1) governor(𝑢) is honest in 𝑆 𝑗 ,
(2) ownerOfResource(resource) is not fully corrupted in 𝑆 𝑗 ,
(3) for all client instances 𝑐 ′ that are honest in 𝑆 𝑗 , all domains

dmnAS ∈ dom(governor(𝑢)) and all key records
𝑘 ∈ 𝑠𝑐′0 .keyRecords[dmnAS] it holds true that 𝑘.method .
mac or dom−1 (𝑘.rs) is honest in 𝑆 𝑗 , and

(4) there do not exist 𝑐 ′, gid ′, ASgid ′, and 𝑄 ′ = (𝑆𝑖′, 𝐸𝑖′, 𝑁 𝑖′) →
(𝑆𝑖′+1, 𝐸𝑖′+1, 𝑁 𝑖′+1), such that 𝑖 ′ < 𝑗 ,
tryLogin𝑄

′
𝜌 (ownerOfID(𝑢), 𝑐 ′, 𝑢, governor(𝑢), gid ′,ASgid ′), and

(a) 𝑐 ′ is corrupted in 𝑆 𝑗 , or
(b) there exists a domain𝑦 ∈ ⟨⟩ 𝑆 𝑗 (𝑐 ′).grants[gid ′] [bearerRSs]

such that dom−1 (𝑦) is corrupted in 𝑆 𝑗 .

Proof. To prove this lemma, we will show several things:
(I) ownerOfID(𝑢) must have loaded a document from an origin

of governor(𝑢), executed the script script_as_login in that
document, and in that script, in Line 10 of Algorithm A.19,
selected the identity 𝑢,

(II) 𝑐 is a client instance that sent a grant request to governor(𝑢)
in a flow in which (I) occurred, and

(III) 𝑚 is sent in the same flow as that grant request.

(I) and (II) together imply that tryLogin𝑄𝜌 (ownerOfID(𝑢), 𝑐,𝑢,
governor(𝑢), gid,ASgid) holds for some previous processing step
𝑄 and some grant IDs gid and ASgid. (III) ensures that gid is the
grant ID of the grant in whose context 𝑐 sent𝑚.7

If tryLogin𝑄𝜌 (ownerOfID(𝑢), 𝑐,𝑢, governor(𝑢), gid,ASgid) holds, this

7This is required to rule out the stolen token replay attack, for example.

also means that 𝑐 is honest in 𝑆 𝑗 due to precondition (4). This in
turn implies, due to precondition (3), that 𝑐 does not share any of
the symmetric keys it shares with governor(𝑢) with a corrupted
RS.

Let as = governor(𝑢). By the first precondition we have that as
is honest.

We start with showing (I). By Lemma E.11,𝑚 must have con-
tained an access token accessToken in the Authorization header,
such that 𝑆 𝑗 (as).grantRequests[grantID] [subjectID] ≡ 𝑢 with
grantID ≡ 𝑆 𝑗 (as).tokenBindings[accessToken] [grantID]. The
[subjectID] entry must have been written in Line 17 of Algo-
rithm A.15 since this is the only line where this entry is written.
Since 𝑢 is written in Line 17, it must have hold in Line 8 that
password ≡ 𝑠𝑐0 .users[𝑢] ≡ secretOfID(𝑢) (the entries of the users
subterm of an honest AS never change). The value of password
is taken from the parameter 𝑚 (Line 4). 𝑚 must be a request re-
ceived by as at the /redirectLogin path or at the /userCodeLogin
path, since only in these sections Algorithm A.15 is called. Accord-
ing to Lemma D.7, only ownerOfID(𝑢) and as are able to derive
secretOfID(𝑢) in 𝑆 𝑗 . Since as does not send requests,𝑚 must thus
have been sent by ownerOfID(𝑢). Because secretOfID(𝑢) was con-
tained in𝑚, based on our browser model, ownerOfID(𝑢) must have
loaded a document from an origin of as, executed the script con-
tained in it, and then this script must have sent secretOfID(𝑢) to
the /redirectLogin path or the /userCodeLogin path. This script
must be script_as_login as this is the only script used by as and
HTTPS is used. Furthermore, since 𝑢 was written in Line 17 of
Algorithm A.15, and 𝑢 was taken from the [identity] subterm of
𝑚 (Line 3), it must hold that ownerOfID(𝑢) selected 𝑢 in Line 10 of
Algorithm A.19 (script_as_login), proving (I).

We will show (II) by showing that since 𝑐 is able to use an access
token that must have been created in a flow in which (I) occurred, 𝑐
must also have sent the grant request to governor(𝑢) in that flow. Us-
ing Lemma E.11, we know that the request𝑚must contain an access
token accessToken in the Authorization header, such that for the
grant ID grantID ≡ 𝑆 𝑗 (as).tokenBindings[accessToken] [grantID],
it holds true that 𝑆 𝑗 (as) .grantRequests[grantID] [subjectID] ≡
𝑢. Therefore, as seen in the previous paragraph, (I) must hold for
the flow in which this access token was created. As in the proof for
Lemma E.10, the access token can be either a bearer access token
or a key-bound access token.

First, let’s consider the case of a bearer access token. If the ac-
cess token is a bearer token, it must have been stored in Line 25
of Algorithm A.17 in 𝑆𝑖

′ (as).tokenBindings for some previous
state 𝑆𝑖

′
. Since the entries for an access token in the tokenBindings

subterm cannot change, it must hold that 𝑆 𝑗 (as).tokenBindings
[accessToken] [type] ≡ bearer.We nowobserve that Item (I) means
that tryLogin𝑄𝜌 (ownerOfID(𝑢), 𝑐 ′, 𝑢, governor(𝑢), gid,ASgid) holds
for some 𝑐 ′, gid. and ASgid. We can then conclude that this 𝑐 ′ must
be honest in 𝑆 𝑗 from precondition (4). By Lemma D.6 it must thus
hold that the bearer token is derivable in 𝑆 𝑗 only for as, 𝑐 ′, and
some RSs that must be honest according to precondition (4). The
sender of𝑚, 𝑐 , must obviously be able to derive the bearer token
in 𝑆 𝑗 . Since as, being an honest AS, does not send requests and
honest RSs only send introspection requests (but𝑚 is a resource

67

request), 𝑐 must be the client instance 𝑐 ′ that sent the grant request
to as = governor(𝑢).

Now we consider the case that the resource request𝑚 was au-
thorized using a key-bound access token. In this case, the call of
VALIDATE_KEY_PROOF must have returned in one of the follow-
ing lines of Algorithm A.21:

• Line 15: In this line, VALIDATE_KEY_PROOF validates a
MAC. The key for this key proof is loaded by rs in Line 14
from the symKeys subterm. The instance identifier used
was returned by as in the introspection response in the
[instanceID] entry (using HTTPS). as must have selected
the value returned under [instanceID] in Line 133 of Al-
gorithm A.13 as this is the only line where this entry is
written. The value chosen is the instance identifier speci-
fied in the grant request of this run, which must have been
stored in Line 7 of Algorithm A.14 when as processed the
grant request. So when rs loads the symmetric key from the
symKeys subterm in Line 14 of Algorithm A.21, it must be
the key of the client instance that sent the grant request to
as, since the values in the symKeys subterm cannot change.
Since VALIDATE_KEY_PROOF must have returned, accord-
ing to Lemma D.8, 𝑚 must have been sent by the client
instance that sent the grant request to as (headers other
than the Authorization header may differ, but are irrele-
vant). Lemma D.8 can be applied in this proof because by
precondition (4) ownerOfID(𝑢) authorizes only honest client
instances, and by precondition (3) honest client instances do
not use symmetric keys shared with as and a corrupted RS.
• Line 22: In this line, VALIDATE_KEY_PROOF validates a sig-
nature. The key for this key proof is returned by as in the
introspection response under [key] [key] (Line 19). This can
be either the key used by the client instance in the grant re-
quest (returned by as in Line 131 of Algorithm A.13 whereby
the returned value was stored in Line 30 of Algorithm A.14)
or a different key chosen by AS for binding to this access
token (returned in Line 125 of Algorithm A.13).
If the key is the key from the grant request, it must hold by
Lemma D.8 that𝑚 was sent by the client instance that sent
the grant request since VALIDATE_KEY_PROOF returned
using the key from the grant request (again, headers other
than the Authorization header may differ, but are irrele-
vant).
If the key is a different key chosen by as for this access token,
it must have been loaded in Line 125 of Algorithm A.13 from
𝑆𝑖
′ (as).tokenBindings[accessToken] [publicKey] for a pre-

vious state 𝑆𝑖
′
. This key is chosen from a clientTokenKeys

entry in Line 12 of Algorithm A.17. The instanceID key used
for this entry is taken from the initial grant request, in par-
ticular, it is an instance identifier of a client instance that
sent the grant request. Again, by Lemma D.8 we get that𝑚
was sent by the client instance that sent the grant request
• Line 24: In this line, VALIDATE_KEY_PROOF validates an
MTLS key proof, which in this context behaves like a key
proof for a signature (see the previous point), since public
keys are used in both cases and the lemmas used for the

proof are independent of whether the key proof is based on
MTLS or signatures.

Thus, (II) must apply to both bearer tokens and key-bound access
tokens.

Finally, we will prove (III). In principle, 𝑐 as an honest client
instance uses an access token received from an AS only in the flow
in which 𝑐 also received the access token. This is ensured in the
code by storing a received access token in Line 29 of Algorithm A.7
under the used grant ID in the receivedValues subterm, so that
when the access token is used in Algorithm A.8, it can be uniquely
associated with the flow in which the access token was received.
However, this does not mean that the access token received from
the AS was also issued for this flow, which is exploited in the
stolen token replay attack, for example. If 𝑐 received the access
token contained in𝑚 directly from as in the flow in which 𝑐 sent
𝑚, it must have been issued for this flow as well, since an honest
AS always returns only newly created access tokens (Line 6 resp.
Line 24 of Algorithm A.17). If 𝑐 received an access token issued by
as from a corrupted AS cas in this flow, we must again distinguish
by the type of access token. In the following, we will therefore show
for each type of access token that it cannot happen that rs sends
𝑚′ in response to𝑚 if the access token contained in𝑚 was issued
by as but was transmitted to 𝑐 by a corrupted AS in a flow other
than the flow in which the access token was issued by as.

Since bearer tokens do not leak (Lemma D.6), a corrupted AS
cannot send a bearer token created by as to 𝑐 .

Now consider the case, where the access token in𝑚 is bound to
the key that 𝑐 used for the grant request. We assume that 𝑐 received
the access token that was issued by as from a corrupted AS and
included this access token in the Authorization header of𝑚. In
the introspection response, as will return the public key 𝑐 used in
its grant request to as in the flow in which the access token was
issued (or the instance ID of 𝑐 if symmetric keys are used). This
holds since the public key resp. the instance ID are loaded from the
grant request in Line 131 resp. Line 133 of Algorithm A.13. Thus,
rs will use a key for validating the signature resp. MAC that 𝑐 uses
only for as, since an honest client instance by definition uses a
specific key only for one single AS. At the same time, however, 𝑐
will use the key it used in the grant request to the corrupted AS
fromwhich it received the access token when creating the signature.
This key must therefore be different from the key 𝑐 uses for as, so
VALIDATE_KEY_PROOF will not return in Line 15 or Line 22 of
Algorithm A.21 and rs will not send𝑚′. The same reasoning can
be applied to the use of MTLS and Line 24 of Algorithm A.21.

Finally, in the case where the access token is bound to a different
key of 𝑐 , the corrupted AS can only send a key belonging to the
corrupted AS along with it. Otherwise, the check by 𝑐 in Line 27
of Algorithm A.7 prevents 𝑐 from storing (and using) the token.
Similarly to the case of the token being bound to the client instance’s
key, 𝑐 uses different keys for different ASs and hence as above the
key proof performed by rs can not succeed.

This concludes the proof. □

Lemma E.13 (Receipt of a User Resource implies that the
RO was present). For any run 𝜌 of a GNAP web system GWS , every
configuration (𝑆, 𝐸, 𝑁) in 𝜌 , and every client instance 𝑐 ∈ CI that is
honest in 𝑆 it holds true that if the client instance 𝑐 stores 𝑚.body

68

under 𝑆 (𝑐) .grants[grantID] [resources] [domainRS] in Line 78 of
Algorithm A.7 (for some 𝑚, grantID, domainRS) where 𝑚.body ≡
𝑠rs0 .userResources[𝑢] for rs = dom−1 (domainRS) and some iden-
tity𝑢, then ownerOfResource(𝑚.body) led to the creation of grantID
at 𝑐 as long as

(1) rs is honest in 𝑆 ,
(2) ownerOfResource(𝑚.body) (= ownerOfID(𝑢)) is not fully

corrupted in 𝑆 ,
(3) governor(𝑢) is honest in 𝑆 , and
(4) for all client instances 𝑐 ′ that are honest in 𝑆 , all domains

dmnAS ∈ dom(governor(𝑢)), and all key records
𝑘 ∈ 𝑠𝑐′0 .keyRecords[dmnAS] it holds true that 𝑘.method .
mac or dom−1 (𝑘.rs) is honest in 𝑆 .

(5) there do not exist a client instance 𝑐 , two grant IDs CIgid and
ASgid, and a processing step 𝑄 = (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖) →
(𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1), such that 𝑖 < 𝑗 , tryLogin𝑄𝜌 (ownerOfID(𝑢),
𝑐,𝑢, governor(𝑢),CIgid,ASgid), and

(a) 𝑐 is corrupted in 𝑆 𝑗 (a grant request from a corrupted client
instance was granted), or

(b) there exists a domain𝑦 ∈ ⟨⟩ 𝑆 𝑗 (𝑐) .grants[gid] [bearerRSs]
such that dom−1 (𝑦) is corrupted in 𝑆 𝑗 (an authorized client
instance sent a bearer token to a corrupted RS),

Proof. In Line 78 of Algorithm A.7, domainRS is the domain of
rs to which 𝑐 sent the resource request that was answered by𝑚,
which must hold since domainRS was taken from the reference of
the request in Line 77 together with Lemma C.2. Thus, due to the
use of HTTPS,𝑚.body must have been obtained from the honest
RS rs. rs must have sent𝑚 in Line 46 of Algorithm A.21, since only
in this line matching responses are sent by an honest RS. Since𝑚
contains 𝑠rs0 .userResources[𝑢], according to Lemma E.12, it must
hold that there is a grant ID ASgid and a processing step 𝑄 such
that tryLogin𝑄𝜌 (ownerOfID(𝑢), 𝑐,𝑢, governor(𝑢), grantID,ASgid).8
𝑐 can only store a resource in 𝑆 (𝑐).grants[grantID] [resources]
[domainRS] in Line 78 of Algorithm A.7 if 𝑐 has sent a resource
request in Algorithm A.8. This in turn can only happen if the grant
identified by grantID has been authorized and 𝑐 has received an
access token from governor(𝑢). 𝑐 will only receive an access token
from governor(𝑢) after the interaction is finished, so it must hold
that 𝑐 called SEND_CONTINUATION_REQUEST(grantID,
interactRef , hash, 𝑠 ′, 𝑎) (for some interactRef , hash, 𝑠 ′, 𝑎) in a pro-
cessing step after 𝑄 in order to finish the interaction. Using
Lemma D.15, it must thus hold that ownerOfID(𝑢) sent the re-
quest to the /startGrantRequest path of 𝑐 that led to the cre-
ation of grantID in Line 9 of Algorithm A.6. Since by definition
ownerOfResource(𝑚.body) = ownerOfID(𝑢), the lemma is shown.

□

Lemma E.14 (Honest Client Instances return Resources
only to the Resource Owner). For any run 𝜌 of a GNAP web sys-
tem GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌 , and every client instance
𝑐 ∈ CI that is honest in 𝑆 it holds true that if 𝑐 emits an event in Line 18
of Algorithm A.11 in the processing step (𝑆 , 𝐸, 𝑁) → (𝑆 ′, 𝐸 ′, 𝑁 ′) (for
some configuration (𝑆 ′, 𝐸 ′, 𝑁 ′)) that contains an HTTP response𝑚′

8Since 𝑐 is honest in 𝑆 , we can ignore precondition (4) of Lemma E.12, since an honest
client instance will not use leaked bearer tokens or the keys of other corrupted client
instances.

whose body contains a nonce 𝑛 (as a subterm) for which it holds that
𝑏 = ownerOfResource(𝑛) for some browser 𝑏, then 𝑚′ must be a
response to an HTTP request𝑚 sent by 𝑏 as long as

(1) 𝑏 is not fully corrupted in 𝑆 ,
(2) the RS rs = dom−1 (𝑆 (𝑐) .grants[grantID] [domainFirstRS])

(with grantID being the grantID that was passed to Algo-
rithm A.11) from which 𝑐 received 𝑛 is honest in 𝑆 ,

(3) with 𝑢 being the identity for which 𝑠rs0 .userResources[𝑢] ≡
𝑛, it holds true that governor(𝑢) is honest in 𝑆 , and

(4) for all client instances 𝑐 ′ that are honest in 𝑆 , all domains
dmnAS ∈ dom(governor(𝑢)), and all key records
𝑘 ∈ 𝑠𝑐′0 .keyRecords[dmnAS] it holds true that 𝑘.method .
mac or dom−1 (𝑘.rs) is honest in 𝑆 .

(5) there do not exist a client instance 𝑐 , two grant IDs CIgid and
ASgid, and a processing step 𝑄 = (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖) →
(𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1), such that 𝑖 < 𝑗 , tryLogin𝑄𝜌 (ownerOfID(𝑢),
𝑐,𝑢, governor(𝑢),CIgid,ASgid), and

(a) 𝑐 is corrupted in 𝑆 𝑗 (a grant request from a corrupted client
instance was granted), or

(b) there exists a domain𝑦 ∈ ⟨⟩ 𝑆 𝑗 (𝑐) .grants[gid] [bearerRSs]
such that dom−1 (𝑦) is corrupted in 𝑆 𝑗 (an authorized client
instance sent a bearer token to a corrupted RS),

Proof. In Line 18 of Algorithm A.11 we have that sender and
receiver as well as the key and the nonce used in 𝑚′ have been
loaded from 𝑆 (𝑐) .browserRequests[grantID] [finishRequests]
(Line 15). The finishRequest entry is written only in Line 61
and Line 79 of Algorithm A.6. Since these are the only sections
where the value of this entry is written, Lemma D.14 implies that
𝑚 must have been sent by the same process that sent the request
to the /startGrantRequest path of 𝑐 that led to the creation of
grantID in Line 9 of Algorithm A.6.

The resource𝑛 is loaded from 𝑆 (𝑐).grants[grantID] [resources]
[domainFirstRS] in Line 12 of AlgorithmA.11 (with domainFirstRS =

𝑆 (𝑐) .grants[grantID] [domainFirstRS]). This value can only have
been stored in Line 78 of Algorithm A.7. Thus, by Lemma E.13, it
must hold that the request to the /startGrantRequest path of 𝑐
that led to the creation of grantID in Line 9 of Algorithm A.6 must
have been sent by ownerOfResource(𝑛) = 𝑏.

Together this means that𝑚 must have been sent by 𝑏. □

E.4 Security w.r.t. Authorization
Lemma E.15 (Authorization Property for Software-only

Authorization). Let GWS be a GNAP web system. We say that
GWS fulfills the authorization property for software-only autho-
rization iff for every run 𝜌 of GWS , every configuration (𝑆, 𝐸, 𝑁)
in 𝜌 , every RS rs ∈ RS that is honest in 𝑆 , every domain dmnAS ∈
𝑆 (rs) .clientResources, and every instance identifier 𝑖 ∈
𝑆 (rs) .clientResources[dmnAS] it holds true that if 𝑛 ≡
𝑆 (rs) .clientResources[dmnAS] [𝑖] is derivable from the attacker’s
knowledge in 𝑆 (i.e., 𝑛 ∈ 𝑑∅ (𝑆 (na))), it follows that

(1) dom−1 (dmnAS) (the responsible AS) is corrupted in 𝑆 , or
(2) the client instance 𝑐 = ownerOfResource(𝑛) that owns this

resource is corrupted in 𝑆 , or
(3) there exists a key record 𝑘 in 𝑠𝑐0 .keyRecords[dmnAS′] (for

some domain dmnAS′ ∈ dom(dom−1 (dmnAS))) such that
69

𝑘.method ≡ mac and dom−1 (𝑘.rs) is corrupted in 𝑆 (𝑐 shares
a symmetric key with the responsible AS and a corrupted RS),
or

(4) there exist a grant ID gid and a domain 𝑦 ∈ ⟨⟩ 𝑆 (𝑐) .grants
[gid] [bearerRSs] such that sessionID ∉ 𝑆 (𝑐).grants[gid]
(software-only authorization was used) and dom−1 (𝑦) is cor-
rupted in 𝑆 (a bearer token was sent to a corrupted resource
server).

Proof. We prove this lemma using proof by contradiction. We
assume that 𝑛 ∈ 𝑑∅ (𝑆 (na)) and that

(1) dom−1 (dmnAS) is honest in 𝑆 ,
(2) 𝑐 = ownerOfResource(𝑛) is honest in 𝑆 ,
(3) for all domains dmnAS′ ∈ dom(dom−1 (dmnAS)) with

dmnAS′ ∈ 𝑠𝑐0 .keyRecords and all key records
𝑘 ∈ 𝑠𝑐0 .keyRecords[dmnAS′] with 𝑘.method ≡ mac it holds
true that dom−1 (𝑘.rs) is honest in 𝑆 , and

(4) there does not exist a grant ID gid and a domain 𝑦 ∈ ⟨⟩
𝑆 (𝑐).grants[gid] [bearerRSs] such that sessionID ∉

𝑆 (𝑐).grants[gid] and dom−1 (𝑦) is corrupted in 𝑆 .
By the definitions of the initial states, 𝑛 must be initially stored in
rs only, or it was created before 𝑆 in Line 36 of Algorithm A.21 and
then stored in the state of rs in Line 38 (and therefore not contained
in any of the initial states). In any case, there must have been a
state before 𝑆 in which 𝑛 was stored in rs only. Since rs is honest by
precondition, it sends 𝑛 only in responses to resource requests in
Line 45 of Algorithm A.21. Since all the conditions for Lemma E.10
are satisfied, it must hold that rs thereby sends 𝑛 only in response
to a request from 𝑐 . Because HTTPS is used for this response, only
𝑐 is able to decrypt the response, so rs leaks 𝑛 only to 𝑐 , but no other
process. As 𝑐 is honest and does not emit events containing received
resources when using software-only authorization, it is also not
possible for 𝑐 to leak 𝑛 to any other process. Thus, in 𝑆 , 𝑛 can only
be derivable for the two honest processes 𝑐 and rs, which means
that, contrary to our assumption, 𝑛 ∉ 𝑑∅ (𝑆 (na)) must hold. □

Lemma E.16 (Authorization Property for End Users). Let
GWS be a GNAP web system. We say that GWS fulfills the autho-
rization property for end users iff for every run 𝜌 of GWS , every
configuration (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) in 𝜌 , every RS rs ∈ RS that is honest in 𝑆 𝑗 ,
and every identity 𝑢 ∈ 𝑆 𝑗 (rs) .userResources it holds true that if

(1) governor(𝑢) (the responsible AS) is honest in 𝑆 𝑗 ,
(2) the browser 𝑏 = ownerOfResource(𝑛) that owns this resource

is not fully corrupted in 𝑆 𝑗 ,
(3) for all client instances 𝑐 that are honest in 𝑆 𝑗 and all key records

𝑘 ∈ 𝑠𝑐0 .keyRecords[dmnAS] (for some domain
dmnAS ∈ dom(governor(𝑢))) it holds true that 𝑘.method .
mac or dom−1 (𝑘.rs) is honest in 𝑆 𝑗 (honest client instances
share symmetric keys only with governor(𝑢) and honest RSs),
and

(4) there do not exist a client instance 𝑐 , two grant IDs CIgid and
ASgid, and a processing step 𝑄 = (𝑆𝑖 , 𝐸𝑖 , 𝑁 𝑖) →
(𝑆𝑖+1, 𝐸𝑖+1, 𝑁 𝑖+1), such that 𝑖 < 𝑗 , tryLogin𝑄𝜌 (ownerOfID(𝑢),
𝑐,𝑢, governor(𝑢),CIgid,ASgid), and

(a) 𝑐 is corrupted in 𝑆 𝑗 (a grant request from a corrupted client
instance was granted), or

(b) there exists a domain𝑦 ∈ ⟨⟩ 𝑆 𝑗 (𝑐) .grants[gid] [bearerRSs]
such that dom−1 (𝑦) is corrupted in 𝑆 𝑗 (an authorized client
instance sent a bearer token to a corrupted RS),

then 𝑛 ≡ 𝑆 𝑗 (rs) .userResources[𝑢] is not derivable from the at-
tacker’s knowledge in 𝑆 𝑗 (i.e., 𝑛 ∉ 𝑑∅ (𝑆 𝑗 (na))).

Proof. For a contradiction assume that 𝑛 ∈ 𝑑∅ (𝑆 𝑗 (na)). Since,
by definition, 𝑛 is initially stored in rs only, it must hold for all
processes 𝑝 ≠ rs that 𝑛 ∉ 𝑑∅ (𝑠

𝑝

0). Since rs is honest by precondition,
it emits 𝑛 only in responses to resource requests in Line 45 of Algo-
rithm A.21. As all conditions for Lemma E.12 are given, it must hold
that rs sends 𝑛 only to client instances 𝑐 for which tryLogin𝑄

′
𝜌 (𝑏, 𝑐,

𝑢, governor(𝑢), gid,ASgid) holds for some grant IDs gid and ASgid,
and some previous processing step 𝑄 ′. Due to assumption (a), it
must hold for these client instances to be honest in 𝑆 𝑗 . Due to the
use of HTTPS, only these client instances can decrypt the resource
responses sent by rs, so 𝑛 is not leaked to any other process when
𝑛 is transferred from rs to client instances. Honest client instances
emit events that may contain user resources only in Line 18 of
Algorithm A.11. By Lemma E.14, it must therefore hold that all
possible client instances 𝑐 that may have received 𝑛 from rs emit 𝑛
only in a response to 𝑏 using HTTPS. Since 𝑏 is not fully corrupted
in 𝑆 𝑗 and HTTPS is used, only 𝑏 can decrypt the response, so all
𝑐 can leak 𝑛 only to 𝑏. A browser that is not fully corrupted does
not process received resources any further and, in particular, does
not resend them. Thus, in 𝑆 𝑗 , 𝑛 can only be derivable for 𝑏, rs, and
some honest client instances, which means that, contrary to our
assumption, 𝑛 ∉ 𝑑∅ (𝑆 𝑗 (na)) must hold. □

E.5 Session Integrity for Authorization
Lemma E.17 (Session Integrity for Software-only Autho-

rization). Let GWS be a GNAP web system. We say that GWS is
secure w.r.t. session integrity for software-only authorization iff for
every run 𝜌 of GWS , every processing step 𝑄 in 𝜌 with

𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆 ′, 𝐸 ′, 𝑁 ′)

(for some 𝑆, 𝑆 ′, 𝐸, 𝐸 ′, 𝑁 , 𝑁 ′), every client instance 𝑐 ∈ CI that is honest
in 𝑆 , every rs that is honest in 𝑆 , every nonces 𝑟 and CIgid, every
AS as, every instance ID instanceID if sw_accessesResource𝑄𝜌 (𝑐, 𝑟,
CIgid, rs, as, instanceID) then

(1) In some processing step 𝑄 ′ earlier than 𝑄 , there are a message
𝑚, an AS as′ and a grant ID ASgid such that
client_started𝑄

′
𝜌 (𝑐,CIgid,𝑚, as′,ASgid)

(2) If, additionally, as′ is honest in 𝑆 , then:
(a) as = as′ — that is, the AS to which the client instance sent

its initial request is the same as the AS controlling access to
the resource that was sent to the client instance.

(b) 𝑚 contains the mapping instanceID : instanceID — that
is,𝑚 was a request beginning a software-only GNAP flow
for the client instance identified by instanceID.

Proof. Suppose we are given 𝜌,𝑄, 𝑆, 𝑐, rs, 𝑟 ,CIgid, as, instanceID
as specified in the lemma, and that sw_accessesResource𝑄𝜌 (𝑐, 𝑟,CIgid,
rs, as, instanceID).

By definition, then, we know that there exist domains domainAS ∈
dom(as) and domainRS ∈ dom(rs) such that:

70

(1) 𝑟 = 𝑆 (𝑟𝑠) .clientResources[domainAS] [instanceID]
(2) 𝑐 stores the resource 𝑟 under 𝑆 (𝑐).grants[CIgid] [resources]
[domainRS] in Line 78 of Algorithm A.7.

Since 𝑐 stores 𝑟 on Line 78 of Algorithm A.7, the conditional on
Line 76 must have succeeded, so reference[responseTo] ≡
resourceResponse. We also know that CIgid here is equal to
reference[grantID], from Line 2.

A reference with reference[responseTo] ≡ resourceResponse
is only created on Line 31 of Algorithm A.8, and this reference is
used to send a message𝑚 either directly on Line 36 (for a bearer
token), on Line 46 (for a key-bound token not using MTLS), or indi-
rectly on Line 129 of Algorithm A.7 (for a key-bound token using
MTLS, where the real request is only sent after MTLS concludes).
In each case, the CIgid stored in reference is chosen on Line 21 of
Algorithm A.8 to be some key in 𝑠 ′.receivedValues. Moreover,
on Line 30, an access token tok is loaded from 𝑠 ′.receivedValues
[CIgid] [accessToken], and is included in 𝑚, under the
Authorization header.

This field of the state of the client is only written to on Line 29 of
Algorithm A.7, when the client receives an access token (tok) in a re-
sponse from some 𝑝 to a request forwhich reference[responseTo] ≡
grantResponse. Then, by Lemma E.9, we can conclude that there
are an earlier step 𝑄 ′, a message 𝑚̂, an AS as′, and a nonce ASgid
such that client_started𝑄

′
𝜌 (𝑐,CIgid, 𝑚̂, as′,ASgid). If as′ is honest,

we can further conclude that as = as′ = 𝑝 is the issuer of tok and
that 𝑆 (as).tokenBindings[grantID] ≡ ASgid.

It remains to show that 𝑚̂ contains the mapping instanceID :
instanceID. We know that the resource request 𝑚 contained the
token tok issued by as. As such, upon receiving𝑚, rs will send an
introspection request to as (as an honest resource server always
sends introspection requests to the issuer of the token it is provided
with (Line 5 of Algorithm A.20)), and this request will contain the
mapping accessToken : tok.

Since the resource 𝑟 accessed by 𝑐 is 𝑆 (rs) .clientResources
[domainAS] [instanceID], we know that rs received a response resp
to this introspection request such that resp[active] ≡ ⊤ and resp
[access] [instanceID] ≡ instanceID, so that the checks on Lines 5,
29 of Algorithm A.21 can succeed.

We now examine what as as an honest AS must have done to
create such a response upon receiving an introspection request
containing tok. A check on Line 116 of Algorithm A.13 ensures that
resp[active] ≡ ⊤ only if tok ∈ 𝑆 (as) .tokenBindings. The grant
ID ASgid is then loaded from this token binding on Line 122, and on
Line 141, resp[access] [instanceID] is set to 𝑠 ′.grantRequests
[ASgid] [instanceID]. This field of the AS state is only written
to on Line 7 of Algorithm A.14, and only if the check on Line 2
succeeds, so 𝑠 ′.grantRequests[ASgid] is being created initially.
The only place where Algorithm A.14 is called and this is true is
on Line 4 of Algorithm A.13, immediately after ASgid is created.
Since ASgid is created in response to 𝑚̂, we see that 𝑚̂ is passed
in as the first argument to Algorithm A.14, and so the instance ID
stored is 𝑚̂.body[instanceID]. As such, 𝑚̂ contains the mapping
instanceID : instanceID, as desired. □

Lemma E.18 (Session Integrity for End User Authorization).
Let GWS be a GNAP web system. We say that GWS is secure w.r.t.
session integrity for authorization for end users iff for every run 𝜌

of GWS , every processing step 𝑄 in 𝜌 with

𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆 ′, 𝐸 ′, 𝑁 ′)

(for some 𝑆, 𝑆 ′, 𝐸, 𝐸 ′, 𝑁 , 𝑁 ′), every browser 𝑏 that is honest in 𝑆 , every
as ∈ AS, every identity 𝑢, every client instance 𝑐 ∈ CI that is honest
in 𝑆 , every rs ∈ RS that is honest in 𝑆 , every nonce 𝑟 , and every nonce
CIgid, we have that if accessesResource𝑄𝜌 (𝑏, 𝑟,𝑢, 𝑐, rs,CIgid), then

(1) there exists a processing step 𝑄 ′ in 𝜌 (before 𝑄) such that
started𝑄

′
𝜌 (𝑏, 𝑐,CIgid, as), and

(2) Suppose that additionally, as and governor(𝑢) are honest in
𝑆 and for all client instances 𝑐 ′ that are honest in 𝑆 and
all key records 𝑟 ∈ 𝑠𝑐0 .keyRecords[dmnAS] (for some do-
main dmnAS ∈ dom(as)) with 𝑟 .method ≡ mac, it holds
that dom−1 (𝑟 .rs) is honest in 𝑆 . Then there exists a grant
ID ASgid and a processing step 𝑄 ′′ in 𝜌 (before 𝑄) such that
finishLogin𝑄

′′
𝜌 (𝑏, 𝑐,𝑢, as,CIgid,ASgid).

Proof. For (1): From Item (3) of accessResource𝑄 (𝑏, 𝑟,𝑢, 𝑐, rs,
CIgid) we have that 𝑐 sends a response to 𝑏 in Line 18 of Algo-
rithm A.11 that includes 𝑟 ≡ 𝑐.grants[CIgid] [resources]
[domainRS]. The receiver is loaded from 𝑐.browserRequests[CIgid]
[finishRequest]. This field is only written into once at Line 61 or
Line 79 of Algorithm A.6. In both cases the receiver component
is set to the sender of the current request𝑚. From Lemma D.14 we
have that 𝑐 stores these values only when processing a request from
the browser 𝑏 ′ that sent the request to the /startGrantRequest
path at 𝑐 that led to the creation of gid. As 𝑐 stored 𝑏 as receiver, it
must hold that𝑏 ′ = 𝑏. Requests to the /startGrantRequest path at
𝑐 are sent only in Line 6 of script_ci_index (Algorithm A.12) loaded
from a document of an origin of 𝑐 . This shows started𝑄

′
𝜌 (𝑏, 𝑐,CIgid,

as) for some as and a previous processing step 𝑄 ′ as stated.
For (2) we first show that in a processing step 𝑄 ′′′ before 𝑄 ,

𝑐 used some access token AT issued by governor (𝑢) such that
successfulUseOfToken𝑄

′′′ (𝑐,CIgid,AT , rs, governor (𝑢)).We continue
to show as = governor (𝑢) and that ownerOfID (𝑢) authenticated
𝑐 at as in a processing step 𝑄 ′′ before 𝑄 ′′′, i.e.,
finishLogin𝑄

′′
𝜌 (ownerOfID(𝑢), 𝑐,𝑢, as,CIgid,ASgid) with ASgid be-

ing the grant ID of the token AT at governor (𝑢). Finally, we show
𝑏 = ownerOfID (𝑢). The last two together show the statement, i.e.,
tryLogin𝑄

′′
𝜌 (ownerOfID(𝑢), 𝑐,𝑢, as,CIgid,ASgid).

successfulUseOfToken𝑄
′′′ (𝑐,CIgid,AT , rs, governor (𝑢)):We first

show that 𝑐 sent an HTTPS request𝑚req
resource to the /resource path

of a domain of rs where the reference contains grantID : CIgid.
From Item (2) of accessesResource𝑄𝜌 (𝑏, 𝑟,𝑢, 𝑐, rs,CIgid), we have

that 𝑐 stores 𝑟 under 𝑆 (𝑐).grants[CIgid] [resources] [domainRS]
where domainRS is a domain of rs. The resource field is written
into only in Line 78 of A.7, when processing an HTTPS response
𝑚

resp
resource from some process 𝑝 . Hence, 𝑐 must have sent a corre-

sponding HTTPS request𝑚req
resource to a domain of 𝑝 .

In Line 78, the resource is stored at grants[reference[grantID]]
[resources] [reference[domainRS]]. From Item (2) of
accessesResource𝑄𝜌 (𝑏, 𝑟,𝑢, 𝑐, rs,CIgid) we have reference[grantID]
= CIgid and reference[domainRS] ∈ dom(rs). We will now show
that reference[domainRS] is also a domain of 𝑝 , i.e., a domain of the
process that 𝑐 sent the request𝑚req

resource to. Line 78 of A.7 is only
71

executed if reference contains responseTo : resourceResponse.
Requests with this reference are sent directly at Lines 36, 46, 59, 65,
and using MTLS in Lines 52 and 71 of A.8. In all cases the request
is (eventually) sent to the /resource path of the domain that is
stored under reference[domainRS] in Line 31 or 63.

This shows that 𝑐 sent an HTTPS request 𝑚req
resource to the

/resource path of a domain of rs with the reference containing
grantID : CIgid in a processing step before 𝑄 .

The resource stored by 𝑐 under 𝑆 (𝑐).grants[CIgid] [resources]
[domainRS] in Line 78 of A.7 is taken from𝑚resp

resource .body. Hence, rs
must have included the user resource 𝑟 in Line 32 of A.21 and sent
it in Line 45. By Items (1) to (3) from Lemma E.11 we thus get
successfulUseOfToken𝑄

′′′ (𝑐,CIgid,AT , rs, governor (𝑢)) for some
processing step 𝑄 ′′′ before 𝑄 (recall that governor (𝑢) is honest).

For the remaining proof let ASgid = 𝑆 (governor (𝑢)) .
tokenBindings[AT] [grantID]. As governor (𝑢) is honest, we fur-
ther get from Item (4) of Lemma E.11, that governor (𝑢) stored
𝑢 at grantRequests[ASgid] [subjectID] in a processing step 𝑄 ′′
before 𝑄 ′′′.

as = governor (𝑢): We first show that 𝑐 stores AT under
𝑆 (𝑐) .receivedValues[CIgid].
From Item 1 of successfulUseOfToken𝑄

′′′ (𝑐,CIgid,AT , rs,
governor (𝑢)) we have that 𝑐 sent a message to the /resource path
of a domain of rs containing AT in the Authorization header and
the reference contains grantID : CIgid. Since 𝑐 is honest it only
sends messages to the /resource path of a domain of rs in the last
branch of Algorithm A.8. The token used in the Authorization
header is taken from 𝑐.receivedValues[grantID] [accessToken],
where grantID is the same grant ID that is stored in the reference
at grantID. Thus, 𝑐 stores AT under 𝑐.receivedValues[CIgid]
[accessToken].

Hence, 𝑐 must have received a response𝑚resp
token from some pro-

cess as3 with AT ≡𝑚resp
token .body[accessToken]. From our precon-

ditions, we further know, that the issuer of AT (governor (𝑢)) is
honest and that the AS where 𝑐 starts the flow for CIgid at (as)
is honest. Thus, by Lemma E.9 with as3, as2 = governor (𝑢), and
as1 = as, we get that as = governor (𝑢).

finishLogin𝑄
′′

𝜌 (ownerOfID(𝑢), 𝑐,𝑢, as,CIgid,ASgid): From the ap-
plication of Lemma E.9, we further have that 𝑐 received AT from as.
Further, from accessesResource𝑄𝜌 (𝑏, 𝑟,𝑢, 𝑐, rs,CIgid) and the argu-
ments in the first part, we have that rs sent a user resource to 𝑐 . Hon-
est RSs only send user resources if the response from theAS includes
the identity field in the access field (see check in Line 29 of Al-
gorithm A.21). From successfulUseOfToken𝑄

′′′ (𝑐,CIgid,AT , rs, as)
we know that introspection was done at as and since as is honest
it only includes the access field with an identity field in a re-
sponse if 𝑆 (as) .tokenBindings[AT] [for] ≡ endUser due to the
check in Line 138 in Algorithm A.13. With our definition of ASgid,
we then get finishLogin𝑄

′′
𝜌 (ownerOfID(𝑢), 𝑐,𝑢, as,CIgid,ASgid) by

Lemma D.13.
𝑏 = ownerOfID (𝑢): As in the proof of Item (1), we get from

accessesResource𝑄𝜌 (𝑏, 𝑟,𝑢, 𝑐, rs,CIgid) that 𝑐 stores 𝑏 in
𝑆 (𝑐) .browserRequests[CIgid] [finishRequest]. FromLemmaD.14
we get that𝑏 must be the browser that started the flowCIgid at 𝑐 . On
the other hand, from finishLogin𝑄

′′
𝜌 (ownerOfID(𝑢), 𝑐,𝑢, as,CIgid,

ASgid) we know that the flow CIgid was started by ownerOfID (𝑢).
Thus 𝑏 = ownerOfID (𝑢) must be true. □

E.6 Theorem
Theorem E.19 (Security Authorization). Every GNAP web

system fulfills the authorization property and session integrity for
both the software-only and the end user case.

Proof. This directly follows from Lemmas E.15 and E.17, and
Lemmas E.16 and E.18. □

F AUTHENTICATION
F.1 Definitions

Definition F.1 (Service Sessions). We say that there is a service
session identified by an ID 𝑠𝑠𝑖𝑑 for an identity𝑢 at some client instance
𝑐 under grant CIgid in a configuration (𝑆, 𝐸, 𝑁) of a run 𝜌 of a GNAP
web system, written as

serviceSession𝑆𝜌 (ssid, 𝑢, 𝑑, 𝑐,CIgid),

iff for sessionID ≡ 𝑆 (𝑐) .grants[CIgid] [sessionID] we have
• 𝑆 (𝑐) .sessions[ssionID] [loggedInAs] ≡ ⟨𝑢,𝑑⟩ and
• 𝑆 (𝑐) .sessions[sessionID] [serviceSessionID] ≡ ssid

Definition F.2 (End user is logged in). For a run 𝜌 of a GNAP web
system GWS we say that a browser 𝑏 was authenticated to a client
instance 𝑐 using an authorization server as and an identity 𝑢 in a
GNAP flow identified by a nonce gid in a processing step 𝑄 in 𝜌
with

𝑄 = (𝑆, 𝐸, 𝑁) −−−−−−→
𝑐→𝐸out

(𝑆 ′, 𝐸 ′, 𝑁 ′)

(for some 𝑆, 𝑆 ′, 𝐸, 𝐸 ′, 𝑁 , 𝑁 ′) and some event ⟨𝑎, 𝑓 ,𝑚⟩ ∈ 𝐸out such
that𝑚 is an HTTPS response sent by 𝑐 to 𝑏, and we have that in
the headers of𝑚 there is a header of the form
⟨Set-Cookie, [⟨__Host, serviceSessionID⟩:⟨ssid,⊤,⊤,⊤⟩]⟩ for
some nonce ssid such that for sessionID ≡ 𝑆 (𝑐).grants[gid] [sessionID]
wehave 𝑆 (𝑐) .sessions[sessionID] [serviceSessionID] ≡ ssid and
𝑆 (𝑐) .sessions[sessionID] [loggedInAs] ≡ ⟨𝑢,𝑑⟩with𝑑 ∈ dom(as).
We then write loggedIn𝑄𝜌 (𝑏, 𝑐,𝑢, as, gid).

F.2 Security Properties
Definition F.3 (Authentication Property). Let GWS be a GNAP

web system. We say that GWS is secure w.r.t. authentication iff for
every run 𝜌 of GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌 , every client
instance 𝑐 honest in 𝑆 , every identity 𝑢 with 𝑏 = ownerOfID (𝑢)
honest, every domain 𝑑 with as = dom−1 (𝑑) honest, and every
service session ID ssid with serviceSession𝑆𝜌 (ssid, u, 𝑑, 𝑐,CIgid) (for
some CIgid), if for all client instances 𝑐 ′ that are honest in 𝑆 and all
key records 𝑟 ∈ 𝑠𝑐0 .keyRecords[𝑑

′] (for some 𝑑 ′ ∈ dom(as)) with
𝑟 .method ≡ mac, it holds that dom−1 (𝑟 .rs) is honest in 𝑆 , then ssid
is only derivable to 𝑐 and 𝑏.

Definition F.4 (Session Integrity for Authentication). Let GWS be a
GNAP web system. We say that GWS is secure w.r.t. session integrity
for authentication iff for every run 𝜌 of GWS , every processing step
𝑄 in 𝜌 with

𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆 ′, 𝐸 ′, 𝑁 ′)
72

(for some 𝑆, 𝑆 ′, 𝐸, 𝐸 ′, 𝑁 , 𝑁 ′), every browser 𝑏 that is honest in 𝑆 ,
every as ∈ AS, every identity 𝑢, every client instance 𝑐 ∈ CI that is
honest in 𝑆 , every nonce CIgid, and loggedIn𝑄𝜌 (𝑏, 𝑐,𝑢, as,CIgid) we
have that

(1) there exists a processing step 𝑄 ′ in 𝜌 (before 𝑄) such that
started𝑄

′
𝜌 (𝑏, 𝑐,CIgid, as), and

(2) Suppose that additionally, as is honest in 𝑆 and for all client
instances 𝑐 ′ that are honest in 𝑆 , all domains dmnAS ∈
dom(as), and all key records 𝑟 ∈ 𝑠𝑐0 .keyRecords[dmnAS]
with
𝑟 .method ≡ mac, it holds that dom−1 (𝑟 .rs) is honest in 𝑆 .
Then there exists a grant ID ASgid and a processing step
𝑄 ′′ in 𝜌 (before 𝑄) such that finishLogin𝑄

′′
𝜌 (𝑏, 𝑐,𝑢, as,CIgid,

ASgid).

F.3 Auxiliary Lemmas
Proposition F.5 (sentTo field contains receiver). If a request

𝑚 from an honest client instance contains sentTo : domainAS in the
reference, then𝑚 is sent to domainAS.

Just check all places where sentTo is set and compare to corre-
sponding places where the request is sent.

F.4 Security w.r.t. Authentication
Lemma F.6 (Authentication Property). Let GWS be a GNAP

web system. We say that GWS is secure w.r.t. authentication iff for
every run 𝜌 of GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌 , every client
instance 𝑐 honest in 𝑆 , every identity 𝑢 with 𝑏 = ownerOfID (𝑢)
honest, every domain 𝑑 with as = dom−1 (𝑑) honest, and every
service session ID ssid with serviceSession𝑆𝜌 (ssid, u, 𝑑, 𝑐,CIgid) (for
some CIgid), if for all client instances 𝑐 ′ that are honest in 𝑆 and all
key records 𝑟 ∈ 𝑠𝑐0 .keyRecords[𝑑

′] (for some 𝑑 ′ ∈ dom(as)) with
𝑟 .method ≡ mac, it holds that dom−1 (𝑟 .rs) is honest in 𝑆 , then ssid
is only derivable to 𝑐 and 𝑏.

Proof. serviceSessionIDs are newly created by 𝑐 in Algo-
rithm A.11. If 𝑐 does not send out ssid it is only derivable by 𝑐 .
𝑐 sends ssid only to 𝑏: Now assume, that 𝑐 sends ssid to some

process 𝑝 . Since 𝑐 is honest this happens only in Line 18 of Algo-
rithm A.11. We want to show that 𝑝 must be ownerOfID (𝑢). In
Line 18, 𝑐 sends ssid to the process stored in browserRequests
[CIgid] [finishRequest]. By Lemma D.14 this is the browser that
led to the creation ofCIgid at 𝑐 . Wewill now see that ownerOfID (𝑢)
started the flowCIgid at 𝑐 , by showing finishLogin𝑄

′′
𝜌 (ownerOfID (𝑢) ,

𝑐,𝑢, as,CIgid,ASgid), for some ASgid.
In Line 18, ssid is sent to 𝑝 only in the form of a serviceSessionID

header created in Line 7. Hence, we have loggedIn𝑄𝜌 (𝑝, 𝑐,𝑢, as,CIgid)
with ssid and 𝑑 (since 𝑑 ∈ dom (as)). We first show that 𝑐 must have
received a message𝑚 from as containing the subjectID field with
value𝑢 and 𝑐 stores this subjectID under 𝑐.receivedValues[CIgid]
together with a domain 𝑑 of as. Applying Lemma D.13 then yields
the claim.

From loggedIn𝑄𝜌 (𝑏, 𝑐,𝑢, as,CIgid)wehave that 𝑐 stores 𝑐.sessions
[sessionID] [loggedInAs] = ⟨𝑢,𝑑⟩ for some domain 𝑑 ∈ dom (as)
and sessionID ≡ 𝑐.grants[CIgid] [sessionID]. 𝑐 only writes the
loggedInAs field in Line 5 of AlgorithmA.11. This happens only if a

subjectID field is saved in 𝑐.receivedValues[CIgid]. A subjectID
field is only written into 𝑐.receivedValues[CIgid] in Line 18 of
Algorithm A.7, when processing a response 𝑚. We show that 𝑚
came from as and contains 𝑢 in the subjectID field.

Since 𝑐 receives𝑚 it must have previously sent a corresponding
request 𝑚′ including responseTo : grantResponse in the refer-
ence. The subjectID stored in Line 18 is taken from the subjectID
field of𝑚. Thus𝑚 must contain 𝑢 in the subjectID field.

We are left to show that𝑚 was sent by as. From Proposition F.5
we know, that the request 𝑚′ was sent to the domain saved in
the sentTo field of the reference, and hence the response𝑚 was
received from the same domain. Since 𝑐 stores ⟨𝑢, reference[sentTo]
⟩ = ⟨𝑢,𝑑⟩ in the subjectID field and 𝑑 ∈ dom (as), we get that
𝑚 was sent by as. This gives all the preconditions of Lemma D.13
which shows finishLogin𝑄

′′
𝜌 (ownerOfID (𝑢) , 𝑐,𝑢, as,CIgid,ASgid).

Thus, ownerOfID (𝑢) started the flow CIgid and hence ssid is
only sent to the honest 𝑝 = ownerOfID (𝑢).
𝑏 sends ssid only to 𝑐: In our browser model an honest browser

sends cookies only back to the originating domain, thus 𝑏 sends
ssid only back to 𝑐 . □

F.5 Session Integrity for Authentication
Lemma F.7 (Session Integrity for Authentication). Let GWS

be a GNAP web system. We say that GWS is secure w.r.t. session in-
tegrity for authentication iff for every run 𝜌 of GWS , every processing
step 𝑄 in 𝜌 with

𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆 ′, 𝐸 ′, 𝑁 ′)

(for some 𝑆, 𝑆 ′, 𝐸, 𝐸 ′, 𝑁 , 𝑁 ′), every browser 𝑏 that is honest in 𝑆 , every
as ∈ AS, every identity𝑢, every client instance 𝑐 ∈ CI that is honest in
𝑆 , every nonce CIgid, and loggedIn𝑄𝜌 (𝑏, 𝑐,𝑢, as,CIgid) we have that

(1) there exists a processing step 𝑄 ′ in 𝜌 (before 𝑄) such that
started𝑄

′
𝜌 (𝑏, 𝑐,CIgid, as), and

(2) Suppose that additionally, as is honest in 𝑆 and for all client in-
stances 𝑐 ′ that are honest in 𝑆 , all domains dmnAS ∈ dom(as),
and all key records 𝑟 ∈ 𝑠𝑐0 .keyRecords[dmnAS] with
𝑟 .method ≡ mac, it holds that dom−1 (𝑟 .rs) is honest in 𝑆 .
Then there exists a grant ID ASgid and a processing step𝑄 ′′ in
𝜌 (before𝑄) such that finishLogin𝑄

′′
𝜌 (𝑏, 𝑐,𝑢, as,CIgid,ASgid).

Proof. For (1): From loggedIn𝑄𝜌 (𝑏, 𝑐,𝑢, as,CIgid) we have that 𝑐
sends a response to 𝑏 including a serviceSessionID cookie in the
headers. Such responses are only sent in Line 7 of Algorithm A.11,
where the receiver is loaded from 𝑆 (𝑐) .browserRequests[CIgid]
[finishRequest]. The rest of the proof follows the one of Item (1)
of Lemma E.18. I.e., the receiver stored there is the browser that
started the request CIgid.

For (2): Similarly to the first part of the proof of Lemma F.6, we
first show that ownerOfID (𝑢) authenticated 𝑐 to as using CIgid
and ASgid and then we’ll see that 𝑏 = ownerOfID (𝑢).

finishLogin𝑄
′′

𝜌 (ownerOfID (𝑢) , 𝑐,𝑢, as,CIgid,ASgid): This follows
from loggedIn𝑄𝜌 (𝑏, 𝑐,𝑢, as,CIgid) in the same way as in the second
part of the first part of the proof of Lemma F.6.
𝑏 = ownerOfID (𝑢): As in the proof of Item (1), we get from

loggedIn𝑄𝜌 (𝑏, 𝑐,𝑢, as,CIgid) that 𝑐 stores 𝑏 in 𝑐.browserRequests
73

[CIgid] [finishRequest]. From Lemma D.14 we get that 𝑏 must be
the browser that started the flow CIgid at 𝑐 .
From finishLogin𝑄

′′
𝜌 (ownerOfID (𝑢) , 𝑐,𝑢, as,CIgid,ASgid) we have

that the flow CIgid was started by ownerOfID (𝑢). Thus 𝑏 must be
ownerOfID (𝑢).

In total we showed finishLogin𝑄
′′

𝜌 (𝑏, 𝑐,𝑢, as,CIgid,ASgid) con-
cluding the proof. □

F.6 Theorem
Theorem F.8 (Security Authentication). Every GNAP web

system fulfills the authentication property and session integrity for
authentication.

Proof. This directly follows from Lemma F.6 and Lemma F.7.
□

74

	Abstract
	1 Introduction
	2 Grant Negotiation and Authorization Protocol
	3 Attacks and Fixes
	3.1 Informal Security Properties
	3.2 Client Instance Mix-Up Attack
	3.3 Attack on Authentication
	3.4 Stolen Token Replay Attack
	3.5 307 Redirect Attack

	4 Formal Analysis
	4.1 WIM
	4.2 Modeling GNAP
	4.3 Modeling Considerations
	4.4 Definitions and Security Properties
	4.5 Results

	5 Related Work
	6 Conclusion
	References
	A Formal Model of GNAP
	A.1 Adjustments to the Web Infrastructure Model
	A.2 Outline
	A.3 Modeling Remarks and Limitations
	A.4 Addresses and Domain Names
	A.5 Keys and Secrets
	A.6 Identities and Passwords
	A.7 Corruption
	A.8 Network Attackers
	A.9 Browsers
	A.10 Helper Functions
	A.11 Client Instances
	A.12 Authorization Servers
	A.13 Resource Servers

	B General Definitions
	C Properties of Core WIM
	D General Properties
	D.1 Things that don't leak
	D.2 Message Integrity
	D.3 AS - CI flow continuity
	D.4 CI - Browser flow continuity

	E Authorization
	E.1 Definitions
	E.2 Security Properties
	E.3 Auxiliary Lemmas
	E.4 Security w.r.t. Authorization
	E.5 Session Integrity for Authorization
	E.6 Theorem

	F Authentication
	F.1 Definitions
	F.2 Security Properties
	F.3 Auxiliary Lemmas
	F.4 Security w.r.t. Authentication
	F.5 Session Integrity for Authentication
	F.6 Theorem

