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Abstract. In CRYPTO 2019, Gohr showed that well-trained neural net-
works could perform cryptanalytic distinguishing tasks superior to differ-
ential distribution table (DDT)-based distinguishers. This suggests that
the differential-neural distinguisher (ND) may use additional informa-
tion besides pure ciphertext differences. However, the explicit knowledge
beyond differential distribution is still unclear. In this work, we provide
explicit rules that can be used alongside DDTs to enhance the effective-
ness of distinguishers compared to pure DDT-based distinguishers. These
rules are based on strong correlations between bit values in right pairs of
XOR-differential propagation through addition modulo 2n. Interestingly,
they can be closely linked to the earlier study of the multi-bit constraints
and the recent study of the fixed-key differential probability. In contrast,
combining these rules does not improve the NDs’ performance. This sug-
gests that these rules or their equivalent form have already been exploited
by NDs, highlighting the power of neural networks in cryptanalysis.
In addition, we find that to enhance the differential-neural distinguisher’s
accuracy and the number of rounds, regulating the differential propa-
gation is imperative. Introducing differences into the keys is typically
believed to help eliminate differences in encryption states, resulting in
stronger differential propagations. However, differential-neural attacks
differ from traditional ones as they don’t specify output differences or
follow a single differential trail. This questions the usefulness of introduc-
ing differences in a key in differential-neural attacks and the resistance of
Speck against such attacks in the related-key setting. This work shows
that the power of differential-neural cryptanalysis in the related-key set-
ting can exceed that in the single-key setting by successfully conducting
a 14-round key recovery attack on Speck32/64.
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1 Introduction

In 2019, Gohr [14] proposed differential-neural cryptanalysis, employing neural
networks as superior distinguishers and exploiting them to perform efficient key
recovery attacks. Impressively, the differential-neural distinguisher (ND) out-
performed the traditional pure differential distinguishers using full differential
distribution tables (DDT). However, interpreting these neural network-based dis-
tinguishers remains challenging, hindering the comprehension of the additional
knowledge learned by differential-neural distinguishers.

Despite the intricate nature of neural network interpretability, researchers
have made primary progress in understanding the differential-neural distinguish-
er’s inner workings. In EUROCRYPT 2021, Benamira et al. [6] proposed that
Gohr’s neural distinguisher effectively approximates the cipher’s DDT during
the learning phase. Moreover, the distinguisher relies on both the differential
distribution of ciphertext pairs and that of the penultimate and antepenultimate
rounds. Yet, the specific form of additional information remains undisclosed.

In AICrypt 2023, Gohr et al. [16] proved the differential-neural distinguisher
for Simon32/64 can use only differential features and achieve accuracy same
as pure differential ones. Applying the same neural network to both Speck and
Simon yields different conclusions: neural networks learned or did not learn fea-
tures beyond full DDT. These intriguing findings motivate us to delve deeper
into the neural network’s mechanisms, aiming to comprehend the specific fea-
tures underpinning its conclusions for each cipher and to improve and exploit
further the neural distinguishers should additional features be captured.
Our Contributions. In this work, we conclude that NDs’ advantage over pure
DDT-based distinguishers is in exploiting the differential distribution under the
partially known value input to the last non-linear operation. Specifically, NDs
exploit the correlation between the ciphertexts’ partial value, ciphertext pair’s
differences, and intermediate states’ differences. Furthermore, our work shows
that differential-neural cryptanalysis in the related-key (RK) setting can attack
more rounds than in the single-key setting, which was not apparent before. The
concrete contributions include the following.

– Improving full DDT-based distinguisher. We observe that, apart from
the information of differences, one knows the patrial value of inputs, denoted
by y, to the last modular addition of Speck, leveraging by which one can
improve DDT-based distinguishers. We show that the differential probability
conditioned on a fixed value of y can differ from the average differential prob-
ability over all possible y. This insight enables more accurate classification
based on the ciphertext pair’s differences and the ciphertexts’ partial value.
The high-level idea is to consider conditional probabilities and specific cases
where the fulfillment of the differential constraints can be predicted based
on the value of y. The results indicate that it is highly likely that NDs rely
on these specific cases to outperform pure DDT-based distinguishers.

– Optimizing the performance and training process of NDs. Address-
ing the challenge of training high-round, especially 8-round,ND of Speck32/
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Table 1: Summary of key recovery attacks on Speck32/64
#R Distinguisher Configure Time Data Succ. Rate Key Space Advantage Ref.

13

DD 1+8+4 257 225 - 264 27 [11]
DD 1+8+3 255.58 224.26 - 264 28.42 [13]
DD 1+8+2+2 250.16 231.13 63% 264 213.84 [8]
ND 1+3+8+1 250.17 229 82% 263 213.83 [3]
ND 1+3+8+1 244.36 227 21% 263 218.64 [28]
RK-ND 1+2+9+1 234.57 216 54.29% 250 215.43 Sect. 5.2
RK-ND 1+2+9+1 231.79 210 43.33% 246 214.21 Sect. 5.2

14

DD 1+9+4 263 231 - 264 21 [11]
DD 1+9+4 262.47 230.47 - 264 21.53 [25]
DD 1+9+2+2 260.99 231.75 63% 264 23.01 [8]
DD 2+9+3 260.58 230.26 76.00% 264 23.42 [13]
ND 1+3+8+2 260.36 227 21% 263 22.64 [28]
RK-ND 1+3+9+1 235.59 216 75.71% 242 26.41 Sect. 5.2
RK-ND 1+3+9+1 235.78 215 71.43% 241 25.22 Sect. 5.2

15 DD 1+10+4 263.39 230.39 - 264 20.61 [18]
DD 1+10+2+2 262.25 230.39 - 264 21.75 [8]

−: Not available; “Advantage” denotes the time complexity advantage over a brute force attack.

64, we introduce the Freezing Layer Method. By freezing all convolutional
layers in a pre-trained 7-round ND, we efficiently train an 8-round ND using
simple basic training with unaltered hyperparameters. This method matches
Gohr’s accuracy but cuts training time and data.

– Exploring differential-neural attacks in the related-key setting. The
conclusion thatNDs can efficiently capture features beyond full DDT encour-
ages further exploration of ND-based attacks. We observed that control over
the differential propagation is vital for achieving effective high-round NDs.
Hence, we introduce related-key (RK) differences to slow down the diffu-
sion of differences, aiding in training ND for higher rounds. As a result, we
achieve a 14-round key recovery attack on Speck32/64 using related-key
neural distinguishers (RK-NDs). Results are in Table 1. Furthermore, we
constructed various distinguishers under various RK differential trails and
conducted comprehensive comparisons, reinforcing ND explainability.

Organization. The paper’s structure is as follows: Sect. 2 provides preliminaries.
Sect. 3 provides insights on theND explainability. Sect. 4 provides enhancements
on the ND training. Sect. 5 details of related-key differential-neural cryptanaly-
sis. The conclusion is presented in Sect. 6.
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2 Preliminary

2.1 Notations

Denote by C = (Cn−1, . . . , C0) the binary vector of n bits, , where Ci is the bit
at position i and C0 is the least significant. Define n as the word size in bits and
2n as the state size. Let (Cr

L, Cr
R) represent left and right state branches after

r rounds, and kr the r-round subkey. Bitwise XOR is denoted by ⊕, addition
modulo 2n by ⊞, bitwise AND by �, and bitwise right/left rotation by ≫ / ≪.

2.2 Brief Description of Speck32/64

In 2013, the National Security Agency (NSA) proposed Speck and Simon block
ciphers, aiming to ensure security on resource-constrained devices [4]. By 2018,
both ciphers were standardized by ISO/IEC for air interface communication.
The Speck cipher uses a Feistel-like ARX design, emanating its non-linearity
from modular addition and leveraging XOR and rotation for linear mixing.
Speck32/64 is the smallest Speck variant [4]. Its round function, one of 22
rounds, takes a 16-bit subkey ki and a state of two 16-bit words, (Ci

L, Ci
R). Its

key schedule reuses the round function to generate round keys. With K as a
master key and ki the i-th round key, K = (l2, l1, l0, k0). The round function’s
details are in Fig. 1.

Ci
L Ci

R

≫ 7

≪ 2

Ci+1
L Ci+1

R

ki

Ci+1
L = ((Ci

L ≫ 7)⊞ Ci
R)⊕ ki

Ci+1
R = (Ci

R ≪ 2)⊕ Ci+1
L

li+3 = ((li ≫ 7)⊞ ki)⊕ i

ki+1 = (ki ≪ 2)⊕ li+3

Fig. 1: The round function and key schedule algorithm of Speck32/64

2.3 Overview of Differential-Neural Cryptanalysis

The differential-neural distinguisher operates as a supervised model, distinguish-
ing whether ciphertext pairs originate from plaintext pairs with a defined input
difference or from random pairs. Given m plaintext pairs {(Pj , P ′

j), j ∈ [0, m−1]},
the corresponding ciphertext pairs {(Cj , C ′

j), j ∈ [0, m− 1]} constitute a sample
(In [14], m = 1). Each training sample is associated with a label Y defined as:

Y =
{

1, if Pj ⊕ P ′
j = ∆, j ∈ [0, m− 1]

0, if Pj ⊕ P ′
j 6= ∆, j ∈ [0, m− 1]
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The ND architecture from [14] uses the prevalent ResNet. It comprises an
initial input block, several residual blocks, and a prediction output layer.

In [14], three training schemes are proposed: a) Basic training for short-round
distinguishers. b) An enhanced method using the KeyAveraging simulation
and an (r−1)-round distinguisher, achieving the optimal 7-round ND for Speck.
c) A staged training approach evolving a pre-trained (r− 1)-round distinguisher
to an r-round one in stages, yielding the most extended ND on Speck, covering
8 rounds. In [14], Gohr also showed how to combine a neural distinguisher with
a classical differential and use a Bayesian-optimized key-guessing strategy for
key recovery. Later, in [16], the authors provide general guidelines for optimiz-
ing Gohr’s neural network and diverse optimization approaches across different
ciphers, highlighting its efficacy and versatility. The authors also clarify which
kind of ciphers the neural network can’t learn beyond differential features.

3 Explicitly Explain Knowledge Beyond Full DDT

Studies show differential-based neural distinguishers often outperform DDT-
based ones in certain ciphers [3, 14,16]. However, what specific knowledge these
neural distinguishers learn beyond DDT remains elusive. Prior research suggests
that these distinguishers rely on differential distributions in the last two rounds
and differential-linear (DL) properties [6, 10]. In [14], a “Real Differences Ex-
periment” was conducted to observe how well neural networks could detect real
differences beyond DDT. The experiment used randomized ciphertext pairs with
a blinding value R introduced to obscure information beyond the difference. Re-
sults showed that neural networks could detect real differences without explicit
training, and ciphertext pairs have non-uniform distributions within their differ-
ence equivalence classes. But, using blinding values in the form R = aa (with a
as any 16-bit word), the distinguishers failed (henceforth referred to as Gohr’s
aaaa-blinding experiment). This underlines that the neural distinguishers aren’t
exploiting the key schedule, and they can make finer distinctions than mere differ-
ence equivalence classes. These insights are crucial to explicitly explaining ND’s
superior classification mechanism. Based on these studies, this section takes a
further step towards fully interpreting the knowledge that an ND has captured
beyond full differential distribution.

We’ll initiate by locating the root of the performance improvement, then
deduce the specific pattern that causes the improvement, and finally use this
pattern to improve the pure DDT-based distinguisher.

3.1 Locating Information used by NDs of Speck Beyond DDT

In the following, we start with a generalized definition of information that the
differential-neural distinguisher might use.

Generalized Definition of XOR Information. In Gohr’s differential-neural
distinguishers, given Speck’s Feistel-like structure, samples are split into four
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Ar−1

Br−1

≫7

≪2

Ar

Br

kr−1

Cr−1

Dr−1

≫7

≪2

Cr

Dr

kr−1

ADr
BCr

ACr

BDr

ABr

CDr

ABCDr−1

AC/BD Inter-XOR

AB/CD Intra-XOR

AD/BC Cross-XOR

ABCD Total-XOR

Fig. 2: Definition of XOR information

Table 2: Experimental results detailing the information harnessed by NDs. Each
set comprises both positive and negative samples. The notation (A,B, C,D) de-
notes ciphertext pairs derived from plaintext pairs with an input difference of
(0040,0000), while Random signifies pairs generated from random values. R1
refers to a random value.

Set. Positive Samples Negative Samples Acc.
1-1 (A,B, C,D) Random 0.7906
1-2 (AR1,BR1, CR1,DR1) Random 0.7911
1-3 (A,B, C,D) (AR1,BR1, CR1,DR1) F ail

words: A,B (forming the first ciphertext) and C,D (forming the second), as
depicted in Fig. 2. In subsequent discussions, a symbol’s superscript denotes the
number of encryption rounds. The absence of a superscript implies r rounds.

Traditional differential distinguishers focus solely on the difference of cipher-
text pairs. Yet, as indicated in prior research [12, 23, 29], internal differentials
can also be pivotal in cryptanalytic tasks.

We broaden the focus to include the XOR interactions among A, B, C, and
D. For brevity, XOR combinations like A⊕ B ⊕ C ⊕ D are shortened to ABCD.
In other words, beyond the traditionally focused differences like AC and BD,
we explore under-emphasized XORs such as AB, CD, AD, BC, and ABCD. For
clarity, we classify these XORs as: Inter-XOR (AC, BD), Intra-XOR (AB,
CD), Cross-XOR (AD, BC), and Total-XOR (ABCD).

In Speck, Intra-XOR and Total-XOR relate to values and differences from
the prior round. Specifically, Intra-XOR helps deduce the right-half values, and
Total-XOR deduces the right-half differences of the preceding round.

Is XOR Information the Sole Basis for Differential-Neural Distin-
guisher’s Decision Making? Using a mechanical method to determine re-
lations between information sets, it became evident that focusing solely on spec-
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ified XOR information is natural for finding the source of the information that
NDs exploit beyond the difference information.

Determine Relations Between Information Sets Mechanically. Consider
a pair of ciphertexts from a round-reduced Speck, denoted as C0 = (C0L, C0R)
and C1 = (C1L, C1R). Each ciphertext splits into two parts, with CiJ ∈ Fb

2 for
i ∈ {0, 1} and J ∈ {L, R}. For Speck32/64, b = 16. Let K be the last round
key, with K ∈ Fb

2. For each Ci, let MiL and MiR represent the state value
immediately preceding the XOR with key K and before the XOR between the
left and right branches for i ∈ {0, 1}. That is

C0L = M0L ⊕K, C0R = M0L ⊕M0R ⊕K, C1L = M1L ⊕K, C1R = M1L ⊕M1R ⊕K

The method to determine relations between information sets can be outlined
in the following steps: Let R1 and R2 be two random values in Fb

2.

1. Setup:
(a) Set up a vector space V over the field F2 with dimension 7.
(b) Define various basis vectors for V, acting as linear masks whose non-zero

bits indicate the variable selection from the following vector
[M0L, M0R, M1L, M1R, K,R1,R2]. Concretely,

ΓM0L
= [1,0,0,0,0,0,0] ΓM1L

= [0,0,1,0,0,0,0]
ΓM0R

= [0,1,0,0,0,0,0] ΓM1R
= [0,0,0,1,0,0,0]

ΓK = [0,0,0,0,1,0,0] ΓR1 = [0,0,0,0,0,1,0]
ΓR2 = [0,0,0,0,0,0,1]

Accordingly, [C0L, C0R, C1L, C1R] can be obtained using the following masks:

ΓC0L
:= ΓA = ΓM0L

⊕ ΓK = [1,0,0,0,1,0,0],
ΓC0R

:= ΓB = ΓM0L
⊕ ΓM0R

⊕ ΓK = [1,1,0,0,1,0,0],
ΓC1L

:= ΓC = ΓM1L
⊕ ΓK = [0,0,1,0,1,0,0],

ΓC1R
:= ΓD = ΓM1L

⊕ ΓM1R
⊕ ΓK = [0,0,1,1,1,0,0].

Besides, we have ΓX Y = ΓX⊕ΓY for X ,Y ∈ {A,B, C,D,AC,BD,AB,R1,R2}.
2. Subspace Generation: Create the subspaces from given vectors and com-

binations:
– Set-1-1: span of {ΓA, ΓB, ΓC , ΓD}.
– Set-1-2: span of {ΓAR1 , ΓBR1 , ΓCR1 , ΓDR1}.
– Set-1-X: span of {ΓAC , ΓBD, ΓAB}.
– Set-2-1: span of {ΓAR1 , ΓBR2 , ΓCR1 , ΓDR2}.
– Set-2-2: span of {ΓAR1 , ΓBR2 , ΓCR2 , ΓDR1}.
– Set-2-3: span of {ΓABCD}.

Note that Set-1-2 is the setting of Gohr’s aaaa-blinding experiment.
3. Remove randomness: In light of the observations from [14], where it’s

determined that NDs in the single-key attack setting don’t leverage the key
schedule, we can adapt the Speck32/64 key schedule to employ independent
subkeys. This means we treat K along with R1 and R2 as random variables.
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Table 3: Experimental results ND leveraging select XOR information.
Set. Positive Samples Negative Samples Acc.
2-1 (AR1,BR2, CR1,DR2) Random 0.7558
2-2 (AR1,BR2, CR2,DR1) Random 0.6722
2-3 (ABCD,ABCD,ABCD,ABCD) Random 0.6721

Consequently, any vector that has a component of ΓK , or ΓR1 , or ΓR2 is
deemed random, and hence, devoid of information. For example, ΓCiJ

has
a linear component ΓK , thus, a standalone CiJ lacks information, where
i ∈ {0, 1} and J ∈ {L, R}. Accordingly, we do as follows.
(a) After creating each subspace, randomness is removed from each subspace

according to whether a vector has a component from ΓK , or ΓR1 , or ΓR2 .
Without ambiguity, the sanitized sets are also denoted by Set-i-j for
i ∈ {1,2} and j ∈ {1,2,3,X}.

4. Comparison: The sanitized sets are then compared against each other to
determine if one set equals or is a subset of the other.

The result shows that Set-1-1 equals Set-1-2 and Set-1-X, meaning that
the combination of Inter-XOR and Intra-XOR is exactly what an information-
theoretically optimal distinguisher accepting ciphertext pairs can use under the
assumption that it does not use key-schedule.

As we proceed, we delve deeper to ascertain the specific XOR information
that holds significance.

Which of the XOR Information is significant for Differential-Neural
Distinguisher? To isolate the pivotal XOR information, we conducted experi-
ments where a differential-neural distinguisher was given access to only selected
XOR data.

All our subsequent experiments were conducted on a 6-round Speck32/64
with an input difference of (0040,0000), adhering to the configurations pre-
sented in Table 17. The differential-neural distinguishers, trained as per Table 2
Set.1-1 to Set.1-3, serve as baselines (Set.1-2 and Set.1-3 correspond to Gohr’s
aaaa-blinding experiment)). In the sequel, we use Set.i-j to refer to the exper-
imental setup, while Set-i-j represents the associated information set for the
positive samples, where i ∈ {1, 2} and j ∈ {1, 2, 3}.

Defining R1 and R2 as two distinct random values, Set.2-1 in Table 3 retains
only Inter-XOR and Total-XOR, while Set.2-2 keeps only Cross-XOR and Total-
XOR. Set.2-3, on the other hand, exclusively considers Total-XOR. Firstly, our
mechanical analysis on sanitized subspaces reveals the following relations:

– Set-2-1 ⊂ Set-1-X,
– Set-2-2 ⊂ Set-1-X,

– Set-2-1 6⊆ Set-2-2,
– Set-2-2 6⊆ Set-2-1,

– Set-2-3 ⊂ Set-2-1,
– Set-2-3 ⊂ Set-2-2.

In Table 3 Set.2-1, the differential-neural distinguisher’s access is limited to
Inter-XOR and Total-XOR – equivalent to what the DDT distinguisher utilizes.
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Its accuracy aligns closely with the 5-round DDT’s accuracy of 0.758, with-
out any noticeable enhancement. This underscores the differential-neural distin-
guisher’s advantage over the DDT arising from its access to extra information.
From this observation, we reinforce the subsequent conclusion.

Conclusion 1 The differential-neural distinguisher NDSpeckrR ’s superiority over
DDSpeckrR is mainly due to its exploit of Intra-XOR and Cross-XOR.

This conclusion naturally prompts a more intricate query: How does the
differential-neural distinguisher effectively exploit Intra-XOR and Cross-XOR?
Upon closer inspection, we can further dismiss the significance of Cross-XOR.
Given that Set-2-3 ⊂ Set-2-2, it’s evident that Set-2-3 provides inherently
less data than Set-2-2. While in Set.2-2, combining Total-XOR with either
Intra-XOR or Cross-XOR results in a valid distinguisher, solely using Total-XOR
in Set.2-3 yields an accuracy identical to the distinguisher in Set.2-2. From this,
we conclude that Cross-XOR on its own lacks significance. The differential-neural
distinguisher likely uncovers new patterns by melding Inter-XOR with either
Intra-XOR or Cross-XOR. This line of reasoning culminates in the following
conclusion.

Conclusion 2 Unlike Inter-XOR, neither Intra-XOR nor Cross-XOR indepen-
dently offers useful information. The differential-neural distinguisher relies on
combinations of Inter-XOR with either Intra-XOR or Cross-XOR.

Remark 1 (On ND exploiting the key schedule). Gohr’s study in [14] indicates
that NDs, in a single-key attack on Speck, do not exploit the key schedule. It
naturally raises the question: Do NDs behave similarly in related-key scenarios?
Motivated by this, we conduct comparison experiments similar to Gohr’s aaaa-
blinding experiment (comparing RK-NDs in Set.1-1 and Set.2-1), investigating
whether RK-NDs use the same ciphertext equivalence classes as the single-key
NDs by [14]. In Sect. 5.1, we delve deep into our RK-NDs and present an
interesting observation reinforcing our following ND explainability in Sect. 3.2.

3.2 Explicitly Rules to Exploit the Information Beyond Full DDT:
From a Cryptanalytic Perspective

In this section, we delve into the exact patterns harnessed by the differential-
neural distinguisher. Our exploration commences with an intriguing observation
from Experiment A, as described in [6]. The experiment unfolds as follows:

1. For each 5-round ciphertext pair difference, δ, which results in extreme scores
surpassing 0.9 (indicative of a good score) and exhibiting a high frequency
of occurrence:
(a) Generate a set of 104 random 32-bit numbers.
(b) Utilize the difference δ to construct a dataset encompassing 104 data

pairs, each bearing the difference δ.
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(c) Feed the dataset to the differential-neural distinguisher and count the
predicted labels.

While DDT-based distinguishers would predict Experiment A’s entire data
as positive, the differential ND does not. For ND, the proportion of each differ-
ence is consistently at 0.75 (refer to Table 19), suggesting that the ND employs
criteria beyond simple differential probability in its classifications. The consis-
tent proportion of 0.75 also implies a discernible pattern linked to two specific
bits. If a ciphertext pair aligns with this bi-bit pattern, it’s classified as nega-
tive, regardless of high output difference probabilities. This observation prompts
an investigation into the potential two-bit pattern, motivating us to look into
properties of the addition modular 2n (⊞) from a cryptanalytic perspective.

Enhancing DDT-based Distinguishers via Conditional Probabilities.
In the r-round Speck32/64, denote the input and output differences of the
last ⊞ by (α, β, γ), and their respective values by (x y z) and (x′ y′ z′). For
each output pairs ((CL, CR), (C ′

L, C ′
R)), one knows the following information:

γ = CL ⊕ C ′
L, β = (CL ⊕ CR ⊕ C ′

L ⊕ C ′
R)≫2, and y = (CL ⊕ CR)≫2. Namely,

apart from knowing two differences (i.e., β and γ), one knows a value (i.e., y)
around the last ⊞. Besides, the input difference α is unknown but might be
biased among positive samples and thus is predictable. Concretely, attributes of
the information around the last ⊞ are as follows:

α unknown but biased x unknown and balanced
β known y known
γ known z unknown and balanced

The knowledge of y, which is one of two inputs of the last ⊞, provides additional
information apart from the differences. The concrete analysis is as follows.

When conditioned on a fixed y, the differential probability can differ from
the average probability over all possible y. For a valid differential propagation
(α, β 7→ γ) through ⊞, consider each bit position i where 0 ≤ i < n − 1: If
eq(α, β, γ)i = 1, the difference propagation at the (i+1)-th position is determin-
istic, as elucidated in [21]; Conversely, for eq(α, β, γ)i = 0, the (i + 1)-th bit’s
difference propagation is probabilistic; for a given (i + 1)-th bit differences to
be fulfilled, the input values at the i-th position (namely, xi, yi, ci – the carry’s
i-th bit) must satisfy a certain linear constraint, detailed in Observation 1.

Observation 1 ( [9]) Let δ = (α, β 7→ γ) be a possible XOR-differential through
addition modulo 2n (⊞). Let (x, y) and (x⊕ α, y ⊕ β) be a conforming pair of δ,
x and y should satisfy the follows. For 0 ≤ i < n− 1, if eq(α, β, γ)i = 0

xi ⊕ yi = xor(α, β, γ)i+1 ⊕ αi, if αi ⊕ βi = 0,

xi ⊕ ci = xor(α, β, γ)i+1 ⊕ αi, if αi ⊕ xor(α, β, γ)i = 0,

yi ⊕ ci = xor(α, β, γ)i+1 ⊕ βi, if αi ⊕ xor(α, β, γ)i = 1,

}
if αi ⊕ βi = 1,


where ci is the i-th carry bit, x ⊞ y = z, eq(a, b, d) = (¬a ⊕ b) ∧ (¬a ⊕ d) (i.e.,
eq(a, b, d) = 1 if and only if a = b = d), and xor(a, b, d) = a⊕ b⊕ d.
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Table 4: Necessary and sufficient conditions for a one-bit difference from Obser-
vation 1
Case No. Difference Constraint on values Known

Cxy(i+1,i)

{
eq(α, β, γ)i = 0,

αi ⊕ βi = 0.
xor(α, β, γ)i+1 ⊕ αi = xi ⊕ yi None

Cxc(i+1,i)


eq(α, β, γ)i = 0,

αi ⊕ βi = 1,

αi ⊕ xor(α, β, γ)i = 0.

xor(α, β, γ)i+1 ⊕ αi = xi ⊕ ci None

Cyc(i+1,i)


eq(α, β, γ)i = 0,

αi ⊕ βi = 1,

αi ⊕ xor(α, β, γ)i = 1.

xor(α, β, γ)i+1 ⊕ βi = yi ⊕ ci yi ⊕ ci

The column titled “Known” indicates whether the fulfilment of the condition might
be known in Speck’s last ⊞.

In other words, at bit positions i and i+1, a valid difference tuple (αi+1,i, βi+1,i,
γi+1,i) that satisfies eq(αi, βi, γi) = 0 imposes a 1-bit linear constraint on the
tuple (xi, yi, ci). As ci is determined by lower bits, the freedom for conforming
to the constraint comes exclusively from the i-th bits of x and y, independent of
constraints at other bit positions. Accordingly, the constraints on (xi, yi), (xi,
ci), or (yi, ci) as listed in Observation 1 are necessary and sufficient. Therefore,
when the constraint at a bit position is fulfilled, the conditional probability p̃
of a differential whose unconditional probability is p should be calculated as
2 · p; when unfulfilled, it is 0. In comparison, the conditional probability for
random pairs is still at most 2−n. Hence, leveraging conditional probability for
classification amplifies the advantage.

To clarify when the fulfilment of the constraints at the last ⊞ can be effec-
tively predicted, we catalog cases from Observation 1 in Table 4, naming them
Cxy(i+1,i), Cxc(i+1,i), and Cyc(i+1,i). As above analyzed, in Speck32/64’s last
⊞, among the tuple (x, y, c) (with c = z ⊕ x ⊕ y and unknown z), only y is
known. Hence, exploiting knowledge of y requires examining bit positions with
differential constraints fulfilling Cyc(i+1,i) in Table 4.

In the Cyc(i+1,i) case, the constraint is on yi ⊕ ci. While ci may seem un-
known, it is determined by lower bits: ci = xi−1yi−1 ⊕ (xi−1 ⊕ yi−1)ci−1. The
knowledge on ci might be inferred if the (i − 1)-th bit differences meet the
condition eq(αi−1, βi−1, γi−1) = 0, as per Observation 1. For example, when{

(αi, βi, γi) = (0, 1, 0),
(αi−1, βi−1, γi−1) = (1, 1, 0)

, one knows that


eq(α, β, γ)i−1 = 0,

αi−1 ⊕ βi−1 = 0,

xor(α, β, γ)i ⊕ αi−1 = 0.

From Table 4, one has xi−1⊕yi−1 = 0. Thus, ci = xi−1yi−1⊕(xi−1⊕yi−1)ci−1 =
yi−1. Therefore, yi ⊕ ci = yi ⊕ yi−1. As a consequence, one can predict the
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Table 5: Cases for deducing the i-th carry bit ci

Case No. Difference Value Known
Cy0c0(i,i−1) yi−1 = 0, ci−1 = 0 ci = 0
Cy1c1(i,i−1) yi−1 = 1, ci−1 = 1 ci = 1
Cxy0(i,i−1) Cxy(i,i−1) and xor(α, β, γ)i ⊕ αi−1 = 0 xi−1 ⊕ yi−1 = 0 ci = yi−1

Cxy1(i,i−1) Cxy(i,i−1) and xor(α, β, γ)i ⊕ αi−1 = 1 xi−1 ⊕ yi−1 = 1 ci = ci−1

Cxc0(i,i−1) Cxc(i,i−1) and xor(α, β, γ)i ⊕ αi−1 = 0 xi−1 ⊕ ci−1 = 0 ci = ci−1

Cxc1(i,i−1) Cxc(i,i−1) and xor(α, β, γ)i ⊕ αi−1 = 1 xi−1 ⊕ ci−1 = 1 ci = yi−1

Cyc0(i,i−1) Cyc(i,i−1) and xor(α, β, γ)i ⊕ βi−1 = 0 yi−1 ⊕ ci−1 = 0 ci = yi−1

Cyc1(i,i−1) Cyc(i,i−1) and xor(α, β, γ)i ⊕ αi−1 = 1 yi−1 ⊕ ci−1 = 1 ci = xi−1

Table 6: Cases where the knowledge on y can be used to check the fulfilment of
the differential constraints
Case No. Difference Known

C1 Cyc(0,−1) xor(α, β, γ)1 ⊕ β0 = y0

C2 Cyc(2,1) and Cy0(1,0) xor(α, β, γ)2 ⊕ β1 = y1

C3 Cyc(i+1,i) and (Cxy0(i,i−1) or Cxc1(i,i−1)
or Cyc0(i,i−1))

xor(α, β, γ)i+1⊕βi = yi⊕yi−1

C4
Cyc(i+1,i) and (Cxy1(i,i−1) or Cxc0(i,i−1))
and (Cxy0(i−1,i−2) or Cxc1(i−1,i−2) or
Cyc0(i−1,i−2))

xor(α, β, γ)i+1⊕βi = yi⊕yi−2

fulfilment of constraint in case Cyc(i+1,i) by observing whether yi ⊕ yi−1 =
xor(α, β, γ)i+1 ⊕ βi. Table 5 lists more cases where ci might be known.

Incorporating observations from Table 4 and Table 5, one gets Table 6, which
lists various cases where the knowledge of y can be used to determine the satis-
faction of differential constraints.

Note that apart from the general cases (C3 and C4) at the i-th bit, special
cases (C1 and C2) emerge at the two least significant bits due to the carry bit
c0 being 0. For example,

1. at the 0th bit position, observing β0 = 0 and γ0 = 1 determines α0 = 1 based
on Alg. 3. From case Cyc(i+1,i) in Table 4 and given c0 = 0, one knows that
xor(α, β, γ)1 ⊕ β0 = y0 ⊕ c0 = y0;

2. at the 1st bit position, c1 = x0y0 ⊕ (x0 ⊕ y0)c0 = x0y0. Given an observed
y0 = 0, one knows c1 = 0. Consequently, in case Cyc(2,1) and y0 = 0, one
knows xor(α, β, γ)2 ⊕ β1 = y1 ⊕ c1 = y1;

3. in general case C3, based on Table 5, ci is determined as yi−1, leading to the
use of yi ⊕ yi−1;

4. in general case C4, applying Table 5 to the (i− 1, i− 2)-th bit position, it is
inferred that ci = ci−1 = yi−2, leading to the use of yi ⊕ yi−2;
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5. for cases where ci−1 = ci−2, one can further observe differences at the (i−2)-
th bit position and continues deducting ci−2 by observing bit differences at
the i− 3 position.

Table 7 lists some concrete examples of differential patterns where the observa-
tion of y enables prediction of whether differential constraints are met.

Remark 2. These constraints on values for valid differential propagation resonate
with established concepts. Specifically, insights derived from Table 6 align with
findings on multi-bit constraints from [19,20], quasi-differential trails in [7], and
extended differential-linear approximations in [10]. Table 7 exhibits the corre-
spondence between examples of cases in Table 6 and these established con-
cepts. For instance, given a differential propagation (αi+1,i,i−1, βi+1,i,i−1 7→
γi+1,i,i−1) = (*01, *11 7→ *00) (for 0 < i < n− 1),

1. using the 1.5-bit constraints concept and the finite state machines repre-
senting the differential properties of modular addition from [19, 20], one
can get a new constraint and refine the propagation (--x, -xx 7→ ---) to
(--x, ->x 7→ ---) (where the notations {-, x, >, <, =, !} are explained below
Table 7); more generally, C3 cases correspond to the 1.5-bit constraints {>,
<, =, !} in [19,20];

2. using the quasi-differential trail concept from [7], the differential trail (001, 011
7→ 000) comprises a non-trivial quasi-differential trail with a mask of (000, 011
7→ 000). The non-trivial quasi-differential trail has correlation −2−1 (i.e.,
additional weight of 0). Consequently, the “fixed-y” probability of this dif-
ferential trail is (1 − (−1)yi⊕yi−1) · 2−1, i.e., the probability equals 1 when
yi ⊕ yi−1 = 1 and 0 in the opposite case;

3. using the extended differential-linear connectivity table (EDLCT) concept
from [10], assessing the constraint yi ⊕ yi−1 = αi+1⊕βi+1⊕ γi+1⊕βi aligns
with gauging the bias of the linear approximation (xi+1 ⊕ x′

i+1) ⊕ (yi+1 ⊕
y′

i+1) ⊕ (zi+1 ⊕ z′
i+1) ⊕ (yi ⊕ y′

i) ⊕ (yi ⊕ yi−1) that corresponds to selecting
bits [xi+1, yi+1, zi+1, yi−1] and [x′

i+1, y′
i+1, z′

i+1, y′
i].

As noted in [6], NDs rely on differential-linear (DL) properties. We note
that pure DL properties do not provide additional information beyond full
DDT; the differential-linear distribution can be directly derived from the full
differential distribution. It is the extended differential-linear distribution [10]
(which includes the selection of ciphertext values apart from differences) that
contains additional information.
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To directly exploit these observations for an r-round Speck32/64, a pre-
liminary is to effectively predict the input difference α at the last ⊞, which
equals ((δr−2

R )≪2 ⊕ δr−1
R )≫7. Given the known δr−1

R from r-round outputs, the
focus shifts to predicting (δr−2

R )≪2. Notably, for r ≤ 7 and input difference
(0040, 0000), some bits of (δr−2

R )≪2 exhibit bias, as detailed in Table 8, en-
abling predictions of α for positive samples.

Table 8: Bit bias towards ‘0’ of (δr−2
R )≪2 for 4 ≤ r ≤ 7, where the input difference

of the plaintext is (0040,0000). A positive (resp. negative) value indicates a bias
towards ‘0’ (resp. ‘1’).
Position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(δ2
R)≪2 0.4689 0.4377 0.3752 0.2498 -0.0002 -0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 -0.5000 0.5000 -0.4922 0.4844

(δ3
R)≪2 0.3749 0.2809 0.1247 -0.1241 0.0100 0.4687 0.4451 0.4062 0.3435 0.2498 -0.1251 -0.0000 -0.4922 0.4844 -0.4608 0.4297

(δ4
R)≪2 0.0926 -0.0347 0.0004 -0.0617 0.0028 -0.3709 0.3012 0.2046 -0.0578 -0.0004 0.0312 -0.0009 0.4451 0.4059 -0.2931 0.2035

(δ5
R)≪2 -0.0002 -0.0016 -0.0002 -0.0238 0.0002 0.1531 -0.0243 -0.0001 -0.0034 -0.0011 -0.0076 -0.0001 0.2700 0.1772 -0.0597 -0.0061

(δ6
R)≪2 0.0001 -0.0006 0.0005 0.0103 0.0002 -0.0002 -0.0009 -0.0003 -0.0004 -0.0002 -0.0033 0.0007 -0.0438 -0.0048 -0.0007 -0.0010

A simple procedure to improve the DDT-based distinguisher. To improve a DDT-
based distinguisher for an r-round Speck32/64 using its DDT(0040, 0000), we
proceed as follows, resulting in distinguishers named YDSpeckrR :

1. Compute the bias (towards 0) of each bit of (δr−2
R )≪2,

2. Predict bit values for (δr−2
R )≪2 based on their biases: assign a value of 0 if

bias ≥ 0 and 1 otherwise,
3. Define the absolute bias of the i-bit of ((δr−2

R )≪2)≫7 as ϵα(i),
4. For each output pair of r-round Speck32/64, use Alg. 1 to predict its clas-

sification.

Results of improving the DDT-based distinguisher. Table 9 presents the perfor-
mance of YDSpeckrR distinguishers, derived from the described enhancement of
DDSpeckrR . For rounds 4 ≤ r ≤ 7, YDSpeckrR typically shows improvement.
In contrast, when applying a similar method to adjust the NDSpeckrR score Z
(converting score Z to probability p using p = Z/(1 − Z) · 2−n), the accuracy
does not get improved. It is unchanged for NDSpeck4R and marginally degrades
for rounds 5 ≤ r ≤ 7 since the threshold τ is set less than 0.5. This suggests
that the additional information useful in improving DDT-based distinguishers
does not help improve ND’s; thus, the ND’s might have maximally utilized this
information already. Thus, we conclude as follows.

Conclusion 3 By utilizing conditional differential distributions when the input
and/or output values of the last nonlinear operation are observable, a distin-
guisher can surpass pure DDT-based counterparts. Accordingly, if these condi-
tional distributions differ greatly from the averaged differential distribution, and
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Algorithm 1: A simple procedure to improve the DDT-based distin-
guisher: YDSpeckrR

1. Get the differential probability p of (0040, 0000) 7→ (CL ⊕ C′
L, CR ⊕ C′

R) by
looking up the table DDT(0040, 0000)[(CL ⊕ C′

L, CR ⊕ C′
R)]

2. Compute the following information around the last ⊞ from ((CL, CR), (C′
L, C′

R)):
(a) γ ← CL ⊕ C′

L, β ← (CL ⊕ CR ⊕ C′
L ⊕ C′

R)≫2,
(b) α← ((δr−2

R )≪2 ⊕ β)≫7, y ← (CL ⊕ CR)≫2.
3. For bit position 0, if ϵα(1) > τ and ϵα(0) > τ , do:

(a) If Cyc(0,−1), do: p← (1 + (−1)xor(α,β,γ)1⊕β0⊕y0 ) · p.
4. For bit position 1, if ϵα(2) > τ and ϵα(1) > τ , do:

(a) If Cyc(2,1) and y0 = 0, do: p← (1 + (−1)xor(α,β,γ)2⊕β1⊕y1 ) · p.
5. For each bit position i (1 < i < n− 1), if ϵα(i + 1) > τ and ϵα(i) > τ and

ϵα(i− 1) > τ , do:
(a) If Cyc(i+1,i) and (Cxy0(i,i−1) or Cxc1(i,i−1) or Cyc0(i,i−1)), do:

p← (1 + (−1)xor(α,β,γ)i+1⊕βi⊕yi⊕yi−1 ) · p.
(b) If Cyc(i+1,i) and (Cxy1(i,i−1) or Cxc0(i,i−1)) and (Cxy0(i−1,i−2) or

Cxc1(i−1,i−2) or Cyc0(i−1,i−2)) and ϵα(i− 2) > τ , do:
p← (1 + (−1)xor(α,β,γ)i+1⊕βi⊕yi⊕yi−2 ) · p.

6. If p > 2−n, predict Z ← 1; else predict Z ← 0.

the satisfaction of the conditions is either observable or effectively predictable,
then r-round NDs can outperform r-round DDT-based distinguishers.

For Speck, one of the two inputs of the last non-linear operation (⊞) is ob-
servable. If conditioned on this input, the conditional differential distribution can
diverge significantly from the averaged one. Therefore, an optimal distinguisher
can obviously outperform a pure DDT-based counterpart. A similar analysis ap-
plies to Simon. In Simon, the values that go through the last nonlinear operation
are fully observable. Consequently, it is interpretable that in the case of Simon,
an r-round ND can achieve an accuracy close to the (r − 1)-round DDT [3].

This conclusion can be further supported by the following experimental re-
sult: In a modified r-round Speck32/64 where the last key XORing is omitted,
revealing both z and y (equating to full awareness of the satisfaction of the
last round’s differential constraints given a predictable input difference α), a
well-trained r-round ND achieves an accuracy close to the (r−1)-round DD. In-
terestingly, subsequent observations on RK-NDs reinforce our conclusion, while
the conclusion itself aids in interpreting those observations.

3.3 Distinguishers using Systematic Computation of Conditional
Differential Probability under Known y

The simple process in Alg. 1 is fast, but it requires evaluating the bias of each bit
of the difference on the right branch of round r−2 to estimate the input difference
α for the last modular addition. The differential probability can only be adjusted
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if the estimated bias of the corresponding bit of α exceeds a certain threshold.
As a result, it does not make the most of the information in y. Therefore, we
further designed a process, described in Alg. 2, to systematically calculate the
differential probability conditioned under the known value of y and predict based
on the (r − 1)-round DDT 7.

In essence, the systematic process involves using β, γ, and y to determine
all possible αs and the conditional differential probabilities of the last round. It
combines this information with the probabilities of the previous (r − 1) rounds
to calculate the conditional differential probability for r rounds under the known
value of y. Finally, it uses the systematically computed conditional probability
for prediction.

More concretely, in the process, we have the following procedures:

1. Precomputation: We generate three b-bit conditional DDTs, denoted as
A0, Anext, and Ac

next, of the single modular addition operation ⊞. These
resemble Dinur’s b-bit filter in [11]:
(a) A0 tells all valid b-bit values of α with their associated probability pr for

given b-bit inputs β, γ, and y at the first b least significant bits (LSB)
where the first carry bits are zeros.

(b) Anext tells all valid 1-bit values of αnext with their associated probabil-
ity pr for given b-bit inputs β, γ, y, and (b − 1)-bit α at intermediate
consecutive b bits where the LSB of carry is undetermined.

(c) Ac
next is similar to Anext but serves scenarios with known carry LSBs.

2. Initialization: From a received ciphertext pair, we derive the output differ-
ence γ, input difference β, and input value y; initialize the to-be-calculated
probability p and the last round’s probability factor q with 0 and 1.

3. Generate candidate LSB b-bit of α:
(a) Using table A0, we obtain candidates for the LSB b-bit of α based on

the LSB b-bit of β, γ, and y, update q with the associated pr.
(b) For each valid LSB b-bit of α, we invoke ‘ComputeCarryNextBit’ to

determine the carry bits wherever possible according to Table 5.
4. Iterative Calculation: For each valid LSB b-bit of α,

(a) Starting from the (b − 1)-th bit, we invoke ‘ComputeAlphaPrNextBit’
to sequentially determine α’s later bits and the respective augmentation
of the probability factor to q; alongside, we use ‘ComputeCarryNextBit’
to determine the carry bits wherever possible, preparing to be used to
derive later bits of α in case of Cyc or be used to look up Ac

next.
Within procedure ‘ComputeAlphaPrNextBit’:
(a) Once α is fully assigned, we calculate the output difference of the penul-

timate round and use it to look up the (r−1)-round DDT. The resultant
value, upon multiplied by the last round’s probability factor q, yields a
contribution term to the final probability p.

(b) At an intermediate bit position i, equal three input/output bits differ-
ences facilitate the direct determination of the subsequent α bit.

7 Please refer to [1] for the implementation codes and experimental results.
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(c) When input/output bits differences at position (i + 1, i) conforms to the
Cyc(i+1,i) condition with an determined value for ci, the subsequent α
bit is deduced using yi ⊕ ci. After determining αi+1, we invoke ‘Com-
puteCarryNextBit’ to determine the carry bit ci+1 wherever possible.

(d) Otherwise (in the absence of conformity or a determined ci value), αi+1
is enumerated using either Anext or Ac

next, depending on whether the
carry bit before b bits of the (i + 1)-th bit is determined.

(e) After obtaining αi+1 and its probability pr, we continue to determine
the next α bit, updating the probability factor by multiplying pr to q.

The resulting procedure is slower than the simple one; however, the result-
ing distinguishers, named “ADYD”, have accuracy exceeds not only that of the
distinguishers DDs but also the neural distinguishers NDs, comparable to the
r−1-round DDT-based key-averaging distinguishersADKDs [2] (refer to Tables 9
and 20), indicating an exemplary accuracy for NDs.

3.4 Discussion on ND’s Advantages

Based on the above observations and experiments, we can conclude that ND’s
advantage over pure differential-based distinguishers comes from exploiting the
conditional differential distribution under the partially known value from cipher-
texts input to the last non-linear operation. More specifically, NDs exploited
the correlation between the ciphertexts’ partial value, the ciphertext pair’s dif-
ferences, and the intermediate states’ differences. Specifically, when some of the
last-round nonlinear operations’ inputs and outputs are known (i.e., not XORed
with independently randomized key bits), a distinguisher can achieve higher dis-
tinguishing accuracy than an r-round pure differential-based distinguisher.

These findings apply not only to the Speck but also to other block ciphers,
such as Simon and Gift (refer to Appendix D.1), and demonstrate the ability of
neural networks to capture and utilize complex relationships between ciphertext
values and intermediate state differences. Note that the neural distinguishers
are not aware of the specific details of the ciphers, including their non-linear
components and structure. Therefore, these neural distinguishers can be used
for ciphers that have unknown components.

On the performance of various distinguishers. Experiments showed that NDs
can be more efficient while achieving comparable accuracy to sophisticated man-
ual methods (Alg. 2). Please refer to Table 9 for detailed benchmarks. Note that
in benchmarks listed in Table 9, all DDT-based distinguishers are implemented in
C++, whereas ND-based distinguishers are implemented in Python Tensorflow.
Although implementations in C++ might be inherently faster than its Python
counterpart, NDSpeck∗Rs in Python are still more efficient than ADSpeck∗R

YD and
ADSpeck∗R

KD in C++ (all restricted to run in a single CPU thread). Therefore, we can
conclude that the neural network-based distinguishers provide a good trade-off
between efficiency and accuracy.
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Algorithm 2: Known-y differential distinguishers: ADSpeckrR

YD
1. b← 6 // for practical reason, we consider 6-bit conditional DDT of ⊞
2. A0, Anext, Ac

next ← GenMultiBitsConditionalDDTs(b)
3. p← 0.0, q ← 1.0
4. Compute the following around the last ⊞ from ((CL, CR), (C′

L, C′
R)):

(a) γ ← CL ⊕ C′
L, β ← (CL ⊕ CR ⊕ C′

L ⊕ C′
R)≫2, y ← (CL ⊕ CR)≫2.

5. α← 0, c← 0
6. βb ← LSB b bits of β, γb ← LSB b bits of γ, yb ← LSB b bits of y
7. For (αb, pr) ∈ A0[βb, γb, yb]

(a) α← αb

(b) For i in {0, 1, . . . , b− 2}: ComputeCarryNextBit(c, α, β, γ, y, i)
(c) ComputeAlphaPrNextBit(c, α, β, γ, y, b− 1, q × pr, p)

8. If p > 2−n, predict Z ← 1; else predict Z ← 0.

ComputeAlphaPrNextBit(c, α, β, γ, y, i, q, p) // update ci+1, αi+1, p in-place
1. If i = WordSize− 1: p← p + q ×DDSpeckr−1R (α≪7‖β); return
2. If eq(αi, βi, γi):

(a) αi+1 ← βi+1 ⊕ γi+1 ⊕ βi; ComputeCarryNextBit(c, α, β, γ, y, i);
(b) ComputeAlphaPrNextBit(c, α, β, γ, y, i + 1, q · 1, p); return

3. Else if Cyc(i+1,i) and ci 6= ⊥:
(a) αi+1 ← βi+1 ⊕ γi+1 ⊕ βi ⊕ yi ⊕ ci; ComputeCarryNextBit(c, α, β, γ, y, i)
(b) ComputeAlphaPrNextBit(α, β, γ, y, i + 1, q · 1, p); return

4. Else:
(a) βb ← β{i+1,...,i+2−b}, γb ← γ{i+1,...,i+2−b}, yb ← y{i+1,...,i+2−b},

αb ← α{i,...,i+2−b}
(b) If ci+2−b 6= ⊥: For (αi+1, pr)← Ac

next[βb, γb, yb, αb, ci+2−b]
– ComputeCarryNextBit(c, α, β, γ, y, i)
– ComputeAlphaPrNextBit(α, β, γ, y, i + 1, q · pr, p)

(c) If ci+2−b = ⊥: For (αi+1, pr)← Anext[βb, γb, yb, αb]
– ComputeCarryNextBit(c, α, β, γ, y, i)
– ComputeAlphaPrNextBit(α, β, γ, y, i + 1, q · pr, p)

ComputeCarryNextBit(c, α, β, γ, y, i) // update ci+1 in-place
1. If yi = 0 and ci = 0: ci+1 ← 0
2. Else if yi = 1 and ci = 1: ci+1 ← 1
3. Else if Cxy0(i+1,i) or Cxc1(i+1,i) or Cyc0(i+1,i): ci+1 ← yi

4. Else if Cxy1(i+1,i) or Cxc0(i+1,i): ci+1 ← ci

5. Else: ci+1 ← ⊥. // ⊥ means unknown
GenMultiBitsConditionalDDTs(b)
1. A0 ← Generate b-bit conditional DDT of ⊞, each entry is indexed by (b-bit β,

b-bit γ, b-bit y), the values are (b-bit α, non-zero pr). // A0 will be used for the
first b bits since one knows that both LSB carry bits are 0.

2. Anext ← Generate b-bit conditional DDT of ⊞, each entry is indexed by (b-bit β,
b-bit γ, b-bit y, (b− 1)-bit α), the values are (1-bit αnext, non-zero pr). // Anext
will be used for the intermediate bits when LSB carry c is unknown.

3. Ac
next ← Generate b-bit conditional DDT of ⊞, each entry is indexed by (b-bit β,

b-bit γ, b-bit y, (b− 1)-bit α, 1-bit carry c), the values are (1-bit αnext, non-zero
pr). // Ac

next will be used for the intermediate bits when LSB carry c is known.
4. Output A0, Anext, Ac

next
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Table 9: Performance of the improved DDT-based distinguishers (YDs and ADYDs)
on Speck32/64 and comparisons with pure DDT-based distinguishers (DDs), neural
distinguishers (NDs), and DDT-based key-averaging distinguishers (ADKDs)

#R Name ACC TPR TNR Mem
(GBytes)

Time (Secs
per 220)

4 DDSpeck4R 0.9869 0.9869 0.9870 32.5 2−4.98

4 YDSpeck4R 0.9907 0.9887 0.9928 32.5 2−2.37

5 DDSpeck5R 0.9107 0.8775 0.9440 32.5 2−4.94

5 YDSpeck5R 0.9215 0.8947 0.9484 32.5 2−1.87

5 NDSpeck5R 0.9273 0.9011 0.9536 0.0277 2+3.56

5 ADSpeck5R
YD 0.9362 0.9173 0.9552 32.5 2+5.46

5 ADSpeck5R
KD 0.9364 0.9171 0.9557 32.5 2+7.03

6 DDSpeck6R 0.7584 0.6795 0.8371 32.5 2−4.53

6 YDSpeck6R 0.7663 0.7118 0.8207 32.5 2−2.05

6 NDSpeck6R 0.7876 0.7197 0.8554 0.0277 2+3.54

6 ADSpeck6R
YD 0.7949 0.7309 0.8587 32.5 2+5.12

6 ADSpeck6R
KD 0.7946 0.7309 0.8583 32.5 2+7.03

7 DDSpeck7R 0.5913 0.5430 0.6397 32.5 2−4.49

7 YDSpeck7R 0.5962 0.5582 0.6343 32.5 2−2.18

7 NDSpeck7R 0.6155 0.5325 0.6985 0.0277 2+3.57

7 ADSpeck7R
YD 0.6237 0.5428 0.7048 32.5 2+5.33

7 ADSpeck7R
KD 0.6240 0.5435 0.7046 32.5 2+7.04

8 DDSpeck8R 0.5116 0.4963 0.5268 32.5 2−4.64

8 YDSpeck8R 0.5117 0.4967 0.5268 32.5 2−2.99

8 NDSpeck8R 0.5135 0.5184 0.5085 0.0277 2+3.55

8 ADSpeck8R
YD 0.5187 0.4914 0.5460 32.5 2+5.51

8 ADSpeck8R
KD 0.5194 0.4919 0.5469 32.5 2+7.04

– ACC: Accuracy, TPR: True Positive Rate, TNR: True Negative Rate
– For YDs, the thresholds τ ’s for σα(i)’s in building YDSpeck4R , YDSpeck5R , YDSpeck6R ,
YDSpeck7R are 0.50, 0.30, 0.20, and 0.02, respectively. The number of samples for the accuracy
testing is 224.
– The number of samples for benchmark is 220. Thus, the times are seconds taken by making
predictions on 220 samples.
– All DDT-based distinguishers (DDs, YDs, ADYDs, and ADKDs) are implemented in C++
(compiled using g++ 9.4.0 with optimization option ‘-O3’), whereas ND-based distinguishers
(NDs) are implemented in Python.
– The benchmark environment is as follows: OS: Ubuntu 20.04; Processor: Intel(R) Xeon(R)
Gold 6330 CPU @ 2.00GHz; Memory: 256 GB DDR4 memory; all timings were restricted to run using
a single CPU thread.
– We profiled the memory requirements of NDs using the Tracemalloc module in Python. We
specifically measured the peak allocated memory, excluding the memory allocated for storing the
testing dataset. This was calculated by determining the memory usage when loading the ND and
making predictions, and then subtracting the memory usage when these operations were excluded
(for example, 0.246898 GB − 0.219219 GB). For other distinguishers, we assessed memory
requirements by referencing the ‘RES’ column associated with the process in the ‘htop’ command.
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Table 10: The accuracy of differential-neural distinguishers using distinct differ-
ences obtained by (0040, 0000) after i rounds of propagation. Prob. represents
the probability of the highest probability differential (0040,0000) → “Diff.”.

i Diff. Prob. Acc. i Diff. Prob. Acc.
0 (0040,0000) 1 0.6137 3 (8000,840a) 2−3 0.7394
1 (8000,8000) 1 0.6137 4 (850a,9520) 2−7 0.9166
2 (8100,8102) 2−1 0.6705

4 Insights and Improvements on Training
Differential-Neural Distinguisher

4.1 Relations between Distinguisher Accuracy and Differential
Distribution

Traditional differential cryptanalysis predominantly utilizes high-probability dif-
ferentials as distinguishers. However, differential-neural cryptanalysis exploits all
output differences for distinguishing while fixing input differences for plaintext
pairs. In EUROCRYPT 2021, Benamira et al. [6] argued that differential-neural
distinguisher is inherently building a very good approximation of the DDT dur-
ing the learning phase.

Our study delves into the relation between the accuracy of the differential-
neural distinguisher and the differential distribution of ciphertext pairs. We mod-
ify the input difference of plaintext pairs, inspired by Gohr’s staged training
method [14]. In [14], while the basic training method can produce a valid 7-
round distinguisher, an 8-round distinguisher must be trained using the staged
training approach. The core of the staged training method is training a pre-
trained 7-round distinguisher to learn 5-round Speck32/64’s output pairs with
the input difference (8000,804a) (the most likely difference to appear three
rounds after the input difference (0040,0000)). Employing such plaintext pairs
aims to concentrate the difference distribution of ciphertext pairs, escalating the
output difference’s likelihood and simplifying the distinguisher’s learning task.

In our work, we first introduce a 4-round highest probability differential trail
starting from (0040,0000).

(0040,0000)→ (8000,8000)→ (8100,8102)→ (8000,840a)→ (850a,9520)

Our experiments (see Table 10) initially employ a 4-round high-probability dif-
ferential trail starting from (0040,0000), leading to (850a,9520).

By default, we use (0040,0000) as the input difference of the plaintext pair
to generate the ciphertext pair. Here, in Table 10, we use the difference of the
highest probability of (0040,0000) after i (1 ≤ i ≤ 4) rounds of propagation as
the input difference of the plaintext pair, respectively.

From Table 8, we can observe that the larger i is, the higher the accuracy of
the differential-neural distinguisher. As i increases, the difference distribution in
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Table 11: The accuracy of the differential-neural distinguisher using distinct dif-
ferences obtained by (0040, 0000) after 2 rounds of propagation. Prob. repre-
sents the probability of differential (0040,0000)→ “Diff.”. Round 2+i represents
the positive sample of the training set is the ciphertext pair obtained by encrypt-
ing the plaintext pair that satisfies this difference for i rounds

Diff. Prob. Acc.
(2+4)

Acc.
(2+5)

Acc.
(2+6) Diff. Prob. Acc.

(2+4)
Acc.

(2+5)
Acc.

(2+6)
(8100,8102) 2−1 0.8720 0.6811 0.5270 (8f00,8f02) 2−4 0.6746 Fail Fail
(8300,8302) 2−2 0.8191 0.6218 Fail (9f00,9f02) 2−5 Fail Fail Fail
(8700,8702) 2−3 0.7492 Fail Fail (bf00,bf02) 2−6 Fail Fail Fail

the ciphertext becomes more concentrated, and the probability of each difference
increases. Therefore, the more significant the difference between the ciphertext
and the random number, the accuracy of the differential-neural distinguisher is
continuously improved.

To more comprehensively demonstrate the relation between the accuracy
of the differential-neural distinguisher and the differential distribution of the
ciphertext pairs, we conducted some experiments from another perspective. We
fixed the number of rounds of differential but chose multiple 2-round differences
with gradually decreasing probabilities. In Table 11, we notice that the higher the
fixed probability of the differential, the higher the accuracy of the differential-
neural distinguisher obtained. In other words, a lower probability means that
after i rounds of encryption, the differential distribution of the ciphertext is
more dispersed, and the neural network is more difficult to learn, resulting in
a continuous decrease in the number of rounds and accuracy of the differential-
neural distinguisher.

In conclusion, controlling differential propagation is imperative to enhance
the differential-neural distinguisher’s accuracy and the number of rounds. We
thus propose a method to control the differential propagation and reduce the
diffusion of features, thereby increasing the number of rounds of the differential-
neural distinguisher. However, before the formal introduction, we introduce one
method that can simplify the training process of high round distinguisher.

4.2 Freezing Layer Method

In existing experiments on Speck32/64, especially with an input difference of
(0040,0000), there has been a notable limitation. Researchers have been able to
directly train a differential-neural distinguisher for up to only 7 rounds. Direct
training for higher rounds from scratch has been challenging. A potential av-
enue that has garnered attention is the utilization of various network fine-tuning
strategies. Specifically, continuing the training phase from pre-trained models
has been proposed to potentially overcome these limitations and expand the
distinguisher’s round capability. Examples include the staged training method
in [14] and the staged pipeline method in [5].
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The inability to directly train the 8-round distinguisher likely stems from fea-
ture diffusion associated with the input difference (0040,0000) over increasing
rounds. This makes the 8-round features considerably challenging for the distin-
guisher to learn directly from limited data, as compared to lower rounds. One
approach is to either mitigate feature diffusion or narrow the distinguisher’s so-
lution space. While a technique to constrain feature diffusion is discussed in the
subsequent chapter, in this context, we employ the classic network fine-tuning
strategy, the freezing layer method, to limit the solution space.

Our distinguishers consist of two parts: the convolutional layers and fully
connected layers. In the field of artificial intelligence, all convolutional layers are
viewed as feature extractors, while all fully connected layers are viewed as a clas-
sifier. We argue that the feature extractor can be reused, and the classifiers are
relatively similar in adjacent rounds. Therefore, to train an 8-round distinguisher
for Speck32/64, we can simply load a well-trained 7-round model and freeze all
its convolutional layers, meaning that only parameters in fully connected layers
can be updated. Then, we can obtain an 8-round distinguisher with accuracy
identical to the ones in [5, 14], remaining all hyperparameters in the training
process unchanged.

Relative to the staged training method [14], our approach maintains the
same hyperparameters and does not require more samples in the final stage. In
comparison with the method in [5], we only need two training rounds instead
of multiple rounds in a row as required by the simple training pipeline in [5].
Besides, the simple training pipeline [5] did not produce NDs with the same
accuracy as Gohr’s on 8-round Speck32/64; it needs a further polishing step
to achieve similar accuracy, demanding more time and data. Our freezing layer
method also speeds up the training process due to the reduction of trainable
parameters. Therefore, we recommend trying the freezing layer method once the
number of the distinguisher is too high to train directly.

5 Related-Key Differential-Neural Cryptanalysis

TheND explainability concept serves as a fundamental theoretical underpinning
when aiming to enhance and leverage its capabilities. With the outcome being
that NDs can effectively capture additional features and provide a better trade-
off between efficiency and accuracy, there is substantial motivation for us to
continue refining and exploiting their potential.

In this section, we introduce the related-key into differential-neural cryptanal-
ysis, enabling control over differential propagation and facilitating the training of
high-round NDs. Furthermore, we enhance the DDT-based distinguisher under
the RK setting by employing the analytical methods and conclusions outlined in
Sect. 3. As a result of these advancements, we successfully implement a 14-round
key recovery attack for Speck32/64 using the proposed RK-NDs.
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5.1 Related-key Differential-Neural Distinguisher for Speck32/64

Here we present the related-key differential-neural distinguishers on Speck32/64
obtained in this work.

The choice of the input difference. The input difference is a crucial and central
component of differential-neural cryptanalysis, and numerous papers delve into
the study of the input difference, such as [3,5,14,16,22]. To maximize the number
of rounds for both ND and CD, as well as the weak key space as large as possible
to perform the longest key recovery attack, we use the SMT-based method to
search for appropriateRK differential or differential trails. It is important to note
that the largest weak key space does not necessarily equate to the largest ND
or CD, thus requiring a compromise between the three factors. In this paper, the
choice of the best input difference is given under different compromises. Table 12
lists the RK differential trails used to constrain the key space in Speck32/64,
where we label each distinguisher with an ID. Specifically, ID1 is used to restrict
the weak key space for the 13-round, ID2 and ID3 are used to restrict the 14-
round. Note that part of the ID2/ID3 (2-round to 11-round) RK difference are
same as the 10-round optimal RK differential trail for speck32/64 given in Table
9 of [24]. In addition, the round-reduced of the trails are used to restrict the weak
key space for shorter rounds, e.g., ID2 and ID3 are used to restrict the weak key
space for 13-round starting from the second round.

Network architecture. Given the success of the neural network consisting of the
Inception block and residual network in Speck, Simon and Simeck [27, 28], as
well as its superior performance in differential-neural distinguisher, we use this
neural network proposed in [28] to train RK differential-neural distinguisher.
However, we also made some modifications to the network architecture. In deep
learning, odd numbers such as 3, 5, and 7 are often used as the size of the
convolution kernel. However, according to the cyclic shift of the round function
of Speck32/64, we choose 2 and 7 as the size of the convolution kernel. Fur-
thermore, using 2 as the convolution kernel size can make the model’s accuracy
converge faster than 3. In [28], the size of the convolution kernel continues to
increase as the depth of the residual network increases. We think it is reason-
able to increase the convolution kernel’s size to improve the network’s receptive
field, but it cannot always be increased. Therefore, we will limit the size of the
convolution kernel to less than or equal to 7.

The training of related-key differential-neural distinguisher. This work still uses
the basic training method to train short-round distinguishers. When the basic
training method fails, we train the r-round distinguisher with the (r− 1)-round
distinguisher by using the freezing layer method. Please refer to Appendix F for
the detailed training method.

Performance evaluation of the distinguisher. In artificial intelligence, the model’s
accuracy is the most critical evaluation indicator. In differential-neural cryptanal-
ysis, it is judged whether the guessed key is correct based on the score of the
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Table 12: Related-key differential trails used to constrain the key space in
Speck32/64 where we label each distinguisher with an ID. For example, ID1
represents the 13-round RK differential trail for the key schedule algorithm with
(∆l2, ∆l1, ∆l0, ∆k0) = (0044,0011,4000,0080)

ID1 ID2/ID3

r Differential in Key log2 Pr Differential in Key log2 Pr
0 (0044,0011,4000,0080) (0200,0080,0011,4a00)
1 (0000,0044,0011,0200) -1 (2800,0200,0080,0001) -4
2 (2000,0000,0044,2800) -2 (0000,2800,0200,0004) -1
3 (a000,2000,0000,0000) -2 (0000,0000,2800,0010) -1
4 (0000,a000,2000,0000) -0 (0040,0000,0000,0000) -2
5 (0040,0000,a000,0040) -1 (0000,0040,0000,0000) 0
6 (0100,0040,0000,0000) -2 (0000,0000,0040,0000) 0
7 (0000,0100,0040,0000) 0 (8000,0000,0000,8000) 0
8 (8000,0000,0100,8000) 0 (8000,8000,0000,8002) 0
9 (8002,8000,0000,8000) -1 (8002,8000,8000,8008) -1

10 (8000,8002,8000,8002) 0 (8108,8002,8000,812a) -2
11 (8102,8000,8002,8108) -2 (802a,8108,8002,8480) -4

12 (8408,8102,8000,802a) -3 (8180,802a,8108,9382)/
(8280,802a,8108,9082)

-3/-4

13 (8180,8180,802a,cf8a)/
(8080,8280,802a,c28a)

-4/-4

log2 (Pr (QK)): -14 log2 (Pr (QK)): -22/-23

distinguisher. Therefore, we evaluate the performance of the differential-neural
distinguisher regarding both the accuracy and the score.

– Test accuracy. We summarize the accuracy of the differential-neural distin-
guisher in Table 13. The 8, and 9-round distinguishers were trained using the
basic training method, while the 10-round distinguishers were trained using
the freezing layer method. For more insight on related-key differential-neural
distinguishers, please refer to Appendix F.2.

– Wrong key response profile (WKRP). In [14], the key search policy depends
on the observation that a distinguisher’s response to wrong-key decryption
varies with the bitwise difference between the guessed and real key. Instead
of exhaustive trial decryption, it suggests specific subkeys and scores them.
Fig. 3 shows the mean response for varying Hamming distances between
guessed and actual keys in ID1. Notably, high scores emerge when differences
in keys are small, especially if the difference relates to {16384, 32768, 49152}.
This indicates that errors in the 14th and 15th bits of the subkey minimally
impact scores, allowing for a reduced key guessing space. This accelerated
key recovery in [14]. For WKRPs of ID2 and ID3, see Appendix B.2.
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Table 13: The summary of related-key differential-neural distinguishers on
Speck32/64, where the plaintext difference is (0000,0000).

Diff. #R Name Accuracy True Positive Rate True Negative Rate

ID1 8 RK-NDSpeck8R 0.7584 0.6836 0.8332
ID1 9 RK-NDSpeck9R 0.5620 0.5212 0.6028

ID2/ID3 8 RK-NDSpeck8R 0.9259 0.9063 0.9455
ID2 9 RK-NDSpeck9R 0.7535 0.7035 0.8036
ID2 10 RK-NDSpeck10R 0.5643 0.5382 0.5893
ID3 9 RK-NDSpeck9R 0.7726 0.7247 0.8206
ID3 10 RK-NDSpeck10R 0.5562 0.5361 0.5765
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Fig. 3: Wrong key response profile of ID1

On RK-ND’s Explainability. Beyond constructing and comparing various
RK distinguishers (see Appendix F.2), we further undertook experiments anal-
ogous to Gohr’s aaaa-blinding experiment. Some RK-NDs behaved similarly
to single-key setting NDs, while others varied. Refer to RK-NDSpeck9R

ID(2,9182)
and

RK-NDSpeck9R

ID(2,9382)
in Table 14 for example for the former and latter case, where

the differential trail ID(2,9182) differs from ID(2,9382) only at the last round key,
and ID(2,9382) is ID2 from round 4 to 12. Notably, the behavior ofRK-NDSpeck9R

ID(3,9082)

presented intriguing phenomena (ID(3,9082) is ID3 from round 4 to 12):

1. RK-NDSpeck9R

ID(3,9082)
performed differently on

Set-1-1 := {ΓA, ΓB, ΓC , ΓD} and Set-1-2 := {ΓAR1 , ΓBR1 , ΓCR1 , ΓDR1},
which, under the assumption of a random last-round key K, defines the
same information set per Sect. 3.1 (please refer to Table 14).

2. RK-NDSpeck9R

ID(3,9082)
showed superior performance over RK-NDSpeck9R

ID(2,9382)
(0.7726

vs. 0.7535, refer to Table 22), while theoretically, if there is no information
on the key being revealed beyond the key difference, RK-NDSpeck9R

ID(3,9082)
should

perform exactly the same as RK-NDSpeck9R

ID(2,9382)
, since the two differential trails
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Table 14: Experiments detailing the information harnessed by RK-NDs using 9
round ID(2,9182), ID(2,9382), and ID(3,9082), with similar settings in Table 2.

ID Set. Positive Samples Negative Samples Acc.
1-1 (A,B, C,D) Random 0.7531

RK-NDSpeck9R ID(2,9182) 1-2 (AR1,BR1, CR1,DR1) Random 0.7534
1-1 (A,B, C,D) Random 0.7574

RK-NDSpeck9R ID(2,9382) 1-2 (AR1,BR1, CR1,DR1) Random 0.7529
1-1 (A,B, C,D) Random 0.7746

RK-NDSpeck9R ID(3,9082) 1-2 (AR1,BR1, CR1,DR1) Random 0.7539

differ only at the last round key difference thus the two output difference
distributions are affine-equivalent.

3. Surprisingly, RK-NDSpeck9R
ID(3,9082) even outperformed our manually en-

hanced distinguisher RK-ADSpeck9R

YD (0.7726 vs. 0.7574, refer to Table 22).
Upon closer examination of the differential trail of ID(3,9082), we identified the
causative factor. Let’s denote input/output differences and values around the
last ⊞ in the key schedule producing the 8-round (counting start from 0) key k8

as α, β, γ, x, y, z. Then from the differential trail ID(3,9082), specifically focus on

the 7- and 8-round, we have


α = 0x8002≪7 = 0b 0000 0101 0000 0000,

β = 0x8480 = 0b 1000 0100 1000 0000,

γ = 0x8280 = 0b 1000 0010 1000 0000,
According to Tables 4 and 5, we have follows.
1. The (8, 7)-th bit position is in case Cxc1(8,7), we have c8 = y7.
2. The (9, 8)-th bit position is in case Cxc0(9,8), we have c9 = c8.
3. The (10, 9)-th bit position is in case Cxy1(10,9), we have x9⊕y9 = z9⊕c9 = 1.

Consequently, we have z9 ⊕ y7 = 1. Note that z9 ⊕ y7 = 1 implies that the 9th
bit of the last round key is constantly 1. This does not obscure 1-bit information
of the output of the last ⊞ in the encryption path, allowing for better accuracy
of the resulting distinguisher. This explains all the odds on RK-NDSpeck9R

ID(3,9082)
.

Additionally, for RK-NDSpeck9R

ID(2,9382)
, the 10th bit of the last-round key conform-

ing to the round difference has a bias towards 0 (equals 0 with a probability
of 3/4), which could explain its slightly differed accuracy between Set.1-1 and
Set.1-2 (refer to Table 14). After fixing the 10th bit to be 0 and re-training the
distinguisher, it achieves almost the same accuracy as RK-NDSpeck9R

ID(3,9082)
. When an-

alyzing the probability of related-key pairs under these conditions, we deduced
that restricting the 10th bit for ID(2,9382) still results in a larger weak-key space
compared with ID(3,9082) while achieving the same high RK-ND accuracy.

5.2 Key Recovery Attack on Round-Reduced Speck32/64
This subsection describes the implementation of RK differential-neural crypt-
analysis using the trained distinguisher. The key recovery framework is similar
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to [3,14,28]. Since the whole attack is in the RK setting, we need to specify the
difference between each round of subkeys. Specifically, it is unclear how to per-
form a key recovery attack if only applying a difference to the master key without
specifying the difference in the round-key state. In such cases, the guessed one
last-round key cannot directly infer the other last-round key in the related pair,
as the difference in the last-round key is not specified.

We first introduce some preparatory work before officially implementing the
key recovery attack.

Generalized neutral bits. We incorporate CD before ND to increase the num-
ber of rounds for the key recovery attack. Furthermore, to enhance predictive
performance, we employ the distinguisher to estimate the scores of multiple ci-
phertexts with the same distribution (ciphertext structure) and combine them
to obtain the scores for the guessed subkey. However, the CD is probabilistic,
and the randomly generated plaintext structure does not retain the same distri-
bution after encryption. Hence, we require neutral bits to generate the plaintext
structure, which we encrypt to obtain the ciphertext structure, achieving a suc-
cessful key recovery attack. Therefore, the CD should have a high probability
and a sufficient number of neutral bits. Appendix B.3 lists the NBs/SNBSs we
used to perform the key recovery attack.

The parameters for key recovery attack. The attacks follow the framework of the
improved key recovery attacks in [14]. An r-round main and an (r − 1)-round
helper NDs are employed, and an s-round CD is prepended. The key guessing
procedure applies a simple reinforcement learning procedure. The last subkey
and the second to last subkey are to be recovered without exhaustively using
all candidate values to perform one-round decryption. Moreover, a Bayesian
key search employing the wrong key response profile will be used. We count a
key guess as successful if the last round key was guessed correctly and if the
second round key is at the hamming distance at most two of the real keys. The
parameters to recover the last two subkeys are indicated below.

Parameter Definition
ncts The number of ciphertext structures.

nb
The number of ciphertext pairs in each ciphertext structure,
that is, 2|NB|.

nit The total number of iterations in the ciphertext structures.

c1, c2
The cutoffs with respect to the scores of the recommended last
subkey and second to last subkey, respectively.

nbyit1/2 The number of iterations, the default value is 5.

ncand1/2
The number of key candidates within each iteration, default
value is 32.

Complexity evaluation of key recovery attack. The experiment is conducted by
Python 3.7.15 and Tensorflow 2.5.0 in Ubuntu 20.04. The device information is
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Table 15: Summary of key recovery attacks on Speck32/64
Diff. #R Configure wks ncts nit nb c1 c2 sr Time Data Advantage
ID1 13 1+2+9+1 250 27 28 28 8 5 54.28% 234.57 216 215.43

ID2

13 1+2+9+1 246
26 27 25 5 5 93.33% 233.95 212 212.05

25 26 25 5 5 72.86% 233.01 211 212.99

24 25 25 10 1 44.28% 231.79 210 214.21

14 1+3+9+1 242 29 210 26 8 10 75.71% 235.59 216 26.41

29 210 25 8 5 55.71% 235.32 215 26.68

ID3

13 1+2+9+1 245
26 27 25 5 5 95.24% 234.26 212 210.75

25 26 25 5 5 77.62% 233.55 211 211.45

24 25 25 10 1 46.67% 232.20 210 212.80

14 1+3+9+1 241
210 211 27 10 25 90% 236.39 218 24.61

29 210 27 10 15 71.43% 235.78 217 25.22

29 210 25 5 5 68.57% 235.40 215 25.6

Intel Xeon E5-2680V4*2 with 2.40GHz, 256GB RAM, and NVIDIA RTX3080Ti
12GB*7. To reduce the experimental error, we perform 210 key recovery attacks
for each parameter setting, take the average running time rt as the running time
of an experiment, and divide the number of successful experiments by the total
experimental number as the success rate sr of the key recovery attack.

1. Data complexity. The data complexity of the experiment is calculated using
the formula nb×nct×2, which is a theoretical value. In the actual experiment,
when the accuracy of the differential-neural distinguisher is high, the key can
be recovered quickly and successfully. Not all data are used, so the actual
data complexity is lower than theoretical.

2. Time complexity. We use 232 data to test the speed of encryption and decryp-
tion on our device, and each core can perform 226.814 rounds of decryption
operations per second for Speck32/64. The formula for calculating the time
complexity in our experiments: 226.814 × rt.

The result of key recovery attacks. We list the results of key recovery attacks
in multiple differential modes in Table 15. We calculate the corresponding weak
key space wks according to the probabilities of ID1, ID2, and ID(3,9082). Adv.
represents the advantage compared to the time complexity of brute forcing. The
time and data complexity can be reduced by reducing ncts and nit, but the
success rate sr also decreases accordingly. The first metric for our experiment is
to reduce the time complexity.

Remark 3 (The profiling information of the key-recovery attack). To pinpoint the
attack’s bottleneck, we profiled a 14-round key-recovery attack using ID3. The
main result is detailed in Table 16. From the profiling result, the performance
of our implementation of the attack is mostly limited by the speed of neural
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Table 16: Profiling information of the key-recovery attack
Function Time (Percentage)

test_bayes 242 s (100 %)
| – bayesian_key_recovery | – 229.39 s (94.79 %)
| – | – (GPU) net.predict | – | – 191.62 s (79.18 %)
| – | – (CPU) bayesian_rank_kr | – | – 28.99 s (11.98 %)
| – verifier_search | – 12.63 s (5.22 %)
| – | – (GPU) net.predict | – | – 12.51 s (5.17 %)
– test_bayes: a full run of the attack excluding the generation of the related-key, load models,
and generation of ciphertext structures.
– bayesian_key_recovery: the run of the BayesianKeySearch algorithm.
– verifier_search: the run of the final improvement [3].
– net.predict: using NDs to score the ciphertext structures decrypted by one round.
– bayesian_rank_kr: computing the weighted Euclidean distance with WKRPs.

network evaluation (the proportion taken by ND making the prediction is 79.18
% + 5.17 % = 84.35 %). The next limiting factor is the speed of computing the
weighted Euclidean distance with the wrong key response profile.

Remark 4 (Efficiency measures in symmetric-key cryptanalysis attacks). Assess-
ing the efficiency of distinguishers and key recovery attacks in symmetric-key
cryptanalysis poses intricate challenges, particularly when pinpointing compu-
tational complexities based on real-time attack timings and then extrapolating
these to equivalent primitive evaluations, as done in both ND-based and tradi-
tional attacks in [11,13,25] (listed in Table 1).

Factors influencing these complexities include architecture compatibility and
algorithmic suitability, varied computation intensity and various operation costs
across platforms, memory constraints and flexible trade-offs, and implementation
factors. Given these complexities, it is a good idea to have secondary metrics for
comparison, for instance, power consumption and cost efficiency (please refer to
Appendix E for detailed discussions). While there’s a pressing need for universal
metrics, formulating such benchmarks is challenging, warranting caution when
interpreting the comparison results and warranting further exploration.

6 Conclusion

This paper provides explicit rules that a distinguisher can use beyond the full dif-
ferential distribution table to achieve better distinguishing performance. These
rules are based on high correlations between values of bits in right pairs of
differential propagation through addition modular 2n. By leveraging the value-
dependent differential probability, which is not typically applied in traditional
differential distinguishers, we can equip additional knowledge to DDT-based dis-
tinguishers, enhancing their accuracy. These rules or their equivalent form are
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likely the additional features beyond full DDT that the neural distinguishers ex-
ploit. While these rules are not difficult to derive with careful analysis, they rely
on non-trivial relations that traditional distinguishers often overlook. This indi-
cates that neural networks help break the limitations of traditional cryptanalysis.
Studying this unorthodox model can provide new opportunities to understand
cryptographic primitives better.

Another investigation in this paper revealed that controlling differential prop-
agation is crucial to enhance the accuracy of differential-neural distinguisher. It
is typically believed that introducing differences into the keys provides chances to
cancel differences in the encryption states, thus resulting in stronger differential
propagations. However, unlike traditional differential attacks, differential-neural
attacks do not specify the output difference and, thus, are not limited to a
single differential trail. Therefore, it is unclear whether the difference in a key
is helpful in differential-neural attacks. It is also unclear how resistant Speck
is against differential-neural attacks in the RK setting. This work confirmed
that differential-neural cryptanalysis in the RK setting could be more powerful
than in the single-key setting by conducting a 14-round key recovery attack on
Speck32/64.
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A Network Architecture

The general architecture of our neural network to train the differential-neural
distinguisher is shown in Fig. 4. The network architecture consists of four parts:
an input layer consisting of multiple-ciphertext pairs, an initial convolutional
layer consisting of four parallel convolutional layers, a residual tower with mul-
tiple two-layer convolutional neural networks, and a prediction head consisting
of multiple fully connected layers.

Output
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Module 2

Module 2

Module 1

Input

F (·)
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Fig. 4: The network architecture for Speck32/64

- Input representation. If the output of the r-th round (C, C ′) = (Cr
L||Cr

R,

C ′r
L||C ′r

R) is known, one can directly compute (Cr−1
R , C ′r−1

R ) without know-
ing the (r − 1)-th subkey according to the round function of Speck. Thus,
the neural network accepts data of the form (Cr

L, C ′r
L, Cr

R, C ′r
R, Cr−1

R , C ′r−1
R ).

The input layer has 6n units likewise arranged in a [n, 6] array, where n = 16
for Speck32/64.

- Initial convolution (module 1). The input layer is connected to the initial con-
volutional layer, which comprises three convolutional layers with Nf = 16
channels of different kernel sizes. The three convolution layers are concate-
nated at the channel dimension. Batch normalization is applied to the output
of the concatenate layers. Finally, rectifier nonlinearity is applied to the out-
put of batch normalization, and the resulting [n, 3Nf ] matrix is passed to
the convolutional blocks layer.

- Convolutional blocks (module 2). Each convolutional block consists of two
layers of 3Nf filters. Each block applies first the convolution with kernel
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Table 17: Hyperparameters of network architecture and training process
Parameter Value Parameter Value

Epoch 20 Filters 32

Batch Size 5000 Regularization Factor 0

#Residual Blocks (depth) 10 #Densely Connected Neurons 512, 256, 64

Circular Learning Rate 3.5e− 3 to 2e− 4 every 10 epochs

size ks, then a batch normalization, and finally a rectifier layer. At the end
of the convolutional block, a skip connection is added to the output of the
final rectifier layer of the block to the input of the convolutional block. It
transfers the result to the next block. After each convolutional block, the
kernel size increases by 2 if ks < 7. The number of convolutional blocks is 5
in our model (determined by experiment).

- Prediction head (module 3 and output). The prediction head consists of two
hidden layers and one output unit. Before the first hidden layer, we add a
dropout layer to prevent model overfitting. The two fully connected layers
comprise 64, and 64 units, followed by the batch normalization and rectifier
layers. The final layer consists of a single output unit using the activation
function Sigmoid.

Rationale. First, we take the ciphertext of the last round and the right half of the
penultimate round as input, hoping to provide more information to the neural
network. Second, the purpose of using multiple convolutional layers with different
kernel sizes is to capture information in multiple dimensions. The convolution
layer with kernel size 1 is to capture the differential features in the ciphertext
pairs. In the field of deep learning, odd numbers such as 3, 5, and 7 are often
used as the size of the convolution kernel. But according to the cyclic shift of the
speck round function, we choose 2 and 7 as the size of the convolution kernel.
In addition, using 2 as the convolution kernel size can make the accuracy of the
model converge faster than 3. Third, to increase the convolution’s receptive field,
the convolution kernel’s size increases by 2 with the increase of the depth of the
Residual Network.

A.1 Hyperparameters for Training NDs used in Sect. 3.1

B Differential-Neural Cryptanalysis

B.1 Framework of Key Recovery Attack

Gohr [14] proposed a framework for differential neural cryptanalysis dedicated
to recovering the last two rounds of subkeys for Speck32/64. We decrypt the
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ciphertext using the guessed subkey and use the differential-neural distinguisher
to estimate the distance between the guessed subkey and the real key.
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Fig. 5: (1 + s + r + 1)-round key recovery attack [3]

The overall processing of a key recovery attack based on a differential-neural
distinguisher is shown in Fig. 5, where ND is the trained differential-neural
distinguisher, (PT0, PT1) is plaintext pairs and (CT0, CT1) is ciphertext pairs.
The (1 + s + r + 1)-round key recovery attack employs a r-round main and (r−
1)-round helper differential-neural distinguisher trained using input pairs with
difference ∆P . A short s-round classical differential (∆S → ∆P ) with probability
denoted by 2−p is prepended on top of the differential-neural distinguisher to
increase the number of the rounds of key recovery attack. To ensure the existence
of data pairs satisfying the difference ∆P after s-round encryption, about c · 2p

(denoted by ncts) data pairs with the difference ∆S are required according to
the probability of difference propagation, where c is a small constant.

Neutral bits (NB) of the s-round classical differential is used to expand each
data pair to a structure of nb data pairs. The ncts structures of the data pairs
are decrypted in one round with 0 as the subkey to get the plaintext struc-
tures because the nonlinear operation occurs before the addition of keys for
Speck32/64. All plaintext structures are encrypted to obtain the correspond-
ing ciphertext structures. Each ciphertext structure is used to select a candidate
of the subkey by the r-round main differential-neural distinguisher based on a
variant of Bayesian optimization. The usage of ciphertext structures is also highly
selective by using a standard exploration-exploitation technique, namely Upper
Confidence Bounds (UCB). Each ciphertext structure is assigned a priority ac-
cording to the score of the recommended subkeys and the visited times. Without
exhaustively performing trail decryption, the key search policy depends on the
response vi,k of the differential-neural distinguisher upon wrong-key decryption.
The wrong key response profile is to recommend new candidate values from pre-
vious candidate values while minimizing the weighted Euclidean distance in a
BayesianKeySearch Alg. [14].

As the number of encryption rounds increases, the accuracy of the differential-
neural distinguisher decreases. To reduce the impact of the misjudgment of
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the single prediction of the distinguisher, Gohr used the combined response
sk =

∑nb−1
i=0 log2

(
vi,k

1−vi,k

)
as the score of the recommended subkey by using

large amounts of instances with the same distribution, which can be satisfied
by NB [14]. The number of instances with the same distribution should be suffi-
ciently large to enhance the distinguishing ability of the low-accuracy differential-
neural distinguisher. However, neutral bits of the nontrivial classical differential
are scarce. Therefore, probabilistic neutral bits (PNB) are exploited in [14].
Some probabilistic neutral bits, simultaneous-neutral bit-sets (SNBS), condi-
tional (simultaneous-) neutral bit(-set)s (CSNBS), and switching bits for ad-
joining differentials (SBfADs) were found in [3].

B.2 Wrong Key Response Profile
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Fig. 6: Wrong key response profile of ID2
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Fig. 7: Wrong key response profile of ID3
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B.3 The (probabilistic) NBs/SNBSs of Speck32/64

Table 18: The (probabilistic) NBs/SNBSs of Speck32/64. The statistics were
performed on 1000 correct pairs, each with a different related-key

(0881,0005)
2−round (Pr(QD)=2−6)−−−−−−−−−−−−−−−→

ID1
(0000,0000)

NBs [13,20] [2] [27] [0,23] [15,22] [14] [21] [28]
Prob. 1.0 0.99 0.99 0.99 0.95 0.91 0.91 0.91

(0205,0200)
2−round (Pr(QD)=2−4)−−−−−−−−−−−−−−−→

ID2/ID3
(0000,0000)

NBs [12] [13] [18] [19] [20] [21] [22] [9,16] [4,27]
Prob. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.97

(02a1,4001)
3−round (Pr(QD)≈2−8)−−−−−−−−−−−−−−−→

ID2/ID3
(0000,0000)

NBs [0,23,25] [11,18] [4,27] [19] [12] [28]
Prob. 0.99 0.89 0.80 0.79 0.77 0.77

C Algorithm for Computing XOR-Differential
Probability of Addition

Theorem 1 ( [21]). Let δ = (α, β 7→ γ) be an arbitrary XOR-differential
through addition modulo 2n. Alg. 3 returns DP+(δ) in time Θ(log n). More pre-
cisely, it works in time Θ(1) + t, where t is the time it takes to compute wh.

Algorithm 3: Compute DP+(δ) [21]
INPUT: δ = (α, β 7→ γ)
OUTPUT: DP+(δ)
1. If eq(α�1, β�1, γ�1) ∧ (xor(α, β, γ)⊕ (β�1)) 6= 0 then return 0;
2. Return 2−wh(¬eq(α,β,γ)∧mask(n−1));

D More Details on ND Explainability

In Table 19, we list some output differences whose probabilities are higher than
2−32.
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Table 19: Experimental results of Experiment A. Prop. refers to the proportion
of predicted positive labels. The probabilities of these output differences are all
higher than 2−32.

Difference Prop. Difference Prop. Difference Prop. Difference Prop.
(802a,d4a8) 0.75 (803a,d4b8) 0.75 (822a,d6a8) 0.75 (802e,d4ac) 0.75
(8e2a,daa8) 0.75 (b82a,eca8) 0.75 (882a,dca8) 0.75 (a02a,f4a8) 0.75
(806a,d4e8) 0.75 (801a,d498) 0.75 (be2a,eaa8) 0.75 (8e26,daa4) 0.75
(8026,d4a4) 0.75 (a026,f4a4) 0.75 (be26,eaa4) 0.75 (83ea,d768) 0.75
(883a,dcb8) 0.75 (801e,d49c) 0.75 (be1a,ea98) 0.75 (821a,d698) 0.75

D.1 Applying to Gift64/128

Although the above observations are based on specific analysis of the differential
properties of Speck’s modulo addition component, the analysis methods and
conclusions are actually applicable in a general sense.

Specifically, this analysis also applies to differential neural distinguishers on
SBox-based substitution-permutation network (SPN) block ciphers.

For example, let’s consider the block cipher Gift with a block size of 64
bits and a key size of 128 bits. Fig. 8 is the schematic diagram of its two round
functions. As can be seen, in each round, only half of the state is XORed with the
round key. Therefore, given a pair of ciphertexts, not only the output difference
of the final round’s nonlinear layer (i.e., S-box layer) is known, but also half of
the state values are known.

Based on this property, one can construct r-round distinguishers for Gift
by using conditional differential distribution tables for the inverse S-box of Gift
under known partial values (refer to Fig. 9) and based on (r − 1) round distin-
guishers, similar to Alg. 2 used to construct ADYD.

Due to the 64-bit block size of Gift64/128, we cannot calculate an exact
(r − 1) round DDT as we did for Speck32/64. However, we can use the (r − 1)
round neural distinguisher for construction. Furthermore, we can go beyond the
boundary of the round function and construct r-round distinguishers based on
(r − 1).75- and (r − 1).5-round neural distinguishers, as well as vDDTs with
partial values for 4 S-boxes or 8 S-boxes (refer to Figures 10 and 11).

The resulting r-round distinguishers demonstrate significantly higher accu-
racy compared to distinguishers based on ciphertext differences and are com-
parable to, or even superior to, pure neural distinguishers based on ciphertext
values (refer to Table 20) 8. This indicates that neural distinguishers with cipher-
text values as inputs not only utilize differential distributions but also exploit
value-based conditional differential distributions.

D.2 Applying to Classical Cryptanalysis

The conclusion is not restricted to neural distinguishers and can be used to
enhance classical differential cryptanalysis. Concretely, one has the following.
8 Please refer to [1] for the implementation codes and experimental results.
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Fig. 8: Tow rounds of Gift64/128
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Fig. 9: The vDDT of Gift64/128’s inverse SBox:
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. Based on the computation, there is
only one right pair for every valid conditional differential propagation and there
are only four possible output x3x2δx3δx2δx1δx0 for each input y3y2δy3δy2δy1δy0 .
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Fig. 10: NDs on (r − 1).75-round Gift64/128 combined with 4 vDDTs of the
Gift64/128’s inverse SBox
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Fig. 11: NDs on (r − 1).5-round Gift64/128 combined with 8 vDDTs of the
Gift64/128’s inverse SBox
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Table 20: Comparison between NDGiftR

VV s, NDGiftR

DD s, and ADGiftRs (i.e.,
NDGift(r−1).(1−n/16)R

VV + n vDDTs) on Gift64/128
#R Name Acc. TPR TNR

4.5 NDGift4.5 R
VV 0.9694 0.9663 0.9725

4.75 NDGift4.75R
VV 0.9372 0.9163 0.9579

5 NDGift4.5 R
VV + 8 vDDTs 0.9009 0.8615 0.9398

5 NDGift4.75R
VV + 4 vDDTs 0.9008 0.8620 0.9396

5 NDGift5R
VV 0.9001 0.8623 0.9378

5 NDGift5R
DD 0.8428 0.7693 0.9160

5.5 NDGift5.5 R
VV 0.7681 0.6639 0.8726

5.75 NDGift5.75R
VV 0.7203 0.5918 0.8484

6 NDGift5.5 R
VV + 8 vDDTs 0.6885 0.5692 0.8066

6 NDGift5.75R
VV + 4 vDDTs 0.6826 0.5356 0.8287

6 NDGift6R
VV 0.6802 0.5571 0.8029

6 NDGift6R
DD 0.6305 0.4988 0.7623

6.5 NDGift6.5 R
VV 0.5741 0.4741 0.6743

6.75 NDGift6.75R
VV 0.5523 0.4317 0.6730

7 NDGift6.5 R
VV + 8 vDDTs 0.5361 0.5116 0.5633

7 NDGift6.75R
VV + 4 vDDTs 0.5398 0.4195 0.6599

7 NDGift7R
VV 0.5348 0.5266 0.5431

7 NDGift7R
DD 0.5019 0.4525 0.5513

For accuracy testing, 219 samples were used except for NDGiftr.5 R
VV + 8

vDDTs, where only 211 samples were used due to slow processing.
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1. A classical (non-machine learning) distinguisher can also use this conditional
differential probability to achieve superior accuracy than a pure differential-
based distinguisher.

2. The observation can slightly improve the multi-bit filter used in the attacks
by Dinur on Speck in [11]. Specifically, Table 8 can be combined with the
6-bit filter in [11], improving the filtering power by 21.1, 21.7, and 22.7 on
Speck32/*, Speck48/*, and Speck64/*, respectively (please refer to “Im-
provingDDT/ImprovingClassical/DinurMultiBitFilter” in [1] for the codes
and results).

3. In addition, the observations can be directly used to improve the Meet-
in-the-Filter (MiF) attack on Speck [8]. Consider the last modular addi-
tion, without conditioned on the value of y, given the output difference
and one input difference (γ, β), there are 212.10 possible α in average for
Speck32/64 [8, page 23]. However, since the value of y is known, accord-
ing to our observation and experimental results, using the knowledge of y,
the number of possible α is 29.99. Accordingly, for those MiF attacks in [8]
that use Step 2 [8, page 23], the computational complexity Tmif can be op-
timized by a factor of 22.01 for Speck32/64. Similarly, for MiF attacks on
Speck64/128, according to our observation and experimental results, the
Tmif can be improved by a factor of 24.24 (from 225.03 to 220.79) (please refer
to “ImprovingDDT/ImprovingClassical/MiFnumAlpha” in [1] for the codes
and results).

4. Furthermore, this kind of conditional differential probability can be used to
improve the key-recovery attack on ciphers whose inputs to its non-linear
operation are not directly masked by round keys. For example, in Gift, two
out of the four bits input to each SBox are not XORed by key bits. In the
key-recovery attack on Gift in [26, Table 11], before guessing any key bits,
using the partially known value and the input differences and looking up the
vDDT of the SBox, one can already filter out many candidate pairs.

E On Efficiency Measure Across Attacks

When discussing distinguishers and key recovery attacks in symmetric-key crypt-
analysis, producing precise point estimates for attack efficiency can be challeng-
ing, especially when estimating the computational complexity of various attacks
using the way of first timing part of the attacks in real-time, then conversing
the time to the equivalent number of primitive evaluations using an assumption
derived from experiments (like both the ND-based attacks and the traditional
attacks in [11,13,25] listed in Table 1):

1. Architecture Differences and Algorithmic Suitability: Algorithms op-
timized for CPUs might not parallelize efficiently on GPUs and vice versa.
Some attacks, like traditional guess-and-determine procedures in [11], are in-
herently sequential. These might not see benefits from GPU parallelism. Con-
versely, neural network-based attacks naturally embrace GPU’s parallelism.
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2. Varied Computational Intensity and Operation Costs Across Plat-
forms: The key guessing phases of ND-based attacks, using BeyesianKey-
Search on Speck32/64 deviate from the traditional counting scheme. Op-
erations within these attacks aren’t uniform in computational demand, mak-
ing the conversion of the cost of various operations to the number of atomic
operations produce unrealistic theoretical estimates. Besides, the cost of op-
erations varies depending on the platform; such variances make it hard to
have a standardized efficiency measure across attacks.

3. Memory Access and Overheads and Various Trade-offs: Data transfer
between main memory and GPU memory can be a limiting factor. Addition-
ally, algorithms, like the advanced key-recovery phase in [11], might allow
for a direct time and memory trade-off, complicating how we measure the
efficiency of an attack that prioritizes one over the other.

4. Implementation Influence: Efficiency can vary based on the program-
ming language, optimization degree, and platform. An attack coded in C++
might be inherently faster than its Python counterpart due to the low-level
optimizations available in C++. For example, we first implemented Alg. 2 in
Python, requiring 16499 seconds to score 219 pairs of Speck32/64 cipher-
texts. We then implemented the same algorithm in C++ and got a significant
speed up: 214 seconds in Python vs. 24.23 seconds in C++.

Given these complexities, it is a good idea to have secondary metrics for
comparison. It’s worth considering:

1. Power Consumption: While GPUs might accelerate a given attack, they
might also consume more power than CPUs. For large-scale cryptographic
attacks that run for extended periods, power consumption becomes a crucial
metric. An attack that’s slightly slower but consumes significantly less power
might be considered more efficient in real-world scenarios.

2. Cost Efficiency: This metric evaluates the cost of the required hardware
against the speedup achieved.

In conclusion, producing precise point estimates for attack efficiency in symmetric-
key cryptanalysis is a complex task, affected by multiple factors ranging from
algorithmic nature to the specific hardware and software implementations used.
It emphasizes the need for standard metrics that can be universally applied, but
developing such a metric is a challenge in itself. We will leave this for future
research.

F on Related-Key Differential-Neural Distinguisher

F.1 The Training of Related-key Differential-Neural Distinguisher

– Data generation. Training and test sets were generated using the Linux ran-
dom number generator to obtain uniformly distributed key pairs (Ki,0, Ki,1)
with the key differential trail (list in Table 12) and plaintext pairs (Pi,0, Pi,1)
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with input difference ∆ = (0000,0000) and a vector of binary-valued la-
bels Yi. Note that we randomly generate a large number of (Ki,0, Ki,1) and
apply the key schedule algorithm to derive the corresponding subkeys. We
then save the key pairs (Ki,0, Ki,1) that satisfy the differential trail of the
key. During the production of training or test sets for r-round Speck32/64,
the plaintext pairs were then encrypted for r rounds if Yi = 1, while other-
wise the second plaintext of the pairs was replaced with a freshly generated
random plaintext and then encrypted for r rounds.

– Training distinguisher using a basic training method. We conducted training
for 20 epochs in the dataset for the train set N = 224, and test set M = 221.
In particular, we generate a new train set every epoch. The batch size pro-
cessed by the dataset is adjusted according to the parameter m to maximize
GPU performance. Optimization was performed against mean square error
loss using the Adam algorithm [17]. A cyclic learning rate schedule was ap-
plied, setting the learning rate li for epoch i to li = α+ (n−i) mod (n+1)

n ·(β−α)
with α = 2× 10−4, β = 3.5× 10−3 and n = 9. The networks obtained at the
end of each epoch were stored, and the best network by validation loss was
evaluated against a test set.

– Training distinguisher using the freezing layer method. We load the r − 1-
round distinguisher and then freeze the network parameters of all layers
except the fully connected layer so that these parameters are not updated
during training. Other settings are the same as the basic training method,
such as the size and generation method of the training set and test set, batch
size, optimization algorithm, learning rate, etc.

F.2 More Insight on Related-Key Differential-Neural Distinguisher

Comparing the NDs in the single-key setting (Table 9) with those in the RK
setting (Table 13), it can be observed that the ND in the RK setting offers more
significant advantages in distinguishing the number of rounds, i.e., they permit
to reach more rounds.

Naturally, we wonder about the underlying reasons that contribute to the
improved results in the RK setting. Below, we provide more explanations of the
insight gained from RK-NDs on Speck.

Computing the pure DDT-based distinguishers in the RK setting. We compute
the pure DDT-based distinguishers in theRK setting for Speck32/64, providing
baselines for RK-NDs. To accomplish this, we make essential modifications to
Gohr’s Speck32/64 implementation framework of DDs [15]. Specifically, we add
an XOR operation between the r-round output difference and the related-key
difference, to obtain the probability of the final output difference in the RK
setting.

– Under the ID1 setting. The input difference (0000,0000) of the plaintext
pairs transitions deterministically to the low-weight difference (0040,0040)
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with RK difference (∆k0 = 0000, ∆k1 = 0000, ∆k2 = 0040) after 3 rounds.
Thus, starting from the input difference (0040,0040), we calculate the full
predicted induced output distribution of Speck32/64 for up to 6 rounds
withRK difference (∆k3 = 0000, ∆k4 = 0000, ∆k5 = 8000, ∆k6 = 8000, ∆k7 =
8002, ∆k8 = 8108) (6 + 3 = 9 rounds RK-DDs in all).

– Under the ID2/ID3 setting. The input difference (0000,0000) transitions de-
terministically to the low-weight difference (8000,8000) with RK difference
(∆k0 = 0000, ∆k1 = 0000, ∆k2 = 0000, ∆k3 = 8000) after 4 rounds. Thus,
starting from the input difference (8000,8000), we calculate the full pre-
dicted induced output distribution of Speck32/64 for up to 6 rounds with
RK difference (∆k4 = 8002, ∆k5 = 8008, ∆k6 = 812a, ∆k7 = 8480, ∆k8 =
9382/9082, ∆k9 = cf8a/c28a) (6 + 4 = 10 rounds RK-DDs in all).

RK-NDs can efficiently capture additional features. The accuracy of the dis-
tinguishers RK-DDs obtained by using the above procedure is summarized in
Table 22. It can be seen that the accuracy of RK-NDs is higher than that of
RK-DDs. For example, under the ID1 setting, DDT distinguishers of 8-, and
9-round have an accuracy of 0.7226 and 0.5475, respectively; in contrast, NDs
for ID1 have an accuracy of 0.7584 and 0.5620, respectively. It is shown that
NDs can also efficiently capture additional features under the RK setting.

Improving the DDT-based distinguisher under the RK setting. The analysis
methods and conclusions in Sect. 3 are applicable under the RK setting. Ac-
tually, given a pair of r-round ciphertexts ((CL, CR), (C ′

L, C ′
R)) under the RK

setting (RK difference ∆k0, ∆k1, . . . , ∆kr−1), not only the output difference of
the final round’s nonlinear layer is known, but also half of the state values are
known. Specifically, one can compute the following information around the last
⊞ from ((CL, CR), (C ′

L, C ′
R)) and ∆kr−1:

1. γ ← CL ⊕ C ′
L ⊕∆kr−1,

2. β ← (CL ⊕ CR ⊕ C ′
L ⊕ C ′

R)≫2,
3. α← ((δr−2

R )≪2 ⊕ β)≫7,
4. y ← (CL ⊕ CR)≫2.

Thus, building upon r-round distinguishersRK-DDs, similar to the methodol-
ogy illustrated in Alg. 1 for constructing YDSpeckrR , we can effectively construct
r-round YDSpeckrR under the RK setting (referred to as RK-YDSpeckrR). Specif-
ically, we first compute the bias (towards 0) of each bit of (δr−2

R )≪2 (Table 21
lists the values in the RK setting of ID1, ID2, and ID3). Subsequently, we pre-
dict the value of each bit of (δr−2

R )≪2 based on its bias (assuming it to be 0
if its bias ≥ 0 and 1 if its bias < 0). We further denote the absolute bias of
the i-bit of ((δr−2

R )≪2)≫7 by ϵα(i). For each output pair ((CL, CR), (C ′
L, C ′

R))
of r-round Speck32/64 under the RK setting, we utilize Alg. 1 to predict its
classification, where γ = CL ⊕ C ′

L ⊕∆kr−1 (distinct from γ = CL ⊕ C ′
L in the

single-key setting).
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Table 21: Bit bias towards ‘0’ of (δr−2
R )≪2 for ID1, ID2, and ID3, where 8 ≤ r ≤ 9.

A positive (resp. negative) value indicates a bias towards ‘0’ (resp. ‘1’).
Diff. Position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID1 (δ6
R)≪2 0.2344 -0.0560 -0.0002 0.0467 0.0227 0.0612 0.0000 -0.3378 0.2555 0.1538 -0.0470 0.0154 -0.1232 0.0021 0.3951 0.3313

ID1 (δ7
R)≪2 0.0004 -0.0074 0.0009 -0.0152 -0.0000 -0.0231 -0.0001 -0.1037 -0.0075 0.0000 -0.0068 0.0001 0.0562 0.0000 0.1750 -0.0170

ID2/ID3 (δ6
R)≪2 0.3048 0.1721 -0.0003 0.1249 0.0011 -0.4688 0.4454 0.4062 0.3442 0.2502 -0.1250 0.0007 -0.4923 0.4844 -0.4434 0.3946

ID2/ID3 (δ7
R)≪2 -0.0006 -0.0180 0.0003 0.0572 0.0020 -0.3363 0.2532 0.1466 0.0241 -0.0005 0.0327 0.0007 0.4287 0.3734 0.2296 0.1131

Moreover, based on (r − 1)-round distinguishers RK-DDs, similar to Alg. 2
used to construct ADSpeckrR

YD , we can construct r-round ADSpeckrR

YD under the
RK setting (referred to as RK-ADSpeckrR

YD ).

Results of improving the DDT-based distinguisher under the RK setting. The ac-
curacy of the distinguishers RK-YDSpeckrR and RK-ADSpeckrR

YD obtained by us-
ing the previous procedure is summarized in Table 22. For ID1, the performance
of RK-YDSpeck8R demonstrates an improvement. But the limited progress in en-
hancingRK-YDSpeck9R is due to the fact that (δ7

R)≪2 no longer exhibits obvious
bias with multiple bits. For ID2 and ID3, the performance of RK-YDSpeck8R and
RK-YDSpeck9R is generally improved. Similarly, the constrained progress in en-
hancing RK-YDSpeck10R can be attributed to the absence of notable multi-digit
bias in (δ8

R)≪2. Furthermore, the obtained r-round distinguishersRK-ADSpeckrR

YD
exhibit comparable, or even superior, performance compared to pure neural dis-
tinguishers that rely solely on ciphertext values as inputs. This indicates that
neural distinguishers under the RK setting with ciphertext values as inputs not
only utilize differential distributions but also exploit value-based conditional dif-
ferential distributions.

Remark 5. It can be seen that the number of rounds of RK-DD and RK-ND
is longer than that of the current best DD and ND, respectively. We believe
that the main reason is that the utilization of the RK difference can control the
number of active bits and make them be injected into the nonlinear operation as
slowly as possible, thus extending the number of rounds of the differential. For
example, under the ID2/ID3 setting, when the input difference of the plaintext
pairs is chosen as (0000,0000), the introduction of active bits does not begin
until the end of round 4.
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Table 22: Accuracy of the RK-DDs on Speck32/64 and comparisons with RK-NDs,
RK-YDSpeckrR , and RK-ADSpeckrR

YD

Diff. #R Name Accuracy True Positive Rate True Negative Rate

ID1 8 RK-DDSpeck8R 0.7226 0.6447 0.8005
ID1 8 RK-YDSpeck8R 0.7333 0.6838 0.7828
ID1 8 RK-NDSpeck8R 0.7584 0.6836 0.8332

ID1 8 RK-ADSpeck8R
YD 0.7642 0.6946 0.8340

ID1 9 RK-DDSpeck9R 0.5475 0.5221 0.5728
ID1 9 RK-NDSpeck9R 0.5620 0.5212 0.6028

ID1 9 RK-ADSpeck9R
YD 0.5745 0.5306 0.6187

ID2/ID3 8 RK-DDSpeck8R 0.8989 0.8714 0.9264
ID2/ID3 8 RK-YDSpeck8R 0.9118 0.8886 0.9350
ID2/ID3 8 RK-NDSpeck8R 0.9259 0.9063 0.9455

ID2/ID3 8 RK-ADSpeck8R
YD 0.9315 0.9159 0.9470

ID2 9 RK-DDSpeck9R 0.7128 0.6644 0.7612
ID2 9 RK-YDSpeck9R 0.7190 0.6845 0.7534
ID2 9 RK-NDSpeck9R 0.7535 0.7035 0.8036

ID2 9 RK-ADSpeck9R
YD 0.7574 0.7114 0.8035

ID2 10 RK-DDSpeck10R 0.5484 0.5387 0.5581
ID2 10 RK-NDSpeck10R 0.5643 0.5382 0.5893

ID2 10 RK-ADSpeck10R
YD 0.5706 0.5359 0.6053

ID3 9 RK-DDSpeck9R 0.7128 0.6644 0.7612
ID3 9 RK-YDSpeck9R 0.7185 0.6843 0.7527
ID3 9 RK-NDSpeck9R 0.7726 0.7247 0.8206

ID3 9 RK-ADSpeck9R
YD 0.7574 0.7113 0.8035

ID3 10 RK-DDSpeck10R 0.5484 0.5343 0.5624
ID3 10 RK-NDSpeck10R 0.5562 0.5361 0.5765

ID3 10 RK-ADSpeck10R
YD 0.5713 0.5357 0.6069

The thresholds τ for σα(i) in constructing RK-YDSpeck8R for ID1, ID2, and ID3 are
0.1, 0.3, and 0.3, respectively. Similarly, the threshold τ for σα(i) in constructing
RK-YDSpeck9R for either ID2 or ID3 is set to 0.1.
The number of samples for the accuracy testing of RK-YDSpeckrR and
RK-ADSpeckrR

YD are 219.
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