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Abstract. Multi-party private set union (MPSU) allows k(k ≥ 3) par-
ties, each holding a dataset of known size, to compute the union of their
sets without revealing any additional information. Although two-party
PSU has made rapid progress in recent years, applying its effective tech-
niques to the multi-party setting would render information leakage and
thus cannot be directly extended. Existing MPSU protocols heavily rely
on computationally expensive public-key operations or generic secure
multi-party computation techniques, which are not scalable.
In this work, we present a new efficient framework of MPSU from multi-
party secret-shared shuffle and a newly introduced protocol called multi-
query secret-shared private membership test (mq-ssPMT). Our MPSU
is mainly based on symmetric-key operations and is secure against any
semi-honest adversary that does not corrupt the leader and clients simul-
taneously. We also propose new frameworks for computing other multi-
party private set operations (MPSO), such as the intersection, and the
cardinality of the union and the intersection, meeting the same security
requirements.
We demonstrate the scalability of our MPSU protocol with an implemen-
tation and a comparison with the state-of-the-art MPSU. Experiments
show that when computing on datasets of 210 elements, our protocol
is 109× faster than the state-of-the-art MPSU, and the improvement
becomes more significant as the set size increases. To the best of our
knowledge, ours is the first protocol that reports on large-size experi-
ments. For 7 parties with datasets of 220 elements each, our protocol
requires only 46 seconds.

Keywords: Multi-query secret-shared private membership test · Pri-
vate set union · Multi-party secret-shared shuffle.

1 Introduction

Private set union (PSU) allows a group of mutually untrusted parties to compute
the union of their sets without revealing any additional information. PSU has
various applications, including cyber risk assessment and management [26, 34],
privacy-preserving data aggregation [6, 8], and computing private DB full join
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[33]. For example, to assess system risks and deploy corresponding defenses,
security practitioners usually want to obtain a joint list of their IP blacklists.
However, they are increasingly concerned with the privacy of sensitive data,
which may experience disclosure without appropriate computation techniques.
One crucial way this can be enhanced is PSU, which can be used to protect the
privacy of each organization while computing the union correctly.

In addition, the combination of PSU with other set operations is also greatly
in use. For instance, a social service organization needs to determine the cancer
patients who are entitled to social welfare, and they would require the patient
data from several hospitals to obtain the set of all cancer patients, and then
identify those who are eligible for social welfare [30,33]. Using PSU, the organi-
zation can securely compute the union of all cancer patients from the hospitals
without revealing any raw data to other parties. Subsequently, the organization
can obtain the final result while preserving privacy by performing a private set
intersection (PSI) calculation between the obtained set and those eligible for
social welfare.

PSI and PSU can be classified into two-party and multi-party settings based
on the number of participants. Over the last decade, two-party PSI has received
considerable research attention [2,7,11,13,14,17,19,22,29,31,38–41,43,44]. The
most efficient two-party PSI protocol to date [43] achieves performance compara-
ble to the insecure naive hashing PSI. Multi-party PSI (MPSI) has also benefited
from the research on two-party PSI, leading to the development of many efficient
constructions [4,9,32,36] suitable for large sets with millions of elements. As for
PSU, Kisser and Song initially studied the two-party PSU [30]. Although some
subsequent works [5,16,20,25] have been proposed, their constructions rely heav-
ily on additively homomorphic encryption (AHE) or complex circuits, resulting
in low efficiency. In 2019, Kolesnikov et al. [33] proposed the first two-party PSU
protocol suitable for large sets. Their construction is mainly based on symmetric-
key operations combined with oblivious transfer (OT), achieving a three-orders-
of-magnitude improvement in speed compared to [16]. In the following years,
Garimella et al. [21] and Jia et al. [28] further reduced the communication and
computation overhead using oblivious switching. Very recently, [12,24,49] realize
linear computation and communication complexity and are more efficient.

1.1 Motivation

Despite growing interest in PSU, there has been no scalable multi-party PSU
(MPSU) protocol. Most of the previous protocols [20,23,27,30,47] are not feasi-
ble on large datasets, due to non-constant AHE operations that are proportional
to the size of the sets. [46] constructed a constant-round protocol from reversed
Laurent Series and secret sharing but has a high computational and communi-
cation complexity. The protocol proposed in [5] sorts and merges the sets of the
participants using general MPC techniques, but it suffers from the significant
overhead caused by complex circuits. [48] requires public-key operations propor-
tional to the input domain size of the sets. Although they have optimized the
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protocol using a divide-and-conquer approach, the number of public-key opera-
tions still grows linearly with the size of the set and the number of participants.
Currently, most work on MPSU is still in the theoretical stage. Only [5,48] have
implemented and tested their protocols, but their performance is unsatisfactory.
These above-mentioned drawbacks limit the applications of MSPU. Therefore,
it is sensible to pose the problem:

Can we construct a truly scalable MPSU protocol?

1.2 Contribution

In this paper, we answer this problem affirmatively in the semi-honest setting.
In detail, our contributions can be summarized as follows:

1. We analyze the differences between MPSU and MPSI, then discuss the per-
formance gap between them, and point out the difficulties in extending two-
party PSU protocols to multi-party settings (cf. Sect. 2.1).

2. We propose a new protocol called multi-query secret-shared private set mem-
bership test (mq-ssPMT) to cater for the multi-party setting, and provide an
efficient construction of mq-ssPMT based on the multi-query reverse private
set membership test (mq-RPMT) proposed in [49]. mq-ssPMT can easily re-
alize mq-RPMT and can be directly used for computing two-party PSI and
PSU. Specifically, when constructing a two-party PSU protocol, our mq-
ssPMT reduces one round of communication and n bits of communication
cost, where n is the size of the set, compared to mq-RPMT in [49] while
keeping the same computation cost.

3. We present new frameworks for computing multi-party private set operations
(MPSO) based on mq-ssPMT and multi-party secret-shared shuffle. Useful
functions include:

- Computing the union, i.e., MPSU
- Computing only the cardinality of the union
- Computing the intersection, i.e., MPSI
- Computing only the cardinality of the intersection

Furthermore, we prove that our frameworks are secure against any semi-
honest adversary that does not corrupt the leader and clients simultaneously.

4. We demonstrate the scalability of our MPSU protocol with an implementa-
tion. As a result, our MPSU protocol is 109× faster in terms of running time
on sets of 210 elements than the state-of-the-art MPSU protocol. Moreover,
for 7 parties each holding a million-element dataset, our MPSU protocol re-
quires only 4 minutes on WAN and 46s on a LAN. Our implementation is
released on Github: https://github.com/lx-1234/MPSU.

1.3 Related Work

We review previous MPSU protocols in the semi-honest setting and provide a
theoretical comparison among them.

https://github.com/lx-1234/MPSU
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AHE-based MPSU. Kisser and Song [30] proposed the first MPSU protocol
based on polynomial representations and threshold AHE. The core idea is that
each participant Pi represent his set Xi as a polynomial fi whose roots are the
set elements, so the polynomial

∏k
i=1 fi represents the union

∪k
i=1 Xi. Their

protocol requires a large number of AHE operations and high-degree polynomial
calculations, which results in inefficiency.

Frikken [20] also uses polynomial representation and threshold AHE. Each
Pi represents his set Xi as a polynomial fi. P1 first encrypts f1 using AHE, and
sends to P2. P2 computes (x · Enc(f1),Enc(f1)) for each x ∈ X2. Note that if
x /∈ X1, then f1(x) ̸= 0, and all participants can jointly decrypt the ciphertext
and recover x by computing the inverse. Otherwise, both ciphertexts decrypt
to 0. Therefore, they can compute the difference set X2 \ X1. Similarly, they
compute X2 \X1, · · · , Xk \ (X1 ∪ · · · ∪Xk−1) separately, which can be merged
to get the union. Although the polynomial degree in [20] is lower than [30], the
complexity is still of quadratic order in the size of the set due to the need to
perform multi-point evaluations on the encrypted polynomials.

Gong et al. [23] proposed a constant-round MPSU protocol based on thresh-
old AHE and Bloom filters (BF). They observed that if a BF has no collisions,
then for each element stored in it, at least one of the positions is mapped only by
itself. Exploiting this property, they first construct a BF storing the union and
then check whether each position in the BF was mapped only by one element. If
so, they could figure out that element. Since the length of the BF is related to the
statistical security parameter and the union size, their protocol requires a large
amount of AHE operations. So the computational overhead is unacceptable.

All these three works use a threshold AHE and when the threshold is set to
k, they can resist arbitrary collusion.

Other MPSU. Seo et al. [46] proposed a constant-round MPSU protocol based
on secret sharing and reversed Laurent series. Their core idea is that if two sets
X and Y are represented by polynomials fX and fY respectively, then the union
X∪Y can be represented by the least common multiple of fX and fY , denoted as
lcm(fX , fY ). Note that 1

fX
+ 1

fY
= q(x)

lcm(fX ,fY ) , so it suffices to calculate 1
fX

+ 1
fY

.
Although this protocol achieves constant-round communication, the operations
on high-degree polynomials result in high computational and communication
complexity. Additionally, their protocol relies on the honest majority assumption.

Blanton et al. [5] proposed a more efficient MPSU protocol based on oblivious
sorting and generic MPC techniques in the honest majority setting. At a high
level, they first merge all sets into a large set, then sort it, and remove duplicate
elements by comparing adjacent elements to obtain the union. They focused on
constructing corresponding circuits and implemented them using generic MPC
techniques. Their experimental results show that in the three-party for 32-bit
sized elements, computing the union of 210 elements set takes 11.8 seconds.

Vos et al. [48] convert sets to bit-sets, i.e., a vector of bits is assigned to
each dataset Xi in which the ith element of this bit-vector (bit-set) is equal to
1 if the ith element of an ordered universe U of elements belongs to Xi, and 0
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otherwise. They obtain the union by performing a secure OR on the bit-sets.
Their secure OR is based on totally public-key operation, and the number of
secure OR is linearly related to the size of U , which makes the protocol unsuitable
for a large U such as |U| = 232. To address this issue, they use a divide-and-
conquer approach where each participant divides their bit-set into D parts and
uses secure OR to check if each part contains any elements. If so, the part is
further divided; otherwise, it is discarded. Nevertheless, each participant in the
optimized protocol still needs to perform O(kn log |U|) public-key operations,
which makes it non-scalable for large sets or a large U .

Other related work contains an MPSU protocol with an untrusted third
party’s help [47] and an MPSU protocol focus on multiset setting [27], which
both rely heavily on AHE and are out of the scope of our consideration.

Table1 summarizes and compares the theoretical complexity and the ability
to resist collusion of existing MPSU protocols and our protocol. Leader refers to
the participant who obtains the union result or starts the computation. Client
refers to the remaining participants. [5,20,46] can achieve malicious security, but
we only compare with their semi-honest protocols here.

It should be noted that [23, 30, 48] will reveal the union to all participants
unavoidably, while in our protocol only the leader gets the result. Moreover, our
protocol can be extended to that case in the semi-honest setting, i.e., the leader
just broadcasts the output once he receives it. So we could say we achieve a
stronger MPSU function in the semi-honest setting.

Table 1. Asymptotic communication (bits) and computation costs of MPSU protocols
in the semi-honest setting. Pub: public-key operations; sym: symmetric-key operations.
n is the size of input set. k is the number of participants. N is the size of union. U is
the universe of input elements. σ is the bit length of input elements. t is the number
of AND gates in the SKE decryption circuit. λ is statistical security parameter. κ is
computational security parameter. Generally, λ = 40. In our protocol, κ = 128 while in
other works κ is the public key length. We ignore the offline phase cost in our protocol.
* means that in our protocol the adversary does not corrupt the leader and clients
simultaneously.

Protocol
Comm. Comp.(#Ops sym/pub)

Corruption
Leader Client Rounds Leader Client

[30] O(κk3n2) O(k) O(k2n3) pub < k

[20] O(κkn) O(k) O(kn2) pub < k

[46] O(σk3n2) O(1) O(k4n2) sym < ⌊(k + 1)/2⌋
[5] O(σ(σkn log n+ k2)) O(log k) O(σkn log n+ k2) sym < ⌊(k + 1)/2⌋
[23] O(κλkN) O(κλN) O(1) O(λkN) pub O(λN) pub < k

[48] O(κk2n log |U|) O(κkn log |U|) O(log |U|) O(k2n log |U|) pub O(kn log |U|) pub < k

Ours O((t+ κ+ (σ + λ+ log (kn))k)kn) O((t+ λ+ κ)kn) O(log (σ − log n) + k) O(tkn) sym < k∗
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2 Overview of Our Techniques

In this section, we provide a high-level technical overview of our MPSU protocol.
We first analyze the difficulties in constructing MPSU protocols and then show
how to address these issues using our new techniques. The ideal functionality of
MPSU is given in Fig.1.

Parameters: k parties: P1, · · · ,Pk; Set size n; The bit length of set elements σ.
Functionality:

– Wait for input Xi = {x1
i , · · · , xn

i } ⊂ F2σ from Pi.

– Give output
k∪

i=1

Xi to P1.

Fig. 1. Multi-party Private Set Union Functionality Fmpsu

2.1 Difficulties in MPSU

The Difference Between MPSU and MPSI. Like MPSI, the security of
MPSU requires that the receiver cannot obtain any information except for the
union. However, unlike MPSI, the intersection must be a subset of the receiver’s
set, so we only need to consider the elements in the receiver’s set. On the other
hand, the union output by MPSU contains all the sets of the participants, so the
protocol must involve the transmission of elements from all the participants’ sets.
And it is necessary to prevent an adversary from distinguishing which participant
an element belongs to. Moreover, if different participants have the same element,
the duplicates must be removed during the protocol execution to ensure that each
element appears only once in the union; otherwise, the adversary will know how
many participants have that element. Therefore, the MPSU protocol is more
complex in its design than MPSI and has some efficiency gaps.

Difficulties in Extending from Two-party PSU. In two-party PSI, there
is a function called private set membership test (PMT). In the PMT, the sender
inputs a set X, and the receiver inputs an element y. The receiver can determine
whether y belongs to X, while the sender cannot obtain any information.

However, PMT cannot be applied to two-party PSU. To compute the union,
[33] proposed reverse PMT (RPMT), in which the sender inputs an element x,
and the receiver inputs a set Y , then the receiver determines whether x ∈ Y .
They combine RPMT and oblivious transfer (OT) to construct a PSU protocol.
For each element x ∈ X, the sender and the receiver run the OT protocol with
input (x,⊥) and the boolean value of the expression x ∈ Y (i.e., 1 if x ∈ Y
otherwise 0), respectively, where ⊥ is a special symbol. Note that the receiver
can obtain x if and only if x /∈ Y , so the receiver can obtain X \ Y , and finally
output (X \ Y ) ∪ Y = X ∪ Y . Fig.2 illustrates this idea.
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x = a, Y = {b, c} x = b, Y = {b, c}

a Y b Y

0 1

RPMT RPMT

(a,⊥) (b,⊥)

a ⊥

OT OT

Fig. 2. Illustration of how to use RPMT and OT to perform PSU. The sender’s set
is {a, b} and the receivers set is {b, c}. The left-hand side illustrates that the sender
computes for his element a, which does not belong to Y . The right-hand side shows
that the sender computes for his element b ∈ Y that belongs to Y .

The core of the existing efficient two-party PSU protocols [12,21,24,28,33,49]
is the efficient construction of RPMT. However, if we want to extend this idea
to compute X1 ∪X2 ∪ · · · ∪Xk, which can be split into X1 ∪ (X2 \X1) ∪ · · · ∪
(Xk \ (X1 ∪ · · · ∪Xk−1)), two problems arise:

1. Since the receiver in RPMT knows whether the sender’s element belongs to
the receiver’s set, RPMT leaks the size of the cardinality of the difference
set |X \ Y | to the receiver, which is not allowed in the multi-party setting.

2. RPMT can only compute the difference between two sets but do not work in
the multi-party setting, i.e., computing Xk \ (X1 ∪ · · · ∪Xk−1) where k ≥ 3.

Therefore, it is difficult to directly apply the techniques (RPMT) of two-party
PSU to the multi-party setting. The construction of efficient MPSU protocols
requires stronger functions.

2.2 Multi-Query Secret-Shared Private Membership Test

Based on the analysis in the previous section, the root cause of the first problem
is that, in RPMT, the result is directly output to the receiver, which leads to
information leakage. If we output the result of RPMT in the form of secret
sharing, with each party holding a share of the output, then neither party can
obtain any information. This function is called secret-shared RPMT. In this case,
the roles of the two parties are completely symmetric, so secret-shared RPMT
and secret-shared PMT (ssPMT) is the same function. We will use ssPMT to
refer to this function in the following text.

As early as 2018, Ciampi et al. [14] combined PSI with secure two-party com-
putation (2PC) to construct ssPMT. In 2021, Zhao et al. [50] formally defined
ssPMT and built it based on the secure comparison protocol in [15]. However,
their constructions have high communication overhead. Moreover, since only one
element of the sender can be tested each time, multiple repetitions of ssPMT
are needed to query all elements, which results in significant overhead.
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In this work, we propose multi-query ssPMT (mq-ssPMT), which supports
querying multiple elements of the sender simultaneously, thereby reducing the
average cost per element. The ideal functionality of mq-ssPMT Fmq-sspmt is
given in Fig.3. mq-ssPMT can implement PMT(RPMT) simply by having the
sender (receiver) send its share to the receiver (sender) to recover the result.
Therefore, mq-ssPMT realizes a stronger function compared to PMT and RPMT.
On the other hand, mq-ssPMT can also be used to construct two-party PSI or
PSU protocols. For a PSI protocol, we only need to implement PMT. For a PSU
protocol, we do not need to implement RPMT and then calculate the difference
set using OT. We can directly construct a special input of OT: suppose the
sender S and the receiver R of mq-ssPMT each holds e0, e1 ∈ {0, 1}, where
e0 ⊕ e1 is the boolean value of the expression y ∈ X. As the receiver of OT, S
inputs the selection bit e0, and as the sender of OT, R inputs a pair of messages
me1 = y and me1⊕1 =⊥. Then, S can obtain the element y if and only if e0 = e1,
that is, y /∈ X, thus completing the computation of the union. Fig.4 illustrates
the main idea behind this.

Parameters: Sender S, Receiver R; Set size n; The bit length of set elements σ.
Functionality:

– Wait an input Y = {y1, · · · , yn} ⊂ F2σ from R.
– Wait an input X = {x1, · · · , xn} ⊂ F2σ from S.
– For i ∈ [n]: Set bi = 1 if yi ∈ X, otherwise set bi = 0. Sample e0 ← {0, 1}n

and compute e1 = e0 ⊕ b. Give e0 to S and give e1 to R.

Fig. 3. Multi-Query Secret-Shared Private Membership Test Functionality Fmq-sspmt

x = a, Y = {b, c} x = b, Y = {b, c}

a Y b Y

1 1 1 0

mq-ssPMT mq-ssPMT

(⊥, a) (⊥, b)

a ⊥

OT OT

Fig. 4. Illustration of how to use mq-ssPMT and OT to perform PSU. The sender’s
set is {a, b} and the receivers set is {b, c}. The left-hand side illustrates that the sender
computes for his element a, which does not belong to Y . The right-hand side shows
that the sender computes for his element b ∈ Y that belongs to Y . We remark that the
sender can query a, b simultaneously, and we separate a and b only for illustration.
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2.3 MPSU Based on mq-ssPMT

We have now solved the first problem discussed in Sect. 2.1 using the new func-
tion mq-ssPMT. How can we solve the second problem, namely, how to compute
Xk \ (X1 ∪ · · · ∪ Xk−1)? Note that in MPSU, the adversary is not allowed to
know any intermediate results Xi \ (X1 ∪ · · · ∪Xi−1)(2 ≤ i ≤ k), so we cannot
directly compute and output them. They must exist in some form of ciphertexts
or secret sharings.

Let’s consider a simplified setting where three parties P1,P2,P3 want to
compute X3 \ (X1 ∪X2). In Sect. 2.2, we showed how to compute the difference
set between two parties directly using mq-ssPMT. If we split X3 \ (X1 ∪ X2)
into (X3 \X1) ∩ (X3 \X2), and send not the element itself but the share of the
element in the OT phase, then P1,P2,P3 can recover the element x if and only
if x ∈ X3 \X1∧x ∈ X3 \X2, i.e., x ∈ X3 \ (X1∪X2). Specifically, P3 acts as the
receiver and executes the mq-ssPMT separately with P1 and P2. For any x ∈ X3,
P3 and P1 each hold secret shares e131, e

0
31 ∈ {0, 1}, indicating whether x ∈ X1,

and P3 and P2 each hold secret shares e132, e
0
32 ∈ {0, 1}, indicating whether

x ∈ X2. P3 uses additive secret sharing to split x into x = x1 ⊕ x2 ⊕ x3, and
then acts as the sender to execute the OT protocol separately with P1 and P2.
Taking the OT with P1 as an example, P3 inputs me131

= x1 and me131⊕1 = r1,
where r1 is a random value, and P1 inputs e031. P1 can obtain the share x1 if
and only if x /∈ X1. Similarly, P2 can obtain the share x2 if and only if x /∈ X2.
Therefore, only when x /∈ (X1 ∪X2), that is, x ∈ X3 \ (X1 ∪X2), can P1,P2,P3

recover x, otherwise they can only get a random value.
In the same way, we can compute all Xi \ (X1 ∪ · · · ∪Xi−1)(2 ≤ i ≤ k). Since

any party always holds a share of his own set, any number of other participants
can not collude to obtain his input information. However, if we want to merge
all difference sets and output the union to P1, there are two remaining problems:

1. P1 knows the correspondence between the shares and the difference sets, so
the shares cannot be directly sent to P1 for recovery.

2. Since P1 has no knowledge of the elements in the other parties’ sets, and
these elements do not necessarily have a specific structure. So P1 cannot
distinguish between set elements and random values, i.e., P1 don’t know
which element he should add to the union.

To solve the first problem, we use a multi-party secret-shared shuffle (cf. Sect.
3.4) to randomly permute and re-share all the shares held by the parties. Since
any k − 1 parties don’t know the information about the permutation and all
shares are refreshed, the adversary can not find the correspondence between the
difference sets and the shares. To solve the second problem, all parties append
the hash value of the element to the end of it when performing secret sharing,
i.e., sharing x∥H(x). When the output length of the hash function H is long
enough, the probability that there exists an s satisfying r = s∥H(s) is negli-
gible. Therefore, P1 can distinguish the set elements from random values with
overwhelming probability.
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Note that both mq-ssPMT and multi-party secret-shared shuffle have an
efficient online phase, so our MPSU protocol is also efficient in the online phase.

3 Preliminaries

3.1 Notation

We use Pi to denote participants, Xi to represent the sets they hold, where each
set has n σ-bit elements. k denotes the number of participants. We use λ, κ as
the statistical and computational security parameters, respectively. [n] denotes
the set 1, 2, · · · , n. F2σ denotes the finite field composed of all σ-bit strings.
We use x∥y to denote the concatenation of two strings. We denote vectors with
bold fonts and individual elements with indices. For example, a is a vector
of n elements where each individual element is denoted as ai. a ⊕ b represents
(a1⊕b1, · · · , an⊕bn). π(a) represents (aπ(1), · · · , aπ(n)), where π is a permutation
on n items. We use := to denote assignment. For some set S, the notation s← S
means that s is assigned a uniformly random element from S. By negl(λ) we
denote a negligible function, i.e., a function f such that f(λ) < 1

p(λ) holds for
any polynomial p(·) and sufficient large λ. We use the abbreviation PPT to
denote probabilistic polynomial-time.

3.2 Symmetric-key Encryption

Our construction of mq-ssPMT is based on the mq-RPMT in [49], which uses
symmetric-key encryption (SKE). We use the standard definition of SKE. To
ensure the security of our mq-ssPMT, we require a security notion called multi-
message multi-ciphertext pseudorandomness like the mq-RPMT in [49]. We give
these definitions in Appendix A.

3.3 Oblivious Transfer

OT [42] is a foundational primitive in MPC, the functionality of 1-out-of-2 ran-
dom OT (ROT) is given in Fig.5.

Parameters: Sender S, Receiver R; The bit length of message σ.
Functionality:

– Wait an input b ∈ {0, 1} from R.
– Sample m0,m1 ← F2σ . Give (m0,m1) to S and give mb to R.

Fig. 5. 1-out-of-2 Random OT Functionality Frot
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3.4 Multi-party Secret-Shared Shuffle

Multi-party secret-shared shuffle can permute the share vectors of all parties
randomly and refresh all shares, and the functionality is given in Fig.6. Early
works [10, 35] focused on the construction for the two-party setting, and later,
Eskandarian et al. [18] extended the protocol of [10] to the multi-party setting.
Their protocol consists of an offline phase and an online phase. In the offline
phase, each party generates a random permutation and a set of correlated vectors
called share correlation. In the online phase, each party permutes and refreshes
the share vectors efficiently using share correlation. We give the functionality of
share correlation and details of their protocol in Appendix B.

Parameters: k parties: P1, · · · ,Pk; The dimension of vector n; The bit length
of individual element σ.
Functionality:

– Wait an input xi = (x1
i , · · · , xn

i ) ∈ Fn
2σ from each Pi(1 ≤ i ≤ k).

– Sample a random permutation π : [n]→ [n]. For 1 ≤ i ≤ k, sample x′
i ← Fn

2σ

satisfying
k⊕

i=1

x′
i = π

( k⊕
i=1

xi

)
and give x′

i to Pi.

Fig. 6. Multi-party Secret-Shared Shuffle Functionality Fms

3.5 Oblivious Key-Value Stores

A key-value store [22, 38] is a data structure that stores a map from keys to
corresponding values. The definition is as follows:

Definition 1. A key-value store (KVS) is parameterized by a set K of keys, a
set V of values, and a random value r ∈ {0, 1}κ, and consists of two algorithms:

– Encode({(k1, v1), · · · , (kn, vn)}, r): takes as input a set of {(ki, vi)}i∈[n] ⊆
K × V and outputs an object D (or, with statistically small probability, an
error indicator ⊥).

– Decode: takes as input an object S, a key k, and outputs a value v.

Correctness. For all A ⊆ K × V with distinct keys:

(k, v) ∈ A and ⊥̸= D ← Encode(A, r)⇒ Decode(D, k, r) = v
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Obliviousness. For all distinct {k01, · · · , k0n} and all distince {k11, · · · , k1n}, if
Encode does not output ⊥ for {k01, · · · , k0n} or {k11, · · · , k1n}, then the output
{D|vi ← V , i ∈ [n],Encode({(k01, v1), · · · , (k0n, vn)}, r)} is computationally indis-
tinguishable to {D|vi ← V , i ∈ [n],Encode({(k11, v1), · · · , (k1n, vn)}, r)}.

A KVS is an oblivious KVS (OKVS) if it satisfies the obliviousness property.
In addition to the obliviousness, [49] also proposed the randomness property to
prove the security of their mq-RPMT protocol. Our mq-ssPMT protocol simi-
larly requires this property.

Randomness. For any A = {(k1, v1), · · · , (kn, vn)} and k∗ /∈ {k1, · · · , kn}, the
output of Decode(D, k∗, r) is statistically indistinguishable to that of uniform
distribution over V, where D ← Encode(A, r).

Garbled cuckoo table (GCT) is the most efficient construction of KVS, in-
cluing 2H-GCT in [38] and 3H-GCT in [22]. And 3H-GCT satisfies both oblivi-
ousness and randomness si. Recently, Raghuraman et al. conducted a thorough
theoretical and experimental analysis of the Encode algorithm in GCT, and pre-
sented the most efficient Encode algorithm to date within the commonly used
parameters range. Due to space limitation, the formal description of their algo-
rithm is given in deffer to Appendix C.

3.6 Security Model

In this work, we consider only the semi-honest model, where adversaries strictly
follow the protocol specification but try to learn more than allowed by inspect-
ing the protocol transcript. Furthermore, since our protocol involves multiple
parties, we also consider collusion, which means an adversary can corrupt mul-
tiple parties and combine their views to infer more information. We adopt the
standard definition of semi-honest security as defined in [37].
Definition 2. Let f : ({0, 1}∗)k → ({0, 1}∗)k be an k-ary functionality, where
fi(x1, · · · , xk) denotes the ith element of f(x1, · · · , xk). For I = {i1, · · · , it} ⊆
[k], let fI(x1, · · · , xk) denote the subsequence fi1(x1, · · · , xk), · · · , fit(x1, · · · , xk).
Let Π be a k-party protocol for computing f . The view of the ith party Π dur-
ing an execution of Π on x̄ = (x1, · · · , xk) is denoted by VIEWΠ

i (x̄). For any
I = {i1, · · · , it}, we let VIEWΠ

I (x̄)
def
= (I,VIEWΠ

i1 (x̄), · · · ,VIEWΠ
it (x̄)). We say

Π privately computes f against semi-honest adversaries if there exists a PPT
algorithm, denoted Sim, such that for every I ⊆ [k], it holds that

{Sim(I, (xi1 , · · · , xit), fI(x̄))}x̄∈({0,1}∗)k
c≡ {VIEWΠ

I (x̄)}x̄∈({0,1}∗)k

4 Multi-Query Secret-Shared Private Membership Test

In this section, we describe the details of our efficient mq-ssPMT, which securely
computes the functionality in Fig.3 in the presence of semi-honest adversaries.
We first revisit the mq-RPMT in [49], then show how to build an mq-ssPMT
protocol based on it.
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4.1 Revisit mq-RPMT in ZCLZL23

Zhang et al. [49] observe that the reason why the RPMT proposed in [33] cannot
support multiple queries is that they use the same indication string s for every
element belonging to the receiver R. Specifically, if an element x belongs to
R’s set Y = {y1, · · · , yn}, then S will get s when queries x. Allowing S to
make multiple queries will result in information leakage if S gets the same string
when queries distinct elements, which means they belong to the intersection
with overwhelming probability. A natural idea to address this issue is that R
uses different indication strings for different elements, but this will allow R to
know the specific elements from S based on the correspondence between the
elements and the indication strings.

To tackle this challenge, in [49], R uses a randomized encryption scheme to
encrypt an indication string s n times to get n different ciphertexts s1, · · · , sn.
Then R uses an OKVS to map each element to a si, i.e., compute D :=
Encode({(y1, s1), · · · , (yn, sn)}, r), and sends D to S. S queries each element
xi(1 ≤ i ≤ n) in his set X to get s∗i := Decode(D,xi, r). Then they use a newly
introduced function called vector oblivious decryption-then-matching (VODM),
where S inputs s∗ and R inputs an encryption key and s, and then R knows
whether Dec(k, s∗) equals s. Note that if xi ∈ Y , s∗i belongs to{s1, · · · , sn}. If
not, s∗i is a random ciphertext due to the randomness property of OKVS. So their
construction realizes mq-RPMT correctly. The security relies on the security of
VODM and the randomness of OKVS.

[49] proposed VODM constructions for both public-key encryption (PKE)
and SKE. For PKE, they use a re-randomizable PKE. S directly sends the re-
randomized ciphertext to R for decryption. For SKE, they use GMW protocol
to compute the decryption circuit of SKE. Then S sends the output shares
to R, who recovers the final result. They notice that randomized SKE causes
ciphertext expansion. To avoid this problem, they proposed new construction
for deterministic SKE: R uses a deterministic SKE to encrypt 0, 1, · · · , n− 1 to
obtain n different ciphertexts s1, · · · , sn, and adds a comparison circuit at the
end of the decryption circuit in VODM to check whether the decryption result
is less than n. If it is, the element belongs to Y . Otherwise, it does not.

4.2 Construction of mq-ssPMT

It is worth noting that in [49], the output of mq-RPMT is exactly the output
of VODM. If we realize secret-shared VODM (ssVODM), we can achieve mq-
ssPMT. The ideal function of ssVODM is given in Fig.7. In the SKE-based
mq-RPMT in [49], GMW is used to implement VODM. However, the output
of GMW is already in the form of secret sharing. If we omit the last step of
recovering the secret, this construction is actually ssVODM. Therefore, we can
directly obtain an efficient mq-ssPMT from the mq-RPMT in [49]. According
to the method of constructing the two-party PSU using mq-ssPMT in Sect. 2.2,
the SKE-based PSU in [49] can reduce one round of communication and n bits
of communication.



14 X. Liu and Y. Gao

Parameters: Sender S, Receiver R; Set size n; An encryption scheme E =
(Setup,KeyGen,Enc,Dec).
Functionality:

– Wait an input k, S from R.
– Wait an input {s∗1, · · · , s∗n} ⊂ {0, 1}∗ from S.
– For i ∈ [n], compute s′i = Dec(k, s∗i ). Set bi = 1 if s′i ∈ S, otherwise set bi = 0.

Sample e0 ← {0, 1}n, then compute e1 = e0 ⊕ b. Give e0 to S. Give e1 to R.

Fig. 7. Secret-Shared VODM Functionality Fssvodm

Furthermore, the OKVS scheme used in [49] is 3H-GCT in [22]. We use an
optimized 3H-GCT in [43] to reduce computation and communication costs. The
details of our mq-ssPMT are shown in Fig.8.

Parameters:
– Sender S, Receiver R.
– A SKE E = (Setup,KeyGen,Enc,Dec) satisfies multi-message multi-ciphertext

pseudorandomness.
– An OKVS scheme (Encode,Decode) and its random value r.
– Ideal functionality Fssvodm in Fig.7.

Input of S: X = {x1, · · · , xn} ⊂ F2σ .
Input of R: Y = {y1, · · · , yn} ⊂ F2σ .
Protocol:
1. S runs pp ← Setup(1κ) and KeyGen(pp) to get a key k. For i ∈ [n], computes

si = Enc(k, i− 1).
2. S computes an OKVS D := Encode

(
(x1, s1), · · · , (xn, sn), r

)
and sends D to

R.
3. R computes s∗i := Decode(D, yi, r) for i ∈ [n].
4. S and R invokes Fssvodm. R acts as sender with input (s∗1, · · · , s∗n). S acts

as receiver with input {0, 1, · · · , n − 1}, k. S and R receive e0, e1 ∈ {0, 1}n,
respectively.

Fig. 8. mq-ssPMT Protocol Πmq-sspmt

Security. Regarding the security of Πmq-sspmt, we have the following theorem.
Theorem 1. Assume the SKE scheme E = (Setup,KeyGen,Enc,Dec) satisfies
multi-message multi-ciphertext pseudorandomness. The protocol in Fig.8 securely
computes Fmq-sspmt against semi-honest adversaries in the Fssvodm-hybrid model.

Since Πmq-sspmt is essentially the same as mq-RPMT in [49] except for omit-
ting the last step of secret reconstruction, the security proof of Πmq-sspmt is similar
to that of mq-RPMT and is not repeated here. We recommend interested readers
to refer to the proof in [49].
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5 Protocol Overviews and Details

In this section, we give the details of our MPSU protocol. We also construct
multi-party private set union cardinality (MPSU-CA), MPSI, and multi-party
private set intersection cardinality (MPSI-CA) protocols based on mq-ssPMT
and multi-party secret-shared shuffle.

5.1 MPSU

Our MPSU protocol follows the approach outlined in Sect. 2. Each participant
Pi (2 ≤ i ≤ k) acts as the receiver and performs the mq-ssPMT protocol with
all Pj (1 ≤ j < i). For each element in the set of Pi, Pi splits it into i shares
using addtively secret sharing and shares with all Pj . Since each share is a
random value, we use random OT to generate each share, and Pi computes
his own share locally to reduce the communication overhead caused by OT.
Next, all parties combine their shares of all the difference sets (if there is no
corresponding share, set it to 0) to generate a (k − 1) × n dimensional vector
and set it as the input to the multi-party secret-shared shuffle protocol. Then,
P2, · · · ,Pk send their new shares to P1, who recovers

∪k
i=2 Xi \X1. Finally, P1

outputs
∪k

i=1 Xi = X1 ∪ (
∪k

i=2 Xi \X1). The protocol details are given in Fig.9.

Correctness. We first prove
∪k

i=1 Xi ⊆ X1 ∪ Y . For any x ∈
∪k

i=1 Xi, if
x ∈ X1, then x ∈ X1 ∪ Y . Otherwise, there exists a unique j that satisfies
x ∈ Xj \(X1∪· · ·∪Xj−1). Therefore, when Pj shares x∥H(x) to all Pi(1 ≤ i < j)
using ROT, all Pi will choose the share instead of the random value. Because the
multi-party secret-shared shuffle does not affect the correctness of the recovery,
P1 will always obtain x∥H(x) and add x to the output.

Then, we prove (X1 ∪ Y ) ⊆
∪k

i=1 Xi, which is equivalent to proving Y ⊂∪k
i=1 Xi. Since Y is a subset of {z1, · · · , z(k−1)n}, we only need to consider each

individual zi. If there is no x ∈
∪k

i=1 Xi that satisfies zi ̸= x∥H(x), then zi
must be a random value due to the randomness of ROT’s output. Therefore,
Pr[zi = s∥H(s) for some s] = 2−ℓ. By a union bound, we have:

Pr

[
X1 ∪ Y ̸⊆

k∪
i=1

Xi

]
≤ (k − 1) · n · 2−ℓ = 2log (k−1)+log n−ℓ

When ℓ ≥ λ+ log (k − 1) + log n, the probability is negligible.

Security. Now we prove the security of Πmpsu in Fig.9.

Theorem 2. Πmpsu in Fig.9 securely computes Fmpsu against any semi-honest
adversary that does not corrupt P1 and any subset of {P2, · · · ,Pk} simultane-
ously in the (Fmq-sspmt,Frot,Fms)-hybrid model.
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Parameters:
– k parties: P1, · · · ,Pk.
– Ideal functionalities Fmq-sspmt in Fig.3, Frot in Fig.5, Fms in Fig.6.
– A collision-resistant hash function H(x) : {0, 1}∗ → {0, 1}ℓ.

Input of Pi: Xi = {x1
i , · · · , xn

i } ⊂ F2σ .
Protocol:
1. For 1 ≤ i < j ≤ k, Pi and Pj invoke Fmq-sspmt. Pi acts as sender with input Xi.
Pj acts receiver with input Xj . Pj ,Pi receive e0

ji, e
1
ji ∈ {0, 1}n, respectively.

2. For 1 ≤ i < j ≤ k, 1 ≤ t ≤ n:
– Pi and Pj invoke Frot.
– Pj acts as sender with no input.
– Pi acts as receiver with input e1ji,t.

– Pj receives r0ji,t, r
1
ji,t ∈ {0, 1}σ+ℓ. Pi receives rji,t := r

e1ji,t
ji,t .

3. For 2 ≤ j ≤ k, Pj computes rjj,t :=
(
xt
j∥H(xt

j)
)
⊕
⊕j−1

i=1 r
e0ji,t
ji,t for t ∈ [n].

4. Each Pi computes shi ∈ F(k−1)n

2σ+ℓ as follows: for max(2, i) ≤ j ≤ k, 1 ≤ t ≤ n,
shi,(j−2)n+t := rji,t. Set all other positions to 0.

5. All Pi invoke Fms with input shi. Pi receives sh′
i.

6. For 2 ≤ i ≤ k, Pi sends sh′
i to P1. P1 recovers z :=

⊕k
i=1 sh

′
i. Set Y := ∅.

For 1 ≤ i ≤ (k − 1)n, if zi = s∥H(s) holds for some s ∈ F2σ , P1 computes
Y = Y ∪ {zi}. Outputs X1 ∪ Y .

Fig. 9. Multi-party Private Set Union Protocol Πmpsu

Proof. Let C and H be a coalition of corrupt and honest parties, respectively.
|C| = η. To show how to simulate C’s view in the ideal model, we consider two
cases based on whether P1 is corrupted.

P1 is Honest. In this case, P1 /∈ C. SimC(Xi1 , · · · , Xiη ) runs as follows:

1. For all Pi ∈ C, SimC samples e′0iu ← {0, 1}n for 1 ≤ u < i and e′1vi ← {0, 1}n
for i < v ≤ k, which satisfy for all Pi,Pj ∈ C(i < j), 1 ≤ t ≤ n:

– e′0ji,t ⊕ e′1ji,t = 1, if xt
j ∈ Xi

– e′0ji,t ⊕ e′1ji,t = 0, if xt
j /∈ Xi

Then SimC appends all e′0iu, e′1vi to the view.
2. For all Pi ∈ C, SimC samples r′0iu, r′1iu ← Fn

2σ+ℓ for 1 ≤ u < i and r′vi ← Fn
2σ+ℓ

for i < v ≤ k, which satisfy for all Pi,Pj ∈ C(i < j) and all 1 ≤ t ≤ n:

∀1 ≤ t ≤ n, r′ji,t = r
′e′1ji,t
ji,t

Then SimC appends all r′0iu, r′1iu, r′vi to the view.
3. For all Pi ∈ C, SimC samples sh′′

i ← F(k−1)n

2σ+ℓ and appends is to the view.
4. For all Pi ∈ C, SimC invokes mq-ssPMT simulator SimR

mq-sspmt(Xi, e
′0
iu) for

1 ≤ u < i and SimS
mq-sspmt(Xi, e

′1
vi) for i < v ≤ k. Then appends the output

to the view.



Scalable Multi-party Private Set Union from mq-ssPMT 17

5. For all Pi ∈ C, SimC invokes ROT simulator SimS
rot(r

′0
iu, r

′1
iu) for 1 ≤ u < i

and SimR
rot(e

′1
vi, r

′
vi) for i < v ≤ k. Then appends the output to the view.

6. For all Pi ∈ C, SimC creates shi as Step 3 and Step 4 of Πmpsu. Then invokes
multi-party secret-shared shuffle simulator SimPi

ms(shi, sh
′′
i ) and appends the

output to the view.

Now we argue that the view output by SimC is indistinguishable from the
real one. In the real world, the output e0ji, e

1
ji of mq-ssPMT, the output r0ji, r

1
ji

of ROT, and the output sh′
i of multi-party secret-shared shuffle are uniformly

random from the perspective of a single corrupted party. Even if all the parties
in C combine their views, the outputs of the mq-ssPMT and ROT protocols run
with the honest parties, i.e., e0ji, e1ji, r0ji, r1ji(Pi ∈ H or Pj ∈ H), are uniformly
random and mutually independent. Moreover, the outputs of the protocols run
with the corrupted parties, i.e., e0ji, e1ji, r0ji, r1ji(Pi,Pj ∈ C), are still uniformly
random but constrained by the correctness of mq-ssPMT and ROT.

As for the output of multi-party secret-shared shuffle protocol, at least one
share sh′

h is unknown because the number of corrupted parties is always less
than k. So from the perspective of C, the output sh′

i(Pi ∈ C) are uniformly
random and independent of each other.

Notice that in the view output by SimC , all messages are uniformly random
and satisfy the correctness constraints, which is exactly the same as that of real
world. So the simulated view is computationally indistinguishable from the real.

P1 is Corrupted. In this case, C = {P1}. So the simulator SimC(X1,
∪k

i=1 Xi)
needs to simulate P1’s view. SimC runs as follows:

1. SimC samples e′1i1 ← {0, 1}n for 2 ≤ i ≤ k and appends them to the view.
2. SimC samples r′i1 ← Fn

2σ+ℓ for 2 ≤ i ≤ k and appends them to the view.
3. SimC computes Y ′ := (

∪k
i=1 Xi)\X1, and constructs z′ ∈ F(k−1)n

2σ+ℓ as follows:
– for ∀yi ∈ Y ′, z′i := yi∥H(yi)
– for |Y ′| < i ≤ (k − 1)n, samples z′i ← F2σ+ℓ

Then, SimC samples a random permutation π : [(k − 1)n]→ [(k − 1)n], and
computes z′′ := π(z′).

4. For 1 ≤ i ≤ k, SimC samples sh′′
i ← F(k−1)n

2σ+ℓ , which satisfies
⊕k

i=1 sh
′′
i = z′′.

Then SimC appends all sh′′
i to the view.

5. SimC invokes mq-ssPMT simulator SimS
mq-sspmt(X1, e

′1
i1) for 2 ≤ i ≤ k. Then

appends the output to the view.
6. SimC invokes ROT simulator SimR

rot(e
′1
i1, r

′
i1) for 2 ≤ i ≤ k. Then appends

the output to the view.
7. SimC constructs sh1 as Step 3 and Step 4 of Πmpsu. Then invokes multi-party

secret-shared shuffle simulator SimP1
ms (sh1, sh

′′
1) and appends the output to

the view.

Now we argue that the view output by SimC is indistinguishable from the
real one. Specifically, we need to prove sh′

i from each Pi does not leak any other
information except for the union. For all 2 ≤ j ≤ k, consider an element xt

j ∈ Xj .
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If there exists some Xi(1 ≤ i < j) that xt
j ∈ Xi, then e0ji,t ⊕ e1ji,t = 1, rji,t =

r
e1ji,t
ji,t ̸= r

e0ji,t
ji,t . So

⊕k
i=1 shi,(j−2)n+t =

⊕j
i=1 rji,t = r ⊕ r

e0ji,t
ji,t ⊕ r

e1ji,t
ji,t is uniformly

random from the perspective of P1, where r is the sum of remaining terms. So
in the real world, the individual elements of

⊕k
i=1 sh

′
i are all uniformly random

values except for |
∪k

i=2 Xi \X1| elements, which is the same as simulated view.
So the simulated view is computationally indistinguishable from the real. ⊓⊔

An Efficiency Optimization. In our MPSU protocol, each Pi(1 ≤ i ≤ k −
2) acts as sender to execute mq-ssPMT with Pi+1, · · · ,Pk. And in each mq-
ssPMT, Pi needs to encrypt n messages and compute a corresponding OKVS.
We observe that Pi can use the same OKVS in all mq-ssPMT, which could
avoid additional computation costs caused by multiple encryptions and Encode
without compromising the security of the protocol. The only change required is
the length of ciphertexts of SKE, which should be increased from λ+ 2 log n to
λ+ 2 log n+ 2 log (k − i). So we can guarantee that the probability of collisions
between the random results of Decode and the ciphertexts of indication strings
is negligible. Therefore, we can ensure the correctness of the protocol.

Insecurity Against Arbitrary Collusion. We now illustrate why we need the
assumption that P1 does not collude with others. In our protocol, P1 reconstructs
the vector z in Step 6, which is a permutation of

⊕k
i=1 shi. So each individual

element of z is the form of
⊕j

i=1 rji,t. However, all rji,t(1 ≤ i < j, 1 ≤ t ≤ n) is
known by Pj , which is not uniformly random from the perspective of colluding
P1,Pj . More specifically, they can recover the output of Pi in ROT. So they could
get the output of Pi in mq-ssPMT with Pj , which will reveal the information
of Xi. We argue that although we require this special assumption, we achieve
security against any number of semi-honest clients and significant improvement
in efficiency.

MPSU-CA. MPSU-CA is a variant of MPSU, where the receiver is only al-
lowed to know the cardinality of the union. To fill the gap between MPSU and
MPSU-CA, we only need to make minor modifications to our MPSU protocol.
Each party no longer shares his own elements, but instead, an indication string
s agreed on in advance. Finally, Pi could count the number of s to get the
cardinality of the union.

Another difference is that since each party agrees on an indication string,
the problem of distinguishing random values and set elements in MPSU does
not arise here. So we do not need to append a hash at the end of each element,
which could reduce communication costs. The details of our MPSU-CA protocol
are given in the full version.

5.2 MPSI
We now discuss MPSI. We first give the functionality in Fig.10. Since the inter-
section must be a subset of X1, we only need to share X1. So P1 acts as sender
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and executes mq-ssPMT with all other Pi(2 ≤ i < k). On the other hand,
unlike computing the union, the intersection

∩k
i=1 Xi can be decomposed into∩k

i=1 (X1 ∩Xi). Therefore, each Pi should obtain the share of the intersection
X1 ∩Xi instead of the share of the difference set X1 \Xi. Therefore, Pi cannot
directly use the output of mq-ssPMT as the selection bit in ROT as in the MPSU
protocol but should choose the other message. The detailed description is given
in Fig.11.

Parameters: k parties P1, · · · ,Pk; Set size n; The bit length of set elements σ.
Functionality:

– Wait for input Xi = {x1
i , · · · , xn

i } ⊂ F2σ from Pi.

– Give output
k∩

i=1

Xi to P1.

Fig. 10. Multi-party Private Set Intersection Functionality Fmpsi

Parameters:
– k parties: P1, · · · ,Pk.
– Ideal functionalities Fmq-sspmt in Fig.3, Frot in Fig.5, Fms in Fig.6.
– The bit length of indication string ℓ.

Input of Pi: Xi = {x1
i , · · · , xn

i } ⊂ F2σ .
Protocol:

1. For 2 ≤ i ≤ k, P1 and Pi invoke Fmq-sspmt. Pi acts as sender with input Xi, P1

acts as receiver with input X1. P1,Pi receive e0
1i, e

1
1i ∈ {0, 1}n, respectively.

2. For 2 ≤ i ≤ k, 1 ≤ t ≤ n:
– P1 and Pi invoke Frot.
– Pi acts as sender with no input.
– P1 acts as receiver with input e01i,t ⊕ 1.

– Pi receives r01i,t, r
1
1i,t ∈ {0, 1}σ+ℓ. P1 receives r1i,t := r

e01i,t⊕1

1i,t .
3. For 1 ≤ t ≤ n, P1 computes r11,t :=

(
xt
1∥H(xt

1)
)
⊕
⊕k

i=2 r1i,t.
4. Each Pi(2 ≤ i ≤ k) computes shi ∈ Fn

2σ+ℓ as follows: for 1 ≤ t ≤ n, sht :=

r
e11i,t
1i,t . P1 computes sh1 ∈ Fn

2σ+ℓ as follows: for 1 ≤ t ≤ n, sht := r1i,t.
5. All Pi(1 ≤ i ≤ k) invoke Fms with input shi. Pi receives sh′

i.
6. For 2 ≤ i ≤ k, Pi sends sh′

i to P1. P1 recovers z :=
⊕k

i=1 sh
′
i. Set Y := ∅.

For 1 ≤ i ≤ n, if zi = x∥H(x) holds for some x ∈ X1, computes Y = Y ∪ {zi}.
Outputs Y .

Fig. 11. Multi-party Private Set Intersection Protocol Πmpsi
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Correctness. Similar to the analysis of MPSU protocol in Sect.5.1. Since zi
needs to satisfy zi = x∥H(x) and x ∈ X1, the probability of Πmpsi outputting a
wrong result does not exceed n · 2−σ · 2−ℓ = 2log n−σ−ℓ. If σ− log n ≥ λ, it’s not
necessary to append H(x) to the end of x to ensure that the error probability is
less than 2−λ. If σ − log n < λ, we need ℓ ≥ λ+ log n− σ.

Security. We now prove the security of Πmpsi in Fig.11.

Theorem 3. Πmpsi in Fig.11 securely computes Fmpsi against any semi-honest
adversary that does not corrupt P1 and any subset of {P2, · · · ,Pk} simultane-
ously in the (Fmq-sspmt,Frot,Fms)-hybrid model.

Proof. Since the proof is similar to the proof of theorem 2, we leave it to Ap-
pendix D.

MPSI-CA. Like our MPSU-CA protocol, we could similarly build MPSI-CA
based on our MPSI protocol. In contrast to MPSI, P1 shares an indication string
s instead of his own elements, just like MPSU-CA protocol. The details are given
in the full version.

Remark 1. These approaches for MPSI and MPSI-CA are not competitive with
the state-of-the-art special-purpose protocols for MPSI and MPSI-CA. In partic-
ular, mq-ssPMT and multi-party secret-shared shuffle is unnecessary for them.
We include these two protocols merely for illustrative purposes.

6 Complexity Analysis

In this section, we analyze the computation and communication complexity of
our four protocols.

6.1 mq-ssPMT

We first analyze the complexity of our mq-ssPMT protocol. The costs of mq-
ssPMT can be divided into three parts: the cost of SKE encryption, the cost of
OKVS, and the cost of ssVODM. Similar to [49], we use LowMC [1] to initialize
SKE and implement ssVODM using 2PC. In addition to the decryption circuit
of LowMC, we also need a comparison circuit. In this work, we only consider
the case where n = 2q, so we can use the method in [49]: to compare whether
a σ-bit string is less than n, we only need to check if one of its first σ − log n
bits is 1, so we need a total of σ− log n− 1 AND gates. Therefore, the ssVODM
protocol requires a total of n(t+ σ − log n− 1) = O(tn) AND gates, where t is
the number of AND gates in the SKE decryption circuit. We now calculate the
cost of each part.

– SKE encryption: The computation complexity of encrypting 0, 1, · · · , n − 1
is O(n).
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– OKVS: We use the optimized 3H-GCT algorithm in [43]. We employ it with
a cluster size of 214, weight w = 3. These result in the size of OKVS is
1.28n|c| bits, where |c| is the size of a ciphertext of SKE. The computation
complexities of Encode,Decode are both O(n). Sending an OKVS to other
parties needs one round communication.

– ssVODM: We use GMW to employ 2PC. Notice that we do not need to
share the input, i.e., the sender of ssVODM could use 0 as the share of
s∗1, · · · , s∗n and the receiver could use 0 as the share of the decryption key
k. Therefore, the costs contain only the evaluation of the AND gates. Using
Beaver triple [3], each AND gate requires 4 bits communication and O(1)
computation. Therefore, the communication costs are 4n(t + σ − log n − 1)
bits and the computation complexity is O(n(t+σ− log n)). Since the round
complexity of GMW depends on the depth of AND gates, which is one in
each round of LowMC decryption and log2 (σ − log n) in string comparison,
the round complexity is O(log (σ − log n)).

According to the analysis in Sect.5.1, the length of a ciphertext is no more
than λ+2 log (kn). In the scenario we are studying, where σ ≤ 128, n ≤ 224, k ≤
20, we have t is greater than σ and log (kn). Therefore, we can approximate
O(t + σ + log (kn)) as O(t). Thus, in mq-ssPMT, the computation complexity
is O(nt), the communication complexity is O(n(t + λ)) bits, and the round
complexity is O(log (σ − log n)).

6.2 MPSU and MPSU-CA

MPSU. The costs of our MPSU protocol can be split to four parts, including
mq-ssPMT, ROT, multi-party secret-shared shuffle and secret reconstruction.
We analyze the costs of these parts, respectively.

– mq-ssPMT: Since Pi executes mq-ssPMT k − 1 times, the communication
complexity is O((t + λ)kn), and the computation complexity is O(tkn) for
all parties. Moreover, Pi can run mq-ssPMT with others in parallel, so the
round complexity is O(log (σ − log n)).

– ROT: Pi executes ROT k − 1 times, so the communication complexity is
O(κkn), and the computation complexity is O(kn) for all parties. Since we
use a constant-round ROT and execute all ROT in parallel, the round com-
plexity is O(1).

– Multi-party secret-shared shuffle: We use the protocol in [18]. In its offline
phase, each pair of parties need to run a share translation protocol in [10].
Omitting message sizes and log factors, the computation complexity and
the communication complexity for each party are both Õ(k2n). In the on-
line phase, since we need to shuffle (σ + ℓ)-bits elements, the computation
complexity is O(kn) for each party, and the communication complexity is
O((σ+ℓ)k2n) for P1 and O((σ+ℓ)kn) for P2, · · · ,Pk according to the details
described in Appendix B. The round complexity is O(k).
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– Secret reconstruction: The communication complexity and computation com-
plexity of P1 is O((σ + ℓ)k2n) and O(n), respectively. The communication
complexity of other parties is O((σ+ ℓ)kn). And it needs one round commu-
nication.

Therefore, omitting the costs in the offline phase and taking ℓ = λ+ log n+
log (k − 1). The computation complexity of all parties is O(tkn). The commu-
nication complexity of P1 is O((t+ κ+ (σ + λ+ log (kn))k)kn). The communi-
cation complexity of P2, · · · ,Pk is O((t + λ + κ)kn). The round complexity is
O(log (σ − log n) + k).

MPSU-CA. Our MPSU-CA protocol differs from the MPSU protocol only in
the elements being shared. In MPSU, the length of the secret being shared is σ+ℓ,
while in MPSU-CA it is ℓ. We take ℓ = λ+ log n+ log (k − 1). The computation
complexity of all parties is O(tkn). The communication complexity of P1 is
O((t+ κ+ (λ+ log (kn))k)kn). The communication complexity of P2, · · · ,Pk is
O((t+ λ+ κ)kn). The round complexity is O(log (σ − log n) + k).

6.3 MPSI and MPSI-CA

MPSI. Our MPSI protocol’s costs can also be divided into mq-ssPMT, ROT,
multi-party secret-shared shuffle, and secret reconstruction. We analyze the costs
of these parts, respectively.

– mq-ssPMT: Since P1 needs to act as receiver to execute mq-ssPMT with
all P2, · · · ,Pk, the communication complexity is O((t+ λ)kn) and the com-
putation complexity is O(tkn) for P1. The communication complexity is
O((t+ λ)n) and the computation complexity is O(tn) for P2, · · · ,Pk.

– ROT: Assume the average communication cost per ROT is cot = O(κ) bits.
Since P1 needs to run ROT with P2, · · · ,Pk, the communication complex-
ity and the computation complexity of P1 is O(κkn) and O(kn), respec-
tively. The communication complexity and the computation complexity of
P2, · · · ,Pk is O(κn) and O(n), respectively.

– Multi-party secret-shared shuffle: Same as the analysis in Sect.6.2, the com-
putation of each party is O(n). The communication complexity of P1 is
O((σ + ℓ)kn).The communication complexity of P2, · · · ,Pk is O((σ + ℓ)n).

– Secret reconstruction: The communication complexity and computation com-
plexity of P1 is O((σ + ℓ)kn) and O(n), respectively. The communication
complexity of other parties is O((σ + ℓ)n).

Omitting the costs in the offline phase, since σ + ℓ = max{λ+ log n, σ}, the
computation complexity and communication complexity of P1 is O(tkn) and
O((t+κ+λ)kn), respectively. The computation complexity and communication
complexity of P2, · · · ,Pk is O(tn) and O((t + κ + λ)n), respectively. Similarly,
the round complexity is O(log (σ − log n) + k).
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MPSI-CA. The bit length of the secret shared in our MPSI protocol is σ+ ℓ =
max {λ+ log n, σ}, which is the same as that of MPSI-CA. Therefore, they have
the same complexity.

We conclude the complexity of our four protocols in Table2.

Table 2. The conclusion and comparison of our MPSU, MPSU-CA, MPSI, and MPSI-
CA protocols. n is the set size. k is the number of parties. σ is the bit length of set
elements. t is the number of AND gates in an SKE decryption circuit. λ is statistical
security parameter. κ is computational security parameter. The computation complex-
ity refers to the number of symmetric-key operations.

Protocol Comm. Comp.
Leader Client Rounds Leader Client

MPSU O((t+ κ+ (σ + λ+ log (kn))k)kn)
O((t+ λ+ κ)kn)

O(log (σ − log n) + k)
O(tkn)MPSU-CA O((t+ κ+ (λ+ log (kn))k)kn)

MPSI
O((t+ λ+ κ)kn) O((t+ λ+ κ)n) O(tkn) O(tn)MPSI-CA

7 Implementation

In this section, we provide experimental details and test results for MPSU, and
compare our results with previous work. We ignore the costs of the offline phase,
including the generation of base OTs, share correlations, and Beaver triples. All
experimental data are the average of 10 trials under the same environment. We
compute the communication costs of a party as the sum of the data he sent and
received.

7.1 Experimental Setup

We run all protocols on a single Intel Ice Lake processor at 3.2GHz with 256 GB
RAM. We emulate the two network connections using Linux tc command. For
the LAN setting, we set network latency to 0.02 ms and bandwidth of 10 Gbps
and for the WAN setting the latency is set to 40 ms and bandwidth 400 Mbps.

7.2 Implementation Details

For concrete analysis we set the computational security parameter κ = 128 and
the statistical security parameter λ = 40. Our protocol is written in C++ and
we use the following libraries in our implementation.

– OKVS and GMW: We use the optimized 3H-GCT in [43] as our OKVS
instantiation, and re-use the implementation of 3H-GCT and GMW by the
authors of [43]1.

1 https://github.com/Visa-Research/volepsi.git

https://github.com/Visa-Research/volepsi.git
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– LowMC: We set both block size and key length to 128 bits, and the number
of Sbox to 10, so the number of rounds is 20. Therefore, the number of AND
gates in decryption circuit is t = 600. The concrete parameters we use are
from [49]2. And we use the implementation of LowMC by the authors of [1]3.

– ROT: We use SoftSpokenOT [45] implemented in libOTe4, and set field bits
to 5 to balance computation and communication costs.

– Others: We utilize the implementations of circuit, PRNG, and hash function
provided by cryptoTools5. In addition, we adopt Coproto6 to realize network
communication.

7.3 Comparison with Prior Work

Since only [5] and [48] have implemented their protocols so far, we only compare
our work with these two works.

Blanton et al. [5]. Since their implementation is not available, we can only use
the experimental results they published in their papers. They implemented the
3-party PSU protocol in C++, assuming an honest majority, and tested it in a
LAN with a bandwidth of 1 Gbps on 2.4GHz AMD Opteron. They tested their
protocol with 32-bit elements and set sizes of 24, 26, 28, 210, and the running times
were 0.13s, 0.52s, 2.41s, and 11.89s, respectively. In contrast, our protocol, which
is secure under the assumption that P1 does not collude with other parties, runs
in a 10 Gbps bandwidth environment in the same setting, taking 0.10s, 0.10s,
0.11s, and 0.14s, respectively.

Vos et al. [48]. Vos et al.’s protocol employs a divide-and-conquer approach,
so the computational cost and communication overhead are related to the dis-
tribution of the input set. Precisely, if the input elements are concentrated in
neighboring regions of the universe, then most branches can be pruned by the
divide-and-conquer algorithm. If the input elements are more dispersed, then
more secure OR operations are required. We test their open-source code on ran-
dom datasets and set the divide-and-conquer parameter D = 2 to minimize the
number of secure OR operations required. The (expected) communication over-
head is calculated using the formula provided in their paper. Finally, since in
their implementation parties transmit data directly through memory, which is
not affected by bandwidth, we only test our protocol in a LAN and compare it
with theirs. The results are shown in Table3.

We test our protocol for set sizes of n = {24, 26, 28, 210} and different numbers
of parties k = {3, 4, 5, 7, 10}. For each set size, we set the universe size to be
2 https://github.com/alibaba-edu/mpc4j/blob/adee91f7966a3166f6e662f6b4a321ea36fcf39d/

mpc4j-common-tool/src/main/resources/low_mc/lowmc_128_128_20.txt
3 https://github.com/LowMC/lowmc.git
4 https://github.com/osu-crypto/libOTe.git
5 https://github.com/ladnir/cryptoTools.git
6 https://github.com/Visa-Research/coproto.git

https://github.com/alibaba-edu/mpc4j/blob/adee91f7966a3166f6e662f6b4a321ea36fcf39d/mpc4j-common-tool/src/main/resources/low_mc/lowmc_128_128_20.txt
https://github.com/alibaba-edu/mpc4j/blob/adee91f7966a3166f6e662f6b4a321ea36fcf39d/mpc4j-common-tool/src/main/resources/low_mc/lowmc_128_128_20.txt
https://github.com/LowMC/lowmc.git
https://github.com/osu-crypto/libOTe.git
https://github.com/ladnir/cryptoTools.git
https://github.com/Visa-Research/coproto.git
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Table 3. The comparison of [48] and our MPSU protocol in running time (seconds)
and communication cost (MB) in the LAN setting. The bit length of our elements is
64. The output length of H is ℓ = 64. The size of universe in [48] is set to |U| = 216.
The parameter in divide-and-conquer is D = 2. The communication cost refers to
Leader’s communication cost. In our protocol, each party uses k−1 threads to interact
with all other parties separately, and 4 threads are used to perform parallel SKE
encryption. In their protocol, the leader uses k − 1 threads to interact with all other
parties simultaneously. Bold numbers indicate the best results under current conditions.
Cells with - means there is almost no improvement.

Number Protocol Set Size n
Parties k 24 26 28 210

Time

3 [48] 0.56 1.71 4.84 15.36
Ours 0.10 0.10 0.11 0.14

4 [48] 0.76 2.36 7.64 20.84
Ours 0.15 0.16 0.17 0.19

5 [48] 1.08 3.50 10.73 26.43
Ours 0.22 0.22 0.23 0.24

7 [48] 1.84 4.49 15.29 52.82
Ours 0.36 0.36 0.37 0.39

10 [48] 3.15 9.12 29.65 75.58
Ours 0.58 0.62 0.63 0.68

Speedup 5× 12× 41× 109×

Comm.

3 [48] 0.16 0.56 1.82 5.68
Ours 0.15 0.16 0.28 0.96

4 [48] 0.25 0.84 2.74 8.52
Ours 0.22 0.24 0.45 1.54

5 [48] 0.33 1.11 3.65 11.36
Ours 0.30 0.33 0.63 2.17

7 [48] 0.49 1.67 5.47 17.03
Ours 0.45 0.52 1.04 3.63

10 [48] 0.74 2.51 8.21 25.55
Ours 0.69 0.83 1.77 6.30

Speedup - 3× 4× 4×

|U| = 216 to make [48] achieve higher efficiency. From the perspective of running
time, our protocol shows significant efficiency improvements compared to [48].
Moreover, it gains greater improvements for larger set sizes. In particular, under
the condition of a set size of 210, our protocol achieves a 109× speedup. If the set
size is increased to 220, there will be a remarkable improvement. However, [48]
already takes 75 seconds for 10 parties and a set size of 210, and testing larger
sets will take several tens of minutes or even an hour and require a larger input
domain, such as |U| = 232, which will further decrease the efficiency of [48].
Therefore, we believe that testing for a set size of 210 is sufficient to demonstrate
that our protocol is more efficient than [48].

From the perspective of communication overhead, all communication costs
in [48] come from secure OR operations, so we should minimize the number
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of secure OR operations required. Therefore, we chose D = 2 as the optimal
parameter for the expected communication overhead. Nevertheless, our protocol
still achieves 3-4x improvements in communication overhead. Specifically, when
n = 210 and k = 10, the communication overhead of the leader in their protocol
is 25.55MB, while our protocol only requires 6.30MB. Moreover, as the universe
size increases, the gap becomes even more significant.

7.4 Scalability
To demonstrate the scalability and practicality of our protocol, we test our pro-
tocol for larger set sizes of n = 214, 216, 218, 220 and different number of parties
k = 3, 4, 5, 7, 10. For each party, we use k − 1 threads to interact with all other
parties simultaneously and 4 threads to perform parallel SKE encryption.

Running Time. The running time of our protocol in both LAN and WAN
settings are shown in Table4. Our protocol demonstrates good scalability. In the
LAN setting, the running time of the protocol increases linearly with the set size.
Specifically, for the 3-party setting, computing MPSU for small sets (n = 214)
takes less than one second; medium-sized sets (n = 216, 218) can be computed
within 10s; and large sets (n = 220) only require 29.02s. Moreover, since our
protocol can be well parallelized, it also shows good scalability as the number of
parties increases. For example, for n = 218, when the number of parties increases
from 3 to 10, the running time only increases by 2.8×, and when the number
of parties increases from 3 to 7 for n = 220, the running time only increases by
1.6×. On the other hand, our protocol has reasonable communication overhead,
making it also efficient in the WAN setting. For example, in the 10-party setting,
computing n = 218 takes around 2 minutes, and in the 7-party setting, computing
n = 220 takes around 4 minutes.

Table 4. Running time (seconds) of our protocol in LAN and WAN settings. Each
party holds n 64-bit elements. The output length of H is ℓ = 64. Cells with - denotes
trials that ran out of memory.

Setting Number Set Size n
Parties k 214 216 218 220

LAN

3 0.55 1.79 7.04 29.02
4 0.60 1.88 7.46 30.28
5 0.67 2.01 7.92 34.10
7 0.88 2.71 10.77 45.68
10 1.41 4.89 19.90 -

WAN

3 3.36 6.64 15.38 51.81
4 4.14 8.63 20.28 72.61
5 5.53 10.56 29.35 111.06
7 6.91 17.21 60.17 227.75
10 11.08 33.89 127.71 -
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Communication Overhead. The communication overhead of the protocol is
shown in Table5. P1 has the highest communication overhead, and the commu-
nication overhead of P2, · · · ,Pk−1 is the same, and the communication overhead
of Pk is slightly lower than that of Pi(2 ≤ i ≤ k − 1). The communication over-
head of all parties is linearly proportional to the set size. The communication
overhead of P2, · · · ,Pk is linearly proportional to the number of parties. The
communication overhead of P1 grows quadratically with the number of parties,
as it need to reconstruct the secret.

Table 5. Communication (MB) of our protocol for different set sizes and different
numbers of parties. Each party holds n 64-bit elements. The output length of H is
ℓ = 64. Pi denotes P2, · · · ,Pk−1. Cells with - denotes trials that ran out of memory.

Number Set Size n
Parties 214 216 218 220

k P1 Pi Pk P1 Pi Pk P1 Pi Pk P1 Pi Pk

3 14.43 13.93 13.43 57.58 55.58 53.58 229.76 221.76 213.76 917 885 853
4 23.14 20.89 20.14 92.38 83.38 80.38 368.64 332.64 320.64 1472 1328 1280
5 32.86 27.86 26.86 131.17 111.17 107.17 523.52 443.52 427.52 2090 1770 1706
7 55.29 41.79 40.29 220.75 166.75 160.75 881.28 665.28 641.28 3519 2655 2559
10 96.43 62.68 60.43 385.13 250.13 241.13 1537.92 997.92 961.92 - - -

8 Conclusion

In this work, we introduce a new protocol called mq-ssPMT, which is an effec-
tive technique in multi-party private set operations. We also give an efficient
construction of mq-ssPMT, which is mainly based on symmetric-key operations.
By combining with multi-party secret-shared shuffle and ROT, we propose a
multi-party private set operation framework from mq-ssPMT, including MPSU,
MPSU-CA, MPSI, and MPSI-CA. We stress that although our protocols require
the assumption that the leader does not collude with others, which achieves
weaker security, our MPSU protocol is the first protocol that reports on large-
size experiments and is truly scalable. We leave the construction of efficient
MPSU protocol which resists arbitrary collusion as a future work.
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A Symmetric-key Encryption

A SKE scheme is a tuple of four algorithms:

– Setup(1κ): on input the security parameter κ outputs public parameters pp,
which include the description of the message and ciphertext space M, C.

– KeyGen(pp): on input public parameter pp outputs a key k.
– Enc(k,m): on input a key k and a plaintext m ∈ M, outputs a ciphertext
c ∈ C.

– Dec(k, c): on input a key k and a ciphertextc ∈ C, outputs a message m ∈M
or an error symbol⊥.

Correctness. For any pp← Setup(1κ), any k ← KeyGen(pp), any m ∈ M and
any c← Enc(k,m), it holds Dec(k, c) = m.

Security. To ensure the security of our mq-ssPMT, we require a security notion
called multi-message multi-ciphertext pseudorandomness like the mq-RPMT in
[49]. Formally, a SKE is multi-message multi-ciphertext pseudorandom if for any
PPT A = (A1,A2):

AdvA(1
κ) = Pr

β = β′ :

pp← Setup(1κ);
k ← KeyGen(pp);
(m1, · · · ,mn, state)← A1(pp);
β ← {0, 1};
for i ∈ [n] : ci,0 ← Enc(k,mi), ci,1 ← C;
β′ ← A2(pp, state, {ci,β}i∈[n])

−
1

2

is negligible is κ.

B Multi-party Secret-Shared Shuffle

The functionality of share correlation is given in Fig.12. The protocol details of
multi-party secret-shared shuffle in [18] are given in Fig.13.

C Garbled Cuckoo Table

The formal description of GCT in [43] is given in Fig.14.

D Proof of Theorem 3

Below we give the details of the proof of Theorem 3.

Proof. Let C and H be a coalition of corrupt and honest parties, respectively.
|C| = η. To show how to simulate C’s view in the ideal model, we consider two
cases based on whether P1 is corrupted.
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Parameters: k parties: P1, · · · ,Pk; The dimension of vector n; The bit length
of individual element σ.
Functionality:

– Wait an input πi : [n]→ [n] from each Pi(1 ≤ i ≤ k).
– Sample a′

i, bi ← Fn
2σ for 1 ≤ i ≤ k − 1 and ai ← Fn

2σ ,∆← Fn
2σ for 2 ≤ i ≤ k,

which satisfy:

∆ = πk

(
· · ·
(
π2

(
π1

( k⊕
i=2

ai

)
⊕ a′

1

)
⊕ a′

2

)
· · · ⊕ a′

k−1

)
⊕

k−1⊕
i=1

bi

Give a′
1, b1 to P1. Give a′

i,ai, bi to Pi(2 ≤ i ≤ k − 1). Give ak,∆k to Pk.

Fig. 12. Share Correlation Functionality Fsc

Parameters:
– k parties P1, · · · ,Pk.
– Ideal functionality Fsc in Fig.12.
– The dimension of vector n and the bit length of individual element σ.

Input of Pi: [x]i, a share of x ∈ Fn
2σ based on addtively secret sharing.

Protocol:
1. Each Pi sample a random permutation πi : [n] → [n] and invokes Fsc with

input πi. P1 receives a′
1, b1 ∈ Fn

2σ . Pi(2 ≤ i ≤ k − 1) receives a′
i,ai, bi ∈ Fn

2σ .
Pk receives ak,∆k ∈ Fn

2σ .
2. For 2 ≤ i ≤ k, Pi compute zi := [x]i ⊕ ai, and send zi to P1.
3. P1 compute z′

1 := π1

(⊕k
i=2 zi ⊕ [x]1

)
⊕ a′

1 and send it to P2. P1 outputs b1.
4. For 2 ≤ i ≤ k − 1Pi computes z′

i := πi(z
′
i−1) ⊕ a′

i and sends it to Pi+1. Pi

output bi.
5. Pk outputs πk(z

′
k−1)⊕∆k.

Fig. 13. Multi-party Secret-Shared Shuffle Protocol Πms

P1 is Honest. In this case, P1 /∈ C. SimC(Xi1 , · · · , Xiη ) runs as follows:

1. For all Pi ∈ C, SimC samples e′11i ← {0, 1}n, r′01i, r′11i ← Fn
2σ+ℓ , sh

′′
i ← Fn

2σ+ℓ

and appends them to the view.
2. For all Pi ∈ C, SimC invokes mq-ssPMT simulator SimS

mq-sspmt(Xi, e
′1
i ) and

appends the output to the view.
3. For all Pi ∈ C, SimC invokes ROT simulator SimS

rot(r
′0
1i, r

′1
1i) and appends

the output to the view.
4. For all Pi ∈ C, SimC creates shi as Step 4 of Πmpsi. Then invokes multi-party

secret-shared shuffle simulator SimPi
ms(shi, sh

′′
i ) and appends the output to

the view.

Now we argue that the view output by SimC is indistinguishable from the
real one. In the real world, the output e11i of mq-ssPMT, the output r01i, r

1
1i

of ROT, and the output sh′
i of multi-party secret-shared shuffle are uniformly
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Parameters:
– Statistical security parameter λ and computational security parameter κ.
– Finite field F and finite group G.
– Output length m = m′ + m̂ where m′ = O(n), m̂ = O(λ).

Input: n key-value pairs {(k1, v1), · · · , (kn, vn)} ⊆ K × V.
Encode({(k1, v1), · · · , (kn, vn)}, r) :

(1) [Sample] Let row′ : K × {0, 1}κ → Sw and ˆrow : K × {0, 1}κ → Fm̂ be
random functions where Sw ⊂ {0, 1}m

′
is the set of all weight w strings. Let

row(k, r) := row′(k, r)∥ ˆrow(k, r) and define

H :=

row(k1, r)· · ·
row(kn, r)

 ∈ Fn×m

(2) [Triangulate] Let H ′ := H, J := ∅. While H ′ has rows:
(a) Select j ∈ [m] such that the jth (sparse) column of H ′ has the minimum

non-zero weight.
(b) Append index j to the ordered list J . Remove all rows i ∈ [n] from H ′ for

which H ′
i,j ̸= 0.

Define δ := |J |, the gap as g := n − δ, permutation matrices πr ∈
{0, 1}n×n, πc ∈ {0, 1}m×m such that πc

m−k,m−δ−k = 1 for k ∈ [0, m̂),
πc
Ji,m+1−i = 1 and πr

n+1−i,i′ = 1 for some i′ where Hi′,Ji
̸= 0 and all i ∈ [δ].

Let
T := πr ·H · πc =

[
A B C
D E F

]
where F ∈ {0, 1}δ×δ is lower triangular, B ∈ Fg×m̂, E ∈ Fδ×m̂ are the dense
columns.

(3) [Zero-C] Compute T ′ :=

[
I −CF−1

0 I

]
· T =

[
A′ B′ 0
D E F

]
.

(4) [Solve-Dense] If B′ doesn’t have full row rank, return ⊥. Let B∗ := QB′ be
the (lower) reduced row echelon form of B′, and

T ∗ :=

[
Q 0
0 I

]
· T ′ =

[
A∗ B∗ 0
D E F

]
, v∗ :=

[
Q −QCF−1

0 I

]
· πr · v

where v = (v1, · · · , vn)T ∈ Fn×1.
(5) [Back-substitution] Compute P ∗ := T ∗−1 · v∗ via back-substitution and

return P := P ∗ · πc−1.
Decode(P , k, r) : return⟨row(k, r),P ⟩.

Fig. 14. GCT algorithm in [43]
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random. Moreover, the outputs of mq-ssPMT and ROT of all parties in C are
mutually independent.

As for the output of multi-party secret-shared shuffle protocol, the share sh′
1

is unknown and uniformly random for corrupted parties because P1 is honest. So
all sh′

i(Pi ∈ C) are uniformly random and independent of each other from the
perspective of C. Notice that in the simulated view, all messages are uniformly
random and mutually independent, so the output view of SimC is computation-
ally indistinguishable from real.

P1 is Corrupted. In this case, C = {P1}. So the simulator SimC(X1,
∩k

i=1 Xi)
needs to simulate P1’s view. SimC runs as follows:

1. For 2 ≤ i ≤ k, SimC samples e′01i ← {0, 1}n and r′1i ← Fn
2σ+ℓ . Then appends

all these vectors to the view.
2. SimC constructs z′ ∈ Fn

2σ+ℓ as follows:
– Set z′ uninitialized. For each x ∈

∩k
i=1 Xi, SimC computes x∥H(x) and

set a random uninitialized position of z′ to this value.
– For all uninitialized positions of z′, set a random value from F2σ+ℓ .

3. SimC samples sh′′
i ← Fn

2σ+ℓ for all 1 ≤ i ≤ k, which satisfies
⊕k

i=1 sh
′′
i = z′.

SimC appends all sh′′
i to the view.

4. SimC invokes mq-ssPMT simulator SimR
mq-sspmt(X1, e

′1
1i) for 2 ≤ i ≤ k. Then

appends the output to the view.
5. SimC invokes ROT simulator SimR

rot(e
′0
1i⊕1n, r′1i) for 2 ≤ i ≤ k. Then appends

the output to the view.
6. SimC constructs sh1 as Step 3 and Step 4 of Πmpsi. Then invokes multi-party

secret-shared shuffle simulator SimPi
ms(sh1, sh

′′
1) and appends the output to

the view.

Now we argue that the view output by SimC is indistinguishable from the
real one. In the real world, the output e01i of mq-ssPMT, the output r1i of ROT,
and the output sh′

i of multi-party secret-shared shuffle are uniformly random.
Moreover, for different i, they are independent of each other. We prove that sh′

i

from each Pi does not leak any other information except for the intersection.
For each element xt

1 that belongs to X1, if there exists 2 ≤ i ≤ k that xt
1 /∈

X1∩Xi, we have e′01i,t⊕e′11i,t = 0, r1i,t = r
e01i,t⊕1

1i,t ̸= r
e1ji,t
ji,t . Therefore,

⊕k
i=1 shi,t =⊕k

i=1 r1i,t = r ⊕ r
e11i,t
1i,t ⊕ r

e01i,t⊕1

1i,t is uniformly random from the perspective of
P1, where r is the sum of remaining terms. So in the real world,

⊕k
i=1 sh

′
i

is uniformly random except for |
∩k

i=1 Xi| positions. So the simulated view is
computationally indistinguishable from the real. ⊓⊔
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