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Abstract. A recent series of works (Hecht, IACR ePrint, 2020–2021) propose to build post-
quantum public-key encapsulation, digital signatures, group key agreement and oblivious
transfer from “R-propped” variants of the Symmetrical Decomposition and Discrete Logarithm
problems for matrix groups over F28 . We break all four proposals by presenting a linearisation
attack on the Symmetrical Decomposition platform, a forgery attack on the signature scheme,
and a demonstration of the insecurity of the instances of the Discrete Logarithm Problem
used for signatures, group key agreement and oblivious transfer, showing that none of the
schemes provides adequate security.

1 Introduction

The potential advent of quantum computers has kicked off the search for computational problems
that resist cryptanalysis via quantum algorithms. While most of the focus on design and cryptanalysis
has been put into a small set of hardness assumption families related to lattice-based, isogeny-based,
and code-based computational problems [BBD09], alternative less popular proposals have been
made.

One such example is a recent line of work [Hec20a,Hec20b,Hec21a,Hec21b,Hec21c] that pro-
poses to build various post-quantum primitives based on computational problems over the ring
of k × k matrices over F28 , Mk(F28).

1 In particular, the authors suggest building ElGamal sig-
natures [ElG85], Burmester-Desmedt group key agreement2 [BD94] and Chou-Orlandi 1-out-n
oblivious transfer [CO15] out of the Discrete Logarithm Problem (DLP) over Mk(F28). They also
propose building a public-key encryption (PKE) scheme similar to the HK17 [HK17] proposal
submitted to the standardisation process for post-quantum cryptography run by the US National
Institute of Standards and Technology (NIST), basing it on the hardness of the Generalised
Symmetrical Decomposition Problem over Mk(F28).

In this paper, we show that none of the schemes achieves meaningful security by describing and
implementing general attacks against the GSDP and DLP instances suggested, and by describing a
general forgery attack on the signature scheme that is independent of the hardness of the DLP. We
remark that the forgery attack is a result of a flaw in the scheme presented in [Hec21a] which is not
present in the original ElGamal signature scheme [ElG85].

Roadmap. In Section 2 we give general preliminaries and notation. In Section 3 we describe the
GSDP hardness assumption and the proposed PKE schemes from [Hec20a,Hec20b], and present
a plaintext-recovery linearisation-based attack. In Section 4 we describe a forgery attack on the
proposed signature scheme from [Hec21a] that is independent of the hardness of the DLP. In
Section 5 we use a classical result from the literature on cryptanalysis of the DLP over matrices to
show that it does not provide post-quantum security and that the proposed instances of the DLP
from [Hec21a,Hec21b,Hec21c] do not provide any classical security either.

2 Preliminaries

Notation. We denote by Z the ring of integers {. . . ,−2,−1, 0, 1, 2, . . . }, by [n] the set {1, . . . , n},
and by Zq the ring of integers “modulo q”, Z/qZ. We denote by Fqn the finite field of qn elements,

∗The work of Virdia was carried out while employed by ETH Zürich.
1 The authors of [Hec20a,Hec20b,Hec21a,Hec21b,Hec21c] refer to this approach as “R-propping”, where
“R-” stands for Rijndael, suggesting that the security of the schemes is partly achieved by using the same
field used to describe the AES S-box.

2 Called “conference key distribution” in [BD94].



where q is prime. If n = 1, then Fq = Zq. We note that Fqn can be constructed as Zq[x]/⟨p(x)⟩,
where Zq[x] is the ring of polynomials in x with coefficients in Zq, p is a monic irreducible polynomial
of degree n and ⟨p(x)⟩ ⊂ Zq[x] is the ideal generated by p. Given a ring R, we define the ring
(Rr×c,+,×) of matrices with r rows and c columns, and entries over R, with the usual commutative
matrix addition and non-commutative matrix multiplication operations + and ×. Whenever r = c,
we may write Mn(R) to denote the Rr×c ring. When multiplying matrices A and B, we will omit
× and write AB instead. Given a matrix A, we denote its entry on the ith row and jth column by
(A)i,j . Given a square matrix A, we denote by det(A) its determinant. Given a polynomial p, we
denote by deg(p) its degree. Given a finite set S, we write |S| to mean the cardinality of S, and we
denote by x←$ S an element x sampled uniformly at random from S. Given bit strings s1, s2 of
the same length, we denote by s1 ⊕ s2 the bit-wise exclusive-or of the strings.

Algebra. In the remainder of this work we will work in particular with the finite field of 256 elements.
One way of constructing F28 is by using the polynomial p(x) = 1 + x + x3 + x4 + x8, the same
famously used to define the AES S-box [AES01].

Definition 1 (Discrete Logarithm Problem). Let G be a group. Given (x, y) ∈ G×G, such
that y = xℓ for some ℓ ∈ Z, find ℓ mod ord(x), where ord(x) is the order of the subgroup generated
by x.

3 Plaintext-recovery attack

The Generalised Symmetrical Decomposition Problem (GSDP) is a family of computational problems
introduced in [CDW07], proposed as hardness assumptions that could be used to build key exchange
and public-key encryption (PKE) from non-commutative groups.

Definition 2 (Generalized Symmetrical Decomposition Problem [CDW07]). Let G be
a non-commutative group. Given (x, y) ∈ G × G, S ⊂ G and m, n ∈ Z, find z ∈ S such that
y = zm x zn.

Remark 1. We note that the GSDP problem can also be similarly defined over rings with non-
commutative multiplication.

In [Hec20a,Hec20b], the authors propose two PKE schemes that make use of the GSDP assump-
tion over matrix groups. Both of these are extensions of HK17 [HK17]. The new schemes propose
using matrices over F28 to avoid possible linearisation attacks [Hec20b].

We show a linearisation attack on [Hec20a,Hec20b] that allows a passive eavesdropper to decrypt
any ciphertext by having access to the ciphertext itself and the public key.

Remark 2. We note that the attacks in this section result in plaintext-recovery without directly
solving the GSDP instances generated by the scheme. This indicates a gap between the security of
the PKE scheme and the (conjectured) hardness of the GSDP instances.

3.1 HK17-like Public-Key Encryption

We proceed to define the PKE scheme proposed in [Hec20b]. The scheme is almost identical to the
one in [Hec20a] (see Definition 3), and both [Hec20a,Hec20b] are equally affected by our plaintext
recovery attack. All the schemes in [HK17,Hec20a,Hec20b] are themselves based on the scheme
proposed in [CDW07, § 4.4].

Definition 3. Let u, k, d be positive integers. Let pp = (u, k, d) be a tuple of public parameters.
LetM = {0, 1}ℓ be the message space for some finite ℓ, and let H : Fk×k

28 →M be a random oracle.
In Figure 1 we define three algorithms:

– A probabilistic algorithm Gen(pp) that takes public parameters pp and outputs a public and
private key pair (pk, sk).

– A probabilistic algorithm Enc(pk,m) that takes a public key pk and a message m and outputs a
ciphertext c.



Gen(pp)

1 A←$ Fk×k
28

2 B←$ Fk×k
28

3 f ←$ {p ∈ F28 [x] deg(p) = d and p(A) ̸= 0}
4 mf ←$ [2, u] ∩ Z
5 nf ←$ [2, u] ∩ Z
6 r ← f(A)mf B f(A)nf

7 pk ← (A,B, r)

8 sk ← (f,mf , nf )

9 return pk, sk

Enc(pk,m)

1 (A,B, r)← pk

2 h←$ {p ∈ F28 [x] deg(p) = d and p(A) ̸= 0}
3 mh←$ [2, u] ∩ Z
4 nh←$ [2, u] ∩ Z
5 c1 ← h(A)mh B h(A)nh

6 ss← h(A)mh r h(A)nh

7 c2 ← H(ss)⊕m

8 c← (c1, c2)

9 return c

Dec(sk, c)

1 (f,mf , nf )← sk

2 (c1, c2)← c

3 ss′ ← f(A)mf c1 f(A)nf

4 m′ ← H(ss′)⊕ c2

5 return m′

Fig. 1. The PKE scheme defined in Definition 3.

– A deterministic algorithm Dec(sk, c) that takes a secret key sk and a ciphertext c and outputs a
message m′.

Collectively, these three algorithms form the PKE scheme proposed in [Hec20b]. The slightly different
scheme proposed in [Hec20a] is obtained by requiring mh = mf and nh = nf during encryption
(cf. Figure 1), with (mf , nf ) being added to the public key.

We note that while no explicit reductions from breaking the schemes in [Hec20a,Hec20b] to
solving the GSDP problem are given, in [Hec20a, § 4.3] it is claimed that Theorem 3 of [CDW07]
implies IND-CPA security for the scheme in [Hec20a] given that the GSDP instance is hard. Yet,
our attack will break the scheme without technically solving GSDP. In paticular, using the notation
from Definition 2, we will recover α zm and α−1 zn for some non-zero α ∈ F28 , but not z itself.

Lemma 1 (Correctness of HK17-like PKE). Let pp be public parameters and let (pk, sk)←$ Gen(pp)
be a key pair for the scheme defined in Definition 3. Then for any m ∈M, Dec(sk,Enc(pk,m)) = m.

Proof (Proof (sketch)). We start by noticing that given any ring R and matrix A ∈ Mk(R), A
commutes with the identity matrix Ik and with itself. This implies by direct computation that given
any two polynomials f, h ∈ R[x], f(A) and h(A) commute. From inspection of Figure 1 correctness
of the scheme then follows, since

ss′ = f(A)mf h(A)mh B h(A)nh f(A)nf = h(A)mh f(A)mf B f(A)nf h(A)nh = ss,

for any h, f , mf , nf , mh, nh and A.

In [Hec20a,Hec20b] the authors propose a cryptanalysis based on exhaustively guessing the
secret polynomial f , increasing its degree to achieve security. As we will see, the presence of f does
not provide any security, with the cost of the attack depending on the cost of linear algebra in
Mk(F28) instead.

3.2 A warm-up attack

We first describe a bug in the implementation of the PKE schemes provided in [Hec20a,Hec20b]
which results in a trivial attack. While the resulting attack is not particularly interesting, it does



serve as a warm-up for a technique used as a part of the linearisation attack against the correctly
implemented scheme.

In [Hec20a,Hec20b], two similar implementations of the PKE in Wolfram Mathematica are
provided. These are almost correct, except for a crucial bug during the computation of the public
key share r, the ciphertext component c1 and the shared secret ss, where rather than using matrix
multiplication the authors use entry-wise matrix multiplication, which we now denote ⊙. Being
multiplication in F28 associative and commutative, so is entry-wise multiplication in Mk(F28). Given
a public key share r of the form r = f(A)mf ⊙B ⊙ f(A)nf and a ciphertext component c1 of the
form c1 = h(A)mh ⊙B ⊙ h(A)nh , we can trivially compute

r ⊙ c1 = (f(A)mf ⊙B ⊙ f(A)nf )⊙ (h(A)mh ⊙B ⊙ h(A)nh)

= (h(A)mh ⊙ f(A)mf ⊙B ⊙ f(A)nf ⊙ h(A)nh)⊙B

= ss⊙B.

We now define a “pseudoinverse” of a matrix with respect to entry-wise multiplication.

Definition 4. Let K be a field and M ∈ Kr×c be a matrix with entries over K. We define the
pseudoinverse of M with respect to entry-wise multiplication as the matrix M+ with coefficients

(M+)i,j :=

{
(M)−1

i,j if (M)i,j ̸= 0,

0 otherwise.

Finally, we can use the pseudoinverse B+ of B to compute

ss⊙B ⊙B+ =

{
(ss)i,j(B)i,j(B)−1

i,j if (B)i,j ̸= 0,

0 otherwise
=

{
(ss)i,j if (B)i,j ̸= 0,

0 otherwise
= ss

by noticing that if (B)i,j = 0 then (ss)i,j = 0 too.

While this attack trivially breaks the examples provided in [Hec20a,Hec20b] and generated
using the buggy code, it is clear from the analysis (cf. [Hec20b, § 4.2]) that r, c1 and ss should be
computed using matrix multiplication.

3.3 Linearisation attack

We consider an attack scenario where a passive eavesdropper intercepts a valid public key pk and
a ciphertext c← Enc(pk,m) for some unknown message m, and tries to recover m. We consider
three alternative approaches to the attack. We start by looking at the simplest one, which works
whenever the secret matrix f(A) is invertible, which for uniformly random A and f happens with
very high probability. We then describe two alternatives to deal with increasingly tricky (and rare!)
settings. We note that the third approach (described under “Case 2.2”) is quite general, and solves
all instances from our experiments, albeit at the cost of slightly higher runtime and implementation
complexity.

Recall, given A,B, r, c1 ∈Mk(F28) such that r = f(A)mf B f(A)nf and c1 = h(A)mh B h(A)nh ,
we want to recover ss = f(A)mf c1 f(A)nf .

Case 1, det(f(A)) ̸= 0. The attack proceeds similarly to [BCM12] or [MSU11, § 4.4.1], by setting up
the following linear system of equations in 2k2 unknowns in the form of two matrices X, Y ∈ Fk×k

28 :

r X = Y B, (1)

AX = X A, (2)

AY = Y A. (3)

By construction, we know that the system has non-zero solutions X = αf(A)−nf and Y =
αf(A)mf for any α ∈ F28\{0}. Once a solution X, Y is found, the adversary derives a guess zz for



the value of ss′, zz := Y c1 X
−1. By (2) and (3), we know that X−1 and Y will commute with any

polynomial in A, while by (1) we know that r = Y BX−1, implying zz = ss:

zz = Y c1 X
−1

= Y h(A)mh B h(A)nh X−1

= h(A)mh Y BX−1 h(A)nh by (2) and (3),

= h(A)mh r h(A)nh by (1),

= ss.

Case 2, det(f(A)) = 0. This case is at first glance trickier. Indeed, det(f(A)) = 0⇔ det(f(A)nf ) =
0⇔ det(f(A)mf ) = 0, meaning that the system described above will not have non-zero solutions
X = αf(A)−nf , and inverting the roles of X and Y so that (1) became Y r = BX (and so Y yielded
αf(A)−mf ) would similarly not work.

Let pA(x) be the characteristic polynomial of A and K ⊃ F28 be the splitting field of pA. We
consider two further subcases of this problem, based on whether A is diagonalisable over K or
not, to recover the shared secret in this case. We will now abuse notation and identify A with its
canonical lift into K.

Case 2.1, diagonalisable A. Suppose A (seen as a matrix in Kk×k) is diagonalisable, such that
A = P DP−1, with D diagonal and P invertible. It follows that f(A)t = P f(D)t P−1, for any
non-negative integer t. We can then rewrite the public key component r as

r = f(A)mf B f(A)nf

= P f(D)mf P−1 B P f(D)nf P−1

⇐⇒ P−1rP = f(D)mf (P−1 B P ) f(D)nf

⇐⇒ r̂ = f(D)mf B̂ f(D)nf , (4)

by defining r̂ := P−1rP and B̂ = P−1 B P .
Without loss of generality, assume that

f(D) =



f1
. . .

fs
0
. . .

0


where the f1, . . . , fs are all non-zero. Recalling Definition 4 from the “warm-up attack” in Section 3.2,
we can rewrite (4) as

r̂ f(D)nf +
= f(D)mf B̂ f(D)nf f(D)nf +

= f(D)mf B̂ In;s

= f(D)mf B̄,

where (In;s)i,j =

{
1 if (f(D))i,j ̸= 0

0 otherwise
and B̄ := B̂ In;s,

where we estimate the indices where (f(D))i,j ̸= 0 by noting that j must equal i, and that whenever
(f(D))i,i = 0, the ith row and column of r̂ are zeroed.

We can then set up a linear system of equations over K in 2s unknowns that for ease of
exposition we represent in the form of two matrices X, Y ∈ Kk×k, such that

r̂ X = Y B̄, (5)

(X)i,j = (Y )i,j = 0 ∀i ̸= j, (6)

(X)i,i = (Y )i,i = 0 ∀i > s, (7)



where (5) has the same role as (1) in Case 1, and (6) and (7) enforce the expected shape of f(D).
Experimentally, we verify that solutions yield X = αf(D)nf +

and Y = αf(D)mf , which leads to
recovery of α f(A)mf = P Y P−1 and α−1 f(A)nf = P X+ P−1, for some non-zero α ∈ F28 . We
then define recover the shared secret by computing αf(A)mf c1 α

−1f(A)nf = ss.

Case 2.2, non-diagonalisable A. In our experiments, Cases 1 and 2.1 cover the vast majority
of the random instances generated. However, some outliers where A is not diagonalisable and
det(f(A)) = 0 remain. To cover this case, we extend the Case 2.1 attack. The resulting process is
general and solves all instances of the problem we have generated throughout experiments, including
those falling in Cases 1 and 2.1. However, our implementation of it is slightly slower than those of
the other cases. Hence, we only use the following attack when the other approaches fail.

The idea of Case 2.2 is to replace diagonalisation with Jodan Canonical Form (JCF) computation.
Let J ∈ Kk×k be the JCF of A over K, such that A = P J P−1 and f(A)t = P f(J)t P−1 for any
non-negative integer t. As done in Case 2.1, we rewrite

r = f(A)mf B f(A)nf ⇐⇒ r̂ = f(J)mf B̂ f(J)nf ,

by defining r̂ := P−1rP and B̂ = P−1 B P .

By definition, J is block-diagonal, and so are its powers. Therefore, f(J) is block-diagonal itself
by being a sum of block-diagonal matrices, and so are non-negative powers of f(J),

f(J) =

 f1
. . .

fs

 .

We adapt Definition 4 of a pseudoinverse diagonal matrix to the setting of block-diagonal
matrices, by constructing a block-diagonal matrix f(J)⊕ where we invert the non-singular blocks,
and set to zero the singular ones. The corresponding product If(J) := f(J) f(J)⊕ is a matrix with
ones on the diagonal where a non-singular block was, and zeroes otherwise, similar to In;s in Case

2.1. Following the same approach as in Case 2.1, we define B̄ := B̂If(J) where we compute If(J)
by looking at the indices i such that the ith row and column of r̂ are zeroed. We then set a linear
system with the following constraints:

r̂ X = Y B̄, (8)

X and Y be block-diagonal with J(A)’s structure, (9)

J X = X J (10)

J Y = Y J, (11)

our intention being that X yields a solution of the form αf(J)nf ⊕
and Y yields αf(J)mf . We

note that (9) is a set of linear constraints that force the lower-triangular indices of X and Y
as well as the top-triangular ones not falling inside one of the Jordan blocks, to be zero. We
also reintroduce commutativity constraints for the solutions, but with J rather than A (since
f(A)A = Af(A) ⇐⇒ f(J)J = Jf(J)). This is because block-diagonal matrices don’t commute in
general. The requirement was absent in Case 2.1 since diagonal matrices do. Experimentally, we
verify that these steps result in solutions for the few cases with singular f(A) and non-diagonalisable
A.

Piecing the attack together. In our attack implementation, we proceed as follows. If det(r) ̸= 0 we
know that f(A) is invertible, and hence use the Case 1 steps. If det(r) = 0 but A is diagonalisable,
we attempt the Case 2.1 steps. We note that we may end up using these steps on an instance where
f(A) is invertible but B isn’t. While we can test for invertibility of B, we cannot for f(A) since it
would require guessing f . However, in practice the steps lead to a solution with high probability
regardless of the invertibility of f(A). Finally, if det(r) = 0 and A is not diagonalisable, we use the
Case 2.2 steps.



k d log2 u # tries psucc avg. runtime (s) attack case
1 2.1 2.2

2 7 32 200 1.0 0.02 197 3 0
2 15 32 200 1.0 0.02 197 3 0
2 23 32 200 1.0 0.02 199 1 0
2 31 32 200 1.0 0.02 200 0 0
2 7 64 200 1.0 0.02 199 1 0
2 15 64 200 1.0 0.02 200 0 0
2 23 64 200 1.0 0.02 200 0 0
2 31 64 200 1.0 0.02 198 2 0
3 7 32 200 1.0 0.03 198 2 0
3 15 32 200 1.0 0.03 196 4 0
3 23 32 200 1.0 0.03 199 1 0
3 31 32 200 1.0 0.03 197 3 0
3 7 64 200 1.0 0.03 199 1 0
3 15 64 200 1.0 0.03 197 3 0
3 23 64 200 1.0 0.03 197 2 1
3 31 64 200 1.0 0.03 200 0 0

10 40 64 20 1.0 0.67 20 0 0
15 40 64 20 1.0 2.51 20 0 0
20 40 64 20 1.0 6.92 20 0 0
24 40 64 20 1.0 12.93 20 0 0

100 40 64 2 1.0 4527.11 2 0 0

Table 1. Benchmarks for the attack on different parameter sets. k is the matrix rank, d is the polynomial
degree, u is the upper bound for the polynomial exponents. Each set of parameters is run with “# trials”
different PRNG seeds. We average the runtime of the attack (in seconds) and report the measured success
probability psucc.

Remark 3. We note that while on one hand the adversary does not recover the secret key f , on the
other she does not need it to decrypt arbitrary ciphertexts. As a consequence, the attack cannot be
stopped by picking f of a higher degree.

Remark 4. In [Hec20a], the authors mention that the values r and c1 would need to be “disguised”
in order to avoid the possibility of an adversary recovering of the powers of f(A) and h(A) by
inspection of r or c1. However, no concrete disguising mechanism is given. The attack we describe
does not inspect in any specific way r or c1, only using their entries as matrices in F28 to set up a
linear system of equations. Since any party encrypting a message needs to compute ss by evaluating
matrix multiplications with r, we suspect any disguise would require keeping r as some form of
k × k matrix, making the attack possible.

3.4 Attack implementation

We implement the scheme and the attack in Sagemath version 9.4 [S+19] and run it on a single
Intel(R) Core(TM) i7-4790K CPU clocked at 4.00GHz on various different parameter sets. We
note that the attack covers also the case where an extra condition mf = mh and nf = nh is
imposed as in [Hec20a], since recovery of αf(A)mf and α−1f(A)nf for some non-zero α ∈ F28 only
requires the public key, which is not affected by such condition. In Table 1, we report parameter
sets and measured runtimes of the attack. The source for replicating the attack can be found at
https://github.com/fvirdia/popping-r-propping-code-and-data.

Results. The results of our experiments can be found in Table 1. Experimentally, we observe the
attack succeed with probability 1 for all the parameter sets attempted. In the case of 2× 2 and
3× 3 matrices (the ranks suggested in [Hec20a,Hec20b]), the attack takes negligible time. In the
case of the two attempted 100× 100 matrices, the attack takes less than 2 hours on a single core.



Gen(pp)

1 g0, |G| ← pp

2 r←$ {2, . . . , |G| − 2}
3 a←$ {2, . . . , |G| − 2}
4 g ← gr0

5 pk ← ga // Note ga = ga·r0

6 sk ← (r, ga)

7 return pk, sk

Forge(pk,m)

1 h← H(m)

2 t← any value in Z

3 s2 ← pkt

4 s1 ← pk s−h
2

5 σ ← (s1, s2)

6 return σ

Sign(pp, sk,m)

1 g0, |G| ← pp

2 r, ga ← sk

3 g ← gr0

4 h← H(m)

5 n←$ {2, . . . , |G| − 2}

6 s1 ← ga · (g−1)n·h

7 s2 ← gn

8 σ ← (s1, s2) // Note s1 = pk · (s2)−h

9 return σ

Vrfy(pk, σ,m′)

1 s1, s2 ← σ

2 h′ ← H(m′)

3 if s1 s
h′
2 = pk

4 return true

5 else return false

Fig. 2. The signature scheme from [Hec21a], desribed using the syntax from Definition 5. We also include
an algorithm to forge signatures.

4 Forgery attack

In [Hec21a], the authors propose a signature scheme based on the hardness of the Discrete Logarithm
Problem (DLP) over Mk(F28). While we will discuss the practical hardness of such DLP instances
in Section 5, in this section we describe a forgery attack on the signature scheme that is independent
of the hardness of the DLP.

Definition 5. Let k be a positive integer, let g0 ∈ GLk(F28) be an invertible matrix and let G be
the group generated by g0. Let pp = (g0, |G|) be a tuple of public parameters. LetM be the message
space, and let H :M→ Z|G| be a random oracle. In Figure 2 we define three algorithms:

– A probabilistic algorithm Gen(pp) that takes public parameters pp and outputs a public and
private key pair (pk, sk).

– A probabilistic algorithm Sign(pp, sk, pk,m) that takes public parameters pp, a secret key sk
and a message m and outputs a signature σ.

– A deterministic algorithm Vrfy(pk, σ,m′) that takes a public key pk, a signature σ and a message
m′ and outputs a boolean value.

Remark 5. All elements in Mk(F28) computed as part of the key generation and signature algorithms
are powers of the public parameter g0. Therefore, although Mk(F28) is non-commutative, operations
effectively happen inside the commutative multiplicative subgroup G ⊂Mk(F28).

From the Vrfy algorithm in Figure 2, we can see that the verification check is simply checking
that the two group elements making the signature σ multiply to pk. Forging such elements is
trivial since powers and inversions in Mk(F28) are easy to compute. In Figure 2 we provide a Forge
algorithm that given any message and public key, forges a signature. We notice that although not
mandated by the Vrfy algorithm, signature components are always a power of g. Therefore, we
reuse the public key pk such that forged signature components are also powers of g.

We remark that the signature algorithm proposed in [Hec21a] differs significantly from ElGamal’s
signature scheme [ElG85], and these differences allow forgeries to be created.

5 Solving the Discrete Logarithm Problem over Mk(F28)

The Discrete Logarithm Problem (DLP) has a rich cryptanalysis history. In our case, a variant
of the DLP using matrices in Mk(F28) was proposed to instantiate signatures [Hec21a], group



k
Claimed classical
security (bits)

Claimed quantum
security (bits)

# tries
Average

runtime (s)
Measured
Pr[success]

3 24 12 128 0.017 1.0
4 32 16 128 0.023 1.0
7 96 48 128 0.048 1.0
10 112 56 128 0.126 1.0
12 160 80 128 0.388 1.0

Table 2. Claimed classical and quantum bit-hardness of the DLP over specific subgroups of Mk(F28)
proposed in [Hec21c,Hec21a,Hec21b], and average measured runtime for solving random DLP instances
using the suggested values for g0.

key exchange [Hec21c] and oblivious transfer [Hec21b]. For all three proposals, the authors claim
post-quantum security and provide particular instances of subgroup generators to be used for
achieving given security levels. These are summarised in Table 2.

We note however that “R-propping” the DLP does not achieve post-quantum security. Indeed,
Menezes and Wu [MW97] show a probabilistic polynomial time reduction of the DLP over the
group GLk(Fq) of invertible matrices over Fq to k2 instances of the DLP over some extensions
fields of Fq. This reduction is further extended to the group of all matrices Mk(Fq) in [Mya]. These
reductions imply quantum polynomial-time attacks using Shor’s algorithm [Sho94].

Looking further, a direct implementation of Menezes and Wu’s reduction demonstrates that for
the proposed generators the order of the extension fields of F28 stays relatively small, and well below
the size of the record DLP computations carried over binary fields [BBD+14,GGMZ13,GKZ14,GKZ].
We demonstrate this by breaking various DLP instances set using the generators inMk(F28) proposed
for “R-propping” schemes, for every suggested dimension k = 3, 4, 7, 10, 12.

5.1 Attack implementation

We do a direct implementation of Menezes and Wu [MW97, Algorithm 2] using Sagemath 9.4, to
reduce the DLP problem over Mk(F28) into a set of DLP problems over extensions of F28 . We then
solve these instances using Sagemath’s default discrete logarithm routine. We note that while the
proof of Menezes and Wu indicates specific algorithms for computing characteristic polynomials and
Jordan Canonical Forms in order to formally argue probabilistic polynomial time, we use Sagemath’s
default routines for both these steps. We also notice that for all the challenges attempted, the value
of t in Step 4 of [MW97, Algorithm 2] is always equal to 1, meaning that we can skip the step
entirely (which therefore we don’t implement).

All our experiments are run on a single Intel(R) Core(TM) i7-4790K CPU clocked at 4.00GHz.
For every generator suggested in [Hec21c,Hec21a,Hec21b], we generate 128 random exponents and
solve the corresponding DLP instances. Every attempted instance is correctly solved. On average
the largest instances take less than 0.5 seconds to solve. We report our results in Table 2. The
source for replicating the attack can be found at https://github.com/fvirdia/popping-r-propping-
code-and-data.

As part of our experiments, we also note that the order of the proposed generators for k = 7 is
≈ 248 rather than 296 − 1, as reported in [Hec21c,Hec21a,Hec21b]. Similarly, for k = 10 the order
is ≈ 264 rather than 2112 − 1, and for k = 12 is 280 − 1 rather than 2160 − 1.
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