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Blind signatures serve as a foundational tool for privacy-preserving applications and have recently
seen renewed interest due to new applications in blockchains and privacy-authentication tokens.
With this, constructing practical round-optimal (i.e., signing consists of the minimum two rounds)
blind signatures in the random oracle model (ROM) has been an active area of research, where
several impossibility results indicate that either the ROM or a trusted setup is inherent.

In this work, we present two round-optimal blind signatures under standard assumptions in the
ROM with different approaches: one achieves the smallest sum of the signature and communication
sizes, while the other achieves the smallest signature size. Both of our instantiations are based
on standard assumptions over asymmetric pairing groups, i.e., CDH, DDH, and/or SXDH. Our
first construction is a highly optimized variant of the generic blind signature construction by
Fischlin (CRYPTO’06) and has signature and communication sizes 447 B and 303 B, respectively.
We progressively weaken the building blocks required by Fischlin and we result in the first blind
signature where the sum of the signature and communication sizes fit below 1 KB based on
standard assumptions. Our second construction is a semi-generic construction from a specific class
of randomizable signature schemes that admits an all-but-one reduction. The signature size is only
96 B while the communication size is 2.2 KB. This matches the previously known smallest signature
size while improving the communication size by several orders of magnitude. Finally, both of our
constructions rely on a (non-black box) fine-grained analysis of the forking lemma that may be of
independent interest.

1 Introduction

1.1 Background

Blind signature is an interactive signing protocol between a signer and a user with advanced privacy
guarantees. At the end of the protocol, the user obtains a signature for his choice of message while
the signer remains blind to the message she signed. To capture the standard notion of unforgeability,
it is further required that a user interacting with the signer at most `-times is not be able to produce
valid signatures on more than ` distinct messages. The former and latter are coined as the blindness
and one-more unforgeability properties, respectively.

Chaum introduced the notion of blind signatures [31] and showed its application to e-cash [31, 33,
69]. Since then, it has been an important building block for other applications such as anonymous
credentials [24, 29], e-voting [32, 44], direct anonymous attenstation [25], and in more recent years,
it has seen a renewed interest due to new applications in blockchains [83, 28] and privacy-preserving
authentication tokens [81, 53].
Round-Optimality. One of the main performance measures for blind signatures is round-optimality,
where the user and signer are required to only send one message each to complete the signing
protocol. While this is an ideal feature for practical applications, unfortunately, there are a few
impossibility results [64, 39, 70] on constructing round-optimal blind signatures in the plain model
(i.e., without any trusted setup) from standard assumptions (e.g., non-interactive assumptions and
polynomial hardness). To circumvent this, cryptographers design round-optimal blind signatures by
making a minimal relaxation of relying on the random oracle model (ROM) or the trusted setup
model. Considering that trusted setups are a large obstacle for real-world deployment, in this work
we focus on round-optimal blind signatures in the ROM under standard assumption4. We refer
4 We note that all of our results favor well even when compared with schemes in the trusted setup model.
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the readers to Appendix A for an overview on round optimal blind signatures under non-standard
assumptions (e.g., interactive or super polynomial hardness) or relying on stronger idealized models
such as the generic group model.
Practical Round-Optimal Blind Signatures. Constructing a practical round-optimal blind
signature has been an active area of research. In a seminal work, Fischlin [38] proposed the first
generic round-optimal blind signature from standard building blocks. While the construction is
simple, an efficient instantiation remained elusive since it required a non-interactive zero-knowledge
(NIZK) proof for a relatively complex language.

Recently, in the lattice-setting, del Pino and Katsumata [34] showed a new lattice-tailored
technique to overcome the inefficiency of Fischlin’s generic construction and proposed a round-
optimal blind signature with signature and communication sizes 100 KB and 850 KB.

A different approach that has recently accumulated attention is based on the work by Pointcheval [72]
that bootstraps a specific class of blind signature schemes into a fully secure one (i.e., one-more
unforgeable even if polynomially many concurrent signing sessions are started). This approach has
been improved by Katz et al. [60] and Chairattana-Apirom et al. [30], and the very recent work by
Hanzlik et al. [51] optimized this approach leading to a round-optimal blind signature based on
the CDH assumption in the asymmetric pairing setting. One of their parameter settings provides a
short signature size of 5 KB with a communication size 72 KB.

Finally, there are two constructions in the pairing setting with a trusted setup which can be
instantiated in the ROM under standard assumptions [18, 4]5. Blazy et al. [18] exploited the
randomizability of Waters signature [82] and constructed a blinded version of Waters signature
consisting of mere 2 group elements, i.e. 96 B. While it achieves the shortest signature size in the
literature, since the user has to prove some relation to his message in a bit-by-bit manner, the
communication scales linearly in the message length. For example for 256 bit messages, it requires
more than 220 KB in communication. Abe et al. [4] use structure-preserving signatures (SPS) and
Groth-Ostrovsky-Sahai (GOS) proofs [50] to instantiate the Fischlin blind signature with signatures
of size 5.8 KB with around 1 KB of communication.

While round-optimal blind signatures in the ROM are coming close to the practical parameter
regime, the signature and communication sizes are still orders of magnitude larger compared to
those relying on non-standard assumptions or strong idealized models such as blind RSA [31, 13] or
blind BLS [19]. Thus, we continue the above line of research to answer the following question:

How efficient can round-optimal blind signatures in the ROM be under standard assump-
tions?

1.2 Contributions

We present two round-optimal blind signatures based on standard group-based assumptions in the
asymmetric pairing setting. The efficiency is summarized in Table 1, along with the assumptions we
rely on. The first construction has signature and communication sizes 447 B and 303 B, respectively.
It has the smallest communication size among all prior schemes and is the first construction where the
sum of the signature and communication sizes fit below 1 KB. The second construction has signature
and communication sizes 96 B and 2.2 KB, respectively. While it has a larger communication size
compared to our first construction, the signature only consists of 2 group elements, matching the
previously shortest by Blazy et al. [18] while simultaneously improving their communication size by
around two orders of magnitude. Both constructions have efficient partially blind variants.

For our first construction, we revisit the generic blind signature construction by Fischlin [37].
We progressively weaken the building blocks required by Fischlin and show that the blind signature
can be instantiated much more efficiently in the ROM than previously thought by a careful choice
of the building blocks. At a high level, we show that the generic construction remains secure even if
we replace the public-key encryption scheme (PKE) and online-extractable NIZK6 with respectively
a commitment scheme and a rewinding-extractable NIZK such as those offered by the standard
5 Both [18, 4] require a trusted setup for a common reference string crs consisting of random group elements.
We can remove the trusted setup by using a random oracle to sample crs.

6 This is a type of NIZK where the extractor can extract a witness from the proofs output by the adversary
in an on-the-fly manner.
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Table 1. Comparison of Round-Optimal Blind Signatures in the ROM

Reference Signature size Communication size Assumption

del Pino et al. [34] 100 KB 850 KB DSMR,MLWE,MSIS

Blazy et al. [18] 96 B 220 KB † SXDH,CDH
Abe et al. [4] 5.5 KB 1 KB SXDH

Hanzlik et al. [51]‡
5 KB 72 KB

CDH9 KB 36 KB

Ours: Section 3 447 B 303 B SXDH
Ours: Section 5 96 B 2.2 KB DDH,CDH

All group-based assumptions are in the asymmetric paring setting, and MLWE and MSIS denote the
module version of the standard LWE and SIS, respectively. DSMR denotes the decisional small matrix
ratio problem, which can be viewed as the module variant of the standard NTRU. (†): Communication
of [18] scales linearly with the message size, and is given here for 256 bit messages. (‡): [51] offers
tradeoffs between signature and communication sizes.

Fiat-Shamir transform [36, 73, 14]. While these modifications may seem insignificant on the surface,
it accumulates in a large saving in the concrete signature and communication sizes. Moreover, our
security proof requires overcoming new technical hurdles incurred by the rewinding-extraction and
relies on a fined-grained analysis of a variant of the forking lemma.

For our second construction, we revisit the idea by Blazy et al. [18] relying on randomizable
signatures. However, our technique is not a simple application of their idea as their construction
relies on the specific structure of the Waters signature in a non-black-box manner. Our new insight
is that a specific class of signature schemes with an all-but-one (ABO) reduction can be used in an
almost black-box manner to construct round-optimal blind signatures, where ABO reductions are
standard proof techniques to prove selective security of public-key primitives (see references in [67]
for examples). Interestingly, we can cast the recent blind signature by del Pino and Katsumata [34]
that stated to use lattice-tailored techniques as one instantiation of our methodology.

In the instantiation of our second construction, we use the Boneh-Boyen signature [20] that
comes with an ABO reduction along with an online-extractable NIZK obtained via the Fiat-Shamir
transform applied to Bulletproofs [27] and a Σ-protocol for some ElGamal related statements. To
the best of our knowledge, this is the first time an NIZK that internally uses Bulletproofs was proven
to be online-extractable in the ROM. Prior works either showed the non-interactive version of
Bulletproofs to achieve the weaker rewinding extractability [9, 8] or the stronger online simulation
extractability by further assuming the algebraic group model [45]. We believe the analysis of our
online extractability to be novel and may be of independent interest.

1.3 Technical Overview

We give an overview of our contributions.

Fischlin’s Round-Optimal Blind Signature. We review the generic construction by Fischlin [37]
as it serves as a starting point for both of our constructions. The construction relies on a PKE, a
signature scheme, and an NIZK. The blind signature’s verification and signing keys (bvk, bsk) are
identical to those of the underlying signature scheme (vk, sk). For simplicity, we assume a perfect
correct PKE with uniform random encryption keys ek and that ek is provided to all the players
as an output of the random oracle. The user first sends an encryption c ← PKE(ek,m; r) of the
message m. The signer then returns a signature σ ← Sign(sk, c) on the ciphertext c. The user then
encrypts ĉ← PKE(ek, c‖r‖σ; r̂) and generates an NIZK proof π of the following fact where (c, σ, r, r̂)
is the witness: ĉ encrypts (c, r, σ) under r̂; c encrypts the message m under r; and σ is a valid
signature on c. The user outputs the blind signature σBS = (ĉ, π).

It is not hard to see that the scheme is blind under the IND-CPA security of the PKE and the
zero-knowledge property of the NIZK. The one-more unforgeability proof is also straight-forward:
The reduction will use the adversary A against the one-more unforgeability game to break the
euf-cma of the signature scheme. The reduction first programs the random oracle so that it
knows the corresponding decryption key dk of the PKE. When A submits c to the blind signing
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oracle, the reduction relays this to its signing oracle and returns A the signature σ it obtains.
Moreover, it makes a list L of decrypted messages m← Dec(dk, c). When A outputs the forgeries
(σBS,i = (ĉi, πi),mi)i∈[`+1], it searches a mi such that mi 6∈ L, which is guaranteed to exist since
there are at most ` signing queries. The reduction then decrypts (ci, ri, σi)← Dec(dk, ĉi). Since the
PKE is perfectly correct and due to the soundness of the NIZK, ci could not have been queried by
A as otherwise mi ∈ L, and hence, (ci, σi) breaks euf-cma security.

Source of Inefficiency. There are two sources of inefficiency when trying to instantiate this
generic construction. One is the use of a layered encryption: the NIZK needs to prove that c
is a valid encryption of m on top of proving ĉ is a valid encryption of (c, r, σ). This contrived
structure was required to bootstrap a sound NIZK to be online-extractable.7 Specifically, the
one-more unforgeability proof relied on the reduction being able to extract the (partial) witness
(ci, ri, σi) in an on-the-fly manner from the outer encryption ĉi explicitly included in the blind
signature. The other inefficiency stems from the heavy reliance on PKEs. As far as the correct-
ness is concerned, the PKE seems replaceable by a computationally binding commitment scheme.
This would be ideal since commitment schemes tend to be more size efficient than PKEs since de-
cryptability is not required. However, without a PKE, it is not clear how the above proof would work.

First Construction. We explain our first construction, an optimized variant of Fischlin’s generic
construction.
Using Rewinding-Extractable NIZKs. The first step is to relax the online-extractable NIZK
with a (single-proof) rewinding-extractable NIZK. Such an NIZK allows extracting a witness from
a proof output by an adversary A by rewinding A on a fixed random tape. NIZKs obtained by
compiling a Σ-protocol using the Fiat-Shamir transform is a representative example of an efficient
rewinding-extractable NIZK. The net effect of this modification is that we can remove the layer of
large encryption by ĉ, thus making the statement simpler and allowing us to remove ĉ from σBS.

Let us check if this rewinding-extractable NIZK suffices in the above proof of one-more unforge-
ability. At first glance, the proof does not seem to work due to a subtle issue added by the rewinding
extractor. Observe that the reduction now needs to simulate A in the rewound execution as well.
In particular, after rewinding A, A may submit a new c′ to the blind signing oracle, which was
not queried in the initial execution. The reduction relays this c′ to its signing oracle as in the first
execution to simulate the signature σ′. As before, we can argue that there exists a message mi in
the forgeries output by A in the first execution such that mi 6∈ L, but we need to further argue that
mi 6∈ L′, where L′ is the list of decrypted messages A submitted in the rewound execution. Namely,
we need to argue that mi /∈ L ∪ L′ for the reduction to break euf-cma security. However, a naive
counting argument as done before no longer works because |L ∪ L′| can be large as 2`, exceeding
the number of forgeries output by A, i.e., `+ 1.

We can overcome this issue by taking a closer look at the internal of a particular class of
rewinding-extractable NIZK. Specifically, throughout this paper, we focus on NIZKs constructed by
applying the Fiat-Shamir transform on a Σ-protocol (or in more general a public-coin interactive
protocol). A standard way to argue rewinding-extractability of a Fiat-Shamir NIZK is by relying on
the forking lemma [73, 14], which states (informally) that if an event E happened in the first run,
then it will happen in the rewound round with non-negligible probability. In the above context, we
define E to be the event that the i-th message in A’s forgeries satisfy mi 6∈ L, where i is sampled
uniformly random by the reduction at the outset of the game. Here, note that E is well-defined since
the reduction can prepare the list L by decrypting A’s signing queries. The forking lemma then
guarantees that we also have mi 6∈ L′ in the rewound execution.8 This slightly more fine-grained
analysis allows us to replace the online-extractable NIZK with a rewinding-extractable NIZK.

Issue with Using Commitments. The next step is to relax the PKE by a (computationally
binding) commitment scheme. While the correctness and blindness hold without any issue, the
one-more unforgeability proof seems to require a major reworking. The main reason is that without
the reduction being able to decrypt A’s signing queries c, we won’t be able to define the list L.
In particular, we can no longer define the event E, and hence, cannot invoke the forking lemma.

7 Constructing an online extractable NIZK by adding a PKE on top of a sound NIZK is a standard method.
8 For the keen readers, we note that we are guaranteed to have the same i-th message in both executions
since these values are fixed at the forking point due to how the Fiat-Shamir transform works.
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Thus, we are back to the situation where we cannot argue that the extracted witness (ci, ri, σi)
from A’s forgeries, is a valid forgery against the euf-cma security game. Even worse, A could
potentially be breaking the computationally binding property of the commitment scheme by finding
two message-randomness pairs (mi, ri) and (m′i, r

′
i) such that they both commit to ci but mi 6= m′i.

In such a case, extracting from a single proof does not seem sufficient since a reduction would need
at least two extracted witnesses to break the binding of the commitment scheme.

To cope with the latter issue first, we extend the one-more unforgeability proof to rely on
a multi-proof rewinding-extractable NIZK. In general, multi-proof rewinding-extractors run in
exponential time in the number of proofs that it needs to extract from [78, 16]. However, in our
situation, with a careful argument, we can prove that our extractor runs in strict polynomial time
since A provides all the proofs to the extractor only at the end of the game. This is in contrast to
the settings considered in [78, 16] where A can adaptively submit multiple proofs to the extractor
throughout the game.

We note that the assumption we require has not changed: a Σ-protocol for the same relation
as in the single-proof setting compiled into an NIZK via the Fiat-Shamir transform. To prove
multi-proof rewinding-extractability of this Fiat-Shamir NIZK, we can no longer rely on the now
standard general forking lemma by Bellare and Neven [14] that divorces the probabilistic essence
of the forking lemma from any particular application context. A naive extension of the general
forking lemma to the multi-forking setting will incur an exponential loss in the success probability.
To provide a meaningful bound, we must take into account the extra structure offered by the
Fiat-Shamir transform, and thus our analysis is akin to the more traditional forking lemma analysis
by Pointcheval and Stern [73] or by Micali and Reyzin [66]. To the best of our knowledge, we
provide the first formal analysis of the multi-proof rewinding-extractability of an NIZK obtained by
applying the Fiat-Shamir transform to a Σ-protocol. We believe this analysis to be of independent
interest.

Final Idea to Finish the Proof. Getting back to the proof of one-more unforgeability, the reduc-
tion now executes the multi-proof rewinding-extractor to extract all the witnesses (ci, ri, σi)i∈[`+1]

from the forgeries. Relying on the binding of the commitment scheme, we are guaranteed that all
the commitment ci’s are distinct. Moreover, since A only makes ` blind signature queries in the
first execution, we further have that there exists at least one ci in the forgeries which A did not
submit in the first execution.

However, we are still stuck since it’s unclear how to argue that this particular ci was never queried
by A in any of the rewound executions. Our next idea is to slightly strengthen the NIZK so that the
proof π is statistically binding to a portion of the witness that contains the commitments.9 We note
that this is still strictly weaker and more efficiently instantiable compared to an online-extractable
NIZK required by Fischlin’s construction since we do not require the full list of witnesses to be
efficiently extractable from the proofs in an online manner. We use this property to implicitly fix
the commitments (ci)i∈[`+1] included in the forgeries after the end of the first execution of A. This
will be the key property to completing the proof.

The last idea is for the reduction to randomize what it queries to its signing oracle. For this,
we further assume the commitment scheme is randomizable, where we emphasize that this is done
for ease of explanation and we do not strictly require such an assumption (see remark 1). When
A submits a commitment c to the blind signing oracle, the reduction randomizes c to c′ using
some randomness rand and instead sends c′ to its signing oracle. It returns the signature σ and
rand to A. A checks if c becomes randomized to c′ using rand and if σ is a valid signature on
c′. It then uses c′ instead of c to generate the blind signature as before. The key observation is
that the reduction is invoking its signing oracle with randomness outside of A’s control. Since the
commitments (ci)i∈[`+1] were implicitly fixed at the end of the first execution, any randomized c′
sampled in the subsequent rewound execution is independent of these commitments. Hence, the
probability that the reduction queries ci to the signing oracle in any of the rewound execution is
negligible, thus constituting a valid forgery against the euf-cma security game as desired.

Instantiation. We instantiate the framework in the asymmetric pairing setting, i.e. we have groups
G1,G2,GT of prime order p, some fixed generators g1 ∈ G1, g2 ∈ G2, and a pairing e : G1×G2 7→ GT .
9 At the Σ-protocol abstraction, we call this new property f -unique extraction. It is a strictly weaker
property than the unique response property considered in the literature [37, 80].
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For the commitment scheme, we choose Pedersen commitments (CPed) of the form c = gm1 ppr,
as CPed is randomizable and consists of a single group element. Note that the public parameter
pp ∈ G1 is generated via a random oracle. We then need to choose an appropriate signature scheme
that allows signing CPed commitments. We choose SPS as all components of the scheme are group
elements, in particular, the message space is G`1, where ` is the message length. The most efficient
choice in the standard model is [55] with signatures of size 335 Byte. Instead, we optimize KPW
signatures [62] to a signature size of 223 Byte (from originally 382 Byte). Our optimized variant
SKPW is no longer structure-preserving, as it consists of one element τ in Zp, but suffices for our
applications. We refer to Section 4.2 for more details.

Note that SKPW would be an inefficient choice in the original Fischlin blind signature [38], as
it requires encrypting the signature τ over Zp to instantiate the online-extractable NIZK. In the
pairing setting, this incurs an overhead in proof size linear in the security parameter λ 10. The
benefit of using our framework with the weaker rewinding-extractable NIZK is that we now only
need to prove knowledge of τ , and thus can get away without encrypting it. Such an NIZK is possible
with a single element in Zp based on a Schnorr-type Σ-protocol (compiled with Fiat-Shamir).
In the Σ-protocol, we further commit to group elements (wi)i ∈ Gn1 in the witness via ElGamal
commitments (CEG) of the form Ei = (wi · ppri , gri1 ), which the prover sends to the verifier in the
first flow. In particular, this ensures f -unique extraction, as Ei fixes the commitment c ∈ {wi}i
statistically. Naively, this approach requires 2n group elements, where n is the number of group
elements in the witness. Instead, we share the randomness among all commitments under different
public parameters ppi generated via a random oracle. The commitments remain secure but require
only n + 1 group elements. In particular, we set Ei = (wi · ppsi ) and fix s via S = gs1. Then, we
can open all commitments Ei in zero-knowledge with a single element in Zp, as knowledge of s is
sufficient to recover the witness wi from all Ei. Then, we compile our Σ-protocol with Fiat-Shamir
to obtain a rewinding-based NIZK. We apply a well-known optimization to avoid sending some of
the first flow α, and include the hash value β ← H(x, α) in the proof explicitly. In total, compared
to sending the witness to the verifier in the clear, our NIZK only has an overhead of 1 group element
in G1 and 3 elements in Zp. The additional group element is S. The three additional Zp elements
are the hash value β, and values in the third flow required for (i) showing knowledge of s and (ii)
linearizing a quadratic equation in the signature verification.

The instantiation of our framework achieves communication size of 303 Byte and signature size
of 447 Byte.

Second Construction. We explain our second construction relying on randomizable signatures with
an ABO reduction.

Getting Rid of NIZKs in the Signature. While the previous construction provides a small sum
of signature and communication sizes, one drawback is that the blind signature has inherently
a larger signature than those of the underlying signature scheme. The source of this large blind
signature stems from using an NIZK to hide the underlying signature provided by the signer.

A natural approach used in the literature is to rely on techniques used to construct randomizable
signature schemes [18, 41, 40, 61]. Informally, a randomizable signature scheme allows to publicly
randomize the signature σ on a message m to a fresh signature σ′. Many standard group-based
signature schemes (in the standard model and ROM) are known to satisfy this property, e.g.,
[20, 82]. A failed attempt would be for the user to randomize the signature σ provided by the signer
and output the randomized σ′ as the blind signature. Clearly, this is not secure since the user is
not hiding the message m, that is, σ and σ′ are linkable through m thus breaking blindness. An
idea to fix this would be to let the user send a commitment c = Com(m; r) to the signer and the
signature signs the “message” c. However, unless the commitment c can be randomized consistently
with σ, we would still need to rely on an NIZK to hide c. This calls for a signature scheme that is
somehow compatible with commitments.

Signatures with All-But-One Reductions. Our main insight is that a specific class of signature
schemes with an all-but-one (ABO) reduction is naturally compatible with blind signatures. An

10 For instance, with ElGamal, the message is encrypted in the exponent and decryption would require
a discrete logarithm computation. Thus, the message is typically encrypted bit-wise which incurs an
overhead of log2(p).
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ABO reduction is a standard proof technique to prove selective security of public key primitives,
e.g., [21, 75, 49, 6], where a formal treatment can be found in [67]. In the context of signature
schemes, this is a proof technique that allows the reduction to embed the challenge message m∗ (i.e.,
the signature for which the adversary forges) into the verification key. The reduction can simulate
any signatures on m 6= m∗, and when the adversary outputs a forgery on m∗, then the reduction
can break some hard problems.

Let us now specify the class of signature scheme. We assume an additive homomorphic com-
mitment scheme, that is, Com(m; r) + Com(m′; r′) = Com(m + m′; r + r′). We then assume a
signature scheme where the signing algorithm Sig(sk,m) can be rewritten as Ŝig(sk,Com(m; 0) + u),
where u is some fixed but random commitment included in the verification key. Namely, Sig
first commits to the message m using no randomness, adds u to it, and proceeds with signing.
Note that if u = Com(−m′; r′) for some (m′, r′), then Com(m; 0) + u = Com(m −m′; r′). While
contrived at first glance, this property is naturally satisfied by many of the signature schemes
that admit an ABO reduction; the ABO reduction inherently requires embedding the challenge
message m∗ into the verification key in an unnoticeable manner and further implicitly requires
message m submitted to the signing query to interact with the “committed” m∗. Specifically,
the former hints at a need for an (implicit) commitment scheme and the later hints at the
need for some operation between the commitments. Finally, to be used in the security proof,
we assume there is a simulated signing algorithm ŜimSig along with a trapdoor td such that
ŜimSig(td,Com(m − m′; r′),m − m′, r′) = Ŝig(sk,Com(m; 0) + u) if and only if m 6= m′, where
recall u = Com(−m′; r′). Specifically, ŜimSig can produce a valid signature if it knows the non-zero
commitment message and randomness.

Let us explain the ABO reduction in slightly more detail. In the security proof, the reduction
guesses (or the adversary A submits) a challenge message m∗ that A will forge on. It then
sets up the verification key while replacing the random commitment u to u = Com(−m∗; r∗)
while also embedding a hard problem that it needs to solve. Due to the hiding property of
the commitment scheme, this is unnoticeable from A. Then, instead of using the real signing
algorithm Ŝig, the reduction uses the simulated signing algorithm ŜimSig. As long as m 6= m∗,
ŜimSig(td,Com(m − m∗; r∗),m − m∗, r∗) outputs a valid signature, and hence, can be used to
simulate the signing oracle. Finally, given a forgery on m∗, the reduction is set up so that it can
break a hard problem.

Turning it into a Blind Signature. To turn this into a blind signature, the key observation is
that Ŝig is agnostic to the committed message and randomness of Com(m; 0) + u — these are only
used during the security proof when running ŜimSig. Concretely, a user of a blind signature can
generate a valid commitment Com(m; r), send it to the signer, and the signer can simply return
σr ← Ŝig(sk,Com(m; r) + u). If the signature admits a way to map σr back to a normal signature
σ for m, then we can further rely on the randomizability of the signature scheme to obtain a fresh
signature σ′ on the message m.

The proof of one-more unforgeability of this abstract blind signature construction is almost
identical to the original ABO reduction with one exception. For the reduction to invoke the simulated
ŜimSig, recall it needs to know the message and randomness of the commitment Com(m; r)+u. Hence,
we modify the user to add an online-extractable NIZK to prove the correctness of the commitment
Com(m; r) so that the reduction can extract (m, r). Here, we require online-extractability rather
than rewinding-extractability since otherwise, the reduction will run exponentially in the number
of singing queries [78, 16]. Also, this is why the communication size becomes larger compared with
our first construction. Finally, when the adversary outputs a forgery including m∗, the reduction
can break a hard problem as before. Here, we note that we can simply hash the messages m with a
random oracle to obtain an adaptively secure scheme using the ABO reduction.

Interestingly, while the recent lattice-based blind signature by del Pino and Katsumata [34] stated
to use lattice-tailored techniques to optimize Fischlin’s generic construction, the construction and
the proof of one-more unforgeability follows our above template, where they use the Agrawal-Boneh-
Boyen signature [6] admitting an ABO reduction. The only difference is that since lattices do not
have nice randomizable signatures, they still had to rely on an NIZK for the final signature. While we
focused on ABO reductions where only one challenge messagem∗ can be embedded in the verification



8 Shuichi Katsumata, Michael Reichle, and Yusuke Sakai

key, the same idea naturally extends to all-but-many reductions. The blind signature by Blazy et
al. [18] relying on the Waters signature can be viewed as one such instantiation. Finally, while
we believe we can make the above approach formal using the ABO reduction terminology defined
in [67], we focus on one class of instantiation in the main body for better readability. Nonetheless,
we believe the above abstract construction will be useful when constructing round-optimal blind
signatures from other assumptions.
Instantiation. We instantiate the above framework with the Boneh-Boyen signature scheme
SBB [20, 22]. Recall that signatures of SBB on a messagem ∈ Zp are of the form σ = (sk·(um1 ·h1)r, gr1),
where u1, h1 ∈ G1 are part of the verification key, sk is the secret key and r ← Zp is sampled at
random. We observe that SBB is compatible with the Pedersen commitment scheme CPed with
generators u1 and g1. Roughly, the user commits to the message m via c = um1 · gs111, where s← Zp
blinds the message, proves that she committed to m honestly with a proof π generated via an
appropriate online-extractable NIZK Π, and sends (c, π) to the signer. The signer checks π and signs
c via (µ0, µ1)← (sk · (c · h1)r, gr1). Note that as c shares the structure um1 with SBB signatures on
message m, the user can recompute a valid signature on m via σ ← (µ0 ·µ−s1 , µ1). Before presenting
σ to a verifier, the user rerandomizes σ to ensure blindness. We refer to section 5 for more details.

The main challenge is constructing an efficient online-extractable NIZK Π for the relation
Rbb = {(x,w) : c = um1 · gs1}, where x = (c, u1, g1) and w = (m, s). As we require online-extraction,
a simple Σ-protocol showing c = um1 · gs1 compiled via Fiat-Shamir is no longer sufficient as in our
prior instantiation, as the extractor needs to rewind the adversary in order to extract (m, s). For
example, we could instantiate Π with the (online-extractable) GOS proofs but such a proof has a
size of around 400 KB. Another well-known approach is to additionally encrypt the witness (m, s)
via a PKE and include the ciphertext into the relation; recall this method was used when explaining
the Fischlin blind signature. The extractor can then use the secret key to decrypt the witnesses
online. While a common choice for the PKE would be ElGamal encryption, this is insufficient since
the extractor can only decrypt group elements gm1 and gs1 and not the witness in Zp as required. To
circumvent this, a common technique is to instead encrypt the binary decompositions (mi, si)i∈[`2] of
m, s, respectively, with ElGamal, where `2 = log2(p). It then proves with a (non-online extractable)
NIZK that m =

∑`2
i=1mi2

i−1 and s =
∑`2
i=1 si2

i−1 are valid openings of c, while also proving that
mi, si encrypted in the ElGamal ciphertexts are elements in {0, 1}, where the latter can be done
via the equivalent identity x · (1− x) = 0. The extractor can now decrypt the ElGamal encryptions
of mi to gmi1 ∈ {g1, 1G1} and efficiently decide whether mi is 0 or 1. Similarly, it can recover the
decomposition si. Unfortunately, this approach requires at least 2`2 ElGamal ciphertexts which
amount to 32 KB alone. In fact, the bit-by-bit encryption of the witness is also the efficiency
bottleneck of GOS proofs for Zp witnesses.

We refine the above approach in multiple ways to obtain concretely efficient online-extractable
NIZKs. Instead of using the binary decomposition, we observe that the extractor can still recover
x from gx1 if x ∈ [0, B − 1] is short, i.e., B = poly(λ). Thus, we let the prover encrypt the B-ary
decompositions (mi, si)i∈[`] of m and s, where ` = logB(p). For example, setting B = 232 allows
the extractor to recover mi via a brute-force calculation of the discrete logarithm, and the number
of encryptions is reduced by a factor of 32. Concretely, we modify the prover to prove that an
ElGamal ciphertext encrypts (mi, si)i∈[`] such that (i) each mi and si are in [0, B − 1], and (ii)
m =

∑`
i=1miB

i−1, s =
∑`
i=1 siB

i−1, and c = um1 · gs1.
To instantiate our approach, we glue two different (non-online extractable) NIZKs Πrp and Πped

together, each being suitable to show relations (i) and (ii), respectively. For the range relation (i),
we appeal to the batched variant of Bulletproofs [8] and turn it non-interactive with Fiat-Shamir.
For the linear relation (ii), we use a standard NIZK with an appropriate Σ-protocol compiled with
Fiat-Shamir. We further apply three optimizations to make this composition of NIZKs more efficient:

1. While Bulletproofs require committing to the decompositions (mi, si)i∈[`] in Pedersen commit-
ments, we use the shared structure of ElGamal ciphertexts and Pedersen commitments to avoid
sending additional Pedersen commitments. This also makes the relation simpler since we do not
have to prove consistency between the committed components in the ElGamal ciphertext and
Pedersen commitment.

11 In the actual construction, we further hash m by a random oracle; this effectively makes SBB adaptively
secure.
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2. We use a more efficient discrete logarithm algorithm during extraction with runtime O(
√
B),

which allows us to choose more efficient parameters for the same level of security. This further
reduces the number of encryptions by a factor 2.

3. We perform most of the proof in a more efficient elliptic curve Ĝ of same order p without
pairing structure. As both the NIZKs Πrp and Πped are not reliant on pairings, this reduces the
size and efficiency of the NIZK considerably.

Proof of Instantiation. Finally, we analyze the security of the optimized online-extractable NIZK
Π obtained by gluing Πrp and Πped together. Correctness and zero-knowledge are straightforward.
Also, online-extraction seems immediate on first sight. The extractor decrypts the decomposition,
reconstructs the witness (m, s), and checks whether c = um1 g

s
1. To show why it works, we rely on

the soundness of the range proof Πrp to guarantee that the committed values are short. This allows
the extractor to decrypt efficiently. Moreover, we rely on the soundness of Πped to guarantee that
the decrypted values form a proper B-ary decompositions of an opening (m, s) of c. However, this
high-level idea misses many subtle issues.

First, Bulletproofs are not well-established in the non-interactive setting in the ROM. While
Attema et al. [9] show that special sound multi-round proof systems are knowledge sound (or
rewinding-extractable) when compiled via Fiat-Shamir, Bulletproofs are only computationally
special sound under the DLOG assumption. An easy fix for this is to relax the relation of the
extracted witness. That is we use two different relations: one to be used by the prover and the
other to be used by the extractor. We define an extracted witness w to be in the relaxed relation if
either w is in the original relation or w is a DLOG solution with respect to (part of) the statement.
With this relaxation, the interactive Bulletproofs becomes special sound for the relaxed relation
since we can count the extracted DLOG solution as a valid witness. Observing that the result of [9]
naturally translates to relaxed relations, we can conclude the non-interactive Bulletproofs to be
rewinding-extractable in the ROM.

The second subtlety is more technical. For the formal proof, when the adversary submits a
proof such that the online-extraction of Π fails, we must show that the adversary is breaking either
the soundness of the underlying NIZKs Πrp or Πped. Recall that Πrp and Πped are glued together
via the ElGamal ciphertext (cf. item 1). Specifically, each witness w ∈ (mi, si)i∈[`] are encrypted
as c = (c0, c1) = (gwppr, gr) with randomness r ← Zp, and Πrp uses the partial “Pedersen part”
c0, while Πped uses the entire “ElGamal part” c. Thus one possibility for the online-extraction of
Π failing is when the adversary breaks the tie between the two NIZKs by breaking the binding
property of the Pedersen commitment. That is, if the adversary finds the DLOG between (g, pp), it
can break the consistency between the two NIZKs in such a way that online-extraction of Π fails.

Put differently, to show that no adversary can trigger a proof for which the online-extraction of
Π fails, we must show (at the minimum) that we can use such an adversary to extract a DLOG
solution between (g, pp). This in particular implies that we have to simultaneously extract the
witness w0 of Πrp containing one opening of c0 and the witness w1 of Πped containing the other
opening of c0 in order to break DLOG with respect to (g, pp), or equivalently to break the binding
property of the Pedersen commitment. The issue with this is that we cannot conclude that both
extractions succeed at the same time even if Πrp and Πped individually satisfy the standard notion
of rewinding-extractability. For instance, using the standard notion of rewinding-extractability, we
cannot exclude the case where the adversary sets up the proofs π0, π1 of Πrp,Πped, respectively, in
such a way that if the extractor of Πrp succeeds, then the extractor of Πped fails. We thus show
in a careful non-black box analysis that the extraction of both proofs succeeds at the same time
with non-negligible probability. To the best of our knowledge, this is the first time an NIZK that
internally uses Bulletproofs is proven to be online-extractable in the ROM. We believe that our
new analysis is of independent interest.

2 Preliminaries

2.1 Notation

Let λ ∈ N be the security parameter. A probabilistic polynomial time (PPT) algorithm A runs
in time polynomial in the (implicit) security parameter λ. We write Time(A) for the runtime of
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A. A function f(λ) is negligible in λ if it is O(λ−c) for every c ∈ N. We write f = negl(λ) for
short. Similarly, we write f = poly(λ) if f(λ) is a polynomial with variable λ. If D is a probability
distribution, x ← D means that x is sampled from D and if S is a set, x ← S means that x is
sampled uniformly and independently at random from S. We also write |S| for the cardinality
of set S. Further, we write D0

c
≈ D1 for distributions D0, D1, if for all PPT adversaries A, we

have |Pr[x0 ← D0 : A(1λ, x0) = 1] − Pr[x1 ← D1 : A(1λ, x1) = 1]| = negl(λ). Similarly, we write
D0

s
≈ D1 if the above holds even for unbounded adversaries. For some PPT algorithm A, we write

AO if A has oracle access to the oracle O. If A performs some check, and the check fails, we assume
that A outputs ⊥ immediately. Generally, we assume that adversaries are implicitly stateful.

We denote with [n] the set {1, . . . , n} for n ∈ N. For any ~h = (h1, . . . , hq) and i ∈ [q], we denote
~h<i as (h1, . . . , hi−1) and ~h≥i as (hi, . . . , hq), where ~h<1 denotes an empty vector. Moreover, for
any two vectors ~h, ~h′ of arbitrary length, we use ~h‖~h′ to denote the concatenation of the two vectors.
In particular, for any i ∈ [q] and ~h ∈ Hq, we have ~h = ~h<i‖~h≥i.

2.2 Groups and Pairings

Throughout this work, write 1G for the neutral element of some group G and use multiplicative
notation. Also, we assume a PPT algorithm (G1,G2,GT , e, g1, g2) ← PGen(1λ) that on input 1λ
outputs descriptions of the groups G1,G2,GT of prime order p and a pairing e : G1 ×G2 7→ GT , as
well as generators g1, g2 of G1,G2, respectively. Recall that e is a pairing if e is non-degenerate,
i.e. e(g1, g2) 6= 1GT , and if e is bilinear, i.e. e(ga1 , gb2) = e(g1, g2)

ab for a, b ∈ Zp. We sometimes use
implicit notation [x]k = gxk for k ∈ [1, 2, T ], x ∈ Zp and gT = e(g1, g2). We extend the notation to
matrices naturally, i.e. we write [A]k = ([ai,j ]k) for A = (ai,j) ∈ Zn×mp and k ∈ [1, 2, T ]. Note that
while we mainly consider the asymmetric pairing setting, i.e. G1 6= G2, all instantiations have a
natural variant in the symmetric pairing setting with similar efficiency. Similarly, we assume a PPT
algorithm (Ĝ, g) ← GGen(1λ, p) that on input 1λ and prime order p, outputs a description of a
group Ĝ of order p with generator g that is not equipped with a pairing. Generally, we assume that
given the description(s), group operations, pairing evaluation and membership tests are efficient,
and write g ← G for drawing elements from some group G at random. For readability, we leave
PGen and GGen implicit in the rest of the work.

Instantiation. For our instantiations, we assume that the modulus p is of size 256 bit, and an
element of G1,G2,GT is of size 382, 763, 4572 bit, respectively. These are common sizes of standard
BLS curves [11] with security parameter λ = 128, in particular BLS12-381 [23]. For groups that
require no pairing operation, we use a curve of order p and assume that elements are of size 256 bit.
We generally write Ĝ for such groups.

Assumptions. In this paper, we use the following hardness assumptions.

Definition 1 (DLOG). The discrete logarithm (DLOG) assumption in group G with generator g
holds if for any PPT adversary A, it holds that

Pr[x← Zp : A(g, gx) = x] = negl(λ)

Definition 2 (DDH). The decisional Diffie-Hellman (DDH) assumption holds in group G with
generator g if for any PPT adversary A, it holds that

|Pr[a, b← Zp : A(g, ga, gb, gab) = 1]− Pr[a, b, c← Zp : A(g, ga, gb, gc) = 1]| = negl(λ).

Definition 3 (SXDH). The symmetric external Diffie-Hellman (SXDH) assumption holds in
(G1,G2,GT , e, g1, g2) if the DDH assumption holds in G1 and in G2.

Definition 4 (CDH). The computational Diffie-Hellman (CDH) assumption holds in (G1,G2,GT , e, g1, g2)
if for any PPT adversary A, it holds that

Pr[a, b← Zp : A(g1, g2, ga1 , ga2 , gb1, gb2) = gab] = negl(λ).
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Explaining Group Elements as Random Strings. Our frameworks generally require that
public parameters pp (of commitment schemes) and common random strings crs (of NIZKs) are
random bit strings. For readability, we allow that pp and crs contain random group elements g ← G
for some group G. This is without loss of generality, as using explainable sampling, we can explain
these elements as random strings.

Concretely, explainable sampling for G allows us to sample from the uniform distribution UG over
G via g ← SampleG(1λ; r) using `G bits of randomness, where r ← {0, 1}`G . Importantly, there exists
an algorithm ExplainG that given uniformly random g ∈ G outputs randomness r′ ← ExplainG(1λ, g)

such that g = SampleG(1λ; r′) and r
s
≈ r′. Note that such sampling techniques are known for elliptic

curves, see for example [26].
Using this notation, a random string crs = (r1, . . . , rn) of size {0, 1}n·`G represents n group

elements gi ← SampleG(1λ; ri). Further, as long as all g′i ∈ G are also distributed independently
and uniformly at random, the bit string crs′ = (r′1, . . . , r

′
n) will have negligible statistical distance

to crs, where r′i ← ExplainG(1λ, g′i). Thus, we can safely replace crs with crs′ in security reductions.
The above also applies for pp = (r1, . . . , rn). Similarly, we can instantiate random oracles that map
into the group G with random oracles mapping into {0, 1}`G this way.

Throughout, we write g ← G short for g ← SampleG(1λ). Also, we write crs = (g1, . . . , gn) for
short, where gi are drawn uniformly at random. Note that we can replace crs with crs′ = (g′1, . . . , g

′
n)

in proofs, if all g′i are also distributed independently uniform over G. We extend the notation above
to tuples of random elements drawn from different groups. These techniques also apply for mixed
crs or pp over different groups.

2.3 Commitment Scheme

A commitment scheme is a PPT algorithm C = C.Commit such that

– C.Commit(pp,m; r): given the public parameters pp ∈ {0, 1}`C , message m ∈ Cmsg and random-
ness r ∈ Crnd, computes a commitment c ∈ Ccom, and outputs the pair (c, r),

Here, {0, 1}`C , Cmsg, Crnd, Ccom, are public parameter, message, commitment randomness, and
commitment spaces, respectively.12 We do not explicitly define the opening algorithm since we can
use the commitment randomness r as the decommitment (or opening) information and check if
c = Commit(pp,m; r) holds to verify that c is a valid commitment to message m.

Below, we first define the standard notions of binding and hiding, where note that correctness is
implicit since we define the decommitment algorithm via Commit. While we define the computational
variants below, we obtain the statistical variants by allowing the adversary A to be unbounded.

Definition 5 (Hiding). A commitment scheme is hiding if for any PPT adversary A, we have

AdvhideA (λ) =

∣∣∣∣Pr [pp← {0, 1}`C , (m0,m1)← A(pp),
m0,m1 ∈ Cmsg∧ (c, r)← Commit(pp,mcoin),

: coin = A(c)
]
− 1

2

∣∣∣∣ = negl(λ).

Definition 6 (Binding). A commitment scheme is binding if for any PPT adversary A, we have

AdvbindA (λ) = Pr

pp← {0, 1}`C , (m0,m1, r0, r1)← A(pp),
m0 6= m1 ∈ Cmsg ∧ r0, r1 ∈ Crnd

∧ (cb, rb) = Commit(pp,mb; rb), b ∈ {0, 1}
: c0 = c1

 = negl(λ).

We further define rerandomizability. This allows rerandomizing a commitment to a new commit-
ment on the same message. Moreover, we require that the new commitment has enough min-entropy
for a random rerandomization randomness.

Definition 7 (Rerandomizability). A commitment scheme is rerandomizable if there exist
PPT algorithms (RerandCom,RerandRand) such that

– RerandCom(pp, c,∆r): given the public parameter pp, a commitment c ∈ Ccom, and a rerandom-
ization randomness ∆r ∈ Crnd, deterministically outputs a rerandomized commitment c′ ∈ Ccom,

12 We assume uniform public parameters to improve readability. For our work it is sufficient that the
distribution of the public parameters is explainable (see section 2.2).
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– RerandRand(pp, c,m, r,∆r): on input of the public parameter pp, a commitment c ∈ Ccom, a
message m ∈ Cmsg, a randomness r, and a rerandomization randomness ∆r ∈ Crnd, outputs a
rerandomized randomness r′,

and the following holds:

– for all pp ∈ {0, 1}`C , m ∈ Cmsg, (c, r) ← Commit(pp,m), and ∆r ∈ Crnd, if we compute
c′ = RerandCom(pp, c,∆r) and r′ ← RerandRand(pp, c,m, r,∆r), then it holds that c′ = c′′,
where (c′′, r′) = Com(pp,m; r′), and

– we have

max
c,c′∈Ccom

Pr[pp← {0, 1}`C , ∆r ← Crnd : c′ = RerandCom(pp, c,∆r)] = negl(λ).

We note that any natural additive homomorphic commitment scheme satisfies rerandomizability if
we define RerandCom(pp, c,∆r) = c+Commit(pp, 0;∆r) = c′. Observe that if c = Commit(pp,m; r),
the rerandomziaed randomness is r′ = r +∆r since c′ = Commit(pp,m; r′) by the homomorphic
property. Moreover, c′ has high min-entropy since Commit(pp, 0) has high min-entropy for most
natural commitment schemes. Finally, we note that while a computational variant of the high
min-entropy property suffices for our generic construction, we use the statistical variant for simplicity
and because our instantiation satisfies it.

2.4 Signature Scheme

We consider deterministic signature schemes; a scheme where the randomness of the signing
algorithm is derived from the secret key and message. We can derandomize any signature scheme by
using a pseudorandom function for generating the randomness used in the signing algorithm (see for
example [59]). Formally, a signature scheme is a tuple of PPT algorithms S = (KeyGen,Sign,Verify)
such that

– KeyGen(1λ): generates a verification key vk and a signing key sk,
– Sign(sk,m): given a signing key sk and a message m ∈ Smsg, deterministically outputs a

signature σ,
– Verify(vk,m, σ): given a verification key pk and a signature σ on message m, deterministically

outputs a bit b ∈ {0, 1}.

Here, Smsg is the message space. We define the standard notion of correctness and euf-cma security

Definition 8 (Correctness). A signature scheme is correct, if for all (vk, sk) ← KeyGen(1λ),
m ∈ Smsg, and σ ← Sign(sk,m), it holds that Verify(vk,m, σ) = 1.

Definition 9 (EUF-CMA). A signature scheme is euf-cma if for any PPT adversary A, we
have

AdveufA (λ) = Pr

[
(vk, sk)← KeyGen(1λ)
(m,σ)← ASign(sk,·)(vk)

: m /∈ L ∧ Verify(vk,m, σ) = 1

]
= negl(λ),

where L is the list of messages A queried to the Sign-oracle.

2.5 (Partially) Blind Signature Scheme

A partially blind signature scheme is a tuple of PPT algorithms PBS = (KeyGen,Sign,Verify) such
that

– KeyGen(1λ): generates the verification key bvk and signing key bsk,
– User(bvk, t ,m): given verification key bvk, common message t ∈ BSt, and message m ∈ BSmsg,

outputs a first message ρ1 and a state st,
– Signer(bsk, t , ρ1): given signing key bsk, common message t ∈ BSt, and first message ρ1,

outputs a second message ρ2,



Practical Round-Optimal Blind Signatures in the ROM 13

– Derive(st, t , ρ2): given state st, common message t ∈ BSt, and second message ρ2, outputs a
signature σ,

– Verify(bvk, t ,m, σ): given verification key bvk, common message t ∈ BSt, and signature σ on
message m ∈ BSmsg, outputs a bit b ∈ {0, 1}.

Here, BSt and BSmsg are the message and tag spaces, respectively. In case the common message
t ∈ BSt is omitted from the syntax (or alternatively, always set to a fixed value), then we call the
scheme to be a blind signature BS. We consider the standard security notions for blind signatures [54].
Below, we define correctness, partial blindness under malicious keys, and one-more unforgeability of
a (partially) blind signature scheme. The definition for blind signature can be recovered by ignoring
t, denoted with a box. Moreover, we assume the state is kept implicit in the following for better
readability.

Definition 10 (Correctness). A partially blind signature scheme is correct, if for all messages
( t ,m) ∈ BSt×BSmsg, (bvk, bsk)← KeyGen(1λ), (ρ1, st)← User(bvk, t ,m), ρ2 ← Signer(bsk, t , ρ1), σ ←
Derive(st, t , ρ2), it holds that Verify(bvk, t ,m, σ) = 1.

Definition 11 (Partial Blindness Under Malicious Keys). A partially blind signature scheme
is blind under malicious keys if for any PPT adversary A, we have

AdvblindA (λ) = Pr

∣∣∣∣∣∣∣∣∣∣∣∣



(bvk, t ,m0,m1)← A(1λ), coin← {0, 1},
(ρ1,b, stb)← User(bvk, t ,mb) for b ∈ {0, 1},
(ρ2,coin, ρ2,1−coin)← A(ρ1,coin, ρ1−coin),
σb ← Derive(stb, t , ρ2,b) for b ∈ {0, 1},
if ∃b s.t. Verify(bvk, t ,mb, σb) = 0:

then σ0 = σ1 = ⊥,

: coin = A(σ0, σ1)

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ).

Definition 12 (One-more Unforgeability). A blind signature scheme is one-more unforgeable
if for any Q = poly(λ) and PPT adversary A that for each common message t makes at most Q
signing queries containing the same t , we have

Advomuf
A (λ) = Pr

[
(bvk, bsk)← KeyGen(1λ)

{ t , (mi, σi)}i∈[Q+1] ← ASigner(bsk,·,·)(bvk)
:
∀i 6= j ∈ [Q+ 1] : mi 6= mj

∧ Verify(bvk, t ,mi, σi) = 1

]
= negl(λ).

2.6 Σ-Protocol

Let R be an NP relation with statements x and witnesses w. We denote by LR = {x | ∃w s.t. (x,w) ∈
R} the language induced by R. A Σ-protocol for an NP relation R for language LR is a tuple of
PPT algorithms Σ = (Init,Chall,Resp,Verify) such that

– Init(x,w): given a statement x ∈ LR, and a witness w such that (x,w) ∈ R, outputs a first flow
message (i.e., commitment) α and a state st, where we assume st includes x,w,

– Chall(): samples a challenge β ← CH (without taking any input),
– Resp(st, β): given a state st and a challenge β ∈ CH, outputs a third flow message (i.e.,

response) γ,
– Verify(x, α, β, γ): given a statement x ∈ LR, a commitment α, a challenge β ∈ CH, and a

response γ, outputs a bit b ∈ {0, 1}.

Here, CH denotes the challenge space. We call the tuple (α, β, γ) the transcript and say that they
are valid for x if Verify(x, α, β, γ) outputs 1. When the context is clear, we simply say it is valid
and omit x.

We first define the standard notions of correctness, honest-verifier zero-knowledge, and 2-special
soundness.

Definition 13 (Correctness). A Σ-protocol is correct, if for all (x,w) ∈ R, (α, st)← Init(x,w),
β ∈ CH, and γ ← Resp(st, β), it holds that Verify(x, α, β, γ) = 1.
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Definition 14 (High Min-Entropy). A Σ-protocol has high min-entropy if for all (x,w) ∈ R
and (possibly unbounded) adversary A, it holds that

Pr[(α, st)← Init(x,w), α′ ← A(1λ) : α = α′] = negl(λ).

Definition 15 (HVZK). A Σ-protocol is honest-verifier zero-knowledge (HVZK), if there exists
a PPT zero-knowledge simulator Sim such that the distributions of Sim(x, β) and the honestly
generated transcript with Init initialized with (x,w) are computationally indistinguishable for any
x ∈ LR, and β ∈ CH, where the honest execution is conditioned on β being used as the challenge.

Definition 16 (2-Special Soundness). A Σ-protocol is 2-special sound, if there exists a deter-
ministic PT extractor Ext such that given two valid transcripts {(α, βb, γb)}b∈[2] for statment x with
β0 6= β1, along with x, outputs a witness w such that (x,w) ∈ R.

Note that in the above, two valid transcripts for x with the same commitment and different
challenges imply that statement x is in LR. That is, we do not guarantee x to lie in LR when
invoking Ext. While subtle, this allows us to invoke Ext properly within the security proof even if
the reduction cannot decide if the statement x output by the adversary indeed lies in LR.

In the following, we propose a new notion of f-unique extraction. The notion is similar to
the unique response property [37, 80] which requires that given an incomplete transcript (α, β),
there is at most one response γ such that the transcript τ = (α, β, γ) is valid. We relax this in
two ways. First, we require that given a transcript τ and another challenge β′, it is impossible to
find two different responses γ0, γ1, such w0 6= w1, where wb is the witness extracted from τ and
τb = (α, β′, γb). We further relax this by only requiring this property for a portion of the witness,
defined by a function f , i.e., we require f(w0) 6= f(w1) instead of w0 6= w1.

While it may seem like an unnatural property, this is satisfied by many natural sigma protocols.
In particular, if the first flow α contains a perfectly binding commitment c = Commit(f(w); r) to
f(w), and the extractor extracts the appropriate r, then the Σ-protocol has f -unique extraction.
We remark also that a statistical variant of f -unique extraction is sufficient for our purpose. We
choose the definition below for simplicity and because our instantiation satisfies it. See section 3 for
more details and concrete example of f -unique extraction.

Definition 17 (f-Unique Extraction). For a (possibly non-efficient) function f , a Σ-protocol Σ
has f -unique extraction if for any statement x, any transcript τ = (α, β, γ) and challenge β′ 6= β,
there is no γ0, γ1, such that for τb = (α, β′, γb), we have

f(Ext(x, τ, τ0)) 6= f(Ext(x, τ, τ1)).

2.7 Non-Interactive Zero Knowledge

Given a witness w for statement x, a non-interactive zero-knowledge (NIZK) proof system allows a
prover to generate a proof π that attests that she knows some w′ such that (w′, x) ∈ R. Proofs π
can be verified for statement x without revealing anything but that the statement is true. Here, we
quantify “knowledge of the witness” either via adaptive knowledge soundness or online-extractability.
The former informally states that if an algorithm A can generate a valid proof-statement pair (x, π),
then there exists some extractor that when given black-box access to A, can extract some witness
w s.t. (x,w) ∈ R. The latter requires that the witness w can be extracted from (x, π) “on-the-fly”
without disrupting A. In this context, we require some random oracle H on which proving and
verification rely. Further, we assume that the prover and verifier are supplied with a common
random string crs. As we later aim to avoid such a crs in our blind signature framework, the crs
will be the output of a random oracle.

More formally, an NIZK for a relation R is a tuple of oracle-calling PPT algorithms (ProveH,VerifyH)
such that:

– ProveH(crs, x, w): receives a common random string crs ∈ {0, 1}`, a statement x and a witness w,
and outputs a proof π,

– VerifyH(crs, x, π): receives a statement x and a proof π, and outputs a bit b ∈ {0, 1}.
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An NIZK satisfies correctness and zero-knowledge, where we call it adaptive knowledge sound if it
satisfies definition 20 and online-extractable if it satisfies definition 21.

Definition 18 (Correctness). An NIZK is correct if for any crs ∈ {0, 1}`, (x,w) ∈ R, and
π ← ProveH(crs, x, w), it holds that VerifyH(crs, x, π) = 1.

Definition 19 (Zero-Knowledge). An NIZK is zero-knowledge if there exists a PPT simulator
Sim = (SimH,Simπ) such that for any PPT adversary A, it holds that

AdvzkA (λ) =
∣∣Pr [AH,P(crs) = 1

]
− Pr

[
ASimH,S(crs) = 1

]∣∣ = negl(λ),

where P and S are oracles that on input (x,w) return ⊥ if (x,w) /∈ R, and else output ProveH(crs, x, w)
or Simπ(crs, x) respectively. Note that the probability is taken over crs ← {0, 1}` and the random
choices of H, and both SimH and Simπ have a shared state.

We define adaptive knowledge soundness. We remark that the soundness relation Rlax can be
different from the (correctness) relation R. We are typically interested in R ⊆ Rlax and call Rlax the
relaxed relation.

Definition 20 (Adaptive Knowledge Soundness). An NIZK is adaptively knowledge sound
for relation Rlax if there exists positive polynomials pT, pP and a PPT algorithm Ext such that for
any crs ∈ {0, 1}`, given oracle access to any PPT adversary A (with explicit random tape ρ) that
makes QH = poly(λ) random oracle queries with

Pr[(x, π)← AH(crs; ρ) : VerifyH(crs, x, π) = 1] ≥ µ(λ),

we have

Pr

[
(x, π)← AH(crs; ρ),
w ← Ext(crs, x, π, ρ,~h)

: (x,w) ∈ Rlax

]
≥ µ(λ)− negl(λ)

pP(λ,QH)
,

where ~h are the outputs of H, and the probability is over the random tape ρ and the random choices
of H. Also, we require that the runtime of Ext is bounded by pT(λ,QH) · Time(A).

We define (multi)-online extractability similarly to [34]. We consider a slightly simplified definition
where the runtime of the extractor Ext does not depend on the advantage µ of the adversary A.

Definition 21 ((Multi)-Online Extractability). An NIZK is online-extractable if for all PPT
adversaries A, there exists a PPT simulator SimCRS and extractor Ext, such that

CRS Indistinguishability. For any PPT adversary A, we have

AdvcrsA (λ) = |Pr[crs← {0, 1}` : AH(crs) = 1]− Pr[(crs, td)← SimCRS(1λ) : AH(crs) = 1]| = negl(λ).

Online Extractability. There exists positive polynomials pT, pP such that for any QH = poly(λ)
and PPT adversary A that makes at most QH random oracle queries with

Pr
[
(crs, td)← SimCRS(1λ), {(xi, πi)}i∈[QS ] ← AH(crs) : ∀i ∈ [QS ] : VerifyH(crs, xi, πi) = 1

]
≥ µ(λ),

it holds that

Pr

[
(crs, td)← SimCRS(1λ), {(xi, πi)}i∈[QS ] ← AH(crs),

{wi ← Ext(crs, td, xi, πi)}i∈[QS ]
:
∀i ∈ [QS ] : (xi, wi) ∈ R

∧ VerifyH(crs, xi, πi) = 1

]
≥ µ(λ)− negl(λ)

pP(λ,QH)
,

where the runtime of Ext is upper bounded by pT(λ,QH) · Time(A).



16 Shuichi Katsumata, Michael Reichle, and Yusuke Sakai

2.8 Splitting Lemma

We review the standard splitting lemma from Pointcheval and Stern [73].

Lemma 1 (Splitting Lemma). Let ε ∈ (0, 1] and A ⊆ X × Y such that

Pr
(x,y)←X×Y

[(x, y) ∈ A] ≥ ε.

For any α ∈ [0, ε) define

B =

{
(x, y) ∈ X × Y

∣∣∣∣ Pr
(x,y′)←X×Y

[(x, y′) ∈ A] ≥ ε− α
}
.

Then we have

Pr
(x,y)←X×Y

[(x, y) ∈ B | (x, y) ∈ A] ≥ α

ε
.

3 Optimizing the Fischlin Blind Signature

In this section, we provide an optimized generic construction of blind signatures compared with
the Fischlin blind signature [38]. In particular, we relax the extractable (and perfect binding)
commitment and multi-online extractable NIZK used as the central building block for the Fischlin
blind signature by a computationally binding commitment and a standard rewinding-based NIZK
built from a Σ-protocol satisfying f -unique extraction. As we show in Section 4, this relaxation
allows us to minimize the sum of the communication and signature size. We construct a natural
partially blind variant in Section 7.

3.1 Construction

Our generic construction is based on the building blocks (C,S,Σ) that satisfy some specific
requirements. If (C,S,Σ) satisfies these requirements, then we call it BSRnd-suitable.

Definition 22 (BSRnd-Suitable (C,S,Σ)). The tuple of schemes (C,S,Σ) are called BSRnd-
suitable, if it holds that

– C is a correct and hiding rerandomizable commitment scheme with public parameter, message,
randomness, and commitment spaces {0, 1}`C , Cmsg, Crnd, and Ccom, respectively, such that Cmsg

is efficiently sampleable and 1/|Cmsg| = negl(λ),
– S is a correct and euf-cma secure deterministic signature scheme with message space Smsg that
contains Ccom, i.e., Ccom ⊆ Smsg and we assume elements in Smsg are efficiently checkable,

– Σ is a correct, HVZK, 2-special sound Σ-protocol with high min-entropy, and challenge space
CH with 1/|CH| = negl(λ) for the relation

Rrnd := {x =(pp, vk,m), w = (µ, c, r) |
C.Commit(pp,m; r) = (c, r) ∧ S.Verify(vk, µ, c) = 1}.

We also require Σ to be f -unique extraction where f(w) = c, i.e., f outputs c and ignores (µ, r).

Overview. Let (C, S,Σ) be BSRnd-suitable. Let Hpar,HM,Hβ be a random oracles from {0, 1}∗ into
{0, 1}`C , Cmsg, CH, respectively. We now describe our framework BSRnd[C, S,Σ], or BSRnd for short.

For key generation, the signer samples (vk, sk) ← S.KeyGen(1λ) and publishes bvk = vk and
stores bsk = sk. Further, the verification key bvk (or rather the hash functions) implicitly specifies
the public parameter pp for C via pp = Hpar(0).

To sign a message m, the user first commits to HM(m) via C and sends the commitment c to
the signer. The signer then rerandomizes the commitment c to c′ via sampling a rerandomization
randomness ∆r, and signs c′ via S. It then sends the signature µ to the user along with ∆r. The
user checks by recomputing c′ from c and ∆r, and checks if µ is a valid signature on c′. Finally,
the final blind signature is a proof π for relation Rext, generated via Σ using Fiat-Shamir. Note
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that π is a non-interactive proof of knowledge of a signature µ on a commitment c′ to message HM(m).

Construction. In more detail, we have the following, where we assume pp is provided to all of the
algorithms for readability.

– BSRnd.KeyGen(1λ): samples (vk, sk)← S.KeyGen(1λ) and outputs verification key bvk = vk and
signing key bsk = sk.

– BSRnd.User(bvk,m): sets m ← HM(m) and outputs the commitment c ∈ Ccom generated via
(c, r)← C.Commit(pp,m) as the first message and stores the randomness st = r ∈ Crnd.

– BSRnd.Signer(bsk, c): checks if c ∈ Ccom, samples a rerandomization randomness ∆r ← Crnd,
rerandomizes the commitment c via c′ = C.RerandCom(pp, c,∆r), signs µ← S.Sign(sk, c′), and
finally outputs the second message ρ = (µ,∆r).

– BSRnd.Derive(st, ρ): parse st = r, ρ = (µ,∆r) and checks ∆r ∈ Crnd. It then computes the
randomized commitment c′′ = C.RerandCom(pp, c,∆r) and randomized randomness r′ ←
C.RerandRand(pp, c,m, r,∆r), and checks S.Verify(vk, c′′, µ) = 1 and c′′ = C.Commit(pp,m; r′).
Finally, it outputs a signature σ = π, where (α, st′) ← Σ.Init(x,w), β ← Hβ(x, α), γ ←
Σ.Resp(x, st′, β), π = (α, β, γ) with x = (pp, vk,m), w = (µ, c′′, r′).

– BSRnd.Verify(bvk,m, σ): parses σ = π and π = (α, β, γ), sets m = HM(m) and x = (pp, vk,m),
and outputs 1 if β = Hβ(x, α), Σ.Verify(x, α, β, γ) = 1, and otherwise outputs 0.

3.2 Correctness and Security

We prove correctness, blindness, and one-more unforgeability. The correctness of BSRnd follows
directly from the correctness of the underlying schemes (C,S,Σ). Blindness follows mainly from
the HVZK property of Σ and the hiding property of C. The only thing to be aware of is that the
user needs to check the validity of the rerandomized commitment c′′ by computing a rerandomized
randomness using the randomness r used to compute the original commitment c. In order to invoke
the hiding property of C on c, we rely on the correctness of the randomization property so that the
reduction no longer needs to check the validity of c′′.

The main technical challenge is the proof of one-more unforgeability. Here, we argue that we
can use a successful attacker on the one-more unforgeability of BSRnd to extract some forgery σ
for S. The crux is to ensure that the extracted commitment was never signed during Signer(bsk, ·)
queries, even if we rewind the adversary in order to extract the witness from the forgery. We ensure
this with two ideas: We first use f -unique extractionof Σ to argue that the forgeries implicitly fix
the to-be-extracted commitments ci’s in the first execution of the adversary. We then use the fact
that the reduction adds new randomness in the rewound executions outside of the adversary’s
control, that is, rerandomize the commitment c submitted to the signing oracle, to argue that the
ci’s cannot appear in the list of rerandomized commitments. Finally, we note that we extract from
all the proofs included in the forgeries since one extraction is not enough: since we’re only using
a computationally binding commitment, the adversary may be breaking the binding property, in
which case, the reduction needs at least two witnesses. To this end, we perform a more fine-grained
analysis of the standard forking lemma. More details can be found in section 1.3.

Theorem 1 (Correctness). The scheme BSRnd is correct.

Proof. Let pp ← Hpar(0), m ∈ {0, 1}∗ and (vk, sk) ← S.KeyGen(1λ). The user first computes
m← HM(m) and (c, r)← C.Commit(pp,m; r) for some r ← Crnd. Note that c ∈ Ccom as m ∈ Cmsg.
The signer computes ∆r ← Crnd, c′ = C.RerandCom(pp, c,∆r), and µ ← S.Sign(sk, c′), where
c′ ∈ Ccom ⊆ Smsg. The user computes the randomized commitment c′′ = C.RerandCom(pp, c,∆r)
and randomized randomness r′ ← C.RerandRand(pp, c,m, r,∆r), and checks S.Verify(vk, c′′, µ) = 1
and c′′ = C.Commit(pp,m; r′). This holds since RerandCom is deterministic, and by the correctness
of the rerandomized commitment (see definition 7) and of S. It then computes σ = π, where π is a
proof generated using x = (pp, vk,m), w = (σ, c′, r′) and we have (x,w) ∈ Rrnd due to the previous
check. As m = HM(m) and Σ is correct, we have Σ.Verify(x, α, β, γ) = 1 as desired.

Theorem 2 (Blindness). The scheme BSRnd is blind under malicious keys under the hiding and
rerandomization properties of C and the high min-entropy and HVZK properties of Σ.
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Proof. Let A be a PPT adversary against blindness and QH denote the number of Hβ queries. We
define the following hybrids and denote by AdvHiA (λ) the advantage of A in Hybrid i.

– Hybrid 0 is identical to the real game.
– Hybrid 1 is the same as Hybrid 0, except the challenger aborts if the random oracle Hβ was

already queried on (xb, αb) before generating πb = (αb, βb, γb) for b ∈ {0, 1}. In more detail, the
challenger runs (αb, st′b)← Σ.Init(xb, wb), where xb and wb are defined as in the protocol, samples
βb ← CH, runs γb ← Σ.Resp(x, αb, st′b, βb). Then if (xb, αb) for either b = 0 or 1 were queried to
Hβ , the challenger aborts the game. Otherwise, the challenger programs Hβ(xb, αb)← βb.
Hybrids 0 and 1 differ only when the game aborts. Due to the high min-entropy of Σ, the
probability that the random oracle is already defined on input (xb, αb) is bounded by QH ·
negl(λ) = negl(λ) for each b ∈ {0, 1}. Taking the union bound on b ∈ {0, 1}, we have that
|AdvH0

A (λ)− AdvH1

A (λ)| ≤ negl(λ).
– Hybrid 2 is the same as Hybrid 1, except we omit the check on the rerandomized com-

mitments. That is, when the challenger receives a second message ρb = (µb, ∆rb) from the
adversary, it only computes the randomized commitment c′′b = C.RerandCom(pp, cb, ∆rb)
and checks S.Verify(vk, c′′b , µb) = 1. Recall in the previous hybrid, the challenger further
computed the randomized randomness r′b ← C.RerandRand(pp, cb,mb, rb, ∆rb) and checked
c′′b = C.Commit(pp,mb; r

′
b).

Hybrids 1 and 2 differ only when c′′b 6= C.Commit(pp,mb; r
′
b). However, this can never occur due to

the correctness of the rerandomized commitment (see definition 7). Hence, AdvH1

A (λ) = AdvH2

A (λ).
– Hybrid 3 is the same as Hybrid 2, except the proofs πb are simulated without the witness wb.

That is, the challenger generates a simulated transcript (αb, βb, γb) by sampling βb ← CH and
running (αb, γb)← Σ.Sim(xb, βb).
We can construct an adversary BΣ such that |AdvH2

A (λ)−AdvH3

A (λ)| ≤ 2 ·AdvhvzkBΣ
(λ). Essentially,

BΣ challenges A and uses the provided oracles to generate proofs and answer Hβ queries. If
the oracle outputs simulated proofs, the game is distributed identically to Hybrid 3. Else, the
oracle outputs real proofs and behaves as in Hybrid 2.

– Hybrid 4 is the same as Hybrid 3, except the commitment-randomness pair (cb, rb) ←
C.Commit(pp,HM(mb)) are instead computed as commitments to HM(0).
It is straightforward to construct an adversary BC on the hiding property of C with |AdvH3

A (λ)−
AdvH4

A (λ)| ≤ 2 · AdvhideBC
(λ) by noticing that the challenger no longer requires the commitment

randomness rb to simulate A due to the modification we made in Hybrids 2 and 3. We note that
the public parameters pp obtained from the hiding challenger can be programmed into Hpar(0).

In Hybrid 4, the value of coin is information-theoretically hidden from A, as the commitments cb
and the proofs πb are identically distributed for b ∈ {0, 1}. Consequently, AdvH4

A (λ) = 0. Also, the
running time of the adversaries BC and BΣ are roughly that of A. Combining the inequalities yields
the statement.

Theorem 3 (One-More Unforgeability). The scheme BSRnd is one-more unforgeable under the
binding and rerandomizability properties of C, euf-cma security of S, and the 2-special soundness
and f -unique extraction properties of Σ.

Proof. Let A be a PPT adversary against one-more unforgeability. Denote by QS the number of
signing queries, by QM the number of HM queries, and by QH the number of Hβ queries. Recall
that we model Hpar,HM, and Hβ as random oracles, where we assume without loss of generality
that A never repeats queries. In the end of the interaction with A, that is after QS signing
queries, A outputs QS + 1 forgeries {(mi, σi)}i∈[QS+1]. We write σi = πi and denote by ci the
QS first message queries to BSRnd.Signer(bsk, ·) issued by A. Note that if A is successful, then
we have Σ.Verify(xi, αi, βi, γi) = 1 and βi = Hβ(xi, αi) for mi = HM(mi), xi = (pp, vk,mi), and
πi = (αi, βi, γi). We first slightly alter the real game and remove subtle conditions to make the
later proofs easier. We denote by AdvHiA (λ) the advantage of A in Hybrid i for i ∈ {0, 1}.

– Hybrid 0 is identical to the real game.
– Hybrid 1 is the same as Hybrid 0, except it aborts if there is a collision in HM or Hβ , or there is

some (xi, αi) for i ∈ [QS + 1] that was never queried to Hβ .
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It suffices to upper bound the abort probability. A collision in HM (resp. Hβ) happens with
probability at most Q2

M/|Cmsg| (resp. Q2
H/|CH|) (which follows for example from a union bound).

Moreover, the probability that some fixed βi of A’s output equals to Hβ(xi, αi) is exactly 1/|CH|,
if (xi, αi) was never queried to Hβ . Thus, it follows that AdvH0

A (λ) ≤ AdvH1

A (λ)+
Q2
M

|Cmsg| +
Q2
H+1
|CH| =

AdvH1

A (λ) + negl(λ).

Description of Wrapper Algorithm B. We now present a wrapper algorithm B that simulates the
interaction between the challenger G and A in Hybrid 1. Looking ahead we apply a generalization
of the standard forking lemma on B to extract the witnesses from all the proof (i.e. forgery) output
by A.

Notice that G is deterministic once the keys (vk, sk) of the (deterministic) signature scheme S,
the QS rerandomization randomness in Crnd, and the outputs of the random oracles Hpar,HM,Hβ
are determined. Since Hpar is only used to generate the public parameter pp of the commitment
scheme, we assume without loss of generality that only pp is given to A rather than access to
Hpar. We use coin to denote all the QM outputs of HM and the random coins used by A. We
use ~h = (β̂i, ∆ri)i∈[QH+QS ] ∈ (CH × Crnd)

QH+QS to explicitly denote the list that will be used to
simulate the outputs of Hβ and rerandomziation randomness sampled by G. Here, we note that ~h
is deliberately defined redundantly since G only needs QH hash outputs and QS rerandomziation
randomness, rather than QH +QS of them each. We also use β̂ ∈ CH to denote the output of Hβ
to distinguish between the hash value β included in A’s forgeries. We then define B as an algorithm
that has oracle access to S.Sign(sk, ·) as follows:

BS.Sign(sk,·)(pp, vk,~h; coin) : On input pp, vk, and ~h ∈ (CH×Crnd)
QH+QS , B simulates the interaction

between the challenger G and A in Hybrid 1. B invokes A on the randomness included in coin
and simulates G, where it runs the same code as G except for the following differences:
– It uses the provided pp and vk rather than generating it on its own;
– All QM random oracle queries to HM are answered using the hash values include in coin;
– On the i-th (i ∈ [QH ]) random oracle query to Hβ , it retrieves an unused (β̂k, ∆rk) with

the smallest index k ∈ [QH +QS ] and outputs β̂k and discards ∆rk;
– On the i-th (i ∈ [QS ]) first message ci ∈ Ccom from A, it retrieves an unused (β̂k, ∆rk) with

the smallest index k ∈ [QH+QS ] and discards β̂k. It then computes c′i = C.RerandCom(pp, ci, ∆rk),
queries the signing oracle on c′i, obtains µi ← S.Sign(sk, c′i), and returns the second message
ρi = (µi, ∆rk).

At the end of the game when A outputs the forgeries, B checks if the forgeries are valid and
the added condition in Hybrid 1. If the check does not pass, then B outputs ((0)i∈[QS+1],⊥),
i.e., QS + 1 zeros followed by a ⊥. Otherwise, B finds the indices Ii ∈ [QH + QS ] such
that Hβ(xi, αi) = βi = β̂Ii for i ∈ [QS + 1], which are guaranteed to exist uniquely due to
the modification we made in Hybrid 1. It then sets Λ = (xi, αi, βi, γi)i∈[QS+1] and outputs
((Ii)i∈[QS+1], Λ). It can be checked that B perfectly simulates the view of the challenger G in
Hybrid 1. Therefore, B outputs Λ 6= ⊥ with probability AdvH1

A (λ).

Description of Forking Algorithm FB. We now define a generalization of the standard forking algo-
rithm F so that F keeps on rewinding B until some condition is satisfied. Concretely, F takes as
input (pp, vk), has oracle access to S.Sign(sk, ·), and invokes B internally as depicted in algorithm 1,
where the number of repetition T is defined below.

We show that if A succeeds in breaking one-more unforgeability in Hybrid 1 with non-negligible
probability, then we can set a specific number of repetition T so that the forking algorithm FB
terminates in polynomial time and succeeds in outputting a non-⊥ with non-negligible probability.
Formally, we have the following lemma.

Lemma 2. Let ε = AdvH1

A (λ). Then, if we set T =
(

ε
(QH+QS)(QS+2)2

)−1
· log(2QS+2), FB outputs

a non-⊥ with probability at least ε
2(QS+2)2 .

In particular, if ε is non-negligible, then T = poly(λ). Moreover, the running time of FB is at
most (roughly) a factor T · (QS + 1) + 1 more of B (or equivalently A), so FB runs in polynomial
time.
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Algorithm 1 Description of the forking algorithm F
S.Sign(sk,·)
B (pp, vk)

1: Pick coin for B at random.
2: ~h← (CH × Crnd)

QH+QS

3:
(
(Ii)i∈[QS+1], Λ

)
← BS.Sign(sk,·)(pp, vk,~h; coin)

4: if Λ = ⊥ then
5: return ⊥ . Return fail.
6: D := () . Prepare empty list.
7: for j ∈ [QS + 1] do
8: (c, flag) := (1,⊥)
9: while c ∈ [T ] ∧ ¬flag do
10: ~h

(c)
j,≥Ij ← (CH × Crnd)

QH+QS−Ij+1

11: ~h
(c)
j := ~h<Ij‖~h

(c)
j,≥Ij

12:
(
(I

(c)
j,i )i∈[QS+1], Λ

(c)
j

)
← BS.Sign(sk,·)(pp, vk,~h

(c)
j ; coin)

13: if I(c)j,j = Ij then
14: D = D ∪ (j, Ij , Λ

(c)
j )

15: flag = > . Break from while loop.
16: c = c+ 1

17: if |D| < QS + 1 then . Check if B succeeds in all QS + 1 run.
18: return ⊥ . Return fail.
19: return (Λ,D)

Proof. Assume B outputs a valid Λ = (xi, αi, βi, γi)i∈[QS+1] in the first execution and denote
this event as E. For i ∈ [QS + 1], we denote the tuple (xi, αi, βi, γi) as the i-th forgery. For any
(i, k) ∈ [QS + 1] × [QH +QS ], we denote Ei,k as the event that forgery is associated to the k-th
hash query, i.e., the k-th entry of ~h ∈ (CH× Crnd)

QH+QS includes βi. Here, note that ∀i ∈ [QS + 1],
we have

∑
k∈[QH+QS ]

Pr[Ei,k] = 1. We define the set Pi as

Pi =

{
k

∣∣∣∣ Pr[Ei,k | E] ≥ 1

(QH +QS)(QS + 2)

}
,

where for any k ∈ Pi, we have Pr[Ei,k] ≥ ε
(QH+QS)(QS+2) . Let us define Egood

i =
∨
k∈Pi Ei,k. Then,

we have Pr
[
Egood
i

∣∣∣ E
]
≥ QS+1

QS+2 , since there are at most (QH +QS) possible values of k’s not in Pi
and they can only account to a probability at most (QH +QS)× 1

(QH+QS)(QS+2) =
1

QS+2 .

Next, for any (i, k) ∈ [QS + 1] × Pi, let us define Xi,k = Rcoin × (CH × Crnd)
k−1 and Yi,k =

(CH×Crnd)
QH+QS−k+1, where Rcoin denotes the randomness space of coin. Here, note that (xi,~h≥k) ∈

Xi,k × Yi,k can be parsed appropriately to be (coin,~h), and defines all the inputs of B, where we
assume a fixed (pp, vk). We further define Ai,k ⊆ Xi,k × Yi,k to be the set of inputs that triggers
event Ei,k. Then using the splitting lemma (cf. lemma 1) with α = QS+1

QS+2 ·
ε

(QH+QS)(QS+2) , there
exists a set Bi,k ⊂ Xi,k × Yi,k such that

Bi,k =

{
(xi,~h≥k) ∈ Xi,k × Yi,k

∣∣∣∣∣ Pr
~h′≥k←Yi,k

[
(xi, ~h′≥k) ∈ Ai,k

]
≥ ε

(QH +QS)(QS + 2)2

}
, (1)

and

Pr
(xi, ~h′≥k)←Xi,k×Yi,k

[
(xi,~h≥k) ∈ Bi,k

∣∣∣ (x,~h≥k) ∈ Ai,k] ≥ QS + 1

QS + 2
. (2)

We are now ready to evaluate the success probability of the forking algorithm FB. With
probability ε, B outputs ((Ii)i∈[QS+1], Λ) in the first execution on input (coin,~h) ∈ Rcoin × (CH ×
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Crnd)
QH+QS . Then the probability that event Egood

i occurrs for all i ∈ [QS + 1] is at least

Pr
[
∀i ∈ [QS + 1], Egood

i

∣∣∣E] ≥ 1−
∑

i∈[QS+1]

Pr
[
¬Egood

i

∣∣∣E] ≥ 1

QS + 2
,

where the first inequality follows from the union bound and the second inequality follows from
Pr
[
Egood
i

∣∣∣ E
]
≥ QS+1

QS+2 .

Then, from eq. (2) and following the same union bound argument, FB samples a good input such
that (coin,~h) ∈ Bi,Ii for all i ∈ [QS + 1] conditioned on Egood

i for all i ∈ [QS + 1] with probability
at least 1

(QS+2) . Therefore, by eq. (1), if FB resamples ~hi,≥Ii ∈ Yi,Ii = (CH × Crnd)
QH+QS−Ii+1

conditioned on the set Bi,Ii , B succeeds on input (coin,~hi,<Ii‖~hi,≥Ii) with probability at least
ε

(QH+QS)(QS+2)2 . Conditioning on sampling an input (coin,~h) ∈ Bi,Ii for all i ∈ [QS +1] and noting
the independence of each rewinding, the probability that B succeeds in all j-th rewinding for
j ∈ [QS + 1] is at least(

1−
(
1− ε

(QH +QS)(QS + 2)2

)T)QS+1

≥
(
1− 1

elog(2QS+2)

)QS+1

=

(
1− 1

2(QS + 1)

)QS+1

≥ 1

2
.

Collecting all the bounds, we conclude that FB succeeds with probability at least ε
2(QS+2)2 as desired.

Moreover, the running time of FB is roughly the same as running B for at most T · (QS + 1) + 1
times, where the runtime of B is roughly the same as the runtime of A.

Using FB to Break Binding of C or euf-cma of S. We are now ready to finish the proof. Assume
ε = AdvH1

A (λ) is non-negligible. We use FB to extract the witnesses from the proofs output by
A with non-negligible probability and show that such witnesses can be used to break either the
binding of C or the euf-cma security of S. Thus establishing that ε = negl(λ) by contradiction.

We define adversary AC,S on both the binding property of C and the euf-cma property of
S as follows. Initially, AC,S obtains pp from the binding challenger. Further, she receives vk and
oracle access to a signing oracle S.Sign(sk, ·) from the euf-cma challenger. Then, she runs the
forking algorithm R ← F

S.Sign(sk,·)
B (pp, vk). She checks R 6= ⊥, and parses R = (Λ,D), where

Λ = (xi, αi, βi, γi)i∈[QS+1] and D = (j, Ij , Λj)j∈[QS+1]. Due to lemma 2, FB runs in polynomial time
and has non-negligible success probability. Below, we describe the second part of AC,S and analyze
its success probability conditioned on FB succeeding. (If R = ⊥, then AC,S outputs ⊥ and aborts.)

For j ∈ [QS + 1], we denote by (x′j , α
′
j , β
′
j , γ
′
j) the j-th element of the tuple Λj . Moreover,

note that the same coin and values (β̂1, ∆r1), . . . (β̂Ij−1, ∆rIj−1) are used for the initial run of B
and the run of B where B outputs Λj . Thus, we have for all j ∈ [QS + 1] that (xi, αi) = (x′i, α

′
i).

Moreover, we have β̂Ij 6= β̂j,Ij , or equivalently βj 6= β′j for all j ∈ [QS + 1] with probability at
least 1− QS+1

|CH| = 1− negl(λ) since each hash outputs are sampled uniformly and independently at
random. This allows AC,S to invoke 2-special soundness of Σ with overwhelming probability. For all
i ∈ [QS + 1], she runs Ext on (xi, (αi, βi, γi), (αi, β

′
i, γ
′
i)) to extract a witness wi = (µi, ci, ri) such

that C.Commit(pp,mi; ri) = ci ∧ S.Verify(vk, µi, ci) = 1, where xi = (pp, vk,mi).
If there exists distinct i, j ∈ [QS + 1] with ci = cj , AC,S sends (mi,mj , ri, rj) to the binding

security game of C. Note that due to the check in Hybrid 1, the (mi)i∈[QS+1] are pairwise distinct, in
particular mi 6= mj but C.Commit(pp,mi; ri) = C.Commit(pp,mj ; rj). However, due to the binding
property of C, this can happen with only negligible probability. Thus, the extracted commitments
(ci)i∈[QS+1] must be distinct with overwhelming probability.

In such a case, there must be at least one i∗ ∈ [QS + 1] such that c∗i was never queried to the
signing oracle S.Sign(sk, ·) in the first execution of B or equivalently of A. This is because due to
the one-more unforgeability game, A only queries the signing oracle QS times. Thus, AC,S finds
such i∗ with the smallest index and outputs (µi∗ , c∗i ) as a forgery against the euf-cma security of S.

It remains to show that what AC,S output is a valid forgery, i.e., B never queried c∗i to the
signing oracle in any of the rewound executions. To argue this, we first show that all the extracted
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commitments (ci)i∈[QS+1] are fixed after the first execution ends due to f -unique extraction (cf.
definition 17). For any (xi, τi := (αi, βi, γi)) ∈ Λ defined in the first execution of B, conditioning on
FB succeeding, another valid transcript (xi, τ ′i := (αi, β

′
i, γ
′
i)) ∈ Λi with βi 6= β′i is guaranteed to

exist with overwhelming probability. Due to f -unique extraction, for any such valid transcript the
value f(Ext(xi, τi, τ

′
i)) = ci is identical, where recall f simply outputs the commitment included

in the witness. Put differently, conditioning on FB succeeding, (xi, τi) uniquely defines ci with
overwhelming probability. We emphasize that ci does not need to be efficiently computable given
only (xi, τi); we only care if ci is determined by (xi, τi) in a statistical sense.

Now, assume B queried c∗i to the signing oracle in one of the rewound executions. This means
A outputs some c∗ to B (or equivalently the simulated challenger G in Hybrid 1) and B computed
c∗i = C.RerandCom(pp, c∗, ∆r∗), where ∆r∗ is a fresh randomness sampled by FB to be used in the
rewound execution. However, this cannot happen with all but negligible probability due to the
rerandomizability of C since we have established above that ∆r∗ is sampled independently from c∗i .
Since there are at most T · (QS + 1) rewound executions, the probability that B queries c∗i to the
signing oracle during in one of the rewound execution is bounded by T · (QS +1) ·negl(λ) = negl(λ),
where we use T = poly(λ) due to lemma 2.

Thus, with overwhelming probability, what AC,S output is a valid forgery against the euf-cma
security of S. However, due to the hardness of euf-cma security of S, this cannot happen with all
but negligible probability. Combining all the arguments, we conclude that ε = AdvH1

A (λ) is negligible.
This completes the proof.

Remark 1 (Removing the Rerandomizability Property). As briefly noted in our technical overview,
an alternative approach to using rerandomizable commitment is to let the signer (i.e., BSRnd.Signer)
sample a random string rand and run µ← S.Sign(sk, c‖rand) instead of µ← S.Sign(sk, c′), where
c′ = C.RerandCom(pp, c,∆r) is the rerandomized commitment. The signer then sends ρ = (µ, rand)
as the second message instead of ρ = (µ,∆r). By observing that rand has an identical effect as ∆r
in the security proof, it can be checked that the same proof can be used to show blindness and
one-more unforgeability of this modified protocol. While this approach works for any commitment
scheme, we chose not to since it requires a slightly larger NIZK proof due to the enlarged signing
space of the underlying signature scheme S.

4 Instantiation of the Generic Construction

In this section, we instantiate the BSRnd-suitable schemes (C, S,Σ) required for the construction of
BSRnd in section 3.

4.1 Commitments

We instantiate the commitment scheme C with Pedersen commitments. We also use a variant of
ElGamal commitments in our instantiation of Σ.

Rerandomizable Commitment Scheme. We recall Pedersen commitments CPed [71] with public
parameters pp ∈ G over a group G with generator g:

– CPed.Commit(pp,m; r): outputs commitment c = gm · ppr and opening r ← Zp,

Pedersen commitments are correct, computationally binding under the DLOG assumption and
statistically hiding. Further, note that it is rerandomizable via:

– CPed.RerandCom(pp, c,∆r): outputs c′ ← c · pp∆r

– CPed.RerandRand(pp, c,m, r,∆r): outputs r′ ← ∆r + r
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ElGamal. We recall ElGamal commitments CEG [35] with public parameters pp ∈ G over a group
G with generator g:

– CEG.Commit(pp,m; r): outputs commitment c = (c1, c2) = (m · ppr, gr) and opening r ← Zp,

ElGamal commitments are correct, perfectly binding and computationally hiding under DDH.
Also, it is extractable with the following simulator and extractor:

– CEG.SimSetup(1λ): samples x ← Zp, and outputs public parameters pp = gx and trapdoor
td = x.

– CEG.Ext(pp, td, c): extracts m← c1/c
td
2 .

Note that the second part c2 = gr of the commitment can be reused across multiple commitments,
if each commitment uses different public parameters, i.e. ppi ← G, as below.

Remark 2 (ElGamal with Message Space Gn). Let n ∈ N and ppi ← G for i ∈ [n]. We can commit
to messages (m1, . . . ,mn) ∈ Gn via R← gr and ci = mippri . The (non-compact) vector commitment
(R, c1, . . . , c2) remains correct, perfectly binding with message space Gn and hiding under DDH [12].
Extraction is possible as before with the trapdoor td = (xi)i∈[n] with gxi = ppi via mi ← ci/R

xi .

Remark 3 (ElGamal with Message Space Zp). We can commit to a message m ∈ Zp via c =
(gmppri , g

r). This variant remains perfectly binding with message space Zp and hiding under DDH.
Note that this variant is not extractable for message space Zp. If the message m is of polynomial
size, i.e. |m| ≤ B for some bound B = poly(λ), extraction is possible via g ← c1/c

td
2 and then

calculating the discrete logarithm m of g. This can be done in polynomial time by trying all m′ ∈ Zp
with |m′| ≤ B with brute-force.

4.2 Signature Scheme

For the signature scheme S, we use a variant of the Kiltz-Pan-Wee (KPW) structure-preserving
signature (SPS) scheme [62] in the asymmetric pairing setting. The message space of KPW is G`1,
where ` ∈ N is the message length.

Any SPS must contain at least three group elements, and at least one in each G2 and in G1 [3].
But as the bit size of elements in G2 is larger than the bit size of elements in G1 and Zp, removing
elements in G2 in the signature is desirable. For BSRnd, we do not require the full structure-preserving
property of KPW, as we can design efficient Σ-protocols for signature verification, even if the
signature contains elements in Zp.

Indeed, KPW signatures contain an element σ4 in G2. We observe that we can safely replace σ4
with its discrete logarithm τ . Further, we can omit two more elements in G1 for free, as they can
be recomputed via τ and the remaining signature elements.

Our optimized variant is given below.

– SKPW.KeyGen(1λ): samples a, b ← Zp and sets A ← (1, a)> and B ← (1, b)>. It samples
K ← Z(`+1)×2

p , K0, K1 ← Z2×2
p and sets C ← KA. It sets (C0,C1) ← (K0A,K1A),

(P0,P1) ← (B>K0,B
>K1), vk ← ([C0]2, [C1]2, [C]2, [A]2), and sk ← (K, [P0]1, [P1]1, [B]1).

It outputs (vk, sk).
– SKPW.Sign(sk, [m]1): samples r, τ ← Zp and sets σ1 ← [(1,m>)K + r(P0 + τP1)]1 ∈ G2

1,
σ2 ← [rB>]1 ∈ G2

1, and σ3 ← τ ∈ Zp. It outputs (σ1, σ2, σ3).
– SKPW.Verify(vk, [m]1, (σ1, σ2, σ3)): checks e(σ1, [A]2) = e([(1,m>)]1, [C]2) · e(σ2, [C0]2 · τ [C1]2).

We show that SKPW is euf-cma under the SXDH assumption in Theorem 4. The proof relies
on the computational core lemma of [63]. SKPW can be made deterministic via a pseudorandom
function.

Theorem 4. The scheme SKPW is correct and euf-cma secure under the SXDH assumption.

Proof. Correctness follows from a simple calculation. For euf-cma security, we first recall the
computational core lemma of [63].
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Lemma 3. For all adversaries A, there exists an adversary B with almost the same running time
satisfying

Pr


b = b′ :

a, b← Zp, A← (1, a)>, B ← (1, b)>

K0, K1 ← Z2×2
p

(P0,P1)← (B>K0,B
>K1)

pk← ([P0]1, [P1]1, [B]1,K0A,K1A,A)

b← {0, 1}, b′ ← AOb,O
∗
(pk)


≤ 1

2
+ 2QAdvsxdhB (λ) +Q/p

where Q is the number of queries A makes to Ob, A is not allowed to make the same query to both
Ob and O∗, and

– Ob(τ): on a query τ ∈ Zp returns ([bµa⊥ + r(P0 + τP1)]1, [rB
>]1) ∈ (G2

1)
2 with µ ← Zp,

r ← Zp, where a⊥ ∈ Z2
p is a non-zero vector that satisfies a⊥A = 0,

– O∗(τ∗): on a query τ∗ ∈ Zp returns [K0 + τ
∗K1]2 with only a single query to O∗ allowed for A,

Now let A be an adversary against the euf-cma security of the scheme SKPW. After Q signing
queries, A outputs a forgery ([m∗]1, σ

∗). We follow the proof structure of [62], but adapt it to
our optimizations using lemma 3. We define the following hybrids and denote by AdvHiA (λ) the
advantage of A in Hybrid i.

– Hybrid 0 is the real game.
– Hybrid 1 is the same as Hybrid 0, except the verification check (to verify the final output of
A), is replaced with SKPW.Verify∗, defined as follows. On input of verification key vk, message
[m]1, and signature σ = (σ1, σ2, σ3), SKPW.Verify∗ checks e(σ1, [1]2) = e([(1,m>)]1, [K]2) ·
e(σ2, [K0]2 · σ3[K1]2).
Note that for any ([m]1, σ), we have

e(σ1, [A]2) = e([(1,m>)]1, [C]2) · e(σ2, [C0]2 · τ [C1]2)

⇐⇒ e(σ1, [A]2) = e([(1,m>)]1, [KA]2) · e(σ2, [K0A]2 · τ [K1A]2)

⇐= e(σ1, [1]2) = e([(1,m>)]1, [K]2) · e(σ2, [K0 + τK1]2)

Thus, if ([m]1, σ) passes SKPW.Verify but not SKPW.Verify∗, we have that σ1 − ([(1,m>)K]1 +
σ2(K0+τK1)) ∈ G2

1 is a non-zero vector in the kernel of A. Finding such a vector is hard under
the SXDH assumption, and we can construct an adversary Bdh such that |AdvH0

A (λ)−AdvH1

A (λ)| ≤
AdvsxdhBdh

(λ).
– Hybrid 2 is the same as Hybrid 1, except if the chosen tags τ1, . . . , τQ during the signing queries

are not all distinct.
A simple union bound implies that |AdvH1

A (λ)− AdvH2

A (λ)| ≤ Q2/p.
– Hybrid 3 is the same as Hybrid 2, except it samples i∗ ← [Q+ 1] and aborts if i∗ is not the

smallest index such that τi = σ∗3 , where τQ+1 = σ∗3 is the tag from the forgery.
As there are Q queries, we have AdvH3

A (λ) ≥ 1/(Q+ 1)AdvH2

A (λ).
– Hybrid 4 is the same as Hybrid 3, except the signature queries are answered as follows. On

input of [m]1 in the i-th signing query, samples r, τ, µ ← Zp, and set µ ← 0 if τ = τ∗. Then,
set σ1 ← [(1,m>)K + µa⊥ + r(P0 + τP1)]1, σ2 ← [rB>]1, and σ3 ← τ ∈ Zp, where a⊥ is a
non-zero vector in the kernel of A such that a⊥A = 0. Finally, outputs (σ1, σ2, σ3).
Hybrid 3 and Hybrid 4 are indistinguishable which we can show by constructing an adversary
B4 against lemma 3. B4 first samples K and receives ([P0]1, [P1]1, [B]1,K0A,K1A,A) with
which she sets up the verification key vk for A. B4 answers the i-th signing query for i 6= i∗

via (σ1, σ2, σ3) ← ([(1,m>)K]1 · σ′1, σ2), where (σ′1, σ2) ← Ob(τ). The i∗-th signing query is
answered honestly. A quick calculation shows that for b = 0 (resp. b = 1) the queries are
answered as in Hybrid 3 (resp. 4). Note that SKPW.Verify∗ can be simulated via a query to
O∗(τ∗). Thus, we have |AdvH3

A (λ)−AdvH4

A (λ)| ≤ 2QAdvsxdhB (λ)+Q/p, where B is the adversary
from lemma 3.

– Hybrid 5 is the same as Hybrid 4, except K is computed as K ← K′ + ua⊥ for K′ ←
Z(`+1)×2
p ,u ← Z`+1

q . Clearly, Hybrid 5 and Hybrid 4 are identically distributed and we have
AdvH4

A (λ) = AdvH5

A (λ).
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Finally, observe that as in [62], the verification key vk and signing queries for τi 6= τ∗ leak no
information about u, as C = (K′ + ua⊥)A =K′A, and (1,m>)(K′ + ua⊥) + µa⊥ is identically
distributed to (1,m>)K′ + µ′a⊥. The i∗-th signing query leaks (1,m>)(K′ + ua⊥), captured by
(1,m>)u. To provide a valid forgery, A needs to compute

v := (1,m∗>)(K′ + ua⊥).

Given (1,m>)u, for any adaptively chosen m∗ 6=m, we have that (1,m∗>)u is uniformly random
over Zp in the view of A. Thus, v is also uniformly random over Zp and we have AdvH5

A (λ) ≤ 1/p.

4.3 Σ-protocol

Now, we instantiate the Σ-protocol Σ for relation Rrnd, where C is instantiated with CPed over G1

and S instantiated with SKPW. In this context, the relation Rrnd can be written as

Rrnd = {(x,w) : c = gm1 ppr∧
e(µ1, [A]2) = e((g1, c), [C]2) · e(µ2, [C0]2 · µ3[C1]2)},

where x = (pp, vk,m), w = (µ, c, r) for vk = ([C0]2, [C1]2, [C]2, [A]2) and µ = (µ1,µ2, µ3).
We now provide the Σ-protocol, denoted Σrnd. For readability, we further assume that random

generators (pp1, . . . , pp5) are setup without trapdoors via a random oracle for simplicity. (In the
construction, we let these values be output by the hash functions Hpp in addition to pp.) On a high
level, the prover commits to the witness in ElGamal commitments under different public parameters
ppi and shared randomness S = gs1, and then shows that the committed values satisfy the required
relations. Note that the verification equation of µ is quadratic, as both µ2 and µ3 are witnesses.
For this part, we introduce a new witness ω = s · µ3.

– Σrnd.Init(crs, x, w): for (crs, x, w) defined as above, denote e1 = c, e2 = µ1,1, e3 = µ1,2, e4 =
µ2,1, e5 = µ2,2 and τ = µ3, ω = s · τ . First, sets S = gs1 for s ← Zp and commits to ei with
shared randomness via Ei = eippsi . Samples additive masks s̃, r̃, ω̃, τ̃ ← Zp and sets

Dm = pp−s̃1 · pp−r̃, Ds = g−s̃1 , Dω = S τ̃g−ω̃1

Dµ = e((pp−s̃2 , pp−s̃3 ), [A]2)
−1 · e((1G1 , pp−s̃1 ), [C]2)

· e((pp−s̃4 , pp−s̃5 ), [C0]2) · e((E τ̃4 pp−ω̃4 , E τ̃5 pp−ω̃5 ), [C1]2).

Outputs α = (S,E1, . . . , E5, Dm, Ds, Dω,Dµ) and stores (s̃, r̃, ω̃, τ̃) in st,
– Σext.Chall(): samples a challenge β ← Zp,
– Σext.Resp(st, β): sets γr = β · r+ r̃, γs = β · s+ s̃, γτ = β · τ + τ̃ , γω = β ·ω+ ω̃, and outputs the

response γ = (γr, γs, γτ , γω),
– Σext.Verify(crs, x, α, β, γ): checks the following equations

Dm = Eβ1 · pp−γs1 g−β·m1 pp−γr , Ds = Sβg−γs1 , Dω = Sγτ · g−γω1 ,

Dµ = e(F1, [A]2)
−1 · e(Fm, [C]2) · e(F2, [C0]2) · e(F3, [C1]2),

where F1 = (Eβ2 ·pp−γs2 , Eβ3 ·pp−γs3 ),Fm = (gβ1 , E
β
1 ·pp−γs1 ),F2 = (Eβ4 ·pp−γs4 , Eβ5 ·pp−γs5 ),F3 =

(E−γτ4 · pp−γω4 , E−γτ5 · pp−γω5 ), and outputs 1 iff all checks succeed. Note that the first equation
checks that the commitment c committed in E1 is a valid CPed commitments to m, the
second equation fixes s (and thus the values committed in Ei) and the third equation fixes
ω = s · τ which allows to open the commitments Eτ4 and Eτ5 in zero-knowledge. Finally
the last equation checks whether the committed signature µ is valid. For this, we rewrite
e(µ2, [C0]2 · µ3[C1]2) = e(µ2, [C0]2) · e(µµ3

2 , [C1]2), and use that (Eτ5 , Eτ6 ) commits to µ2
µ3 .

Theorem 5 (Correctness). The scheme Σrnd is correct.

Proof. Note that we have Eβi pp−γsi = eβi · pp−s̃i and E−γτi pp−γωi = eβ·τi · E−τ̃i · pp−ω̃i . With these
identities, the identities in Σrnd.Verify follow from a straightforward calculation, and we omit details.
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Theorem 6 (HVZK). The scheme Σrnd is HVZK under the DDH assumption.

Proof. Let x = (pp, vk,m) and β ← Zp. We define the simulator Sim as follows. On input of (x, β),
samples s← Zp, and sets S = gs1, Ei ← ppsi for i ∈ [5]. Then, samples γ = (γr, γs, γτ , γω)← Z4

p and
computesDm, Ds, Dω,Dµ via the identities in Σext.Verify. Finally, sets α = (S,E1, . . . , E5, Dm, Ds, Dω,Dµ)
and outputs the transcript (α, β, γ).

To show that Sim outputs transcripts that are indistinguishable from real transcripts, we define
the following hybrids and denote by AdvHiA (λ) the advantage of A in Hybrid i.

– Hybrid 0 outputs honestly generated transcripts.
– Hybrid 1 is the same as Hybrid 0, except the elements (Dr, Ds, Dω,Dµ) are generated as in

Sim. A quick calculation shows that Hybrid 0 and Hybrid 1 are identically distributed, and we
have AdvH0

A (λ) = AdvH1

A (λ).
– Hybrid 2 is the same as Hybrid 1, except γ is computed as in Sim. Again, it is easy to check

that AdvH1

A (λ) = AdvH2

A (λ).
– Hybrid 3 is the same as Hybrid 2, except the commitments (S,E1, . . . , E5) are commitments to

1G1
instead. If A can distinguish between Hybrid 2 and Hybrid 3, we can construct an adversary

B against the DDH assumption, as (S,E1, . . . , E5) is hiding under DDH (see remark 2). Here,
we use the fact that the public parameters (pp1, . . . , pp5) are output by a random oracle which
is programmed with the challenge ppi appropriately.

As Hybrid 3 outputs simulated transcripts, the statement follows.

Theorem 7 (Special Soundness). The scheme Σext is 2-special sound.

Proof. Let x = (pp, vk,m). We define the extractor Ext as follows. First, Ext receives as input two
valid transcripts (α, β, γ) and (α, β′, γ′) with β 6= β′. Next, Ext parses α = (S,E1, . . . , E5, Dm, Ds, Dω,Dµ)
and γ = (γr, γs, γτ , γω), γ

′ = (γ′r, γ
′
s, γ
′
τ , γ
′
ω). From the identities in Σext.Verify, we obtain the identi-

ties

Sβ
′
· g−γ

′
s

1 = Sβ · g−γs1 ,

Eβ
′

1 · pp
−γ′s
1 g−β

′·m
1 pp−γ

′
r = Eβ1 · pp−γs1 g−β·m1 pp−γr

Sγ
′
τ · g−γ

′
ω

1 = Sγτ · g−γω1 ,

e(F ′1, [A]2)
−1 · e(F ′m, [C]2) = e(F1, [A]2)

−1 · e(Fm, [C]2)

·e(F ′2, [C0]2) · e(F ′3, [C1]2) · e(F2, [C0]2) · e(F3, [C1]2),

where F1 = (Eβ2 · pp−γs2 , Eβ3 · pp−γs3 ),Fm = (gβ1 , E
β
1 · pp−γs1 ),F2 = (Eβ4 · pp−γs4 , Eβ5 · pp−γs5 ),F3 =

(E−γτ4 · pp−γω4 , E−γτ5 · pp−γω5 ) and similarly for F ′1, F ′m, F ′2 and F ′3. We denote ∆x = (γx − γ′x)
for x ∈ {r, s, τ, ω} and ∆β = (β − β′). Note that ∆β 6= 0. We further denote s = ∆γs/∆β, r =
∆γr/∆β, τ = ∆γτ/∆β and ω = ∆γω/∆β.

From the first equation, we obtain S∆β · g−∆γs1 = 1G1
. Taking both sides to the power of 1/∆β

yields S = g
∆γs/∆β
1 = gs1. Similarly, we obtain from the second equation that E∆β1 · pp−∆γs1 g−∆βm1 ·

pp−∆γr = 1G1
, and thus E1 = gm1 · ppr · pps1. Consequently, we have c = gm1 · ppr, for c = E1 · pp−s1

As above, the third equation yields Sτ = gω1 , so ω = s · τ .
We can now recompute the value ei committed in Ei via ei ← Eipp−si . Note that that F1(F

′
1)
−1 =

(E∆β2 ·pp−∆γs2 , E∆β3 ·pp−∆γs3 ) and thus (F1(F
′
1)
−1)1/∆β = (E2 ·pp−s3 , E3 ·pp−s4 ) = (e3, e4). Similarly,

we have (Fm(F ′m)−1)1/∆β = (g1, e1), (F2(F
′
2)
−1)1/∆β = (e4, e5) and (F3(F

′
3)
−1)1/∆β = (eτ4 , e

τ
5).

Finally, the last identity implies:

e((e2, e3), [A]2) = e((g1, e1), [C]2) · e((e4, e5), [C0]2) · e((eτ4 , eτ5), [C1]2)

As e((eτ4 , eτ5), [C1]2) = e((e4, e5), τ [C1]2), it follows that (µ1 = (e2, e3),µ2 = (e4, e5), µ3 = τ) is a
valid signature on message e1 = c. Also, we know c = gm1 · ppr, as desired.

Theorem 8. The Σ-protocol Σext has high min-entropy.
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Proof. Observe that, for example, Ds is distributed uniformly random in G1. It follows that the
advantage of any adversary in the min-entropy game is at most 1/p = negl(λ).

Theorem 9. The Σ-protocol Σext has f -unique extraction, where f(µ, c, r) = c.

Proof. As c is committed via an ElGamal commitment, even the first flow α of a transcript (α, β, γ)
fixes c perfectly. The statement follows.

4.4 Optimizations and Efficiency

We analyze the efficiency of BSRnd when instantiated with the above schemes.

Optimizations. Note that in the construction, we apply Fiat-Shamir to the Σrnd. It is well-known that
the values (Dm, Ds, Dω,Dµ) can be omitted from the proof, as the identities can be recomputed
as in Σrnd.Verify and checked via β.

Efficiency. The scheme BSRnd is secure under SXDH. The user sends 1 element in G1 and 1 element
in Zp, the signer sends 4 elements in G1 and 1 element in Zp and the final signature contains 6
elements in G1 and 5 elements in Zp. Consequently, the total communication is 303 Byte and
signatures are of size 447 Byte for λ = 128.

5 Blind Signatures based on Boneh-Boyen Signature

In this section, we provide a blind signature based on randomizable signatures. Compared to the
optimized generic construction of the Fischlin blind signature in section 3, the resulting signature
size is much smaller since it only consists of one signature of the underlying randomizable signature
scheme. The construction also relies on an online-extractable NIZK which can be instantiated
efficiently by carefully combining Bulletproofs and another NIZK for an ElGamal commitment (see
section 6). In Section 7.2 we show how to adapt the scheme for a partially blind variant, where
we modify the Boneh-Boyen signature [20, 22] in order to embed the common message into the
verification key.

5.1 Construction

We focus on the asymmetric pairing setting. We note that there is also a natural variant of this scheme
in the symmetric setting and we omit details. First, we recall the Boneh-Boyen signatures [20, 22]
in the asymmetric setting. While this is implicit in our proof, we note the following is known to be
selectively secure in the standard model under the CDH assumption:

– SBB.KeyGen(1λ): samples α, β, γ ← Zp, and sets u1 = gα1 , u2 = gα2 , h1 = gγ1 , h2 = gγ2 , v =

e(g1, g2)
αβ , and outputs vk = (u1, u2, h1, h2, v) and sk = gαβ1 ,

– SBB.Sign(sk,m): samples r ∈ Zp and outputs (σ1, σ2) = (sk · (um1 h1)r, gr1) ∈ G2
1,

– SBB.Verify(vk,m, (σ1, σ2)): outputs 1 if e(σ1, g2) = v · e(σ2, um2 h2), and otherwise outputs 0.

Overview. We present our framework for blind signatures based on SBB. Let Π be an online-
extractable NIZK proof system, with random oracle Hzk : {0, 1}∗ 7→ {0, 1}`zk and common reference
string crs of length `crs for the relation

Rbb := {x = (c, u1, g1), w = (m, s) | c = um1 · gs1}.

Let HM,Hcrs be a random oracles mapping into Zp, {0, 1}`crs respectively. The framework BSBB[Π],
or BSBB for short, broadly works as follows. The verification and signing keys are identical to the
ones of SBB, that is vk = (u1, u2, h1, h2, v) and sk = gαβ1 . Additionally, the oracle Hcrs implicitly
defines a common random string crs = Hcrs(0) for Π. In order to obtain a signature on message m,
the user first commits to m = HM(m) in a Pedersen commitment c← um1 · gs1 ∈ G1, where s← Zp.
Then, computes a proof π via Π showing that c was computed honestly, and sends ρ1 = (c, π) to
the signer. The signer then checks the proof and sends ρ2 = (ρ2,0, ρ2,1) ← (sk · (c · h1)r, gr1) to
the user, where r ← Zp. Finally, the user checks that the ρ2 is valid with respect to c and that
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(ρ2,0, ρ2,1) are consistent, and then derives a re-randomized SBB signature on m = HM(m) via
σ = (ρ2,0/ρ

s
2,1 · (um1 h1)r

′
, ρ2,1 · gr

′

1 ).

Construction. In more detail, we have the following, where we assume that crs is provided to all of
the algorithms for readability.

– BSBB.KeyGen(1λ): outputs (bvk, bsk) ← SBB.KeyGen(1λ), where bvk = (u1, u2, h1, h2, v) with
u1 = gα1 , u2 = gα2 , h1 = gγ1 , h2 = gγ2 , v = e(g1, g2)

αβ and bsk = gαβ1 .
– BSBB.User(bvk,m): checks validity of the verification key bvk via e(u1, g2) = e(g1, u2) and
e(h1, g2) = e(g1, h2), sets m← HM(m) and computes a Pedersen commitment c = um1 g

s
1 ∈ G1

to m and a proof π ← Π.ProveHzk(crs, x, w), where s← Zp, x = (c, u1, g1), and w = (m, s). It
outputs the first message ρ1 = (c, π) and stores the randomness st = s.

– BSBB.Signer(bsk, ρ1): parses ρ1 = (c, π), checks Π.VerifyHzk(crs, x, π) = 1 and outputs the second
message ρ2 = (ρ2,0, ρ2,1)← (sk · (c · h1)r, gr1) ∈ G2

1, where r ← Zp.
– BSBB.Derive(st, ρ2): parses st = s and ρ2 = (ρ2,0, ρ2,1), checks e(ρ2,0, g2) = v · e(ρ2,1, um2 gs2 · h2),

and outputs the signature σ = (ρ2,0/ρ
s
2,1 · (um1 h1)r

′
, ρ2,1 · gr

′

1 ) ∈ G2
1 for r′ ← Zp.

– BSBB.Verify(bvk,m, σ): sets m← HM(m) and outputs b← SBB.Verify(bvk,m, σ).

5.2 Correctness and Security

We prove correctness, blindness and one-more unforgeability. Correctness follows from a simple
calculation. Blindness follows from the zero-knowledge property of Π, and as c statistically hides the
message and σ is re-randomized. The proof follows a similar all-but-one reduction as the underlying
Boneh-Boyen signature. The only difference is that we modify the Boneh-Boeyn signature which
is selectively secure in the standard model, to be adaptively secure in the ROM, and to use the
(multi)-online extractor to extract randomness of c submitted by the adversary. Concretely, the
reduction first guesses a query m∗ = HM(m∗) and embeds a CDH challenge into vk such that it can
sign all values in Zp \ {m∗}. For each signing query, the reduction extracts the randomness of c
from the proof π, simulates the signing of m as in the original euf-cma proof of SBB, and finally
reapplies the randomness of c to the intermediate signature. If the extracted message is m∗, the
reduction aborts. Here, we crucially require that Π is online-extractable. In the end, the reduction
hopes to receive a valid signature on m∗ with which it can solve CDH. More details can be found in
section 1.3.

Theorem 10 (Correctness). The scheme BSBB is correct.

Proof. Let (bvk, bsk) ← BSBB.KeyGen(1λ), where bvk = (u1, u2, h1, h2, v) and sk = gαβ1 with
u1 = gα1 , u2 = gα2 , h1 = gγ1 , h2 = gγ2 , v = e(g1, g2)

αβ and bsk = gαβ1 . Let ρ1 = (c = (um1 g
s
1), π) ←

BSBB.User(bvk,m) for any messagem andm← HM(m), where note that the check on the verification
key performed by the user passes by construction. Under the correctness of Π, the proof π verifies,
and we have ρ2 = (ρ2,0, ρ2,1) = (sk · (c · h1)r, gr1) ← BSBB.Signer(bsk, ρ1). Note that the check in
BSBB.Derive(st, ρ2) passes as

e(ρ2,0, g2) = e(sk · (c · h1)r, g2)
= e(sk, g2) · e(c · h1, g2)r

= v · e(um1 gs1 · h1, g2)r

= v · e(gr1, um2 gs2 · h2) = v · e(ρ2,1, um2 gs2 · h2).

Then, we can verify that σ = (σ0, σ1)← BSBB.Derive(st, ρ) indeed outputs a valid SBB signature:

(σ0, σ1) = ((sk · (um1 gs1 · h1)r)/grs1 · (um1 h1)r
′
, gr1 · gr

′

1 )

= (sk · (um1 h1)r · (um1 h1)r
′
, gr+r

′

1 )

= (sk · (um1 h1)r+r
′
, gr+r

′

1 ).

Theorem 11 (Blindness). The scheme BSBB is blind under malicious keys under the zero-
knowledge property of Π.
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Proof. Let A be a PPT adversary against blindness. We define the following hybrids and denote by
AdvHiA (λ) the advantage of A in Hybrid i.

– Hybrid 0 is identical to the real game.
– Hybrid 1 is the same as Hybrid 0, except the Hzk queries and the proofs (π0, π1) are instead

simulated via Sim = (SimHzk
,Simπ) of Π. In more detail, for every query q to the random oracle

Hzk, it outputs SimHzk
(q). After receiving (bvk,m0,m1) from A, it checks the validity of the

verification key bvk and sets πb ← Simπ(crs, xb) for xb = (cb, u1, g1), where cb = umb1 gsb1 and
mb = HM(mb)
We can construct an adversary BΠ against the zero-knowledge property of Π with advantage
AdvzkBΠ

(λ) ≥ |AdvH0

A (λ)− AdvH1

A (λ)|. BΠ simulates the view to A by programming the received
crs into Hzk. It then uses the provided oracles to answer Hzk queries and to generate proofs
(π0, π1). Finally, BΠ forwards the guess of A to its challenger. If the oracle outputs simulated
proofs, the game is distributed identically to Hybrid 1. Else, the oracle outputs real proofs and
behaves as in Hybrid 0. Thus, we have

|AdvH0

A (λ)− AdvH1

A (λ)| ≤ AdvzkBΠ
(λ).

– Hybrid 2 is the same as Hybrid 1, except that the (inefficient) challenger recovers the signing
key bsk, and prepares the signatures (σ0, σ1) on its own. In more detail, the challenger brute
force searches the exponent α, β, γ ∈ Zp such that u1 = gα1 , h1 = gγ1 , and v = e(g1, g2)

αβ in the
verification key bvk output by A. When A returns the second message ρb,2 = (ρb,2,0, ρb,2,1), it
first checks if e(ρb,2,0, g2) = v · e(ρb,2,1, umb2 gsb2 · h2) as in the previous Hybrid 1. If so, it runs
σb ← SBB.Sign(sk,mb), where sk = gαβ1 and mb = HM(mb). Otherwise, it is the same as the
previous Hybrid 1.
We show that Hybrids 1 and 2 are perfectly indistinguishable. Since the check performed by
the challenger passes, we have the following for both Hybrids:

e(ρb,2,0, g2) = v · e(ρb,2,1, umb2 gsb2 · h2)
⇔ e(ρb,2,0, g2) = e(g1, g2)

αβ · e(ρb,2,1, g2)αmb+sb+γ .

If we set ρb,2,1 = g
r∗b
1 , then we have ρb,2,0 = g

αβ+r∗b ·(αmb+sb+γ)·
1 = sk · (cb ·h1)r

∗
b , where sk = gαβ1 .

In Hybrid 1, the challenger then outputs the signature

σb = (ρ2,b,0/ρ
sb
2,b,1 · (u

mb
1 h1)

r′b , ρ2,b,1 · g
r′b
1 )

= (sk · (umb1 gsb1 · h1)r
∗
b · g−r

∗
b sb

1 · (umb1 h1)
r′b , g

r∗b+r
′
b

1 )

= (sk · (umb1 h1)
r∗b+r

′
b , g

r∗b+r
′
b

1 ),

where r′b ← Zp. Since r′b is information-theoretically hidden from A, σb is identically distributed
as a signature output by SBB.Sign(sk,mb) in Hybrid 2. Hence, we have AdvH1

A (λ) = AdvH2

A (λ).
– Hybrid 3 is the same as Hybrid 2, except that the challenger samples a random cb ← G1,

simulates a proof πb ← Simπ(crs, xb) for xb = (cb, u1, g1), and outputs ρb,1 = (cb, πb) as the first
message. It can be checked that Hybrids 2 and 3 are perfectly indistinguishable by noticing
that sb ← Zp is information-theoretically hidden from A due to the modifications we made in
Hybrids 1 and 2. Namely, in Hybrid 2, we have cb = umb1 gsb1 where sb is uniform over Zp from
the view of A. Hence, sampling cb uniform over G results in the same distribution. Hence, we
have AdvH2

A (λ) = AdvH3

A (λ).

In Hybrid 3, the value of coin is information-theoretically hidden from A, as the commitments
cb and the proofs πb are identically distributed for b ∈ {0, 1}. Consequently, AdvH3

A (λ) = 0. Also,
the running time of the adversaries BΠ is roughly that of A. Combining the inequalities yields the
statement.

Theorem 12 (Unforgeability). The scheme BSBB is one-more unforgeable under the CDH
assumption and the online-extractability of Π.



30 Shuichi Katsumata, Michael Reichle, and Yusuke Sakai

Proof. Let A be a PPT adversary against one-more unforgeability of BSBB. Let Ext be the extractor
and Simcrs the simulator of Π from definition 21. We denote by QS the number of signing queries,
by QM the number of HM queries, and by QH the number of Hzk queries. Recall that we model
Hcrs,Hzk and HM as random oracles, where we assume without loss of generality that A never
repeats queries. We denote by qj the j-th query to HM for j ∈ [QM ]. After QS signing queries, A
outputs QS + 1 forgeries {(mi, σi)}QS+1

i=1 . We write σi = (σi,1, σi,2), and denote by ρ1,i = (ci, πi)
the QS first message queries to BSBB.Signer(bsk, ·) issued by A. We define the following hybrids
and denote by AdvHiA (λ) the advantage of A in Hybrid i.

– Hybrid 0 is identical the real game.
– Hybrid 1 is the same as Hybrid 0, except it samples (crs, τ)← Simcrs(1

λ) and programs crs into
the random oracle Hcrs via Hcrs(0)← crs. It is easy to construct an adversary Bcrs against the
CRS indistinguishability of Π such that AdvH1

A (λ) ≥ AdvH0

A (λ)− AdvcrsBcrs
(λ).

– Hybrid 2 is the same as Hybrid 1, except (mi, si) is extracted from all the proofs {πi}i∈[QS ]
using ExtΠ. Specifically, when A provides the signing query ρ1,i = (ci, πi), the challenger
runs wi ← Ext(crs, td, xi, πi), where xi = (ci, u1, g1). It parses wi = (mi, si) and aborts if
umi1 · g

si
1 6= ci. Otherwise, it is defined identically to the previous Hybrid 1.

We can construct an adversary BExt against the multi-online extractability of Π with AdvH2

A (λ) ≥
Adv

H1
A (λ)−negl(λ)
pP(λ,QH) with additional runtime overhead pT(λ,QH) · Time(A), where pP and pT are

polynomials as defined in definition 21. In more detail, let us first consider B′Ext that receives
crs from its challenger, and simulates the challenger of Hybrid 2 for A, after programming crs
into Hcrs and by answering Hzk queries via its provided oracle. At the end of the game, B′Ext

outputs the pairs {(xi, πi)}i∈[QS ], where xi = (ci, u1, h1). Because A succeeds with probability
AdvH1

λ , the pre-condition of definition 21 holds, and the above bound follows.
Observe that the output wi of Ext is not used anywhere in Hybrid 2. Also, aborting in case
of extraction failure and the runtime of Ext does not impact the success probability of A in
Hybrid 2. Therefore, we can equally define an adversary BExt that runs Ext during the game
instead of at the end. Specifically, this is identical to the description of the Hybrid 2 challenger.

– Hybrid 3 is the same as Hybrid 2, except it aborts if there is a collision in HM or if there is
some message mi in A’s output that was never queried to HM.
The abort probability is upper bounded by Q2

M+1
p , as a collision in HM happens with probability

at most Q2
M/p and the probability that some SBB signature σi is valid for a random message

m ∈ Zp is 1/p. It follows that AdvH3

A (λ) ≥ AdvH2

A (λ)− Q2
M+1
p .

– Hybrid 4 is the same as Hybrid 3, except it guesses a query index j∗ of HM for which it outputs
some random m∗ ∈ Zp, and aborts if either some sign query contains m∗ or if A provides no
forgery for some message that hashes to m∗. More concretely, before Hybrid 3 interacts with A,
it samples m∗ ← Zp and j∗ ← [QM ]. For the j∗-th query to HM, it sets HM(qj∗)← m∗. At the
i-th signing query, the signer aborts if the extracted witness is (m∗, si), else proceeds as usual.
Also, Hybrid 3 aborts if m∗ /∈ {HM(mi) | i ∈ [QS + 1]}, where mi are the messages from the
forgeries output of A.
A simple calculation yields AdvH4

A (λ) ≥ 1
QM

AdvH3

A (λ), where E3 denotes the event that A is
successful in Hybrid 3.

AdvH4

A (λ) = Pr[m∗ /∈ {Ext(crs, td, xi, πi)}i∈[QS ] ∧m
∗ ∈ {HM(mi)}i=∈[QS+1] | E3] · Pr[E3]

= Pr[m∗ ∈ {HM(mi)}i∈[QS+1] \ {Ext(crs, td, xi, πi)}i∈[QS ] | E3] · Pr[E3]

≥ Pr[m∗ = m? | E3] · Pr[E3]

= 1/QM · AdvH3

A (λ)

Here, we use for the inequality that there is no collision in HM, and thus there exists at least
one m? ∈ {HM(mi)}i∈[QS+1] \ {Ext(crs, td, xi, πi)}i∈[QS ]. In the last equality, we use that j∗ is
uniform in A’s view.

– Hybrid 5 is the same as Hybrid 4, except it sets up a punctured verification key and simulates
signing without knowing the full sk. Specifically, it samples g1 ← G1, g2 ← G2 and sets
A1 ← gα1 , A2 ← gα2 , B1 ← gβ1 , B2 ← gβ2 , u1 = A1, u2 = A2, h1 = u−m

∗

1 · gδ1, h2 = u−m
∗

2 ·
gδ2, v = e(A1, B2), where m∗ is the j∗-th HM output and α, β, δ ← Zp, and sends bvk =
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(g1, g2, u1, u2, h1, h2, v) to A. Note that implicitly γ = −m∗ ·α+ δ ∈ Zp. For each signing query
ρi,1 = (ci, πi) with extracted witness wi = (mi, si), the challenger samples some r̃i ← Zp, and
sets ρi,2,1 = gr̃i1 · B

−1/(mi−m∗)
1 and ρi,2,0 = A(mi−m∗)r̃ · g(si+δ)r̃i1 · B−(si+δ)/(mi−m

∗)
1 . It then

returns A the second message as ρi,2 = (ρi,2,0, ρi,2,1). Otherwise, it is defined identically as in
the previous Hybrid 4.
Clearly, bvk is distributed identically in Hybrids 4 and 5. Also, ρi,2,0 = g

r̃i−β/(mi−m∗)
1 is

distributed identically in Hybrids 4 and 5, as ri = r̃i − β/(mi −m∗) is distributed uniformly
over Zp for a uniform r̃i. The same holds for ρi,2,1, as mi 6= m∗ due to the abort condition and

gαβ1 (ci · h1)ri = gαβ1 (Ami · gsi1 ·A−m
∗
· gδ1)r̃i−β/(mi−m

∗)

= gαβ1 (Ami−m
∗
· gsi+δ1 )r̃i−β/(mi−m

∗)

= gαβ1 A−β ·A(mi−m∗)r̃ · g(si+δ)r̃i1 ·B−(si+δ)/(mi−m
∗)

= A(mi−m∗)r̃ · g(si+δ)r̃i1 ·B−(si+δ)/(mi−m
∗) = ρi,2,1.

Thus, AdvH5

A (λ) = AdvH4

A (λ).

We now show that we construct an adversary BCDH with AdvCDH
ACDH

(λ) = AdvH5

A (λ). First, BCDH

receives CDH-tuple (g1, g2, A1, A2, B1, B2), and uses these values to simulate the challenger of
Hybrid 5 to A. After A outputs the forgeries {(mi, σi)}QS+1

i=1 , BCDH outputs σi∗,1/σδi∗,2 to its
challenger, where i∗ such that HM(mi∗) = m∗ and σi∗ = (σi∗,1, σi∗,2).

Note that due to the abort conditions in Hybrid 5, the probability that BCDH outputs such a
value σi∗,1/σδi∗,2 with e(σi∗,1, g2) = v · e(σi∗,2, umi∗2 · h2) is at least AdvH5

A (λ). In that case, we have

e(σi∗,1, g2) = v · e(σi∗,2, umi∗2 · h2)

=⇒ e(σi∗,1, g2) = v · e(σi∗,2, Am
∗

2 ·A−m
∗

2 gδ2)

=⇒ e(σi∗,1, g2) = v · e(σi∗,2, gδ2)
=⇒ e(σi∗,1/σ

δ
i∗,2, g2) = v

Thus, σi∗,1/σδi∗,2 = gαβ1 as desired. The statement follows after collecting all the above bounds on
the success probability and runtime.

6 Instantiation of the Framework based on Boneh-Boyen

Here, we instantiate the online-extractable NIZK Π and analyze the efficiency of the blind signature
BSBB[Π]. First, we present our instantiation of Π. Π is a NIZK for showing knowledge of an opening
of a Pedersen commitment c = um1 g

s
1, where u1, g1 ∈ G1 and m, s ∈ Zp,13 i.e. for the relation

Rbb := {x = (c, u1, g1), w = (m, s) | c = um1 g
s
1}.

On a high level, we follow the well-known paradigm of combining an extractable commitment scheme
(or equivalently a PKE) with a rewinding-based (non-online-extractable) NIZK Π′ to construct
an online-extractable NIZK Π. In the paradigm, the prover commits to the witness (m, s) using
the extractable commitments, and adds a proof π via Π′ to ensure that she indeed committed
to openings of c, i.e. that c = um1 g

s
1 and (m, s) are committed in the extractable commitments.

The online extractor can recover (m, s) from π by extracting the commitments via an appropriate
trapdoor. Note that the soundness of the NIZK Π′ guarantees consistency of the committed values
and the openings of c. Indeed, in case the online extraction fails with non-negligible probability, we
obtain a contradiction to the soundness of the underlying NIZK Π′ via rewinding.

In the group setting, a common choice is ElGamal commitments. Note that we require the
variant of ElGamal with message space Zp, i.e. cm = (gm1 pprm , grm1 ) and (cs = gs1pprs , grs1 ) (see

13 While we used m in the previous section, we omit the bar and simply denote m for readability.
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remark 3). Unfortunately, we can only extract (m, s) if the values are short, i.e. m, s ∈ [0, B − 1]
for B = poly(λ). A common technique to circumvent this issue is to instead commit to the binary
decomposition (mi)i and (si)i, where m =

∑dlog2 pe
i=1 mi2

i−1 and s =
∑dlog2 pe
i=1 si2

i−1, and show
that the committed values (mi)i and (si)i are bits and form valid decompositions of m and s,
respectively. Unfortunately, this approach requires 2 · dlog2(p)e ElGamal commitments, and thus at
least 1024 group elements for λ = 256. These elements already amount to more than 32 KB alone.

We instead commit to the B-ary decomposition (mi)i∈[`] and (si)i∈[`] of m =
∑`
i=1miB

i−1

and s =
∑`
i=1 siB

i−1, respectively, where ` = dlogB pe. As before, we show consistency of the
committed values with the openings of c via a NIZK that ensures c = um1 g

s
1, m =

∑`
i=1miB

i−1 and
s =

∑`
i=1 siB

i−1, and a range proof which ensures that all ElGamal committed mi and si lie in
the range [0, B − 1]. This approach improves efficiency considerably. For example for B = 232, we
have ` = 8 and require only 32 group elements for the ElGamal commitments, instead of 1024.

We instantiate the NIZK Π by composing two NIZKs together: one for proving the ElGamal
commitments (Πped) and the other for the range proof (Πrp). For the first NIZK Πped, we use the
Fiat-Shamir transformation on an appropriate Σ-protocol Σped. For the second NIZK Πrp for the
range proof, we would like to use the Fiat-Shamir transformation on a variant of Bulletproofs [27]
that shows range membership for multiple Pedersen commitments ([8], Appendix F.2). However,
Bulletproofs are not well-established in the non-interactive setting. Recently, [45] shows that non-
interactive Bulletproofs are sound in the AGM and ROM, but as the proof relies on the AGM, it
is not sufficient for our purpose. Attema, Fehr and Klooß show in another recent result [9] that
the Fiat-Shamir transformation is sound for multi-round interactive proof systems Σint, if Σint

is standard special sound, i.e. given a valid transcript tree, it is possible to recover the witness
unconditionally. Unfortunately, Bulletproofs and its variant [8] satisfy only computational special
soundness which is insufficient to apply the result of [9] directly. To this end, we show that for an
appropriate relaxed special soundness relation, we can nonetheless apply the Fiat-Shamir transform
on Bulletproofs and its variant [8] using the result of [9]. While the resulting NIZK Πrp for the range
proof satisfies a relaxed notion of special soundness, this is sufficient for our purpose.

Equipped with the above tools, we can instantiate Π. We apply three further optimizations:

1. The (interactive) range proof of [8] requires the witness e = (m1, . . . ,m`, s1, . . . , s`) to be
committed in the Pedersen commitments. Note that we can reuse the ElGamal commitments Ei
as Pedersen commitments for the range proof, where (Ei = gei1 ppri , Ri = gri1 )i∈[2`] are already
required for online extraction. However, as the extractor knows the trapdoor td such that
gtd
1 = pp, we need to be careful in the security analysis, as td also allows to equivocate Pedersen
commitments (and thus potentially break soundness of the range proof). This subtlety is reflected
in the relaxed soundness relation. Fortunately, we can analyze the extraction probability without
knowing td and the proof goes through. We provide more details in section 6.2.

2. During extraction, we use a more efficient algorithm to compute the discrete logarithm in
O(
√
B). This allows us to choose better parameters, as a larger bound B improves efficiency

but impacts the runtime of the extractor.
3. Observe that pairing groups are generally larger and slower than simple prime-order groups.

Thus, we move the parts that are not required to be in G1 into a group Ĝ of the same order
p as G1 (to maintain algebraic consistency). As both NIZKs Πped and Πrp are not reliant on
pairings, we can perform both almost exclusively in Ĝ.

In the following, we first present the Σ-protocol Σped (which we will later transform into a NIZK
Πped via Fiat-Shamir) and the NIZK Πrp for the range proof. We then combine both proof systems
into an online-extractable NIZK Π for the relation Rbb and analyze its security. In more detail, when
online-extraction of Π fails, it is easy to show that we can extract a witness from at least one of the
proofs generated by Πped and Πrp by relying on the rewinding-extraction of Πped and the adaptive
knowledge soundness of Πrp (cf. definition 20) in an independent manner. What is non-trivial is to
show that both extractions succeed simultaneously. Such simultaneous extraction is necessary since
the two NIZKs are glued together by the Pedersen commitment Ei = gei1 ppri : each NIZK may be
using a different opening to construct the proof, in which case we need to extract from both proofs
to break binding. For instance, using the standard notion of rewinding-extractability, we cannot
exclude the case where the adversary sets up the proofs π0, π1 of Πrp,Πped, respectively, in such
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a way that if the extractor of Πrp succeeds, then the extractor of Πped fails. We show through a
careful non-black analysis of the underlying NIZKs that there is a non-negligible probability of the
rewinding-extraction of Πped and the adaptive knowledge soundness of Πrp succeeding at the same
time. Finally, we evaluate the efficiency of BSBB[Π]. For readability, we mark elements ĝ in Ĝ with
a hat.

6.1 Σ-protocol Σped for the Decomposition

We first present a Σ-protocol Σped for the relation Rped where

Rped = {(x,w) : c = um1 g
s
1, Ei = ĝei p̂p

ri , Ri = ĝri ,∏
i∈[`]

EB
i−1

i = ĝm · p̂p
tm ,

∏
i∈[`]

EB
i−1

i+` = ĝs · p̂p
ts},

where x = (c, u1, g1, ĝ, p̂p, (Ei, Ri)i∈[2`], B) and w = (m, s, (ei, ri)i∈[2`], tm, ts). Note that the relation
shows that m =

∑`
i=1 eiB

i−1 and s =
∑`
i=1 ei+`B

i−1 under the DLOG assumption. The protocol
is given below.

– Σped.Init(x,w): for (x,w) as above, samples additive masks m̃, s̃, ẽi, r̃i, t̃m, t̃s ← Zp, sets

Dc = um̃1 g
s̃
1, Dei = ĝẽi p̂p

r̃i , Dri = ĝr̃i ,

Dm = ĝm̃p̂p
t̃m , Ds = ĝs̃p̂p

t̃s ,

where i ∈ [2`], outputs α = (Dc, (Dei , Dri)i∈[2`], Dm, Ds), and stores (m̃, s̃, (ẽi, r̃i)i∈[2`], t̃m, t̃s)
in st.

– Σped.Chall(): samples a challenge β ← Zp,
– Σped.Resp(st, β): sets γk = β · k + k̃ for k ∈ {m, s, e1, . . . , e2`, r1, . . . , r2`, tm, ts}, and outputs

the response γ = (γm, γs, (γei , γei)i∈[2`], γtm , γts),
– Σped.Verify(x, α, β, γ): checks the following equations

Dc = uγm1 · gγs1 · c−β , Dei = ĝγei p̂p
γri · E−βi , Dri = ĝγri ·R−βi ,

Dm = ĝγm p̂p
γtm · (

∏̀
i=1

EB
i−1

i )−β , Ds = ĝγs p̂p
γts · (

∏̀
i=1

EB
i−1

i+` )−β ,

and outputs 1 if and only if all checks succeed. Note that the first three equations open the
commitments c and (Ei, Ri), and the last two equations show the products hold. Also, observe
that the equations are well-defined, as both Ĝ and G1 have order p.

We now show that Σped is correct, HVZK, 2-special sound and has high min-entropy.

Theorem 13. The Σ-protocol Σped is correct.

Proof. Let (α, β, γ) be a honest transcript for (x,w), where x = (c, u1, g1, ĝ, p̂p, (Ei, Ri)i∈[2`], B)
and w = (m, s, (ei, ri)i∈[2`], tm, ts). We use the notation from above. We show that the first and
fourth check pass, the remaining identities follow similarly.

uγm1 · gγs1 · c−β = uβ·m+m̃
1 · gβ·s+s̃1 · c−β =

(um1 · gs1)β · um̃1 gs̃1 · c−β = cβ · um̃1 gs̃1 · c−β = Dc

ĝγm p̂p
γtm · (

∏̀
i=1

EB
i−1

i )−β = ĝβ·m+m̃p̂p
β·tm+t̃m · (

∏̀
i=1

EB
i−1

i )−β =

(ĝm · p̂p
tm)β · ĝm̃p̂p

t̃m · (
∏̀
i=1

EB
i−1

i )−β = ĝm̃p̂p
t̃m = Dm
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Theorem 14. The Σ-protocol Σped is HVZK.

Proof. Let x = (c, u1, g1, ĝ, p̂p, (Ei, Ri)i∈[2`], B) and β ∈ Zp. We define the simulator Sim as
follows. On input (x, β), samples γ = (γm, γs, (γei , γei)i∈[2`], γtm , γts) ← Z4+4`

p and computes
(Dc, (Dei , Dri)i∈[2`], Dm, Ds) via the identities in Σped.Verify. Finally, sets α = (Dc, (Dei , Dri)i∈[2`],
Dm, Ds) and outputs the transcript (α, β, γ).

To show that Sim outputs transcripts that are indistinguishable from real transcripts, we define
the following hybrids and denote by AdvHiA (λ) the advantage of A in Hybrid i.

– Hybrid 0 outputs honestly generated transcripts.
– Hybrid 1 is the same as Hybrid 0, except the elements (Dc, (Dei , Dri)i∈[2`], Dm, Ds) are generated

as in Sim. It is easy to check that Hybrid 0 and Hybrid 1 are identically distributed, and we
have AdvH0

A (λ) = AdvH1

A (λ).
– Hybrid 2 is the same as Hybrid 1, except γ is computed as in Sim. As the values k̃ serves as

one-time pad for β · k, where k ∈ {m, s, e1, . . . , e2`, r1, . . . , r2`, tm, ts}, it follows that Hybrid 1
and Hybrid 2 are identically distributed. Thus, we have AdvH1

A (λ) = AdvH2

A (λ).

As Hybrid 2 outputs simulated transcripts, the statement follows.

Theorem 15. The Σ-protocol Σped is 2-special sound.

Proof. Let x = (c, u1, g1, ĝ, p̂p, (Ei, Ri)i∈[2`], B). We define the extractor Ext as follows. On input
valid transcripts (α, β, γ) and (α, β′, γ′) with β 6= β′. Ext parses α = (Dc, (Dei , Dri)i∈[2`], Dm, Ds)
and γ = (γm, γs, (γei , γei)i∈[2`], γtm , γts), γ

′ = (γ′m, γ
′
s, (γ

′
ei , γ

′
ei)i∈[2`], γ

′
tm , γ

′
ts). As both transcripts

are valid, we obtain the following identities via the verification identities

uγm1 · gγs1 · c−β = u
γ′m
1 · gγ

′
s

1 · c−β
′
,

ĝγei p̂p
γri · E−βi = ĝγ

′
ei p̂p

γ′ri · E−β
′

i ,

ĝγri ·R−βi = ĝγ
′
ri ·R−β

′

i ,

ĝγm p̂p
γtm · (

∏̀
i=1

EB
i−1

i )−β = ĝγ
′
m p̂p

γ′tm · (
∏̀
i=1

EB
i−1

i )−β
′
,

ĝγs p̂p
γts · (

∏̀
i=1

EB
i−1

i+` )−β = ĝγ
′
s p̂p

γ′ts · (
∏̀
i=1

EB
i−1

i+` )−β
′
,

We denote ∆k = (γk − γ′k) and k = ∆k/∆β for k ∈ {m, s, e1, . . . , e2`, r1, . . . , r2`, tm, ts} and
∆β = (β−β′). Note that ∆β 6= 0. The extractor finally outputs (m, s, e1, . . . , e2`, r1, . . . , r2`, tm, ts).

From the first equation, we obtain uγm−γ
′
m

1 · gγs−γ
′
s

1 · c−(β−β′) = 1G1 . Taking both sides to the
power of 1/∆β yields u∆m/∆β1 · g∆s/∆β1 = c. By definition of m and s, we obtain c = um1 g

s
1 as

desired. Similarly, we obtain from the second and third equation that ĝei p̂p
ri = Ei and ĝri = Ri,

respectively. The fourth equation yields that ĝγm−γ
′
m p̂p

γtm−γ
′
tm · (

∏`
i=1E

Bi−1

i )−(β−β
′) = 1Ĝ. Again,

multiplying with 1/∆β in the exponent yields
∏
i∈[`]E

Bi−1

i = ĝm · p̂p
tm , and similarly the fifth

equation yields
∏
i∈[`]E

Bi−1

i+` = ĝs · p̂p
ts . This concludes the proof.

Theorem 16. The Σ-protocol Σped has high min-entropy.

Proof. Observe that all Dri are distributed uniformly random in Ĝ. It follows that the advantage
of any adversary in the min-entropy game is at most 1/p` = negl(λ).

6.2 Range Proof Πrp for the Decomposition

We now describe the NIZK Πrp for the range proof for the vectors committed in Ei. We start with an
appropriate multi-round interactive proof system and obtain Πrp via the Fiat-Shamir transformation.
We follow the definitions for multi-round interactive proof systems and the notion of (k,N)-special
soundness with vectors k and N of [9]. We use the definitions of correctness, HVZK of [8]. Since we
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can rely on the result of [9, 8] in a black-box manner, we refer the readers to [9, 8] for the formal
definitions.

Let Hrp be a random oracle mapping into Zp 14. Πrp is a NIZK with random oracle Hrp for the
relation

Rrp = {(x,w) : Ei = ĝei · p̂p
ri , ei ∈ [0, B − 1] for i ∈ [2`]},

with x = (B, (Ei)i∈[2`]) and w = ((ei, ri)i∈[2`]), where B is a power of two. We obtain Πrp by
applying the Fiat-Shamir transformation as described in [9] to the multi-round interactive proof
system Σ2`

rp with crs = (ĝ, p̂p, (ĝi)i∈[`rp]) from [8] (Appendix F.2), for appropriate `rp ∈ N.
Denote with Rdlog = {(crs, w∗)} the relation that contains all non-trivial DLOG relations w∗

for crs, i.e. computing w∗ for random crs allows to solve the DLOG assumption (see [8] for more
details). Via Theorem 14 of [8], we can show that Πrp is correct and zero-knowledge. Moreover, we
can show adaptive knowledge soundness for the relaxed relation

Rlax := {(x,w) : (x,w) ∈ Rrp or (crs, w) ∈ Rdlog},

using Theorem 4 of [9], which is sufficient for our purpose. We sketch the proof below.

Theorem 17. The NIZK Πrp for relation Rrp is correct, zero-knowledge and adaptively knowledge
sound for the relaxed relation Rlax ⊇ Rrp.

Proof (Sketch). Correctness follows directly, as Σ2`
rp is correct (Theorem 14, [8]) and the Fiat-Shamir

transformation retains correctness of the interactive protocol. For showing zero-knowledge, observe
that the intermediate prover outputs in Σ2`

rp have high min-entropy. Thus, with all but negligible
probability, these outputs were never queried to the random oracle. Consequently, the simulator
can simulate a proof π by first simulating a transcript with challenge vector β using the HVZK
property of Σ2`

rp , and then programming the random oracle with β accordingly.
Note that [9] shows computational special soundness of Σ2`

rp for the relation Rrp. Here, com-
putational special soundness means that either some w such that (x,w) ∈ Rrp or w∗ such that
(w∗, crs) ∈ Rdlog is extracted from a transcript tree. The latter happens with negligible probability
under the DLOG assumption, so w is extracted with overwhelming probability. However, to apply
Theorem 4 from [9] to Πrp, we require standard special soundness of Σ2`

rp , and thus we make the
witness w∗ explicit in the relation Rlax. For the relation Rlax, the interactive proof system Σ2`

rp is
(k,N)-special sound with vectors k = (2`+ 1, 4n`+ 1, 2n`+ 3, 2, 2, n1, . . . , nµ) and N = (Ni)

5+µ
i=1 ,

where n = log2(B), µ = dlog2(4n`+ 4)e − 1, ni = 3 and Ni = p. As [9] never requires correctness or
HVZK of the proof system, it is fine that Rrp and Rlax are different. Thus, we can apply Theorem 4
in [9] to show adaptive knowledge soundness 15. Note that the knowledge error Er(k,N) is negligible
in λ, following the notation of [9], because:

Er(k,N) = 1−
5+µ∏
i=1

(1− ki − 1

Ni
)

≤ 1−
5+µ∏
i=1

(1− 4n`

p
)

= negl(λ)

As we also have
∏5+µ
i=1 ki ≤ (5n`)5 · 3log2(8n`) = O((n`)6) = poly(λ), the extractor runs in time

poly(λ) as desired. The statement follows.
14 Note that technically, Πrp requires a tuple of hash function (Hi)i∈[5+µ] mapping into Zp, where µ =
dlog2(4 log2(B)`+4)e− 1. With sufficient input separation, we view (Hi)i∈[5+µ] as a single random oracle
Hrp, for example if we query Hrp(i, q) instead of Hi(q).

15 Technically, our definition of adaptive knowledge soundness (cf. definition 20) differs slightly from the
definition in [9]. Ours allows us to prove online-extractability for our construction Π later, and it is easy
to check that the extractor of [9] suffices for our definition (cf. remark 3, [AFK22]).
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6.3 Online-extractable NIZK Π for Rbb

We are now ready to instantiate the online-extractable NIZK Π for the relation Rbb with crs =
(ĝ, p̂p, (ĝi)i∈[`rp]). Let Hrp be the random oracle of Πrp and Hβ be a random oracle mapping into Zp.
We denote by Hbb = (Hrp,Hβ) the random oracle of Π 16. Let B = poly(λ) be a power of two. The
scheme is given below.

– Π.ProveHbb(crs, x, w): on input crs, x = (c, u1, g1) and w = (m, s), decomposesm =
∑`
i=1miB

i−1,

s =
∑`
i=1 siB

i−1, and computes Ri = ĝri , Ei = ĝei p̂p
ri
i for i ∈ [2`], where e = (m1, . . . ,m`,

s1, . . . , s`) and ri ← Zp. Then, sets tm ←
∑`
i=1 riB

i−1 and ts ←
∑`
i=1 ri+`B

i−1, and computes

π0 ← Πrp.ProveHrp(crs, x0, w0),

for statement x0 = (B, (Ei)i∈[2`]) and witness w0 = ((ei, ri)i∈[2`]), and

(α, st)← Σped.Init(x1, w1),

β ← Hβ(x1, α),

γ ← Σped.Resp(x1, st, β),

π1 ← (α, β, γ),

for statement x1 = (c, u1, g1, ĝ, p̂p, (Ei, Ri)i∈[2`], B) and witness w1 = (m, s, (ei, ri)i∈[2`], tm, ts).
Outputs π = (π0, π1, (Ei, Ri)i∈[2`]).

– Π.VerifyHbb(crs, x, π): on input crs, x = (c, u1, g1) and π = (π0, π1, (Ei, Ri)i∈[2`]), checks

Πrp.VerifyHrp(crs, x0, π0) = 1,

Hβ(x0, α) = β′ ∧ β = β′,

Σped.Verify(x1, α, β, γ) = 1,

where π1 = (α, β, γ) and x0, x1 are defined as above, and outputs 1 iff all checks succeed.

We show that Π is correct, zero-knowledge under the DDH assumption and online-extractable
under the DLOG assumption. Correctness follows immediately from the correctness of Πrp and
Σped. Also, zero-knowledge is easy to show via the hiding property of ElGamal commitments, the
zero-knowledge property of Πrp (cf. theorem 17) and the HVZK and high min-entropy property of
Σped (cf. theorems 14 and 16).

The proof for multi-proof extractability is more intricate. Roughly, the extractor embeds a
trapdoor td for the commitment scheme in the crs. Then, given a statement-proof pair (x, π) with
x = (c, u1, g1) and π = (π0, π1, (Ei, Ri)i∈[2`]), it decrypts the witnesses (ei)i from the ElGamal
commitment (Ei, Ri)i and tries to check if the extracted witness reconstructs to a witness in the
relation Rbb. We expect that this is possible, as the range proof guarantees that the committed
values are short and Σped proves the linear relations in the exponents.

For the sake of exposition, below we only consider extracting from a single pair (x, π)← A(crs)
generated by some adversary A. The argument generalizes to QS pairs in a straightforward manner.
Note that (x, π) defines statement-proof pairs (x0, π1) for Πrp and (x1, π1) for Σped as in Π.Verify.

For the sake of contradiction, let us assume that extraction fails. We first try to extract a witness
w0 = (e′i, r

′
i)i from π0 via the knowledge extractor of Πrp, and a witness w1 = (m, s, (ei, ri)i) from

π1 from two related transcripts obtained via rewinding A. Here, it is important that A is run with
the same random tape coinA for both extractions to guarantee that the statements x0 and x1 share
the commitments (Ei)i. For now, let us assume that both extractions succeed, i.e. (x0, w0) ∈ Rrp

and (x1, w1) ∈ Rped. Assuming the soundness of Πrp, we have e′i ∈ [0, B − 1]. Moreover, assuming
the soundness of the non-interactive Σped, the extracted (ei)i form the B-ary decomposition of a
valid opening of c. Then, under the assumption that extraction fails, we must have e′i 6= ei for some
i. However, this breaks the binding property of the Pedersen commitment implicitly defined by the
ElGamal commitments. In particular, we found a DLOG relation for the tuple (ĝ, p̂pi). Note that
16 Note that as in section 6.2, we can see Hbb as a single random oracle mapping into Zp (to fit our definition).

For readability, we allow Hbb to be a tuple of random oracles in the security proof.
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while the extracted DLOG relation is a trapdoor information td the extractor uses to extract the
witnesses, this will not be an issue since we do not need td to analyze the success probability of the
adversary.

It remains to show that extraction of w0 and w1 succeeds. Recall that we assumed that the
extraction of w0 and w1 succeeds simultaneously, even if we initially run A on a shared random coin.
But these events are dependent, and applying adaptive knowledge soundness of Πrp and a general
forking lemma independently is not sufficient. Instead, we first extract w0 with the extractor of
Πrp. This step has a high success probability due to knowledge soundness of Πrp. Then, we define a
specialized forking algorithm that first runs A on the same randomness (and same initial random
oracle choices), and then rewinds A to obtain related transcripts. Finally, a careful non-black box
analysis of the forking algorithm, similar to [73], allows us to conclude that the algorithm succeeds
in finding two related transcripts.

Theorem 18. The NIZK Π is correct.

Proof. By construction, it holds that (x0, w0) ∈ Rrp. Similarly, we have (x1, w1) ∈ Rped, as∏
i∈[`]

EB
i−1

i =
∏
i∈[`]

(ĝei p̂p
ri
i )

Bi−1

= ĝ
∑`
i=1miB

i−1

· p̂p
∑`
i=1 riB

i−1

= ĝm · p̂p
tm ,

and similarly
∏
i∈[`]E

Bi−1

i+` = ĝs · p̂p
ts .

Theorem 19. The NIZK Π is zero-knowledge under the zero-knowledge property of Πrp, the HVZK
and high min-entropy property of Σped, and under the DDH assumption in Ĝ.

Proof. Denote by Sim0 = (SimHrp ,Simπ0
) the simulator of Πrp and by Σped.Sim1 the simulator of

Σped. We define the simulator Sim = (SimHbb
,Simπ) of Π as follows. SimHbb

prepares an empty list L.
For every new query q to the random oracle Hβ , it returns a random element β ← Zp and stores
(q, β) in L, and answers old queries consistently via L. For every query q to the random oracle Hrp,
it returns SimHrp(q). Now, for each proof query (x,w) ∈ Rbb, Simπ sets (Ei, Ri) ← (p̂p

ri , ĝri) for
random ri ← Zp and i ∈ [2`], and prepares the two statements x0, x1 as in the real protocol. It
then simulates π0 ← Simπ0

(crs0, x0) and π0 = (α, β, γ) ← Σped.Sim1(x1, β), where β ← Zp. If Hβ

was already queried on input (x1, α), then Simπ outputs ⊥. Otherwise, Simπ outputs the simulated
proof π = (π0, π1, (Ei, Ri)i∈[2`]), and SimHbb

stores ((x1, α), β1) in the list L.
Let A be PPT adversary on the zero-knowledge property of Π and let QHrp , QHβ , QS denote

the number of Hrp,Hβ ,Simπ queries, respectively. Without loss of generality, we assume that A
never queries Hrp and Hβ twice on the same input. We define the following hybrids and denote by
AdvHiA (λ) the probability that A outputs 1 in Hybrid i.

– Hybrid 0 is identical to real game, where proofs are honestly generated. Specifically, the proof
oracle outputs on input (x,w) the value ⊥ if (x,w) /∈ Rbb, and else the value Π.ProveHbb(crs, x, w).
By definition, A outputs 1 with probability AdvH0

A (λ).
– Hybrid 1 is identical to Hybrid 0, except we simulate the proofs π0 using the simulator

Sim0 = (SimHrp ,Simπ0
) of Πrp. In more detail, for every query (x,w) ∈ Rbb, the challenger

computes (Ei, Ri)i∈[2`] as before, but sets π0 ← Simπ0(crs, x0) for x0 = (B, (Ei)i∈[2`]). The
simulator still generates the proof π1 honestly, and outputs π = (π0, π1, (Ei, Ri)i∈[2`]). Similarly,
for every query q to Hrp, outputs SimHrp(q).
We can construct an adversary BΠrp against the zero-knowledge property of Πrp with advantage
AdvzkBΠrp

≥ |AdvH0

A (λ)− AdvH1

A (λ)|. Concretely, BΠrp challenges A and uses the provided oracles
to generate the proofs π0 and answer the Hrp queries. In the end, BΠrp outputs the bit b received
from A. If the provided oracle generate real proofs, then BΠrp simulates Hybrid 0 to A, else it
simulates Hybrid 1, and thus we have

|AdvH0

A (λ)− AdvH1

A (λ)| ≤ AdvzkBΠrp
.
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– Hybrid 2 is the same as Hybrid 1, except for every query (x,w) ∈ Rbb, the simulator aborts
if the random oracle Hβ was already queried on its input when generating π1. Concretely,
after generating π0 as in Hybrid 1, the simulator sets (α, st) ← Σped.Init(x1, w1) for (x1, w1)
defined as before. It then draws β ← Zp and finishes the generation of π1 = (α, β, γ) via
γ ← Σped.Resp(x1, st, β). Finally, it checks if (x1, α) was already queried to Hβ and aborts if so.
Otherwise, it programs Hβ(x1, α)← β.
Hybrids 1 and 2 differ only when the game aborts. Due to the high min-entropy of Σped, the
probability that the random oracle is already defined on input (x1, α) is bounded by QHβ ·negl(λ).
Further, there are at most QS queries to Simπ, and because QSQHβ ·negl(λ) = negl(λ), we have

|AdvH1

A (λ)− AdvH2

A (λ)| ≤ negl(λ).

– Hybrid 3 is the same as Hybrid 2, except for every query (x,w) ∈ Rbb, the proofs π1 are simulated
without the witness w1. That is, the simulator generates a simulated proof π1 = (α, β, γ) by
setting β ← Zp and running (α, γ)← Σped.Sim(x1, β), and programs Hβ accordingly.
We can construct an adversary BΣped

against the HVZK property of Σped. Concretely, for every
(x,w) ∈ Rbb, BΣped

obtains the transcript (α, β, γ). If (x1, α) was already queried to Hβ , then it
aborts as in the previous game. Otherwise, it uses π1 = (α, β, γ) to generate π as in Hybrid 2.
If BΣped

receives simulated proofs, the game is distributed as in Hybrid 3, else it is distributed
as in Hybrid 2. Consequently, we have

|AdvH2

A (λ)− AdvH3

A (λ)| ≤ QS · AdvhvzkBΣped
(λ).

– Hybrid 4 is the same as Hybrid 3, except for every query (x,w) ∈ Rbb, the commitments
(Ei, Ri)i∈[2`] are commitments to 0.
As the openings of (Ei, Ri)i∈[2`] are not required anymore for generating π0 and π1, we can
construct an adversary BDDH against the hiding property of the ElGamal commitments (which
holds under DDH). We thus have

|AdvH3

A (λ)− AdvH4

A (λ)| ≤ 2` · AdvddhBDDH
(λ)

Note that the description of the simulator in Hybrid 4 is identical to Sim = (SimHbb
,Simπ).

Collecting the above bounds yields the statement.

Theorem 20. The NIZK Π is multi-online extractable under adaptive knowledge soundness of Πrp,
the 2-special soundness property of Σped, and under the DLOG assumption in Ĝ.

Proof. The simulator and extractor are given below. Roughly, the extractor extracts the B-ary
decomposition of (m, s) from the commitments (Ei, Ri)i∈[2`], then recomputes and outputs (m, s)
if c = um1 g

s
1. If the reconstruction of (m, s) fails or the supplied proof is invalid, it outputs ⊥.

– SimCRS(1λ): sets crs = (ĝ, p̂p, (ĝi)i∈[`rp]) with ĝ, ĝi ← Ĝ, td ← Zp and p̂p ← ĝtd, and outputs
(crs, td),

– Ext(crs, td, x, π): on input crs, trapdoor td, and proof π = (π0, π1, (Ei, Ri)i∈[2`]) for statement
x = (c, u1, g1), the extractor first checks if π is valid via Π.VerifyHbb(crs, x, π) = 1. Then, it sets
Fi ← Ei · R−td

i and checks that there is some ei ∈ [0, B − 1] such that Fi = ĝei . If so, it sets
m =

∑`
i=1 eiB

i−1 and s =
∑`
i=1 ei+`B

i−1, checks c = um1 · gs1, and finally outputs w = (m, s).
If any of the above checks fails, it outputs ⊥.

Note that both SimCRS and Ext are PPT because the exponent of Fi can be brute-forced in
polynomial time, as B = poly(λ). Also, if Ext does not output ⊥, Ext is guaranteed to output w
such that (x,w) ∈ Rbb by construction.

We show that Π has CRS indistinguishability with the simulator SimCRS. Observe that
SimCRS(1λ) and the random variable crs ← (ĝ, p̂p, (ĝi)i∈[`rp]) with ĝ, p̂p, ĝi ← Ĝ are identically
distributed. It follows that for any PPT adversary A, we have AdvcrsA (λ) = 0.

It remains to show that Π is (multi-)online-extractable with the extractor Ext. We denote by H0

the random oracle Hrp and by H1 the random oracle Hβ . Let A be an adversary making at most
Q0, Q1 queries to H0,H1 respectively. For (crs, td)← SimCRS(1λ), {(xi, πi)}i∈[QS ] ← AHbb(crs), we
denote by wi ← Ext(crs, td, xi, πi) the extracted witness from the i-th proof. We define the following
events.



Practical Round-Optimal Blind Signatures in the ROM 39

– Ver is the event that all statement-proof pairs verify correctly, i.e. for all i ∈ [QS ] it holds that
Π.VerifyHbb(crs, xi, πi) = 1.

– Faili is the event that the extractor fails for input (crs, td, xi, πi) on a valid proof, i.e. we have
wi = ⊥ but Π.VerifyHbb(crs, xi, πi) = 1.

– Fail is the event that the extractor fails for some valid proof (xi, πi), i.e. there exists some
i ∈ [QS ] such that the event Faili occurs.

With this notation, let us assume that Pr[Ver] ≥ µ(λ) for some µ(λ). Under the DLOG assumption
in Ĝ, we show in Lemma 4 that Pr[Faili] = negl(λ). Thus:

Pr[Fail] = Pr[∃i ∈ [QS ],Faili] ≤
∑
i∈[QS ]

Pr[Faili] = negl(λ),

Thus, we have as desired:

Pr[Ver ∧ ∀i ∈ [QS ], (xi, wi) ∈ Rbb] = Pr[Ver ∧ ¬Fail]

= Pr[Ver]− Pr[Ver ∧ Fail] ≥ µ(λ)− Pr[Fail]

≥ µ(λ)− negl(λ).

It remains to show Lemma 4. Recall that for all PPT adversaries Adl, it holds that

Pr[w∗ ← Adl(crs) : (crs, w∗) ∈ Rdlog] = negl(λ) (3)

under the DLOG assumption, where the probability is over the randomness of crs and the random
coins of Adl. Recall that the simulated crs is distributed identically to a random crs, and as the
ElGamal trapdoor td is never provided to A, A’s output is identically distributed on input crs and
crs. Thus, we only need to analyze the probability of the event Faili for a random crs (without
known trapdoor td). This is important because td itself provides a non-trivial DLOG relation, but
this is the hard problem we want to solve using A.

Lemma 4. For some fixed i ∈ [QS ], we have Pr[Faili] = negl(λ) under the DLOG assumption.

Proof. Assume that Pr[Faili] is non-negligible. We construct an adversary Adl that on input a
random crs finds a DLOG relation w∗ in crs with non-negligible probability in polynomial time.
When A on input crs outputs statement-proof pairs {(x′j , π′j)}j∈[QS ] for NIZK Π, the i-th pair (x′i, π′i)
contains a range proof π0 for Πrp (resp. a Fiat-Shamir proof π1 for Σped), and their statements x0
(resp. x1) can be recomputed given (x′i, π

′
i) as in Π.Verify. In the analysis, we are interested in these

proof-statement pairs and wish to extract the witness for both statements x0 and x1 simultaneously.
We proceed as follows.

First, we define two wrapper algorithms B0,B1 of A that output the i-th statement-proof
pair (x0, π0), (x1, π1) output by A for Πrp,Σped, respectively. B0 and B1 are defined to run A with
identical random coinA and random oracle outputs to ensure the statements x0 and x1 are consistent,
i.e., contain the same commitments (Ej)j . These algorithms will later be used to define our DLOG
solver Adl.
Description of Wrapper Algorithm Bb. We denote by coinA the random coin of A, and by ~h0 =

(β̂0,j)j∈[Q0] ∈ ZQ0
p ,~h1 = (β̂1,j)j∈[Q1] ∈ ZQ1

p the outputs of H0,H1, respectively. Note that for
fixed (crs, coinA,~h0,~h1), calling A is deterministic and the statement-proof pairs {(x′j , π′j)}j∈[QS ] =
AHbb(crs; coinA) are uniquely defined, where Hbb queries are answered via ~h0 and ~h1. We then define
Bb as an algorithm that has oracle access to Hb (and a variant with fixed Hb outputs ~hb) as follows:

BHb
b (crs; coinb): On input crs = (ĝ, p̂p, (ĝi)i∈[`rp]) and coinb = (coinA,~h1−b), Bb runs A on input

crs with fixed randomness coinA, where for the j-th query to H1−b, it outputs the j-th value
β̂1−b,j in ~h1−b, and it simulates Hb with the provided oracle. After obtaining {(x′j , π′j)}j∈[QS ] =
A(crs, coinA) from A, it checks if Π.VerifyHbb(crs, x′i, π

′
i) = 1, i.e., the i-th proof verifies correctly.

Then, parses x′i = (c, u1, g1) and π′i = (π0, π1, (Ej , Rj)j∈[2`]), and sets x0 = (B, (Ej)j∈[2`])
and x1 = (c, u1, g1, ĝ, p̂p, (Ej , Rj)j∈[2`], B). If any check fails, outputs (⊥,⊥). Otherwise, for
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b = 0, outputs (x0, π0). For b = 1, parses π1 = (α, β, γ), and looks for the index I such that
β = β̂1,I = H1(x1, α), and finally outputs (I, Λ) with Λ = (x1, α, β, γ). Note that without loss
of generality, the index I is well defined, as guessing β correctly without querying H1 on input
(x1, α) happens with probability at most 1/p = negl(λ).

Bb(crs,~hb; coinb): runs BHb
b (crs; coinb), where the j-th query to Hb is answered with the j-th value

β̂b,j of ~hb. Note that Bb is deterministic on input (crs,~hb; coinb).

Description of Forking Algorithm FB1 . We now define a variant FB1 of the standard forking algo-
rithm that rewinds B1 until a related transcript is found. Concretely, FB1 takes as input (crs, coin1,~h1),
and invokes B1 internally as depicted in algorithm 2. Note that the standard forking algorithm
chooses coin1 and initial hash values ~h1 at random, whereas FB1

receives some fixed initial choice of
coin1 and ~h1. In Adl, we will initialize the input of FB1 with the choices made by the extractor Ext0
of Πrp.

We expect that after at most T = poly(λ) calls to B1, the forking algorithm is successful with
non-negligible probability, i.e., it outputs some non-⊥. Note that for inputs drawn independently
and uniformly at random, the classical analysis of the forking algorithm yields the desired result.
But here, the inputs are conditioned on the event that the extractor Ext0 is successful on input
(x0, π0), and we cannot apply the classical result directly. Thus, we analyze the success probability
of FB1 later. Nevertheless, if FB1 is successful, it outputs related transcripts for the statement x1,
which is fixed via the initial run of A in B1.

Algorithm 2 Description of the forking algorithm FB1
(crs, coin1,~h1)

1:
(
I, Λ

)
← B1(crs,~h1; coin1)

2: if Λ = ⊥ then
3: return ⊥ . Return fail.
4: for c ∈ [T ] do
5: ~h

(c)
1,≥I ← ZQ1−I+1

p

6: ~h
(c)
1 := ~h1,<I‖~h(c)

1,≥I

7: (I(c), Λ(c))← B1(crs,~h
(c)
1 ; coin1)

8: if I(c) = I then . Found related transcript.
9: return (Λ,Λ(c))

return ⊥ . Return fail.

Description of the DLOG Adversary Adl. We are now ready to define Adl. Roughly, Adl samples
inputs (incl. randomness) for both wrapping algorithms (B0,B1) such that they output proofs
(π0, π1) for statements (x0, x1) with shared commitments (Ej)j∈[2`]. Then, it invokes the extractor
Ext0 of Πrp on (x0, π0) to extract a witness w0 for the i-th proof output by A. Next, it rewinds B0
with matching initial inputs via the forking algorithm FB1

to obtain a related transcript for (x1, π1),
and extracts witness w1 via 2-special soundness. If both extractions were successful, Adl can compute
a DLOG relation in crs conditioned on event Faili, as x0 and x1 share the commitment (Ej)j∈[2`]
and the parameter B by construction. We denote by Ext0 the extractor of Πrp (cf. Definition 20)
and by Ext1 the extractor of Σped (cf. Definition 16). We now describe Adl.

Adl(crs): On input crs, Adl prepares a list ~hb ← ZQbp of initial responses for Hb queries, where
b ∈ {0, 1}. Then, she draws some random coinA for A, and initializes for b ∈ {0, 1} the
randomness of Bb via coinb = (coinA,~h1−b). Then, Adl runs (x0, π0) ← B0(crs,~h0; coin0),
extracts a witness w0 ← Ext0(crs, x0, π0, coin0,~h0), and checks (x0, w0) ∈ Rlax. Next, she
runs R ← FB1

(crs, coin1,~h1), checks R 6= ⊥, and parses R = {(x1, π1), (x1, π2)} with π1 =
(α, β, γ), π2 = (α, β′, γ′) and β 6= β. Then, she extracts w1 ← Ext1(x1, π1, π2). Note that
by construction, if R 6= ⊥, we have (x1, w1) ∈ Rped under 2-special soundness of Σped (see
Lemma 6 for more details). Next, it parses the statements x0 = (B′, (E′j)j∈[2`]) and x1 =
(c, u1, g1, ĝ, p̂p, (Ej , Rj)j∈[2`], B). She outputs ⊥ if any check fails. As the initial run of A in
B0(crs,~h0; coin0) and FB1

(crs, coin1,~h1) are identical, we have B = B′ and E′j = Ej for all
j ∈ [2`]. Next, Adl computes a DLOG relation w∗ as follows:
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First, if (crs, w0) ∈ Rdlog, sets w∗ = w0, else parses w0 = ((e′j , r
′
j)j∈[2`]) and w1 = (m, s, (ej , rj)j∈[2`],

tm, ts). Next, if there is some j ∈ [2`] with e′j 6= ej , the binding property of the Pedersen commit-
ment Ej is broken, and w∗ ← (ej−e′j)/(r′j−rj) mod p yields a non-trivial DLOG relation in crs,
as p̂p = ĝw

∗
. Further, if m 6=

∑`
i=1 eiB

i−1, then w∗ ← (m−
∑`
i=1miB

i−1)/(
∑`
i=1 riB

i−1− tm)
yields a DLOG relation due to the following:∏

i∈[`]

EB
i−1

i = ĝm · p̂p
tm

=⇒
∏
i∈[`]

(ĝei p̂p
ri)B

i−1

= ĝm · p̂p
tm

=⇒ ĝ
∑
i∈[`] eiB

i−1

p̂p
∑
i∈[`] riB

i−1

= ĝm · p̂p
tm

=⇒ ĝ
∑
i∈[`] eiB

i−1−m = p̂p
tm−

∑
i∈[`] riB

i−1

=⇒ ĝ(
∑
i∈[`] eiB

i−1−m)/(tm−
∑
i∈[`] riB

i−1) = p̂p,

where the first equality is due to (x1, w1) ∈ Rped. A similar calculation shows that Adl can
compute a DLOG relation w∗ if s 6=

∑`
i=1 ei+`B

i−1.
In summary, Adl succeeds extracting a DLOG relation w∗ if the extraction of both (xb, πb)b∈{0,1}
succeeds and the extracted witness reconstructs to a witness not in Rbb. Otherwise, if either
extraction fails or the extracted witness reconstructs to a witness in Rbb, she outputs ⊥.

Analysis of the Success Probability of Adl. We finally analyze the probability that Adl outputs a
DLOG relation in crs conditioned on event Faili. If the probability is non-negligible, we conclude
Pr[Faili] = negl(λ) as desired under the hardness of DLOG. Below, for simplicity, we omit the
subscript and use Fail for Faili.

First, notice that conditioned on the event Fail, Adl cannot extract a witness that reconstructs
to a witness in Rbb. Therefore, Adl outputs ⊥ if and only if extraction fails, and on the other hand,
when it outputs a non-⊥, then this always results in a DLOG relation in crs as desired. Thus, we
only need to prove that Adl outputs a non-⊥ with non-negligible probability — or equivalently,
succeeds extracting from both (x0, π0) and (x1, π1) with non-negligible probability in polynomial
time — to conclude the proof.

We first prove the following lemma which states that if event Fail occurs then Adl succeeds in
extracting a witness from (x0, π0) with non-negligible probability. We later analyze the probability
that Adl further succeeds in extracting a witness from (x1, π1).

Lemma 5. We have Pr[(x0, w0) ∈ Rlax∧Fail] ≥ ε under adaptive knowledge soundness of Πrp, where
ε = (Pr[Fail]− negl(λ))/pP(λ,Q0) and pP is the polynomial in definition 20. Here, the probability is
taken over the randomness of crs and those used by Adl.

Proof. The statement follows from adaptive knowledge soundness of Πrp if we restrict B0 to only
output proofs if extraction of (x′i, π′i) fails. As checking this condition requires knowledge of the
trapdoor td of crs, we analyze the probability for some crs with known td. The statement follows as
crs and crs are identically distributed.

In more detail, we define a wrapper algorithm B of B0. B samples (crs, td)← SimCRS(1λ) and
initializes coinb and ~h0 as in Adl. Then, it runs (xB, πB)← B0(crs,~h0; coin0), and outputs (xB, πB)
if ⊥ = Ext(crs, td, x′i, π

′
i), where (x′i, π

′
i) is the i-th statement-proof pair output by A in B0. Note

that by definition of B0, if (xB, πB) 6= (⊥,⊥), then we also have Πrp.VerifyH0(crs, xB, πB) = 1. Thus,
under adaptive knowledge soundness of Πrp, we have

Pr[(xB, wB) ∈ Rlax ∧ ⊥ = Ext(crs, td, x′i, π
′
i)] ≥ ε

for wB ← Ext0(crs, xB, πB, coin0,~h0). As crs and crs are identically distributed, the pair (x0, w0)
in Adl is identically distributed to the output of B conditioned on the event Fail. Thus, a quick
calculation yields as desired

Pr[(x0, w0) ∈ Rlax ∧ Fail] ≥ Pr[(xB, wB) ∈ Rlax ∧ ⊥ = Ext(crs, td, x′i, π
′
i)] ≥ ε.

This completes the proof.
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It remains to analyze the probability that Adl extracts (x1, w1) ∈ Rped with non-negligible
probability, conditioned on (x0, w0) ∈ Rlax and Fail. We stress that the two extractions are not
independent, as the same random coinA and initial hash values ~h0,~h1 are used for both extractions, so
a non-black-box analysis is required. In Lemma 6, we show that the events (x0, w0) ∈ Rlax, (x1, w1) ∈
Rped and Fail occur after a polynomial number of forking steps in FB1

with non-negligible probability.
Combining this with lemma 5, we conclude that Adl succeeds extracting from both (x0, π0) and
(x1, π1) with non-negligible probability in polynomial time.

Lemma 6. For T = 4Q1/ε, we have Pr[(x0, w0) ∈ Rlax ∧ (x1, w1) ∈ Rped ∧ Fail] ≥ ε
8 − negl(λ), and

the runtime of FB1 is at most (4Q1/ε) · Time(A) = poly(λ). Here, the probability is taken over the
randomness of crs and those used by Adl.

Proof. Denote by E the event that (x0, w0) ∈ Rlax and the event Fail occurs, i.e. the extraction of Πrp

succeeds but online-extraction of Π failed for the i-th proof. Note that Pr[E] ≥ ε is non-negligible
(cf. Lemma 5). We show that even though the forking algorithm uses the same initial randomness,
it also holds that Pr[E ∧R 6= ⊥] with non-negligible probability, where R← FB1

(crs, coin1,~h1) is
the output of FB1

in Adl. This directly yields (x1, w1) ∈ Rped as follows:
FB1 runs B1 with identical randomness until the I-th H1 query and it outputs statement-

transcript pairs (x1, π1) and (x′1, π2) for Σped, each associated to the I-th H1 query. Thus, we have
that α = α′ and x1 = x′1 for π1 = (α, β, γ), π2 = (α′, β′, γ′). Also, we have that β′ 6= β except with
negligible probability, as hash outputs are sampled uniformly and independently at random, in
which case the extractor Ext1 succeeds, i.e. (x1, w1) ∈ Rped.

We are now ready to analyze the probability that Pr[E ∧ R 6= ⊥]. The argument follows the
high level structure of the proof of the forking lemma in [73]. First, denote by Ek the event that π1
is associated to the k-th H1 query, i.e. the k-th entry β̂1,k of ~h1 is equal to β. Next, we define the
set P as

P =

{
k

∣∣∣∣ Pr[Ek | E] ≥ 1

2Q1

}
.

Note that for any k ∈ P , we have Pr[Ek] ≥ ε
2Q1

. Further, for the event Egood
1 =

∨
k∈P Ek, we have

Pr
[
Egood
1

∣∣∣ E
]
=
∑
k∈P

Pr [Ek | E] ≥ Q1

2Q1
=

1

2
. (4)

We define the set Xk = (RA × RExt0 × ZQ0
p ) × Zk−1p and Yk = ZQ1−k+1

p , where RA (resp. RExt0)
denotes the randomness space of A (resp. Ext0). Note that for fixed crs, the tuple (x, y) ∈ Xk × Yk
can be parsed to define all inputs of Adl, including randomness except the random choices in FB1

. In
more detail, parse x = (coinA, coinExt0 ,

~h0,~h1,<k) and y = ~h1,≥k. Set ~h1 = (~h1,<k‖~h1,≥k). Note that
given coinExt0 , Adl runs w0 = Ext0(crs, x0, π0, coin0,~h0; coinExt0) with randomness coinExt0 . Then,
the execution of Adl on input crs and randomness (x, y) is deterministic up to the run of FB1

.
Further, note that given (x, y) ∈ Xk × Yk, it can be determined whether Ek occurred. We define

Ak ⊆ Xk × Yk as the set of such inputs, i.e. (x, y) ∈ Ak iff (x, y) triggers Ek. Then, the splitting
lemma (cf. Lemma 1) with α = ε

4Q1
yields that that for the set Bk ⊆ Xk × Yk defined

Bk =

{
(x, y) ∈ Xk × Yk

∣∣∣∣ Pr
y′←Yk

[(x, y′) ∈ Ak] ≥
ε

4Q1

}
, (5)

we have

Pr
(x,y)←Xk×Yk

[(x, y) ∈ Bk | (x, y) ∈ Ak] ≥
1

2
. (6)

We are now ready to evaluate the probability of (x0, w0) ∈ Rrp, (x1, w1) ∈ Rped and Fail, when
Adl is run with initial randomness (x, y). As shown above, this event occurs if both E and R 6= 0,
i.e. the the run of FB1

outputs some non-⊥.
With probability ε, we have that E occurs. As in that case, the i-th proof output by A verifies,

we further have that the initial run of B1 in FB1 produces some (I, Λ) 6= ⊥. Then, the probability
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that Egood
1 occurs is at least Pr

[
Egood
1

∣∣∣ E
]
≥ 1

2 due to eq. (4). In that case, we have (x, y) ∈ AI by

definition. Then, from eq. (6) we have that (x, y) ∈ Bk with probability at least 1
2 . Thus, eq. (5)

yields that the probability that FB1 resamples some y′ ∈ YI with (x, y′) ∈ AI is at least ε
4Q1

conditioned on (x, y) ∈ Bk.
In words, in the c-th iteration in FB1

, the sampled ~h(c)1,≥I ← ZQ1−I+1
p triggers EI , as YI = ZQ1−I+1

p .

This means that Adl computes some π1 that is associated to I-th H1 query on input (x,~h
(c)
1,≥I).

Equivalently, we have I(c) = I on original input (x, y) and thus R 6= ⊥.
Note that all ~h(c)1,≥I ← ZQ1−I+1

p are sampled independently and uniformly at random in FB1
for

c ∈ [T ], where T = 4Q1/ε. Thus, conditioned on Adl sampling some (x, y) ∈ Bk, the probability
that R 6= ⊥ is at least

1−
(
1− ε

4Q1

) 4Q1
ε

≥ 1− 1

e
≥ 1

2

Collecting all the bounds, we conclude that R 6= ⊥ with probability at least ε
8 . Further, the runtime

of FB1
is at most (4Q1/ε) · Time(A).

6.4 Optimizations and Efficiency

We now analyze the efficiency of the blind signature BSBB[Π].

Efficiency of Π. First, we optimize the extractor Ext of Π which allows us to choose better parameters.
Note that the runtime of Ext scales linearly with the size of the exponents ei ∈ [0, B − 1], as it
brute-forces the discrete logarithm of 2` group elements Fi = ĝei . At the same time, the proof size
scales linearly with ` = dlogB(`)e. Thus, for practical efficiency, we would like to set B as large as
possible, while keeping the extractor efficient for the security reduction. If we use a more efficient
algorithm to compute discrete logarithms of elements (with exponents in interval [0, B− 1]), we can
choose a larger bound B without any loss in runtime of the extractor. A good choice is Pollard’s
kangaroo algorithm [74] which has runtime O(

√
B). This allows us to increase the bit size of B by

a factor 2 for the same level of security.
Second, we can omit α1 in π1, as the identities in Σped.Verify can be recomputed and then

verified via β1 due to collision resistance.
With these optimizations, the proof π1 contains 5 + 4` elements in Zp. For n = log2(B), the

batched range proof π0 contains 2dlog2(2n`+ `+ 4)e+ 1 elements in Ĝ and 7 elements in Zp. As a
proof π of Π consists of π = (π0, π1, (Ei, Ri)i∈[2`]), the total proof size is 12 + 4` elements in Zp
and 2dlog2(2n`+ `+ 4)e+ 4`+ 1 elements in Ĝ.

Efficiency of BSBB[Π]. When BSBB[Π] is instantiated with Π for B = poly(λ), the user sends 1

element in G1, 2dlog2(2n`+ `+ 4)e+ 4`+ 1 in Ĝ, and 10 + 2` elements in Zp to the signer. The
signer sends 2 elements in G1, and the final signature contains 2 elements in G1. We set B = 264 in
order to have an extractor that performs roughly ` · 232 group operations, where ` = dlogB pe = 4.
The total communication is 2.2 KB and signatures are of size 96 Byte for λ = 128.

7 Frameworks for Partially Blind Signatures

In this section, we present variants of our constructions in sections 3 and 5 that achieve partial
blindness.

7.1 Partial Blindness of the Optimized Fischlin Transform

We show how to adapt BSRnd for partial blindness. Roughly, instead of signing only the commitment
c, the signer signs the vector (c,HT(t)) instead, where t is the common message and HT is a random
oracle.

The partially blind signature PBSRnd is based on building blocks (C, S,Σ) that are BSRnd-suitable
(cf. definition 22), except the message space Smsg of the signature scheme S contains all tuples (c, t),
where t = HT(t).
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Definition 23 (PBSRnd-Suitable (C,S,Σ)). The tuple of schemes (C,S,Σ) are called PBSRnd-
suitable, if it holds that

– C is the same as a commitment scheme that is BSRnd-suitable.
– S is the same as a signature scheme that is BSRnd-suitable, except that the message space Smsg

encompasses Ccom × T H, where T H is a set with 1/|T H| = negl(λ).
– Σ is the same as a Σ-protocol that is BSRnd-suitable except for the relation

Rp-rnd := {x = (pp, vk,m, t), w = (µ, c, r) | C.Commit(pp,m; r) = c ∧ S.Verify(vk, µ, (c, t)) = 1}.

Construction We present the partially blind signature PBSRnd below.

Overview. Let (C, S,Σ) be PBSRnd-suitable. Again, let Hpar,HM,Hβ be a random oracles from {0, 1}∗
into {0, 1}`C , Cmsg, CH, respectively. Further, let HT be a random oracle from {0, 1}∗ into T H. We
now present the framework PBSRnd[C, S,Σ] (or PBSRnd for short) for partially blind signatures based
on BSRnd.

Key generation is the same as before, i.e. it outputs (bvk, bsk)← S.KeyGen(1λ), and implicitly
defines a public parameter pp for C via pp = Hpar(0). For message m and common message t, the
user commits to m← HM(m) with randomness r via C and sends the commitment c to the signer.
As before, the signer rerandomizes c with some random ∆r, but signs (c′, t) instead of c′ via S,
where t = HT(t), and sends the pair (µ,∆r) to the user. The derived signature is a proof π for
relation Rp-rnd generated by Σ using the Fiat-Shamir transform. Note that the user can recompute
c′ and its randomness via ∆r and r, as before.

Construction. For completeness, we provide the full description below, where we assume pp is
provided to all of the algorithms for readability. The changes are highlighted with a box.

– PBSRnd.KeyGen(1λ): samples (vk, sk) ← S.KeyGen(1λ) and outputs verification key bvk = vk
and signing key bsk = sk.

– PBSRnd.User(bvk, t,m): sets m← HM(m) and outputs the commitment c ∈ Ccom generated via
(c, r)← C.Commit(pp,m) as the first message and stores the randomness st = r ∈ Crnd.

– PBSRnd.Signer(bsk, t, c): checks if c ∈ Ccom, samples a rerandomization randomness ∆r ← Crnd,
rerandomizes the commitment c via c′ ← C.RerandCom(pp, c,∆r), signs µ← S.Sign(sk, (c′, t) )

for t← HT(t), and finally outputs the second message ρ = (µ,∆r).
– PBSRnd.Derive(st, t, ρ): parses st = r, ρ = (µ,∆r) and checks ∆r ∈ Crnd. It then computes

the randomized commitment c′′ = C.RerandCom(pp, c,∆r) and randomized randomness r′ ←
C.RerandRand(pp, c,m, r,∆r), and checks S.Verify(vk, (c′′, t) , µ) = 1 and c′′ = C.Commit(pp,m; r′).
It then outputs a signature σ = π for common message t, where (α, st′) ← Σ.Init(x,w),
β ← Hβ(x, α), γ ← Σ.Resp(x, st′, β), π = (α, β, γ) with x = (pp, vk,m, t ), w = (µ, c′, r′).

– PBSRnd.Verify(bvk, t,m, σ): parses σ = π and π = (α, β, γ), and sets m = HM(m), t ← HT(t),
and x = (pp, vk,m, t ), and outputs 1 if β = Hβ(x, α), Σ.Verify(x, α, β, γ) = 1, and otherwise
outputs 0.

Correctness and Security We have the following theorem. As the proof is similar to the security
proof of BSRnd, we only provide a sketch.

Theorem 21. The partially blind signature PBSRnd is (i) correct, (ii) partially blind under malicious
keys under the hiding and rerandomization properties of C and the high min-entropy and HVZK
properties of Σ, and (iii) one-more unforgeable under the binding and rerandomizability properties
of C, euf-cma security of S and the 2-special soundness and f -unique extraction properties of Σ.

Proof (Sketch). Compared to BSRnd, the only change is that the signer signs the message (c′, t)
instead of c′. Note that the relation Rp-rnd of Σ is adapted appropriately. Thus, correctness and
zero-knowledge follow as before. One-more unforgeability is almost identical to before.

Let A be a PPT adversary that performs QS signing queries for some (adaptively chosen)
common message t∗. We define the game G as the real game with A, except the challenger aborts if
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there is a collision in HM or HT or there is some (xi, αi) in the forgeries of A that was never queried
to Hβ . As before, we can show that the challenger never aborts except with negligible probability.

Then, the challenger interacts with A as in the real game, and obtains forgeries (πi =
(αi, βi, γi))i∈[QS+1] from A, for messages mi and common message t∗. Denote by xi = (pp, vk,mi, t

∗
)

the corresponding statements.
Then, we rewind the adversary A as in theorem 3 to obtain the witnesses wi = (µi, ci, r).

Under 2-special soundness of Σ, we have (xi, wi) ∈ Rrnd. That is, we have for all i ∈ [QS + 1] that
ci = C.Commit(pp,mi; r) and S.Verify(vk, µi, (ci, t

∗
)) = 1, where mi = HM(mi) and t

∗
= HT(t

∗).
Recall that there are no collisions in HM in G, so we have mi 6= mj for all distinct i, j ∈ [QS + 1].
Thus, under the binding property of C, there cannot exist two distinct indices i, j ∈ [QS + 1] such
that ci = cj , as both ci and cj open to distinct messages mi 6= mj .

Consequently, as at most QS signing sessions under common message t∗ were performed, there
must be at least one commitment ci∗ that was never signed in the initial run under common message
t∗. As before, this initial run fixes ci∗ due to f -unique extraction of Σ, so we are guaranteed to
never sign the tuple (ci∗ ,HT(t

∗)) during rewinding under rerandomizability of C. But as µi is a
valid signature for (ci∗ ,HT(t

∗)), we break euf-cma security of S. Note µi is a valid forgery, even if
ci∗ was signed under some other common message t 6= t∗, as there are no collisions in HT in G and
we have (ci∗ ,HT(t)) 6= (ci∗ ,HT(t

∗)).

Instantiation We can set T H = G1. Then, HT maps into G1 and we can instantiate the scheme
using SKPW signatures and CPed commitments as in section 4. Note that the size of SKPW signatures
is independent of the number of signed group elements. Also, it is simple to adapt the Σ-protocol Σrnd

accordingly. Consequently, the total communication and signature size remains 303 and 447 Byte
for λ = 128, respectively.

7.2 Partial Blindness of Blind Signature based on Boneh-Boyen

We now show how to adapt the framework BSBB to obtain a partially blind signature PBSBB.
Again, we focus on the asymmetric setting. Our idea is to construct part of the verification key
vk = (u1, u2, h1, h2, v) (cf. section 5.1) using a hash of the common message t. However, since
(u1, u2, h1, h2) = (gα1 , g

α
2 , g

γ
1 , g

γ
2 ) formed a valid DDH tuple, it is not clear how to do this. To this

end, we adapt the Boneh-Boyen signature scheme SBB such that u2, h2 no longer needs to be a part
of the verification key. Instead, we include one additional element in the signature to compensate
for this modification. Looking ahead, since the verification key is now vk = (u1, h1, v) where h1 is a
random group element, we are able to create this term by a hash of the common message t.17 The
resulting scheme SBB is defined below. We later show (implicitly) in the security proof of PBSBB

that the variant SBB is selectively secure under CDH. We omit the subscript and simply use (u, h)
below.

– SBB.KeyGen(1λ): samples α, β, γ ∈ Zp, and sets u = gα1 , h = gγ1 , v = e(g1, g2)
αβ , and outputs

vk = (u, h, v) and sk = gαβ1 .
– SBB.Sign(sk,m): samples r ∈ Zp and outputs (σ0, σ1, σ2) = (sk · (umh)r, gr1, gr2).
– SBB.Verify(vk,m, (σ0, σ1, σ2)): verify that e(σ0, g2) = v · e(umh, σ2) and e(σ1, g2) = e(g1, σ2).

Construction. Now, we construct PBSBB and detail the changes required to the framework BSBB

(cf. section 5). Again, let Π be an online-extractable NIZK proof system, with random oracle
Hzk : {0, 1}∗ 7→ {0, 1}`zk and common reference string length `crs for the relation

Rbb := {x = (c, u, g1), w = (m, s) | c = um · gs1},

and let HM,Hcrs be a random oracles mapping into Zp, {0, 1}`crs respectively. Further, we rely on
a random oracle HG1

mapping into G1. The framework PBSBB[Π], or PBSBB for short, is as BSBB

17 Note in the symmetric setting, we can use standard the Boneh-Boyen signature scheme SBB and let a
random oracle output h1, as there is no h2. The signature size in the symmetric setting remains 2 group
elements.
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except that the underlying signature is replaced with SBB and the value h in the verification key is
sampled via HG1

.

Construction. Below, we detail the construction and highlight the changes with respect to BSBB

via a box. We assume that crs is provided to all of the algorithms for readability.

– PBSBB.KeyGen(1λ): samples α, β ∈ Zp, and sets u = gα1 , v = e(g1, g2)
αβ , and outputs bvk =

(u, v) and bsk = gαβ1 .
– PBSBB.User(bvk, t,m): sets m← HM(m) and computes a Pedersen commitment c = umgs1 and

a proof π ← Π.ProveHzk(crs, x, w), where s← Zp, x = (c, u, g1), and w = (m, s). It outputs the
first message ρ1 = (c, π) and stores the randomness st = s.

– PBSBB.Signer(bsk, t, ρ1): parses ρ1 = (c, π) and checks Π.VerifyHzk(crs, x, π) = 1. It then sets
ht ← HG1

(t) and outputs the second meesage ρ2 = (ρ2,0, ρ2,1, ρ2,2)← (sk · (c · ht )r, gr1, gr2 ),
where r ← Zp.

– PBSBB.Derive(st, t, ρ2): parses st = s and ρ2 = (ρ2,0, ρ2,1, ρ2,2), checks e(ρ2,0, g2) = v · e(c ·
ht , ρ2,2) and e(ρ2,1, g2) = e(g1, ρ2,2) , and outputs the signature σ = (σ0, σ1, σ2) = (ρ2,0/ρ

s
2,1 ·

(um ht )
r′ , ρ2,1 · gr

′

1 , ρ2,2 · gr
′

2 ) for r′ ← Zp.

– BSBB.Verify(bvk, t,m, σ): checks e(σ0, g2) = v · e(um ht , σ2) and e(σ1, g2) = e(g1, σ2) , where
m and ht as above.

Correctness and Security We can show that PBSBB is correct, blind, and one-more unforgeable.

Theorem 22. The scheme PBSBB is correct, blind under malicious keys under the zero-knowledge
property of Π, and one-more unforgeable under the CDH assumption and the online-extractability
of Π.

Proof. The proof of correctness and blindness follow almost as in theorems 10 and 11, and we omit
details. In the following, we show that PBSBB is one-more unforgeable. Roughly, the reduction
punctures the verification key (including ht for all common messages t) depending on whether
(i) t is the (adaptively chosen) common message t∗ from the forgeries of A or (ii) t is some other
common message. In case of (i), the reduction punctures ht such that it can sign all but some
random message mt ← Zp. As the message mt is hidden from A, she does not provide a signing
request for (a commitment of) mt with high probability, and the reduction can answer all signing
queries for t 6= t∗. In case of (ii), for the common message t∗ of the A’s forgeries, the reduction
punctures ht∗ on m∗ ← Zp. As in theorem 12, we show that by programming the random oracle HM,
we can argue that A never asks for a signature on (a commitment of) m∗ but provides a forgery for
message mi∗ such that m∗ = HM(mi∗) with noticeable probability, in which case we can solve CDH.
We formalize the above intuition below.

Let A be a PPT adversary against the one-more unforgeability of PBSBB. Let Ext and Simcrs

be the extractor and simulator of Π, respectively (cf. definition 21). Without loss of generality, let
QS be the number of signing queries per common message, and QT the total number of common
messages. We denote by QM the number of HM queries, by QH the number of Hzk queries, and
by QG the number of HG1

queries. We assume without loss of generality that A’s queries to the
random oracles are unique. Moreover, we assume A queries the common message t to HG1

before
submitting a signing query with t. We denote by qj (resp. q′j) the j-th query to HM for j ∈ [QM ]
(resp., HG1 for j ∈ [QG]). After QS signing queries per common message, A outputs QS+1 forgeries
{(mi, σi)}i∈[QS+1] for some common message t∗. We write σi = (σi,0, σi,1, σi,2), and denote by
ρ1,i = (ci, πi) the signing queries issued by A. We define the following hybrids and denote by
AdvHiA (λ) the advantage of A in Hybrid i. (Note that until Hybrid 3, the steps are identical to the
steps in theorem 12).

– Hybrid 0 is identical to the real game.
– Hybrid 1 is the same as Hybrid 0, except it samples (crs, τ)← Simcrs(1

λ) and programs crs into
the random oracle Hcrs via Hcrs(0)← crs. We can construct an adversary Bcrs against the CRS
indistinguishability from Π such that AdvH1

A (λ) ≥ AdvH0

A (λ)− AdvcrsBcrs
(λ).
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– Hybrid 2 is the same as Hybrid 1, except the witnesses (mi, si) are extracted from all the
proofs πi for all i ∈ [QS ·QT ] using Ext. Specifically, when A provides the signing query (ci, πi),
the challenger runs wi ← Ext(crs, td, xi, πi), where xi = (ci, u, g1). It parses wi = (mi, si) and
aborts if umi · gsi1 6= ci. Then, proceeds as in Hybrid 1.

We have AdvH2

A (λ) ≥ Adv
H1
A (λ)−negl(λ)
pP(λ,QH) under the online extractability of Π. Note that the

challenger has an additional runtime overhead pT(λ,QH) · Time(A), and that pP and pT are
polynomials as defined in definition 21. We note that Ext does not need to be invoked at the
end of the game as required by the definition of online-extractability. See theorem 12 for more
detail.

– Hybrid 3 is the same as Hybrid 2, except it aborts if there is a collision in HM or if there is
some message mi in A’s output that was never queried to HM.
It holds that AdvH3

A (λ) ≥ AdvH2

A (λ)− Q2
M+1
p .

– Hybrid 4 is the same as Hybrid 3, except it aborts if there is a collision in HG1
or if the common

message t∗ of A’s output was never queried to HG1
.

A given signature verifies with respect to some random ht at most with probability 1/p
and a collision happens with probability at most Q2

G/p. Thus, it holds that AdvH4

A (λ) ≥
AdvH3

A (λ)− Q2
G+1
p .

– Hybrid 5 is the same as Hybrid 4, except it first samples m∗ ∈ Zp, k∗ ← [QG], and δk∗ ← G1.
For the k∗-th query q′k∗ to HG1 , it sets HG1(q

′
k∗) ← h∗t := u−m

∗ · gδk∗1 . Hybrid 5 aborts if the
forgeries output by A is not on a common message t∗ such that h∗t = HG1(t

∗).
Due to the modification we made in Hybrid 4, the common message t∗ is guaranteed to be
queried to HG1

. Since k∗ is information-theoretically hidden to A and the distribution of h∗t is
uniform over G1 as in the previous hybrid, we have AdvH5

A (λ) ≥ 1/QG · AdvH4

A (λ).
– Hybrid 6 is the same as Hybrid 5, except it guesses a query index j∗ of HM for which it outputs
m∗ ∈ Zp, and aborts if either the challenger extracts m∗ in some signing query with common
message t∗ or if A provides no forgery for some message that hashes to m∗. More concrete,
Hybrid 6 further samples j∗ ← [QM ] at the outset of the game. For the j∗-th query to HM,
it sets HM(qj∗) ← m∗. At the i-th signing query, the signer aborts if the extracted witness
is (m∗, si) and the common message is t∗, else proceeds as usual. Also, Hybrid 6 aborts if
m∗ /∈ {HM(mi)}i∈[QS+1], where mi are the messages from the forgeries of the final output of A.
Conditioned on no collision in HM, there are only QS signing queries but QS + 1 values
mi ← HM(mi) from the forgeries, and with probability 1/QM the challenger guesses the right
HM query. Following the same calculation as in theorem 12, we have AdvH6

A (λ) ≥ 1
QM

AdvH5

A (λ).
– Hybrid 7 is the same as Hybrid 6, except it sets up a punctured verification key and simulates

signing without knowing the full sk. Specifically, it sets A1 = gα1 , A2 = gα2 , B = gβ1 , B2 = gβ2 , u =
A1, v = e(A1, B2), for α, β ← Zp. Then, sends bvk = (u, v) to A. Also, Hybrid 7 initially
samples mt,k ← Zp for k ∈ [QG]\{k∗}, and answers the k-th HG1

query with ht,k = u−mt,k · gδk1
if k 6= k∗. It answers the k∗-th query as in the previous Hybrid 5.
For the i-th signing query (ci, πi) with common message ti and extracted witness wi = (mi, si),
parses HG1(ti) = ht,k = u−mt,k · gδk1 for an appropriate k ∈ [QG], and aborts if mi = mt,k and
k 6= k∗. Note that such a k uniquely exists due to Hybrid 4. Moreover, due to the modification we
made in Hybrid 6, it always abort when (mi, ti) = (m∗, t∗) or equivalently (mi, k) = (m∗, k∗). If
it didn’t abort, it samples some r̃i ← Zp, sets ρ2,1 = gr̃i1 ·B

−1/(mi−mt,k)
1 , ρ2,2 = gr̃i2 ·B

−1/(mi−mt,k)
2

and ρ2,0 = A
(mi−mt,k)r̃
1 · g(si+δk)r̃i1 ·B−(si+δk)/(mi−mt,k)1 .

It is not hard to check that Hybrid 7 and Hybrid 6 are identically distributed as long as
A doesn’t query a common message ti 6= t∗ such that mi = mt,k for k 6= k∗. Since mt,k

is information-theoretically hidden from A, we conclude via a union bound that the abort
probability is at most (QSQT )/p. Thus, AdvH7

A (λ) = AdvH6

A (λ)− (QSQT )/p.

We can now construct an adversary BCDH to solve CDH with AdvCDH
ACDH

(λ) = AdvH7

A (λ). First,
BCDH receives a CDH-tuple (g1, g2, A1, A2, B1, B2), with which it simulates Hybrid 7 to A. After A
outputs the forgeries {(mi, σi)}i∈[QS+1], BCDH outputs σi∗,0 · σ−δk∗i∗,1 to its challenger, where i∗ such
that HM(mi∗) = m∗.

Due to the abort conditions in Hybrid 5 and Hybrid 6, the adversary is guaranteed to output
an appropriate forgery that verifies correctly with probability at least AdvH7

A (λ). In that case, we
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show that σδk∗i∗,0/σi∗,1 is indeed of the form gαβ1 , where α, β is the discrete logarithm of A1, B1,
respectively. For readability, we write (σ0, σ1, σ2) = (σi∗,0, σi∗,1, σi∗,2) in the following (with slight
abuse of notation).

As the i∗-th forgery verifies, we have e(σ0, g2) = v · e(um∗ · h∗t , σ2) and e(σ1, g2) = e(g1, σ2). The
latter guarantees that the discrete logarithms of σ1 and σ2 are identical, i.e. we have σ1 = gρ1 and
σ2 = gρ2 for some appropriate ρ. Note that we have v = e(g1, g2)

αβ , u = A1 and h∗t = u−m
∗ · gδk∗1

due to the changes in Hybrid 5 and Hybrid 7. Consequently, we have

e(σ0, g2) = v · e(um
∗
· h∗t , σ2)

=⇒ e(σ0, g2) = e(g1, g2)
αβ · e(um

∗
· u−m

∗
· gδk∗1 , σ2)

=⇒ e(σ0, g2) = e(g1, g2)
αβ · e(gδk∗1 , σ2)

=⇒ e(σ0, g2) = e(g1, g2)
αβ · e(g1, g2)δk∗ ·ρ

=⇒ e(σ0 · g−δk∗ ·ρ1 , g2) = e(g1, g2)
αβ

=⇒ e(σ0 · σ−δk∗1 , g2) = e(gαβ1 , g2)

=⇒ σ0 · σ−δk∗1 = gαβ1

The statement follows by collecting all the above bounds.

Instantiation. We can use the online extractable NIZK Π from section 6. Both communication
and signature size increase by one element in G2.
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A Related Work

Since blind signatures were introduced in [31], they have become a vast area of research. Here, we
give a short overview of other research directions on blind signatures which are not the focus of
this work.
Restricted Concurrency. In the ROM, there are efficient 3-move blind signatures [76, 68, 5].
Notably, these schemes do not rely on pairings. In their seminal work, Pointcheval and Stern [73]
show that [68] is secure for at most polylog-many signing sessions. Their analysis was generalized
and refined in [52]. A similar result was shown for [5] in [56]. A recent attack [15] shows that the
polylog upper bound on concurrent signing sessions is tight.
Generic Group Model and ROM. In pairing-free generic groups and the ROM, there are
3-move blind signatures [1, 57, 42, 79] that avoid the attack given in [15]. These constructions
are practical, and notably [79, 57] provide full concurrent security. At least for now, the security
argument relies on generic groups and random oracles. Also, it seems that this approach is inherently
not round-optimal.

In the ROM, [10] shows sequential security of [1] without generic groups, but the signer needs
to ensure that at most one signing session is open at all times.
Boosting Transforms. A recent line of work [60, 30] based on [72] provides generic boosting
transformations for blind signatures with limited concurrent security. In the pairing-free setting,
the obtained blind signatures are not round-optimal, and computational efficiency scales linearly
with number of signed signatures. [51] provides a concrete pairing-based construction in the ROM
(cf. Section 1 for more details).
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Trusted Setup. In the pairing setting, there are several blind signatures with trusted setup
[65, 77, 61] in the standard model. As opposed to [18, 4] (discussed in Section 1), these schemes are
less practical and the trusted setup is structured, i.e., non-uniform.
Complexity Leveraging. There are round-optimal blind signatures [47, 46] that circumvent
impossibility results to construct standard model blind signatures via complexity leveraging. [58]
manages to avoid complexity leveraging by relying on both post-quantum assumptions and classical
assumptions. The aforementioned schemes are mainly of theoretical interest and not practical.
Interactive assumptions. There are several blind signatures [31, 13, 19, 7] secure under interactive
assumptions and in the ROM. Also, there are constructions in the standard model [2, 41, 40, 48]
which rely on tailored interactive hardness assumptions. These constructions have good efficiency,
but their security is based on strong assumptions. Further, [2] first notices that Fischlin blind
signatures can be instantiated by combining sufficiently algebraic signatures and GOS proofs. Their
initial construction relies on a signature based on non-interactive assumptions. Interestingly, their
approach yields a scheme with with 0.4 KB communication and 2.7 KB signature size under standard
assumptions in the ROM, if instantiated with Jutla-Roy signatures [55]. With this approach, the
signature size remains an order of magnitude larger compared to BSRnd (cf. Section 3) and BSBB (cf.
Section 5). Finally, two constructions were proposed that rely on an NIZK for proving relations of a
concrete hash function [17, 43], where the security of the underlying signature scheme is assumed
for this fixed choice of hash function. This approach leads to efficient signatures, but slow signing
times due to the proof.
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