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Abstract. Distributing the Elliptic Curve Digital Signature Algorithm
(ECDSA) has received increased attention in past years due to the wide
range of applications that can benefit from this, particularly after the
popularity that the blockchain technology has gained. Many schemes
have been proposed in the literature to improve the efficiency of multi-
party ECDSA. Most of these schemes either require heavy homomorphic
encryption computation or multiple executions of a functionality that
transforms Multiplicative shares to Additive shares (MtA). Xue et al.
(CCS 2021) proposed a 2-party ECDSA protocol secure against mali-
cious adversaries and only requires one execution of MtA, with an online
phase that consists of only one party sending one field element to the
other party with a computational overhead dominated by the verifica-
tion step of the signature scheme. We propose a novel protocol, based
on the assumption that the Computational Diffie-Hellman problem is
hard, that offers the same online phase performance as the protocol of
Xue et al., but improves the offline phase by reducing the computational
cost by one elliptic curve multiplication and the communication cost by
two field elements. To the best of our knowledge, our protocol offers the
most efficient offline phase for a two-party ECDSA protocol with such
an efficient online phase.

Keywords: ECDSA · Two-party Protocols · Threshold Signatures.

1 Introduction

Multi-party computation (MPC) is a technique from cryptography that enables
multiple parties to conduct computation on their secrets while preserving them
private. MPC was formally introduced with Yao’s 2-party protocol for the Mil-
lionaires’ problem [26]. Today, it became a pioneering solution for a wide variety
of real-world problems, such as cryptographic key protection, privacy-preserving
data analytics, and so forth [15].

With the rise of the blockchain technology and cryptocurrencies, multi-party
signing [7] and, in particular, threshold signing has gained significant attention
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in the past decade. Namely, a (t, n) signature scheme enables n parties to dis-
tribute the signing power in such a way that signing a message m requires the
collaboration of at least t+1 of them. This is accomplished by having the n par-
ties participate in the key generation phase to produce a private key unknown
to them. At the end of this phase, each party will hold a share of the private key,
together with the public key. Then the signing phase is executed as an interactive
protocol as well, where at least t+1 parties participate with their shares so as to
produce the signature, which is then checked with the verification algorithm of
the signature scheme being distributed. This benefits cryptocurrencies as trans-
actions are sent by producing a signature using the sender’s private key. Thus
to prevent a single point of failure while maintaining the key, one can share it
among different parties placed in different locations, who need to collaborate to
sign.

In this regard, thresholdizing the ECDSA algorithm has drawn most of the
attention, as it is the signing algorithm used in Bitcoin. We can find in the
literature many works that addressed this [14,12,8,25,13,2,9,5,23,6] where various
schemes were constructed, either addressing the 2-party case [14,8,25,13], or
more generally, the n-party case [12,2,9,5,23,6]; using generic MPC protocols
[5,23], or special purpose protocols targeting ECDSA [14,12,8,25,13,2,9,6]. Those
schemes differ particularly in the way of sharing values, namely additively or
multiplicatively. That is, at the heart of the ECDSA algorithm, one needs to
calculate s = k−1(H(m) + x · r) mod q. In a threshold version of ECDSA, both
the private key x and the random nonce k used for signing the message m are
secretly shared among parties. In fact, to provide a threshold version of ECDSA,
the main challenge consists of choosing an adequate way to secretly share k and
x so that s can be computed efficiently. Note that this calculation contains
inverting a secret, and multiplying it with another value obtained by evaluating
linear operations over another secret (addition and multiplication with opened
values).

For instance, for the 2-party case, additively secret sharing k is problematic
for inversion, as in this case, party P1 holds k1 and party P2 holds k2 subject
to k1 + k2 = k mod q, and from this, the two parties need to calculate k−1.
Alternatively, one can secretly share k in a multiplicative way to overcome this
obstacle, as in this case, inverting becomes a local operation; however, the re-
sulting value still needs to be multiplied by H(m) + x · r, which still introduces
obstacles either x was additively or multiplicatively secret shared.

As a solution to these challenges, several authors in the field proposed using
homomorphic encryption. This approach allows one party to transmit a secret
to the other party in encrypted form so that they can execute the challenging
computation and decrypt it afterward. The homomorphic encryption schemes
that were used are partially homomorphic, as performing one type of operation
over the ciphertexts was sufficient for the computation needed.

For the most part, homomorphic encryption was introduced to realize a
Multiplicative-to-Additive (MtA) functionality which enables parties to obtain
an additive version of the shares of a secret from a multiplicative one, adopt-
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ing ideas from [17]. Based on this functionality, parties who hold multiplicative
shares α and β, respectively, can get the corresponding additive shares a and
b where a + b = α.β by querying this functionality. The need for querying this
protocol arises when an additive sharing is preferable than a multiplicative one
from a performance point of view. Of course, this functionality does not come
for free, and it introduces a cost to the protocol whenever it is called; however,
there exist many instantiations of it, such as Paillier encryption [20]-based MtA
[12], El Gamal encryption[10]-based MtA [16], and Castagnos-Laguillaumie (CL)
encryption[4]-based MtA [3]. Besides, one can also construct Oblivious Transfer
(OT) [21]-based MtA [8], which has the advantage of decreasing the computa-
tional complexity by eliminating the need for homomorphic encryption at the
expense of incurring a relatively high bandwidth. As a result, one has multiple
options for MtA instantiations, each of which offers a different tradeoff between
the computation and communication costs, thanks to which one can select the
one that best fits the constraints faced. Also, it should be noted that Fireblocks’
teams showed a Paillier key vulnerability in [12] leaking secret key or inverse
nonce information [18]. These attacks occur when the MtA functionality is used
without range proofs that ensure the inputs of MtA are chosen from the re-
quired domain. Thus, it is recommended to use suitable range proofs to detect
maliciously formed input in Paillier-based MtA functionality.

For the 2-party case of threshold ECDSA, two works are most related to
ours, namely, the one of Lindell [14] and Xue et al. [25]. Lindell has proposed
a simple and efficient 2-party protocol against malicious adversaries. To briefly
go over this protocol, both x and k are secretly shared in a multiplicative way,
where each party Pi generates xi in the key generation phase so that the private
key x is equal to x = x1 · x2. Party P1 also encrypts x1 so as to send it to P2,
then in the signing phase, the two parties generate their share of the nonce k,
then P2 computes its share of s and sends it to P1, which involves encrypting
and performing homomorphic encryption operations. Finally, P1 calculates the
signature s, which involves decryption before the verification step.

On the other hand, Xue et al. proposed an online-friendly algorithm against
malicious adversaries. That is, this protocol has a nearly optimal online phase,
in the sense that the heaviest part of it consists of the verification step of the
signature, which in turn consists of calculating two scalar multiplications M of
elliptic curve points (scalar multiplications will be denoted as M from now on).
The communication cost is also efficient, as only a single field element needs to
be sent. This is opposed to [14] as one needs to send and operate over ciphertexts
during the online phase. However, providing such an efficient online phase came
with the cost of offloading all the heavy computation in the offline phase of the
signing step. That is, while the key generation does not involve any encryption,
an MtA is being executed for every signature during the signing phase, which is
still a good compromise as it reduces the number of calls to the MtA functionality
compared to other schemes. Thus the resulting protocol offers an efficient online
phase with a good overall cost. However, this scheme can be further optimized,
as we will see in the next section.



4 S. Kocaman and Y. Talibi Alaoui

1.1 Our Contribution

We present a protocol against malicious adversaries with a nearly optimal online
phase as in [25], but with reduced computation and communication costs for the
offline phase. That is, our key generation is the same as in [25], where we produce
additive secret sharings of x (Pi generates Qi ← [xi] ·P , where P is a generator
of the curve, and the public key is Q← Q1 +Q2), and our online phase requires
two scalar multiplication M as in [25]. However, our offline phase reduces the
number of EC multiplications by one and the size of data communicated by two
field elements.

The cost reduction is achieved by eliminating the additional step of re-sharing
the secret x in [25], and basing the security of our protocol on the 1-Weak
Diffie-Hellman problem, which is equivalent to the Computational Diffie-Hellman
problem. That is, at the heart of the signing phase of the protocol of [25], x was
re-shared between the two parties (following obvious notation) as x = x′1.(k2 +
r1) + x′2, where the nonce k is shared as k = k1(r1 + k2), then the shares x′1 and
k2 are the values forwarded to the MtA functionality.

Instead, we simplified the protocol by adopting a multiplicative sharing of k
where it is unnecessary to perform a re-sharing step (Pi generates Ri ← [ki] · P
for P the generator of the curve, and the point R from which we take the x-
coordinate r is R ← [k1 · k2] · P ). We query the MtA only once on the most
convenient inputs for our choices. Namely, querying the MtA on x1 as the input
of P1, and k−12 as the input of P2. This was a logical choice as holding an additive
sharing as

x1 · k−12 = a+ b mod q

by the players allows them to do the online phase in only one pass, as the
signature s can be written as

s = k−11 · (k
−1
2 · (H(m) + x2 · r) + x1 · k−12 · r) mod q

In this case, P2 computes locally its signature share as

s2 ← k−12 · (H(m) + x2 · r) + b · r mod q

and sends it to P1 to construct the signature

s← k−11 · (s2 + a · r) mod q

However, it is crucial to note that the protocol requires P1 to input x1 for
MtA. If there are no checks on this input to MtA, a malicious P1 can corrupt
the system since P1 takes the partial signature s2 and then generates the full
signature s. For example, a malicious P1 can forge a signature on a different
message m′ of his choice by crafting the value to be sent to MtA as x′1 ←
−r−1 · (H(m′) − H(m) + x1 · r), then P1 will compute the full signature s as
k−11 · (s2 + a · r) = k−11 · (k

−1
2 · (H(m) + x2.r) + (a+ b) · r) = k−1 · (H(m′) + x · r)

which is a valid signature on m′ that is chosen by P1.
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In order to prevent P1 from mounting such an attack and manipulating the
distribution of s2, we add a check operation on the correctness of the MtA input
of P1. Namely after calling MtA and receiving its outputs, P1 computes [a] · P
and sends it to P2, who computes k2 · ([a] · P + [b] · P ) and checks whether
it is equal to Q1 or not. The correctness of this equality ensures that P1 used
the correct x1 value as MtA input, and as we will see, P1 will not be able to
bypass it, unless he breaks the standard assumption that the Computational
Diffie-Hellman problem is hard. It is worth noting that the check we add is not
concerned with the security of the underlying MtA, but rather to ensure that
the parties involved are invoking the MtA with the appropriate inputs. This of
course adds a round of communication to the protocol, however, it is a critical
step in ensuring the protocol’s security, which is analogous to the consistency
check executed immediately following the MtA call in [25].

In sum, the protocol we end up with utilized an additive sharing of x and a
multiplicative sharing of k, which is a similar setting of [8] for the (1, n)-ECDSA
case (i.e., any two parties among the n parties can construct a valid signature).
However, we only call the MtA functionality once while it is being called three
times in [8]. Besides, we only perform 13M, while 16M are needed for [8].

This improvement has an impact depending on the instantiation of MtA. For
instance, in the case of an OT-based MTA, where such a choice is usually made
to have a low computation cost, reducing the number of EC multiplications by
one will decrease the computation cost of the offline phase of [25] (Table 4 of
[25]) by 5.4 percent. On the other hand, in the case of a CL-based MtA, which
introduces a low communication cost, reducing the size of transmitted data by
two field elements decreases the communication cost of the offline phase of [25]
(Table 5 of [25]) for the case of the secp256k1 curve by 3.7 percent. While these
percentages may seem modest, the potential gains are substantial, given the vast
scale at which ECDSA signatures are executed, and all the applications that can
benefit from a distributed version of it.

We also implemented our protocol and obtained an online phase of 0.1 ms,
which is half the time required for the online phase of [25]; however, given the
similarity of the online phase between the two protocols, this difference in time
is most likely due to our implementation’s use of the highly optimized C library
secp256k1 for the operations over the curve.

1.2 Paper Organization

This paper is organized as follows: Section 2 provides the necessary background
over the hardness assumption upon which we are basing the security of our
protocol, the ECDSA scheme, and the ideal functionalities we used. Section 3
presents the proposed protocol, along with the cost analysis, comparison with
related work, and its running time based on our implementation. Section 4 con-
cludes the paper. Then in the Appendix, security proofs are given.
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2 Preliminaries

2.1 Hardness Assumptions

The security of our protocol is based on the 1-Weak Diffie-Hellman problem [19],
also referred to as the Inverse Diffie-Hellman problem [1]. That is, this problem
is a special case of the k-Weak Diffie-Hellman problem (and can be proven to be
equivalent to it), where the adversary is given a set of points {P , [x]·P , [x2]·P,
. . . , [xk]·P} for a randomly chosen x, and asked to find [x−1]·P .

Definition 1. (Computational Diffie-Hellman Assumption.) Let G be a cyclic
group of a large prime order, and P a generator of G. Given a tuple (P , [a]·P ,
[b]·P ) for a randomly chosen a and b, it is computationally hard to compute
[a·b]·P .

Definition 2. (1-Weak Diffie-Hellman Assumption.) Let G be a cyclic group of
a large prime order, and P a generator of G. Given a tuple (P , [x]·P ) for a
randomly chosen x, it is computationally hard to compute [x−1]·P .

Theorem 1. The 1-Weak Diffie-Hellman and the Computational Diffie-Hellman
assumptions are equivalent.

The proof of theorem 1 is given Appendix A.

2.2 The ECDSA Scheme

The ECDSA scheme is a signature algorithm that involves key generation, sign-
ing, and verification. Let G be an elliptic curve group of order q of size λ bits,
with a generator P , and the neutral element being denoted as O. The ECDSA
scheme works as follows:

– KeyGen(1λ) → (x,Q): set a random private key x ← Zq and compute the
corresponding public key Q = [x] · P .

– Sign(x,m)→ (r, s): generate the signature (r, s) using private key x, message
m, and hash function H with codomain of size λ bits. That is:
• Set a random nonce k ← Z∗q and compute R ← [k] · P = (rx, ry), then
set r ← rx mod q.

• Compute s← k−1 · (H(m) + r · x) mod q and output (r, s).
– Verify(m; (r, s)) → b ∈ {0, 1}: equals 1 if the signature is valid; 0 otherwise.

That is:
• Compute R← s−1 · ([H(m)] · P + [r] ·Q) = (rx, ry).
• If r = rx mod q, output 1; otherwise output 0.

Due to the structure of elliptic curves, if (r, s) is a valid signature, then
its complement (r, −s) is also a valid signature. Thus, this gives rise to the
malleability problem of the ECDSA scheme. To overcome this problem, one can
follow the low-s rule, where the low-s is the value between 0 and q−1

2 . Therefore,
we assume that the output of the signing procedure is always the lower s value.
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2.3 Ideal Functionalities

We describe below the ideal F2ECDSA functionality that our protocol realizes,
as well as the ideal functionalities queried by our protocol, namely, an ideal
zero-knowledge proof (ZKP) functionality FZKP and an ideal committed non-
interactive zero-knowledge functionality FCommit-ZK which are similar to the ones
used in [14], as well as an ideal Multiplicative-to-Additive (MtA) functionality
FMtA. In this content, we assume that each functionality provides a fresh ses-
sion identifier (sid) for each invocation of it. This can be achieved by having
the parties exchange random strings between each other, which will be further
concatenated then hashed so as to produce the session identifiers.

F2ECDSA Functionality. The F2ECDSA functionality is composed of a key gener-
ation phase and a signing phase. In the key generation phase, the key pair (x,Q)
is generated, where x is stored internally, and Q is given to the parties. In the
signing phase, the signature on the given message is constructed and given to
P1. The functionality is introduced in Figure 1.

2-party ECDSA functionality F2ECDSA

Given an elliptic curve group G of order q, a generator P of G, and a hash function
H with a codomain of size λ bits. The functionality works as follows:

KeyGen: On input init from both parties P1 and P2:
– Run KeyGen as defined in Subsection 2.2, so as to generate a key pair

(x,Q).
– Store (x,Q) and send Q to both parties.
– Set an internal flag ready to 1 and ignore further calls.

Sign: On input Sign(sid,m) from both parties P1 and P2. If ready = 1 and the
session identifier sid has not been used previously:
– Run Sign as defined in Subsection 2.2, so as to generate the signature (r, s).
– Send (r, s) to P1.
– Store internally (sid, delivered).

Fig. 1. 2-party ECDSA functionality F2ECDSA

FZKP Functionality. The FZKP functionality is depicted in Figure 2. With
this functionality, one party can prove the knowledge of a witness w for an
element y, such that the pair (y, w) satisfies the relation R. For our protocol,
this relation is R ← {(Q, x) ∈ G× Zq|Q = [x] · P} for public parameters G and
its generator P , which allows to prove knowledge of the discrete log of an elliptic
curve point. The sigma protocol of Schnorr [22] can be used to instantiate this
functionality, which can be made non-interactive using the Fiat-Shamir paradigm
in the random-oracle model [11].
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FZKP

FZKP functionality between P1 and P2 works as follows:

Prove: On input (prove, sid, x, w) from Pi for i ∈ {1, 2}, send (proof, sid, x) to
P3−i if (x,w) ∈ R and sid has not been previously used, otherwise ignore the
message.

Fig. 2. FZKP

ZKPs are expected to satisfy three key properties, completeness, soundness,
and zero knowledge. Completeness means that given a witness w for a statement
x ∈ R, there is an efficient algorithm that provides a convincing proof , i.e. it
ensures that if two parties follow the protocol, the verifier accepts the proof.
Soundness means a malicious prover cannot construct a convincing proof for
x ̸∈ R, i.e. soundness prevents the verifier from accepting a false proof of the
statement. Also, zero-knowledge means that proof does not reveal the used wit-
ness w, i.e. it states that proof does not leak any information except for the
truth of the statement.

FCommit-ZK Functionality. The FCommit-ZK functionality is depicted in Figure 3.
Through this functionality, a party will be able to commit to its Non-interactive
ZKP (NIZKP) and open it afterwards. As mentioned in [14], this functionality
can be realized in the random oracle model by having the parties hash their
NIZKP concatenated with a randomness r, which will be both opened in the
decommitment phase.

FCommit-ZK

FCommit-ZK functionality between P1 and P2 works as follows:

Commit: On input (com-prove, sid, x, w) from Pi for i ∈ {1, 2}, record (sid, i, x, w)
if sid has not been used previously and (x,w) ∈ R, then send (proof-receipt, sid)
to P3−i, otherwise ignore the message.

Decommit: On input (decom-proof, sid) to Pi, send (decom-proof, sid, x, 1) to P3−i

if (sid, i, x, w) is recorded and (x,w) ∈ R, otherwise send (decom-proof, sid, x, 0)
to P3−i

Fig. 3. FCommit-ZK

FMtA Functionality. The FMtA functionality is depicted in Figure 4. This func-
tionality takes as an input the two values α and β coming from P1 and P2 re-
spectively, and forwards to them respectively two random values a and b, subject
to the relation a+ b = α ·β mod q, i.e., it transforms a multiplicative sharing of
a secret to an additive sharing. As stated earlier, one can instantiate MtA from
many constructions, such as the Paillier encryption scheme [20] or El Gamal
[10], Castagnos-Laguillaumie (CL) [4] or OT [21].



Efficient Secure Two Party ECDSA 9

FMtA

FMtA functionality between P1 and P2 works as follows:

Reshare: On input (sid, α ∈ Zq) from P1 and (sid, β ∈ Zq) from P2. If sid has
been used before ignore this message. Otherwise:
– Sample a← Zq and calculate b← α · β − a mod q
– Send (sid, a) to P1 and (sid, b) to P2.

Fig. 4. FMtA

3 Protocol

Our two party ECDSA protocol is composed of two phases; one phase for a
distributed key generation that runs once, at the end of which the parties will
hold an additive sharing of the secret x as x = x1 + x2, then the second phase
is for signing, which consists of:

– Generating the nonce k, which will be multiplicatively shared between the
parties as k = k1 · k2.

– Querying the MtA functionality, so as to convert the product of P1’s secret
key x1 and P2’s nonce k−12 to an additive sharing a+ b, namely, P1 and P2

receive a and b respectively such that a+b = x1.k
−1
2 mod q. After the query,

P1 computes Z ← [a] · P and sends it to P2, who computes (Z + [b] · P ) · k2
and checks if it is equal to Q1, so as to control the correctness of the MtA
input against a malicious P1.

– Online signing, that starts by P2 generating locally its share of the signature
after the MtA invocation, namely s2 = k−12 (H(m) + r.x2) + b · r mod q,
then sends it to P1 who will generate the signature by calculating locally
s = k−11 (s2+a ·r) mod q and verifying whether this signature is valid. Note
that the nonce generation and the MtA invocation are message-independent,
thus we can refer to these two steps as the offline signing.

The complete process is illustrated in Figure 5. Also the graphical repre-
sentation of the key distribution and signing phase are given in Figure 6 and
Figure 7, respectively.

Security of our protocol is simulation based, following the real/ideal paradigm
[24]. The type of adversary we considered is a malicious one with static corrup-
tion. This implies that the adversary A can deviate from the protocol, but the
party he corrupts (either P1 or P2) is set prior to the protocol execution.

Theorem 2. The protocol of Figure 5 securely implements the functionality of
Figure 1 in the (FZKP,FCommit-ZK,FMtA)-hybrid model in the presence of a mali-
cious static adversary under the ideal/real definition of [24], assuming the Com-
putational Diffie-Hellman problem is hard.

The proof of theorem 2 is given in Appendix B.
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2-party ECDSA Protocol

Given an elliptic curve group G of order q and a generator P of G:

Key Generation: To generate a pair of keys for the ECDSA algorithm, the parties
do as follows:

1. P1 generates x1 ← Zq and calculates Q1 = [x1] · P .
2. P1 sends (com-prove, 1, Q1, x1) to FCommit-ZK.
3. P2 receives (proof-receipt, 1)
4. P2 generates x2 ← Zq and calculates Q2 = [x2] · P .
5. P2 sends (prove, 2, Q2, x2) to FZKP.
6. P1 receives (proof, 2, Q2) from FZKP. If not, P1 aborts.
7. P1 sends (decom-proof, 1) to FCommit-ZK.
8. P2 receives (decom-proof, 1, Q1, z) from FCommit-ZK. If z = 0, P2 aborts.

Both parties set Q ← Q1 + Q2 to be the public key. The private key is x ←
x1 + x2 mod q (note that no party holds x, but only an additive share of it).

Signing: To sign a message m, the parties do as follows:
1. Generating the nonce k:

(a) P1 generates k1 ← Zq and calculates R1 = [k1] · P .
(b) P1 sends (com-prove, sid||1 R1, k1) to FCommit-ZK.
(c) P2 receives (proof-receipt, sid||1, 1)
(d) P2 generates k2 ← Zq and calculates R2 = [k2] · P .
(e) P2 sends (prove, sid||2, R2, k2) to FZKP

(f) P1 receives (proof, sid||2, R2) from FZKP. If not, P1 aborts.
(g) P1 sends (decom-prove, sid||1) to FCommit-ZK.
(h) P2 receives (decom-proof, sid||1, R1, z) from FCommit-ZK. If z = 0, P2

aborts.
Both parties set R ← [k1 · k2] · P = (r, y), corresponding to the nonce
k ← k1 · k2 (note that no party holds k, but only a multiplicative share of
it).

2. Querying the MtA functionality:
(a) P1 and P2 query FMtA with the respective inputs x1 and k−1

2 . FMtA

forwards a to P1 and b to P2.
(b) P1 calculates Z ← [a] · P and sends it to P2.
(c) P2 verifies if k2 · (Z + [b] · P ) = Q1. If it is not the case P2 aborts.

3. Online signing:
– P2 calculates s2 ← k−1

2 · (H(m) + x2 · r) + b · r mod q and sends it to
P1.

– P1 calculates s← k−1
1 · (s2 + a · r) mod q.

– P1 verifies if s is a valid signature of m, if so P1 outputs (r, s) as the
signature.

Fig. 5. 2-party ECDSA Protocol
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P1 P2

Choose random x1

Compute Q1← [x1] · P
Compute DLOG proof π1

Compute commit to Q1,x1 Commit Choose random x2

Compute Q2 ← [x2] · P
Compute DLOG proof π2

(Q2, π2)
Verify proof π2

Compute Q = Q1 +Q2

Decommit to Q1,π1 Verify proof π1

Compute Q = Q1 +Q2

Fig. 6. The 2-Party ECDSA Key Distribution Protocol

3.1 Cost Analysis

We analyze below the theoretical complexity of our two party ECDSA protocol,
and compare it with the one of [25] and [14].

Theoretical complexity - key distribution. The distributed key gener-
ation consists of generating keys and zero-knowledge proofs. The computation
cost can be examined in terms of EC multiplications as this is the heaviest op-
eration performed. For the keys, each party carries out 1M to produce its share
of the public key. On the other hand, two zero-knowledge proofs of knowledge
of discrete log need to be produced. Using the standard Schnorr proofs in non-
interactive from, each party carries out 1M as a prover and 2M as a verifier. Thus
the key distribution requires 8M in total. For the communication cost, each party
needs to send its share of the public key and the corresponding NIZKP, and P1,
needs to send as well a commitment to its share at the beginning of the protocol,
which consists of an output of the hash function H being used (of size λ bits).
Assuming one EC point can be represented in λ bits, and a NIZKP consists of
two field elements and one EC point, the size of data communicated between
the parties is 9 ·λ. Note that the cost of our key distribution is the same as [25],
which is a negligible cost compared to the one of Lindell [14], as the latter is
dominated by the usage of homomorphic encryption.

Theoretical complexity - signing. The computation cost of the signing
protocol can be examined in terms of EC multiplications and MtA invocations.
That is, the first step of the offline phase is similar to the key generation, except
that the nonce is multiplicatively shared, thus each party needs to perform an
extra EC multiplication so as to obtain R. Also, the calculation needed to check
P1’s input to MtA requires 3 EC multiplications. Thus, it results in a computa-
tion cost of 13M, and a communication cost of 10 ·λ. To obtain the total cost of
the offline phase, one needs to add these costs to the executing of 1 MtA. The
cost of this depends on the instantiation used, which can yield different results.
For instance, MtA can be instantiated from the Paillier encryption scheme, i.e.,
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P1 P2

m,x1, Q m, x2, Q

Choose random k1
Compute R1 ← [k1] · P
Compute DLOG proof π1

Compute commit to R1, π1 Commit Choose random k2
Compute R2 ← [k2] · P
Compute DLOG proof π2

R2, π2
Verify proof π2

Compute R← [k1] ·R2

Compute r from R

Send k−1
2 as MtA input

Verify proof π1

Compute R← [k2] ·R1

Compute r from R

Decommit to R1, π1

MtA
a b

Send x1 as MtA input

Compute Z ← [a] · P
Z

Verify if k2 · (Z + [b] · P ) = Q1

Compute
s← k−1

1 · (s2 + a · r) mod q
Verify signature

s2
Compute
s2 ← k−1

2 · (H(m) + x2 · r) + b · r
mod q

Fig. 7. The 2-Party ECDSA Signing Protocol

the building block upon which [14] is based. This would result in a protocol
where homomorphic encryption is used in the offline phase, with an inferior per-
formance to that of [14], however with an improved online phase performance
than [14]

In fact, the online phase consists of performing operations over a field by both
parties, and a verification phase of the signature, which requires from the verifier
(in our case P1) to carry out 2M. Thus neglecting the cost of operations over a
field, the computation cost of the online phase if 2M. As for the communication
cost, P2 needs to send one field element to P1, thus λ bits of data need to be
communicated between the parties.

Table 1 compares these costs with the ones of [25] and [14]. For [14], the cost
of the homomorphic operations is dominated by exponentiations modulo N2 by
numbers from ZN . We refer to these exponentiations as E. The value N refers
to the public key of Paillier, which determines the size of a Paillier encryption,
which is a number from ZN2 . MtA refers to the cost of invoking an instantiation
of the MtA functionality.

As one can notice, the computation and communication cost of our online
phase is the same as [25], which outperforms the one of [14], for which the online
phase requires performing an extra exponentiation, and sending an encryption
of Paillier (N is typically of size 2048 bits) instead of a field element. However,
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our offline phase outperforms the one of [25], as in our case the computation and
communication required are reduced respectively by 1M, and 2 · λ.

Table 1. Cost Analysis of Signing

Protocol Computation Communication
Offline Online Offline Online

Lindell [14] 10M+2E 2M+1E 9 · λ 2 · log2(N)

Xue et al. [25] 14M+1MtA 2M 12 · λ+1MtA λ

Ours 13M+1MtA 2M 10 · λ+1MtA λ

3.2 Implementation

We implemented our protocol in C++, over the secp256k1 curve standardized by
NIST, which is the one used by Bitcoin. The hash function we used is Sha256, and
for the curve operation we used the Secp256k13 C library. The implementation
can be found in https://github.com/YounesTal1/2ecdsa

We took runtimes with an Amazon instance of ”t2.xlarge” (16 GiB of memory
and 4 vCPU), running with ”Ubuntu 18.04.6 LTS”, this instance was located in
”us-east-1” (Virginia). The runtimes we obtained are given in Table 2. Note that
our implementation used a single thread, and that the runtimes reflect only the
computation cost of our protocol. These runtimes were obtained by calculating
the average time needed for a 1000 key generation, where each key was used
to sign 100 messages. Note also that the MtA implemented is a dummy one
(one party receives the multiplicative share of the other party, and produces the
additive shares for both parties), hence Table 2 contains the term MtA, where
one can plug in the time needed to execute the MtA of their choice to obtain
the overall runtime of the offline signing. As can be observed, our protocol is
efficient in terms of the computation cost, for both key generation and signing.
That is, the key generation only requires 1.05ms and the offline phase (excluding
the MtA call) requires 1.26ms. The difference in runtimes is mainly due to the
five extra EC multiplications, namely two extra EC multiplications that need to
be performed for calculating R, as the nonce is shared multiplicatively, and three
extra EC multiplications that need to be performed for checking the correctness
of P1’s input to MtA. The online phase only requires 0.1ms, as this is dominated
by two EC multiplications for the signature verification.

Table 2. Runtimes in milliseconds of our protocol. These runtimes correspond to
the time needed for one key generation, one execution of the offline phase, and one
execution of the online phase.

Key generation Offline signing Online signing

1.05 1.26 + MtA 0.10

3 https://github.com/bitcoin-core/secp256k1

https://github.com/YounesTal1/2ecdsa
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To understand the impact of the MtA functionality on the runtimes, so as
to give a comprehensive evaluation of our protocol, let us consider two cases,
an OT based MtA, and a CL based MtA. For this we will base our analysis on
the runtimes of [25]. That is, [25] implemented their protocol with different MtA
instanciations. For the case of OT, the offline phase took 2.6ms and required
90.9 KBytes of data to be communicated (Table 4 of [25]). For the case of CL,
the offline phase took 1386ms and required 1.7KB of data to be communicated
(Table 5 of [25]). As for the online phase, it took 0.2ms, which is dominated by
2M operations.

As the offline phase of [25] consists of 14M+1MtA, and requires 12 ·λ +1MtA
(see Table 1), for the case of OT, one would estimate the MtA runtime to be
around 1.2ms, and the communication cost of the MtA to be 90.52 KBytes,
thus based on this, our offline phase would take around 2.46ms and require 9.84
KBytes, hence a gain of 5.4 percent on the running time. For the case of CL, one
would estimate the MtA runtime to be around 1384.6ms, and the communication
cost of the MtA to be 1.32 KBytes, thus based on this, our offline phase would
take around 1385.9ms and require 1.636 KBytes, hence a gain of 3.7 percent of
the size of communicated data.

4 Conclusion

We proposed an efficient two-party ECDSA protocol secure against malicious
adversaries. Our protocol has a light online phase, dominated by the verification
step of ECDSA, and requires only sending one field element from one party to
the other. Our offline phase uses a single call of the MtA functionality, and to
the best of our knowledge, it offers the most efficient offline phase in terms of
the computational and communication cost for such an online phase.

It is worth noting that the asymmetry introduced to the protocol, between
what the two parties do, particularly the inputs they send to the MtA function-
ality, poses a challenge to generalize the protocol to the multiparty case with a
low number of invocation to the MtA functionality (say at most equal to the
number of parties). We leave further exploration as future work.
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one can obtain ([b2]·P ) and ([(a+b)2]·P ) from the tuples ([b]·P , P ) and ([a+b]·P ,
P ) respectively. Next, one can obtain ([a·b]·P ) by calculating 2−1·[((a + b)2 −
(a)2 − (b)2)]·P .

B Proof of Theorem 2
In Figure 8, we build a simulator S, to simulate P1 when P2 is corrupt, and to
simulate P2 when P1 is corrupt. Below, we sketch a proof to demonstrate why
the views in a real and a simulated execution will be indistinguishable for an
adversary A.

B.1 Corrupted P1

Key generation phase. The difference between the real execution and the
simulated execution is the generation of Q2. In the case of a real execution, Q2

is computed as [x2] · P where x2 is randomly generated, while in the case of a
simulated run, Q2 is computed by calculating Q2 ← Q−Q1. Since Q is randomly
generated by the F2ECDSA functionality of Figure 1 (Q← [x] · P for a randomly
generated x), then the distributions from which Q2 is generated in the real and
simulated executions are indistinguishable.

Signing phase. In the nonce generation, a similar argument can be given to
show that the views are indistinguishable. That is in a real execution, R2 is
computed as [k2] · P where k2 is randomly generated, while in the case of a
simulated run, R2 is computed by calculating R2 ← [k−11 ] · R. Since R is ran-
domly generated by F2ECDSA (R← [k] ·P for a randomly generated k), then the
distributions from which R2 is generated in the real and simulated executions
are indistinguishable.

In the MtA call, both in the real and simulated executions, P1 is intended to
receive a randomly generated a, thus the views are indistinguishable. Afterwards,
P1 sends Z to P2. In a simulated execution, P2 aborts if P1 has provided to the
MtA functionality a different input than x1, or if he sends a different value than
[a] · P . This behaviour is equivalent to what happens in a real execution, where
P2 checks whether k2 ·(Z+[b] ·P ) = Q1. That is, let us denote by ϵ1, the additive
error that P1 can introduce to x, namely, P1 sends to MtA the value x′ ← x+ ϵ
mod q, and by E, the additive error that P1 can introduce to Z, namely, P1

sends P2 the value Z ′ ← Z +E. To pass the check of P2, the following equation
needs to be satisfied:

Q1 = k2 · (Z ′ + [b] · P )

= k2 · (E + Z + [b] · P )

= k2 · (E + [a] · P + [b] · P )

= k2 · (E + (x1 + ϵ1) · k−12 · P )

= k2 · (E + x1 · k−12 · P + ϵ1 · k−12 · P )

= Q1 + k2 · (E + ϵ1 · k−12 · P )
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2-party ECDSA Simulator

The simulator S does as follows:

Corrupt P1 (i.e. simulating P2):

1. Key Generation:
– S queries F2ECDSA to obtain the public key Q.
– S receives (com-prove, 1, Q1, x1) from A intended to be sent to FCommit-ZK.
– S checks whether Q1 = [x1] · P , if it is the case, S calculates Q2 = Q−Q1, and

sends (proof,2 Q2) to A, as if FZKP sent it. If Q1 is different than [x1] · P , S does
the same with a randomly generated Q2.

– S receives (decom-proof, 1, Q1, z) from FCommit-ZK. If z = 1, the simulator stores
(x1, Q) for further use, otherwise, S simulates P2 aborting.

2. Signing:
(a) Nonce generation:

– S queries F2ECDSA to obtain the signature (r, s), then calculates R ← [s−1 ·
H(m)] · P + [s−1 · r] ·Q as in the verification procedure.

– S receives (com-prove, sid||1, R1, k1) from A intended to be sent to FCommit-ZK.

– S checks whether R1 = [k1] · P , if it is the case, S calculates R2 = k−1
1 · R,

and sends (proof, sid||2, R2) to A, as if FZKP sent it. If R1 is different than
[k1] · P , S does the same with a randomly generated R2.

– S receives (decom-proof, 1, R1, z) from FCommit-ZK. If z = 1, the simulator
stores (k1, R) for further use, otherwise, S simulates P2 aborting.

(b) MtA:
– The simulator here receives x1 from A intended to be sent to FMtA, then

forwards a randomly generated number a to P1. If the x1 received here is
different from the share of the secret key of P1, the simulator sets an internal
flag cheatsid||1 to be 1.

– The simulator receives Z from P1. If cheatsid||1 is equal to 1, or Z is different
than [a] · P , S simulates P2 aborting.

(c) Online signing:
– S calculates s2 ← s · k1 − a · r mod q and sends it to P1.

Corrupt P2 (i.e. simulating P1):

1. Key Generation:

– S queries F2ECDSA to obtain the public key Q.
– S sends (receipt, 1) to A as if it was sent by FCommit-ZK.
– S receives (prove, 2, Q2 , x2) from P2 intended to be sent to FZKP.
– S checks if Q2 = [x2] · P . If it is not the case, S simulates P1 aborting.
– S calculates Q1 = Q−Q2, and sends (decom-proof, 1, Q1, 1) as if FCommit-ZK sent

it. S stores (x2, Q) for further use.

2. Signing:
(a) Nonce generation:

– S queries F2ECDSA to obtain the signature (r, s), then calculates R ← [s−1 ·
H(m)] · P + [s−1 · r] ·Q as in the verification procedure.

– S sends (receipt, sid||1, 1) to A as if it was sent by FCommit-ZK.
– S receives (prove, sid||2, R2 , k2) from P2 intended to be sent to FZKP.
– S checks if R2 = [k2] · P . If it is not the case S simulates P1 aborting.

– S calculates R1 = k−1
2 · R, and sends (decom-proof, 1, R1, 1) as if FCommit-ZK

sent it. S stores (k2, R) for further use.
(b) MtA:

– The simulator here receives k−1
2 from A intended to be sent to FMtA, then

forwards a randomly generated number b to P2. If the k−1
2 received here is

different from the one stored in the nonce generation, the simulator sets an
internal flag cheatsid||2 to be 1.

– S sends k−1
2 · Q1 − [b] · P to A. The k2 used by the simulator here and in

the next step is the one he received in the MtA call.
(c) Online signing:

– S receives s2 from A. If cheatsid||2 = 1 or s2 is different from k−1
2 · (H(m) +

x2 · r) + b · r mod q, S simulates P1 aborting. Otherwise, S outputs (r, s)
as the signature.

Fig. 8. 2-party ECDSA Simulator
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which implies that k2 · E + ϵ1 · P = 0. If E = O, then ϵ1 = 0 mod q. Also
if ϵ1 = 0 mod q , then E = O as k2 ̸= 0 mod q. Thus E = O or ϵ1 = 0 mod q
implies that the adversary has not cheated, as we end up with a case where he
does not modify the values he is supposed to send.

Let us look at the case where E ̸= O and ϵ1 ̸= 0 mod q. The equation holds
if the adversary chooses ϵ1 in such a way that E = ϵ1 · [k−12 ] · P = O. While
R2 = [k2] · P is known to the adversary, obtaining [k−12 ] · P from it would mean
breaking the 1-Weak Diffie-Hellman problem, which as we have seen is equivalent
to the Computational Diffie-Hellman problem which is believed to be hard.

Thus to summarize, the adversary will not be able to make the check pass if
he cheats, either in the MtA call or the step afterward.

In the online signing:
If the parties reach this stage, P1 will be receiving in the simulated execution

s2 = s · k1 − a · r mod q, which is equal to

s2 = s · k1 − a · r
= k−1 · (H(m) + r · x) · k1 − a · r
= k−12 · (H(m) + r · x)− a · r)
= k−12 · (H(m) + r · x1 + r · x2)− a · r
= k−12 · (H(m) + r · x2) + k−12 · r · x1 − a · r
= k−12 · (H(m) + r · x2) + r · (a+ b)− a · r
= k−12 · (H(m) + r · x2) + r · b

which is what P1 receives in a real execution.

B.2 Corrupted P2

Key generation phase. Similarly to the case of a corrupted P1, the difference
between the real execution and the simulated execution is the generation of Q1.
In the case of a real execution, Q1 is computed as [x1] · P where x1 is randomly
generated, while in the case of a simulated run, Q1 is computed by calculating
Q1 ← Q − Q2. Since Q is randomly generated by the F2ECDSA functionality of
Figure 1 (Q← [x] · P for a randomly generated x), then the distributions from
which Q1 is generated in the real and simulated executions are indistinguishable.

Signing phase. Similarly to the case of a corrupted P1, in the nonce generation,
a similar argument can be given to show that the views are indistinguishable.
That is in a real execution, R1 is computed as [k1] · P where k1 is randomly
generated, while in the case of a simulated run, R1 is computed by calculating
R1 ← [k−12 ] · R. Since R is randomly generated by F2ECDSA (R ← [k] · P for a
randomly generated k), then the distributions from which R1 is generated in the
real and simulated executions are indistinguishable.
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In the MtA call, both in a real and simulated executions, P2 is intended
to receive a randomly generated b (In the simulated execution b = x1 · k−12 − a
mod q for a randomly generated a. Note that the Simulator uses here and in what
follows the k2 he received at the MtA call, and not the one received during the
nonce generation), thus the views are indistinguishable. In the step afterwards, in
the simulated execution, P2 receives [k−12 ] ·Q1− [b] ·P , which is the same as what
he receives in a real execution, as [k−12 ]·Q1−[b]·P = [k−12 ·x1]·P−[b]·P = [a]·P .
Thus the views are indistinguishable.

In the online signing:
– if P2 does not cheat at all during the protocol, he will be able to calculate

s2 = k−12 ·(H(m)+x2 ·r)+b·r mod q and send it to P1. In the real execution
P1 will add it to its share s1, and the sum will yield a valid signature which
will be published by P1. In the simulated execution, s2 will pass the check
of the simulator and therefore he will publish the signature.

– if P2 cheated at the MtA call, or does not send the correct s2, in the real
execution, P1 will not find a valid signature after summing up its share with
the one of P2, thus P1 will send the abort signal. In the simulated execution,
either cheat flag will be equal to 1 at this stage, or s2 will not pass the check
of the simulator. In both cases the simulator will abort. That is, the only
case where the views will be distinguishable, is when the adversary cheats
on the MtA call, and yet manages to send the correct s2. Let us denote by ϵ,
the additive error that the adversary introduces to his input to MtA, namely
he sends k−12 + ϵ instead of k−12 . In this case a+ b = x1 · (k−12 + ϵ). In order
to pass the check, P2 needs to send s2 such that s · k1 = s2 + a · r mod q.
This implies that:

s2 = s · k1 − a · r
= k−1 · (H(m) + r · x) · k1 − a · r
= k−12 · (H(m) + r · x1 + r · x2)− a · r
= k−12 · (H(m) + r · x2) + k−12 · r · x1 − a · r
= k−12 · (H(m) + r · x2) + r · b− x1 · r · ϵ

As x1 is unknown to the adversary, he can satisfy this equation only if
ϵ = 0, i.e., the case where he does not cheat in the MtA call. Thus the
behaviour of the simulator will make the real execution and the simulated
one indistinguishable.
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