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Abstract. The identity-based signature, initially introduced by Shamir
[Sha84], plays a fundamental role in the domain of identity-based cryp-
tography. It offers the capability to generate a signature on a message,
allowing any user to verify the authenticity of the signature using the
signer’s identifier information (e.g., an email address), instead of relying
on a public key stored in a digital certificate. Another significant con-
cept in practical applications is the threshold signature, which serves as
a valuable tool for distributing the signing authority. The notion of an
identity-based threshold signature scheme pertains to the distribution
of a secret key associated with a specific identity among multiple enti-
ties, rather than depending on a master secret key generated by a public
key generator. This approach enables a qualified group of participants
to jointly engage in the signing process. In this paper, we present two
identity-based threshold signature schemes based on isogenies, each of
which addresses a different aspect of security. The first scheme prioritizes
efficiency but offers security with abort, while the second scheme focuses
on robustness. Both schemes ensure active security in the quantum ran-
dom oracle model. To build these identity-based threshold signatures,
we begin by modifying the identity-based signature scheme proposed
by Shaw and Dutta [SD21], to accommodate the CSI-SharK signature
scheme. Subsequently, we leverage the resulting identity-based signature
and build two threshold schemes within the CSIDH (Commutative Su-
persingular Isogeny Diffie-Hellman) framework. Our proposed identity-
based threshold signatures are designed based on CSI-SharK and can be
easily adapted with minimal adjustments to function with CSI-FiSh.

Keywords: Identity-based signature · Identity-based threshold signature · Isogeny-
based cryptography · CSI-SharK · CSI-FiSh · CSIDH

1 Introduction

In recent years, there has been a notable surge of interest in identity-based
cryptography, initially introduced by Shamir [Sha84]. The rationale behind this
heightened attention lies in its remarkable advantages over conventional certificate-
based cryptography, primarily due to its ability to circumvent the arduous cer-
tificate management procedures inherent in the latter approach. Identity-based



identification serves as a fundamental element in identity-based cryptography,
which was initially proposed in 2004 by Bellare et al. [BNN04] and Kurosawa et
al. [KH04] as separate endeavors. In an identification scheme based on identity,
each user designates their identity, such as an email address, as their public key.
The public key generator (e.g., a dealer) generates the corresponding secret key
for the user’s identity by utilizing its master secret key. Subsequently, the user,
assuming the role of a prover, can employ this secret key to establish its identity
to a verifier who possesses the associated public key.

Shamir in the same work [Sha84] introduced the concept of an identity-
based signature scheme. This innovation garnered significant attention and later
gained further prominence through the Fiat-Shamir transformation [FS87]. The
advent of identity-based signature schemes brought a fresh perspective to the
field, as they enabled users to sign messages instead of merely authenticating
their identities [KN09,Hes02]. Consequently, the verification process became the
responsibility of the verifier, who checks the validity of the signature. On the
other hand, due to a wide range of applications (e.g., in blockchains), threshold
signature schemes have received more attention in recent years. Such schemes
allow distributing the secret key into shares among multiple parties or devices,
such that only a set of authorized parties can jointly sign a message to pro-
duce a single signature. Key recovery attacks on threshold signature schemes
require more effort than on the non-threshold ones, as the adversary has to at-
tack more than one device or party simultaneously. In the realm of identity-based
signatures, Baek and Zheng [BZ04], for the first time, introduced the concept of
secret sharing among multiple parties. They devised an identity-based threshold
signature that utilizes bilinear pairings.

An illustrative application of the identity-based threshold signature scheme
can be envisioned in the following scenario: Let us consider Alice, who serves as
the president of a company. In this capacity, she has established an identity that
represents the company and possesses a private key associated with this identity.
Through the utilization of this private key, Alice can affix her signature to var-
ious documents. However, she harbors concerns regarding situations where she
may be physically absent. Consequently, she desires to delegate this signing au-
thority to a set of signature-generation servers. By employing this arrangement,
signatures for a given message can be collectively generated by these servers.
Importantly, any user can successfully verify the resulting signature using the
company’s publicly accessible identity, provided that the user obtains a specific
number of partial signatures from the signature-generation servers.

In the wake of Shor’s groundbreaking results [Sho94] on the vulnerabilities
of Factoring and Discrete Logarithm (DL) problems to quantum attacks, a new
wave of investigation emerged among researchers. Their focus shifted towards the
exploration of post-quantum cryptographic techniques capable of constructing
primitives and protocols resilient against the formidable threat posed by quan-
tum adversaries. One prominent avenue of inquiry in this domain revolves around
isogeny-based cryptography. The concept of employing isogenies as a crypto-
graphic foundation was initially introduced by Couveignes [Cou06], followed by
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the notable works of Rostovtsev and Stolbunov [RS06,Sto10]. These scholars em-
barked upon devising innovative methods to construct cryptographic protocols
based on isogenies that could achieve post-quantum security. In [PCZ+20], Peng
et al. introduced an identity-based signature scheme based on isogenies that ac-
counts for post-quantum security concerns. Their construction is built based on
CSI-FiSh signature scheme [BKV19]. In 2021, Shaw and Dutta [SD21] analysed
Peng et al.’s scheme and uncovered vulnerabilities in both the identity-based
signature scheme itself and its underlying trapdoor samplable relation. Then,
Shaw and Dutta [SD21] presented a fixed version of their construction.

Our Contribution. We first modify the CSI-FiSh-based identity-based signa-
ture scheme of Shaw and Dutta [SD21] to work with the CSI-SharK scheme,
which was recently proposed by Atapoor et al. [ABCP23a] and shown to out-
perform CSI-FiSh in the threshold setting. This translation allows us to leverage
the properties of CSI-SharK, and obtain a new identity-based signature scheme
from isogenies that has considerably shorter master secret key in comparison
with the original scheme [SD21].

Next, we use the resulting identity-based signature scheme and propose two
identity-based threshold signature schemes based on isogenies, each of which
addresses a different aspect of security. Both protocols are designed to achieve
active security, ensuring the security of the protocol even in the scenarios where
parties are malicious and deviate from honest protocol execution. In our ini-
tial threshold signature scheme, honest parties have the ability to detect any
misbehavior from malicious entities, resulting in the termination of the protocol
execution. However, it is important to note that this protocol only achieves active
security with abort and identification of the adversary remains unattainable.

To deal with the above concern, as the next contribution, we propose a ro-
bust scheme, which additionally guarantees the correctness of final output. The
second threshold signature scheme ensures security against active adversaries
and achieves robustness, thereby enabling the identification and expulsion of
any malicious party responsible for protocol malfunctions or misconduct. The re-
maining parties then collaboratively reconstruct the compromised party’s secret,
facilitating the seamless continuation and completion of the protocol, ultimately
yielding the final signature. Our technique to achieve robustness is inspired from
the construction of ThreshER SharK signature scheme [ABCP23c]. ThreshER
SharK is a Threshold, Efficient and Robust signature scheme that recently is
proposed by Atapoor et al. [ABCP23c] and is built on top of CSI-SharK signa-
ture scheme [ABCP23a]. To achieve robustness, the distributed signing protocol
needs to be run by all the parties, rather than a qualified set of them. Therefore,
our second construction is less efficient in comparison with the first one, but it
can achieve robustness.

Organization. Sec. 2 presents some preliminaries which will be used in the
follow-up sections. In Sec. 3, we adapt the CSI-FiSh based identity-based signa-
ture scheme of Shaw and Dutta [SD21] to work with the CSI-SharK scheme [ABCP23a].
In Sec. 4, we present the first identity-based threshold signature based on isoge-
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nies with abort. In Sec. 5, we propose the first robust identity-based threshold
signature scheme based on isogenies. We conclude the paper in Sec. 6.

2 Preliminaries

Next, we provide an overview of several key concepts, which are used in the
follow-up sections. Some of them are provided in App. 6.

Notation We use the notation x ← X to represent the assignment of a uni-
formly random value to the variable x from the set X, assuming a uniform
distribution over X. If D is a probability distribution over a set X, we indicate
the assignment x ← D as the process of sampling from the set X according
to the distribution D. The concatenation of strings s1 and s2 is represented by
s1∥s2. When referring to a probabilistic polynomial-time (PPT) algorithm as A,
the notation a ← A represents the assignment of the output of A, where the
probability distribution is over the random tape of A. Furthermore, we denote
ZN as the set of integers modulo N , expressed as Z/NZ. The function log(x) is
defined as the logarithm of x with base 2.

2.1 Isogeny-based Cryptography

Isogenies are rational maps between elliptic curves that are also homomorphisms
with respect to the natural group structure on these curves. Our investigation is
limited to the set E of supersingular elliptic curves over prime fields Fp and sepa-
rable Fp-rational isogenies defined between them (the so-called CSIDH setting).
Isogenies from an elliptic curve to itself are called endomorphisms. Under the
addition and composition operations, the endomorphisms of elliptic curves form
a ring. The subring of Fp-rational endomorphism rings of curves in E is always
isomorphic to an order O in the quadratic imaginary field Q(

√
−p). Separable

isogenies are uniquely defined by their kernel, which can be identified with the
kernels of ideal classes in the ideal-class group Cl(O). As a result, we can see the
class group as acting on the set E via a free and transitive group action.

To ensure efficient computation of isogenies, the prime p is usually chosen
such that p − 1 = 4

∏
i ℓi, where the ℓi are small prime factors. The factor 4

ensures that p ≡ 3 mod 4 and that the special elliptic curve E0 : y2 = x3 + x
is supersingular. Throughout this work, we assume that the class group Cl(O)
is known, enabling the transformation of arbitrary ideals into efficiently com-
putable isogeny chains of degrees li using the relation lattice. We note that
this is not a trivial assumption as current class group computations in reach
fall short of realistic security levels [BKV19, BS20, Pei20] or lead to very slow
protocols [DF17]. We point out, however, that there are polynomial-time quan-
tum algorithms to this end [Kit96]. We refer to [CLM+18, BKV19,Vél71, BD-
FLS20] for more details on the explicit computations of isogenies. For a more
thorough introduction to isogenies and isogeny-based cryptography, we recom-
mend [CLM+18,DF17,Sil09].
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Finally, we note that class groups are generally of composite order. By work-
ing in cyclic subgroups of Cl(O) with generator g and order N | #Cl(O), we can
redefine the group action as [ ] : ZN × E → E , where ideals of the form ga for
a ∈ ZN can be reduced modulo the relation lattice and efficiently computed. To
work in a subgroup ZN ′ ⊂ ZN , we can simply use the generator gN/N ′

. For the
rest of this work, we always assume the choice of the subgroup ZN to be such
that {1, . . . , n} defines an exceptional set modulo N , i.e. that n is smaller than
the smallest divisor of N . Next, we recall some security assumptions that are
used in our studied and constructed protocols.

Definition 2.1 (Group Action Inverse Problem (GAIP) [CLM+18,DG19]).
Given two supersingular elliptic curves E,E′ ∈ E over the same finite field Fp

and with EndFp
(E) ≃ EndFp

(E′) ≃ O, find a ∈ ZN , such that E′ = [a]E.

Definition 2.2 (Multi-Target-GAIP [DG19,BKV19]). Given k+1 super-
singular elliptic curves E0, E1, . . . , Ek ∈ E over Fp with the same Fp-rational
endomorphism ring, find a ∈ ZN , s. t. Ei = [a]Ej for some i, j ∈ {0, . . . , k} with
i ̸= j.

Definition 2.3 ((c0, c1, · · · , ck−1)-Vectorization Problem with Auxiliary
Inputs (Ck−1-VPwAI) [BCP21]). Given an element E ∈ E and the pairs

(ci, [cix]E)
k−1
i=1 , where Ck−1 = {c0 = 0, c1 = 1, c2, . . . , ck−1} is an exceptional

set, find x ∈ ZN .

2.2 Identity-Based Signature Schemes

Next, we recall the definition of identity-based signatures from [SD21], which
originally were proposed by Shamir in [Sha84].

Definition 2.4 (Identity-Based Signature Scheme). An identity-based sig-
nature scheme consists of four PPT algorithms (Setup,Extract,Sign,Verify).

- (pp,msk) ← Setup(1λ): Given the security parameter λ, it outputs public
parameters pp and a master secret key msk.

- uskid ← Extract(pp,msk, id): Given pp, msk, and the user identity id, it out-
puts the user secret key uskid for the given id.

- σ ← Sign(pp,m, uskid): Given pp, uskid, and a message m, it outputs σ.
- (1/0)← Verify(pp, id,m, σ): Given pp, id, m, and signature σ, it outputs 1 if
σ is a valid signature on m, otherwise outputs 0.

Definition 2.5 (Correctness). For all (pp,msk) ← Setup(1λ), all uskid ←
Extract(pp,msk, id), all m and id, we have Verify(pp, id,m,Sign(pp,m, uskid)) = 1.

Definition 2.6 (Security). An IDentity-based Signature (IDS) scheme is said
to be secure against UnForgeability against chosen-identity and Chosen Message
Attacks (UF-IDS-CMA) [SD21, PCZ+20] if for all PPT adversaries A, there
exists a negligible function ϵ such that

AdvUF−IDS−CMA
IDS,A (λ) = Pr[A wins in ExpUF−IDS−CMA

IDS,A (λ)] < ϵ,

where the experiment ExpUF−IDS−CMA
IDS,A (λ) is described in Fig. 1.
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Input: The challenger C takes input the security parameter 1λ, and generates
(pp,msk) ← Setup(1λ). It gives the public parameters pp to the adversary A
while keeping the secret msk to itself.

Query Phase: C responds to polynomially many adaptive queries made by A,
- Oracle OExtract(msk,·): On receiving queries on a user identity id from A, the

challenger C responds with her user secret key uskid ← Extract(pp,msk, id)
for the given identity id.

- Oracle OSign(uskid,·): On receiving queries on a message m, and a user identity
id from the adversary A , the challenger C responds with a signature σ ←
Sign(pp,m, uskid) where uskid ← Extract(pp,msk, id) is the user secret key
corresponding to the identity id.

Forgery: A eventually outputs a message m⋆, user identity id⋆, and a forge signa-
ture σ⋆. A wins the game if 1 ← Verify(pp, id,m, σ), with the restriction that
id⋆ has not been queried to OExtract(msk,·) and (m⋆, id⋆) has not been queried to
OSign(uskid,·).

Fig. 1. ExpUF−IDS−CMA
IDS,A (λ): UnForgability against Chosen Message Attacks.

2.3 Identity-Based Threshold Signature Scheme

We use the definition of an identity-based threshold signature scheme as pro-
posed by Baek and Zheng [BZ04], which is outlined below:

Definition 2.7 (Identity-Based Threshold Signature Scheme). A (t, n)-
identity-based threshold signature consists (Setup,Extract,DKey,DSign,Verify):

- (pp,msk)← Setup(λ): Given a security parameter λ, the algorithm generates
the master secret key msk and the public parameters pp.

- uskid ← Extract(pp,msk, id): Given the public parameters pp, the master se-
cret key msk, and a user identity id, the algorithm generates a private key
uskid associated with id.

- {skl}nl=1 ← DKey(pp, uskid, n, t): Given a private key uskid associated with an
identity id, a number of signers n and a threshold parameter t, the algorithm
generates n shares of skl and provides each one to the party Pl for l =
{1, · · · , n}.

- σ ← DSign(pp,m, {skl}l∈S , id): Given pp, a message m, shares {skl}l∈S,
where |S| = t+1, and id. Signers using a robust protocol jointly generate σ.
Note that partial signatures of m computed by each party may be broadcast
during the execution of the DSign protocol.

- 1/0← Verify(pp, id,m, σ): Given a signers’ identity id, a message m and σ,
the algorithm outputs 1 if the signature is valid, otherwise 0.

Note that these definitions are specifically designed for (t, n) identity-based
threshold signatures with abort security. It’s important to distinguish between
this level of security and a stronger concept known as ”identifiable-abort.” In the
case of identifiable-abort, the system can reveal the identity of at least one ma-
licious party in the event of an abort. Our first threshold signature, as proposed
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in Sec. 4, provides security with abort but does not achieve the identifiable-abort
property. This limitation arises from the fact that the DKey algorithm, executed
by the dealer, does not output the verification keys (equivalent to partial public
keys). Consequently, during the partial opening phase, honest parties are unable
to identify the malicious party based on their partial opening. While it’s possible
to detect cheating and trigger an abort after summing up all partial signatures,
but identifying the malicious party remains a challenge.

In the case of a robust identity-based threshold signature scheme, the algo-
rithm DKey, which is executed by a trusted dealer, not only provides the secret
keys {skl}nl=1 but also outputs the verification keys {vkl}nl=1. Additionally, the
signing protocol DSign, which involves all n parties and uses the secret keys
{skl}nl=1, also receives the verification keys {vkl}nl=1. It’s worth noting that in a
robust identity-based threshold signature system, when t + 1 parties involve in
the DSign protocol, it can achieve the identifiable-abort property. Lastly, it’s im-
portant to highlight that the identity-based threshold signature with abort only
requires a single honest signer to maintain security, whereas the identifiable-abort
and robust versions of the signature require an honest majority of participants.

The following will consider the security definitions of an identity-based thresh-
old signature, which are unforgeability and robustness [BZ04]. Note that the
attacker is assumed to be static.

Definition 2.8 (Unforgeability Against Chosen Message and Identity
Attack). Let AIDTHS (IDTHS: IDentity-based THreshold Signature), be an
attacker assumed to be a probabilistic Turing machine. Consider the following
game GIDTHS in which AIDTHS interacts with the challenger CIDTHS.

Phase 1. The challenger runs the Setup algorithm and gives AIDTHS the resulting
common parameters pp.

Phase 2. AIDTHS corrupts t− 1 signature generation servers.
Phase 3. AIDTHS issues a number of private key extraction queries, each of which

consists of usk. On receiving usk, the challenger runs the key extraction al-
gorithm taking usk as input and obtains a corresponding private key x. The
challenger gives x to AIDTHS.

Phase 4. AIDTHS submits a target identity usk⋆. On receiving usk⋆, the challenger
runs the key extraction algorithm taking usk⋆ as input and obtains a corre-
sponding private key x⋆. Subsequently, it runs the private key distribution al-
gorithm taking x⋆ as input to share it among n signature generation servers.
We denote the key shares by x⋆,i for i = 1, · · · , n. The challenger gives x⋆,i

for i = 1, · · · , t− 1, (private keys for the corrupted servers) to AIDTHS.
Phase 5. AIDTHS issues a number of signature generation queries, each of which con-

sists of a message denoted by m. On receiving m, the challenger, on behalf
of the uncorrupted servers, runs the signature generation algorithm taking
x⋆,i for i = t, · · · , n and m as input, and responds to AIDTHS with σ output
by the signature generation algorithm . Note that in this phase, AIDTHS is
allowed to issue private key extraction queries (identities) except for usk⋆.
AIDTHS is allowed to see partial signature broadcast during the execution.
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Phase 6. AIDTHS outputs (usk⋆, m̃, σ̃), where σ̃ is a valid signature of the identity
usk⋆ on the message m̃ . A restriction here is that AIDTHS must not make
a private key extraction query for x⋆ and it must not make a signature gen-
eration query for m̃. We denote AIDTHS’s success by

SuccUF−IDTHS−CMA
IDTHS,AIDTHS (k) = Pr[Verify(pp, x⋆, m̃, σ̃) = 1].

We denote by
SuccUF−IDTHS−CMA

IDTHS,AIDTHS (t, qe, qs)

the maximum of the attacker AIDTHS’s success over all attackers AIDTHS

having running time t2 and making at most qe key extraction queries and
qs signature generation queries. The ID-based threshold signature scheme is
said to be (t, qe, qs, ϵ)-UF-IDTHS-CMA secure if

SuccUF−IDTHS−CMA
IDTHS,AIDTHS (t, qe, qs) < ϵ.

Definition 2.9 (Abort). A (t, n) ID-based threshold signature scheme is said
to be secure with abort if parties abort in the presence of an attacker that makes
the corrupted signature generation servers deviate from the normal execution.

Definition 2.10 (Robustness). A (t, n) ID-based threshold signature scheme
is said to be robust if it computes a correct output even in the presence of an
attacker that makes the corrupted signature generation servers deviate from the
normal execution.

Note that in the case of the abort scenario, the verification process solely
focuses on assessing the validity of the final signature. This final signature is
acquired by combining the partial signatures generated by individual parties. It
either accepts the signature as valid or aborts the process, all without singling
out the malicious party. Conversely, in the robust case, the parties not only
validate the final signature but also verify the individual signatures (referred
to as ”openings”) to identify and disqualify any malicious participants. This
verification process ensures the guaranteed delivery of the output.

In terms of achieving active security with either an abort or robustness ap-
proach, these definitions closely resemble the security criteria found in regu-
lar threshold signature schemes [GJKR96,CKM23]. However, when it comes to
the algorithms involved, identity-based threshold signatures differ from regular
threshold signatures. In identity-based schemes, a master secret key is employed
to generate specific secret keys for each ID, followed by an algorithm that dis-
tributes these ID-specific secret keys to the corresponding ID holders. In contrast,
regular threshold signatures utilize a single secret key that is shared among all
n participating parties.

Commitment Schemes. In our protocols, we assume parties have access to a
commitment functionality FCommit, which allows one party to commit, and later
open the value to a set of parties. We assume the opened value is only available
to the targeted receivers and is sent over a secure communication channel. The
description of FCommit is provided in Fig. 2, which can be easily implemented in
the random oracle model.
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Init: Given (Init, Pi, B) from all parties, this initializes a commitment functionality
from party Pi to the parties in B. This is shown with F i,B

Commit, if B is a singleton

set B = {j} then we write F i,j
Commit, and if B = P \ {i} then we write FPi

Commit.
Commit: On input of (Commit, id, data) from parties Pi and (Commit, id,⊥) from

all parties in B the functionality stores (id,⊥).
Open: On input of (Commit, id) from all players in B∪{i} the functionality retrieves

the entry (id, data) and returns data to all parties in B.

Fig. 2. The Functionality FCommit [CS20].

2.4 k-MT-GAIP Distributed Key Generation

Now we recall the DKG protocol presented in the CSI-SharK framework by
Atapoor et al. [ABCP23a](Fig. 3), which will be used in Sec. 4 to build our
specific identity-based threshold signature scheme.

2.5 Shamir Secret Sharing.

A (t, n)-Shamir secret sharing scheme allows n parties to individually hold a
share si of a common secret s, such that any subset of fewer than t+ 1 parties
are not able to learn any information about the secret s while any subset of at

Input: The fixed elliptic curve E0 and a set Q of n parties.
Output: ([s1]E0, . . . , [sk−1]E0)

1. Parties individually sample k − 1 secrets si ∈ ZN shared between the parties,
where Pj ∈ Q holds s1,j , . . . , sk−1,j such that si =

∑
Pj∈Q si,j .

2. Define an ordering the players in Q = {P1, . . . , Pn}.
3. Each party Pj initialises an instance of FCommit; call it FPj

Commit.
4. For i = 1, . . . , k − 1, each party Pj executes

- Ei,Pj ← [si,j ]E0.
- π1

i,j ← NIZK.P ((E0, Ei,Pj ), si,j). (Run the ID protocol for GAIP [BKV19])

- Use FPj

Commit where Pj submits input (Commit, idPj , (Ei,Pj , π
1
i,j)) and all other

parties input (Commit, idPj ,⊥).
5. For i = 1, . . . , k − 1

- Parties run FPj

Commit with input (Open, idPj ) & abort if FPj

Commit returns abort.
- All other players execute NIZK.V ((E0, Ei,Pj ), π1

i,j) and abort if the verifica-
tion algorithm fails.

6. E0
1 ← E0, E

0
2 ← E0, · · · , E0

k−1 ← E0.
7. For j = 1, . . . , n

- Party Pj computes Ej
1 ← [s1,j ]E

j−1
1 , · · · , Ej

k−1 ← [sk−1,j ]E
j−1
k−1.

- For i = 1, . . . , k − 1, compute π2
i,j ← NIZK.P ((E0, Ei,Pj , E

j−1
i , Ej

i ), si,j).
(Run the argument in Fig. 10)

- Broadcast (Ej
1, E

j
2, · · · , E

j
k−1, π

2
1,j , . . . , π

2
k−1,j) to all players.

- For i = 1, . . . , k − 1, all other players execute NIZK.V (E0, Ei,Pj , E
j−1
i , Ej

i )
and abort if the verification algorithm fails.

8. Return (En
1 , E

n
2 , . . . , E

n
k−1) = ([s1]E0, [s2]E0, · · · , [sk−1]E0).

Fig. 3. Full-threshold k-MT-GAIP distributed key generation protocol [ABCP23a].
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least t + 1 parties are able to efficiently reconstruct the common secret s via
Lagrange interpolation by computing s = f(0) =

∑
i∈S si · LS

0,i, where

LS
0,i :=

∏
j∈S\{i}

j
j−i (mod N),

are Lagrange basis polynomials evaluated at 0. Any subset of fewer than t + 1
parties are not able to find s = f(0), as this is information-theoretically hidden,
even given t shares. Since we will be working over the ring ZN with N composite,
the difference j− i of any two elements in i, j ∈ S must be invertible modulo N .
If q′ is the smallest prime factor of N , it is enough to require that n < q′. This
is indeed the case of our applications.

3 Identity-Based Signatures From CSI-SharK

In this section, we modify the CSI-FiSh-based identity-based signature of Shaw
and Dutta [SD21] to work with the CSI-SharK signature scheme [ABCP23a].
The primary benefit inherent in this adaptation arises from the singular nature
of the secret key of CSI-SharK . The process of adapting Shaw and Dutta’s
signature [SD21] to the CSI-SharK signature is mostly alterations in the Setup
and Extract algorithms. The Setup algorithm generates pp and a master secret
key msk, where msk consists of S0 different coefficients of a single secret value
s. Since the soundness rate of the underlying ID protocol is 1

1+S0
, one needs

to amplify the soundness error rate by repeating the protocol T0 times. The
Extract algorithm gets msk := s and generates a new user secret key uskidi,j for a
specific id. The length of the user public key is S1 and since the soundness rate
of the protocol now is 1

1+S1
, one needs to amplify the soundness error rate by

repeating the protocol T1 times. Note that both the Setup and Extract algorithms
are executed by a trusted authority. Bellow, we describe the algorithms of the
resulting identity-based signature scheme:

Setup Algorithm. Given the security parameter 1λ, act as follows,

1. Select the integers T0, T1, S0 = 2γ0 − 1 and S1 = 2γ1 − 1 where γ0, γ1 are
integers and T0 < S0, T1 < S1

2. Sample a cryptographic hash function H : {0, 1}⋆ → [0, S0]
T0S1 and a public

(super) exceptional set ΞS0
:= {c0 = 0, c1 = 1, c2, · · · , cS0

}
3. Sample s←$ ZN ,and for i = 1 to S0 set: Ei = [cis]E0

4. Return pp = {E0, T0, T1, S0, S1, H,
ΞS0

:= {c0 = 0, c1 = 1, c2, · · · , cS0
}, {Ei}S0

i=1} and msk = s.

Extract Algorithm. Given (pp,msk, id) act as follows,

1. Set s0 ← 0 and for i = 1 to T0, j = 1 to S1: ri,j ←$ ZN and Ri,j = [ri,j ]E0

2. Compute u← H(id||{Ri,j}T0,S1

i=1,j=1)

3. Parse u as {ui ∈ [0, s0]}T0S1
i=1 and ΞS0 as {c0 = 0, c1 = 1, c2, · · · , cS0}

4. For i = 1 to T0, j = 1 to S1 open: xi,j = ri,j − cuis mod N

5. Return uskidi,j = ({ui}T0S1
i=1 , {xi,j}T0,S1

i=1,j=1).
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Sign Algorithm. Given (pp, uskidi,j ,m), act as follows,

1. Parse uskidi,j to ({ui}T0S1
i=1 , {xi,j}T0,S1

i=1,j=1)
2. For i = 1 to T0 set: xi,0 ← 0
3. For i = 1 to T0 do:

(a) For j = 1 to S1 compute: Xi,j = [xi,j ]Eui

4. For i = 1 to T0 do:
(a) For j = 1 to T1 sample: ki,j ←$ ZN and compute Ki,j = [ki,j ]Eui

5. Compute v ← H ′(m||{Ki,j}T0,T1

i=1,j=1)

6. Parse v as {vi,j ∈ [0, S1]}T0,T1

i=1,j=1

7. For i = 1 to T0 do:
(a) For j = 1 to T1 open: zi,j = ki,j − xi,vi,j mod N

8. Return σ ← ({zi,j}T0,T1

i=1,j=1, {Xi,j}T0,S1

i=1,j=1, v).

Verify Algorithm. Given (pp, id,m, σ), act as follow,

1. Retrieve u = H(id||{Xi,j}T0,S1

i=1,j=1) and parse v as {vi,j}T0,T1

i=1,j=1

2. For i = 1 to T0 do:
(a) For j = 1 to T1 if: vi,j = 0 then K ′

i,j [zi,j ]Eui
, else K ′

i,j [zi,j ]Xi,vi,j

3. Compute v′ ← H ′(m||{K ′
i,j}

T0,T1

i=1,j=1)
4. If v′ ̸= v then return ”Invalid” otherwise return ”valid”.

Correctness. The correctness of the resulting identity-based signature follows
from the correctness of the CSI-SharK signature and the underlying identity-
based ID protocol (reviewed in App. A.1, in Fig. 9).

Theorem 3.1. Let IDS be the identity-based signature scheme outlined above.
Let A be an adversary that breaks the UF-IDS-CMA security of IDS (defined
in Def. 2.6). Then we can construct an impersonator I breaking the IMP-PA
security (IMPersonation under Passive Attacks, defined in [SD21, Definition
6.12]) of the underlying ID protocol of the signature scheme (reviewed in Fig. 9).

Efficiency. The efficiency of the resulting identity-based signature scheme is
close to the original version, presented by Shaw and Dutta [SD21] except that,
in contrast to the original scheme based on CSI-SharK, in our case the master
secret key is a single element of ZN , rather than S0 elements (of ZN ).

4 Identity-Based Threshold Signature with Abort

This section presents an identity-based threshold signature scheme based on iso-
genies, using the CSI-SharK signature scheme [ABCP23a]. The identity-based
threshold signature ensures security with abort, meaning that if any issues arise
and the protocol cannot be followed, the involved parties will abort and cease
the procedure. In Sec. 3, we described an identity-based signature using CSI-
SharK which consists of PPT algorithms (Setup,Extract,Sign,Verify), where a
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single signer is involved. Using the mentioned identity-based signature scheme,
we build an identity-based threshold signature scheme consisting of five PPT
algorithms (Setup,Extract,DKey,DSign,Verify) (described in Def. 2.7). In the re-
sulting threshold scheme, the algorithms (Setup,Extract,Verify) are identical to
the non-threshold case, where (Setup,Extract) are executed by a trusted author-
ity. Due to this fact, to conserve space, we do not re-write the algorithms of
(Setup,Extract,Verify). The threshold variant includes an additional algorithm
DKey, which is responsible for sharing the user secret key returned by the Extract
algorithm. Similar to the non-threshold case, in the threshold version, we assume
that a trusted authority runs the algorithms (Setup,Extract,DKey). The trusted
authority will employ the DKey algorithm to distribute the secret key uskidi,j
corresponding to id among all the parties sharing the same id. In this paper, we
use the well-known Shamir’s secret sharing scheme, although it’s worth noting
that alternative secret sharing schemes are also viable options. Next, we describe
the procedures of the DKey and DSign algorithms:

DKey: The description of DKey is given in Fig. 4 which a dealer samples a
random degree-t polynomial and uses Shamir’s secret sharing to distribute the
user’s secret key uskidi,j among multiple parties and sends the shares xi,j,l to
each party via the secure channels.

Input: (pp, uskidi,j = ({ui}T0S1
i=1 , {xi,j}T0,S1

i=1,j=1), n, t), where n is the number of parties
and t is threshold parameter (t + 1 parties can reconstruct the secret).
Output: Private {xi,j,l}l=n,i=T0,j=S1

l=1,i=1,j=1 and Public {Fi,j,l}l=n,i=T0,j=S1
l=1,i=1,j=1 .

An authority acts as follows:

1. Parse uskidi,j = ({ui}T0S1
i=1 , {xi,j}T0,S1

i=1,j=1)
2. For i = 1 to T0, j = 1 to S1 do:

(a) Sample a degree-t polynomial fi,j(X) = xi,j + ci,j,1X
1 + · · ·+ ci,j,tX

t.
(b) For l = 1 to n: set xi,j,l = fi,j(l) as a secret for each party.

3. For l = 1, · · · , n: send xi,j,l to party Pl securely.

Fig. 4. DKey algorithm for the proposed identity-based threshold signature.

DSign: Given the public parameters pp, the message m, the secret keys of each
party xi,j,l, the distributed signing algorithm DSign is employed to generate a
signature. This algorithm is executed by a qualified set of parties Q = {1, · · · , q}
and if any individual fails to adhere to the designated protocol, the honest par-
ties will collectively abort the process and cease the ongoing computation. The
description of DSign is given in Fig. 5. As it can be seen, during Step 3, the par-
ties collaboratively compute the public key and determine Ei,j,L = [xi,j,l]Ei,j,l−1,
where Ei,j,l is shared among the parties. This computation involves updating the
curve Ei,j,l with their respective shares xi,j,l in a round-robin way and providing
a proof, using the Non-Interactive Zero-Knowledge (NIZK) argument (summa-
rized in the App. A.2, in Fig. 10), to demonstrate that they correctly updated
Eui with the secret xi,j,l received from the authority. Subsequently, the parties
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must verify the proofs provided by all other parties using the verification pro-
cess outlined in Fig. 10. Given that the process is executed in a round-robin
manner, the final update is performed by the last participant in the qualified
set Q. As outlined in Step 3b, the update contributed by party Pq yields the
conclusive public key Ei,j := Ei,j,q. In Step 4, the involved parties execute the
full-threshold DKG protocol (depicted in Fig. 3) for k = 2, and calculate the
value of Ki,j . Note that when implementing this in practice, it is possible to
parallelize these executions and loops. In Step 5, the challenge v is generated
by hashing the concatenation of message m and Ki,j computed in the previous
step. Then, in Step 7, parties open their response zi,j,l and locally add them all
together and achieve zi,j . Finally, the algorithm returns the signature σ which
consists of (zi,j , Ei,j , v).

Next, we argue the security of our new identity-based threshold signature
scheme. To this end, in Fig. 6, we first describe the distributed signature func-
tionality FDSign and then simulate our proposed threshold signing protocol.

Security of DKey: We highlight that the DKey algorithm is executed by a
trusted dealer and does not need to be simulate.

Input: (pp,m, {xi,j,l}l=q,i=T0,j=S1
l=1,i=1,j=1 ),

Output: σ ← ({zi,j}T0,T1
i=1,j=1, {Ei,j}T0,S1

i=1,j=1, v).

Signing Algorithm DSign: a qualified set of parties {P1, · · · , Pq} act as follows,
1. For l = 1 to q each party for i = 1 to T0: set xi,0,l ← 0
2. For i = 1 to T0 and j = 1 to S1: set Ei,j,0 = E0

3. For i = 1 to T0 and j = 1 to S1 do:
(a) For l = 1 to q do:

i. Party Pl computes Ei,j,l ← [xi,j,l]Ei,j,l−1

// Parties use the NIZK argument (from App. A.2 Fig. 10), to
prove they are updating the curve with the secret which they got
from the dealer.

ii. Compute πi,j,l ← NIZK.P ((E0, Fi,j,l, Ei,j,l−1, Ei,j,l), xi,j,l)
iii. Broadcast (Ei,j,l, πi,j,l)

// Parties use the verifier of NIZK argument (from App. A.2
Fig. 10), to verify the proof.

iv. All players execute NIZK.V ((E0, Fi,j,l, Ei,j,l−1, Ei,j,l), πi,j,l) and
abort if the verification algorithm fails.

(b) Set Ei,j = Ei,j,q and return Ei,j

4. For i = 1 to T0 and j = 1 to T1: given Eui , parties of the qualified set run
Full-threshold 2-MT-GAIP given in Fig. 3, and generate Ki,j = [ki,j ]Eui

5. Compute v ← H ′(m||{Ki,j}T0,T1
i=1,j=1)

6. Parse v as {vi,j ∈ [0, S1]}T0,T1
i=1,j=1

7. For i = 1 to T0, j = 1 to T1, and l = 1 to q: party Pl opens zi,j,l =
ki,j,l − xi,vi,j ,l mod N

8. For i = 1 to T0, j = 1 to T1: parties compute zi,j =
∑q

l=1(zi,j,l)

Return σ ← ({zi,j}T0,T1
i=1,j=1, {Ei,j}T0,S1

i=1,j=1, v).

Fig. 5. DSign algorithm for the proposed identity-based threshold signature with abort.
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We let A denote the set of parties controlled by the adversary.
Sign: On input of a message m the functionality proceeds as follows:

1. The functionality adversary waits for an input from the adversary.
2. If the input is not abort then the functionality generates a signature σ on

the message m.
3. The signature is returned to the adversary, and the functionality again waits

for input. If the input is again not abort then the functionality returns σ to
the honest players.

Fig. 6. Distributed signature functionality FDSign [CS20].

Theorem 4.1. The (t, n)-identity-based threshold signing protocol described in
Fig. 5 is UF-IDTHS-CMA secure with abort in the quantum random oracle model
(the hash functions are modelled as quantum random oracles), against a static
adversary corrupting up to t parties, with t < n/2, if the identity-based signature
scheme proposed in Sec. 3 is EUF-IDS-CMA secure.

Proof. In theorem 3.1, we showed that the IDS scheme proposed in Sec. 3 is EUF-
IDS-CMA secure. Next, we show that the DSign protocol presented in Fig. 5
securely implement the functionality FDSign (given in Fig. 6) in the FCommit-
hybrid model against an active adversary corrupting up to t parties.

DSign Simulation: The proof is analogous to that of Theorem 4.3 in Atapoor
et al. [ABCP23a]. One key difference is in the case of Atapoor et al. [ABCP23a],
parties get the commitment to xi,j from the distributed key generation phase,
while in our case the trusted dealer publishes the commitments to xi,j . Let Pl

be the honest party. A and S engage in an execution of the DSign protocol
in Fig. 5. The authority has committed to the secret shares of xi,j . Now A
and S proceed with the round-robin protocol for computing the public keys as
in Step 3 of Fig. 5. All steps for honest players can be simulated exactly by
following the real protocol, except for the party Pl which holds the unknown
shares xi,j,l for i = 1, · · · , T0 and j = 1, · · · , S1. The input to this party in

execution l will be Ei,j,l−1 =
[∑l−1

p=1 xi,j,p

]
E0, while the output needs to be

Ei,j,l =
[
−
∑l−1

p=1 xi,j,p

]
Ei,j , so as to create the correct output curve Ei,j . The

curve Ei,j,l can thus be computed by S as Ei,j,l :=
[
−
∑

p ̸=l xi,j,p

]
Ei,j . After

computing Ei,j,l the associated ZK proof can hence be simulated as well. If A
deviates from the protocol in any way, this is caught by the ZK proofs and S will
be able to abort. Thus if abort does not happen in the protocol, the simulator
will output the same curve Ei,j .

Again in Step 4 of the Fig. 5, parties are running a full-threshold 2-MT-
GAIP protocol from Fig. 3 to jointly compute Ki,j = [ki,j ]Eui . Next, w.l.o.g.,
we write the simulation for particular values of i, j, while it can also be extended
for all i = 1, · · · , T0, and j = 1, · · · , T1. Let Pl be the honest party. A and S
engage in an execution of the full-threshold 2-MT-GAIP protocol in Fig. 3. As
each party needs to commit to its secret share of s, the simulator commits to
a random share s∗l , say K∗

Pl
= [s∗l ]Eui

, produces a simulated proof and then
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commits to the curve and proof using the commitment scheme. If later the
simulator is asked to open this, the simulator will equivocate the commitment
so that it can be opened to the correct elliptic curve and proofs. Note that, the
simulator is able to compute them after extracting the adversarial shares. From
the π1

Pp
(in Fig. 3), given in the commit phase, S is able to extract the values

sp entered by A in the first round of proofs. The extracted values sp are now
passed to the functionality, which completes them to a valid set of shares of the
secret and returns the corresponding curves Eui

, K. At this point, S has all the
adversarial shares and the curves Eui , K. The honest share sl is unknown to S.
Even though it does not have the honest share, it can fake the commitment by

setting KPl
:=

[
−
∑

p ̸=l sp

]
K which it can do by using the curves it got from the

functionality and the adversarial shares that it got from the proofs-of-knowledge.
Having Eui

and KPl
, S can simulate the corresponding proof. It then commits

to this proof using FPl

Commit. The commitments can now be opened. Now A and
S proceed with the round-robin protocol for computing the public keys as in
Step 7 of the Fig. 3. All steps for honest players can be simulated exactly by
following the real protocol, except for the party Pl which holds the unknown

share sl. The input to this party in execution l will be Kl−1 =
[∑l−1

p=1 sp

]
Eui

while the output needs to be Kl =
[
−
∑l−1

p=1 sp

]
K, so as to create the correct

output K. The curve Kl can thus be computed by S like it did for computing
KPl

and the associated ZK proof can hence be simulated as well. If A deviates
from the protocol, this is caught by the ZK proofs and S will be able to abort.

In our simulation of full-threshold 2-MT-GAIP generation protocol the value
ki,j,l is unknown and ‘fixed’ by the implicit equation given by the signature

({zi,j}T0,T1

i=1,j=1, {Xi,j}T0,S1

i=1,j=1, v) returned by the functionality which gives usKi,j =
[ki,j ]Eui

= [zi,j ]Xi,vi,j , where vi,j is the random challenge value obtained from

the quantum random oracle, i.e., v ← H ′(m||{Ki,j}T0,T1

i=1,j=1). The final part of
the signature which needs to be simulated is the output of zi,j,l. We know what
A should output and hence can define zi,j,l = zi,j −

∑
l ̸=l′ zi,j,l′ . If A deviates

from the protocol in the final step and uses an invalid value of zi,j,l′ , then the
adversary will learn the signature, but the honest players will abort; which real-
izes the ideal functionality described in Fig. 6. ⊓⊔

5 Robust Identity-Based Threshold Signature Scheme

Our threshold signature from the previous section does not provide a guarantee
for output delivery. The protocol is susceptible to the Denial-of-Service (DoS)
attack, which allows malicious parties to indefinitely deny the generation of the
desired result. In this section, we extend our identity-based threshold signature
from Sec. 4 to achieve robustness and assure output delivery. Our robust scheme
is also build based on the CSI-SharK signature, however with some changes, at
the cost of a longer master secret key, can be adapted to work with the CSI-FiSh
signature as well. In the proposed robust identity-based threshold signature if
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An authority runs DKey:

1. Parse uskidi,j = ({ui}T0S1
i=1 , {xi,j}T0,S1

i=1,j=1)
2. For i = 1 to T0, j = 1 to S1 do:

(a) Choose a random degree t poly fi,j(X) = xi,j + ci,j,1X
1 + · · ·+ ci,j,tX

t

(b) for l = 1 to n: set xi,j,l = fi,j(l) as a secret for each party and create the
corresponding commitment Fi,j,l = [xi,j,l]F0 for each secret xi,j,l

i. Choose a random degree t poly gi,j,l(Y ) = xi,j,l+di,j,1Y
1+· · ·+di,j,tY

t

and reshare secrets xi,j,l obtained from the previous step
ii. for k = 1 to n: set wi,j,l,k = gi,j,l(k) as a new secret for each party’s

secret xi,j,l.
3. For p = 1, · · · , n: send all the related (xi,j,l, wi,j,l,k)i=T0,j=S1,l=n,k=n

i=1,j=1,l=1,k=1 to party

Pp securely and publish {Fi,j,l}i=T0,j=S1,l=n
i=1,j=1,l=1 .

Fig. 7. DKey algorithm for the proposed robust identity-based threshold signature.

any dishonest behaviour by a participant occurs, the efforts invested thus far
are not rendered futile. The involved parties are able to identify the malicious
parties, exclude them from the protocol, reconstruct their shares, and seamlessly
continue the protocol to achieve the correct output. In the rest of section, we
are highlighting the distinctions between the signature discussed in Sec. 4 and
the new one, without reiterating the similarities.

DKey: In Step 2 of the new DKey protocol (given in Fig. 7), in addition to gener-
ating the polynomial fi,j(X) for sharing the secret xi,j , the authority generates
another polynomial gi,j(Y ) to re-share each share of xi,j,l among all the parties.
At the end, the authority privately sends a share of this re-sharing, denoted as
wi,j,l,k, to each party, along with their respective share of xi,j,l. Later, we show
how the parties use these values to verify the opening responses in Step 7 of
DSign algorithm (described in Fig. 8). This approach originally is used in the
ThreshER SharK scheme [ABCP23c] to achieve robustness. However, it is not
directly applicable within the context of our scheme. We will provide a detailed
explanation as we proceed through the description of the DSign protocol.

DSign: Fig. 8 describes the procedure of our proposed robust DSign protocol.
Compared to the DSign protocol from Fig. 5, in the robust DSign, the first key
difference is that we need all the parties to be present in the signing procedure,
as explained in Step 7 of Fig. 8. Steps 1-3b are the same as our previous DSign
protocol. Then, in Step 4, parties run the robust Distributed Key Generation
(DKG) protocol CSI-RAShi++ from [ABCP23c], to compute Ki,j . The robust
DKG protocol CSI-RAShi++ works with Shamir secret sharing and is recently
proposed as an improved version of the DKG protocol CSI-RAShi [BDPV21].
CSI-RAShi++ allows a set of parties to sample [x]E in a fully distributed man-
ner, such that at the end, each party gets a Shamir share of x. Using CSI-
RAShi++ and our re-sharing from the DKey step allows us to achieve robust-
ness. Creating the challenge in Step 6 remains the same as before. Step 7 is the
subtle part of the protocol to achieve the robustness. In this step, we use the
reshares of the shares of all parties (from the DKey step) along with the reshares

16



Signing Algorithm DSign: All Parties {P1, · · · , Pn} act as follows,
1. For l = 1 to n party Pl for i = 1 to T0: set xi,0,l ← 0
2. Set Ei,j,0 = E0

3. For i = 1 to T0 and j = 1 to S1 do:
(a) For l = 1 to n do:

i. Party Pl computes Ei,j,l ← [xi,j,l]Ei,j,l−1

ii. Compute πi,j,l ← NIZK.P ((E0, Fi,j,l, Ei,j,l−1, Ei,j,l), xi,j,l), using
the NIZK argument (from App. A.2 Fig. 10),

iii. Broadcast (Ei,j,l, πi,j,l)
iv. All players execute NIZK.V ((E0, Fi,j,l, Ei,j,l−1, Ei,j,l), πi,j,l)(from

App. A.2 Fig. 10), and abort if the verification algorithm fails.
(b) Set Ei,j = Ei,j,n and return Ei,j

4. For i = 1 to T0, j = 1 to T1 , and For l = 1 to n, given Eui , parties run the
DKG of CSI-RAShi++ Fig. 12 and generate Ki,j = [ki,j ]Eui .
// Note that bi,j,l(X) which is a degree t polynomial sampled by parties
during the DKG protocol of CSI-RAShi++ and the degree t polynomial of
gi,j which was sampled by a trusted dealer in the DKey algorithm for re-
sharing the share of the parties, both are using for checking and robustness.

5. Compute v ← H ′(m||{Ki,j}T0,T1
i=1,j=1)

6. Parse v as {vi,j ∈ [0, S1]}T0,T1
i=1,j=1

7. For i = 1 to T0, j = 1 to T1, and l = 1 to n do:
(a) Each party Pl computes zi,j,l(Y ) = bi,j,l(Y )− gi,vi,j ,l(Y )
(b) Using their secret value shared during the NI-VSS protocol (from

App. A.2 Fig. 10), namely bi,j,l(l) and gli,j(l) given by the authority,
each party P ′

l verifies

zi,j,l(l
′)

?
= bi,j,l(l

′)− gi,vi,j ,l(l
′)

(c) Whenever one of these checks fails, P ′
l broadcasts a complaint against

Pl When a player Pl has t + 1 or more complaints against them, they
are disqualified. The remaining players can then construct zi,j,l(0) by
reconstructing both bi,j,l(0) and gi,j,l(0) using the information from the
DKG and given by the authority. This is always possible when there
are at least t + 1 honest parties (honest majority).

(d) Using {zi,j,l(0)}ni=1, parties build the responses zi,j(0) =
∑

i∈Q zi,j,l(0)

8. Return σ ← ({zi,j}T0,T1
i=1,j=1, {Ei,j}T0,S1

i=1,j=1, v).

Fig. 8. DSign algorithm for the proposed robust identity-based threshold signature.

generated during the execution of CSI-RAShi++ DKG protocol, and verify the
partial openings of individual parties. In this step, parties open a polynomial
instead of a value. In the abort version, when the parties open a value it gives
the possibility to find the misbehaviour and abort but they can not identify the
malicious parties. But in this case, since we are in the honest majority setting,
due to opening a polynomial, the parties can identify an adversary (using the
reshares from the DKey and DKG steps) and disqualify him. Then, they can
reconstruct his share and continue the computation until the end. Finally, par-
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ties sum all the responses up and achieve the final zi,j . The signature as before

consists of ({zi,j}T0,T1

i=1,j=1, {Ei,j}T0,S1

i=1,j=1, v).

Theorem 5.1. The (t, n)-identity-based threshold signing protocol described in
Fig. 8, is UF-IDTHS-CMA secure and robust in the quantum random oracle
model (the hash functions are modelled as quantum random oracles), against a
static adversary corrupting up to t parties, with t < n/2, if the identity-based
signature scheme proposed in Sec. 3 is EUF-IDS-CMA secure.

Security Proofs. The security of DKey can be argued similar to the abort con-
struction, given in Sec. 4, and the simulation of DSign is analogous to the proof
of theorem 5.1, which is omitted. We highlight that, in this case, one key differ-
ence is that the security of the DSign protocol relies on the security of the robust
CSI-RAShi++ DKG protocol from [ABCP23c].

6 Conclusion

We initiated our work by modifying the existing identity-based signature based
on isogenies, as proposed by Shaw and Dutta [SD21], in order to align it with
the CSI-SharK signature scheme. Subsequently, we proposed two identity-based
threshold signature schemes in the CSIDH setting. Both of the proposed signa-
tures possess active security within the quantum random oracle model, with the
first one offering security with abort, while the second one is characterized by
robustness. Although these novel constructions represent theoretical outcomes,
they can be considered as the first step towards the development of identity-
based threshold protocols that are based on isogenies. It is worth noting that
any advancements made in the underlying protocols, e.g., CSI-SharK signature,
CSI-RAShi++ DKG protocol, or even improvements in the computations of
group actions, can be applied to our identity-based threshold signatures as well.
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Appendix:

A Preliminaries

Here we recall all the needed protocols which due to page limitation we could
not fit into the main body of the paper.

A.1 Identity-Based Identification Protocol from Isogenies

In Fig. 9, we review the interactive identity-based identification protocol [SD21]
which is based on the CSI-FiSh Signature.
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Prover P (pp, uskid), Verifier V (pp, id) act as follows:
1. P :

(a) For i = 1 to T0 calculates: xi,0 ← 0
(b) for i = 1 to T0, j = 1 to S1 calculates: Xi,j = [xi,j ]Eui

(c) for i = 1 to T0, j = 1 to T1 do: ki,j ←$ ZN and Ki,j = [ki,j ]Eui

(d) Send Com = {Xi,j}T0,S1
i=1,j=1, {Ki,j}T0,T1

i=1,j=1 to V .

2. V : calculates V = {vi,j}T0,T1
i=1,j=1 ←$ [0, S1]T0,T1 and sends Ch = V to P .

3. P : for i = 1 to T0, j = 1 to T1, calculates: zi,j = ki,j − xi,j( mod N) and
send Rsp = {zi,j}T0,T1

i=1,j=1 to V .
4. V :

(a) calculates u← H(id||{Xi,j}T0,S1
i=1,j=1).

(b) for i = 1 to T0, J = 1 to T0 do:
i. K′

i,j = [zi,j ]Eui if vi,j = 0
ii. K′

i,j = [zi,j ]Xi,vi,j if vi,j ̸= 0
(c) if Ki,j = K′

i,j return 1 else 0.

Fig. 9. Interactive ID protocol between P and V .

Correctness. To prove the correctness of the identity-based identification pro-
tocol we show that Ki,j = K ′

i,j for all i = {1, · · · , T0} and j = {1, · · · , T1}. For
the case when vi,j ̸= 0, we have K ′

i,j = [zi,j ]Xi,vi,j = [ki,j −xi,vi,j +xi,vi,j ]Eui
=

Ki,j On the other hand, when vi,j = 0, then zi,j = ki,j as xi,0 is set to 0. Thus,
K ′

i,j = [zi,j ]Eui = [ki,j ]Eui = Ki,j .

Theorem A.1. The above identity-based identification scheme IDID is (t, qI , ϵ)-
secure against impersonation under passive attack as per Definition 6.12 of
[SD21], if H is a collision-resistant hash function and the signature scheme
CSI-SharK is (t′, qS , ϵ

′)-secure against existential unforgeability under adaptive
chosen message attack where

t′ ≊ 2Dt, qI = qS , ϵ ≤ 1− (1− 2
√
ϵ′)

1
D +

1

(S1 + 1)T0T1
.

Here D is the number of parallel executions of reset instances.

Proof. The proof is analogous to the proof of Theorem 6.21 of the identity-based
identification protocol presented in [SD21]. The only difference is in the key size
which is effected in the algorithms of Setup and Extract. ⊓⊔

A.2 Proof of Knowledge of GAIP and Commitments

We modify the ZK proof originally introduced in [CS20], and extended to the
structured public keys in [ABCP23a] to suit our specific requirements. Originally
designed for public keys of length k, this proof must be tailored to suit our specific
purpose. The presented ZK proof in Fig. 10 is an interactive protocol, which we
will later show how to make non-interactive. In their actively secure distributed
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ZK.P1(F0, F
′
0, E1, E

′
1): The prover does:

1. b← ZN ; Set F̂0 ← [b]F0.
2. compute Ê1 ← [b]E1. Output (F̂0, Ê1).

ZK.V1(F0, F
′
0, F̂0, E1, E

′
1, Ê1): The verifier acts as below:

1. If E1 ̸= E0 then sample d← {0, 1} and output it.
2. Else sample d← {−1, 0, 1} and output it.

ZK.P2((F0, F
′
0, F̂0, E1, E

′
1, Ê1): Given d, the prover computes r ← b− d · s mod N ,

and outputs r.
ZK.V2((F0, F

′
0, F̂0, E1, E

′
1, Ê1), d, s): The verifier returns 1 if all the following checks

pass, and otherwise returns 0. Note that E′
1
t denotes the twist of a curve E′

1.

1. If d = −1 return
(

[r]F ′
0
t = F̂0

)
∧
(

[r]E′
1
t = Ê1

)
.

2. If d = 0 return
(

[r]F0 = F̂0

)
∧
(

[r]E1 = Ê1

)
.

3. If d = 1 return
(

[r]F ′
0 = F̂0

)
∧
(

[r]E′
1 = Ê1

)
.

Fig. 10. The HVZK argument for proving the commitment and the well-formedness of
an updated public key [CS20].

protocols to guarantee that the parties follow the protocol, they had to commit
to their secret shares and prove knowledge of the committed value [ABCP23a].
This proof can be done using the basic ID protocol used in the basic form of
the CSI-FiSh [BKV19], which was initially proposed by Couveignes-Rostovtsev-
Stolbunov [Cou06,RS06]. Furthermore, the parties will be required to prove that
they indeed act with their committed secret value on some given elliptic curve
to prove the correctness of generating/updating the public key. To this end, each
party will need to prove knowledge of a witness s to the following language.

L :=
{(

(F0, F
′
0, E1, E

′
1), s

)
: (F ′

0 = [s]F0)
∧
(E′

1 = [s]E1)
}
. (1)

We summarize the underlying Σ-protocol in Fig. 10. Similar to [CS20], we
consider two variants of the summarized Σ-protocol, one when F0 = E1 which
we call the Special case, and the other when this condition does not hold, which
is called the General case.

Making the Protocol Non-Interactive. As mentioned, the Σ-protocol in
Fig. 10 is an HVZK public coin interactive argument and can be turned into a
NIZK argument in the standard manner using a hash function G : {0, 1}∗ →
{0, 1}sec in the General case, or G : {0, 1}∗ → {−1, 0, 1}⌈sec log3 2⌉ in the Special
case. Using a ‘slow’ hash function for G, as in the case of CSI-FiSh , which
is 2h times slower than a normal hash function, we can reduce the number of
repetitions to tGeneralZK = sec − h or tSpecialZK = ⌈(sec − h) log3 2⌉, respectively.1 In
the resulting NIZK argument, we denote the prover and verifier by NIZK.P and
NIZK.V .
1 As an example, we can choose h = 16 for sec = 128 as is done in [BCP21]

and [BKV19]. This gives tGeneralZK = 112 for the General case and tSpecialZK = 71 for
the Special case.
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Both the prover and the verifier need to compute a total of 2tZK group actions
throughout this protocol, ignoring the cost of the other operations, as they are
negligible in comparison to group action computations. The output size of the
proof is composed of the hash output and the responses. The former has a size

of approximately tGeneralZK bits (log2 3
tSpecialZK ≈ tGeneralZK ), while the latter consists of

tZK elements from ZN , depending on either the Special or the General case.

Lemma A.1 ( [CS20]). The two algorithms NIZK.P and NIZK.V constitute
a non-interactive zero-knowledge quantum proof of knowledge in the quantum
random oracle model.

A.3 CSI-RAShi++ DKG Protocol for CSIDH-based Primitives

We recall the most efficient actively secure DKG of CSI-RAShi++ , proposed
in [ABCP23c], which in the identity-based threshold signature scheme we use to
compute a key in a distributed manner. In the rest, we summarize the underlying
protocols of the CSI-RAShi++ DKG.

Non-interactive Zero-knowledge Proofs. Fig. 11 describes the NIZK ar-
gument which is used in the DKG protocol of CSI-RAShi++ , summarized in
Fig. 12.

Prover: Given a witness polynomial f(X) ∈ ZN [X]t, an input x = (x1, · · · , xn),
proceed as follows and output a proof π for Shamir relation (defined
in [ABCP23c]).
1. Sample b(X)← ZN [X]t uniformly at random;
2. For i = 1, . . . , n: Sample yi, y

′
i ← {0, 1}λ uniformly at random;

Set Ci ← C(b(i), yi) and C′
i ← C(xi, y

′
i);

3. Set d← H(C,C′), where C = (C1, . . . ,Cn),C′ = (C′
1, . . . ,C

′
n);

4. Set r(X)← b(X)− d · f(X) mod N ;
5. Set π := (C,C′, r(X), {πi}ni=1), where πi = (yi, y

′
i);

6. Publish (C,C′, r(X)); Send individual proof {πi = (yi, y
′
i)}ni=1 to verifier Vi.

Verification: For i = 1, · · · , n, each verifier (shareholder) i has a statement xi ∈
ZN , and a proof ((C,C′, r(X)), (yi, y

′
i)). Given the set of statements and proofs

for i ∈ 1, . . . , n the verifiers (i.e., shareholders) proceed as follows:
1. Verifier i acts as below and outputs true or false.

(a) If C′
i ̸= C(xi, y

′
i) return false;

(b) Set d← H(C,C′);
(c) If Ci == C(r(i) + d · xi, yi) return true; otherwise false;

2. Return true if all the verifiers return true; otherwise returns false.

Fig. 11. A Non-Interactive Threshold ZK (NI-TZK) proof scheme for Shamir secret
sharing [ABCP23c].
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Verifiable Secret Sharing Step: This is done using the NI-VSS scheme, presented
in Fig. 13, in a standard distributed manner. Namely, each party Pi one time plays
the role of the dealer in Fig. 13, samples f (i)(X), and then in a verifiable manner
shares f (i)(0) with other parties. In the end, all the shareholders get a share of the
joint secret key x0, where implicitly defined as x0 =

∑
i∈Q f (i)(0) for a qualified set

Q. Each party Pj obtains its share of x0 as xj =
∑

i∈Q f (i)(j).
PK Computation Step: This is done as in the (public key) computation step of
the DKG protocol presented in [ABCP23b, Section 3]. Parties return the public key
[x0]E0.

Fig. 12. CSI-RAShi++ : an efficient DKG protocol for a single PK [x0]E0.

Non-Interactive Verifiable Secret Sharing Used in the CSI-RAShi++
DKG. The first step of the DKG scheme of CSI-RAShi++ reviewed in Fig. 12, is
a Non-Interactive Verifiable Secret Sharing step which is proposed in [ABCP23c],
and recalled in Fig. 13.

25



Initialization: Parties P1, · · · , Pn generate system parameters and each one registers
a pk to facilitate secure communications.

Share: Given n and t, to share x0, the dealer proceeds as follows:
1. Sample a uniformly random polynomial f(X) of degree t with coefficients

in a ring R, subject to f(0) = x0.
2. For i = 1, 2, · · · , n: set xi := f(i).
3. Given f(X) and x = (x1, · · · , xn), run the prover of NI-TZK scheme in

Fig. 11, and obtain the proof π := (C,C′, r(X), {πi}ni=1).
4. Send the share and the individual proof (xi, πi) privately to party Pi and

broadcast the elements (C,C′, r(X)) as the proof.
Verification: To verify the received shares, P1, · · · , Pn utilize their shares {xi}ni=1

and run the verifier of the NI-TZK proof scheme given of Fig. 11. If the veri-
fication of Pi fails, then Pi broadcasts a complain against the dealer. If more
than t shareholders complain against the dealer, then the Verification returns
false. If Pi complains that his part of proof does not verify, the dealer broad-
casts (xi, πi := (yi, y

′
i)) so that everyone can verify it using the verification

algorithm of the NI-TZK scheme. If it passed the verification, the protocol con-
tinues as normal, otherwise the parties disqualify the dealer and Verification
returns false. Since disqualifying the dealer or parties happens on the basis of
only broadcasted information, at the end all the honest shareholders will agree
on the same set of qualified parties Q ⊆ {1, 2, · · · , n} or will reject the final
verification. At the end, if the verification returns true, all honest shareholders
are sure that they have received a valid share of x0 = f(0), and any subset of
size larger than t of them can retrieve the secret x0.

Reconstruction: This can be done through two approaches: either by using Lagrange
interpolation as in previous works or by employing a novel approach outlined
below. In the new approach, the dealer reconstructs (i.e., reveals) the secret x0

and also proves its validity, and for that the process proceeds as follows:
1. Given the witness f(X), the dealer computes (reconstructs) x0 = f(0).
2. Using f(X) and x = (x0, x1, · · · , xn), run the prover of the NI-TZK scheme

in Fig. 11 for i = 0, 1, . . . , n, to prove that f(0) = x0 ∧ f(i) = xi for i =
1, . . . , n, and obtain (x0, y0, y

′
0, {Ci,C

′
i}ni=0, r(X), {πi}ni=1). This allows the

dealer to convince the shareholders that their shares come from a polynomial
of degree t with free term x0 = f(0).

3. Send the individual proof πi := (yi, y
′
i) privately to party Pi, and broadcast

the elements (x0, y0, y
′
0, {Ci,C

′
i}ni=0, r(X)).

4. Each shareholder Pi has secret values (xi, πi := (yi, y
′
i)), and a public proof

(x0, y0, y
′
0, {Ci,C

′
i}ni=0, r(X)). Given the set of statements and proofs, the

shareholders run the verification of the NI-TZK scheme in Fig. 11 and return
either true or false. Note that in this case, each shareholder Pi additionally
checks if C′

0 = C(x0, y
′
0) ∧ C0 == C(r(0) + d · x0, y0).

5. At the end, the algorithm return true if all the shareholders return true;
otherwise return false. Returning true, confirms that the value x0 is the
reconstruction of the main secret value f(0).

Fig. 13. The NI-VSS scheme of Atapoor, Baghery, Cozzo, and Pedersen [ABCP23c].
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