
Naysayer proofs

István András Seres∗1, Noemi Glaeser†2,3, and Joseph Bonneau‡4,5

1Eötvös Loránd University
2University of Maryland

3Max Planck Institute for Security and Privacy
4a16z crypto research
5New York University

October 6, 2023

Abstract

This work introduces the notion of naysayer proofs. We observe that in numerous (zero-knowledge) proof
systems, it is significantly more efficient for the verifier to be convinced by a so-called naysayer that a false proof
is invalid than it is to check that a genuine proof is valid. We show that every NP language has constant-size and
constant-time naysayer proofs. We also show practical constructions for several example proof systems, including
FRI polynomial commitments, post-quantum secure digital signatures, and verifiable shuffles. Naysayer proofs
enable an interesting new optimistic verification mode potentially suitable for resource-constrained verifiers, such
as smart contracts.

1 Introduction

In most blockchains with programming capabilities, e.g., Ethereum [W+14], developers are incentivized to minimize
the storage and computation complexity of on-chain programs. Applications with high compute or storage incur
significant fees, commonly referred to as gas, to compensate validators in the network. Often, these costs are passed
on to users of an application.

High gas costs have motivated many applications to utilize verifiable computation [GGP10], off-loading expensive
operations to powerful but untrusted off-chain entities who perform arbitrary computation and provide a succinct
non-interactive proof (SNARK) that the claimed result is correct. This computation can even depend on secret
inputs not known to the verifier in the case of zero-knowledge proofs (eq. zkSNARKs).

Verifiable computation leads to a paradigm in which smart contracts, while capable of arbitrary computation,
primarily act as verifiers and outsource all significant computation off-chain. A motivating application is rollups,
which combine transactions from many users into a single smart contract which verifies a proof that all have been
executed correctly. However, verifying these proofs can still be costly. For example, the StarkEx rollup has spent
hundreds of thousands of dollars to date to verify FRI polynomial commitment opening proofs.1

We observe that this proof verification is often wasteful. In most applications, provers have strong incentives to
only post correct proofs, suffering direct financial penalties (in the form of a lost security deposit) or indirect costs
to their reputation and business for posting incorrect proofs. As a result a significant fraction of a typical layer-1
blockchain’s storage and computation is expended verifying proofs which are almost always correct.2

This state of affairs motivates us to propose a new paradigm called naysayer proofs. In this paradigm, the verifier
(e.g., a rollup smart contract) optimistically accepts a submitted proof without verifying its correctness. Instead, any
observer can check the proof off-chain and, if needed, prove its incorrectness to the verifier by submitting a naysayer
proof. The verifier then checks the naysayer proof and, if it is correct, rejects the original proof. Otherwise, if no
party can successfully naysay the original proof before the end of the dispute period, the original proof is accepted.

∗seresistvanandras@gmail.com. The majority of this work was done at a16z crypto research.
†nglaeser@umd.edu. The majority of this work was done at a16z crypto research.
‡jbonneau@gmail.com
1https://etherscan.io/address/0x3e6118da317f7a433031f03bb71ab870d87dd2dd.
2At the time of this writing, we are unaware of any major rollup service which has posted an incorrect proof in production.

1

https://etherscan.io/address/0x3e6118da317f7a433031f03bb71ab870d87dd2dd

VC fraud proof fraud proof naysayer proof
(interactive) (non-interactive)

No optimistic assumption # # #
Non-interactive #
Off-chain original Verify #
Witness-independent resolution G# #

Table 1: Trade-offs of verifiable computation (VC), interactive (e.g., Arbitrum [Lab23], Optimism V2 [Opt23]) and
non-interactive (e.g., Optimism V1) fraud proofs, and naysayer proofs.

To deter denial of service, naysayers may be required to post collateral which is forfeited if their naysayer proof is
incorrect.

This paradigm potentially saves the verifier work in two ways. First, in the optimistic case, where the proof is
not challenged, the verifier does no work at all. We expect this to almost always be the case in practice. Second,
even in the pessimistic case, checking the naysayer proof may be much more efficient than checking the original
proof (e.g., if the verification fails at a single point, the naysayer proof can just point to that specific step). In other
words, the naysayer acts as a helper to the verifier by reducing the cost of the verification procedure in fraudulent
cases. At worst, checking the naysayer proof is equivalent to verifying the original proof (this is the trivial naysayer
construction).

Naysayer proofs enable other interesting trade-offs. For instance, naysayer proofs might be run at a lower
security level than the original proof system. A violation of the naysayer proof system’s soundness undermines the
completeness of the original proof system. For an application like a rollup service, this results only in a loss of
liveness; importantly, the rollup users’ funds would remain secure. Liveness could be restored by falling back to full
proof verification.

In Section 3, we formally define naysayer proofs and show that every NP language has a constant-size and -time
naysayer proof. In Section 4, we provide three concrete examples where naysayer proofs offer significant speedups.
We conclude with open research questions in Section 6.

2 Related work

A concept related to the naysayer paradigm is refereed delegation [FK97]. The idea has found widespread adoption
in the form of “fraud proofs” or “fault proofs” as used in optimistic rollups [Eth23b, Lab23, Opt23, TR19]. Like
naysayer proofs, fraud proofs work under an optimistic assumption, i.e., a computation is assumed to be correct
unless some party challenges it. In case of a challenge, a dispute resolution process ensues between the challenger
and the defender which can be either non-interactive or interactive. In the former approach, the full computation
is re-executed by the on-chain verifier to resolve the dispute. In the latter approach, the challenger and defender
engage in a bisection protocol to locate a disputed step of the computation, and only that step is re-executed to
resolve the dispute.

We compare classic verifiable computation, fraud proofs, and our new approach in Table 1. At a high level, in
the fraud proof paradigm a “prover” performs a computation which is provisionally accepted without any proof
of correctness. Any party can then challenge correctness of the prover’s computation. In the naysayer paradigm,
by contrast, the prover supplies a proof with the computation output, which is provisionally accepted. Any party
can then challenge correctness of the proof. The naysayer approach offers significant speedups since the verifier’s
circuit is typically much smaller than the original computation. Note that there is a slight semantic difference:
fraud proofs can definitively show that the computation output is incorrect, while naysayer proofs can only show
that the accompanying proof is invalid—the computation itself may have been correct.

Furthermore, for fraud proofs, the full computation input (the witness) must be made available to the verifier
and potential challengers. Naysayer proofs, on the other hand, can be verified using only the statement and proof.
Hence, naysayer proofs work naturally with zero-knowledge proofs. This can also lead to crucial savings if the
witness is very large (e.g., transaction data for a rollup).

The fraud proof design pattern has been applied in an application-specific way in many blockchain applica-
tions besides optimistic rollups, including the Lightning Network [PD16], Plasma [PB17], cryptocurrency mix-
ers [SNBB19], and distributed key generation [SJSW19]. We view naysayer proofs as a drop-in replacement for the
many application-specific fault proofs which is both more general and efficient.

2

3 Naysayer proofs

In this section, we introduce our system model and the syntax of naysayer proofs and show that constant-size and
constant-time verifiable (i.e., succinct) naysayer proofs exist for all NP languages.

First, we recall the syntax of non-interactive (zero-knowledge) proofs. We refer the reader to [Tha23] for a
formal description of the properties of NIZKs (e.g., correctness, soundness, zero-knowledge).

Definition 1 (Non-interactive proof). A non-interactive proof Π for some NP relation R is a tuple of PPT
algorithms (Setup,Prove,Verify):

Setup(1λ)→ crs: Given a security parameter, output a common reference string crs. This algorithm might use
private randomness (a trusted setup).

Prove(crs, x, w)→ π: Given the crs, an instance x, and witness w such that (x,w) ∈ R, output a proof π.

Verify(crs, x, π)→ {0, 1}: Given the crs and a proof π for the instance x, output a bit indicating accept or reject.

3.1 System model

There are three entities in a Naysayer proof system. We assume that all parties can read and write to a public
bulletin board (e.g. a blockchain).

Prover The prover posts a proof π to the bulletin board claiming (x,w) ∈ R.

Verifier The verifier does not directly verify the validity of π, rather, it allows everyone to naysay in a pre-defined
time window of duration Tnay. Optimistically, if no one naysays π within time Tnay, the verifier accepts it.
In the pessimistic case, a party (or multiple parties) naysay the validity of π by posting proof(s) πnay. The
verifier checks the validity of each πnay, and if any of them pass, it rejects the original proof π.

Naysayer If Verify(crs, x, π) = 0, then the naysayer posts a naysayer proof πnay to the public bulletin board before
Tnay time elapses.

Note that we need to assume a synchronous communication model as we cannot have naysayer proofs in partial
synchrony or asynchrony. If the adversary can arbitrarily delay the posting of naysayer proofs, then we cannot have
sound proof systems. Note that synchrony is already assumed by most of the deployed consensus algorithms, e.g.,
Nakamoto consensus [Nak08]. Furthermore, we assume that the public bulletin board offers censorship resistance
for the writers of the bulletin board. Finally, we assume that there is at least one honest party who is ready to
create and submit naysayer proofs for invalid proofs.

3.2 Naysayer proof system definitions and security

We can now formally introduce the notion of a naysayer proof, which has the following syntax:

Definition 2 (Naysayer proof). Given a non-interactive proof system Π = (Setup,Prove,Verify), the corresponding
naysayer proof system Πnay is a tuple of PPT algorithms (NSetup,Naysay,VerifyNay) defined as follows:

NSetup(1λnay)→ crsnay: Given a security parameter λnay, output a common reference string crsnay. This algorithm
might use private randomness.

Naysay(crsnay, (x, π), auxnay)→ πnay: Given a statement x, a corresponding (potentially invalid) proof π in proof
system Π, and auxiliary information auxnay, output a naysayer proof πnay disputing π.

VerifyNay(crsnay, (x, π), πnay)→ {0,⊥}: Given a statement-proof pair (x, π) and a naysayer proof πnay disputing π,
output a bit indicating whether the evidence against π is sufficient to reject π (0) or inconclusive (⊥).

A trivial naysayer proof system always exists in which πnay = ∅ and VerifyNay simply runs the original verification
procedure. We say a proof system Π is efficiently naysayable if there exists a corresponding naysayer proof system
Πnay such that VerifyNay is asymptotically faster than Verify. If VerifyNay is only concretely faster than Verify, we
say Πnay is a weakly efficient naysayer proof. Note that some proof systems already have constant proof size and
verification time [Gro16, Sch90] and therefore can, at best, admit weakly efficient naysayer proofs. Moreover, if
auxnay = ∅, we say Πnay is a public naysayer proof.

3

Definition 3 (Naysayer correctness). Given a proof system Π, a naysayer proof system Πnay is correct if, for all
auxnay, crs, x, and invalid proofs π, Naysay outputs a valid naysayer proof πnay:

Pr

VerifyNay(crsnay, (x, π), πnay) = 0

∣∣∣∣∣∣
Verify(crs, x, π) = 0 ∧
crsnay ← NSetup(1λ) ∧

πnay ← Naysay(crsnay, (x, π), auxnay)

 = 1. (1)

Definition 4 (Naysayer soundness). Given a proof system Π, a naysayer proof system Πnay is sound if, for all
PPT adversaries A and all aux, crs, x, and correct proofs π, A produces a verifying naysayer proof πnay with only
negligible probability:

Pr

VerifyNay(crsnay, (x, π), πnay) = 0

∣∣∣∣∣∣
Verify(crs, x, π) = 1 ∧
crsnay ← NSetup(1λ) ∧

πnay ← A(crsnay, (x, π), auxnay)

 ≤ negl(λ). (2)

3.3 Naysayer proofs for all NP

Finally, we show that for every NP language, there exists a constant-size naysayer proof with constant verification
time (i.e., a succinct naysayer proof).

Theorem 1. For every NP language L with relation RL, there exists a naysayer proof system Πnay with constant-
size proof πnay and constant-time verifier.

Proof. By the Cook-Levin theorem [Coo71], any NP language has a corresponding boolean circuit C such that
C(x) = 1 if and only if x ∈ L (i.e., circuit satisfiability or SAT). A satisfying wire assignment w is, therefore, a
(neither zero-knowledge nor succinct) proof that x ∈ L which admits constant-size and constant-time naysaying:
if the wire assignment w is incorrect, there must be some gate of the circuit for which the wire assignment is
inconsistent. The naysayer simply provides the index of this gate; the verifier then checks if the relevant wire
assignments are consistent with a correct evaluation of the gate, which is a constant-time operation. Furthermore,
the naysayer proof consists of a single element (the gate index), so it is constant-sized, i.e., succinct.

Corollary 1. Every efficient proof system Π (i.e., with a polynomial-time verification algorithm) has a succinct
naysayer proof.

Proof. Given any proof system Π, one can represent the Verify(crs, ·, ·) algorithm as a circuit and apply the above
theorem to obtain a succinct naysayer proof.

4 Three concrete applications of naysayer proofs

The naysayer proof paradigm is generally applicable for proof systems with multi-round amplification, repetitive
structure (e.g., multiple bilinear pairing checks [GWC19]), or recursive reduction (e.g., Pietrzak’s proof of exponen-
tiation [Pie19]). In this section, we highlight three example constrictions of naysayer proofs.

We evaluate the asymptotic cost savings for the verifiers in the four examples discussed in Section 4. Note that
naysayer proofs allow an exponential speedup for the verifier for verifiable shuffles and a logarithmic speedup for
the FRI polynomial commitment opening proof verifier, see Table 2. For CRYSTALS-Dilithium, we can only claim
weakly efficient naysayer proofs, as there is no asymptotic gap in the complexity in certain branches of the signature
verification circuit and the naysayer prover algorithm, cf. Equations (3) and (4).

4.1 FRI polynomial commitment scheme

The FRI polynomial commitment scheme [BBHR18] is used as a building block in many non-interactive proof
systems, including STARKs [BCGT13]. Below, we describe only the parts of FRI relevant to our discussion. The
FRI commitment to a polynomial p(x) ∈ F≤d[X] is the root of a Merkle tree with ρ−1d leaves. Each leaf is an
evaluation of p(x) on the set L0 ⊂ F, where ρ−1d = |L0|≪ |F|, for 0 < ρ < 1. We focus on the verifier’s cost in the
opening proof of the FRI polynomial commitment scheme as applied in the STARK IOP. Let δ be a parameter of
the scheme such that δ ∈ (0, 1−√ρ). The prover sends the verifier log2(|L0|) messages. The FRI opening proof’s
verifier queries the prover’s each message λ/log2(1/(1− δ)) times to ensure 2−λ soundness error. In each query, the
verifier needs to check a Merkle-tree authentication path consisting of O(log2(ρ−1d)) hashes. Therefore, the overall
STARK proof consists of O(λ log2(ρ

−1d)/log2(1/(1− δ)) hashes.

4

FRI Opening CRYSTALS-D. SPHINCS+ Shuffle proof

π storage O(λ log2(d))H O(λ)F O(λ)F O(
√
n)G

Verify(π) compute O(λ log2(d))H O(λ)F+ 1H O(λ)H O(n)G
πnay storage 1F 1F ∨ 1F ∨ 1F 1F 2G+ 1F
NVerify(πnay) compute 1H O(λ)F ∨ O(λ)F ∨ 1H 1H 4G

Table 2: Cost savings of the naysayer paradigm for the example applications in Section 4. In FRI, let deg(p(x)) = d.
For the Bayer-Groth shuffle argument [BG12], we consider n shuffled public keys (or ciphertexts). F,G denotes
field/group elements or field/group operations, respectively. H denotes hashing operations.

The overall STARK proof is invalid if any of the individual Merkle proofs is invalid. Therefore a straightforward
naysayer proof πFRI

nay = (i, zi) need only point to the ith node in one of the Merkle proofs, where the hash values of
the children nodes x, y and their parent node z ̸= H(x, y) do not match in one of the incorrect Merkle authentication
paths. The naysayer verifier only needs to compute a single hash evaluation H(x, y) = zi and check zi ̸= z. Thus,
the naysayer proof for FRI has constant-size and can be verified in constant-time.

4.2 Post-quantum signature schemes

With the advent of account abstraction [Eth23a], Ethereum users can define their own preferred digital signature
schemes, including post-quantum signatures as recently standardized by NIST [BHK+19, DKL+18, PFH+22]. In
all known schemes, post-quantum signatures or public keys are substantially larger than their classical counterparts.
Since post-quantum signatures are generally expensive to verify on-chain, they are prime candidates for the naysayer
proof paradigm.

CRYSTALS-Dilithium [DKL+18]. The verifier of this scheme checks that the following holds for signature
σ = (z, c), public key pk = (A, t), and message M :

∀i : ∥zi∥∞ ≤ C ∧Az− ct = w ∧ c = H(M ||w), (3)

where C is a constant, A ∈ Rk×l
q , and z, t,w ∈ Rk

q for the polynomial ring Rq := Zq[x]/(X
256 +1). Notice that the

checks in Equation (3) are efficiently naysayable. In fact, the naysayer prover must show that the following holds:

∃i : ∥zi∥∞ > C ∨Az− ct ̸= w ∨ c ̸= H(M ||w). (4)

If the first check fails, then the naysayer prover shows an index i for which the infinity norm of one of the polynomials
in z is large. If the second check fails, then the naysayer prover can point to the ith row of the vector w, where
matrix-vector multiplication fails and verify only that row. Finally, if the last check fails, then the naysayer verifier
just needs to recompute a single hash evaluation.

SPHINCS+ [BHK+19]. The signature verifier in SPHINCS+ checks several Merkle authentication proofs,
requiring hundreds of hash evaluations. A constant-size and -time naysayer proof can be easily devised akin to the
naysayer proof described in Section 4.1. The naysayer prover simply points to the hash evaluation in one of the
Merkle-trees where the signature verification fails.

4.3 Verifiable shuffles

Verifiable shuffles are applied in many (blockchain) applications such as single secret leader election algorithms [BEHG20],
mix-nets [Cha81], cryptocurrency mixers [SNBB19], and e-voting [Adi08]. The state-of-the-art proof system for
proving the correctness of a shuffle is due to Bayer and Groth [BG12]. Their proof system is computationally
heavy to verify on-chain as the proof size is O(

√
n) and verification time is O(n), where n is the number of shuffled

elements.
Most shuffling protocols (of public keys, re-randomizable commitments, or ElGamal ciphertexts) admit a succinct

naysayer proof if the naysayer knows at least one of the shuffled elements. Let us consider the simplest case of
shuffling public keys. We want to prove membership in the following NP language:

Rperm := {(gwi , gr·wσ(i))ni=1, g
r;σ, r| ∀i : wi, r ∈R Fp, g ∈ G, σ ∈R Perm(n)}, (5)

5

where Perm(n) is the set of all permutations f : [n]→ [n]. Suppose the naysayer knows that for j ∈ [n], the prover
did not correctly include gr·wj in the shuffle. The naysayer can prove this by showing that (g, gwj , gr, gr·wj) ∈
RDH ∧ gr·wj /∈ (·, gr·wσ(i))ni=1, where RDH is the language of Diffie-Hellman tuples. One can show that a tuple
is a Diffie-Hellman tuple with a proof of knowledge of discrete logarithm equality [CP93]. However, the naysayer
must know the discrete logarithm wj to produce such a proof. Unlike our previous examples, which were publicly
naysayable, this is a privately naysayable proof since the naysayer algorithm takes auxiliary input wj . With the
right data structure for the permuted list (e.g., a hash table), both of the above conditions can be checked in
constant-time with a constant-size naysayer proof, resulting in exponential savings compared to directly verifying
the original Bayer-Groth shuffle proof.

5 Storage Considerations

We assumed in our evaluation that the naysayer verifier can read the instance x, the original proof π and the
naysayer proof πnay entirely. Note that in the pessimistic case, the verifier requires increased storage (for πnay) but
only needs to compute VerifyNay instead of Verify. A useful naysayer proof system should compensate for increased
storage by considerably reducing verification costs.

In either case, this approach of storing all data on chain may not be sufficient in blockchain contexts where
storage is typically very costly. Blockchains such as Ethereum differentiate costs between persistent storage (which
we can call Sper) and “call data” (Scall), which is available only for one transaction and is significantly cheaper as
a result. Verifiable computation proofs, for example, are usually stored in Scall with only the verification result
persisted to Sper.

Some applications now use a third, even cheaper, tier of data storage, namely off-chain data availability ser-
vices (SDA), which promise to make data available off-chain but which on-chain contracts have no ability to read.
Verifiable storage, an analog of verifiable computation, enables a verifier to store only a short commitment to a
large vector [CF13, Mer88] or polynomial [KZG10], with an untrusted storage provider (SDA) storing the full values.
Individual data items (elements in a vector or evaluations of the polynomial) can be provided as needed to Scall or
Sper with short proofs that they are correct with respect to the stored commitment.

This suggests an optimization for naysayer proofs in a blockchain context: the prover posts only a binding
commitment H(π) which the contract stores in Sper, while the actual proof π is stored in SDA. We assume that
potential naysayers can read π from SDA. In the optimistic case, the full proof π is never written to the more-
expensive Scall or Sper. In the pessimistic case, when naysaying is necessary, the naysayer must send openings of the
erroneous proof elements to the verifier (in Scall). The verifier checks that these data elements are valid with respect
to the on-chain commitment H(π) stored in Sper. Note that in some naysayer proof systems which don’t require
reading all of π, even this pessimistic case will offer significant savings over storing all of π in Scall. An important
future research direction is to investigate this optimized storage model’s implications and implementation details
for naysayer proofs.

6 Open Questions and Conclusion

We see many exciting open research directions for naysayer proofs. A thorough game-theoretical analysis of naysayer
proofs (e.g., deposits and the length of the challenge period) is crucial for real-world deployments. Another fasci-
nating direction is to better understand the complexity-theoretic properties of naysayer proofs. Is it be possible to
create a universal black-box naysayer proof for all non-interactive proof systems? Finally, one might consider sev-
eral extensions of naysayer proofs, e.g., interactive naysayer proofs or naysayer proofs with non-negligible soundness
error. We leave these generalizations to future work.

Acknowledgements. We thank Mahimna Kelkar, Joachim Neu, Valeria Nikolaenko, Ron Rothblum, and Justin
Thaler for insightful discussions. This work was supported by a16z crypto research. Joseph Bonneau was addi-
tionally supported by DARPA Agreement and NSF grant CNS-2239975. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the
United States Government, DARPA, a16z, or any other supporting organization.

6

References

[Adi08] Ben Adida. Helios: Web-based open-audit voting. In Paul C. van Oorschot, editor, USENIX Security
2008, pages 335–348. USENIX Association, July / August 2008. [page 5.]

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046, 2018. https:

//eprint.iacr.org/2018/046. [page 4.]

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete efficiency of
probabilistically-checkable proofs. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th ACM STOC, pages 585–594. ACM Press, June 2013. [page 4.]

[BEHG20] Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single secret leader election. In
Advances in Financial Technologies, 2020. [page 5.]

[BG12] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a shuffle. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages
263–280. Springer, Heidelberg, April 2012. [page 5.]

[BHK+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Rijneveld, and Peter
Schwabe. The SPHINCS+ signature framework. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2129–2146. ACM Press, November 2019.
[page 5.]

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In Kaoru Kurosawa
and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 55–72. Springer, Heidelberg,
February / March 2013. [page 6.]

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications
of the ACM, 24(2), 1981. [page 5.]

[Coo71] Stephen A Cook. The complexity of theorem-proving procedures. In STOC, 1971. [page 4.]

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell, editor,
CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, August 1993. [page 6.]

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR TCHES,
2018(1):238–268, 2018. https://tches.iacr.org/index.php/TCHES/article/view/839. [page 5.]

[Eth23a] Ethereum. Account Abstraction, 2023. [page 5.]

[Eth23b] Ethereum. Optimistic rollups, 2023. [page 2.]

[FK97] Uriel Feige and Joe Kilian. Making games short (extended abstract). In 29th ACM STOC, pages
506–516. ACM Press, May 1997. [page 2.]

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
465–482. Springer, Heidelberg, August 2010. [page 1.]

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg,
May 2016. [page 3.]

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-bases
for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953,
2019. https://eprint.iacr.org/2019/953. [page 4.]

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and
their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194.
Springer, Heidelberg, December 2010. [page 6.]

7

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://tches.iacr.org/index.php/TCHES/article/view/839
https://eprint.iacr.org/2019/953

[Lab23] Offchain Labs. Inside Arbitrum Nitro, 2023. [page 2.]

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl Pomerance,
editor, CRYPTO’87, volume 293 of LNCS, pages 369–378. Springer, Heidelberg, August 1988. [page 6.]

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized business review, 2008.
[page 3.]

[Opt23] Optimism. Rollup Protocol, 2023. [page 2.]

[PB17] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts, 2017. [page 2.]

[PD16] Joseph Poon and Thaddeus Dryja. The Bitcoin lightning network: Scalable off-chain instant payments.
lightning.network/lightning-network-paper.pdf, 2016. [page 2.]

[PFH+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON. Technical
report, National Institute of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022. [page 5.]

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS 2019, volume 124,
pages 60:1–60:15. LIPIcs, January 2019. [page 4.]

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, August 1990. [page 3.]

[SJSW19] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. ETHDKG: Distributed key
generation with Ethereum smart contracts. Cryptology ePrint Archive, Report 2019/985, 2019. https:
//eprint.iacr.org/2019/985. [page 2.]

[SNBB19] István András Seres, Dániel A. Nagy, Chris Buckland, and Péter Burcsi. MixEth: efficient, trustless coin
mixing service for Ethereum. Cryptology ePrint Archive, Report 2019/341, 2019. https://eprint.

iacr.org/2019/341. [pages 2 and 5.]

[Tha23] Justin Thaler. Proofs, arguments, and zero-knowledge, July 2023. [page 3.]

[TR19] Jason Teutsch and Christian Reitwießner. A scalable verification solution for blockchains. arXiv preprint
arXiv:1908.04756, 2019. [page 2.]

[W+14] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project
yellow paper, 2014. [page 1.]

8

lightning.network/lightning-network-paper.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2019/985
https://eprint.iacr.org/2019/985
https://eprint.iacr.org/2019/341
https://eprint.iacr.org/2019/341

	Introduction
	Related work
	Naysayer proofs
	System model
	Naysayer proof system definitions and security
	Naysayer proofs for all NP

	Three concrete applications of naysayer proofs
	FRI polynomial commitment scheme
	Post-quantum signature schemes
	Verifiable shuffles

	Storage Considerations
	Open Questions and Conclusion

