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Abstract. We present a constant-round deterministic broadcast proto-
col against timid adversaries in the synchronous authenticated setting.
A timid adversary is a game-theoretically rational adversary who tries
to attack the protocol but prefers the actions to be undetected. Our pro-
tocol is secure against such an adversary corrupting t out of n parties
for any t < n. The round complexity is 5 for timid adversaries and is
at most t+ 5 for general malicious adversaries. Our results demonstrate
that game-theoretic rationality enables us to circumvent the impossibil-
ity of constructing constant-round deterministic broadcast protocols for
t = ω(1).
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1 Introduction

Byzantine broadcast is a fundamental protocol in distributed computing used to
construct fault-tolerant distributed systems and cryptographic protocols, includ-
ing multiparty computation [28, 44, 43] and blockchains [27, 41, 35]. The Byzan-
tine broadcast problem is that a specific party called the sender distributes a
message among n parties in the presence of a malicious adversary who corrupts
at most t parties. The difficulty is in a requirement that all non-corrupted parties
should output the same value even if the sender is corrupted.

In synchronous networks with pairwise authenticated channels, the classical
results [42, 40] show that broadcast is possible if and only if t < n/3. By assuming
the setup of digital signatures, which is referred to as the authenticated setting,
Dolev and Strong [17] presented a deterministic protocol with round complexity
t + 1 for any t < n. They also showed the round complexity lower bound of
t+ 1 for deterministic protocols in the authenticated setting. Since then, many
studies have been devoted to constructing randomized protocols with expected
constant-round complexity [18, 24, 36, 1, 12, 48, 47].

In this work, we demonstrate that game-theoretic rationality can be used
to circumvent the impossibility result of [17]. Specifically, we consider rational
adversaries who prefer to violate the requirements of the broadcast protocol but
do not prefer their actions to be detected. Namely, such adversaries prefer to
attack the protocol stealthily. We call them timid adversaries.



Table 1. Previous and Our Results on Authenticated Broadcast Protocols

References Resilience Round
Complexity

Adversary
Model Results

[17] t < n t+ 1 Malicious ∃determ. protocol
[17] t < n t Malicious No determ. protocol
[20] t < n t+ 3 Malicious ∃detectable protocol
[36] t < n/2 57 Malicious ∃rand. protocol
[24] t < n/2 + k O(k2) Malicious ∃rand. protocol
[24] t < n o(2n/(n− t)) Malicious No rand. protocol
[21] t < n/2 + k O(k) Malicious ∃rand. protocol
[1] t < n/2 10 Malicious ∃rand. protocol
[12] t < n O(n/(n− t)) Malicious ∃rand. protocol

This work t < n 5 Rational ∃determ. protocol

A timid adversary is an adversary model that lies between semi-honest and
malicious adversaries. A semi-honest adversary only tries to extract secret in-
formation by honestly performing the protocol. The model seems artificial and
cannot be applied to protocols without secrecy requirements, such as broadcast.
A malicious adversary does anything to attack the protocol and is a good model
for studying the worst-case scenarios. However, the worst-case model restricts
the usability of protocols and may not reflect real-life situations. A timid ad-
versary attacks the protocol carefully so that his behavior will not be detected.
Since the actions of a timid adversary vary depending on the detection mech-
anism of the protocol, we model it as a rational player in game theory who
behaves to maximize his utility. A timid adversary can behave maliciously if the
protocol does not employ any detection system. The adversary may behave like
a semi-honest adversary if the protocol checks the validity of each computation.

Our Contributions. We introduce a game-theoretic security notion for broadcast
protocols that takes into account adversaries’ rational behavior. In our model,
a single rational adversary corrupts a subset of participants of the broadcast
protocol. The non-corrupted participants honestly follow the protocol. The ad-
versary has a preference for the outcome of the protocol execution. We say a
protocol is secure if (1) it satisfies the requirements for the broadcast protocol
for a “harmless” adversary and (2) no timid adversary obtains higher utility than
the harmless adversary. In other words, the protocol is secure in the sense that
the best strategy for timid adversaries is doing nothing.

We construct a constant-round deterministic broadcast protocol against
timid adversaries in the authenticated setting. The round complexity is 5 for
timid adversaries and is at most t+5 for any malicious adversaries. The commu-
nication complexity of our protocol against timid adversaries is O(κn2), where
κ is a security parameter of the signature scheme. We summarize the previous
and our results on authenticated broadcast protocols in Table 1.
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The basic idea of our protocol is to use digital signatures as
proofs/certificates. Consider a countersignature π = (m,σB(σA(m))), where
σi(x) is a signature of player i for x. If player C has π, it means that C knows
that player B has a proof that A has message m. Suppose that all players are
prescribed to send the received countersignature to everyone by appending their
own signature. If some player got the same countersignature as π from t + 1
different players, it means that everyone knows that B has a proof that A has
m. This is because there are at most t corrupted parties, and thus at least one
honest party sent π to everyone. We use and generalize this idea to construct a
constant-round protocol for timid adversaries.

Related Security Notions for Broadcast. We compare our security notion of ratio-
nal broadcast against timid adversaries with the related notions in the literature.

In [19, 20], Fitzi et al. showed that detectable broadcast could be achieved for
any t < n. In detectable broadcast, all honest parties either accept or reject the
execution. A malicious adversary can cause an honest party to abort the proto-
col, but in that case, all the honest parties noticed the fact. Since a malicious
action can be detected, any detectable broadcast protocol can be used as a ra-
tional protocol against timid adversaries. As far as we know, no constant-round
detectable broadcast protocol exists.

Goldwasser and Lindell [29] presented a simple two-round protocol for broad-
cast with abort for any t < n. A requirement is relaxed such that any honest
party needs to output either some same value or ⊥. Since a broadcast protocol
with abort may not have a mechanism for detecting malicious behaviors, the
notion of broadcast with abort is incompatible with our security notion.

Aumann and Lindell [9] introduced the notion of covert security, where any
deviation from the protocol can be detected with some probability ϵ. Although
existing studies [30, 8, 39, 15] for covert security have been aimed at constructing
general multiparty computation protocols, the security notion can be adopted
to broadcast. If the probability ϵ is high enough, a protocol with covert security
can be used as a broadcast protocol for timid adversaries. As observed in [45],
the standard definition of covert security is not necessarily weaker than standard
security against malicious adversaries. Since a secure Byzantine broadcast pro-
tocol is also secure for timid adversaries, the notion of covert security is strictly
stronger than ours.

Our results of constructing a protocol that takes 5 rounds for rational ad-
versaries and t + 5 rounds for malicious adversaries are similar to the notion
of early stopping [16], where the protocol may halt early if the actual number
of corrupted parties is less than its maximum t. More specifically, Albouy et
al. [5] studied the problem of constructing Byzantine broadcast protocols with
good-case latency; they gave a deterministic broadcast protocol in the authen-
ticated setting such that the round complexity may be a constant if the actual
number of honest parties is sufficiently large. However, it is difficult to employ
their protocol in our setting because it has no mechanism for detecting cheaters.
Namely, a rational adversary may have no incentive to refrain from attacking
the protocol.
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Related Work. A game-theoretic analysis of players in cryptographic protocols
was initiated by Halpern and Teague [33] for secret sharing. The problem is
achieving fair secret reconstruction among rational parties, which has been ex-
tensively studied in the literature. See [2, 38, 22, 7, 37] and the references therein.
Fairness among rational parties has been studied for other problems such as
multiparty computation [6, 31], leader election [3, 4, 49, 13], consensus [34], and
coin toss [14].

There have been studies on protocols against rational adversaries to circum-
vent the known impossibility results. Groce et al. [32] studied the possibility of
constructing a Byzantine agreement tolerating t corruptions for t ≥ n/2, which
is impossible in the traditional setting. Garay et al. [25] introduced a frame-
work of rational protocol design to capture incentive-driven adversaries within
the simulation-based paradigm. Their framework was used to relax fairness in
multiparty computation [26] and analyze Bitcoin [10]. The notion of timid adver-
saries was introduced by Fujita et al. [23] as a game-theoretically relaxed model
of a malicious adversary. They presented perfectly secure message transmission
protocols that circumvent the known impossibility results.

2 Preliminaries

We briefly describe our network model, the setup assumptions, and the definition
of Byzantine broadcast.

There are n parties on the network. A protocol is said to be t-resilient if
it works correctly, even if at most t parties are corrupted and controlled by
an adversary. We assume the synchronous communication model. Namely, the
protocol proceeds in rounds, and each party can send messages to other parties
in each round. The messages of non-corrupted (honest) parties can be correctly
delivered at the beginning of the next round.

We assume a public-key infrastructure (PKI) and digital signature schemes.
Each party can generate a signature using his secret key, and the validity can be
checked with the corresponding public key. It is called an authenticated setting.

A signature scheme consists of three algorithms (Gen, Sign,Ver). A key-
generation algorithm Gen, on input security parameter n, outputs a pair of keys
(pk, sk). The security parameter is usually represented by the string 1 · · · 1 of
length n, denoted by 1n. A signing algorithm Sign, on input secret key sk and
message m, outputs a signature σ. A verification algorithm Ver, on input public
key pk and pair (m,σ), checks if σ is a valid signature of m. Here, we give a
formal definition of the standard security notion of signature schemes.

Definition 1 (Security of Signature Scheme). A signature scheme
(Gen, Sign,Ver) is existentially unforgeable against chosen-message attack (EUF-
CMA) or simply secure if for every polynomial-time adversary A,

Pr
[
(pk, sk)← Gen(1n); (m,σ)← ASignsk(·)(vk) : m /∈ Q ∧ Verpk(m,σ) = 1

]
is negligible in n, where Q = {mi}i is the set of queries mi made by A to oracle
Signsk(·), for which A received σi generated by Signsk(mi) as a response.
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In the above definition, an adversary A can use the signing oracle Signsk(·) as
many times as A wants to obtain valid pairs {(mi, σi)}i of message mi and sig-
nature σi, where each mi was chosen by A. Finally, A outputs a pair (m,σ).
The winning condition that m /∈ Q∧Verpk(m,σ) = 1 means that the submitted
message m should differ from the messages queried to the signing oracle, and the
pair should be a valid message-signature pair. Thus, the above security guaran-
tees that no adversary can generate a valid signature-message pair except those
generated by a valid signing algorithm.

As a correctness property, we require that for any (pk, sk) generated by
Gen(1n) and message m, it holds that Vervk(m, Signsk(m)) = 1. For simplicity,
we assume an ideal signature scheme where the above probability is equal to
zero.

The following is a traditional definition of Byzantine broadcast.

Definition 2 (Byzantine Broadcast). A protocol Π for n parties is said to
be a t-resilient Byzantine broadcast protocol if the following conditions hold for
any adversary controlling at most t parties:

1. Validity: If the sender is honest and holds an initial input m, then all honest
parties output m.

2. Agreement: All honest parties output the same value.

Dolev and Strong [17] presented a polynomial-time authenticated broadcast
protocol with round complexity t + 1 for any t < n. Also, they showed that as
long as protocols are deterministic, the round complexity must be at least t+1,
even in the authenticated setting.

3 Rational Broadcast Protocols

We define a game-theoretically rational adversary model. First, we define a game
played by a rational player/adversary. The outcome of the game consists of
the information that represents whether the adversary successfully violates the
security requirements. Since timid adversaries care whether their actions were
detected, the outcome also includes such information. After that, we define a
security notion of rational broadcast protocols, which roughly says that the best
strategy for rational adversaries is doing nothing on the protocol.

Broadcast Game. We define the broadcast game. First, set parameters incorrect =
disagree = undetect = 0. Given the protocol Π, an adversary A chooses the
sender s ∈ [n], the message m, and the set of parties C ⊆ [n] with |C| ≤ t. The
protocol is executed by specifying s as the sender with initial message m, where
the parties in C are controlled by A, and the other parties honestly follow the
protocol description of Π. After running the protocol, each party i ∈ [n] outputs
vali. Let H = [n] \ C. If s ∈ H and there exists i ∈ H such that vali /∈ {m,⊥},
set incorrect = 1. If there exist i, j ∈ H such that vali ̸= valj , set disagree =
1. In executing the protocol, every player may send a message “DETECT i”
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indicating that the player detected that player i cheating. If no player sent
messages “DETECT i” during the protocol for i ∈ C, set undetect = 1. The
outcome of the game against adversary A is outA = (incorrect, disagree, undetect).

In the above definition of incorrect, the case that vali = ⊥ for i ∈ H is not
considered a successful attack by adversaries. One reason is that if vali = ⊥
for some honest party i, i may propose to execute the protocol again. If so,
we cannot say that the adversary attacked successfully. Another reason is that
the output value ⊥ usually implies that some attack was detected. Hence, timid
adversaries naturally consider that outcome a failure.

Utility. The utility u(A) of the adversary A is the expected value E[U(outA)],
where U is a function that maps the outcome outA of the game to real values.

Definition 3 (Security of Rational Broadcast). A broadcast protocol Π is
said to be secure against rational t-adversaries with utility function U if there
exists a “harmless” adversary B controlling at most t parties such that

1. Security: Π satisfies validity and agreement for B;
2. Nash equilibrium: For any adversary A controlling at most t parties, u(A) ≤

u(B).

The above notion captures game-theoretic security; if protocol Π satisfies the
above, a strategy of harmless adversary B is the best response since every other
strategy (following adversary A) cannot increase the expected utility. Thus, every
adversary rationally behaves harmlessly in protocol Π.

Timid Adversaries. We consider a timid adversary who tries to violate the se-
curity requirements of protocols but does not prefer the attacks to be detected.
Specifically, we consider the set of utility functions that satisfy the following
conditions:

1. U(out) > U(out′) if incorrect > incorrect′, disagree = disagree′, and
undetect = undetect′;

2. U(out) > U(out′) if incorrect = incorrect′, disagree > disagree′, and
undetect = undetect′;

3. U(out) > U(out′) if incorrect = incorrect′, disagree = disagree′, and
undetect > undetect′,

where out = (incorrect, disagree, undetect) and out′ =
(incorrect′, disagree′, undetect′) are two outcomes of the broadcast game.
We denote by Utimid the set of utility functions satisfying the above conditions.

By definition, for any U ∈ Utimid, it holds that

U(1, 1, 1) > max{U(0, 1, 1), U(1, 0, 1)}
≥ min{U(0, 1, 1), U(1, 0, 1)} > U(0, 0, 1) > U(0, 0, 0).

We use the above relation in the analysis.
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Note that if protocol Π satisfies t-resilient Byzantine broadcast of Defini-
tion 2, any adversary controlling at most t parties achieves either U(0, 0, 0) or
U(0, 0, 1). Since a harmless adversary will achieve U(0, 0, 1), Π is also secure
against rational t-adversaries. Namely, Definition 3 for timid adversaries is a
relaxation of Definition 2.

4 Our Protocol

We assume that a PKI is established on the network. Let (Gen, Sign,Ver) be a
signature scheme. We assume that each party i ∈ [n] has a pair (pki, ski) of keys
generated by Gen(1n) and all parties know {pki}i∈[n]. With the secret key ski,
party i can generate a signature σi(m) of message m by Signski

(m). The validity
of a pair (m,σi) can be verified with the public key pki by Verpki(m,σi).

First, we recall the Dolev-Strong authenticated broadcast protocol [17]. The
protocol uses a signature chain. A signature chain for value v of length ℓ is
defined as (1) (v, σi(v)) for some i ∈ [n] if ℓ = 1; (2) (c, σi(c)) for some i ∈ [n] for
ℓ > 1, where c is a signature chain for v of length ℓ−1 that consists of signatures
with ℓ − 1 distinct signers other than i. A signature chain is valid if it satisfies
the above conditions and all signatures are valid.

Dolev-Strong Protocol.

1. The sender s with input m sends (m,σs(m)) to all parties.
2. For round r = 2, . . . , t+ 1, each party i does the following:

– If i received a valid signature chain c for value v of length r − 1 where
no signature of i is included, then i signs it and sends (c, σi(c)) to all
parties. (Party i does this procedure once for each value v. Namely, if i
appended a signature for value v and sent to all parties, i does nothing
for value v henceforth.)

– At the end of round t + 1, let V be the set of values of valid signature
chains of length t+ 1 that i received. If |V | = 0 or |V | > 1, i outputs ⊥.
Otherwise, i output the value in V .

Before presenting the formal description, we give an overview of our protocol.
In the following, we introduce three notions: proof of dissemination (PoD), proof
of agreement (PoA), and proof of termination (PoT). They help us understand
our protocol and make the security proof easy to follow.

Protocol Overview.

1. The sender sends the initial input m and its signature to all parties.
2. Each party generates a countersignature from the received message and sends

it to all parties.
3. Each party collects countersignatures. A set of t+ 1 valid countersignatures

functions as a “proof of dissemination” of message m. It means that a non-
corrupted party has sent a countersignature of m to all parties. Party i
sends the local proof PoDi

m for message m to all parties. If i found valid
countersignatures for different values, i does nothing.
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PoDi
m = “Party i knows that everyone got the proof that s sent m.”

Note that, even if party i has PoDi
m, there may be the case that s sent

m′ ̸= m to some party.
4. Each party collects proofs of dissemination {PoDj

m}. A set of t+1 valid proofs
for consistent m is a “proof of agreement,” implying that a non-corrupted
party has found no inconsistency and sent a proof of dissemination to all
parties. If party i gets a proof of agreement PoAi

m = {PoDj
m}j , i sends the

local proof PoAi
m to all parties via the Dolev-Strong protocol. Otherwise,

party i does nothing.

PoAi
m =

“Party i knows that everyone knows that
everyone got the proof that s sent m.”

Even if party i has PoAi
m, there may be the case that another party j does

not have PoAj
m. Namely, j got the proof that s sent m, but j does not know

everyone knows this fact.
5. A set of t+1 valid proofs {PoAj

m} works as a “proof of termination” since it
implies that a valid proof of agreement has been sent to all parties. If party
i gets a proof of termination PoT = {PoAj

m}j , i outputs the value m. If
another party j has not obtained a proof of termination, j continues to run
the Dolev-Strong protocol, in which party i also needs to participate. At the
end of the Dolev-Strong protocol, if party i found a valid PoAj

m, i outputs
m. Otherwise, i outputs ⊥ and sends a message “DETECT s,” meaning that
the sender s has cheated.

PoT =
“Everyone knows that everyone knows that
everyone got the proof that s sent m.”

We give a formal description of our protocol. Since we define several validity
notions, we summarize them in Table 2.

Our Protocol Πrbc.

Note that, in each round, if party i received a message containing (x, σj(x))
from party j such that σj(x) is not a valid signature, then i considers j has sent
i nothing.

1. The sender s with input m sends (m,σs(m)) to all parties.
2. For each party i, if i received a valid signature (m,σs(m)) from s and received

no valid signature for other value m′ ̸= m, then i signs it and sends the
countersignature (m,σi(σs(m))) to all parties. Otherwise, i sends nothing.

3. For each party i, if i received at least t+1 valid countersignatures of distinct
signers for the same value m and did not see any valid countersignature for
other value m′ ̸= m, then i sends a proof of dissemination

PoDi
m = (m,CSigSetim, σi(CSigSet

i
m))
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Table 2. Validity Notions

Objects Validity Conditions
Signature σi(m) Vervki(m,σi(m)) = 1

Countersignature σi(σs(m))
Vervki

(σs(m), σi(σs(m))) = 1
∧ Vervks

(m,σs(m)) = 1

Countersignature set
CSigSetim = {σj(σs(m))}j

∀j, σj(σs(m)) is valid
∧ each j in CSigSetim is distinct
∧ |CSigSetim| ≥ t+ 1

Proof of dissemination
PoDi

m = (m,CSigSetim, σi
m)

Vervki((m,CSigSetim), σi
m) = 1

∧ CSigSetim is valid

(Signed) proof of agreement
PoAi

m = (PoAm, σi
m), where

PoAm = (m, {(CSigSetjm, σj
m)}j)

Verski
(PoAm, σi

m) = 1

∧ ∀j,
(
Vervkj

(CSigSetjm, σj
m) = 1

∧ CSigSetjm is valid
)

∧ each j of CSigSetjm is distinct
∧ |{(CSigSetjm, σj

m)}j | ≥ t+ 1

Signature chain
Cj = (PoAj

m, σj
m) of length k

σj
m = σik(σik−1

(· · · (σi1(PoA
j
m)) · · · ))

∧ PoAj
m is valid

∧ ∀ℓ ∈ [k], σiℓ(· · · ) is valid
∧ each iℓ in σj

m is distinct
∧ received in round 4 + k

to all parties, where
CSigSetim = {σj(σs(m))}j

is the set of valid countersignatures of distinct signers for m that i received
and |CSigSetim| ≥ t+ 1.
Otherwise, i sends nothing.

4. For each party i, if i received at least t + 1 valid proofs of dissemination
{PoDj

m} of distinct j for the same value m and did not see any valid proof
for other value m′ ̸= m, then i sends a signed proof of agreement PoAi

m =
(PoAm, σi(PoAm)) to all parties, where

PoAm = (m, {(CSigSetjm, σj(CSigSet
j
m))}j)

is generated from a set of valid proofs of dissemination of distinct j for m
that i received and |{(CSigSetjm, σj

m)}j | ≥ t+ 1.
Otherwise, i sends nothing.

5. For round r = 4 + k with k = 1, . . . , t+ 1, each party i does the following:
(a) In each round, if i received from j a valid signature chain Cj =

(PoAj
m, σj

m) containing no signature of i and did not see any valid chain
for other value m′ ̸= m, i sends (PoAj

m, σi(σ
j
m)) to all parties. (Note that

i does this procedure once for each value PoAj
m.)

If i obtained at least t+1 signed proofs of agreement {(PoAj
m, σℓ(σ

j
m))}ℓ

(including i’s one) with valid signatures of distinct ℓ for the same value
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m and did not see any valid proof for other value m′ ̸= m, i outputs m
and halts.
Otherwise, i sends nothing.

(b) At the end of round t + 5, if party i received a valid signature chain of
length t + 1 containing valid PoAj

m and did not see any valid proof for
other value m′ ̸= m, i outputs m and halts.
Otherwise, i sends “DETECT s” to all parties, outputs ⊥, and halts.

4.1 Security Proofs

We give a security proof of our protocol. Before proving the main theorem (The-
orem 1), we give a technical lemma used in the proof.

Lemma 1. In every broadcast game of Πrbc in the presence of rational t-
adversary with utility function U ∈ Utimid for t < n, it holds that (1) if i ∈ H
outputs m ̸= ⊥, then i have obtained a valid PoAj

m for some j ∈ [n]; (2) if i ∈ H
outputs ⊥, every ℓ ∈ H have failed to generate a signed proof of agreement
(PoAj

m, σℓ(PoA
j
m)) for a valid PoAj

m for some j ∈ [n] in round 4.

Proof. Since every i ∈ H follows the prescribed protocol, we can see that i
outputs m ̸= ⊥ in round 5 or t+5. For the former case, i obtained at least t+1
signed proofs of agreement {(PoAj

m, σℓ(σ
j
m))}ℓ; for the latter case, i received a

valid signature chain containing valid PoAj
m. Thus, in both cases, i ∈ H have

obtained a valid PoAj
m, implying (1).

Similarly, i ∈ H outputs ⊥ only when i failed to obtain a valid signature chain
of length t+1 in round t+5. This event happens only when every honest party
ℓ failed to obtain a valid PoAj

m in round 4; this is because if ℓ ∈ H obtained
a valid PoAj

m, ℓ performs the Dolev-Strong protocol as a sender to broadcast
(PoAj

m, σℓ(PoA
j
m)) to all parties. By the agreement property of the Dolev-Strong

protocol, honest party i would obtain a valid PoAj
m, a contradiction. Hence, (2)

follows. ⊓⊔

Theorem 1. The broadcast protocol Πrbc is secure against rational t-
adversaries with utility function U ∈ Utimid for any t < n. The round complexity
is 5 for a harmless adversary and is at most t+ 5 for any adversary controlling
t parties.

Proof. We consider a harmless adversary B that chooses a random sender s ∈ [n],
a random message m, and C = ∅. Namely, B does not make any attacks on the
protocol. It is not difficult to see that the protocol satisfies validity and agreement
against B. In the presence of B, each party i receives n valid proofs of agreement
in round 5. Thus, the round complexity for a harmless adversary is 5.

We show the Nash equilibrium property. Since u(B) = U(0, 0, 1), we need to
show that for any adversary A, u(A) ≤ U(0, 0, 1). To achieve a higher utility, an
adversary needs outcomes of incorrect = 1 or disagree = 1.

Consider the case that incorrect = 1. By definition, when incorrect = 1, the
sender must not be corrupted. Since no party other than s can generate σs(m

′)

10



for m′ ̸= m, parties will not output messages other than m or ⊥. Namely, as
long as the signature scheme is unforgeable, it is not possible to be the case that
incorrect = 1.

Next, consider the case that disagree = 1. Suppose for contradiction that two
parties i, j ∈ H output vali = m, valj = m′ ̸= m, respectively.

First, we consider the case that ⊥ /∈ {m,m′}. By (1) of Lemma 1, i and j
have obtained valid PoAm and PoAm′ , respectively. A valid PoAm contains a set
{CSigSetℓm}ℓ of size at least t + 1 for distinct ℓ, where each CSigSetℓm is valid.
Since there are at most t corrupted parties, the existence of valid PoAm implies
that some non-corrupted party ℓ sent CSigSetℓm to all parties in round 3. Since
each CSigSetℓm consists of at least t+1 valid countersignatures for m, some non-
corrupted party ℓ′ sent (m,σℓ′(σs(m))) to all parties in round 2. Similarly, one
can deduce that the existence of valid PoAm′ implies that some party ℓ′′ sent
(m′, σℓ′′(σs(m

′))) to all parties in round 2. Thus, all parties must have received
valid countersignatures for distinct m and m′. In that case, all non-corrupted
parties would have sent nothing in round 3, a contradiction.

Next, we consider the case that m ̸= ⊥ and m′ = ⊥. Since valj = ⊥, (2)
of Lemma 1 implies that every ℓ ∈ H has failed to generate a signed proof of
agreement. In that case, since there are at most t corrupted parties, no party
can receive at least t + 1 valid proofs of agreement {PoAj} of distinct j in
round 5. Thus, it must be the case that party i output m after performing the
Dolev-Strong protocol. By the agreement property of the Dolev-Strong protocol,
party j ∈ H would output m, contradicting the fact that valj = ⊥. Thus, it is
impossible to achieve disagree = 1.

By the above analysis, for any adversary A, the utility u(A) is either U(0, 0, 1)
or U(0, 0, 0). Note that u(A) = U(0, 0, 0) when A corrupts the sender s, the
protocol halts in round t + 5, and the cheating of s is detected. Since u(A) ≤
U(0, 0, 1) = u(B), the protocol satisfies a Nash equilibrium.

To prove the worst-case round complexity, consider the case that some party
i sent a valid signature chain Ci = (PoAi

m, σi
m) of length k to some honest party

j in round 4 + k for some k = 1, . . . , t + 1. In that case, by the property of the
Dolev-Strong protocol, every honest party can obtain a valid signature chain
of length t + 1 in round t + 5. Otherwise, no honest party will receive a valid
signature chain of length t+1 in round t+5, and thus all honest parties output
⊥ by sending “DETECT s”. In either case, the worst-case round complexity is
t+ 5. ⊓⊔

Communication complexity. The communication complexity of the above pro-
tocol against a harmless adversary is O(κn3), where κ is a security parameter
of the signature scheme, and we assume that each signature is of length O(κ).
We can employ non-interactive threshold signatures [46, 11] to reduce the com-
munication complexity. In a non-interactive threshold signature scheme, each
party can generate a signature share of message x, and there is an algorithm
that converts k valid shares to a signature of x. No set of less than k parties can
forge a valid signature. In our protocol, a set CSigSetjm of countersignatures can
be replaced with a threshold signature. Namely, in round 2, each party sends a

11



signature share of (m,σs(m)) to all parties, and in round 3, each party generates
a valid threshold signature of (m,σs(m)) instead of CSigSetim. Since the size of
PoDi

m can be reduced from O(κn) to O(κ), the total communication complexity
of the resulting protocol is O(κn2).

4.2 Detecting Cheaters

In our protocol, the sender is the only player who can be detected as a cheater.
Regarding this point, we can show that as long as t ≤ ⌊(n− 1)/2⌋, the sender s
can be declared a cheater only when s is corrupted.

Proposition 1. In every broadcast game of Πrbc in the presence of rational t-
adversary A with utility function U ∈ Utimid for t ≤ ⌊(n−1)/2⌋, if i ∈ H outputs
⊥, then A chose the sender s ∈ [n] and C ⊆ [n] such that s ∈ C.

Proof. Suppose for contradiction that A chose the sender s ∈ [n] and C such
that s /∈ C. Since s ∈ H, every player receives a valid signature σs(m) in round
2. Then, every player i ∈ H sends a valid countersignature σi(σs(m)) to all
players. Since the number of honest players satisfies

|H| = n− t ≥ n−
⌊
n− 1

2

⌋
≥

⌊
2n− (n− 1)

2

⌋
=

⌊
n− 1

2
+ 1

⌋
≥ t+ 1,

every player i ∈ H obtains at least t + 1 valid countersignatures in round 3.
By a similar argument, every player i ∈ H obtains at least t + 1 valid proofs
of dissemination in round 4 and obtains at least t + 1 valid signed proofs of
agreement in round 5. Hence, every player i ∈ H outputs m in round 5 and
halts, which contradicts the assumption that some honest player outputs ⊥.
Therefore, the statement follows. ⊓⊔

Proposition 1 guarantees a sort of soundness of the detection mechanism in
our protocol. However, we can see that the guaranteed bound t ≤ ⌊(n − 1)/2⌋
is optimal and cannot be extended to t > ⌊(n − 1)/2⌋. Specifically, there is a
t-adversary A with t = ⌊(n− 1)/2⌋+ 1 such that A chooses the sender s and C
with s /∈ C, but every i ∈ H outputs ⊥. The strategy of A is fairly simple; every
party i ∈ C does nothing in the protocol. For such A, the number of honest
players satisfies

|H| = n− t = n−
(⌊

n− 1

2

⌋
+ 1

)
≤ t.

Since only at most t players are active, every honest player cannot generate any
valid countersignature set, for which at least t + 1 valid countersignatures are
needed. Thus, honest players will output ⊥ in the game against A.

The above weakness of our protocol does not contradict the game-theoretic
security of Definition 3. Since every honest player outputs ⊥, the outcome of the
game is outA = (incorrect, disagree, undetect) = (0, 0, 1), where s ∈ H is wrongly
detected as a cheater, but no player i ∈ C is detected. The above strategy
of A achieves the same utility as a harmless one and does not violate a Nash
equilibrium.
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5 Discussion

In this work, we introduce a game-theoretic security notion for broadcast pro-
tocols, which can be used in various cryptographic protocols such as multiparty
computation and blockchains. We have developed a constant-round broadcast
protocol against adversaries corrupting t out of n players for any t < n. Since
constructing constant-round protocols is impossible for malicious adversaries,
our protocol heavily relies on the rationality of timid adversaries who prefer
their actions to be undetected in protocol executions.

There are several interesting open problems. First, as discussed in Sec-
tion 4.2, our protocol may wrongly detect an honest player as a cheater for
t ≥ ⌊(n − 1)/2⌋ + 1. Possible future work is constructing a protocol without
such weakness or proving it is impossible. Another one is improving our protocol
with respect to round complexity and communication complexity. The worst-
case round complexity of our protocol is t+ 5, which depends on the number of
corrupted players. It may be interesting to incorporate randomized protocols ([1,
12, 48, 47]) instead of the Dolev-Strong protocol [17] for constructing protocols
with expected constant-round protocols for (worst-case) malicious adversaries.
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