The Pre-Shared Key Modes of HPKE

Joél Alwen', Jonas Janneck?®, Eike Kiltz?®, and Benjamin Lipp?

1 AWS-Wickr, Seattle, USA
alwenjo@amazon.com
2 Ruhr-Universitat Bochum, Germany
{jonas. janneck,eike.kiltz}@rub.de
3 Max Planck Institute for Security and Privacy, Bochum, Germany
benjamin.lipp@mpi-sp.org

October 17, 2023

Abstract. The Hybrid Public Key Encryption (HPKE) standard was recently
published as RFC 9180 by the Crypto Forum Research Group (CFRG) of the
Internet Research Task Force (IRTF). The RFC specifies an efficient public key
encryption scheme, combining asymmetric and symmetric cryptographic building
blocks.

Out of HPKE’s four modes, two have already been formally analyzed by Alwen et
al. (EUROCRYPT 2021). This work considers the remaining two modes: HPKEpsk
and HPKEauhpsk. Both of them are “pre-shared key” modes that assume the sender
and receiver hold a symmetric pre-shared key. We capture the schemes with two
new primitives which we call pre-shared key public-key encryption (pskPKE) and
pre-shared key authenticated public-key encryption (pskAPKE). We provide formal
security models for pskPKE and pskAPKE and prove (via general composition
theorems) that the two modes HPKEpsk and HPKEaunpsk offer active security (in
the sense of insider privacy and outsider authenticity) under the Gap Diffie-Hellman
assumption.

We furthermore explore possible post-quantum secure instantiations of the HPKE
standard and propose new solutions based on lattices and isogenies. Moreover, we
show how HPKE’s basic HPKEpsk and HPKEauthpsk modes can be used black-box in
a simple way to build actively secure post-quantum/classic-hybrid (authenticated)
encryption schemes. Our hybrid constructions provide a cheap and easy path
towards a practical post-quantum secure drop-in replacement for the basic HPKE
modes HPKEg.se and HPKEauth.

Keywords. Authenticated Public Key Encryption, Post-Quantum Hybrid, Open
Standards, HPKE

A preliminary version of this paper appears in the proceedings of the 29th International Conference
on the Theory and Application of Cryptology and Information Security (ASIACRYPT 2023).
This is the full version.

https://orcid.org/0000-0002-1385-3884
https://orcid.org/0000-0003-1178-048X
https://orcid.org/0000-0001-7827-5520
mailto:jonas.janneck@rub.de
mailto:jonas.janneck@rub.de
mailto:jonas.janneck@rub.de

Table of Contents

Introduction. 3
1.1 Our Contributionscou it e 4
Preliminaries 7
2.1 Notations e 7
2.2 (Authenticated) Key Encapsulation Mechanisms....................... 8
2.3 Authenticated Public Key Encryption............ 9
2.4 Pseudorandom Functions 11
2.5 Authenticated Encryption with Associated Data....................... 12
2.6 Digital Signatures 13
2.7 Non-Interactive Key Exchange 14
Pre-Shared Key (Authenticated) Encryption........... ..., .. 14
3.1 SYIBAX . oot 15
3.2 Privacy ... 18
3.3 Authenticity 19
HPKE’s constructions of a pskPKE and pskAPKE 19
4.1 Generic Constructionsttt e et e 19
4.2 Security of pskPKE and pskAPKE 20
4.3 The Security of HPKE’s PSK Modes.oo .. 22
4.4 Proof of Theorem 4. e e 22
Hybrid Post-Quantum APKE 26
Post-Quantum AKEM Constructions, 28
6.1 KEM-then-Sign-then-Hash........ 28
6.2 AKEM from NIKE e 29
Omitted Security Definition 32
A1 Active Security NIKEo o 32
Proofs for the pskPKE and pskAPKE constructions 32
B.1 Proofof Theorem 1... e 32
B.2 Proof of Theorem 2. et 38
B.3 Proof of Theorem 3. i e 42
Proofs for the Hybrid Post-Quantum APKE 44
C.1 Proof of Theorem 5. e e 44
C.2 Proof of Theorem 6. 48
Proof for the AKEM Constructionsc.uiinirirninenennenn... 52
D.1 Proof of Theorem 7. e 52
D.2 Proof of Theorem 8 e 54
D.3 Proof of Theorem 9. e e 55

D.4 Proof of Theorem 10 e 56

The Pre-Shared Key Modes of HPKE 3

1 Introduction

The Hybrid Public Key Encryption (HPKE) standard was published as RFC 9180 [4]
by the Crypto Forum Research Group (CFRG) of the Internet Research Task Force
(IRTF)* in February 2022. The RFC specifies an efficient public key encryption scheme,
combining asymmetric and symmetric cryptographic building blocks. While this an old
and relatively well understood paradigm, the new standard was developed in an effort to
address issues in previous standardizations of hybrid public key encryption. For example,
HPKE relies on modern cryptographic building blocks, provides test vectors to ease
development of interoperable implementations, and already received some cryptographic
analysis during its development, inspired by the “analysis-prior-to-deployment” design
philosophy adopted for the development of the TLS 1.3 protocol [20]. At the time of
development of HPKE, two IETF standardization efforts already started building upon it:
the Messaging Layer Security (MLS) protocol [3], and the Encrypted Client Hello privacy
extension of TLS 1.3 [21]. Since its publication, HPKE has also been adopted by other
higher-level protocols, like the published RFC 9230 Oblivious DNS over HTTPS [16], and
the Distributed Aggregation Protocol for Privacy Preserving Measurement [15], and thus,
has become an important building block of today’s and the future Internet.

The HPKE standard may appear to resemble a “public key encryption” approach,
aligning with the KEM/DEM paradigm [9]. Indeed, it incorporates a Key Encapsulation
Mechanism (KEM) and an Authenticated Encryption with Associated Data (AEAD),
functioning as a Data Encapsulation Mechanism (DEM) based on the KEM/DEM paradigm.
However, upon closer inspection HPKE turns out to be more complex than this perfunctory
description implies. First, HPKE actually consists of 2 different KEM/DEM constructions.
Moreover, each construction can also be instantiated with a pre-shared key (psk) known
to both sender and receiver, which is used in the key schedule KS to derive the DEM key.
In total this gives rise to 4 different modes for HPKE.

The basic mode HPKEg,s. makes use of a standard KEM to obtain a “message pri-
vacy and integrity” only mode. This mode can be extended to HPKEpsk to support
authentication of the sender via a psk. The remaining 2 HPKE modes make use of a
different KEM/DEM construction built from a rather non-standard KEM variant called
Authenticated KEM (AKEM) [1]. An AKEM can be thought of the KEM analogue of
signcryption [22]. In particular, sender and receiver both have their own public/private
keys. Each party requires their own private and the other party’s public key to perform
en/decryption. The AKEM-based HPKE modes also intend to authenticate the sender
to the receiver. Just as in the KEM-based case, the AKEM/DEM construction can be
instantiated in modes either without psk (HPKEauh) or with a psk (HPKEauhpsk). The
HPKE RFC constructs a KEM and an AKEM based on specific Diffie-Hellman groups (such
as P-256, P-384, P-521 NIST curves [19], Curve25519, or Curve448 [17]). Alwen, Blanchet,
Hauck, Kiltz, Lipp, and Riepel [1] have analyzed the security of the Diffie-Hellman AKEM
and showed that it can be securely combined with a key schedule KS and an AEAD
to obtain concrete security bounds for the HPKEau, modes, as defined in the HPKE
standard, see Table 1. Their work explicitly leaves analyzing the remaining two HPKE
modes HPKEpsk and HPKEauhpsk for future work.

4 https://irtf.org/cfrg

https://irtf.org/cfrg

4 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Table 1: HPKE modes and their security.

HPKE mode Authenticated? PSK? Primitive Security

HPKEgase - - PKE CCApke (folklore)
HPKEauth v - APKE [1] Insider-CCA & Outsider-Auth [1]
HPKEpsk - v pskPKE (§3) CCA & Auth (§4)
HPKEauthpsk Vv v pskAPKE (§3) Insider-CCA & Outsider-Auth (§4)

AppLICATIONS OF HPKE’s PSK MODES. One class of use cases for HPKE’s PSKs is a
sender to transferring security guarantees from external cryptographic applications to an
HPKE ciphertext. More concretely, a sender might want to transfer the post-quantum
security guarantees provided by a particular PSK source to a (maybe even only otherwise
classically secure) HPKE ciphertext. One such source might be PSKs distributed via an
include out-of-band method (e.g., in person) or PSKs agreed upon using a post-quantum
secure KEM (as demonstrated in Section 5).

In another example, HPKE’s PSKs can be used to transfer the strong authenticity
guarantees of an ongoing Messaging Layer Security (MLS) group containing both sender
and receiver to 1-on-1 messages between the two. MLS sessions include an HPKE (and
signature) public key for each party in the group known to all other group members. A
party’s signature public key is authenticated via an associated credential binding it to its
owner (e.g. an X.509 certificate issued by a CA). Each user also signs their own HPKE
public key to assert their ownership to rest of the group. To provide authenticity even
over many years, MLS must account for signatures and HPKE keys being corrupted mid
session. Rather than assuming the credentials for a corrupt signing key will be revoked,
MLS instead gives users the ability to update their keys periodically (or at will). To ensure
the old keys are no longer of any use, MLS also equips the group with a sequence of
shared symmetric group keys. Whenever a user updates their signature or HPKE key, a
new group key is produced in a way that ensures knowing the updating client’s old state
(including their signature and HPKE private keys) is insufficient to learn the new group
key. An MLS group including both parties A and B can now be used to provide strong
sender authentication for HPKEauhpsk ciphertexts (e.g. beyond the authenticity provided
by static credentials). Say, A wants to send a private message to B. On the one hand
A use their HPKE keys from the MLS session to encrypt and authenticate the message,
thereby inheriting the authenticity guarantees of the credentials in the MLS session. On
the other hand, A can also derive a psk off of the current MLS group key (e.g. using MLS’s
“exporter” functionality) for use with HPKEauhpsk. Intuitively, this provides the added
guarantee to B that the sender is also currently in the MLS session. The same method
using HPKEpsk in place of HPKEauhpsk gives B the guarantee that the sender is a current
member of the group.

1.1 Owur Contributions

So far, there has only been a formal analysis of the basic mode HPKEpg,s and the
authenticated mode HPKEau . In this work we focus on the HPKE standard in its
pre-shared key mode, both in its basic form HPKEpsk and in its authenticated mode

The Pre-Shared Key Modes of HPKE 5

HPKEauthpsk- Furthermore, we explore possible future post-quantum instantiations of the
HPKE standard. To this end we make the following contributions.

PRE-SHARED KEY (AUTHENTICATED) PUBLIC KEY ENCRYPTION. We begin, in Section 3,
by introducing pre-shared key public key encryption (pskPKE) and pre-shared key authenti-
cated public key encryption (pskAPKE) schemes, where the syntax of pskPKE matches that
of the single-shot basic pre-shared mode HPKEpsk, and the syntax of pskAPKE matches
that of the single-shot authenticated pre-shared mode HPKEauhpsk. Compared to their
respective non pre-shared modes PKE and APKE, encryption and decryption additionally
input psk, a uniform symmetric key shared between the sender and the receiver. In terms
of security, we define (active, multi-user) security notions capturing both authenticity
(Auth) and privacy (CCA) for pskPKE and pskAPKE.

For pskPKE, privacy is essentially standard CCA security for PKE with the difference
that the adversary additionally has access to an encryption oracle (which requires the
secret pre-shared key to compute the ciphertext) and it is allowed to adaptively corrupt
pre-shared (symmetric) keys and long-term (asymmetric) keys. Security holds as long as
at least one of the pre-shared and long-term keys used in the challenge ciphertext/forgery
has not been corrupted. Authenticity for pskPKE schemes provides the adversary with the
same oracles, and the adversary’s goal is to non-trivially forge a fresh ciphertext, i.e., one
that does not come from the encryption oracle.

Similar to APKE [1], for pskAPKE we consider so called weaker outsider and stronger
insider security variants for privacy, and only outsider security for authenticity. Intuitively,
outsider notions model settings where the adversary is an outside observer. Conversely,
insider notions model settings where the adversary is somehow directly involved; in
particular, even selecting some of the long-term asymmetric secrets used to produce
target ciphertexts. A bit more formally, we call an honestly generated asymmetric key
pair secure if the secret key was not (explicitly) leaked to the adversary and leaked if
it was. An asymmetric key pair is called corrupted if it was sampled arbitrarily by the
adversary. A scheme is outsider-secure if target ciphertexts are secure when produced using
secure key pairs. Meanwhile, insider security holds even if one secure and one corrupted
key pair are used. For example, insider privacy (Insider-CCA) for pskAPKE requires that
an encapsulated key remains indistinguishable from random despite the encapsulating
ciphertext being produced using corrupted sender keys (but secure receiver keys). Note
that insider authenticity implies (but is stronger than) Key Compromise Impersonation
(KCI) security as KCI security only requires authenticity for leaked (but not corrupt)
receiver keys.

We remark that, for simplicity, our modeling assumes the pre-shared key psk to
be uniformly random from some sufficiently large key-space. Indeed, The HPKE RFC
mandates the PSK have at least 32 bytes of entropy to counter Partitioning Oracle
Attacks [18] to which HPKE is vulnerable because it is currently only specified for AEAD
schemes that are not key-committing. Thus in practice, say, hashing such a PSK to a 32
byte string prior to use with HPKE would, at least in the random oracle model, result in
a near uniform distribution.

pskKEM/DEM CONSTRUCTION. In Section 4, we consider the pskKEM/DEM constructions
that combine a KEM (AKEM) together with an AEAD (acting as a DEM) to obtain pskPKE
(pskAPKE). First, we construct pskPKE[KEM, KS, AEAD] from a KEM, a key schedule KS,
and an AEAD. To encrypt a message, a KEM ciphertext/key pair (¢, K) is generated.

6 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Table 2: Security properties needed to prove Outsider-Auth and Insider-CCA security of
pskAPKE obtained by the pskAKEM/DEM construction.

AKEM AEAD
Outsider-Auth Outsider-CCA Insider-CCA INT-CTXT IND-CPA
Outsider-AuthpSkApKE X X X
Insider-CCApskApKE X X X

Next, the KEM key K is fed together with the pre-shared key psk into KS to obtain the
DEM key which in turn is used to AEAD-encrypt the message. At an intuitive level, the
DEM key remains uniform as long as one of K or psk is uniform, meaning one of the
receiver’s asymmetric key or the pre-shared key has not been corrupted. We will present
two concrete security theorems bootstrapping privacy and authenticity of our pskPKE
construction from standard security properties of the underlying KEM, KS, and AEAD.
Similarly, we can construct pskAPKE[AKEM, KS, AEAD] by replacing the KEM with an
AKEM in the first step of the construction above. We will again present two concrete
security theorems bootstrapping privacy and authenticity of our pskAPKE construction
from standard security properties of the underlying AKEM, KS, and AEAD. See also
Table 2.

AN ANALYSIS OF THE HPKEpsk AND HPKEauihpsk MODES. Using the above mentioned
transformations, the two modes HPKEpsk and HPKEauhpsk of the HPKE standard can
be obtained as pskPKE[DH-KEM, KS, AEAD] and pskAPKE[DH-AKEM, KS, AEAD]. Here
DH-KEM is the well known Diffie-Hellman based KEM, DH-AKEM is the Diffie-Hellman
based AKEM from [1], key schedule KS is constructed via the functions Extract and Expand
both instantiated with HMAC, and AEAD is instantiated using AES-GCM or ChaCha20-
Poly1305. Hence, our theorems from Section 4 provide concrete bounds for CCA and Auth
security of HPKEpsk, and Insider-CCA and Outsider-Auth security of HPKEauthpsk -

HyBRID APKE. In Section 5, we analyze a natural black-box construction of a hybrid
APKE from an AKEM and from HPKEauhpsk. Intuitively, the resulting scheme’s security
depends on either one of two AKEM schemes being secure. (We remark that essentially
same construction and analogous proof also construct hybrid PKE from a KEM and
HPKEpsk.) One interesting application of this construction is building a PQ/classic-hybrid
APKE which can be done by combining a PQ secure AKEM with a classically secure one
(in HPKEauthpsk). In comparison with the CPA secure PQ/classic-hybrid variant of HPKE
in [2] our construction enjoys CCA security. Moreover, unlike [2], our construction uses
both the PQ AKEM and HPKE as black-boxes meaning it can be easily implemented using
only the standard interfaces to the two schemes. For these reasons our hybrid construction
provides a cheap and easy path towards a practical PQ-secure (A)PKE drop-in replacement
for plain HPKE.

PosT-QuanTUM AKEM. As we have seen, AKEM schemes are the fundamental primitive
underlying natural APKE and pskAPKE schemes. The HPKE standard in its HPKEa,:, and
HPKEauthpsk modes relies on the Diffie-Hellman based DH-APKE instantiation. Unfortu-
nately, none of them offers security against attackers equipped with a quantum computer.

The Pre-Shared Key Modes of HPKE 7

In Section 6 we propose two generic constructions of AKEM from basic primitives that
can be instantiated in a post-quantum secure way.

A well-known approach for constructing a post-quantum AKEM is to combine a post-
quantum KEM with a post-quantum signature [10]. Unfortunately, the Encrypt-then-Sign
(EtS) approach turns out not to be Insider-CCA secure [10]. The Sign-then-Encrypt (StE)
approach is in fact Insider-CCA and Outsider-Auth secure but extending it to Sign-then-
KEM in a natural way would add unnecessary overhead through the required detour
over the KEM/DEM framework. Our first construction extends EtS approach to the new
“Encrypt-then-Sign-then-Hash” (EtStH) approach. It combines a KEM, a digital signature
SIG, and a hash function to obtain AKEM. Concretely, AKEM encryption produces a KEM
ciphertext /key pair (¢, K') and then uses the sender’s secret key to sign ciphertext ¢ and
the sender’s public and verification key. Finally, the DEM key is derived from K’, the
signature and all the public keys using a hash function. Security in the sense of Insider-
CCA and Outsider-Auth is proved under the assumption that the hash function is a PRF.
Our scheme can be instantiated, for example, with any post-quantum secure KEM and
signature scheme, for example Kyber [8] and Dilithium [11].

Our second AKEM construction relies on a non-interactive key-exchange scheme NIKE.
Key encapsulation first computes an ephemeral NIKE key pair and defines the ephemeral
public key as the ciphertext. Next, it derives the DEM key from the following two NIKE
keys: The first (authentication) key between sender’s secret key and the receiver’s public
key. The second (privacy) key between the ephemeral secret key and the receiver’s public
key. Note that the knowledge of the receiver’s secret key allows to recover both NIKE
keys and hence the DEM key. Security in the sense of Insider-CCA and Outsider-Auth is
proved assuming the NIKE to be actively secure [13]. Instantiating it with the (actively
secure) Diffie-Hellman NIKE [13], we obtain (a variant of) the DH-AKEM from the HPKE
standard. But it can also be instantiated with the post-quantum secure NIKE from lattices
[14] and from isogenies [12]. We remark that our NIKE approach provides deniability,
whereas our more efficient EtStH construction does not.

2 Preliminaries
2.1 Notations

SETS AND ALGORITHMS. We write h <* S to denote that the variable A is uniformly
sampled from the finite set S. For an integer n, we define [n] := {1,...,n}. The notation
[b], where b is a boolean statement, evaluates to 1 if the statement is true and 0 otherwise.

We use uppercase letters A, B to denote algorithms. Unless otherwise stated, algorithms
are probabilistic, and we write (y1,...) < A(z1,...) to denote that A returns (yi,...)
when run on input (z1,...). We write A® to denote that A has oracle access to B during
its execution. For a randomised algorithm A, we use the notation y € A(z) to denote that
y is a possible output of A on input x.

SECURITY GAMES. We use standard code-based security games [6]. A game G is a
probability experiment in which an adversary A interacts with an implicit challenger
that answers oracle queries issued by A. The game G has one main procedure and an
arbitrary amount of additional oracle procedures which describe how these oracle queries
are answered. We denote the (binary) output b of game G between a challenger and an

8 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

adversary A as GA = b. A is said to win G if G* = 1, or shortly G = 1. Unless otherwise
stated, the randomness in the probability term Pr[G* = 1] is over all the random coins in
game G.

We now recall definitions for (authenticated) KEMs (Section 2.2), authenticated
PKE schemes (Section 2.3), and digital signatures (Section 2.6). Standard definitions
of pseudo-random functions (Section 2.4), Authenticated Encryption with Associated
Data (Section 2.5), and non-interactive key exchange (Section 2.7) are postponed to the
appendix.

2.2 (Authenticated) Key Encapsulation Mechanisms
We first recall syntax and security of a KEM.
Definition 1 (KEM). A key encapsulation mechanism KEM consists of three algorithms:

— Gen outputs a key pair (sk, pk), where pk defines a key space K.

Encaps takes as input a (receiver) public key pk, and outputs an encapsulation ¢ and
a shared secret K € K (or L).

Deterministic Decaps takes as input a (receiver) secret key sk and an encapsulation c,
and outputs a shared key K € KC (or L).

We require that for all (sk, pk) € Gen,

Pr [Decaps(sk,c) = K| =1 .
(c,K)(iEncaps(pk)

To KEM we associate the two sets SK := {sk | (sk, pk) € Gen} and PK := {pk | (sk, pk) €
Gen}. We assume (w.l.o.g.) that there is a function pu : SK — PK such that for all
(sk, pk) € Gen it holds u(sk) = pk. We further define PK’ to be the set of all efficiently
recognizable public keys (by Encaps), i.e., PK' := {pk € {0,1}* | L & Encaps(pk)}. Note
that P/ C PK’ by correctness, but PX’ could potentially contain “benign looking” public
keys outside of PKC. We will also require a property of the KEM called n-key spreadness:

Vpk € PK' : Hyo(K | (¢, K) < Encaps(pk)) > 1,

where H,, denotes the min-entropy. This property will assure that an honestly generated
key K has sufficient min-entropy, even if it was generated using a pk outside PK.

Privacy in the sense of multi-user chosen-ciphertext security is defined via the game in
Listing 1. The advantage of an adversary A is defined as

n.qa.qc)- |
AV A i IPr{(n, 4. 0.)-CCA(A) = 1] = 5 |-

Next, we recall syntax and security of an authenticated KEM (AKEM) [1].

Definition 2 (AKEM). An authenticated key encapsulation mechanism AKEM consists
of three algorithms:

— Gen outputs a key pair (sk, pk), where pk defines a key space K.
— AuthEncap takes as input a (sender) secret key sk and a (receiver) public key pk, and
outputs an encapsulation ¢ and a shared secret K € IC (or L).

The Pre-Shared Key Modes of HPKE 9

Listing 1: Game (n, g4, ¢.)-CCA for KEM. Adversary .4 makes at most ¢; queries to
DEcAP, and at most g. queries to CHALL.

(n, qd, gc)-CCA Oracle DECAP(j € [n],¢)
01 for i € [n] 07 if 3K : (pkj, e, K) € €
02 (ski,pk;) < Gen 08 return K
03 £+ 0 09 K < Decaps(sk;,c)
04 b < {0,1} 10 return K
05 b & ADECAP,CHALL(pk17 o pkn)
06 return [b=1"b"] Oracle CHALL(j € [n])
11 (¢, K) < Encaps(pk;)
122ifb=1
13 K&K
14 £+ EU{(pkj,c,K)}
15 return (¢, K)

— Deterministic AuthDecap takes as input a (sender) public key pk, a (receiver) secret
key sk, and an encapsulation ¢, and outputs a shared key K € K (or L).

We require that for all (sk1,pk,) € Gen, (skz, pky) € Gen,

Pr [AuthDecap(pk,, ska,c) = K] =1 .
(c,K)(iAuthEncap(skl,pl%)

Sets SKC, PK, PK', function p, and 7-key spreadness are defined as in the the KEM
case.

Privacy (in the sense of insider and outsider CCA security) is defined via game Listing 2.
Oracles AENCAP and ADECAP can be called with arbitrary public keys pk € PK' O PK,
i.e., arbitrary strings that pass AKEM’s internal verification check. The insider setting
is modeled using the REPSK oracle which can be used by the adversary to corrupt a
sender’s secret key sk. (Here we can assume sk € SK since secret keys are usually seeds
and can be efficiently verified.)

Note that this security notion is equivalent to the one from [1]. In the outsider case,
the adversary cannot corrupt secret keys, i.e., rg = 0. The advantage is defined as

n Tk)-Insider- . 1
Adv iy e nstder CEA \Pr[(n, Ges 4a Ges T)Insider-CCA(A) = 1] - 3

)

(n,9e,9d,qc)-Outsider-CCA | (n,ge,94d,9¢,0)-Insider-CCA
AdVAAKEM AdVA,AKEM .

Authenticity is defined via the game in Listing 3.

(n,9e,q4)-Outsider-Auth
AdVA.,AKEM :

Pr{(n, ge, ga)-Outsider-Auth(A) = 1] — 5.

|

2.3 Authenticated Public Key Encryption
We recall syntax and security of an authenticated PKE (APKE) [1].

10 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Listing 2: Game (n, ge, 44, g, 7sk)-Insider-CCA for AKEM. Adversary A makes at most g
queries to AENCAP, at most gq queries to ADECAP, at most g. queries to CHALL, and at
most 7 queries to REPSK.

(n, e, qd, G, Tsk)-Insider-CCA Oracle CHALL(: € [n],j € [n])
01 for i € [n] 13 if j € I

02 (ski, pk;) <= Gen 14 return L

03 &, Ty + 0 15 (¢, K) < AuthEncap(ski, pk;)
04 b< {0,1} 16 ifb=1

05 b/ <i AAENCAP,ADRCAP,CHALL,REPSK (Pkp L 7pkn) 17 K <i K

06 return [b=1V] 18 &« EU{(pk;, pk;,c, K)}

19 return (c, K)
Oracle AENCAP(i € [n], pk € PK')
07 (c, K) & AuthEncap(ski, pk) Oracle REPSK(i € [n], sk € SK)
08 return (c, K) 20 (pk;, ski) < (u(sk), sk)

21 Ipx I U {i}

Oracle ADECAP(pk € PK',j € [n],c)
09 if 3K : (pk,pkj,c,K) € €

10 return K

11 K < AuthDecap(pk, sk;, c)

12 return K

Definition 3 (APKE). An authenticated public key encryption scheme APKE consists of
the following three algorithms:

— Gen outputs a key pair (sk, pk).

— AuthEnc takes as input a (sender) secret key sk, a (receiver) public key pk, a message
m, associated data aad, a bitstring info, and outputs a ciphertext c.

Deterministic AuthDec takes as input a (receiver) secret key sk, a (sender) public key
pk, a ciphertext c, associated data aad and a bitstring info, and outputs a message m.

We require that for all messages m € {0,1}*, aad € {0,1}*, info € {0,1}*,

¢ < AuthEnc(sks, pkg, m, aad, info),

br AuthDec(skg, pkg, ¢, aad, info) = m

$
(sks,pk’S)HGen

=1.

$
(akR,ka)<_Gen

Sets SIC, PK, PK', function p, and n-key spreadness are defined as in the the KEM case.

Privacy. We define the game (n, gc, g4, ¢.)-Insider-CCA in Listing 4, which is the strongest
privacy notion for APKE defined in [1].
The advantage of A is

n -Insider- . 1
Adv&,ff,’lgéq“) Insider-CCA . _ Pr[(n, ge, q4, qc)-Insider-CCA(A) = 1] — 3

The Pre-Shared Key Modes of HPKE 11

Listing 3: Game (n, ge, qq4)-Outsider-Auth for AKEM. Adversary .4 makes at most ¢.
queries to AENCAP, and at most gg queries to ADECAP.

(n, ge, qa)-Outsider-Auth Oracle AENCAP(i € [n], pk € PK')
01 for i € [n] 07 (¢, K) < AuthEncap(ski, pk)

02 (ski, pk;) < Gen 08 € + EU{(pk,, pk,c, K)}

03 £+ 0 09 return (¢, K)

04 b<&{0,1}

05 b & AMENCARADECAR () 0 k) Oracle ADEcAP(pk € PK',j € [n],¢)
06 return [b = V'] 10 if 3K : (pk, ;. c, K) € €

11 return K

12 K < AuthDecap(pk, sk;j, c)

13 if b=1Apk € {pky,...,pk,} NK # L
14 K&K

15 &+ EU{(pk,pk;,c, K)}

16 return K

AUTHENTICITY. Furthermore, in Listing 5 we recall the (n, ¢., ¢q4)-Outsider-Auth game
from [1]. The advantage of A is defined as

Adv%’g;’gé)'oumde“mth :=Pr[(n, ge, qq)-Outsider-Auth = 1].

Note that in contrast to the privacy case we use the weaker outsider notion instead of
the insider notion for authenticity. This is because [1] show that the HPKEa, construction
cannot fulfill insider authenticity for any possible instantiation. Since the same attack can
be run against HPKEpsk, we omit the definition here.

2.4 Pseudorandom Functions

A keyed function F' with a finite key space IC, input length n, and a finite output range R
is a function F': £ x {0,1}* — R.

Definition 4 (Multi-Instance Pseudorandom Function). The (ng, ¢pre)-PRF ad-
vantage of an adversary A against a keyed function F with finite key space IC, and finite
range R is defined as

Ady e PRE Pr o [AFCKL) s F (K)] _ Prf 4fiOreofn O]
’ Ky, K 45K

where f; + {0,1}* = R for i € [ng] are chosen uniformly at random from the set of
functions mapping to R and A makes at most qprg queries in total to the oracles F(K;, "),

fi resp.

Definition 5 (2-Keyed Function). A 2-keyed function F with finite key spaces K1
and Ko, and finite range R is a function

F:’C1X’C2X{0,1}*—)R.

12 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Listing 4: Game (n, ¢., ¢4, gc)-Insider-CCA for APKE in which adversary A makes at most
¢e queries to AENC, at most ¢4 queries to ADEC and at most ¢. queries to CHALL.

(n, e, qd, qc)-Insider-CCA Oracle ADEC(pk € PK',j € [n], ¢, aad, info)

01 for i € [n] 09 if (pk, pk;,c, aad, info) € €

02 (ski, pk;) < Gen 10 return L

03 E+ 0 11 m < AuthDec(pk, sk;, ¢, aad, info)

04 b<{0,1} 12 return m

05 b & AAEN(?,ADE(Z,CHALL(pk17 o ,pkn)

06 return [b=b'] Oracle CHALL(sk € SK, j € [n], mo, m1, aad, info)
13 if |mo| # |ma| return L

Oracle AENC(i € [n], pk € PK',m, aad, info) 14 ¢ < AuthEnc(sk, pk;, ms, aad, info)

07 ¢ <& AuthEnc(sk;, pk, m, aad, info) 16 & « EU{(u(sk), pk;, ¢, aad, info)}

08 return c 16 return c

Listing 5: Game (n, ¢, g4)-Outsider-Auth for APKE in which adversary A makes at most
¢e queries to AENC and at most ¢4 queries to ADEC.

(1, ge, ga)-Outsider-Auth Oracle AENC(i € [n], pk € PK', m, aad, info)
01 for i € [n] 06 c <& AuthEnc(sk;, pk, m, aad, info)
02 (ski, pk;) < Gen 07 & + EU{(pk;, pk, ¢, aad, info)}
03 E+ 0 08 return c
04 (i*,5%,c*, aad*, info*) <& AMNNCAPEC(pp L pk,)
05 return [(pk;«, pk;«,c”, aad”, info*) ¢ £ Oracle ADEC(pk € PK', j € [n], ¢, aad, info)
A AuthDec(pk;., sk« ¢, aad”, info") # 1] 09 m <« AuthDec(pk, sk;, c, aad, info)
10 return m

2.5 Authenticated Encryption with Associated Data
We recall standard syntax and security for AEAD schemes.

Definition 6 (AEAD). A nonce-based authenticated encryption scheme with associated
data and key space K' consists of the following two algorithms:

— Deterministic algorithm AEAD.Enc takes as input a key k € K', a message m, associ-
ated data aad, and a nonce and outputs a ciphertext c.

— Deterministic algorithm AEAD.Dec takes as input a key k € K', a ciphertext ¢, associ-
ated data aad and a nonce nonce and outputs a message m or the failure symbol 1.

We require that for all aad € {0,1}*,m € {0,1}*, nonce € {0, 1}Nnonce

I;r [AEAD.Dec(k, AEAD.Enc(k, m, aad, nonce), aad, nonce) = m] =1,
k<K

where Nponce @S the length of the nonce in bits.

We define the multi-instance security game (n, g4)-INT-CTXT in Listing 6 and (n, g4)-CCA
in Listing 7. Note that an AEAD scheme which is IND-CPA and INT-CTXT secure is also
CCA secure [5]. The advantage of an adversary A is

n:ga)-INT- 1
Adv AT T = | Pr((n, qa)-INT-CTXT(A) = 1] — 5|

") 1
AV itnp ™ = | Prl(n, 4a)-CCA(A) = 1] - o] .

The Pre-Shared Key Modes of HPKE 13

Listing 6: Game (n, qq)-INT-CTXT for AEAD. Adversary A makes at most one query per
index 7 to ENC and at most ¢ queries in total to DEC.

(n, qa)-INT-CTXT Oracle ENc(i € [n], m, aad)
01 for i € [n] 08 ¢+ AEAD.Enc(ki, m, aad, nonce;)
02 k&EK 09 &« EU{i,m,c,aad}
03 nonce; & {0,1}Vnonce 10 return (c, nonce;)
04 E+ 0
05 b< {0,1} Oracle DEC(i € [n], ¢, aad)
06 b/ (iAENC,DEC 11ifb=0
07 return [b=bt'] 12 m <+ AEAD.Dec(k;, ¢, aad, nonce;)
13 else if 3Im’ : (i,m’,c, aad) € €
14 m«m
15 else
16 m<+ L
17 return m

Listing 7: Game (n, gq)-CCA for AEAD. Adversary .4 makes at most one query per index
1 to ENC and at most g queries in total to DEC.

(n, ga)-CCA Oracle ENc(i € [n],mo, m1, aad)

01 for i € [n] 08 ¢ < AEAD.Enc(k;, ms, aad, nonce;)

02 k&K 09 &€+ EU{i,c aad}

03 nonce; <& {0,1}Nnonee 10 return (c, nonce;)

04 £+ 0

05 b<{0,1} Oracle DEC(i € [n], ¢, aad)

06 b & APNDPre 11 if (i,c,aad) € €

07 return [b=1V] 12 return |
13 m <+ AEAD.Dec(k;, ¢, aad, nonce;)
14 return m

2.6 Digital Signatures

Definition 7 (Signature Scheme). A signature scheme SIG = (Gen, Sign, Vfy) consists
of three algorithm:

— Key generation Gen generates a secret signing key sigk and a verification key vk.

— Signing Sign: On input a signing key sigk and a message m, outputs a signature o.

— Verification Vfy: On input a verification key vk, a message m, and a signature o,
deterministically outputs a bit b.

The signature scheme fulfills correctness if for all (sigk, vk) <* Gen it holds

Pr [Vfy(vk,m,o) =1] = 1.
a’(iSign(sk,m)

To SIG we associate the two sets SK := {sigk | (sigk,vk) € Gen} and VK := {vk |
(sigk,vk) € Gen}. We assume (w.l.o.g.) that there is a function u' : SK — VK such that
for all (sigk, vk) € Gen it holds u'(sigk) = vk.

Definition 8 (Strong Unforgeability). Let SIG = (Gen,Sign,Vfy) be a signature
scheme. We define multi-user strong unforgeability against a chosen message attack

14 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

(SUF-CMA) wia the (n,qs)-SUF-CMA game in Listing 8. The advantage of an adversary
A is Adv (&M = Pr[(n, ¢,)-SUF-CMA(A) = 1].

Listing 8: Game (n, ¢s)-SUF-CMA for SIG. Adversary .A makes at most ¢; queries to

SIGN.
(n, gs)-SUF-CMA Oracle SIGN(i € [n],m)
01 for i € [n] 06 o <& Sign(sigk,, m)
02 (sigk;, vk;) <& Gen 07 Q+ QU{(i,m,0)}
03 Q<10 ‘ 08 return o
04 (i*,m*, ") & AN (vky, ..., vky)
05 return [Vfy(vk;,m*,0") =1

A@",m”,0%) ¢ Q]

2.7 Non-Interactive Key Exchange

Definition 9 (Non-Interactive Key Exchange). A NIKE scheme consists of a setup,
two algorithms NIKE.KeyGen, NIKE.SharedKey and a shared key space SHI. The algorithms
are defined as follows:

— NIKE.KeyGen outputs a pair of public and secret key (sk, pk).
— NIKE.SharedKey takes a secret key sk and a public key pk and outputs either a shared
key in SHIC or the failure symbol L.

The NIKE fulfills correctness if for all (sk1, pky) <= NIKE.KeyGen, (skq, pks) <= NIKE.KeyGen,
it holds
NIKE.SharedKey(sk1, pky) = NIKE.SharedKey(sks, pky).

Sets SIC, PK, PK’, and function i are defined as in the the KEM case. We define the
entropy of the public key as

Puike = max Pr[pk = pk’ | (sk', pk") < NIKE.KeyGen].
P

Note that this statistical property can be upper bounded by the passive security of NIKE.
The security definition for actively secure NIKE can be found in Appendix A.1.

3 Pre-Shared Key (Authenticated) Encryption

In this section, we define syntax and security of pre-shared key public key encryption
(pskPKE) and pre-shared key authenticated public key encryption (pskAPKE). The former
is an extension of common public key encryption with an additional pre-shared symmetric
key that has already been shared between the parties. The latter is an analogue exten-
sion of authenticated public key encryption (APKE). The pre-shared key (psk) has two
functionalities. First, it provides an additional layer of privacy since the security does
not have to rely on the asymmetric key only. Second, it also provides authenticity. The

The Pre-Shared Key Modes of HPKE 15

intuition behind security is that even if one of the two keys, either the asymmetric key or
the (symmetric) pre-shared key, is corrupted or in any other way insecure, the scheme
should still guarantee security.

We start with defining the syntax of pskPKE and pskAPKE in Section 3.1 and then
define the security model for privacy (Section 3.2) and authenticity (Section 3.3).

3.1 Syntax

Definition 10 (pskPKE). A pre-shared key public key encryption scheme pskPKE consists
of the following four algorithms:

GenSK outputs a key pair (sk, pk).

GenPSK outputs a pre-shared key psk.

— pskEnc takes as input a (receiver) public key pk, a pre-shared key psk, a message m,
associated data aad, a bitstring info, and outputs a ciphertext c.

— Deterministic pskDec takes as input a (receiver) secret key sk, a pre-shared key psk, a

ciphertext ¢, associated data aad and a bitstring info, and outputs a message m.

We require that for all messages m € {0,1}*, aad € {0,1}*, info € {0,1}*,

¢ + pskEnc(pk, psk, m, aad, info),

pskDec(sk, psk, ¢, aad, info) = m =1

Pr

$
(sk, pk) €—GenSK

$
psk€$—GenPSK

Definition 11 (pskAPKE). A pre-shared key Authenticated public key encryption scheme
pskAPKE consists of the following four algorithms:

— GenSK outputs a key pair (sk, pk).

— GenPSK outputs a pre-shared key psk.

— pskAEnc takes as input a (sender) secret key sk, a (receiver) public key pk, a pre-shared
key psk, a message m, associated data aad, a bitstring info, and outputs a ciphertext
c.

— Deterministic pskADec takes as input a (sender) public key pk, a (receiver) secret key
sk, a pre-shared key psk, a ciphertext c, associated data aad and a bitstring info, and
outputs a message m.

We require that for all messages m € {0,1}*, aad € {0,1}*, info € {0,1}*,

¢ « pskAEnc(sks, pk g, psk, m, aad, info),

pskADec(pkg, skr, psk, ¢, aad, info) = m =1

Pr
(skg ,ka)&GenSK
(skR,ka)éGenSK

p.ek,<icen PSK

Sets SK, PK, PK’, and function u are defined as in the the KEM case.

16 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Listing 9: Game (1, ¢e, ¢d; gc, T'pk> Tpsk)-CCA for pskPKE. Adversary A makes at most g
queries to ENC, at most gq queries to DEC, at most g. queries to CHALL, at most 7
queries to REPPK, and at most 7, queries to REPPSK.

(1, Ge, qd, Ges Tk, Tpsk)-CCA Oracle CHALL(% € [n],j € [n], mo, m1, aad, info)
01 for i € [n] 16 if [mo| # |ma| V (j € T A (i,5) € Tpsx)
02 (sks,pk;) < Gen 17 return L

03 for j € [i] 18 ¢ <& pskEnc(pk;, psk,;, my, aad, info)

04 psk,; & GenPSK 19 & « EU{(pk;, psk,;, c, aad, info)}

05 psk;; < psk;; 20 return c

06 E,Fpk,Fpsk < @

07 b {0,1} Oracle REPPK(j € [n], pk € PK')

08 b/ (i AENC,DEC,CHALL,REPPK,REPPSK(pkl7 o ,pkn) 21 (Skj, pkj) - (J_, pk)

09 return [b=1V'] 22 Ipx + T U {j}

Oracle ENc(i € [n],j € [n],m, aad, info) Oracle REPPSK (i € [n],j € [n], psk)

10 ¢ ¢ pskEnc(pk;, psk,;, m, aad, info) 23 psk;; < psk

11 return c 24 psk;; < psk

25 FP5k A FPSk U {(7‘7])5 (‘777‘)}
Oracle DEC(i € [n],j € [n], ¢, aad, info)
12 if sk; = LV (pk;, psk,;, ¢, aad, info) € €
13 return L
14 m < pskDec(sk;, psk
156 return m

i3

155 C> aad, info)

Listing 10: Game (1, ¢e, ¢d; Gc, T'pks Tsks Tpsk)-Insider-CCA for pskAPKE. Adversary A makes
at most ¢. queries to ENC at most g4 queries to DEC, at most ¢. queries to CHALL, at
most 7,1 queries to REPPK, at most ry, queries to REPSK, and at most r,,, queries to

REPPSK.

(1 Qe qd, Ge, T'pk, T'sks Tpsk)-Insider-CCA Oracle CHALL(Z € [n],j € [n], mo, m1, aad, info)
01 for i € [n] 18 if |mo| # |m1|Vski = LV(j € TwA(2,5) € Tpsk)
02 (ski, pk;) < Gen 19 return L
03 for j € [i] 20 ¢ <& pskAEnc(sks, pk;, psk,;, my, aad, info)
04 psk;; <& GenPSK 21 € « EU{(pk;, pk;, psk;;, c, aad, info)}
05 pskﬂ — pSkij 22 return c
06 E,Fc,Fpk,Fpsk «— 0
07 b {0,1} Oracle REPPK(j € [n], pk € PK')
ENC,DEC, CHALL,REPPK, REPSK, REPPSK
08 b/ & A NC EC /HA][EP. EP EP. (pkl’ . ’pk‘,L) 23 (Sk],pk]) — (L’ pk)
09 return [b=1V'] 24 I+ I U{j}
Oracle ENc(i € [n],j € [n], m, aad, info) Oracle REPSK(j € [n], sk € SK)
10 if ski = L 25 (skj, pk;) < (sk, u(sk))
11 return L 26 Ipx <+ I U {5}
12 ¢ <& pskAEnc(sk;, pk;, psk,;, m, aad, info)
13 return c Oracle REPPSK (i € [n], j € [{], psk)
27 psk;; < psk
Oracle Drc(i € [n].j € [n].c. aad, info) 28 psk. psk

14 if sk; = LV (pk, psk,;, ¢, aad, info) € € 29 Tpex + Ipsx U{(3,7), (4,%)}
15 return L

16 m < pskADec(pk,, sk;, psk
17 return m

i+ C> aad, info)

The Pre-Shared Key Modes of HPKE 17

Listing 11: Game (n, ge, ga, "pk, Tpsk)-Auth for pskPKE. Adversary A makes at at most g,
queries to ENC, at most gq queries to DEC, at most 7, queries to REPPK, and at most

Tpsk queries to REPPSK.

(1, Ges qd, T'pk, Tpsk)-Auth
01 for ¢ € [n]

02 (ski, pk;) < Gen
03 for j € [i]

04 psk,; < GenPSK
05 psk;; < psk;;

06 &, ITpsk 0

08 return [(¢*,j%) & Ipesx A skj= # L
N (pkju, Pk, €*, aad”, info™) ¢ €
A pskDec(sk;=, psk c*, aad”,info*) # 1]

i*j*

Oracle ENc(i € [n], j € [n], m, aad, info)

09 ¢ <& pskEnc(pk;, psk
10 € + £ U {(pk;, psk
11 return c

14 ™M, aad, info)
¢, aad, info)}

150

07 (i*,j*, 0*7 aad*, ano*) & AF)NC,DF:C,RRPPK,REPPSK(pk

1 apkn)

Oracle DEC(i € [n], j € [n], ¢, aad, info)
12 if sk; = L

13 return L

14 m <+ pskDec(sk;, psk
15 return m

15> C> aad, info)

Oracle REPPK(j € [n], pk € PK')
16 (skj, pk;) < (L, pk)

Oracle REPPSK(i € [n], j € [n], psk)
17 psk;; < psk

18 psk;; < psk

19 Tpsx = Ips U{(4,7), (4, 1)}

Listing 12: Game (n, ge, 94, Tpk, Tpsk)-Outsider-Auth for pskAPKE. Adversary A makes at
most g. queries to ENC, at most ¢4 queries to DEC, at most 7,;, queries to REPPK, and

at most rp,; queries to REPPSK.

(N, Ge, Qa, Tpk, Tpsk)-Outsider-Auth
01 for i € [n]

02 (sks,pk;) < Gen

03 for j € [i]

04 psk;; < GenPSK

05 psk;; < psk,;

06 &, Ipx, [psx < 0

07 (i*,j*, C*, aad*, l'7Lf0*) & AEN(‘,,DE(‘,,RF}PPK,RBPPSK(pk_l7 .

08 return [(¢* ¢ It V (%,5") & Ipsx) A skj= # L

A (Pkyx, Phjo s Pk ju, €, aad”, info*) & €

A pskADec(pk;+ , skjx, psk,« j«, ¢, aad”, info™) # 1]
Oracle ENc(i € [n],j € [n], m, aad, info)
09 if sk; = L
10 return L
11 ¢ <& pskAEnc(sks, pk;, psk;;, m, aad, info)
12 € « E U {(pk;, pk;, psk;;, ¢, aad, info)}
13 return c

iy

- pky)

Oracle DEC(i € [n], j € [n], ¢, aad, info)

14 if skj = L

15 return L

16 m < pskADec(pk;, sk, psk,;, ¢, aad, info)
17 return m

Oracle REPPK (i € [n], pk € PK')

18 (ski, pk;) < (L, pk)
19 Ik < I U {i}

Oracle REPPSK(i € [n], j € [n], psk)

20 psk;; < psk
21 psk;; < psk
22 Tpax = oo U{(3,), (4, D)}

18 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

3.2 Privacy

Privacy is defined via the games in Listing 9 (pskPKE) and Listing 10 (pskAPKE). The
idea is based on the standard CCA definition for PKE with the following modifications.

For the game in Listing 9, the adversary is provided with an encryption oracle ENC
since, in contrast to standard PKE, encryption requires the knowledge of the corresponding
pre-shared key. We further strengthen the security model by allowing corrupted keys. This
is modeled by two oracles, REPPK and REPPSK. Oracle REPPK models the corruption
of an asymmetric key pair, where the adversary is allowed to replace the public key of
a user with pk € PK’ (with or without knowing the matching private key). Since the
game is not able to decrypt queries to a corrupted receiver’s key anymore, we return L on
such queries. To keep track of corrupted keys, the game maintains a set I7x containing
all corrupted indices j. Similarly, oracle REPPSK models the corruption of a pre-shared
key between two chosen users. Set Ipsx keeps track of sender and receiver pairs for which
the corresponding psk was corrupted. Provided with the additional oracles, it should still
be hard to guess the challenge bit, i.e., which of the two messages given to the challenge
oracle was encrypted. To avoid trivial wins, we disallow the challenge oracle to be queried
on pairs of users for which both the receiver’s key as well as the pre-shared key were
corrupted. However, the challenge query is allowed if at most one of them is corrupted.
(Note that in particular the adversary is still allowed to issue challenge queries for a
corrupted psk.) In that sense we model an “insider setting”. An insider notion for pskPKE
cannot be formulated stronger because it does not make any sense to allow corrupted
senders in the sense of a corrupted sk since it is not used for encryption.> The advantage
of adversary A is

1desqd>qeTpks>Tpsk)~ CCA 1
Adv-(/ZF;ISkgig o) = Pr[(”?QE) qd7QC7rpk>rpSk)'CCA(A) = 1] o 5 .

The definition of CCA security for pskAPKE (Listing 10) works similar with the following
changes. The main difference compared to pskPKE is that the asymmetric part of the
encryption is authenticated which means that the sender’s secret key is also involved. To
take attacks into account which could make use of corrupted senders, we make the following
modification. The game provides another oracle REPSK which allows the adversary to
replace an asymmetric secret key directly, which means they are also allowed to query
all the other oracles on corrupted sender keys. This is exactly what is called the “Insider”
setting in [1] and signcryption [10]. This means in particular that the encryption of two
different messages is indistinguishable even if the sender’s asymmetric key was adversarially
chosen. As in the case of pskPKE, the psk can also be corrupted in the sense of an insider
attack, i.e., the sender is corrupted. However, due to the symmetric nature of the pre-shared
key, this implies a security loss for the receiver as well and we have to exclude trivial wins
in the same way as for pskPKE. Therefore, the same security requirement as for pskPKE
holds, i.e., in addition to the corruption of a sender’s secret key either a receiver’s key
or the pre-shared key can be corrupted and security still holds. We also define outsider
security as the simplified setting, where the adversary does not have access to the REPSK

5 To prevent confusion we do explicitly call this notion insider secure and only use the term
“insider” if it is possible to the (asymmetric) secret key of a sender. See also the security
definition of the pskAPKE.

The Pre-Shared Key Modes of HPKE 19

oracle, i.e., rpr, = 0. The advantage of adversary A is
(M,Ge9d e T pksT sk Tpsk)-Insider-CCA
AdV 4 skAPKE
1

= |Pr[(n, ge, 94, Ges Tpk, T'sk, Tpsk)-Insider-CCA(A) = 1] — 3|

(n,qe,qd,dc Tpk>Tpsk)-Outsider-CCA | (,qe ,qd e Tpks0,psk)-Insider-CCA
Adv pskAPKE = AdVA,pskAPKE .

3.3 Authenticity

Authenticity is defined via the games in Listing 11 (pskPKE) and Listing 12 (pskAPKE).
For the game in Listing 11, the goal is to forge a fresh ciphertext, i.e., one that was not
output by the encryption oracle and that does not decrypt to L. Further, we do not allow
corrupted receiver keys for the challenge, i.e. sk;« # L, since the decryption would not
be possible anymore. As in the privacy case, we model corrupted keys via oracle REPPK
which allows the adversary to replace an asymmetric key and oracle REPPSK which
allows to replace a pre-shared key. Due to the structure of a pskPKE, authenticity cannot
rely on the asymmetric keys since the sender needs no secret material for the encryption.
Hence, authenticity can only be achieved via the pre-shared key. To avoid trivial wins,
the game excludes forgeries for which the corresponding pre-shared key was corrupted,
i.e., replaced via oracle REPPSK. This means, an adversary wins if they can forge a new
valid ciphertext for which the pre-shared key was not corrupted given encryption and
decryption oracles as well corruption oracles for both the keys. The advantage of adversary

A is
Advfzgsekvgtégpk77'psk')-AUth = Pr{(n, ge, qd, Tpks Tpsk)-Auth(A) = 1].

For the Auth security of a pskAPKE (Listing 12) there is only a slight modification.
Encryption pskAEnc also inputs the asymmetric sender’s secret key, which is why the
authenticity can now also rely on the sender’s asymmetric key and not only on the pre-
shared key. In the game, this is used for a stronger notion which considers corruptions of
the sender’s key and corruptions of the pre-shared key. The adversary’s forgery is accepted
if at most one of the keys was corrupted. This means, it should be hard to forge a fresh
ciphertext even if the sender’s key or the pre-shared key were corrupted but not both. The
advantage of adversary A is

N,Ge,qd,Tpk>Tpsk)-Outsider-Auth .
AdvE47pskA‘|§KE" k) := Pr[(n, ge, qa, T'pk, Tpsk)-Outsider-Auth(A) = 1].

One could also define Insider-Auth security for pskAPKE by allowing the adversary to
choose the secret key of the receiver of a forgery (and adjust the non-triviality condition
accordingly). Since we do not use Insider-Auth for pskAPKE in the following, we omit the
formal definition.

4 HPKE’s constructions of a pskPKE and pskAPKE

4.1 Generic Constructions

We construct a pskPKE and a pskAPKE from an (authenticated) key encapsulation mecha-
nism KEM (AKEM), a 2-keyed function KS (where KS; denotes KS keyed in the first input

20 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

and KS, keyed in the second input), and a nonce-based authenticated encryption with
additional data scheme AEAD. More concretely, that is pskPKE[KEM, KS, AEAD] where
pskPKE.GenSK = KEM.Gen, and the pre-shared key generation pskPKE.GenPSK samples
a uniformly random element from the appropriate key space. Encryption and decryption
are defined in Listing 13 and Listing 14, respectively.

Listing 13: Encryption and decryption functions of the pre-shared-key PKE scheme
pskPKE[KEM, KS, AEAD], built from KEM, KS, and AEAD.

pskEnc(pk, psk, m, aad, info)
01 (e1, K) <& Encaps(pk)
2 (k, nonce) < KS(K, psk, info)

pskDec(sk, psk, (c1, c2), aad, info)

05 K < Decaps(sk,c1)
6 (k,nonce) < KS(K, psk, info)

03 ¢z < AEAD.Enc(k, m, aad, nonce)
04 return (ci,c2)

07 m < AEAD.Dec(k, c2, aad, nonce)
08 return m

Listing 14: Encryption and decryption function of the pre-shared-key APKE scheme
pskAPKE[AKEM, KS, AEAD], built from AKEM, KS, and AEAD.

pskAEnc(sk, pk, psk, m, aad, info)
01 (e1, K) <& AuthEncap(sk, pk)
2 (k, nonce) < KS(K, psk, info)
03 ¢z < AEAD.Enc(k, m, aad, nonce)
04 return (ci,c2)

pskADec(pk, sk, psk, (c1, c2), aad, info)
05 K <« AuthDecap(pk, sk, c1)

6 (k, nonce) < KS(K, psk, info)
07 m < AEAD.Dec(k, c2, aad, nonce)
08 return m

4.2 Security of pskPKE and pskAPKE

The following Theorems 14 state privacy and authenticity of our constructions pskPKE[
KEM, KS, AEAD] and pskAPKE[AKEM, KS, AEAD)].

Theorem 1 (KEM CCA + KS; PRF + KSy; PRF + AEAD CCA = pskPKE CCA).
For any (n, ge, qd, e, Tpk, Tpsk)-CCA adversary A against pskPKE[KEM, KS, AEAD], there
exists an (n, qq, q.)-CCA adversary B against KEM, a (q., qq + q.)-PRF adversay C1 against
KS1, a (ge + 94 + qc, qe + qa + q.)-PRF adversay Co against KSa, and a (ge + gc, qq)-CCA
adversary D against AEAD such that

(n,9e,qd,qc,T pkarpak) CCA (nan7QC) CCA (Qde"I‘q:,) PRF
Adv .A ,pskPKE[KEM,KS,AEAD] <Ad + Adv C1,KSy

(ge+9a+qc,qe+qa+4qc)-PRF (ge+gc,q4)-CCA
+ Adve, ks : ! + AdVp AeaD !
Qe + qC + qeqC
+ 7277 .

Proof (Sketch). To prove CCA security for the pskPKE, we use CCA security of the
underlying KEM to replace the KEM keys with uniformly random values. Together with a
uniformly random psk, they can be used as PRF keys. Depending on the challenge query
and which keys were corrupted, we can use either the PRF property when keyed on the

The Pre-Shared Key Modes of HPKE 21

first (KS;) or the second input (KSz). For the second input we also need the KEM key
to have enough entropy to avoid collisions. This yields random symmetric keys and the
theorem follows by the CCA of AEAD. The full proof can be found in Appendix B.1. O

Theorem 2 (AKEM Insider-CCA + KS; PRF + KSs PRF 4+ AEAD CCA = pskAPKE
Insider-CCA). For any (1, qe, 9d, de, Tpk, Tsks Tpsk)-Insider-CCA adversary A against the
scheme pskAPKE[AKEM, KS, AEAD], there exists an (n, qe,qd, qc, sk)-Insider-CCA adver-
sary B against AKEM, a (qc, qa + q.)-PRF adversay Ci against KS1, a (ge + g4 + qc, ¢e +
qd + qc)-PRF adversay Co against KSs, and a (ge + g, q4)-CCA adversary D against AEAD
such that

(M,4e+9d qe > pk>TsksTpsk)-Insider-CCA (n,9e,9d,qc,7sk)-Insider-CCA (g¢,94+49c)-PRF
AdV_A,pskAPKE[AKEM,KS,AEAD] SAdVB,AKEl\/I + Achl,Ksl

(¢e+9d+4qc,qe+qa+qc)-PRF
+ AdVC%KSz

2, 2
+ Advgf&‘i\cb‘l‘l)‘cc‘\ + W

Proof (Sketch). Since we want to achieve Insider-CCA security for the pskAPKE, we have
to simulate the REPSK oracle which can be done by reducing to an Insider-CCA secure
AKEM. The remaining part of the proof is essentially the same as for Theorem 1. The full
proof can be found in Appendix B.2. ad

Theorem 3 (KEM CCA + KS; PRF + KS; PRF 4+ AEAD INT-CTXT = pskPKE Auth).
For any (n, Ge, qd, "pk, Tpsk)-Auth adversary A against the scheme pskPKE[KEM, KS, AEAD],
there exists a (n, g4, ge)-CCA adversary B against KEM, a (ge, g.)-PRF adversary Cy against
KS1, a (q4,q4)-PRF adversary Co against KSa, and a (2qe + qq + 1,94 + 1)-INT-CTXT
adversary D against AEAD such that

(1,9e,qd,TpksTpsk)-Auth (n,q4,9e)-CCA (ge,qe)-PRF (qa,94)-PRF
AdV 4 L PKEKEM,Ks,AEAD] = AV KEM + Adve ks + Adve, ks,

ZINT- -1
+ Advg,qug‘AqS'*‘quH) INT-CTXT qe<qe_|;Cq|d)

Proof (Sketch). We use the CCA security of KEM to ensure that the key K fed into KSq
is uniform random such that, with high probability, there are no key collisions. Together
with the pre-shared key, at least one of the inputs is uniformly random and the PRF
property of KS yields a random output. Then, this output can be used for the AEAD such
that decryption queries (with respect to an honest psk) can be rejected. The full proof
can be found in Appendix B.3. ad

Theorem 4 (AKEM Outsider-CCA + AKEM Outsider-Auth + KS; PRF + KSs PRF +
AEAD INT-CTXT = pskAPKE Outsider-Auth). For any (n, ge, g4, "pk, Tpsk)-Outsider-Auth
adversary A against the scheme pskAPKE[AKEM, KS, AEAD], there exists an (n, 0, g4, q.)-CCA
adversary B against AKEM, a (ge+qd, ge +q4)-PRF adversay C1 against KS1, a (qe+qa, g+
q4)-PRF adversay Co against KSa, and a (2¢e + g4 + 1,q4 + 1)-INT-CTXT adversary D

22 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

against AEAD such that

(7,9e,qd,Tpk,Tpsk)-Outsider-Auth (n,qe,94d,qe)-Outsider-CCA
AdV 4 APKE[AKEM kS AEAD] <AdV aKEm

(n,ge,q4)-Outsider-Auth
+ AdVB2,AKEM

(ge+qa,qe+qa)-PRF (44,q4)-PRF
+ AdehKsl + AdVCQ,ng

-INT- -1
n AdvgflAcErAqlg+1,Qd+1) INT-CTXT qe(qe—{;cq|d)

Proof (Sketch). To achieve Outsider-Auth security for pskAPKE, we need to first use
Outsider-CCA security and Outsider-Auth security of AKEM to replace the KEM secret in
encryption and decryption by random values. Together with the pre-shared keys they can
be used as inputs to KS where, depending on the query, either the KEM shared secret or
the psk act as the PRF key. Next, the PRF output can be used to construct an adversary
against INT-CTXT security of AEAD. The full proof can be found in Section 4.4. a

4.3 The Security of HPKE’s PSK Modes

The HPKE standard’s specification of the HPKEpsk mode corresponds to the construction
pskPKE[KEM, KS, AEAD] (Listing 13), and the one of the HPKEauhpsk mode to the
construction pskAPKE[AKEM, KS, AEAD] (Listing 14) with one exception. The HPKE
standard explicitly defines an identifier for each psk, the psk_id, and the actual key
schedule function takes it as an additional parameter alongside the KEM key K, the psk,
and the info bitstring that we consider in our model. For simplicity, we abstract away the
psk__id and consider it to be encoded as part of info, as both are simply hashed into the
context of the key derivation. HPKE uses the following specific components:

— KEM is the standard Diffie-Hellman DH-KEM which fulfills CCA security assuming
the Gap Diffie-Hellman assumption.

— AKEM is the Diffie-Hellman DH-AKEM from [1] which is proved Insider-CCA and
Outsider-Auth-secure assuming the Gap Diffie-Hellman assumption.

— The key schedule KS is constructed via the functions Extract and Expand both instan-
tiated with HMAC [1, Section 6.2]. If we assume HMAC to be a PRF when keyed on
either of the inputs, the assumptions for KS hold as well.

— AEAD is instantiated using AES-GCM or ChaCha20-Poly1305, which are shown to
fulfill IND-CPA and INT-CTXT security [7] and thus also IND-CCA security.

Thus, applying the composition theorems from the last section, we achieve CCA and
Auth security for HPKEpsk, and Insider-CCA and Outsider-Auth security for HPKEauthpsk-

4.4 Proof of Theorem 4

Proof. We describe several games depicted in Listing 15.

Game Gg. This is the (n,ge, ga, 7pk, pst)-Outsider-Auth game for psk APKE[AKEM, KS,
AEAD], thus we have

Pr[Go = 1] = Pr[(n, ge, qd, 7pks Tpsk:)-Outsider-Auth(A) = 1].

The Pre-Shared Key Modes of HPKE 23

Listing 15: Games Gy — Gg for the proof of Theorem 4.

Go — Gs Oracle DEC(i € [n],j € [n], (c1, ¢2), aad, info)
01 for i € [n] 26 if sk; = L
02 (ski,pk;) <& GenSK 27 return L
03 for je[i 28 K < AuthDecap(pk;, sk;,c1)
04 psk; & Kpak 29 if 3K' : (pk;, pkj,c1, K') € € /G2 — Gs
05 psk;; psk;; 30 K+ K’ /G2 — Gs
06 E,&", I, Tpex, A 0 31 (k,nonce) < KS(K, psk;j, info) //Ge — Gs
07 (i, 5%, (ci,cb), aad*, info*) & APNCDECROPPRREPSK (pp © 0 pk) 32 else if i ¢ [AK # L //Gs — Gs
08 return [(i* ¢ I V (1%, %) & Ipsk) A skj= # L 33 K&K //Gs — Gs
A (ki Pk jo, pSku o, (€1, €3), aad”, info™) ¢ € 34 feéu{(pkl,pk(,,m,K)} //Gs — Gs
N pskADec(pk;«, sk, psku ., (ci, ¢3), aad”, info™) # L] 35 (k,nonce) & K' x {0,1}Nnonee //Ge — Gs

36 else //Ge — Gs
Oracle ENc(i € [n], j € [n],m, aad, info) 37 (k,nonce) < KS(K, psk,, info) //Ge — Gs
09 if sk; = L 38 (k, nonce) « KS(K, psk,;, info) /Go — Gs
10 return L 39 if i ¢ T V (i, 7) ¢ Tpex //G1 — Gs
11 (e, K) < AuthEncap(ski, pk;) 40 if 3k, nonce’ : (kK', nonce',i, j, K, psk;;, info) € A /G — Gs
12 (k, nonce) < KS(K, psk,, info) 41 (k, nonce) «+ (k', nonce’) //G1 — Gs
13 if j ¢ I /G2 —Gs 42 elseif i€ I //G7 — Gs
14 K&K /G2 —Gg 43 (k, nonce) <& K' x {0, 1}Nnonce //Gr — Gs
15 £+« £&U {(pk, pkj, e1, K)} /G2 —Gs 44 m « AEAD.Dec(k, c2, aad, nonce) //G1 — Gg
16 (k, nonce) + KS(K, psk,;, info) /G2 —Gs 45 m <« L //Gs
17 if 3K, nonce’ : (K', nonce', 4, j, K, psk,;, info) € A /G1—Gs 46 if 3Im': (k,nonce,m’, (c1,c2), aad) € &' //Gs
18 abort /Gs — Gs 47 m < m’ //Gs
19 (k, nonce) « (k', nonce’) /G1—Gs 48 else
20 (k,nonce) & K x {0,1}Nnonce /Ga—Gs 49 m < AEAD.Dec(k, cz, aad, nonce) //G1 — Gs
21 A« AU{(k, nonce, i, j, K, psk;;, info) } /G1—Gs 50 m < AEAD.Dec(k, c2, aad, nonce) /Go — Gy
22 ¢z < AEAD.Enc(k, m, aad, nonce) 51 A« AU {(k, nonce, i, j, K, psk;;, info) } //G1 — Gs
23 € < EU{(pk;, pk;, psk;, (c1, c2), aad, info)} 52 return m
24 & « & U {(k,nonce,m, (c1,c2), aad)} //Gs
25 return (ci, c2) Oracle REPPK(i € [n], pk)

53 (ski, pk;) < (L, pk)

54 Iy < I'w U {i}

Oracle REPPSK(i € [n],] € [n], psk)

55 psk;; < psk

56 psk;; < psk

57 Tpsx ¢ Tpsx U {(4,7), (5,9)}

Game Gy. We insert a set A to log the outputs of KS to use the stored outputs if KS is
queried on the same parameters again. This is only done for encryption oracle queries for
which the receiver’s key was not replaced, i.e. j ¢ I (checked in Line 13), as well as for
decryption queries for which not both the sender’s key and the psk were replaced, i.e. for
queries on indices ¢ ¢ I V (4,7) ¢ Ipsk (checked in Line 39). Since the change is only
conceptual, we have

PI‘[GO = 1] = PI‘[Gl = 1}

Game Gg. If the corresponding receiver key has not been corrupted via REPPK, i.e.
J ¢ I, we replace the KEM secret in oracle ENC by a uniformly random value (Line 14)
and store the output to return consistent queries to oracle DEC. The difference is the
advantage of a CCA adversary B; against AKEM:

Pr[Gy = 1] — Pr[Gy = 1]| < Advig et <A,
Adversary B; against CCA security of an AKEM can simulate G; /Gy by issuing a challenge
query to the CCA experiment for any ENC query with j ¢ I, and a decryption query for
any DEC query. Any other query, i.e. ENC queries with j € I, can be answered by using
the AKEM adversary’s own encapsulation oracle.

24 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Game G3. In Gz, the game aborts in the encryption oracle if the corresponding receiver’s
key was not replaced and there already exists an entry in A with the queried parameters
(Line 18). The difference is negligible in the size of the key space of KEM. Since K was
randomly chosen in the previous game, the probability of having such an entry is at most
%. Note that A is filled with another element at most once per ENC/DEC query. This

yields the following advantage:

IPr[Gy = 1] — Pr[Gs = 1]| < q(qJ&Cq'd—l)

Game Gy. If the receiver’s key was not replaced and we do not abort, we replace the
output of KS in the encryption oracle with uniformly random values of the respective
domain (Line 19). The game difference is the advantage of a PRF adversary C; against
KSll

Pr[Gy = 1] — Pr[Gs = 1]| < AdviedePRF.

The changes in Game G; ensure consistent outputs of KS, i.e. queries on ENC or DEC
with the same parameters lead to the same output of KS (or the game aborts in the for
pskEnc). Hence, games G3 and G4 can only be distinguished by distinguishing the real
output of KS from a uniformly random one. This can be turned into an adversary against
PRF security of KSy, i.e. keyed on the first input. Note that K is chosen uniformly at
random due to the changes in Game Gs. There are at most ¢, different instances for the
PRF and at most the same number of queries.

Game Gs. In Game Gg, the decryption oracle is modified. If there KEM parameter set was
not queried before, i.e. the parameters do not occur in &, the sender was not corrupted
and the shared KEM secret K is not L (Line 32), K is replaced by a uniformly random
value and the result is stored in €. Due to these conditions, the setup matches with oracles
of an Auth adversary against AKEM and such an adversary can simulate the games. This
results in the following advantage:

|Pr[Gy = 1] — Pr[Gs = 1] < AdV(B'f;:llAekqéi'\)A—Outsider—Auth'

Game Gg. The game is modified by choosing uniformly random values instead of the real
output of KS in the same case as for the previous game (Line 32). This can be turned into
an adversary against PRF security of KSy, i.e. keyed in the first input. There are at most
qq different instances and at most g4 different queries resulting in

Pr[Gs = 1] — Pr[Gg = 1]| < Advyi4da) PR,

Game G7. We modify the game by replacing the output of KS by uniformly random values
similar to the last game modification but in the following case while querying the decryption
oracle: not both the sender’s key and the psk were corrupted (i ¢ ItV (7,7) ¢ Ipsk, Line 39),
there is no corresponding element in A (Line 42), and the sender’s key was corrupted, i.e.
i € Iy (Line 42). This can be turned into a PRF adversary C, against KSq, i.e. keyed in
the second input:

[Pr(Gr = 1] — Pa{Gs = 1] < Advias ™.

The Pre-Shared Key Modes of HPKE 25

The two conditions i ¢ Ik V (i,7) & Ipsk and i € Iy imply that (4,7) ¢ Ipex which
means that the psk was not replaced and was therefore chosen uniformly at random in
the beginning of the game. Thus, the two games can be simulated by adversary Cs via
their own evaluation oracle. We have at most g4 different indices for the PRF game and at
most the same number of queries.

Game Gg. In this game, we replace the actual decryption in an honest decryption oracle
query with | (Line 45). Distinguishing the game difference can be turned into an INT-
CTXT adversary D; against AEAD:

|Pr[G; = 1] — Pr[Gg = 1]| < AdVSDqlej‘Afétqud)JNT—CTXT'

Adversary D; is formally constructed in Listing 16. Note that k and nonce are uniformly
random such that the adversary can use their own decryption oracle either on a new
index or on a previous index in case the same parameters were queried before and the
element is in A. Further, encryption queries can also be simulated in each case. If there
is an encryption query with a corrupted receiver’s key, the adversary can compute the
encryption on their own. Otherwise, they can use their own encryption oracle. The abort
in cases of a parameter set being queried before (Line 18) prevents the need of querying
the encryption oracle twice which is not possible for the INT-CTXT game for an AEAD.
There are at most ¢, + qq4 different keys and adversary D; makes at most gg queries to
their decryption oracle DECAgAD.

Listing 16: Adversary D; against INT-CTXT security for AEAD having access to oracles
ENCAEAD and DECAEAD.

DyeaBaD, DECARAD Oracle DEC(i € [n],j € [n], (c1, ¢2), aad, info)
01 for i € [n] 26 if sk; = L
02 (ski, pk;) < GenSK 27 return L
03 for j € [i] 28 K < AuthDecap(pk;, skj, c1)
04 psk,; & Kpsk 29 if 3K’ : (pk;, Pk, c1, K'Yeé&
05 pskj; < psk; 30 K+ K’
06 E,& I, Ty, A 0 31 (k,nonce) < KS(K, psk,;, info)
07 (i, 57, (¢},), aad”, info") & AFNCPRCREPRREFSK (o op) 32 else if i ¢ T AK # L
08 return [(¢* & Ipe V (i, 5%) & Tpsx) A skjx # L 33 I}'AZC
A (P, PRy, pSks s, (€1, €3), aad”, info™) ¢ € 34 €« EU{(pk;, pkj e, K)}
N pskADec(pk;-, skj+, pskix j«, (ci,¢3), aad”, info™) # L] 35 (k,nonce) < K’ x {0,1}Nnonee
36 else
Oracle ENc(i € [n],j € [n],m, aad, info) 37 (k,nonce) < KS(K, psk,;, info)
09 if sy = L 38 if i & Ty V (i) € Dpex
10 return L 39 if 30": (04,5, K, psk,;, info) € A
11 (e1, K) < AuthEncap(sk:, pk;) 40 m < DECagap (¢, 2, aad) //dec query on old key
12 (k, nonce) < KS(K, psk;;, info) 41 else if i € I
13 if j ¢ I 42 L L0+1 //new key
14 K&K 43 m < DECagpab (¢, c2, aad) //dec query on new key
15 &« EU{(pk;, pkj,c1, K)} 44 A= AU{(L,i,], K, psk,;, info)}
16 if 3¢ (04,4, K, psk,;, info) € A 45 else
17 abort 46 m < AEAD.Dec(k, c2, aad, nonce)
18 L+ (+1 Jnew key 47 return m
19 ¢a « ENCapap(¢, m, aad) //enc query
20 A« AU{(4,i,], K, psk,;, info)} Oracle REPPK(: € [n], pk)
21 else 48 (ski, pk;) < (L, pk)
22 cp < AEAD.Enc(k, m, aad, nonce) 49 T + I U {i}
23 € < EU{(pk;, pk;, psk,j, (c1, c2), aad, info)}
24 & <+ & U{(k,nonce,m, (c1,c2), aad)} Oracle REPPSK(i € [n], j € [n], psk)
25 return (c1,cz) 50 psk;; < psk
51 psk;; < psk
62 Tyae Ty U{(i.9), (.0}

26 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Reduction to Game Gg. Winning Game Gg can be reduced to an INT-CTXT adversary Dy

against AEAD:
(ge+1,1)-INT-CTXT

Pr[Gs = 1] < AdVDg,AEAD

The adversary can simulate the decryption oracle since in cases i ¢ I V (i,) ¢ Lpsk, they
can output L (or the original encryption if it was produced during the experiment). In
cases (%,) € Ipsk, they can compute the output by their own. For the encryption oracle,
the adversary can use their own encryption oracle or compute the output on their own
similar to the adversary from the last game hop. The output of the adversary against
game Gg can then be used to issue a decryption query in the INT-CTXT experiment on
either a new key or a previous key if the output parameters i*, j*, ¢, info™ match with
that key. Matching parameters can be identified by computing K* < Decaps(sk;-,c;) and
comparing (i*, j*, K*, psk;. ;«, info*) to set A similar to Line 16 or Line 39 in Listing 16. If
the adversary against Gg wins, the adversary against the INT-CTXT experiment has a valid
ciphertext which does not decrypt to L due to the winning condition of Gg. That means
they can distinguish between the real or random case since the result of the decryption
query must be unequal to L in the real case.

Putting everything together, we obtain the stated bound. a

5 Hybrid Post-Quantum APKE

We want to build an HPKE scheme which is secure against classical as well as quantum
adversaries. To not rely solely on relatively new post-quantum primitives, a common way
is to use combiners which combine well studied classical primitives and post-quantum
primitives at the same time. This hybrid approach allows for security against future
quantum adversaries but is still secure in a classical setting if current post-quantum
primitives are broken. To this end, we use the pre-shared key mode of HPKE to build a
combiner from which we can instantiate a hybrid post-quantum construction.

Let pskAPKE[AKEM;, KS,AEAD] be a pre-shared key PKE based on an authenti-
cated KEM AKEM; = (Geny, AuthEncap,, AuthDecap,), a two-keyed function KS, and
an authenticated encryption with associated data AEAD as in Listing 14. Further, let
AKEM, = (Geng, AuthEncap,, AuthDecap,) be a second authenticated KEM. From these
components, we can construct an APKE using the shared secret of the second KEM as
the pre-shared key of the pskAPKE. We remark that the same construction also works for
non-authenticated primitives, i.e., we can construct a PKE PKE[KEM;, KEMgy, KS, AEAD]
built from pskPKE[KEMy, KS, AEAD] and a KEMs.

The following two theorems state that the APKE is secure (in the sense of Insider-CCA
and Outsider-Auth) if at least one of the underlying AKEMs, AKEM; or AKEM,, is secure.

Theorem 5. Let AKEM; and AKEMs be two AKEMs, KS a two-keyed function, and
AEAD an AEAD. If KS is a PRF in both keys, AEAD is IND-CCA secure, and AKEM; or
AKEM, is CCA secure, then the construction in Listing 17 is a CCA secure APKE. In partic-

ular, for any (n, ¢e, 44, gc)-Insider-CCA adversary A against APKE[AKEM, AKEMq, KS, AEAD]
there exists a (n+1, e, q4, gc)-Insider-CCA adversary By against AKEM1, a (n, e, 4, gc, .)-Insider-
CCA adversary By against AKEMa, a (gc,q4 + q.)-PRF adversary C; against KSi, a

(Ge, qa + qc)-PRF adversary Co against KSa, and a (g., qq)-CCA adversary D against AEAD

The Pre-Shared Key Modes of HPKE 27

Listing 17: Authenticated PKE APKE[AKEM;, AKEM2, KS;AEAD] built from
pskAPKE[AKEM1, KS, AEAD] and AKEM,

Gen Enc((SkhSk?)a (pklaka)vma aadainfo)
01 (ski,pk,) < Geny 06 (¢, K') <~ AuthEncap, (ska, pk,)
02 (skz, pky) < Geno 07 (e1,c2) <& pskAEnc(sk1, pk,, K',m, aad, ¢||info)

03 sk < (sk1, sk2) 08 return ((c1,c2),c’)
04 pk < (pky, pk,)
05 return (Sk’ pk) Dec((pkla ka)v (5k17 3k2)a ((Cl7 62)3 C/)a aad, mfo)

09 K’ < AuthDecap,(sk2, c’)
10 m < pskADec(pk,, sk1, K', (c1, c2), aad, ¢'||info)
11 return m

such that

(1,9e,9d,qc)-Insider-CCA
AdV.A,APKE[AKEM1,AKEMg,KS,AEAD] <

min{AdV(n-i-l,Qe;4d7qC)—|n5|der—CCA —|—Adv(qc’qd+q°)'PRF

B1,AKEM; C1,KSq 9
(n,9¢,9d,9c,qc)-Insider-CCA (qc,94+4c)-PRF (qc,q94)-CCA
Advg AKEM, + Adve, ks, }+ Advip ‘AEAD

Proof (Sketch). The first part of the proof is very similar to Theorem 2 except that the
queries to KSg can be saved. The second part transforms the KEM secret of AKEMj into
a uniformly random value using its Insider-CCA security which can then be used as input
to KSy as a regular psk. These outputs are uniformly random values and the remaining
transformations are as for the first part. The full proof can be found in Appendix C.1. O

Theorem 6. Let AKEM; and AKEMs be two AKEMs, KS a two-keyed function, and
AEAD an AEAD. If KS is a PRF in both keys, AEAD is INT-CTXT and IND-CPA secure,
and AKEM; or AKEM is Outsider-Auth secure, then the construction in Listing 17 is a
Outsider-Auth secure APKE. In particular, for any (n, qe, qq4)-Outsider-Auth adversary A
against APKE[AKEM{, AKEMsy, KS, AEAD], there exists a (n+1,0, g4, q.)-Outsider-CCA ad-
versary By against AKEMy, a (n+1, ge, gq)-Outsider-Auth adversary By against AKEMy, a
(n,0,q4, g)-Outsider-CCA adversary B} against AKEMa, a (n, g, qq)-Outsider-Auth adver-
sary By against AKEMs, a (ge + qd, ge + q4)-PRF adversary Cy against KSy1, a (qa, qa)-PRF
adversary Co against KSa, a (2qe + qa + 1, g4 + 1)-INT-CTXT adversary D against AEAD
such that

(n,ge,q4)-Outsider-Auth
AdV.A,APKE[AKEM1 ,LAKEM32,KS,AEAD] <

. (n+1,9¢,94,q)-Outsider-CCA (n+1,g¢,94)-Outsider-Auth
min{Adv “Axen. + Advi, AkEM,

(ge+qd,9e+qa)-PRF
+ AdVCI,Ksl ,

(n,0,94,9ge)-Outsider-CCA (n,qe,q4)-Outsider-Auth
AdVB’l,AKEMQ + AdVB’Q,AKEMQ

+ Adv g PREY

JINT- -1
n Advg’chgAqSJrl-,QdJrl) INT-CTXT qe(qe T]Cq‘d)

28 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Proof (Sketch). The first part of the proof is very similar to Theorem 4 except that the
queries to KSg can be saved. The second part transforms the KEM secret of AKEM; into
a uniformly random value using its Insider-CCA and Outsider-Auth security which can
then be used as input to KS; as a regular psk in encryption and decryption oracle. These
outputs are uniformly random values and the remaining transformations are as for the
first part. The full proof can be found in Appendix C.2. a

PosT-QUANTUM INSTANTIATION. Consequently, one can combine HPKEa,inpsk with a
post-quantum secure AKEM to obtain an APKE scheme with hybrid security. Analogously,
one can combine HPKEpsk with a post-quantum secure KEM (such as Kyber) to obtain a
PKE with hybrid security. In the next section, we discuss how to construct post-quantum
secure AKEM schemes.

6 Post-Quantum AKEM Constructions

6.1 KEM-then-Sign-then-Hash

A well-known approach for constructing a post-quantum AKEM is to combine a post-
quantum KEM with a post-quantum signature [10]. This could obviously applied to the
classical setting as well but with much worse performance than the NIKE-based construction
of HPKE which achieves authentication almost for free.

Our new construction extends the (insecure) Encrypt-then-Sign (EtS) paradigm to
Encrypt-then-Sign-then-Hash (EtStH). Let KEM = (KEM.Gen, Encaps, Decaps) be a KEM
and SIG = (Gen, Sign, Vfy) be a signature scheme. We construct AKEMES™H[KEM, SIG, H]
as shown in Listing 18 for H a keyed function. We define the output of H to be L if one of
the inputs is 1. The key generation outputs a public key tuple and a private key tuple.
The first component of both tuples is the receiver’s public/private key and the second
component is the sender’s public/private key.

Listing 18: AKEME*"[KEM, SIG, H] from a KEM KEM = (KEM.Gen, Encaps, Decaps), a
signature scheme SIG = (SIG.Gen, Sign, Vfy), and a random oracle H.

Gen AuthDecap((pk, , vk1), (sk2, sigks), (¢, 0))
01 (s, pk) ¢ KEM.Gen 08 if Vfy(vky, cl [pky | [u(ska)| [(sighy), o) # 1
02 (sigk, vk) < SIG.Gen 09 K« |
03 return ((sk, sigk), (pk, vk)) 10 else
11 K’ + Decaps(sk2,c)
AuthEncap((sk1, sigk,), (pky, vk2)) 12 K « H(K, o||pky ||vk1 || p(sk2)| |1 (sighs))
04 (e, K') < Encaps(pk,) 13 return K
05 o <& Sign(sigh,, cl|u(sk1)||pks||vk2)
06 K « H(K', o||u(sk1)||1 (sighy)||pks||vk2)
07 return ((c,0), K)

Theorem 7 (KEM CCA + H PRF = AKEM Insider-CCA). If KEM is a CCA secure key
encapsulation mechanism and H is a PRF, then AKEMEtStH[KEM, SIG, H] is an Insider-CCA

The Pre-Shared Key Modes of HPKE 29

secure AKEM. In particular, for every (n,qe, qd, qc, rsk)-Insider-CCA adversary A against
AKEMEtStH[KEM,SIG, H] there exists a (n,qq,q.)-CCA adversary B against KEM and a
(Ge, qa + q.)-PRF adversary C against H such that

(1,9¢,9d,9c,7sk)-Insider-CCA (n,qa,9.)-CCA (qc,qa+qe)-PRF
Adv 4 akevEstiKem sicH] = AdVE KEM + Adve :

Proof (Sketch). We use the CCA security of KEM to make the KEM keys random, such
that the key to H is uniformly random. Using the PRF property of H gives a uniformly
random value for the final key. The full proof can be found in Appendix D.1. a

Theorem 8 (SIG SUF-CMA = AKEM Outsider-Auth). If SIG is an SUF-CMA secure
signature scheme, then AKEMEtStH[KEM,SIG, H] is an Outsider-Auth secure AKEM. In
particular, for every (n, qe, qq)-Outsider-Auth adversary A there exists a (n, ¢.)-SUF-CMA
adversary B against SIG such that

Outsider-Auth (n,qe)-SUF-CMA
AdVA,AKEME‘S‘“[KEM7SIG,H] < AdVB,SlG .

Proof (Sketch). Queries to the decapsulation oracle containing invalid signatures cannot be
distinguished by an adversary due to the definition of the scheme. Valid queries can be used
against the SUF-CMA security of SIG. The full proof can be found in Appendix D.2. O

6.2 AKEM from NIKE

We can build an AKEM from a NIKE. Let NIKE = (Setup, NIKE.KeyGen, NIKE.SharedKey)
be a NIKE and H a 2-keyed function, then we can construct an AKEM AKEMNIKE[NIKE,
H] as defined in Listing 19. We define the output of H to be L if one of the inputs is L.
By Hi, we denote function H keyed in the first component and by Hy function H keyed
in the second component. In contrast to an earlier version of the paper, hash function H
takes both the users’ public keys and the ciphertext pk*™ as additional input. This change
prevents two attacks possible in the previous version. If the sender and receiver keys
are not hashed and adversary can query the decapsulation oracle on the output of an
encapsulation with switched roles of sender and receiver. If the ciphertext is not hashed,
an adversary could find a collision in the remaining inputs to the hash function and exploit
this to distinguish the output of the decapsulation oracle.

Theorem 9 (NIKE Active + Hy PRF = AKEM Insider-CCA). Let NIKE be a NIKE and
H a 2-keyed function. If NIKE is Active secure and Hy a PRF, then AKEMM'YE[NIKE, H]
is Insider-CCA secure. In particular for any adversary A against (n,qe, qd, qc, sk)-Insider-
CCA security of AKEMN'YEINIKE, H] there exists an (n + qe, ge + 244, 0, ¢e + qa + Ge, qe +
244, 9.)-Active adversary against NIKE and a (g, q.)-PRF adversary C against Hy such
that
(1,9¢,qd,qc,7sk)-Insider-CCA (n+4qc,9e+29d,0,9e +qa+4c,qe +294,9c)-Activi
AdVA’:Kg:M?IKE“GIKETH]er S AdVB,NI?(Eq qd;Y,9eTddTde,q qd,q ctive
+ Adv g0 PRE,
Proof (Sketch). Assuming an active secure NIKE, the second shared key, K5 is indistin-
guishable from random. We show that by constructing an adversary against an Active
secure NIKE using an Insider-CCA adversary against AKEI\/INlKE[NIKE, H] by simulating the

30 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Listing 19: AKEMN'E[NIKE, H] from NIKE = (NIKE.KeyGen, NIKE.SharedKey) where the

setup parameters are known to every user.

Gen AuthDecap(sk2, pky, pk™)

01 (sk, pk) < NIKE.KeyGen 09 K + NIKE.SharedKey(skz, pk,)

02 return (sk, pk) 10 Ka + NIKE.SharedKey(skz, pk*)
11 pky < u(skz)

AuthEncap(sk1, pksy) 12 K « H(K1, K2, pk,||pks||pk™)

03 (sk*,pk*) < NIKE.KeyGen 13 return K

04 K < NIKE.SharedKey(sk1, pk,)
05 K3 < NIKE.SharedKey(sk™, pks,)
06 pky + p(sk1)

07 K < H(Ky, K2, pky ||pksy || pk™)
08 return (pk*, K)

corruptions from REPSK by registering corrupt users in the NIKE game. Then, every other
query can be answered by registering a new key (if the query was made with a chosen
public key) or computed by the simulator themselves. The test query of the adversary
against NIKE is then directly embedded int the challenge query of the Insider-CCA game.
With Hy being a PRF, we can further show that the resulting key is also uniformly random.
The full proof can be found in Appendix D.3. ad

Theorem 10 (NIKE Active + H; PRF = AKEM Outsider-Auth). Let NIKE = (Setup,
NIKE.KeyGen, NIKE.SharedKey) be a NIKE and H a 2-keyed function. If NIKE is Active
secure and Hi a PRF, then AKEMNlKE[NIKE, H] is Outsider-Auth secure. In particular,
for every (n, g, qq)-Outsider-Auth adversary against AKEMN'KE[NIKE7 H] there exists an
(n, ge +2q4, 0, Ge, 2qe +2q4, qq)-Active adversary against NIKE and a (4, qq)-PRF adversary
C against Hy such that

(n,9e,qa)-Outsider-Auth (1,9e44d,0,0,9e +qa,qe+qa)-Active (ge+4d,qe+qa)-PRF
AV akemvike ke H) = AV NiKE + Adv'y

+ qe(ge + qa) Puike

Proof (Sketch). The structure is similar to the proof of Theorem 9 except that the test
query is embedded in both encapsulation and the decapsulation oracle and that it is only
embedded for queries with honest public keys. Further we need the entropy of the NIKE
public key to avoid attacks using collisions in the hash function. The full proof can be
found in Appendix D.4. a

Acknowledgements. The authors thank the anonymous reviewers to point out an error
in our NIKE construction and an error in one of our proofs. They also thank Doreen
Riepel for very helpful feedback and discussions. Jonas Janneck was supported by the
European Union (ERC AdG REWORC - 101054911). Eike Kiltz was supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy — EXC 2092 CASA - 390781972, and by the European Union (ERC
AdG REWORC - 101054911).

The Pre-Shared Key Modes of HPKE 31

References

1.

10.

11.

12.

13.

14.

15.

16.

Alwen, J., Blanchet, B., Hauck, E., Kiltz, E., Lipp, B., Riepel, D.: Analysing the HPKE
standard. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol.
12696, pp. 87-116. Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030
-77870-5_4 3, 4,5, 6, 8, 9, 10, 11, 18, 22

. Anastasova, M., Kampanakis, P., Massimo, J.: PQ-HPKE: post-quantum hybrid public key

encryption. IACR Cryptol. ePrint Arch. p. 414 (2022), https://eprint.iacr.org/2022/414
6

. Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon, K.: The

Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-protocol-20, Internet
Engineering Task Force (Mar 2023), https://datatracker.ietf.org/doc/draft-ietf-mls
-protocol/20/, work in Progress 3

. Barnes, R.L., Bhargavan, K., Lipp, B., Wood, C.A.: Hybrid public key encryption. RFC 9180,

RFC Editor (Feb 2022), https://www.rfc-editor.org/rfc/rfc9180.html 3

. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and

analysis of the generic composition paradigm. In: International Conference on the Theory
and Application of Cryptology and Information Security. pp. 531-545. Springer (2000) 12

. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption.

Cryptology ePrint Archive, Report 2004/331 (2004), https://eprint.iacr.org/2004/331 7

. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption: AES-GCM

in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 247—
276. Springer, Heidelberg (Aug 2016). https://doi.org/10.1007/978-3-662-53018-4_10
22

. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P.,

Seiler, G., Stehlé, D.: Crystals-kyber: a cca-secure module-lattice-based kem. In: 2018 IEEE
European Symposium on Security and Privacy (EuroS&P). pp. 3563-367. IEEE (2018) 7

. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure

against adaptive chosen ciphertext attack. SIAM Journal on Computing 33(1), 167-226
(2003) 3

Dent, A.W., Zheng, Y. (eds.): Practical Signcryption. Information Security and Cryptography,
Springer (2010). https://doi.org/10.1007/978-3-540-89411-7 7, 18, 28

Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.:
CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR TCHES 2018(1),
238-268 (2018). https://doi.org/10.13154/tches.v2018.11.238-268, https://tches.ia
cr.org/index.php/TCHES/article/view/839 7

Duman, J., Hartmann, D., Kiltz, E., Kunzweiler, S., Lehmann, J., Riepel, D.: Group action
key encapsulation and non-interactive key exchange in the qrom. In: Advances in Cryptology—
ASTACRYPT 2022: 28th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part II. pp.
36-66. Springer (2023) 7

Freire, E.S.V., Hotheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange. In:
Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 254—-271. Springer,
Heidelberg (Feb / Mar 2013). https://doi.org/10.1007/978-3-642-36362-7_17 7, 32
Gajland, P., de Kock, B., Quaresma, M., Malavolta, G., Schwabe, P.: Swoosh: Practical
lattice-based non-interactive key exchange. Cryptology ePrint Archive (2023) 7

Geoghegan, T., Patton, C., Rescorla, E., Wood, C.A.: Distributed Aggregation Protocol for
Privacy Preserving Measurement. Internet-Draft draft-ietf-ppm-dap-04, Internet Engineering
Task Force (Mar 2023), https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/04/,
work in Progress 3

Kinnear, E., McManus, P., Pauly, T., Verma, T., Wood, C.A.: Oblivious DNS over HTTPS.
Tech. Rep. 9230 (Jun 2022). https://doi.org/10.17487/RFC9230, https://www.rfc-edi
tor.org/info/rfc9230 3

https://doi.org/10.1007/978-3-030-77870-5_4
https://doi.org/10.1007/978-3-030-77870-5_4
https://eprint.iacr.org/2022/414
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/20/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/20/
https://www.rfc-editor.org/rfc/rfc9180.html
https://eprint.iacr.org/2004/331
https://doi.org/10.1007/978-3-662-53018-4_10
https://doi.org/10.1007/978-3-540-89411-7
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.1007/978-3-642-36362-7_17
https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/04/
https://doi.org/10.17487/RFC9230
https://www.rfc-editor.org/info/rfc9230
https://www.rfc-editor.org/info/rfc9230

32 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

17. Langley, A., Hamburg, M., Turner, S.: Elliptic curves for security. RFC 7748, RFC Editor
(Jan 2016), https://www.rfc-editor.org/rfc/rfc7748 . html 3

18. Len, J., Grubbs, P., Ristenpart, T.: Partitioning oracle attacks. In: Bailey, M., Greenstadt, R.
(eds.) USENIX Security 2021. pp. 195-212. USENIX Association (Aug 2021) 5

19. National Institute of Standards and Technology: Digital Signature Standard (DSS). FIPS
Publication 186-4 (Jul 2013), https://doi.org/10.6028/nist.fips.186-4 3

20. Paterson, K.G., van der Merwe, T.: Reactive and proactive standardisation of TLS. In: Chen,
L., McGrew, D.A., Mitchell, C.J. (eds.) Security Standardisation Research - Third Interna-
tional Conference, SSR 2016, Gaithersburg, MD, USA, December 5-6, 2016, Proceedings.
Lecture Notes in Computer Science, vol. 10074, pp. 160-186. Springer (2016). https://doi.
org/10.1007/978-3-319-49100-4_7, https://doi.org/10.1007/978-3-319-49100-4_7 3

21. Rescorla, E.; Oku, K., Sullivan, N., Wood, C.A.: TLS Encrypted Client Hello. Internet-Draft
draft-ietf-tls-esni-16, Internet Engineering Task Force (Apr 2023), https://datatracker.ie
tf.org/doc/draft-ietf-tls-esni/16/, work in Progress 3

22. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) <
cost(signature) + cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294,
pp. 165-179. Springer, Heidelberg (Aug 1997). https://doi.org/10.1007/BFb0052234 3

A Omitted Security Definition

A.1 Active Security NIKE

The following definition also known as m-CKS-heavy is taken from [13].

Definition 12 (Active Security). Let NIKE = (Setup, NIKE.SharedKey) be a NIKE.
We define active security of NIKE (Active) via game (qu,qc, 9E, quR, 4CR, 9T)-Active in
Listing 20. The advantage of an adversary A is

-Active
Adv((IH ,4C4E ;4H R,4CR,qT)
A NIKE

1

= |Pr[(qm,qc,qE, quR, 4OR, q7)-Active(A) = 1] — 50

B Proofs for the pskPKE and pskAPKE constructions

B.1 Proof of Theorem 1

Proof. We construct a sequence of games as shown in Listing 21.

Game Gg. Gy is the (1, e, qd; Gc, "pks Tpsi)-CCA game for pskPKE[KEM, KS, AEAD] (cf. Sec-
tion 3.2) executed with an adversary A, i.e.,

Pr[Go = 1) = Pr[(n, 4e, 4d, Ges Tpk, "psk)-CCA(A) = 1].

https://www.rfc-editor.org/rfc/rfc7748.html
https://doi.org/10.6028/nist.fips.186-4
https://doi.org/10.1007/978-3-319-49100-4_7
https://doi.org/10.1007/978-3-319-49100-4_7
https://doi.org/10.1007/978-3-319-49100-4_7
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/16/
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/16/
https://doi.org/10.1007/BFb0052234

The Pre-Shared Key Modes of HPKE 33

Listing 20: Game (qu, 9c, 95, 40 R, 4CR, 97)-Active for NIKE. Adversary .4 makes at most
qn queries to REGHONEST, at most go queries to REGCORRUPT, at most g queries to
Extract, at most gy r queries to HONESTREV, at most qor queries to CORRUPTREV, and
at most gr queries to TEST. The total number of users is denoted by n = qg + qc¢.

(qw,qc, 98, qH R, qC R, qT)-Active Oracle HONESTREV(i € [n],j € [n])
01 E, T, R« 0 15 if sk = LV sk; =L
02 b< {0,1} 16 return L
03 b & AR,EGHONEST,REGCOKKUI’T,Extract,HONESTREV,CORRLPTR,EV,TEST 17 R« R U {(’L,j), (]7 ’L)}
04 return [b=b APB(i,5) €R:(5,5,-) €T 18 return NIKE.SharedKey(sk;, pk;)
ANpic&:(i,,)eETAN €E:(,5,)€T]
Oracle CORRUPTREV(i € [n],] € [n])
Oracle REGHONEST(: € [n]) 19 if pk, = LV pk; = L
05 if pk, # L Ask; =L 20 return L
06 return L 21 R+ RUA{(4,7), (4,49}
07 (sk;, pk;) < NIKE.KeyGen 22 if ski # L Nsky = L
08 return pk; 23 return NIKE.SharedKey(sk;, pk;)
24 if ski = L Ask; # L
Oracle REGCORRUPT(3 € [n], pk) 25 return NIKE.SharedKey(sk;, pk;)
09 if sk; # L 26 return L
10 return L
11 pk, < pk Oracle TEST(i € [n],j € [n])
12 sk; = L 27 if i =jVski=1LVskj=1
28 return L
Oracle Extract(i € [n], pk) 29 if 3K : (i,5,K) € T
13 £+ EU{i} 30 return K
14 return sk; 31 if b=0
32 K < NIKE.SharedKey(sk;, pk;)
33 else
34 K& SHK
35 T« TU{(j,K)}
36 return K

Game Gi. In this game, we make the following changes. If the challenge oracle CHALL
is queried on a receiver index j which was not replaced (i.e., j ¢ Ipx) we replace the
KEM key K by a uniformly random value from the key space K. The result is then stored
together with the receiver’s public key and the ciphertext in set £’. For consistency, we
further change the decryption oracle DEC by replacing the KEM key K by the one from
set £ if there already exists such a key for the queried ciphertext ¢; and the receiver’s
public key pk;. Distinguishing these changes can be turned into an adversary B against
(n, qd, q.)-CCA security of KEM as depicted in Listing 22.

[Pr[Go = 1] — Pr[G; = 1]| < AdV(Bﬁgé’:/qlc)—CCA.

Note that B can simulate all oracles by their own or with the oracles provided by their
own experiment. For the REPPK oracle, the reduction has to store the indices but can
abort with L for corresponding decryption oracle queries, i.e. decryption queries for which
sk; = L due to Line 23 in the game. The decryption oracle can be simulated by the
decapsulation oracle provided by the KEM CCA game. If the challenge oracle is queried
on non-replaced receiver keys, i.e., j ¢ I (Line 46 in the game), B can use their own

34 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Listing 21: Games Gy — G4 for the proof of Theorem 1.

Games Go — Gy Oracle CHALL(i € [n],j € [n], mo, m1, aad, info)
01 for i € [n] 42 if |mo| # |ma|V (j € Tx A (4,7) € Tpax)
02 (ski, pk;) < Gen 43 return L
03 for j € |i 44 (1, K) € KEM.Encaps(pk;)
04 psk; & GenPSK 45 (k,nonce) < KS(K, psk;;, info)
05 psk;; psk;; 46 if j ¢ Ipe /G1—Ga
06 &, Tyer Dpex 0 a7 K&K /Gi — Ga
07 b {0,1} 48 & &' U{(pkj,c1, K)} //G1 — Gy
08 b & APNCDEC,CHALLREPPK, REPPSK (pkys- .. k) 49 (k, nonce) + KS(K, Pk, info) /Gy — Gy
09 return [b="b'] 50 (k, nonce) ¢ K’ x {0,1}Nnonee /G2 — Gy

51 Ag + Ax U{(k, nonce, K, psk;j, info)} /G2 — Gy
Oracle ENc(i € [n], j € [n],m, aad, info) 52 else //Gs — Gy
10 (e1, K) ¢ KEM.Encaps(pk;) 53 if (K, nonce’) : (k', nonce’, K, psk,;, info) € Apne /Gs — Gy
11 (k, nonce) < KS(K, psk;;, info) 54 abort /Gs — Gy
12 4 (i,7) & Tpex /Gs — Gy 55 else if I(k',nonce’) : (k', nonce', K, psk;;, info) € Apee [/Gs — Ga
13 if 3(k', nonce’) : (K, nonce', K, psk,;, info) € Apne /Gs — Gy 56 (k, nonce) « (K, nonce’) /Gs = Ga
14 abort /Gs — Gy 57 Agne = Apne U {(k, nonce, K, psk,;, info)} //Gs — Ga
15 else if 3(k', nonce’) : (K, nonce', K, psk,;, info) € Apec [/Gs — Ga 58 else . . /Gs — Ga
16 (k, nonce) < (k', nonce’) /Gs — Gy 59 (k, nonce) 4 K x {0, 1}Nnonee /Ga
17 Agne = Apne U {(k, nonce, K, psk, ;, info)} /Gs — Gy 60 Agne = Apne U{(k, nonce, K, psk;;, info)} /Gs = Ga
18 else //Gs — Gy 61 ¢z < AEAD.Enc(k, ms, aad, nonce)
19 (k, nonce) & K x {0, 1}Nnonee /Gy 62 €« EU{(pk;, pski;, (c1,c2), aad, info)}
20 Apne < Apne U{(k, nonce, K, psk,, info)} /Gs — G, 63 return (ci,c2)
21 ¢ + AEAD.Enc(k, m, aad, nonce)
22 return (ci, c2) Oracle REPPK(j € [n], pk)

64 (.s'kJ.plc7) « (L, pk)
Oracle DEC(i € [n], j € [n], (¢1, ¢2), aad, info) 65 Ipx + I U {4}
23 if skj = LV (pk;, psk,;, (c1, c2), aad, info) € €
24 return L Oracle REPPSK(i € [n], j € [n], psk)
25 K < KEM.Decaps(sk;,c1) 66 psk;; < psk
26 (k, nonce) < KS(K, psk,;, info) 67 psk;j; < psk
27 if 3K : (phy,e1, K) € & JG1— Gy 68 Tpmn ¢ Do U {(ir5), G 0)}
28 (k, nonce) < KS(K', psk,;, info) //G1 — Ga
29 if 3(K', nonce’) : (k', nonce’, K', psk,;, info) € Ak /G2 — Gy
30 (k, nonce) < (k', nonce’) /G2 — Gy
31 else /G2 — Ga
32 (k, nonce) < K x {0, 1}Vronee /G2 — G
33 Ax Ag U{(k, nonce, K, psk,;, info) } /G2 — Gy
34 else if (i,7) & Ipsx //Gs — Gy
35 if 3(k', nonce’) : (k', nonce’, K, pskj, info) € Apnec U Apec [/Gs — Ga
36 (k, nonce) < (k', nonce’) //Gs — Gy
37 else //Gs — Gy
38 (k, nonce) < K x {0, 1}Vronee //Ga
39 Apee < Apee U {(k, nonce, K, psk;j, info)} //Gs — Gy
40 m « AEAD.Dec(k, ¢z, aad, nonce)
41 return m

challenge. If B is in the real case of their (n, g4, g.)-CCA game (case b = 0 in Listing 1),
they perfectly simulate Gg. If they are in the random case (case b = 1 in Listing 1), they
perfectly simulate G;. Any other encapsulation calls can be computed by the reduction
itself.

Game Go. In Game Gz, we change the challenge oracle by replacing the output of KS by
uniformly random values of the respective domain if the receiver’s key was not replaced,
ie. if j ¢ Iy (Line 46). Input and output are also logged using set Ax (Line 51) to return
consistent decapsulation queries. To this end, the decapsulation oracle is modified such
that for KS it returns a previous output stored in Ax (Line 30) or a uniformly random as
well (Line 32). The difference can be turned into a PRF adversary C; against KSq, i.e. KS
keyed in the first component:

[Pr[G; = 1] — Pr[Gy = 1]| < Advgiigsdfq“)'PRF.

To analyze KS;1, we view KS as a keyed function KS(K, (psk, info)) where key K is chosen
uniformly at random. Thus, an adversary distinguishing between G; and Gs can be turned

The Pre-Shared Key Modes of HPKE 35

Listing 22: Adversary B against (n, ¢4, ¢.)-CCA security for KEM having access to oracles
ODECAP and OCHALL using an adversary A against Go/G; of the proof of Theorem 1.

BODECAROCHALL (p pk) Oracle CHALL(: € [n],j € [n],mo, m1, aad, info)
01 for i € [n] 19 if |mo| # |ma| V (4 € Tx A (4, 5) € Tpex)

02 for j € [i] 20 return L

03 psk,; < GenPSK 21 (c1, K) € KEM.Encaps(pk;)

04 pskj; < psk,; 22 if j ¢ I

05 &, Ipey Tpex < 0 23 K <+ OCHALL(j)

06 b< {0,1} 24 (k, nonce) < KS(K, psk,;, info)

07 b & ABNCDECCHALREPPRREPPSK (k) 25 ¢y « AEAD.Enc(k, my, aad, nonce)

08 return [b="b'] 26 & < £ U{(pk;, psk;;, (c1, c2), aad, info)}

27 return (c1,c2)
Oracle ENC(i € [n], j € [n], m, aad, info)

09 (e1, K) < KEM.Encaps(pk;) Oracle RePPK(j € [n], pk)
10 (K, nonce) < KS(K, psk,;, info) 28 pk; < pk
11 ¢p < AEAD.Enc(k, m, aad, nonce) 29 Tk < I U{j}

12 return (c1,c2)
Oracle REPPSK (i € [n], j € [n], psk)

Oracle DEC(i € [n],j € [n], (c1, c2), aad, info) 30 psk;; < psk
13 if j € Ik V (pk;, psk;;, (c1, c2), aad, info) € € 31 pskj; < psk
14 return L 32 Tpsx + Tpsx U{(4,7), (4,9)}

15 K < ODECAP(j,c1)

16 (k, nonce) + KS(K, psk;;, info)
17 m <— AEAD.Dec(k, ¢z, aad, nonce)
18 return m

into an adversary against the PRF security of function KS;. Adversary C; is formally
constructed in Listing 23. Note that such an adversary needs at most ¢. different PRF
keys and at most gg + g. queries to the PRF evaluation since they have to simulate KS;
queries in the decapsulation and challenge oracle.

Game Gz. In G3, the game aborts if there is a collision in the inputs to KS when called
from oracles ENC or CHALL in case of a non-replaced pre-shared key, i.e. (i,7) ¢ Ipsk-
The difference can be upper bounded by using the key entropy of KEM. To log the
calls to KS, we introduce sets Ag,. and Ape., where Ag,. corresponds to calls after
encapsulation operations, i.e. made from ENC and CHALL, and Ap.. corresponds to calls
after decapsulation operations, i.e. made from DEC. We distinguish these cases because
the game only aborts for collisions in ENC or CHALL (Line 14 and Line 54). If there is
no such collision, i.e. no matching element in Ag,., but the same inputs were queried in
DEC before, i.e. a matching element in Ape., the stored outputs are used (Line 16 and
Line 56). Otherwise, both oracles ENC and CHALL store inputs and outputs to KS in
Apne and proceed (Line 20 and Line 60). The changes in the decryption oracle are only
for consistency. If there was a matching query before, the stored input is used (Line 36)
and otherwise it is stored in set Ape. (Line 39).

Since KS is deterministic, using the stored values does not change the winning proba-
bility which leaves us with the probability of an abort. If the game aborts, the inputs to
KS collide which includes K. However, K is the output of a KEM encapsulation, i.e. the
probability of a collision in K is 2%, for i being the key entropy of KEM. This leads to a

probability of at most % for the abort in ENC and at most % for the abort

36 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Listing 23: Adversary C; against PRF security for KS; having access to oracle EVAL and
using an adversary A against G;/Gs of the proof of Theorem 1.

chvar Oracle CHALL(% € [n],j € [n], mo, m1, aad, info)
01 for i € [n] 23 if |mo| # [ma| V (§ € Tpx A (4,7) € Thsx)
02 (sks, pk;) < Gen 24 return L
03 for j € [i] 25 (c1, K) <= KEM.Encaps(pk;)
04 psk,; < GenPSK 26 if j ¢ I
05 psk;; < psk,; 27 L+ L+1
06 E,&, Iy, Tpsx < 0 28 &« & U{(pkj, 1,0}
07 £+ 0 29 (k,nonce) < EVAL(L, psk;;||info) /eval oracle
08 b<{0,1} 30 else
09 b & ABNCDEC.CHALL REPPRLREPPSK (e) 31 (k, nonce) < KS(K, psk,;, info)
10 return [b =] 32 ¢y + AEAD.Enc(k, my, aad, nonce)
33 &+ EU{(pk;, psk;;, (c1, c2), aad, info)}
Oracle ENc(i € [n], j € [n],m, aad, info) 34 return (c1,c2)
11 (e1, K) ¢ KEM.Encaps(pk;))
12 (k, nonce) < KS(K, psk,;, info) Oracle REPPK(j € [n], pk)
13 ¢ < AEAD.Enc(k, m, aad, nonce) 35 (skj, pk;) < (L, pk)
14 return (ci,c2) 36 Ipx <+ I U{j}
Oracle Duc(i € [n],j € [n], (c1, c2), aad, info) Oracle REPPSK(i € [n], j € [n], psk)
15 if skj = LV (pk;, psk,;, (c1, c2), aad, info) € € 37 psk;; < psk
16 return L 38 psk;; < psk
17 K < KEM.Decaps(sk;, c1) 39 Tpsx = Tpex U{(i,), (4,1)}
18 (k, nonce) < KS(K, psk,;, info)
19 if 3¢ : (pkj, 1,) € &
20 (k,nonce) < EVAL(L, psk;;||info) /eval oracle
21 m < AEAD.Dec(k, c2, aad, nonce)
22 return m

in CHALL. All together, we obtain

IPr[Gy = 1] — Pr[Gs = 1]| < 2

Game G4. We modify G4 by changing the output of KS in every oracle in case of a
non-replaced pre-shared key, i.e. (i,7) ¢ Ipsk, to uniformly random values (Line 19 for
ENc, Line 38 for DEC, and Line 59 for CHALL). The difference can be turned into a PRF
adversary Cy against KSy, i.e. KS keyed in the second component:
Pr[Gs = 1] — Pr[Gy = 1]| < Advyle datiedetaatac) PRE

Note that for the challenge oracle, the assumption (i, j) ¢ Ipex also implicitly holds. Since
the change is only applied in the else case (Line 52) the receiver’s key was replaced, i.e.

€ I Additionally it is impossible that both j € Ipe and (7,7) € Ipsx because in this
case the challenge oracle would have returned L due to the condition in Line 42. Thus, it
holds (4,) ¢ Ipex in the else case which means that psk; ; was not replaced and therefore
uniformly sampled during the key generation. We construct adversary Co formally in
Listing 24. For the pre-shared keys, the number of different keys is determined by the
number of users. However, we need at most ¢, + g4+ q. different PRF keys for the reduction
and at most the same number of queries to the evaluation oracle.

Reduction to Game G4. Game G4 can be reduced to the CCA security of AEAD. We
construct an adversary D against CCA security of AEAD using adversary A from G4 as

The Pre-Shared Key Modes of HPKE 37

Listing 24: Adversary C, against PRF security for KS, having access to oracle EVAL and
using an adversary A against G3/Gy of the proof of Theorem 1.

B
01 for i € [n]

02 (ski, pk;) < Gen

03 for j € [i]

04 psk,; < GenPSK

05 pskj; < psk,;

06 E,&' T, Tpex < 0

07 £4-0

08 b<{0,1}

09 b & ABNGDECCHrLREPPRREPPSK () g)

10 return [b=1b']

Oracle ENc(i € [n], j € [n],m, aad, info)

11 (e1, K) € KEM.Encaps(pk;)

12 (k, nonce) <+ KS(K, psk,;, info)

13 if (4,5) ¢ Ipsx

14 if 3(K, nonce’, ') : (K, nonce’, K, i, j, ¢, info) € Apne

15 abort

16 else if 3(k', nonce’,¢') : (K', nonce’, K, i, 3,0, info) € Apec
17 (k, nonce) + (k', nonce’)

18 ABne + Agne U {(k, nonce, K, i, j, ¢, info)}

19 else

20 l—0+1
21 (k, nonce) < EvAL(Y, K||info) /eval query
22 Agne < Apne U{(k, nonce, K,1,j,, info)}

23 ¢z < AEAD.Enc(k, m, aad, nonce)
24 return (c1,c2)

Oracle DEC(i € [n],j € [n], (c1, c2), aad, info)

25 if skj = LV (pk;, psk;, (c1, c2), aad, info) € €
return L

K <+ KEM.Decaps(sk;, c1)

(k, nonce) < KS(K, psk;;, info)

if 3K': (pkj,c1, K') € &'
(k, nonce) < KS(K', psk,;, info)

31 if 3(k', nonce’) : (K, nonce’, K', psk,;, info) € Ak

32 (k, nonce) + (k', nonce’)

33 else

34 (k, nonce) & K x {0, 1}Nnonee

35 Ak < Ak U{(k, nonce, K, psk;;, info) }

36 else if (i,7) ¢ Ipex

37 if 3(K', nonce’, ') : (K, nonce’, K, i, j, U, info) € Agnc U Apec
38 (k, nonce) «+ (k', nonce’)

39 else

40 L tl+1

41 (k, nonce) < EvAL(Y, K||info) /eval query
42 Apec + Apec U{(k, nonce, K, 1, j, £, info) }

43 m + AEAD.Dec(k, cz, aad, nonce)

44 return m

Oracle CHALL(€ [n], j € [n],mo, m1, aad, info)

45 if |mo| # |m1| V (j € Tpx A (4, 5) € Tpex)
return 1

(e1, K) < KEM.Encaps(pk;)

(K, nonce) < KS(K, psk,;, info)

if j ¢ Ik
K&K

51 &« & U{(pkj,c1, K)}

52 (k,nonce) < KS(K, psk;;, info)

53 (k,nonce) & K’ x {0,1}Nnonce

54 Ag + A U{(k, nonce, K, psk;;, info) }

55 else

56 if 3(K', nonce’, €') : (K',nonce’, K,i, 5,0, info) € Apnc

57 abort

58 else if 3(k', nonce’,0') : (k', nonce’, K, i, j, ', info) € Apec
59 (k, nonce) + (k', nonce’)

60 Apgne < Agne U{(k, nonce, K, 4,5, info)}

61 else

62 L+ 041

63 (k, nonce) < EvAL(Y, K||info) /eval query
64 Agne < Apne U{(k, nonce, K,1,j,¢, info)}

65 co < AEAD.Enc(k, my, aad, nonce)
66 & < EU{(pk;, psk,j, (c1,c2), aad, info)}
67 return (c1,c2)

Oracle REPPK(j € [n], pk)
68 (skj, pk;) < (L, pk)
69 I+ I U{j}

Oracle REPPSK(i € [n],j € [n], psk)
70 psk;; < psk

71 psk;; < psk

72 Tpesx < Ipsx U {(4,49), (45,9}

described in Listing 25. Adversary D simulates the oracles using their own encryption
oracle ENCagap and decryption oracle DECagap. The previous game modifications ensure
that the keys and nonces for the AEAD encryptions are uniformly random and that there
is no collision between oracle ENC and CHALL which are both calling the encryption
function. This matches the conditions of the CCA game for AEAD. The difficulty is that
the simulator has to recognize if a query to the decryption oracle corresponds to the same
key and nonce as for a previous call without knowing the actual key and nonce. This can
be solved by keeping track of the queried parameter since KS deterministically relates
their inputs and outputs (set £ and sets Agp. and Ape. from the previous games).

38 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

It remains to show that the simulation of the decryption oracle is sound. This is the
case if the CCA decryption oracle is never queried on challenge parameters, i.e. on tuples
(¢, ¢, aad) corresponding to a CCA encryption query (see Line 11 in the CCA experiment
for AEAD). Assume that it is queried on such a tuple, i.e. (¢, co, aad) was part of a challenge
query. However, since the inputs to KS must also be equal (condition in Line 11 and
one-to-one relation from instance ¢ to challenge query), values K, psk; ;, and info also
match the challenge query. If ¢; also equals the one from the challenge query, all relevant
parameters are the same and the parameters can be found in set £. However, in this case
the decryption oracle aborts after the first check in Line 25, returns 1 and the CCA oracle
is not queried. The remaining case is a query for a ¢; which is not equal to the one stored
in £. This case can also not occur due to the condition in Line 25 which guarantees that
the public key was not replaced (sk; # L) because otherwise the oracle returns L again.
If the public key was not replaced, there exists an entry in set £ connecting K and ¢;
which means that we have the same ¢; whenever we have the same K as for a previous
challenge query. In total, the decryption oracle of the CCA game never returns 1 and the
simulation is sound which completes the proof:

Pr[Gy = 1] < Advidaleyia cA,

Putting everything together, we obtain the stated bound. O

B.2 Proof of Theorem 2

Proof. We describe several games depicted in Listing 26.

Game Gy. Let Gg be the (n, ge, G4, e, Tpk; T'sk, Tpsk)-Insider-CCA game for the construction
pskAPKE[AKEM, KS, AEAD], i.e.,

Pr[Go = 1] = Pr[(n, ge, 9d, Gc; Tpk, T'sk, Tpsk)-Insider-CCA(A) = 1].

Game Gp. In this game, we make the following changes. If the challenge oracle is queried
on a receiver index j which was not replaced, i.e. j ¢ I, we replace the KEM key K by
a uniformly random value from the key space K. The result is then stored together with
the receiver’s public key and the ciphertext in set £. We further change the decryption
oracle by replacing the KEM key K by the one from set £’ if there already exists such a
key for the queried ciphertext ¢; and the receiver’s public key pk;. Distinguishing these
changes can be turned into an adversary B against (n, ¢4, g.1)-CCA security of KEM as
depicted in Listing 27.

[Pr(Go = 1] — Pr[Gy = 1]| < Advig il @) nsderceh,

Note that B can simulate all oracles by their own or with the oracles provided by their own
experiment. For REPPK and REPSK, the simulator can store the values and answer other
oracle queries accordingly. Note that we introduce another set R to store the indices for
which the public key was replaced to differentiate public key replacements from secret key
replacements since we handle them differently. © The encryption and decryption oracle can

5 This is implicitly done in the security notion, e.g. decryption queries are still possible for
replaced receiver’s secret keys but not for replaced receiver’s public keys since the experiment
is not able to decrypt anymore.

The Pre-Shared Key Modes of HPKE 39

Listing 25: Adversary D against (ge + ¢c, q4)-CCA security for AEAD having access to
oracles ENCagap and DECapgap. Adversary A against G4 makes at most gq queries to

DEc and ¢, queries to CHALL.

DENCAEAD DECARAD

01 for i € [n]

02 (ski, pk;) < Gen

03 for j € [i]

04 psk;; < GenPSK

05 pskj; < psk;;

06 E,&' Ty, Tpex < 0

07 £+ 0

08 b & ABNGDECCUALRSFPRREPPSK ())
09 return v’

Oracle ENc(i € [n], j € [n],m, aad, info)
10 (1, K) < KEM.Encaps(pk;)

11 (K, nonce) < KS(K, psk,;, info)

12 if (4, 5) ¢ Tpex

13 if 3¢ : (¢, K, i, j, info) € Apne

14 abort
15 else if 3¢ : (', K, 14,3, info) € Apec
16 c2 + ENCapap (¢, m, m, aad)

17 Agne + Apne U{(¢', K, i, j, info)}
18 else

19 L+ 0+1

20 ¢z < ENCagap (¢, m, m, aad)

21 Agne < Apne U{({, K, i, j, info) }
22 else

23 ¢ + AEAD.Enc(k,m, aad, nonce)
24 return (c1,c2)

Oracle DEC(i € [n],j € [n], (1, ¢2), aad, info)

25 if skj = LV (pk;, psk;, (c1, c2), aad, info) € €
26 return L

27 K < KEM.Decaps(sk;, c1)

28 (k, nonce) + KS(K, psk,;, info)

29 if 3¢ : (pkj,c1,l') € &'

30 m ¢ DECagap(?, c2, aad)

31 else if (4,7) ¢ Ipsx

32 if 30 : (', K4, 7, info) € Agne U Apec

33 m < DECagaD (¢, c2, aad)
34 else

35 L L+1

36 m < DECapap (4, c2, aad)

37 Apee + Apec U{(¢, K, 1, j, info)}
38 else

39 m < AEAD.Dec(k, ¢z, aad, nonce)
40 return m

Oracle CHALL(i € [n],j € [n], mo, M1, aad, info)
41 if |mo| # |mal V (§ € Tk A (4, 5) € Tpex)

42 return L

43 (c1, K) ¢ KEM.Encaps(pk;)

44 (k,nonce) + KS(K, psk,, info)

45 if j ¢ Iy

46 L+ L+1

a7 & & U{(pkj, 1,0}

48 ¢ « ENCapap (4, mo, m1, aad)

49 else

50 if 3¢ : (', K,i, 7, info) € Agne

51 abort

52 else if 3¢ : (¢, K, i, j, info) € Apec
53 ¢2 + ENCagap (¢, mo, m1, aad)
54 Apgne < Apne U{(¢', K, i, j, info)}
55 else

56 L+ 041

57 ¢2 + ENCagap (4, mo, m1, aad)

58 ABne Apne U{(4, K, 1, j, info)}
59 € < EU{(pk;, psk,;, (c1,c2), aad, info)}
60 return (c1,c2)

Oracle REPPK(] € [n], pk)
61 (skj,pk;) < (L, pk)
62 I+ Ipe U {5}

Oracle REPPSK(i € [n],j € [n], psk)
63 psk;; < psk

64 psk;; < psk

65 Ipesk < Ipsx U {(4,49), (45,9}

be simulated by the encapsulation and decapsulation oracle provided by the AKEM Insider-
CCA game. If the challenge oracle is queried on non-replaced receiver keys, i.e. j ¢ I
(Line 24), B can use their own challenge. If B is in the real case of their (n, g4, ¢.)-CCA
game, they perfectly simulate Gg. If they are in the random case, they perfectly simulate

G;.

Game Gg. Game G; is exactly Game G; in the proof of Theorem 1. Hence, we can apply
the same game modifications as in the previous proof to obtain the same final game, called

40 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Listing 26: Games Gy — G; for the proof of Theorem 2.

Go=G1

01 for i € [n]

02 (sks, pk;) <& Gen

03 for j € [i]

04 psk, < GenPSK

05 psk;; < psk;;

06 E,&", Tpxy Tpsx + 0

07 b<& {0,1}

08 b/ <i AENC,DEC,CHALL,REPPK,REPSK,REPPSK

09 return [b=1¥']

Oracle ENC(i € [n],j € [n], m, aad, info)
10 if sk; = L

11 return L

12 (c1, K) <& AuthEncap(ski, pk;)

13 (k, nonce) + KS(K, psk,;, info)

14 ¢ < AEAD.Enc(k, m, aad, nonce)
15 return (ci1,c2)

Oracle DEC(i € [n], j € [n], (c1, c2), aad, info)

16 if sk; = LV (pk;, psk,;, (c1,c2), aad, info) € €
17 return L

18 if 3K : (pk;, pk;,c, K) € &' /G1
19 return K /G1
20 K < AuthDecap(pk;, sk;,c1)

21 (k, nonce) < KS(K, psk,;, info)

22 m < AEAD.Dec(k, c2, aad, nonce)

23 return m

Oracle CHALL(% € [n], j € [n], mo, m1, aad, info)

24 if |m0| 75 |m1\Vski = L\/(j S Fpk/\(i,j) e Fpsk)
25 return L
26 (c1, K) € AuthEncap(sk:, pk;)

27 if j ¢ Tk //G1
28 K&K /G1
29 &« &' U{(pk;, pk; ¢, K)} //G1

30 (k, nonce) = KS(K, psk,;, info)

31 ¢2 + AEAD.Enc(k, ms, aad, nonce)

32 £ + EU{(pk;, pk;, psk,;, (c1, c2), aad, info) }
33 return (ci,c2)

Oracle REPPK(j € [n], pk)

34 (skj, pk;) < (pk, L)
35 Fpk erkU{j}

Oracle REPSK(j € [n], sk)

36 (sk;, ph;) < (sk, u(sk))
37 Ik + I U {j}

Oracle REPPSK(i € [n],j € [n], psk)

38 psk;; < psk
39 psk;; < psk
40 FPSk — FPSK U {(Zvj)v (]7 Z)}

The Pre-Shared Key Modes of HPKE 41

Listing 27: Adversary B against (7, ge, 4d, g, Tpk, 7'sk)-Insider-CCA security for AKEM with
access to oracles OAENCAP, OADECAP, OCHALL, and OREPSK. Adversary A against
Gp/G; makes at most g. queries to ENC, at most g4 queries to DEC, at most g. queries to
CHALL, at most rp; queries to REPPK, at most 7, queries to REPSK, and at most 7

queries to REPPSK.

OAENcAP,OADECAP,OCHALL, OREPSK
B (pky, ..., pk,)

01 for ¢ € [n]
for j € [i]
psk,; E Kpske
psk;; < psk;;
E, Do, Tps, R 0
b {0,1}
b/ &AENC,DE(‘,,CHALI.,RF‘.PPK,RF}PSK,RF}PPSK(pk17.

return [b = b']

Oracle ENC(i € [n],j € [n], m, aad, info)
09 if ieR

10 return L

11 (e1, K) < OAENCAP(i, pk;)

12 (k, nonce) < KS(K, psk,;, info)

13 ¢z « AEAD.Enc(k, m, aad, nonce)
14 return (c1,c2)

Oracle DEC(i € [n], j € [n], (c1, c2), aad, info)

15 if j € RV (pky, psk,;, (c1,c2), aad, info) € €
16 return L

17 K < OADECAP(pk;, j,c1)

18if K=1

19 return L

20 (k, nonce) < KS(K, psk;;, info)

m < AEAD.Dec(k, c2, aad, nonce)
return m

Oracle CHALL(: € [n], j € [n],mo, m1, aad, info)

if |mo| # |m1|Vie RV (§ € Tpx A (4,]) € Tpsx)
return |

(c1, K) < OAENCAP(i, pk;)

if j & I
(c1, K) <& OCHALL(4, 7)

(k, nonce) + KS(K, psk,;, info)

co AEAD.Enc(k, ms, aad, nonce)

& « EU{(pk;, pk;, psk;;, (c1, c2), aad, info)}

return (ci1,c2)

Oracle REPPK(j € [n], pk)
32 pk; < pk

33 Ik <+ I U{j}

34 R+ RU{j}

Oracle REPSK(j € [n], sk)
35 (Skjvpkj) — (57@7#(5/?))
36 Fpk FFpkU{]}
37 OREPSK(j, sk)

Oracle REPPSK(i € [n], j € [n], psk)
38 psk;; < psk

39 psk;; < psk

40 FPSk <~ FPSk U {(%])7 (]71)}

42 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Gg This results in the same bound

Pr[Gy = 1] — Pr[Gy = 1]| < Adv{leda F9elPRE 4 agy (e faaaedetaatac) PRE

+ o

with a final winning probability of
Pr[Gy = 1] = Advgf&ngQd)—CCA.

Putting everything together results in the stated bound. a

B.3 Proof of Theorem 3

Proof. We describe a series of games in Listing 28.

Listing 28: Games Gy — G7 for the proof of Theorem 3.

Go — Gr Oracle DEC(i € [n], j € [n], (1, ¢2), aad, info)
01 for i € [n] 23 if sk; = L
02 (sks,pk;) <& GenSK 24 return L
03 for j € [i] 25 K < Decaps(sk;,c1)
04 psky; & Kpsk 26 if 3K’ : (pk;,c1, K') € € /G2 — Gz
05 psk;; + psk;; 27 K« K' /G2 — Gz
06 &, Tyox, €',E, A) 28 (k, nonce) < KS(K, psk,, info)
07 (%5, (¢1, ¢3), aad”, info*) & APNGPECRIPKREPSK (o k29 4 (i, §) ¢ Tpe /G1— Gy
08 return [(i*,5%) & Ipex A skj= # L 30 if 3K, nonce’ : (k' nonce',i, j, K, psk,;, info) € A /G1 — Gy
A (Do, pski- ;- (5, ¢5), aad” info*) & € 31 (k, nonce) « (K', nonce’) /G1—Gr
A pskDec(skj=, pskys j«, (c1, ¢3), aad”, info™) # 1] 32 else /G —Gr
33 (k, nonce) <& K’ x {0, 1}Vronee //Gs — Gz
Oracle ENc(i € [n], j € [n], m, aad, info) 34 m < AEAD.Dec(k;, c2, aad, nonce) /G1— Gy
s 35 m«+ L /Gr
09 (e1, K) < Encaps(pk;)) 36 if Im’ : (k, nonce,m, (c1,c2), aad) € &’ //Ge — Gr
10 (k, nonce) < KS(K, psk; ., info) ,
. “ 37 m & m //Ge — Gr
11 if sk # L /G1 — Gy
2 K&K /Gy — Gy °else 161 =G
A 4 2 T 39 me AEAD.Dec(k, c2, aad, nonce) /G1 — Gr
13 €+ EU{(pk;,c1,K)} /G2 — Gy i i
. , iy ;o . 40 A + AU{(k, nonce, i, j, K, psk;, info)} /G1 — Gr
14 if 3K, nonce’ : (K', nonce', i, j, K, psk,;, info) € A [/G1 — G7 7
w 41 m < AEAD.Dec(k, c2, aad, nonce) //Go
15 abort //Gs — Gy 42 ret
16 (k, nonce) < (k', nonce’) /G1 — Gr returnm
17 (k,nonce) < K’ x {0, 1}Nnonce //Ga — Gy))
18 A+ AU{(k, nonce,i, j, K, psk;;, info) } /G1 — Gr Oracle REPPK(j € [n], pk)
19 ¢z + AEAD.Enc(k, m, aad, nonce) 43 (skj, pk;) = (L, p)
20 & < EU{(pk;, psk,;, (c1,c2), aad, info)} . .
21 &+ ¢&'U {(k] nonc]e,m, (c1,¢2), aad)} //Ge — Gy Oracle REPPSK(i € [n], j € [1], psk)
22 return (c1,c2) 44 psk;; < psk
45 psk; < psk
It .. .
46 Tpex ¢ Ipec U{(4,5), (,9)}

Game Gg. This is the (n, ge, ga, Tpk, Tpsk)-Auth game for pskPKE[KEM, KS, AEAD], thus
we have
Pr[Go = 1] = Pr[(n, ge, 9d, "pk; Tpsi)-Auth(A) = 1].

Game G;. We introduce a set A to log the outputs of KS produced in ENC and DEC.
More specifically, A contains elements k, nonce, i, j, K, psk, info of the form that k, nonce
is the output of a KS call, K, psk, info, the input, and 4, j sender and receiver index for

The Pre-Shared Key Modes of HPKE 43

that query. If KS was already called with the same parameters, we can take the stored
value. For the encryption oracle, this is only done for queries for which the corresponding
receiver has not been corrupted, i.e. for queries with sk; # L (Line 11). For the decryption
oracle, we use the stored value only if the corresponding psk has not been replaced, i.e.
for queries on indices (4, j) ¢ Ipsx (Line 29). Since the change is only of formal nature, we
have

PI‘[GO = 1] = PI‘[Gl = 1}

Game Go. If the receiver’s key was not replaced, we replace the KEM secret K by a
uniformly random value in the encryption oracle ENC The result is stored to answer
the decryption oracle correctly. The change corresponds to an (n, gg, ¢.)-CCA adversary
against KEM. For simulating the REPPK oracle, we refer to the proof of Theorem 1 which
presents a solution for the same case. We obtain

|Pr[G; = 1] — Pr[Gs = 1]| < AdngE.&ffe)'CCA.

Game Gs. We abort in the encryption oracle if the corresponding receiver’s key was not
replaced and there already exists an entry in A with the queried parameters. Since K was
randomly chosen in the previous game, the probability of having such an entry is at most
%. Note that A is filled with an additional element at most once per ENC/DEC query.
This yields the following advantage:

QE(Qe +qq — 1)

Pr[Gy = 1] — Pr[Gs = 1]| < x

Game Gy4. If the receiver’s key was not replaced and we do not abort, we replace the
output of KS in the encryption oracle with uniformly random values of the respective
domain. The changes in Game G; ensure consistent outputs of KS, i.e. queries on ENC
or DEC with the same parameters lead to the same output of KS. Hence, games Gz and
G4 can only be distinguished by distinguishing the real output of KS from a uniformly
random one. This can be turned into an adversary against PRF security of KSy, i.e. keyed
on the first input. Note that K is chosen uniformly at random due to the changes in Game
Gs. There are at most ¢. different instances for the PRF and at most the same number of
queries resulting in

Pr[Gs = 1] — Pr[Gy = 1]| < AdviedePRF.

Game Gs. Now we apply changes to the decryption oracle analogously to the changes from
the previous game. If the corresponding psk has not been revealed, we replace the output
of KS in the decryption oracle with uniformly random values of the respective domain.
Again, we have consistent outputs of KS, i.e. queries on ENC and DEC with the same
parameters lead to the same output of KS. Games G4 and Gs can only be distinguished
by distinguishing the real output of KS from a uniformly random one. This can be turned
into an adversary against PRF security of KS,, i.e. keyed on the second input. Note that
psk was not replaced and is therefore uniformly random which matches the PRF game.
There are at most ¢4 different instances for the PRF and at most the same number of
queries resulting in

[Pr[Gy = 1] — Pr[Gs = 1| < Adv{ide) ™.

44 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Game Gg. We now store the results of encryption queries to replace the actual decryption
in the case of an honest oracle query, i.e. (i,) & Ipsx, by the stored results. This is only a
formal change since the correctness of the AEAD implies same win probabilities for this
game change:

PI‘[G5 = 1] = PI‘[G@ = 1]

Game Gz. In this game, we replace the actual decryption in an honest decryption oracle
query with 1. Distinguishing the game difference can be turned into an adversary against
INT-CTXT security of the underlying AEAD. We depict the adversary in Listing 29. There
are ¢, + qq instances and adversary D; makes at most gg queries to their decryption oracle
DECAgap. Thus, we obtain

|Pr[Gs = 1] — Pr[G; = 1]| < Advgfj&%rqud)-WT—CTXT.

Reduction to Game G7. We can reduce INT-CTXT security to Game G;. An adversary
against INT-CTXT can be used to simulate G;7. The adversary can simulate the decryption
oracle since in cases (7,7) ¢ Ipsx, they can output L (or the original encryption if it was
produced during the experiment). In cases (i,7) € Ipsx, they can compute the output by
their own. For the encryption oracle, the adversary can compute the output on their own
in cases sk; = L and use their own encryption oracle in cases sk; # L since key k and
nonce are uniformly random similarly to the adversary in Listing 29.

The output of the adversary against game G; can then be used to issue a decryption
query in the INT-CTXT experiment on either a new instance or a previous instance if the
output parameters i*, j*, ¢}, info* match with that instance. Matching parameters can be
identified by computing K* < Decaps(sk;-, c) and comparing (i*, j*, K*, psk;. ., info")
to set A similar to Line 14 or Line 31 in Listing 29. If the adversary against G7; wins,
the adversary against the INT-CTXT experiment has a valid ciphertext which does not
decrypt to L due to the winning condition of G7. Further, since the ciphertext must not
decrypt to L, it also holds sk; # 1 which means that the parameters correspond to an
actual instance of the simulator. That means the adversary can distinguish between the
real or random case since the result of the decryption query must be unequal to L in the
real case. This results in

Pr[G; = 1] < Advg;;;ﬁg'm-””.

Putting everything together we obtain the stated bound.

C Proofs for the Hybrid Post-Quantum APKE

C.1 Proof of Theorem 5

Proof. In order to prove Theorem 5, we will prove the following two inequalities.
p) p g q
(n,qe,qd,qc)-Insider-CCA (n+1,9¢,94,dc,qc)-Insider-CCA
AdV.A,APKE[AKEMl,AKEMQ,KS,AEAD] < Ade,AKEM1

(gc,qa+4qc)-PRF (qc,q94)-CCA
+ Adve (s’ + Advp AEAD

The Pre-Shared Key Modes of HPKE 45

Listing 29: Adversary D; against (¢e + ¢4, ¢a)-INT-CTXT security for AEAD having access
to oracles ENCagap and DECAgap from the proof of Theorem 3. Adversary A against
Gs5/Gg makes at most g. queries to ENC, at most g4 queries to DEC, at most r,; queries
to REPPK, and at most rpg, queries to REPPSK.

D::N(VAEAD’DWAEAD Oracle DEC(i € [n], j € [n], (c1, c2), aad, info)
01 for i € [n] 25 if skj = L
02 (ski, pk;) < GenSK 26 return L
03 for j € [q] 27 K < Decaps(skj,c1)
04 pSkij & Kpsk 28 if 3K’ : (pk],cl,K/) e
05 pskj; < psk; 29 K+ K’
06 &, Tpo, &, A) 30 if (4,7) ¢ Ipex
07 €0 31 if 3¢: (4,4, 4, K, psk,;, info) € A
08 (i*,j*, (Civ C;), aad*, ano*) & AENC,DEC,REPPK,REPPSK7 (pk17 o 7pkn) 32 m <— DECAEAD(Z, C2, aad)
09 return [(z*,7%) ¢ Ipex A skj» # L 33 else

A (pk v, pskp e, (c1,¢3), aad”, info™) ¢ € 34 Let+1

A pskDec(skj«, psk;« . (c1, ¢3), aad”, info™) # L] 35 m < DECagap (¢, c2, aad)

36 else
Oracle ENC(i € [n],j € [n], m, aad, info) 37 (k, nonce) + KS(K, psk,, info)
S E . 38 m <« AEAD.Dec(k, c2, aad, nonce)
10 (a1, K) < Encaps(pk;) 59 A AU{(L,i,j, K, psh;, info)}
11 if sky # L 40 J
return m

12 K&K
13 £« EU{(pk; 1, K)}

Oracle REPPK(j € [n], pk
14 if 3: (4,0, K, psk,,, info) € A race U € [n], pk)

41 (Sijpkj) — (L, pk)

15 abort

16 else . .

17 L l+1 Oracle REPPSK(i € [n], j € [n], psk)
18 ¢z < ENCagap (4, m, aad) 42 psk;; psk

19 else 43 psk;; < psk

20 (k,nonce) < KS(K, psk,;, info) 44 Ty + Tpae U {(4,4), (4,9)}

21 ¢y + AEAD.Enc(k,m, aad, nonce)

22 A+ AU{(4,4,], K, psk;;, info) }

23 &€ + EU{(pk;, psk,j, (c1, c2), aad, info)}
24 return (ci,c2)

and
(1,9e,9d,9c)-Insider-CCA (n,qe,q9d,qc qc)-Insider-CCA
AdV.A,APKE[AKEM1,AKEMQ,KS,AEAD] < AdVB,AKEM2 @)
(g¢,94+4qc)-PRF (4e,94)-CCA
+ Ade7K52 + AdvD,AEAD

Inequality (1): First, we show

(1,qe,qd,qc)-Insider-CCA < (n4+1,9¢,9d,9¢,9e +9d,9c,qe +qa+qc)-Insider-CCA
AdVA,APKE[AKEMl,AKEI\/IQ,KS,AEAD] = AdVj\,pskAPKE[AKEM,KS,AEAD] : 3)

Then, we can apply a similar proof as for Theorem 2 with the following change. Due to
the special structure of adversary A, we can skip the game which introduces the PRF
security loss from querying KS in the second input (the psk part). This is because none of
the conditions which are used for the PRF advantage are met. In detail, for the challenge
oracle, it always holds j ¢ Iy, since the challenge oracle may only be queried for an honest
receiver. The same holds for the loss based on the entropy of the KEM key which eliminates
collisions as a preparation for the psk part of the PRF and the number of different keys
in the CCA experiment for AEAD. Due to the structure of the adversary in Listing 30 it

46 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

never holds (7,7) ¢ Ipex. This results in

Adv (n+1,9¢,9d,9¢,9e +9d,9c ge +qa+qc)-Insider-CCA < Adv (n+1,9¢,9d,9¢,9c)-Insider-CCA
V 4, pskAPKE[AKEM,KS,AEAD] VB,AKEM;

(9¢,94+qc)-PRF
+ Adv, Ksy

A
To prove (3), we use an (n, ¢e, 44, gc, gc)-Insider-CCA adversary against APKE to construct
an adversary A against (n+1, ge, 4d, 4e, Ge + qd; de» Ge + qa + g)-Insider-CCA security against
pskAPKE as shown in Listing 30. One can see that A uses one query to REPPK for each
query to ENC and pskDec, i.e. rp;, = e + ¢4, and one query to REPSK for each CHALL
query, i.e. rg = ¢.. Additionally, we need to replace the “psk” for each query resulting in
Tpsk = Qe + qd + ¢c- This fulfills the adversarial query bounds from inequality (3).

Listing 30: (n + 1,qe, ¢d,9es 9e + 9d; ey §e + qa + qc)-Insider-CCA adversary A against
pskAPKE[AKEM1, KS, AEAD] using an (n, e, qd, ¢c)-Insider-CCA adversary A against
APKE[AKEM;, AKEM3, KS, AEAD] for Inequality (3) of the proof of Theorem 5.

A"OENC,O]JF}C,OCHAI.I.,ORFTPPK,OREPSK,ORF}PPSK(pki7 . ,Pkiﬂ) Oracle ADEC((pkl, pkz),j c [n]v (C, C/), aad, mfo)
01 for i € [n] 15 if 3’ € [n] : pk' = pkjs
02 (sk?,pk?) <& AKEM,.Gen 16 i+
03 pk; « (pky, pk?) 17 else
04 b < AAENGADEC.CHALL (pp pk) 18 OREPPK(n + 1, pk')
05 return b’ 19 i+ n+1
20 K' <+ AuthDecap,(pk®, sk3,c’)
Oracle AENC(i € [n], (pk', pk?), m, aad, info) 21 OREPPSK(3, j, K')
06 if 3j' € [n] : pk' = pk]l/ 22 m <« ODEc(i, j, ¢, aad, info)
07 G 23 return m
08 else ooy)
09 OREPPK(n + 1, pk') Oracle CHALL((sk", sk?), j € [n], mo, m1, aad, info)
10 jen+1 24 OREPSK(n + 1, sk*)
11 (¢, K') & AuthEncap,(sk?, pk?) 25 (c/, K')AuthEncap, (sk?, pk?)
12 OREPPSK(i, j, K') 26 OREPPSK(n + 1,5, K')
13 ¢ + OENc(4, j, m, aad, info) 27 ¢+ OCHALL(n + 1, j, mo, m1, aad, info)
14 return (c,c) 28 return (c,c’)

Inequality (2): Proving the second inequality (2), we start with the game (n, ge, ¢4, g.)-Insider-
CCA for APKE[AKEM;, AKEMs, KS, AEAD] denoted by Gg in Listing 31.

Game Gy. In Game Gy, we replace the AKEM secret of AKEMs in the challenge oracle by
a uniformly random value. This can be directly turned into an adversary against AKEMy’s
Insider-CCA security:

Pr[Go = 1] — Pr[Gy = 1]| < Advig et dede)InsidercCA,

Game Gy. In Gg, the challenge oracle is changed such that the output of KS is replaced by
uniformly random values. Additionally, the decryption oracle is modified in the same way
but only if there is a corresponding element in £’. Since K’, which is the second key to KS,

The Pre-Shared Key Modes of HPKE 47

Listing 31: Games Gy — Gy for the proof of Inequality (2) of Theorem 5.

Go — Go Oracle ADEC((pk', pk?),j € [n], ((c1, c2),), aad, info)

01 for i € [n] 12 if ((pk', pk?), (pkj, pk3), (c, '), aad, info) € €

02 (ski,pk;) < AKEM;.Gen 13 return L

03 (sk?, pk?) & AKEM,.Gen 14 K + AuthDecap, (pk', skj, c1)

04 pk; < (pk},pk?) 15 K’ + AuthDecap, (pk?, sk3,c’)

05 £, A+ 16 (k,nonce) + KS(K, K', c||info)

06 b+ {0,1} 17 if 3K : (pk?, pk2, ¢ K) € &' /G — G

07 br & AAE.\'C,ADE(',CHA\LL(pkl, L 7pkn) 18 K’ “ K 7 //Gl _ G2

08 return [b="b] 19 (k,nonce) «+ KS(K, K', c||info) /G1 — Gz
20 (k,nonce) & K’ x {0, 1} Nnonce // Gz

Oracle AENC(i € [n], (pk', pk*), m, aad, info) 21 m < AEAD.Dec(k, c2, aad, nonce)

09 (¢, K') <& AuthEncap,(sk?, pk?) 22 return m

10 ¢ + pskAEnc(sk!, pk*, K',m, aad, c'||info)

11 return (c,c) Oracle CHALL((sk", sk?),] € [n], mo, m1, aad, info)

23 if |mol| # |ma|

24 return L

25 (c1, K) < AuthEncap, (sk*, pk})
26 (¢, K') <& AuthEncap, (sk®, pk?)

27 K' & Ko /G1 — G2
28 &« & U{(u(sk?), pk, ¢, K")} /G1 — Gz
29 (k, nonce) < KS(K, K', c||info)

30 (k,nonce) & K’ x {0, 1}Vnonee /G2

31 ¢z AEAD.Enc(k, ms, aad, nonce)

32 ¢+ (c1,02)

33 £« EU{((u(sk"), u(sk?)), (pk;,pkﬁ), (c,c'), aad, info)}
34 return (c,c’)

is uniformly random due to the changes in the last game, this can be turned into an PRF
adversary against KSg, i.e. KS keyed on the second input. Due to changes in the previous
game, we keep consistent outputs with the decryption oracle since we reuse output values
which were sampled before. There are at most g. different keys as well as ¢g. evaluation
queries resulting in

Pr[Gy = 1] — Pr[Gy = 1| < AdvyiidataelPRE,

Reduction to Game Gy. Game Gy can be reduced to the CCA security of AEAD. We
construct an adversary D against CCA security of AEAD using adversary A from Go. This
similar to the the reduction to Game G4 in the proof of Theorem 1 and the adversary
constructed in Listing 25. Note that there is a difference in the number of AEAD keys
since we do not have a static psk and adversary D can simulate encryption queries without
any query to their own oracles. This results in

Pr[Gy = 1] < Advigil .

Putting everything together, we obtain (2) which concludes the proof. a

48 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

C.2 Proof of Theorem 6

Proof. In order to prove Theorem 6, we prove the following two equations.

(n,qe,q4)-Outsider-Auth (n+1,qe,qa,qe)-Outsider-CCA
AdV.A,APKE[AKEMl,AKEMQ,KS,AEAD] < AdVBl,AKEMl
(n+1,ge,q4)-Outsider-Auth
+ AdVBg,AKEMl

(ge+9d,9e+q4)-PRF
+ AdVC,K51

(2¢e+qa+1,qa+1)-INT-CTXT
+ AdVD,qAEAqS qd
qe(ge +qa—1)

+
Kl

and
(1,ge ,qa)-Outsider-Auth (n,0,q4,qe)-Outsider-CCA
AdV 4 APKE[AKEM, AKEMs kS, AEAD] < AdVE AKEM,

(n,qe,qq)-Outsider-Auth
+ AdVBz,AKEMQ

,q4)-PRF
+ Advg'ies” (5)

(2¢e+qa+1,q4+1)-INT-CTXT
+ AdVD,AEAD

Qe(qe +qd — 1)
+ .
K|

Inequality (4): We use a similar technique as in the proof of Theorem 5. First, we
show

(n,qge,q4)-Outsider-Auth < (n+1,9¢,9d,9¢+9d,9e +9a)-Outsider-Auth
AdV 4 APKE[AKEM, AKEM, KS AEAD] = AV 1 L bk EIAKEM KS AEAD] : (6)

Then, we can apply a similar proof as for Theorem 4 with the following change. Due to the
special structure of adversary A, we can skip the changes in Game Gg which introduces
the PRF security loss from querying KS in the second input (the psk part). This is because
none of the conditions which are used for the PRF advantage are met. In detail, for both
the encryption and decryption oracle the conditions are ¢ ¢ Iy V (i,5) ¢ Ipex and i € I
which leads to the condition (4, j) ¢ Ipex. However, (i, j) ¢ Ipex never holds since A queries
the REPPSK oracle before querying the encryption or decryption oracle.
This results in
n+1,9¢,9d,9e Qe -Outsider-Auth n+1,q¢,94,qe)-Outsider-CCA
A AKEM s AAD <Adv e

(n+1,g¢,qq)-Outsider-Auth
+ AdVBQ,AKEMl

(¢e+9d,qe+qa)-PRF
+ AdVC,Ksl

(2¢e+qa+1,qa+1)-INT-CTXT
+ AdVD,AEAD

qe(ge +qa— 1)
4 e
K]

To prove (6), we use an (n, g, ¢q)-Outsider-Auth adversary against APKE to construct an

adversary A against (n + 1, ge, ¢a, 9e + 44, ¢e + qa)-Outsider-Auth security of pskAPKE as

The Pre-Shared Key Modes of HPKE 49

Listing 32: (n + 1,4c,qa,9e + 94,0,gc + ga)-Outsider-Auth adversary A against
pskAPKE[AKEMy, KS, AEAD] using an (n, e, qq)-Outsider-Auth adversary A against
APKE[AKEM;, AKEMy, KS, AEAD] for Inequality (6) of the proof of Theorem 6.

-A'OENC,()DEC,OCHALL,OREPPK,OREPSK,OREPPSK(pk}7 L ’pkrlwrl) Oracle ADEC((pkl,pkz),j c [n] (C, C/)7 aad, ano)
01 for i € [n] 15 if 3i' € [0] : pk' = pky
02 (skZ,pk?) <& AKEM2.Gen 16 i«
03 pk; < (pk;, pk?) 17 else
04 (i*,5*, (c*, &™), aad*, info*) & ANENOADEC(pp o pk) 18 OREPPK(n + 1, pk')
05 return (i*,j*,c*, aad*, info*) 19 i+ n+1
20 K’ <+ AuthDecap,(pk?, sk3,c’)
Oracle AENC(i € [n], (pk', pk*), m, aad, info) 21 OREPPSK(i,j, K')
06 if 3 € [0 : pk' = pk;, 22 m + ODEc(, j, ¢, aad, info)
07§ ej’ 23 return m
08 else

09 OREPPK(n + 1, pk')

10 g+n+1

11 (¢, K') < AuthEncap,(sk?, pk?)
12 OREPPSK(4, 7, K')

13 ¢ « OENc(s, ,m, aad, info)

14 return (c,c’)

shown in Listing 32. One can see that A uses one query to REPPK for each query to ENC
and DEC, i.e. rp; = ¢e + ¢4. Additionally, we need to replace the “psk” for each query
resulting in 7ps = ge + gq. This fulfills the adversarial query bounds from inequality (6).

Inequality (5): Proving the second inequality (5), we start with the (n, g., g4)-Outsider-
Auth game for APKE[AKEM;, AKEM,, KS, AEAD] denoted by G in Listing 33.

Listing 33: Games Gy — Gg for the proof of Inequality (5) of Theorem 6.

Go — G Oracle ADEC((pk', pk?),j € [n], ((c1,c2), '), aad, info)
01 for i € [n] 21 b0 /G2 — Ge
02 (sk},pk!) & AKEM,.Gen 22 K' « AuthDecap(pk?, sk?,¢')
03 (sk?,pk?) < AKEM2.Gen 23 K « AuthDecap, (pk', sk}, c1)
04 pk, « (pk},pk?) 24 if 3K : (pk?, pk3, ¢, K) € €' /G1 — Gg
O ipor) & gtbeabie 2 KR /G~ Gs
06 (i",57, (¢",€""), aad”, info") & AT (k... pk) 26 else if pk® € {pk?,..., p} A K’ # L /G2 — Gs
07 retu!“n) .) . 27 K&K /G2 — Ge
[((pkL, p2), (pk}- , pk2.), (c*, "), aad”, info™) ¢ € 28 &« £ U{(ph* pk?, ¢ K")} /G2 — G
A (skje,sk3a) # L ‘ 29 b1 //Ga — Gg
A ADEC((pki- , k2.), (skj- , sk3+), (¢*, ™), aad” info”) # L] 30 (k, nonce) « KS(K, K', ¢||info)
. 31ifb=1 //Gs — Ge
Oracle AENC(i € [n], (pk', pk*), m, aad, info) 32 (k,nonce) & K’ x {0, 1}¥nonce /Gi— Go
08 (¢, K') < AuthEncap, (sk?, pk?) 33 if (K, nonce’) : (K, nonce’, (pk*, pk*), (pk}, pk?), K, K',¢'||info) € A /Gs — G
09 K' & Ks /G —Gg 34 (k,nonce) + (K, nonce’) //Gs — Gg
10 &+ & U{(pk?, pk*, ¢, K")})G —Gg 35 m« L /Ge
11 (e1, K) < AuthEncap, (sk}, pk') 36 else /Gs
12 (k, nonce) - KS(K, K', c'||info) 37 m + AEAD.Dec(k, c2, aad, nonce) //Ge
13 if 3(K', nonce’) : (k', nonce’, (pk}, pk?), (pk*, pk?), K, K', ¢ ||info) € A JG3 — Gg 38 m < AEAD.Dec(k, ¢z, aad, nonce) /Go = Ga
14 abort JGs —Gg 39 if b=1 /Ge
15 (k,nonce) (k', nonce’) /Gs—Gs 40 m< L /Gs
16 ¢y + AEAD.Enc(k, m, aad, nonce) 41 A« AU{(k, nonce, (pk*, pk*), (pkj, pk3), K, K', || info)} /Gs — Go
17 ¢ 4 (1, c2) 42 return m
18 A AU {(k, nonce, (pk!, pk?), (pk*, pk*), K, K', ¢ ||info)} /Gs — Gs
19 € « EU{((pk!. pk?), (pk", pk?), (c, '), aad, info)}
20 return (c,c’)

Game G;. We replace the AKEM secret of AKEMy by a uniformly random value in the
encryption oracle and store the result together with the corresponding parameters in set

50 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

&’ so that the decapsulation gives consistent results (Line 25). The advantage can be
turned into an adversary against the Outsider-CCA security of AKEM; issuing a challenge
query for each query to ENC and a decapsulation query for each query to pskDec. Note
that there are no encapsulation queries necessary. This results in

Pr[Go = 1] — Pr[Gy = 1]| < Advig e -OutsiderCCA,

Game Gy. Now we replace the AKEM secret of AKEMy by a uniformly random value in
the decryption oracle if the parameter set was not queried before, i.e. the parameters do
not occur in & which stores results from previous queries to AENC and ADEC (Line 24),
the receiver is honest, i.e. pk* € {pk%, e ,pk?}, and the shared KEM secret is not L. We
additionally add a bit b (Line 29) which indicates if the before mentioned case occurs
which will be used in further game modifications. The setup now matches with oracles
of an Outsider-Auth adversary against AKEMy and such an adversary can simulate the
games. This results in the following advantage:

|Pr[G; = 1] — Pr[Gy = 1]| < AdV;gzllﬁquéi'\)/l;outsider—Auth’

Game G3. We insert a set A to log the outputs of KS. If KS was already called with the
same parameters, we take the stored value. Since the change is only conceptual due to a

deterministic KS, we have
PI‘[GQ = 1] = Pr[Gg = 1]

Game Gy. In case b =1 (the case we replaced the KEM secret in Game Gs), we replace
the output of KS with uniformly random values of the respective domain. The changes
in the last game ensure consistent outputs of KS, i.e. queries on AENC and ADEC with
the same parameters lead to the same output of KS. Hence, game Gz and G4 can only
be distinguished by distinguishing the real output of KS from a uniformly random one.
This can be turned into an adversary against PRF security of KSs, i.e. keyed in the second
input, since key K’ is uniformly chosen in case b = 1 due to the changes in Game Go.
There are at most ¢4 different keys and at most ¢4 different queries resulting in

Pr[Gs = 1] — Pr[Gy = 1]| < Advid?) PR,

Game Gs. We abort in the encryption oracle if there already exists an entry in A with
the queried parameters. Since K’ was randomly chosen in Gi, the probability of having
such an entry is at most % Note that A is filled with another element at most once per

AENc/ADEC query. This yields the following advantage:

qe(ge +qa — 1)

IPr[Gy = 1] — Pr[Gs = 1]| < K

Game Gg. In this game, we replace the actual decryption in an honest decryption oracle
query, i.e. case b = 1, with L. The same holds if there is already an element in A which has
the same parameters. Distinguishing the game difference can be turned into an adversary
against INT-CTXT security of the underlying AEAD, the construction can be found in
Listing 34. There are ¢, + qq4 different keys and adversary D; makes at most g4 queries to
their decryption oracle DECagap. Thus, we obtain

|Pr[Gs = 1] — Pr[Gg = 1]| < Advige hidan INT-CTXT,

The Pre-Shared Key Modes of HPKE 51

Reduction to Game Gg. We can reduce INT-CTXT security to Game Gg by constructing an
adversary simulating Gg very similar to the one in Listing 34. The adversary can simulate the
decryption oracle since in case b = 1 (Line 31 in Listing 33) and when there is a correspond-
ing element in A (Line 40 in Listing 33), they can output L (or the original encryption if it
was produced during the experiment). Otherwise, they can compute the output by their own.
For the encryption oracle, the adversary can use their own encryption oracle similar to the
adversary from the last game hop. The output of the adversary against game Gg can then be
used to issue a decryption query in the INT-CTXT experiment on either a new instance or a
previous instance if parameters (pk;. , pk.), pk;* , pk?*), K*, K", ¢*||info* match with that
instance.. Matching parameters can be identified by computing K* < AuthDecap, (sk;~, c1),
K" < AuthDecap,(sk;-,¢*) and comparing ((pkzk,pkiz*)7 (pk}*,pk?*),K*,K’*,c’*”info*)
to set A similar to Line 12 in Listing 34. If the adversary against Gg wins, the adversary
against the INT-CTXT experiment has a valid ciphertext which does not decrypt to L
due to the winning condition of Gg. That means they can distinguish between the real or
random case since the result of the decryption query must be unequal to L in the real
case. This results in

Pr[Gs = 1] < Advg;j\g;g'“‘””.

Putting everything together, we obtain the stated bound.

Listing 34: (g + ¢4, qq)-INT-CTXT adversary D; against AEAD using an adversary A
against Game Gg from the proof of Inequality (5) of Theorem 6.

DlENC“E“D‘DEC“EAD Oracle ADEC((pk', pk?),j € [n], ((c1, c2), ¢'), aad, info)
01 for i € [n] 21 b+ 0
02 (ski,pk;) < AKEM;.Gen 22 K’ + AuthDecap(pk?, sk3,c’)
03 (sk?,pk?) < AKEMa.Gen 23 K < AuthDecap, (pk', skj, c1)
04 pk; « (pkl, pk?) 24 if 3K : (pk?, pk?,c/,K) € &
05 E,E,A+ 0 255 K « K
06 (i*,5%, (", ¢*), aad”, info*) & ANNOAPE (pl, L pk,) 26 else if pk? € {pk?, ... pR2} AK' # L
07 return 27 K' & K
[((pkL L), (pk2. DKL), (¢,). 0ad", info") ¢ € % E e & (kP LK)
A (skj, sk3<) # L 29 b1

A ADEC((pkj. , pki.), (skjx, sk3), (c*, /%), aad” info*) # L] 30 if 3¢* : (¢*, (pk*, pk?), (pk}, pk3), K, K', ¢ ||info) € A
31 m < DECagap(£*, 2, aad, nonce)

Oracle AENC(i € [n], (pk*, pk?), m, aad, info) 32 elseif b=1

08 (c/, K') < AuthEncap,(sk?, pk*) 33 Let+1

09 K' & Ko 34 m < DECagap (¥, c2, aad, nonce)

10 &« & U{(pk2, pk?, ¢/, K')} 35 A AU{L, (pk', pk?), (pkj, pk3), K, K', || info)}
11 (c1, K) & AuthEncap, (sk!, pk*) 36 else .

12 if 30*: (€%, (pkt, pk2), (pk*, pk?), K, K', ¢ ||info) € A 37 (k,nonce) + KS(K, K', c'||info)

13 abort 38 m < AEAD.Dec(k, c2, aad, nonce)

14 else 39 return m

15 L—0+1

16 c2 + ENCagap (¢, m, aad, nonce)

17 ¢+ (e1,¢2)

18 A+ AU{(k, nonce, (pk!, pk?), (pk', pk?), K, K', || info)}
19 & « EU{((pk}, pk?), (pk*, pk?), (¢, '), aad, info)}

20 return (c¢,c’)

52 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

D Proof for the AKEM Constructions

D.1 Proof of Theorem 7

Proof. We start with the Insider-CCA game for AKEMES™[KEM, SIG, H] as Game G in
Listing 35:
Pr[(n, ge, 44, gc, sk)-Insider-CCA(A) = 1] = Pr[Gy = 1].

Listing 35: Games Gy — G3 for the proof of Theorem 7.

Gy — G3 Oracle CHALL(i € [n],j € [n])
01 for i € [n] 23 if j € Ix
02 ((sks, sigk;), (pk,;, vk:)) < Gen 24 return L
03 E,E Ty < 0 25 (¢, K') < Encaps(pk;)
04 b<{0,1} 26 K' & K/ /G2 — G
05 b/ & AAEN(:AP,J—\Dr.(:AP,Cn,—\l.l.,RnPSK((pkl’ ’U]ﬁ), o (pkw vkn)) 27 5/ — g/ U {(pkﬁc7 K/)} //Gz _ G3
06 return [b="b'] 28 o < Sign(sigk;, c||pk;||pk;||vk;)

29 K — H(K", olipk, | [vkil |k, l[ok;)
Oracle AENCAP(i € [n], (pk, vk)) 30 K&K //Gs
07 (e, K') < Encaps(pk) g; if f{=$1IC
08 o <& Sign(sigk;, c||pk,||pk||vk) A
09 K < H(K', o||pk, || vk:||pk||vk) 33 € < EU{((pk;, vki), (pk;, vkj), (¢, o), K)} //Go
10 return ((c,0), K) 34 &« EU{((pk;, vki), (pk;, vk;), (c,0), K)} [G1 —Gs

35 return ((c,0), K)
Oracle ADECAP((pk, vk), j € [n], (c,0))))
11 if 3K : ((pk, vk), (pk;, vk;), (c,0), K) € € Oracle REPSK (i € [n], (sk, sigk))
12 return K 36 (ski, sigh;) < (sk, Siglf)]
13 i Viy(vk, ol |pk||pk;||vk;, o) # 1 37 (pky, ki) < (u(sk), ' (sigk))
14 return L 38 I+ Ipx U {i}
15 K' ¢ Decaps(sk;,)

16 if 3K : (pk;,c, K) € & /G2 — Gs
17 K+ K //Gz —Gs
18 K&K //Gs
19 else //Gs
20 K+ H(K’,a||pkHkapijvkj) //Gs
21 K(—H(K’,UHpkHkapijvk]) //Go — Gz
22 return K

Game Gi. In Game Gi, we change the challenge oracle such that query results are not
only stored in set £ in the case of b = 1 but also for b = 0. Due to the correctness of the
decapsulation algorithm, this change does not effect the outputs of any query and the
winning probabilities do not change. These changes are only conceptual resulting in

PI’[GO =].] = PT[Gl = 1]

Game Gy. In Game Go, the KEM secret in the challenge oracle is replaced by uniformly
random value from the KEM keyspace K’ and the sampled values are stored. The de-
capsulation oracle is also modified to provide consistent outputs. The advantage of this
change corresponds to a CCA adversary against KEM depicted in Listing 36. Note that
a KEM adversary can simulate the complete game including the REPSK oracle and its

The Pre-Shared Key Modes of HPKE 53

effects since the signing keys are sampled by the simulator itself, the ADECAP can be
computed by the simulator in case the secret key was replaced and the challenge oracle
always returns L in case REPSK was called on the receiver’s key. In particular, we have

|Pr[G; = 1] — Pr[Gs = 1]| < Advgfgﬂzc)_CCA.

Listing 36: Adversary B against CCA security of KEM having access to oracles ODECAP
and OCHALL using adversary A from Games G;/Gs of the proof of Theorem 7.

BOPPeAROCHALL (. pk,) Oracle CHALL(Z € [n],j € [n])
01 for i € [n] 21 if j e I'x
02 (sigk;, vk;) <= Gen 22 return L
03 E T+ 0 23 (¢, K') < Encaps(pk;)
04 b+ {0,1} 24 K’ + OCHALL(j) //embed challenge
05 b & AJ—\F,\'(',AP,A])F.(J\P,CH/\I.I.,KF.PSK((pk17 ’Uk?l), . (pkn,v ’Ukn)) 25 g & Sign(sigki, CHplekaH'Ukj)
06 return [b=1V] 26 K « H(K', ol|pk;||vki||pk;||vk;)
27 if b=1
Oracle AENCAP(i € [n], (pk, vk)) 28 K&K
07 (¢, K') & Encaps(pk) 29 & « EU{((pk;, vks), (pk;, vk;), (c,0), K)}

08 o < Sign(sigk;, c||pk;||pk||vk) 30 return ((c,0), K)

09 K = H(K", o||pk; | |vk:||pk||vk)

10 return ((c,0), K) Oracle REPSK(i € [n], (sk, sigk))

31 (sks, sigk;) < (sk, sigk)
Oracle ADECAP((pk, vk), j € [n], (c, o)) 32 (pk;, vki) < (u(sk), p' (sigk))
11 if 3K : ((pk, vk), (pk;, vk;), (c,0), K) € € 33 I = I U {i}

12 return K
13 1 Vy(uk, cl [phl [pk, || vk, 0) # 1
14 return L

15 if j € I //check for corruptions
16 K' < Decaps(sk;,c)

17 else

18 K’ + ODECAP(j,¢) //use decapsulation oracle

19 K « H(K’,(r\\pkHkakaHukj)
20 return K

Game Gs. In Gs, the game is modified such that the challenge oracle always returns a
uniformly random key K (Line 30), i.e. the output of H is uniformly random. Additionally,
the decapsulation oracle is changed in a similar way by replacing the output of H by
uniformly random value in case there is an element in set £ (Line 16). The difference can
be turned into an PRF adversary C against H such that:

|Pr[Gy = 1] — Pr[Gs = 1] < Adv{; % FRF,

To proof the claim, we construct an adversary in Listing 37. Adversary C can keep
track of the key they queried by using index ¢ which is increased for every challenge
query corresponding to a new key of the PRF game. This key can be reused if there is a
decapsulation query which can be checked by modifying set £ to not contain the actual
key K’ but index /¢ of the key (Line 26 and Line 16). Adversary C needs at most ¢. many
different keys and at most one evaluation query for each decapsulation as well as challenge

54 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

query: qq + q.. Note that in the decapsulation oracle of Gs, a new key K is chosen no
matter if the same value was queried before in the challenge oracle, i.e. same key K’ and
same input o||pk||vk||pk;||vk;. However, if this was the case, this would lead to a return
in Line 12 of the decapsulation oracle.

Game Gj is now independent of the challenge bit b since a uniformly random value is

output in both cases:

PI‘[G3 = 1]

2

The stated bound can be obtained by combining the game differences.

Listing 37: Adversary C against PRF security of H having access to oracle EVAL using
adversary A from Games Gg/Gjs of the proof of Theorem 7.

CEV.’\L

01 for i € [n]

02 ((ski, sigk,), (pk;, vk;)) <= Gen

03 &, T+ 0

04 £+ 0

05 b {0,1}

06 b/ &AAE.\'CA\F.ADECA\F.CHALL,REPSK((pk17Uk])7
07 return [b= 1]

Oracle AENCAP(i € [n], (pk, vk))
08 (¢, K') < Encaps(pk)

09 o <& Sign(sigk;, c||pk;||pk||vk)
10 K « H(K', o||pk;)

11 return ((c,0), K)

Oracle ADECAP((pk, vk), j € [n], (¢, 0))
12 if 3K : ((pk, vk), (pk;, vk;), (c,0),K) € €
13 return K

14 if Vfy(vk, c||pk||pk;||vk;, o) # 1

15 return L

16 if 30 (pkj,c,é) eg

17 K < BVAL(L, o||pk;||vks || pk; | |vk;)
18 else

19 K’ < Decaps(sk;,c)

20 K%H(K',0'\|pkz\|vk,1|\pkj\|vk])
21 return K

..., (pk,,, vkn))

/eval query

Oracle CHALL(i € [n],j € [n])

22
23
24
25
26
27
28
29
30
31
32

if j € I
return L
(¢, K') < Encaps(pk;)
L1041 //new key
& & U{(pkj,c,0)}
o <& Sign(sigh;, cl|pk,|[pk;||vk;)
K < EVAL(L, o||pk;||vk:|[pk;] | vk;) /eval query
ifb=1
K&K
& < EU{((pk;, vks), (pky, vk;), (¢, 0), K)}
return ((c,0), K)

Oracle REPSK(i € [n], (sk, sigk))

33
34
35

(sks, sigk;) < (sk, sigk)
(Pk;, vks) < (n(sk), i/ (sigk))
I+ T U {3}

D.2 Proof of Theorem 8

Proof. We start with the Outsider-Auth game for AKEM as Game Gq in Listing 38:

Pr[Gy = 1] = Pr[(n, ge, g4)-Outsider-Auth = 1].

The Pre-Shared Key Modes of HPKE 55

Listing 38: Games Gy — G; for the proof of Theorem 8.

Go — Gy Oracle ADECAP((pk, vk), j € [n], (c,0))
01 for i € [n] 12 if 3K : ((pk, vk), (pk;, vk;), (c,0), K) € €
02 ((sks, sigh;), (pk;, vk;)) < Gen 13 then return K
03 E«+ 10 14 if Vy(vk, c[|pkl|pk;|[vk;, o) # 1
04 b<{0,1} 15 K+ L1
05 b/ & AAENCARADECAR (4 k) L (pk,,, vkn)) 16 else
06 return [b="b'] 17 K’ < Decaps(sk;,c)
18 K <+ H(K', 0o, pk)
Oracle AENCAP(i € [n], (pk, vk)) 19 if (pk,vk) € {(pky, vk1),..., (pk,, vkn)} /G1
07 (¢, K') < Encaps(pk) 20 abort /G
08 0@Sign(sigki,chszpkHUk) 21 if b:$l/\(pk, 'Uk) € {(pkl,vkl),...,(pkn,'vkn)}/\K76 €L
09 K « H(K',0, pk,) 22 K&k
10 € « € U{((ph;, vki), (pk, k), (c,0), K)} 23 €« £ U{((ph, vk), (phj, vy), (¢,), K)}
11 return ((c,0), K) 24 return K

Game Gy. In Gy, the decapsulation oracle is modified such that the game aborts in case of
a valid signature and honest sender keys. The difference can be turned into an SUF-CMA
adversary B against SIG:

|Pr[Go = 1] — Pr[G; = 1]| < Advgf,sti&)—SUF—CMA

The adversary is depicted in Listing 39. Analyzing the winning condition of adver-
sary B, we can observe that signature o is valid for the output message due to the
check in Line 14. Moreover, the returned tuple (i, c|[pk||pk;||vk;, o) cannot be in the
set of queried signature () (Game Listing 8): if it was in the set, there was a query to
OSIGN on inputs i, c||pk||pk;||vk; returning . This means that there is also an entry
((pk;, vk;), (pk, vk), (¢,0),-) in € due to Line 10 leading to a return in Line 13. Hence, if
adversary B returns in Line 20, they win the SUF-CMA game. Thus, distinguishing the
games can be turned into an adversary against SUF-CMA for n users issuing at most ¢,
signature queries.

Game G; is now independent of challenge bit b since in the case of honest sender keys
the game aborts and otherwise the condition in Line 21 is not true

1

Putting everything together yields the stated bound.

D.3 Proof of Theorem 9

Proof. We start with the IND-CCA experiment against AKEMs for the construction
AKEMN'ME[NIKE, H] which we call Game Go.

In Game G, we add the output of a challenge query to set £ in any case to provide
consistent outputs later. This change does not influence the winning probability. Further,
we replace the output of the second shared key invocation in the challenge oracle by
a uniformly random output of the respective domain. We show that the difference of

56 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Listing 39: Adversary B against SUF-CMA with access to oracle OSIGN using adversary
A against Gg/G; from the proof of Theorem 8.

BOSN (ks . .., vkn) Oracle ADECAP((pk, vk), j € [n], (c,0))
01 for i € [n] 12 if 3K : ((pk, vk), (pk;, vk;), (c,0), K) € €
02 (ski, pk;) ¢ KEM.Gen 13 return K
03 £, + 0 14 if Vy(vk, c||pk||pk,||vk;, o) # 1
04 b {0,1} 15 K+« L
05 b & AMENCAPADECAR (ke ok, (pk,,, vkn)) 16 else
06 return L 17 K' + Decaps(sk;, c)
18 K« H(K', o, pk)
Oracle AENCAP(i € [n], (pk, vk)) 19 if Ji: (pk, vk) = (pk;, vki)
07 (¢, K') <& Encaps(pk) 20 . return (i, c||pk||pk;||vk;, o) //return forgery
08 o <& OSIGN(4, c||pk, || pk||vk) //signing oracle 211 b :qsl A (pk, vk) € {(phy, vk1), .o, (PR, vkn)} A K # L
09 K « H(K', 0, pk;) 2 K&K
10 € < EU{((pk;, vks), (pk, vk), (c,0), K)} 23 € = EU{((pk, vk), (pk;, vk;), (¢, 0), K)}
11 return ((¢,0), K) 24 return K

the second step is indistinguishable assuming active security of NIKE. This is done by
constructing an Active adversary against NIKE simulating game Gy (in the adversary’s
own real case) or G; (in the adversary’s own random game). We depict the construction of
adversary B against Active security of NIKE using adversary A from game Go/G; against
Insider-CCA security of AKEMN'E[NIKE, H] in Listing 41. This leads to

|P1"[G0 = 1} _ Pr[G1 = 1]| < Advg,ﬁfigéqfﬁqd’0’qe+qd+qc’qEJ’QQd’q“)_ACtive.

In Game Gs, we replace the output of H in the challenge oracle by a uniformly random
output of the respective domain. This change can be upper bounded by the advantage of
a PRF adversary against Hs since the second input, K5, is uniformly random. We obtain

Pr[Gy = 1] — Pr[Gy = 1]| < Advyi5; i PR,

The resulting game has winning probability % since b is hidden from the adversary.
Combining the game differences yields the stated bound. a
D.4 Proof of Theorem 10

Proof. The proof uses a similar strategy as the proof for Theorem 9. We start with the
Outsider-Auth game for AKEMNIKE[NIKE7 H] in Listing 42 as Go:

A, AKEMNIKE [NIKE, H]

1 n ~Outsider-
Pr[Gy = 1] — 2‘ _ Adv(,de ,qd)-Outsidel Auth.

Game G1. In Game G, we modify the encapsulation oracle by replacing the first NIKE
shared key K7 by a uniformly random value from the key space (Line 21) if the receiver
key is honest (Line 20) and save the result together with the public keys in set A. In case
there already exists a matching element in A, we use that one instead (Line 13). The
same modifications are applied to the decapsulation oracle with the difference that the
replacement with a uniformly random value is only done if the sender’s key pk is honest

The Pre-Shared Key Modes of HPKE 57

Listing 40: Games Gg — Gy for the proof of Theorem 9

Go — G2 Oracle CHALL(: € [n],j € [n])

01 for i € [n] 18 if j € I«

02 (ski, pk;) & Gen 19 return L

03 E, I+ 0 20 (sk*, pk*) <& NIKE.KeyGen

04 b {0,1} 21 K1 « NIKE.SharedKey(sk;, pk;)

05 b <& AAENCARADRCAR,CIMLRERSK (p . pk.) 22 K + NIKE.SharedKey(sk™, pk;)

06 return [b=1"V'] 23 Ko & Ky JG1 — G2
24 ¢+ pk*

Oracle AENCAP(: € [n], pk) 25 K < H(K1, K2, pk;||pk;||pk™)

07 (sk*, pk") < NIKE.KeyGen 26 K &K /G

08 Ky + NIKE.SharedKey(ski, pk) 2rifb=1

09 K + NIKE.SharedKey(sk", pk) % Kek

10 K + H(Ky, Ka, pk, || pk|| pk*) 29 &« EU{(phi, pkjy ¢, K)}

11 return (pk*, K) 30 & + EU{(pk;, pkj,c, K)} /G1 — Gz
31 return (¢, K)

Oracle ADECAP(pk, j € [n],c))

12 3f 3K : (pkiphy, o, K) € € Oracle REPSK(i € [n], sk)

13 return K 32 (ski, pk;) (S‘]“ p(sk))

14 Ky « NIKE.SharedKey(sk;, pk) 33 T = T U i}

15 Ky < NIKE.SharedKey(sk;, c)

16 K « H(K1, Ko, pk||pk;||c)

17 return K

and the original AKEM key K is not L (Line 41). The game difference is at most the
advantage of an adversary B against Active security of NIKE:

|Pr[Gy = 1] — Pr[Gy = 1] < AdV(BV,L;\fllleK-il-E(Id»070,%-&-(14vqe+(1d)-ACtive.

Adversary B is formally constructed in Listing 43. In the real case of the Active game of
adversary B, they perfectly simulate Gy since every call to the NIKE oracles returns the
actual shared key K;. In the random case, TEST returns a uniformly random output when
queried on 4, j. The test oracle TEST is only called for honest receiver (sender) keys in the
encapsulation (decapsulation) oracle thus simulating Game G; for adversary .A. Note that
TEST returns the same value when queried multiple times on the same indices ¢, 7 which
corresponds to the check for elements in set A in Game Gj.

Game Gy. In Game Go, a set H is introduced which stores the output and all the inputs
of queries to H. Additionally, flag BAD is set to true and the game aborts if H is queried
on the same inputs twice, i.e. there already exists a matching element in H, in the case of
a matching element in A. The game difference is

|Pr[G; = 1] — Pr[Gs = 1]| < ge(qe + qa) Puike-

The abort case in the decapsulation never occurs. If there was a query on the same
inputs to H in oracle ADECAP, this includes the last input pk||pk;, [|c and therefore there
must also be a matching element in £, the oracle would have returned in Line 29 and the

58 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

Listing 41: Adversary B against Active security of NIKE using an adversary A against
Gy /Gy for the proof of Theorem 9.

BREGHONEST,I{E(:ConmrrT,ExTnAcT,HONESTREV,Conm:rTREV,TEsT ADECAP(])I@]‘ c [nL C)
01 for i € [n] 23 if IK : (pk, pk;,c, K) € €
02 sk <+ L 24 return K
03 pk; ¢ REGHONEST() 25 if skj = L //honest receiver
04 L+mn 26 if 3i: pk;, = pk //honest sender
05 & Tk + 0 27 K; + HONESTREV (3, j)
06 b & AAENCAP,ADECAP,CHALL,REPSK (pkl, . ,pkn) 28 else //Corruptcd sender
07 return b 29 L+—1+1
30 REGCORRUPT(Y, pk)
AENCAP(i € [n], pk) 31 K, < CORRUPTREV(Y, j)
08 if sk; = L /honest sender 35 f ¢+ 1
09 if 3j: pk; = pk /honest receiver 33 REGCORRUPT(Y, c)
10 K1 < HONESTREV (i, §) 34 Ky <+ CORRUPTREV(Y, 5)
11 else [/ corrupted receiver 35 else //corrupted receiver
12 L0411 36 Ki < NIKE.SharedKey(sk;, pk)
13 REGCORRUPT(Y, pk) 37 K> + NIKE.SharedKey(sk;, c)
14 K <+ CORRUPTREV(%, ¢) 38 K < H(K1, Ko, pk||pk;]|c)
15 else Jcorrupted sender 39 return K
16 K < NIKE.SharedKey(sk;, pk)
17 (sk*, pk*) < NIKE.KeyGen CHALL(% € [n],j € [n])
18 Ky < NIKE.SharedKey(sk*, pk) 40 if j € Ik
19 K + H(K1, K2, pk;||pk||pk™) 41 return L
20 return (pk*, K) 42 L+ L+1
43 sk™ « L
REPSK(i € [n], sk) 44 pk* <~ REGHONEST({)
21 (ski, pk;) < (sk, pu(sk)) 45 if sk; = L //honest sender
22 Ty < I U {i} 46 K1 <+ HONESTREV(4, 5)
47 else //corrupted sender
48 Ky + NIKE.SharedKey(ski,pkj)
49 Ko < TEST(Y, j)
50 K « H(K1, K2, pk;||pk;||pk™)
51 & < EU{(pk;, pk;, pk™, K)}
52 return (pk*, K)

The Pre-Shared Key Modes of HPKE 59
Listing 42: Games Gg — Gg for the proof of Theorem 10.
Go — G3 Oracle ADECAP(pk € PK',j € [n],c)
01 for i € [n] 28 if 3K : (pk, pkj,c,K) € €
02 (ski,pk;) <& Gen 29 return K
03 BAD « false 30 K1 + NIKE.SharedKey(sk;, pk)
04 E,AH 0 31 Ka < NIKE.SharedKey(sk;, c)
05 b {0,1} 32 K < H(K1, K2, pk||pk;||c)
06 b & AMENCARADECA? (1 o pk) 33 if K] : (K1, {pk, pk,}) € A /G1 — Gs
07 return [b=1] 34 K+ Kj /G1 — Gs
35 K « H(K1, K2, pk||pk;||c) /G1 — Gs
Oracle AENCAP(i € [n], pk € PK') 36 if 3h: (b, K, Ko, pk||pk;||c) € H /G2 — Gs
08 (sk*, pk*) < NIKE.KeyGen 37 BAD ¢ true;abort /G2 — Gs
09 K; + NIKE.SharedKey(ski, pk) 38 else /62 = Gs
10 Ky < NIKE.SharedKey(sk*, pk) 39 K&K //Gs
11 K H(Ky, Ka, ph,|[pk{|pk*) f00 e HUAK Ko, Ko philpkflo)} - /G2 = Go
12 if HKil(K{,{pki,pk})G/l /G1 — Gs 41 else if pk € {pky,...,pk, } NK # L /G1 — Gs
15 K« Kj JGi—Gs 42 K1 Kuke /61— Gs
14 K « H(Ky, K, pk,||pk||pk*) JGi— Gy 43 A AU{(Ky, {pk, pk;})} /G~ Gs
15 if 3h: (b, K1, Ko, pk,||pk||pk™) € X~ [)Gs — Gs ** K<;H(K17Kz,pkllpk]Hc) /G1— Gs
16 BAD < true; abort JGa—Gy 45 K&K /6Gs
17 else //Gz—G;g 46 . H%’HU{(K,Kl,Kz,pkak‘jHC)} //GQ—G(;
18 K&K /Gs 47 1fb:$1/\pk6{pkl,...,pkn}/\K#J_
19 H HU{(K K1, Ko, pk||phl[ph*)} /G2 —Gs 45 K&K
20 else if pk € {pk,,...,pk,})G -Gy 49 &« EU{(pk, pkj, ¢, K)}
21 K1 & Kuke /G1 — Gg 50 £+ EU {(pk,pkj,c, K)} /G2 — Gs
22 A« AU{(Ky, {pk;, pk})} /G1 — Gy Ot return K
23 K « H(K1, Ko, pk;||pk||pk*) /G1 — Gs
24 K&K //Gs
25 H(*HU{(K,Kl,Kz,pkinkllpk*)} //G27G3
26 & «+ EU{(pk;, pk, pk*, K)}

27 return (pk*, K)

Listing 43: Adversary B against Active security of NIKE using an adversary A against

Gp /Gy for the proof of Theorem 10.

BRlc(‘.HOl\ EST,REGCORRUPT,EXTRACT, HONESTREV,CORRUPTREV, TEST

01 for i € [n]

02 pk, < REGHONEST(¢)

03 L+ n

04 E«+ D

05 b/ (i AAE\!(‘,AP,ADE(‘,AP(pk17 .

06 return b’

s k,,)

Oracle AENCAP(i € [n], pk € PK')
(sk*, pk*) < NIKE.KeyGen

08 if 3j : pk; = pk //honest receiver
09 K« TEST(i,7)

10 else //corrupted receiver
11 l+Ll+1

12 REGCORRUPT(Y, pk)

13 K < CORRUPTREV(Z, ()

14 Ky < NIKE.SharedKey(sk*, pk)
15 K <« H(Ky, K2, pk;||pk||pk™)
16 & « EU{(pk;, pk, pk™, K)}

17 return (pk*, K)

Oracle ADECAP(pk € PK',j € [n],c)
18 if 3K : (pk, pkj,c, K) € €

19 return K

20 K < AuthDecap(pk, sk, c)

21 K1 < NIKE.SharedKey(sk;, pk)
22 if 3i: pk; = pk

23 Ky < TEsT(4,))

24 else

25 A<+ L+1

26 REGCORRUPT(Y, pk)

27 Kp + CORRUPTREV(j,{)

28 Ky <+ NIKE.SharedKey(sk;, c)
29 K « H(K1, K2, pk||pk;||c)

30 if b=1Apke {pky,...,pk, }NK # L
31 K&K

32 &<+ EU{(pk,pk;,c, K)}

33 return K

//honest sender

//corrupted sender

60 J. Alwen, J. Janneck, E. Kiltz, B. Lipp

abort is not reached. For the abort in the encapsulation oracle to trigger, there must
be an element in H for which especially pk* matches. Since pk* is randomly generated
by NIKE.KeyGen, there must be a collision in two public keys. There are at most g + qq
elements in set H. Hence, for a single query to AENCAP the probability can be upper
bounded by the entropy of the NIKE public key and in total we obtain

Pr[BAD = true| < (g, + q4) Puike-

Game G3. In Gz, the output of H is replaced by a uniformly random value and the result
is stored in ‘H. The difference can be turned into an adversary C against PRF security of
Hy, i.e. H keyed on the first component:

|Pr[Ge = 1] — Pr[Gs = 1]| < Advéq’::‘lvae‘i‘(Jd)-PRF.

We depict adversary C in Listing 44. Note that adversary C needs potentially a new PRF
key for each call to AENCAP and ADECAP and the same amount of queries to the PRF
oracle EVAL.

Listing 44: Adversary C against PRF security of Hy using an adversary A against Go/Gs
for the proof of Theorem 10.

crvr Oracle ADECAP(pk € PK',j € [n],c)
01 for i € [n] 26 if 3K : (pk,pk;, ¢, K) € €
02 (ski,pk;) < Gen 27 return K
03 £+ 0 28 K < AuthDecap(pk, sk;, c)
04 E,A+0 29 Ki < NIKE.SharedKey(sk;, pk)
05 b {0,1} 30 K3 <+ NIKE.SharedKey(sk;, c)
06 b <& AASNCARADEC (pL - pk,) 31 if 3¢ (¢, {pk,pk;}) € A
07 return [b=1b'] 32 if 3h: (b0, Ko, pkl|pk;llc) € H
33 abort
Oracle AENCAP(i € [n], pk € PK') 34 else
08 (sk*, pk*) < NIKE.KeyGen 35 K+ EVAL(Z’,Klepk,inkak*) /eval query
09 K, < NIKE.SharedKey(sk;, pk) 36 M HU{(K, U, K2, phllpk;lle)}
10 K5 < NIKE.SharedKey(sk*, pk) 37 else if pk € {pky,...,pk,} NK # L
11 4f 3¢ : (¢, {pk,, pk}) € A 38 L l+1 //new key
12 if 3h: (b, 0, Ko, pk;||pk||pk*) € H 39 A« AU{(¢,{pk,pk;})}
13 abort 40 K« EvAL((, K, pk||pk,||c) //eval query
14 else 41 H <+ HU{(K, L, Ko, pk||pk,||c)}
15 K« EVAL(L, Kol[pki|[pk||pk) Jeval query ©2 else
16 H«— HU{(K,l, K2, pk,||pk||pk*)} 43 K« H(Ky, Ka, phi[pk;|lc)
17 else if pk € {pk,,...,pk,} a4 if b:$1/\pk € {pky,...,pk,} NK # L
18 L+ 041 //new key 45 K&K
19 A« AU{L, {pk,, pk}} 46 &« EU{(pk, pk;, c, K)}
20 K < EVAL({, Ka||pk,||pk||pk™) /eval query 4T & = EU{(pk, pkj ¢, K)}
21 M HU{(K, £ Ko, ph| [pHl|pk)} 48 return K
22 else
23 K < H(K., K2, pk,;||pk||c)
24 & « EU{(pk,, pk, pk*, K)}
25 return (pk*, K)

In the resulting game, challenge bit b is completely hidden and the winning probability
is % from which the stated bound follows. a

	 The Pre-Shared Key Modes of HPKE
	Introduction
	Our Contributions

	Preliminaries
	Notations
	(Authenticated) Key Encapsulation Mechanisms
	Authenticated Public Key Encryption
	Pseudorandom Functions
	Authenticated Encryption with Associated Data
	Digital Signatures
	Non-Interactive Key Exchange

	Pre-Shared Key (Authenticated) Encryption
	Syntax
	Privacy
	Authenticity

	HPKE's constructions of a pskPKE and pskAPKE
	Generic Constructions
	Security of pskPKE and pskAPKE
	The Security of HPKE's PSK Modes
	Proof of thm:pskAPKEAuth-composition

	Hybrid Post-Quantum APKE
	Post-Quantum AKEM Constructions
	KEM-then-Sign-then-Hash
	AKEM from NIKE

	Omitted Security Definition
	Active Security NIKE

	Proofs for the pskPKE and pskAPKE constructions
	Proof of thm:pskPKECCA-composition
	Proof of thm:pskAPKECCA-composition
	Proof of thm:pskPKEAuth-composition

	Proofs for the Hybrid Post-Quantum APKE
	Proof of thm:hybrid-cca
	Proof of thm:hybrid-auth

	Proof for the AKEM Constructions
	Proof of thm:akem-sig-cca
	Proof of thm:akem-sig-auth
	Proof of thm:akem-nike-cca
	Proof of thm:akem-nike-auth

