Key Committing Security Analysis of AEGIS

Takanori Isobe and Mostafizar Rahman

University of Hyogo, Japan takanori.isobe@ai.u-hyogo.ac.jp mrahman454@gmail.com

Abstract. Recently, there has been a surge of interest in the security of authenticated encryption with associated data (AEAD) within the context of key commitment frameworks. Security within this framework ensures that a ciphertext chosen by an adversary does not decrypt to two different sets of key, nonce, and associated data. Despite this increasing interest, the security of several widely deployed AEAD schemes has not been thoroughly examined within this framework. In this work, we assess the key committing security of AEGIS, which emerged as a winner in the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR). A recent assertion has been made suggesting that there are no known attacks on AEGIS in the key committing settings and AEGIS qualifies as a fully committing AEAD scheme in IETF document. However, contrary to this claim, we propose a novel O(1) attack applicable to all variants of AEGIS. This demonstrates the ability to execute a key committing attack within the FROB game setting, which is known to be one of the most stringent key committing frameworks. This implies that our attacks also hold validity in other, more relaxed frameworks, such as CMT-1, CMT-4, and so forth.

Keywords: AEGIS · Key Commitment

1 Introduction

Authenticated Encryption (AE) is a cryptographic technique that combines encryption and message authentication codes (MACs) to provide both confidentiality and integrity for data. It ensures that not only is the information kept secret from unauthorized parties, but also that it has not been tampered with during transit. AEGIS, proposed by Wu and Preneel [WP13a], is one such scheme and its variant AEGIS-128 emerged as one of the winning candidate of Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) [cae19] for high performance computing applications.

The traditional focus of designers in authenticated encryption with associated data (AEAD) has been on ensuring the security aspects of confidentiality and ciphertext integrity. However, in recent years it is witnessed that the previously established notions of confidentiality and integrity may not suffice in various contexts. Among the additional properties explored is the concept of authenticated encryption (AE) key commitment, an area that has received relatively less attention.

Key commitment assures that a ciphertext C can only be decrypted using the same key that was originally used to derive C from some plaintext. Schemes that allow finding a ciphertext that decrypts to valid plaintexts under two different keys do not adhere to the principle of key commitment. The issue of non-key-committing AEAD was initially highlighted in scenarios such as moderation within encrypted messaging [DGRW18, GLR17]. Subsequently, it surfaced in various applications including password-based encryption [LGR21], password-based key exchange [LGR21], key rotation schemes [ADG⁺22], and envelope encryption [ADG⁺22].

In even more recent times, there have been new propositions [CR22, BH22] introducing definitions that focus on committing to not only the key, but also the associated data and nonce. Although there have been suggestions for novel schemes [CR22, ADG⁺22] that align with these diverse definitions, uncertainties persist regarding which existing AEAD schemes actually implement this commitment, and in what manner. Furthermore, several crucial and widely-used AEAD schemes lack demonstrated commitment results. Recently, commitment attacks are mounted on several widely deployed AEAD schemes, like CCM, GCM, OCB3, etc [MLGR23].

In this work, we assess the key committing security of AEGIS. A recent assertion has been made suggesting that there are no known attacks on AEGIS in the key committing settings [DL23a] and AEGIS qualifies as a fully committing AEAD scheme [MST23]. The challenge of attacking the key committing security of AEGIS is also acknowledged as an open problem in [Kö22]. In [DL23a], it is claimed that finding a collision on a 128-bit tag for variants of AEGIS requires $O(2^{64})$ computations, while for a 256-bit tag, it requires $O(2^{128})$ computations. These claims are made under the assumption that AEGIS is fully committing. However, contrary to all these claims, we demonstrate the ability to execute a key committing attack within the FROB game setting [FOR17], which is known to be one of the most stringent key committing frameworks. Thus, we are able to find collisions on tags with a complexity of O(1). This implies that our attacks also hold validity in other, more relaxed frameworks, such as CMT-1, CMT-4, and so forth.

We have informed our results to the authors of IETF document, Denis and Lucas. They have confirmed our results and will update the IETF document accordingly [DL23b].

2 Preliminaries

2.1 Committing Authenticated Encryption (AE) Framework

Consider a symmetric encryption scheme Σ consisting of encryption and decryption algorithms denoted by Σ_{Enc} and Σ_{Enc} , respectively where

$$\Sigma_{Enc}: \mathcal{K} \times \mathcal{N} \times \mathcal{A} \times \mathcal{M} \to \mathcal{C},$$

and

$$\Sigma_{Dec}: \mathcal{K} \times \mathcal{N} \times \mathcal{A} \times \mathcal{C} \to \mathcal{M} \cup \{\bot\}.$$

Here, \mathcal{K} , \mathcal{N} , \mathcal{A} , \mathcal{M} and \mathcal{C} refer to the key, nonce, associated data, message and ciphertext spaces, respectively. Formally, the above scheme is called as a *nonce based authenticated encryption scheme supporting associated data*, or an nAE scheme.

A committing authenticated encryption (cAE) scheme guarantees the definitive determination of the values of its constituent elements, including the key, nonce, associated data, or message, which are utilized to produce the ciphertext. In the committing AE framework, the adversary tries to construct a ciphertext which can be obtained from two different sets of keys, nonces, associated data and messages. Let, $C_i \leftarrow \Sigma_{Enc}(K_i, N_i, A_i, M_i)$ where $K_i \in \mathcal{K}, N_i \in \mathcal{N}, A_i \in \mathcal{A}, M_i \in \mathcal{M}$ and $C_i \in \mathcal{C}$ for $i \in \{1, 2\}$. The adversary aims to find C_1, C_2 such that $C_1 = C_2$ and $(K_1, N_1, A_1, M_1) \neq (K_2, N_2, A_2, M_2)$.

Various notions of committing security framework have been introduced [FOR17, CR22, BH22]. In the context of this work, we discuss here some of them. In CMT-1, the ciphertext commits exclusively to the key. In the attack scenario, the adversary must produce $((K_1, N_1, A_1, M_1), (K_2, N_2, A_2, M_2))$ such that $K_1 \neq K_2$ and $\Sigma_{Enc}(K_1, N_1, A_1, M_1) = \Sigma_{Enc}(K_2, N_2, A_2, M_2)$. CMT-4 relaxes the constraints and allows that the commitment can encompass to any of the inputs of Σ_{Enc} , not just the key. The adversary can breach CMT-4 security by constructing a set $((K_1, N_1, A_1, M_1), (K_2, N_2, A_2, M_2))$ such that, $(K_1, N_1, A_1, M_1) = (K_2, N_2, A_2, M_2)$ and $\Sigma_{Enc}(K_1, N_1, A_1, M_1) = \Sigma_{Enc}(K_2, N_2, A_2, M_2)$.

FROB (A)

1.
$$(C, (K_1, N_1, A_1), (K_2, N_2, A_2)) \stackrel{\$}{\leftarrow} A$$

2.
$$M_1 \leftarrow \Sigma_{Dec}(K_1, N_1, A_1, C)$$

3.
$$M_2 \leftarrow \Sigma_{Dec}(K_2, N_2, A_2, C)$$

4. If
$$M_1 = \bot$$
 or $M_2 = \bot$ then Return false

5. If
$$K_1 = K_2$$
 or $N_1 \neq N_2$ then Return false

6. Return true

(a) FROB Game

CMT-1(\mathcal{A})

1.
$$(C, (K_1, N_1, A_1), (K_2, N_2, A_2)) \stackrel{\$}{\leftarrow} \mathcal{A}$$

2.
$$M_1 \leftarrow \Sigma_{Dec}(K_1, N_1, A_1, C)$$

3.
$$M_2 \leftarrow \Sigma_{Dec}(K_2, N_2, A_2, C)$$

4. If
$$M_1 = \bot$$
 or $M_2 = \bot$ then Return false

5. If
$$K_1 = K_2$$
 then Return false

6. Return true

(b) CMT-1 Game

CMT-3(\mathcal{A})

1.
$$(C, (K_1, N_1, A_1), (K_2, N_2, A_2)) \stackrel{\$}{\leftarrow} \mathcal{A}$$

2.
$$M_1 \leftarrow \Sigma_{Dec}(K_1, N_1, A_1, C)$$

3.
$$M_2 \leftarrow \Sigma_{Dec}(K_2, N_2, A_2, C)$$

4. If
$$M_1 = \bot$$
 or $M_2 = \bot$ then Return false

5. If
$$(K_1, N_1, A_1) = (K_2, N_2, A_2)$$

then Return false

6. Return true

$\text{CMT-4}(\mathcal{A})$

1.
$$(C, (K_1, N_1, A_1), (K_2, N_2, A_2)) \stackrel{\$}{\leftarrow} A$$

2.
$$M_1 \leftarrow \Sigma_{Dec}(K_1, N_1, A_1, C)$$

3.
$$M_2 \leftarrow \Sigma_{Dec}(K_2, N_2, A_2, C)$$

4. If
$$M_1 = \bot$$
 or $M_2 = \bot$ then Return false

5. If
$$(K_1, N_1, A_1, M_1) = (K_2, N_2, A_2, M_2)$$

then Return false

6. Return true

(d) CMT-4 Game

(c) CMT-3 Game

Figure 1: Different Frameworks for Key Committing Security.

Bellare and Hoang introduced CMT-3, which is slightly more restrictive than CMT-4. They replaced the constraint $(K_1, N_1, A_1, M_1) = (K_2, N_2, A_2, M_2)$ with $(K_1, N_1, A_1) = (K_2, N_2, A_2)$. The FROB game, initially proposed by Farshim, Orlandi, and Rosie [FOR17] and later adapted to the AEAD setting by Grubbs, Lu, and Ristenpart [GLR17], is even more restrictive. It requires the condition $N_1 \neq N_2$ in addition to $K_1 = K_2$. It has been demonstrated that CMT-3 security implies CMT-1, which in turn implies the FROB game [BH22, MLGR23]. In essence, the FROB game presents the most formidable challenge for an adversary to overcome. All the related games are outlined in Fig. 1.

2.2 Description of AEGIS

The authenticated encryption scheme AEGIS was introduced in SAC 2013 [WP13a]. It encompasses three variants: AEGIS-128 (AEGIS-128 emerged as a finalist in the CAESAR competition [cae19]), AEGIS-256, and AEGIS-128L. Across all these variants, the state update function involves a single round of AES denoted as AR(X,Y), where X and Y represent 16-byte states. Specifically, $AR(X,Y) = MC \circ SR \circ SB(X) \oplus Y$, where MC, SR, and SB denote the mixcolumns, shiftrows, and subbytes operations, respectively. For

more details on these operations refer to [DR00, DR02].

The state update function of AEGIS-128 and AEGIS-256 involves updating the 16-byte state S_i with a 16-byte message block m_i to yield the state S_{i+1} . This operation is expressed as:

$$S_{i+1,0} = AR(S_{i,b-1}, S_{i,0} \oplus m_i)$$

$$S_{i+1,1} = AR(S_{i,0}, S_{i,1})$$

$$\vdots$$

$$S_{i+1,b-1} = AR(S_{i,b-2}, S_{i,b-1}).$$

For AEGIS-128 and AEGIS-256, the value of b is 5 and 6, respectively, resulting in state sizes of 80 bytes and 96 bytes, respectively.

The state update function of AEGIS-256 differs slightly from the other two, using two 16-byte message blocks $m_{i,0}$ and $m_{i,1}$ instead of one. The computation is as follows:

$$\begin{split} S_{i+1,0} &= AR(S_{i,7}, S_{i,0} \oplus m_{i,0}) \\ S_{i+1,1} &= AR(S_{i,0}, S_{i,1}) \\ S_{i+1,2} &= AR(S_{i,1}, S_{i,2}) \\ S_{i+1,3} &= AR(S_{i,2}, S_{i,3}) \\ S_{i+1,4} &= AR(S_{i,3}, S_{i,4} \oplus m_{i,1}) \\ S_{i+1,5} &= AR(S_{i,4}, S_{i,5}) \\ S_{i+1,6} &= AR(S_{i,5}, S_{i,6}) \\ S_{i+1,7} &= AR(S_{i,6}, S_{i,7}). \end{split}$$

In the initialization phase, the state of AEGIS is loaded with a 128-bit key K, a 128-bit initialization vector IV, and some constants. For AEGIS-128 and AEGIS-128L, the sizes of K and IV are 128 bits, while for AEGIS-256, they are 256 bits. The state update function is iterated 10 times for AEGIS-128 and AEGIS-128L, and 16 times for AEGIS-256.

Following this, based on the lengths of the associated data and plaintext, the states undergo further updates. The associated data and plaintext are encrypted concurrently with the state update function. After each step of the state update function, a 128-bit block of associated data/plaintext is encrypted for AEGIS-128 and AEGIS-256 (for AEGIS-128L, two 128-bit blocks are encrypted at each step).

Finally, during tag generation, the state update function is iterated for 7 rounds. The message bit depends on the lengths of the plaintext and associated data, encoded as 64-bit strings, along with a portion of the previous state. All the 128-bit substates of the final state are XOR-ed to obtain the tag. For more comprehensive details on AEGIS, please refer to [WP13a, WP13b, WP16].

3 Attacks

3.1 Attack Overview

Initially, let's introduce an alternative perspective on the state updating process of AEGIS. Since the state update relies on the key, IV, associated data (AD), and plaintext at various stages, we can view the entire process as illustrated in Fig.2. As explained in Section2.2, the initialization phase is contingent on the key K and the initialization vector IV. Therefore, the complete state update process during this phase can be denoted as $\mathcal{U}_{K,IV}$, which

transforms the initial state IS_0 into IS_1 . Subsequently, \mathcal{U}_A and $\mathcal{U}P$ alter the internal states IS_1 and IS_2 into IS_2 and IS_3 respectively, based on the associated data A and plaintext P. Finally, contingent on the lengths of A and P, $\mathcal{U}_{|P|,|A|}$ transforms IS_3 into IS_4 . The tag is generated based on IS_4 .

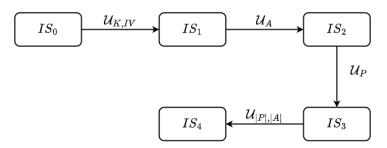


Figure 2: State updatation as a function of key, initialization vector, associated data and plaintext.

We are specifically interested in analyzing the FROB security of AEGIS. As outlined in Section 2.1, the adversary is required to generate a ciphertext (ciphertext and tag pair) which decrypts to valid plaintexts using two different sets of keys and same IV. Let's consider two sets of key, IV, AD, and plaintext, denoted as (K_1, IV_1, A_1, P_1) and (K_2, IV_2, A_2, P_2) . These sets are used to create ciphertext-tag pairs $C_1||T_1$ and $C_2||T_2$ respectively. Note that, $K_1 \neq K_2$ and $IV_1 = IV_2$.

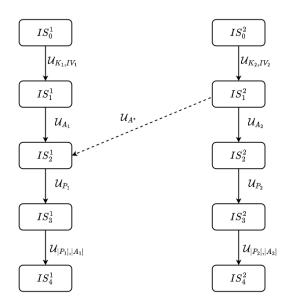


Figure 3: Overview of the attack in FROB framework

As depicted in Fig. 3, we need to find a A^* such that \mathcal{U}_{A^*} transforms IS_1^2 to IS_2^1 . If $|A^*| = |A_1|$ (the plaintext is P_1), the final state IS_4^1 can be obtained which results in generating the ciphertext-tag pair $C_1||T_1$. Consequently, the tuples (K_1, IV_1, A_1, P_1) and (K_2, IV_2, A^*, P_1) yield the same ciphertext-tag pair, thereby compromising the FROB security of AEGIS. Hence, the adversary is required to find an A^* such that $|A^*| = |A_1|$.

3.2 Attacks on AEGIS

In this subsection, we primarily focus on the recovery of the associated data A^* in the case of AEGIS-128. The recovery of A^* for AEGIS-256 and AEGIS-128L follows a similar strategy.

Please refer to Fig. 4 for an overview of the attack. Corresponding to the discussion in Section 3.1 and Fig. 3, the states $S_{i,0}||S_{i,1}||S_{i,2}||S_{i,3}||S_{i,4}$ and $S_{i+5,0}||S_{i+5,1}||S_{i+5,2}||S_{i+5,3}||S_{i+5,4}|$ can be considered as IS_1^2 and IS_2^1 , respectively.

Let $A^* = A_0^* ||A_1^*||A_2^*||A_3^*||A_4^*$, where each A_j^* (for $0 \le j \le 4$) is a 16-byte block. Based on the values of the substates $Si, 0, \dots, Si, 4$, some of the internal substates' values can be fixed (indicated by the red rectangles in Fig. 4).

Now, when the value of $S_{i+5,4}$ is fixed, it deterministically establishes the internal substates $S_{i+k+1,k}$ for $0 \le k \le 3$ (indicated by the blue rectangles in Fig. 4). The values of $S_{i,0}$, $S_{i,4}$, and $S_{i+1,0}$ deterministically determine the value of A^0 . In general, by fixing the value of $S_{i+5,k}$, A_{4-k}^* can be determined. Hence, the complete A^* can be deterministically recovered.

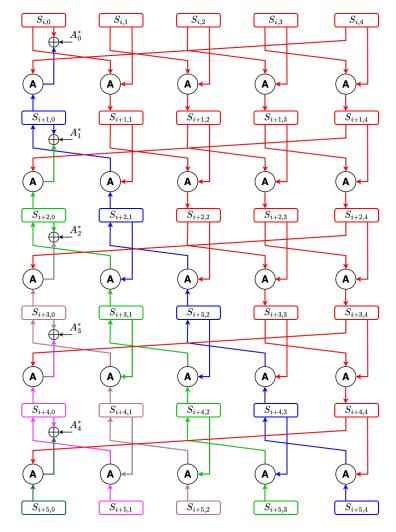


Figure 4: Attack on AEGIS-128

By following the similar strategy, A^* can be recovered for both AEGIS-256 and AEGIS-128L. The attack strategy corresponding to AEGIS-256 and AEGIS-128L are outlined

in Fig. 5 and Fig. 6, respectively. The attack vectors corresponding to the attack on AEGIS-128, AEGIS-256 and AEGIS-128L are provided in Appendix A.1, A.2 and A.3, respectively.

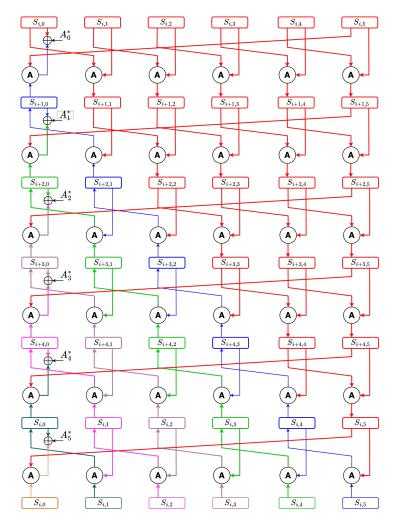


Figure 5: Attack on AEGIS-256

4 Conclusion

The issue of key commitment security in AEGIS has been a significant and persisting question. This work addresses this gap by conducting a thorough analysis of AEGIS. Our analysis, considering various existing frameworks, culminated in the development of a O(1) attack applicable to all variants of AEGIS. However, in frameworks where an additional constraint of identical associated data is imposed (i. e., $A_1 = A_2$), the proposed attacks will not be effective. These findings underscore the need for continued research and evaluation in the domain of AEAD security, particularly in the context of key commitment frameworks.

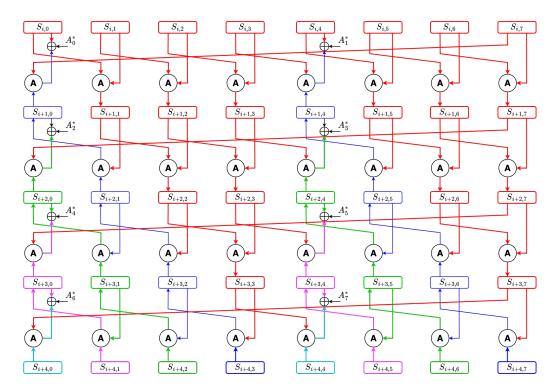


Figure 6: Attack on AEGIS-128L

Acknowledgments

We would like to thank Patrick Derbez, Pierre-Alain Fouque and André Schrottenloher for sharing insightful observations of AES-based authenticated encryption schemes with us. We also would like to thank Frank Denis and Samuel Lucas for confirming our analysis.

References

- [ADG⁺22] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and Sophie Schmieg. How to abuse and fix authenticated encryption without key commitment. In Kevin R. B. Butler and Kurt Thomas, editors, 31st USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, pages 3291–3308. USENIX Association, 2022.
- [BH22] Mihir Bellare and Viet Tung Hoang. Efficient schemes for committing authenticated encryption. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology EUROCRYPT 2022 41st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May 30 June 3, 2022, Proceedings, Part II, volume 13276 of Lecture Notes in Computer Science, pages 845–875. Springer, 2022.
- [cae19] Caesar: Competition for authenticated encryption: Security, applicability, and robustness. https://competitions.cr.yp.to/caesar-submissions.html, 2019.
- [CR22] John Chan and Phillip Rogaway. On committing authenticated-encryption. In Vijayalakshmi Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and Weizhi Meng, editors, Computer Security ESORICS 2022 27th European Symposium on Research in Computer Security, Copenhagen, Denmark, September 26-30, 2022, Proceedings, Part II, volume 13555 of Lecture Notes in Computer Science, pages 275-294. Springer, 2022.
- [DGRW18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast message franking: From invisible salamanders to encryptment. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology CRYPTO 2018 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, volume 10991 of Lecture Notes in Computer Science, pages 155–186. Springer, 2018.
- [DL23a] Frank Denis and Samuel Lucas. The aegis family of authenticated encryption algorithms. https://datatracker.ietf.org/doc/draft-irtf-cfrg-aegis-aead/04/, 2023.
- [DL23b] Frank Denis and Samuel Lucas. Private communication, 2023. Email correspondence.
- [DR00] Joan Daemen and Vincent Rijmen. Rijndael for AES. In *The Third Advanced Encryption Standard Candidate Conference, April 13-14, 2000, New York, New York, USA*, pages 343–348. National Institute of Standards and Technology,, 2000.
- [DR02] Joan Daemen and Vincent Rijmen. *The Design of Rijndael: AES The Advanced Encryption Standard*. Information Security and Cryptography. Springer, 2002.
- [FOR17] Pooya Farshim, Claudio Orlandi, and Razvan Rosie. Security of symmetric primitives under incorrect usage of keys. *IACR Trans. Symmetric Cryptol.*, 2017(1):449–473, 2017.
- [GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing authenticated encryption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology CRYPTO 2017 37th Annual International

- Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III, volume 10403 of Lecture Notes in Computer Science, pages 66-97. Springer, 2017.
- [Kö22] Stefan Kölbl. Open questions around key committing aeads. https://frisiacrypt2022.cs.ru.nl/assets/slides/stefan-frisiacrypt2022.pdf, 2022.
- [LGR21] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning oracle attacks. In Michael Bailey and Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, pages 195–212. USENIX Association, 2021.
- [MLGR23] Sanketh Menda, Julia Len, Paul Grubbs, and Thomas Ristenpart. Context discovery and commitment attacks how to break ccm, eax, siv, and more. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology EU-ROCRYPT 2023 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part IV, volume 14007 of Lecture Notes in Computer Science, pages 379-407. Springer, 2023.
- [MST23] John Preuß Mattsson, Ben Smeets, and Erik Thormarker. Proposals for standardization of encryption schemes. https://csrc.nist.gov/csrc/media/Events/2023/third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/Proposals%20for%20Standardization% 20of%20Encryption%20Schemes%20Final.pdf, 2023.
- [WP13a] Hongjun Wu and Bart Preneel. AEGIS: A Fast Authenticated Encryption Algorithm. In Tanja Lange, Kristin E. Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography SAC 2013 20th International Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume 8282 of Lecture Notes in Computer Science, pages 185–201. Springer, 2013.
- [WP13b] Hongjun Wu and Bart Preneel. Aegis: A fast authenticated encryption algorithm. Cryptology ePrint Archive, Paper 2013/695, 2013.
- [WP16] Hongjun Wu and Bart Preneel. Aegis: A fast authenticated encryption algorithm (v1.1). https://competitions.cr.yp.to/round3/aegisv11.pdf, 2016.

A Attack Vectors

Note that, in the attack vectors, we have provided a ciphertext/tag pair. However, the tuple $((K_1, IV_1, A_1), (K_2, IV_2, A^*))$ (here $IV_1 = IV_2$) works with any plaintext, i. e., if we encrypt a plaintext with both (K_1, IV_1, A_1) and (K_2, IV_2, A^*) , it generates same ciphertext/tag pair. In this way, numerous ciphertext/tag pair can be generated which can be decrypted to valid plaintexts.

In the vectors provided, the leftmost bit is the least significant bit (LSB). Consider a 16-bit string $b_0 \cdots b_{15}$ wher b_0 is the LSB and b_{15} is the most significant bit (MSB). Using the vectors, the above string is denoted as $[b_0 \cdots b_7 \quad b_8 \cdots b_{15}]$.

A.1 Attack Vector for AEGIS-128

C T=	[0xA5	0xA7	0x7C	0x8D	0x8D	0xB5	0xEB	0x88	0x35	0x72
	0x71	0x78	OxDA	0x00	0x15	0xFF	0xBC	0x1D	0xB4	0xF6
	0x28	0x7B	0x96	0xEE	0x1E	0xA0	0xF8	0xEC	0x0C	OxFF
	0x32	0x4B]								
$K_1 =$	[0x62	0x1F	0x61	OxFA	0x65	0x84	0x70	0xCC	0x18	0x4B
	0x39	0x45	0x3D	OxAB	0x75	[08x0				
$IV_1 =$	[0xCE	0xD7	0xE2	0xF0	0xB2	OxAE	0x0D	0x0D	0x3E	0x82
	0x5F	0xFC	0xE4	0x6F	0xC7	0xCF]				
$A_1 =$	[0xBE	0x17	0x84	OxAA	0x3B	0x98	0x29	0xBC	0xCC	0xF3
	0x81	0x04	0x11	0x57	0x4F	0x43	0xFB	0x86	0xA4	0xE3
	0xD6	0x34	0x1C	0x15	0xB7	0x07	0x8E	0x2C	0x91	0x75
	0x86	0xE2	0x89	0x94	0x5D	0x69	0x85	0x55	0xB0	OxEE
	0x68	0x70	0x27	0x71	0xF1	0x0A	0xF8	0x89	0x30	0xF9
	0x35	0x7B	0x8D	0xFE	0x1F	0x07	0xD1	0x6F	0x39	0xD2
	0x44	0x1D	0xC3	0x83	0x31	0x65	OxAF	0x74	0x55	0x03
	0xA6	0xB3	0xD3	0x2C	0x15	0x8C	0x86	0xA3	OxFA	OxCF
$K_2 =$	OxFC	0xF9	0x24	0xED	0x84	0x21	0x9B	0xD8	0x24	0xEB
	0x58	0xB9	0x01	0xA8	80x0	0x82]				
$IV_2 =$	[0xCE	0xD7	0xE2	0xF0	0xB2	OxAE	0x0D	0x0D	0x3E	0x82
	0x5F	0xFC	0xE4	0x6F	0xC7	OxCF]				
$A^* =$	[0x15	0x7E	0xC0	0x40	0x64	OxDB	0x40	0x47	0xDC	0xE2
	0x56	0x7D	0x41	0x6C	0x5D	80x0	0x71	0xB4	0xDB	0xD8
	0x76	0xC5	0xCC	0xD1	0x44	0xF0	0x58	0x91	0xF5	OxED
	0x22	0x91	0x3F	8Ax0	0xEC	0x97	0x71	0xD5	0xD2	0x7C
	0x28	0xF7	0x53	OxBB	0xE0	0x5A	0xD1	OxBF	0x34	0xF2
	0x44	0x14	0xE7	0x37	88x0	0x61	0xB3	0x0E	0x5C	0x75
	0x61	0x84	0xBE	0x03	OxOF	0xBB	0x57	0xF1	0x3B	0x2D
	0x93	0x74	0xCB	0x70	0x57	0xFC	0x9D	0xF9	0xE4	0x2B]

A.2 Attack Vector for AEGIS-256

C T=	[0x5F 0x18 0x74 0x42	0x74 0xE2 0x9F 0xF0]	0x00 0x16 0x53	0x73 0x9B 0x80	0x1E 0x6E 0xF6	0x88 0x98 0xE0	0x1D 0xB0 0x9B	0x84 0x8D 0x0F	0xAE 0x5C 0x33	0x0A 0xB1 0x1D
$K_1 =$	[0x15 0xAC 0x7D 0x8C	0x86 0x8D 0x27 0x81]	0x32 0x7D 0x46	0x3E 0x37 0xFF	0x9C 0x1B 0x5C	0x71 0x9B 0x55	0xB4 0x7A 0x0E	0x9F 0x80 0x5A	0x13 0x0D 0xEC	0x36 0x63 0xE7
$IV_1 =$	[0xD9 0xEF 0x43 0x29	0x9D 0x8E 0xF7 0xF0]	0x22 0x88 0x8D	0x35 0xBE 0x61	0x4E 0xC0 0x5D	0xF7 0x1C 0x88	0x15 0x6A 0xB9	0xF8 0xD7 0x00	0x70 0xFE 0xCA	0x88 0xDF 0x62
A_1 =	[0x8E 0x28 0x07 0x97 0x36 0xB3 0x79 0x8E 0x85 0x43	0x15 0xA6 0xB6 0xB0 0xA2 0x19 0x06 0x61 0x84 0x6F	0x9D 0x49 0x19 0xCD 0x26 0xB2 0x61 0x8D 0x0D 0xE9	0xB0 0x58 0x8C 0x58 0xCB 0xFB 0x4D 0x74 0x09 0x11	0x18 0xC5 0x3C 0x06 0x2B 0x3C 0x67 0x8F 0xC2 0x37	0x2E 0x5E 0x1D 0x81 0xC5 0x39 0xFF 0x52 0xCA 0x00]	0x11 0xFE 0x1E 0x03 0xE6 0x3B 0xF0 0x7B 0xF1	0xFC 0x77 0xB7 0xD5 0x5E 0x8E 0xFB 0xOC 0xDB	0x46 0x01 0x63 0x64 0x16 0xCF 0x86 0x75 0x18	0xE0 0xBA 0x5E 0xDC 0xCB 0xF1 0xC5 0xC6 0xC2
$K_2=$	[0x5C 0xCC 0x98 0x7C	0xD5 0xBD 0xDE 0x78]	0x0D 0xF0 0x8E	0xFB 0xA4 0x09	0x4F 0xD5 0x1F	0x8A 0x80 0x82	0x55 0x5D 0x04	Ox31 OxAA OxBA	0x1C 0x0B 0x39	0xF3 0x2E 0x29
$IV_2 =$	[0xD9 0xEF 0x43 0x29	0x9D 0x8E 0xF7 0xF0]	0x22 0x88 0x8D	0x35 0xBE 0x61	0x4E 0xC0 0x5D	0xF7 0x1C 0x88	0x15 0x6A 0xB9	0xF8 0xD7 0x00	0x70 0xFE 0xCA	0x88 0xDF 0x62
$A^* =$	[0xB9 0x2A 0x69 0x8A 0x14 0xFD 0x7C 0x54 0xF1	0x55 0x7D 0x44 0xD0 0x14 0xAE 0x7D 0xDF 0x41	0xF7 0x7C 0x7F 0xA4 0x70 0xAA 0xBB 0x1F 0xE9	0x5C 0x3A 0x20 0xA0 0xF3 0x2A 0x06 0x49 0x2A	0xB9 0xC8 0x6E 0x0C 0xD3 0xA1 0x5E 0x0A 0x11	0x91 0x1E 0xFB 0x00 0x4E 0x98 0x56 0x1D 0x0E	0xC3 0x84 0xF3 0xA4 0x88 0xFC 0x1C 0x9B 0x91	0x17 0x62 0x0E 0x6B 0xD7 0x07 0x41 0xE0 0x87	0xD1 0xF4 0xD1 0x84 0xF8 0x87 0x67 0x7E 0xB7	0xC4 0x03 0x47 0x71 0xC3 0x74 0x54 0x05 0xBA
	8Ax0	0x2F	0xBC	0x67	0x2B	OxEF]				

A.3 Attack Vector for AEGIS-128L

C T=	[0xE2 0x0A 0x2F 0x37	0xF5 0x09 0x08 0xA0]	0x27 0x0C 0xB8	0xF6 0x06 0xF6	0x7D 0x71 0x05	0xD5 0x5A 0xD4	0xC9 0x4F 0xED	0x77 0x78 0x86	0x5C 0x84 0x89	0x0C 0xF1 0x52
$K_1=$	[0x09 0x8E	OxAA Ox9D	0x5D 0x17	0x16 0xA9	0x70 0x71	0x62 0x18]	0x2E	OxED	0xFB	0x18
$IV_1 =$	[0x24 0x3B	0xF2 0x94	0xEA 0x36	0xAF 0x8C	0xAE 0xD2	OxCA OxC1]	0x95	OxFF	0xC8	0x4A
A_1 =	[0x92 0x1E 0x32 0x57 0xD1 0x8E 0x4A 0xF5 0xD0 0x30 0x3B 0xF0 0xCC	0x9D 0x0F 0x53 0xA9 0x10 0x14 0xAC 0x0E 0xC2 0x27 0x7C 0x98 0xDB	0xBF 0x82 0x7B 0xB5 0x7D 0xF5 0x7D 0x57 0xE3 0xAE 0x0B 0x54 0x91	0xD2 0x28 0xFC 0x38 0xE9 0x51 0x1D 0x8A 0xE6 0x13 0xB6 0xB5 0xCA	0x4E 0x1A 0x00 0xF6 0x11 0x21 0xF9 0x8B 0x76 0x94 0xAA 0x1A	0xAE 0x2D 0xDC 0x4E 0x35 0x0E 0xAE 0xB5 0x82 0xD8 0xB9 0xBA	0x0A 0x4B 0x98 0x0F 0x8C 0xEB 0xC5 0x64 0xE6 0x5D 0x98 0x37 0x45	0x2E 0x7F 0x08 0xD1 0x27 0x90 0xEA 0x3C 0xDF 0x16 0x2C 0xB6 0x08]	0xAC 0x15 0xA8 0x6F 0x24 0x95 0x99 0x15 0x63 0x6A 0x03 0x51	0xB1 0xF2 0xF7 0x88 0xDE 0xB6 0x06 0x4C 0xB4 0x2E 0x44 0x70
$K_2 =$	[0x1A 0x6A	0x69 0xF6	0x72 0x1E	0xD1 0xCB	0x60 0xEA	0x38 0x75]	0x0B	0xA9	0xD6	0x0D
$IV_2 =$	[0x24 0x3B	0xF2 0x94	0xEA 0x36	0xAF 0x8C	0xAE 0xD2	OxCA OxC1]	0x95	OxFF	0xC8	0x4A
$A^* =$	[0xB6 0xF9 0xA1 0xED 0x75 0xF1 0x40 0xFB 0xE3 0xB7 0xD7 0x56 0xE3	0x58 0x9F 0x09 0x2A 0xD5 0x74 0xCF 0xA3 0x52 0xD8 0x0A 0x1A 0xF4	0x24 0x84 0x72 0x57 0xCA 0x80 0xFC 0xED 0xA4 0x77 0xA7 0xA9	0xE0 0x1D 0x02 0xF3 0xD0 0xF8 0xDD 0x44 0x49 0xB4 0x06 0x42 0x14	0x6F 0xBA 0x85 0x7F 0x3A 0x79 0x11 0x81 0x21 0x62 0x4C 0x06 0xC4	0x0E 0x19 0x9A 0x00 0x09 0x8A 0x68 0x1B 0xFD 0x3D 0xD8 0xD2	0xA4 0x3A 0x58 0xBD 0x34 0x10 0xC2 0xDA 0x9C 0x79 0x14 0x6C 0x31	0x06 0xAA 0xA2 0xB0 0x30 0xA1 0x22 0xBC 0x9F 0x61 0xD8 0x70 0x72	0x42 0x11 0xDA 0x31 0x51 0x16 0xF6 0xB4 0x41 0x69 0x9C 0x28	0x5A 0xA5 0x54 0x0B 0xB9 0x89 0x2E 0xF0 0xE9 0xF1 0x04