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Abstract. The security level of a cipher is a key parameter. While
general-purpose quantum computers significantly threaten modern sym-
metric ciphers, other quantum approaches like quantum annealing have
been less concerning. However, this paper argues that a quantum an-
nealer specifically designed to attack Grain 128 and Grain 128a ciphers
could soon be technologically feasible. Such an annealer would require
5,751 (6,751) qubits and 77,496 (94,708) couplers, with a qubit connec-
tivity of 225 (249). Notably, the forthcoming D-Wave Advantage 2 with
Zephyr topology will feature over 7,000 qubits and 60,000 couplers and
a qubit connectivity 20. This work also shows that modern stream ci-
phers like Grain 128 and Grain 128a could be vulnerable to quantum
annealing attacks. Although the exact complexity of quantum anneal-
ing is unknown, heuristic estimates suggest a

√
N exponential advantage

over simulated annealing for problems withN variables. We detail how to
transform algebraic attacks on Grain ciphers into the QUBO problem,
making our attack potentially more efficient than classical brute-force
methods. We also show that applying our attack to rescaled versions of
the Grain cipher, namely Grain l and Grain la versions, where l repre-
sents the key size, leads to our attack overtaking both brute-force and
Grover’s attacks for sufficiently large l. This is true, provided that quan-
tum annealing has an exponential advantage over simulated annealing.
Specifically, it is sufficient for the time complexity of quantum annealing

for problems with N variables to be eN
β

for any β < 1. Finally, given the
general nature of our attack method, all new ciphers should be scruti-
nized for vulnerability to quantum annealing attacks and at least match
the AES cipher in terms of security level.

Keywords: stream cipher · Grain · quantum annealing · cryptanalysis

1 Introduction

Applying quantum annealing (QA) in cryptanalysis originated with attempts
to perform factorization using this technique. Interestingly, current quantum
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annealers have significantly more resources—especially working qubits—than
general-purpose quantum computers. For instance, the D-Wave Advantage boasts
nearly 6,000 working qubits, while, in contrast, the largest general-purpose quan-
tum computer, IBM Osprey, has only 433 working qubits. This disparity suggests
that present-day quantum annealers could tackle more extensive cryptanalysis
problems than general-purpose quantum computers.

This paper argues that a quantum annealer specifically designed to attack
Grain 128 and Grain 128a ciphers could soon be technologically feasible. Such an
annealer would require 5,751 (6,751) qubits and 77,496 (94,708) couplers, with
a qubit connectivity of 225 (249). Notably, the forthcoming D-Wave Advantage
2 with Zephyr topology will feature over 7,000 qubits and 60,000 couplers and a
qubit connectivity 20.

However, until recently, quantum annealing was perceived more as an intrigu-
ing novelty than a tool capable of solving genuine challenges. It is worth noting
that the complexity of quantum annealing is not precisely determined; how-
ever, evidence and heuristic estimates suggest that its time complexity depends
exponentially on

√
N for many problems [20] when the barrier width remains

independent of N , where N denotes the number of variables in the optimization
problem executed on the quantum annealer.

The applicability of quantum annealing has been examined for several preva-
lent cryptanalytic challenges, such as:

1. Integer factorization, where transformation to the QUBO problem requires

∼ n2

4 variables for an integer with bit length n;
2. The discrete logarithm problem over prime fields, which, when transformed

to the QUBO problem, needs ∼ 2n2 variables for a prime field with bit length
n [24];

3. Various block ciphers, such as transforming the algebraic attack on AES-128
to the QUBO problem, which demands nearly 30,000 variables and up to
60,000 variables for AES-256 [6].

Given this analysis, one might easily conclude that quantum annealing has
not been regarded as a formidable threat. However, the narrative shifts dra-
matically when discussing algebraic attacks on stream ciphers using quantum
annealing.

This paper outlines how to execute an algebraic attack on the Grain 128 and
Grain 128a ciphers using QA. Our approach aims to transform these attacks into
a QUBO problem while minimizing the number of required logical variables.

Our strategy enables retrieving the complete internal state of the Grain 128
and Grain 128a ciphers using a consecutive sequence of 259 bits from the output
keystream. If this stream resembles a random sequence, reversing the process
can yield the key and IV vector straightforwardly.

Crucially, the derived QUBO problem for the algebraic attack on these ci-
phers requires only 5,751 logical variables for Grain 128 and 6,751 logical vari-
ables for Grain 128a, the latter being an improved version of the Grain 128
cipher. Direct calculations indicate that the attack’s time complexity on Grain
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128 depends exponentially on
√

5, 751 ≈ 75.84, and for Grain 128a, depends ex-
ponentially on

√
6, 751 ≈ 82.16, assuming that in analyzed problem, the energy

barriers width is N independent and therefore quantum annealing has a
√
N

exponential advantage over simulated annealing (as well as brute-force attacks).
Since these projections rely on heuristic estimates, it is challenging to predict the
actual strength of our attack for these specific problems. Our estimates suggest
that our present attacks might surpass brute-force methods for Grain ciphers.

We also show that applying our attack to rescaled versions of the Grain
cipher (we use here the similar idea as in the case of rescaling Trivium cipher
[22]), namely Grain l and Grain la versions, where l represents the key size,
leads to our attack overtaking both brute-force (of time complexity equal to 2l)

and Grover’s attacks (of time complexity equal to 2
l
2 ) for sufficiently large l.

This is true provided that quantum annealing has any exponential advantage
over simulated annealing; specifically, it is sufficient for the time complexity

of quantum annealing for a problem with N variables to be eN
β

for any β <
1. It may be a surprising result for readers who know there is no quantum
general database-search algorithm faster than Grover’s. The hint here is that
the algebraic attack, which we use here, uses the strictly algebraic structure of
the cipher. The weaker this structure is, the weaker it should be the attack.

Our paper concludes that every cryptographic algorithm should be assessed
for its resilience against quantum annealing attacks. Although estimating the
computational complexity of quantum annealing is inherently difficult, we be-
lieve adopting the same assumptions NIST used in the PQC competition [9]
is reasonable. Specifically, for the first security level, a quantum attack on a
given algorithm should be no more feasible than a quantum attack on AES-128
[13], which involves approximately 30,000 logical variables. For the third level,
it should be comparable to AES-192 (around 45,000 logical variables), and for
the fifth level, akin to AES-256 (approximately 60,000 logical variables).

2 Quantum Computing

Quantum computing is currently one of the most promising fields in computer
science. The idea of applying quantum mechanics to computation was first in-
troduced in 1980. In 1985, David Deutsch, a researcher from Oxford University,
described a quantum Turing machine. A decade later, two groundbreaking algo-
rithms were introduced:

– In 1994, Peter Shor presented an algorithm [21] that enables polynomial-time
factorization of numbers, posing a threat to asymmetric cryptography.

– In 1996, Lov Grover introduced an algorithm [14] that allows for searching
an unordered N -element set in O(

√
N) steps, effectively halving the effective

key size and posing a threat to symmetric cryptography.

In quantum computing, the basic unit of information is a qubit, which can
be represented as a unit vector in the C2 space using Dirac notation:

|q⟩ = ω0 |0⟩ + ω1 |1⟩ . (1)
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The coefficients ωi are called amplitudes and satisfy the condition given by Equa-
tion (2):

|ω0|2+|ω1|2= 1 (ω0, ω1 ∈ C). (2)

When measuring the value of a qubit, the outcome will be determined proba-
bilistically. The measurement will yield the base vector |i⟩ with a probability of
|ωi|2.

Computation in a quantum computer is performed using systems of quantum
gates, which can be represented as unitary matrices with complex elements. Due
to the properties of these matrices, operations performed with quantum gates
are reversible.

Building quantum computers faces several challenges, the most significant
of which is decoherence. Qubits are highly susceptible to external factors, even
minor ones, which can introduce errors in computations. Scaling quantum regis-
ters exacerbates this issue, necessitating the application of error correction tech-
niques. Current solutions require a large number of qubits for error correction,
leaving fewer for computational tasks.

As of 2023, IBM’s largest quantum processor, Osprey, has 433 qubits [10],
and the construction of a 1,121-qubit [10] processor named Condor is planned.

An alternative to standard quantum calculations is adiabatic quantum calcu-
lations, which are based on the slow evolution of a dynamic system that evolves
in accordance with the external and internal forces acting on it. The forces act-
ing on this system can be characterized by a time-varying Hamiltonian, which,
in mathematical terms, is a Hermitian matrix. The Hamiltonian operator makes
it possible to determine the observable energy of a quantum system at any mo-
ment, which corresponds to the eigenvalue of the eigenstate, i.e., the state of
the system. In the set of all possible energy values of a given system, there is a
ground state, i.e., a state with minimum energy. The remaining states are called
excited states. The concept of energy gap is defined as the difference between the
eigenvalues of the ground state and the first excited state at any moment of the
system’s evolution. According to the adiabatic theorem, if the system is in the
ground state at the beginning of evolution, the minimum energy gap is greater
than zero at any moment, and the process evolves slowly, the quantum system
will remain in the ground state. The speed of the evolution process depends on
the width of the energy gap; the smaller the gap, the slower the process must be
executed.

A practical implementation of the theory of adiabatic quantum computing is
quantum annealing, which is used to solve optimization problems. Suppose the
quantum system is in the ground state at the end of the evolution process. In
that case, the eigenstate of this system corresponds to the optimal solution of a
given optimization problem.

Currently, quantum annealers offer a more practical alternative to general-
purpose quantum computers, primarily because of their size. The company D-
Wave provides access to computers with almost 6,000 qubits. Hybrid solutions
have also been developed, where the quantum processor acts as an extension of
a classical computer. These hybrid systems can handle even a million variables.
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2.1 QUBO problem

Quantum annealing can be used to solve optimization problems in the form of
QUBO (Quadratic Unconstrained Binary Optimization). This problem can be
formulated as optimizing an expression given by Equation (3)

min
x∈{0,1}n

xTQx, (3)

where the vector x contains n binary variables, and the n × n matrix Q is
an upper-triangular matrix containing real values [11]. The elements on the
main diagonal correspond to linear monomials, while the elements above the
main diagonal are the coefficients of the respective quadratic monomials. This
structure of matrix Q allows for the minimization of the function given by

f(x) =
∑
i

qi,ixi +
∑
i<j

qi,jxixj . (4)

To formulate a QUBO problem, the cipher under attack must first be repre-
sented by a system of polynomial equations over a finite field. The degree and
form of the polynomials depend on the structure of the attacked cipher. Let us
assume that a particular cipher is represented by the system of equations given
in Equation (5) over GF (2).

f0(x0, . . . , xn−1) ≡ 0 (mod 2),

f1(x0, . . . , xn−1) ≡ 0 (mod 2),
...

ft−1(x0, . . . , xn−1) ≡ 0 (mod 2).

(5)

This system can be transformed into a QUBO problem as outlined in [6]. To
achieve this transformation, the following steps should be taken:

1. Each equation fi should be transformed into an equation f ′
i with binary vari-

ables and integer coefficients: f ′
i = fi − 2ki, where ki is an integer satisfying

ki ≤
⌊
fmax
i

2

⌋
,

where fmax
i is the maximal value of the polynomial fi when all its binary

variables are set to one.
2. Each equation f ′

i should be linearized to obtain f ′
lini

as well as the penalty
Peni during the linearization. The variables ki should be replaced with bi-
nary variables x0, x1, . . . , xbl(kmax

i )−1:

ki =

bl(kmax
i )−2∑
j=0

2jxj + (kmax
i − 2bl(k

max
i )−1 + 1) · xbl(kmax

i )−1,

where bl(y) is the bit-length of integer y and kmax
i = ⌊ fmax

i

2 ⌋.
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3. The polynomial F ′
Pen =

∑t−1
i=0(f ′

lini
)2 + c · Pen, where Pen =

∑t−1
i=0 Peni

and c is a constant to prevent achieving the minimum energy for incorrect
solutions, should be determined.

4. Finally, the polynomial FPen = F ′
Pen−C is determined, where C is a constant

term in F ′
Pen corresponding to the minimum energy of the function.

Linearizing Boolean functions is an NP-hard task. However, the solution
presented in [5] is sufficient for the above transformation. In each equation, the
product of two variables is replaced with a new variable:

xixj → xk,

and the penalty corresponding to this substitution is given by:

2(xixj − 2xk(xi + xj) + 3xk).

The number of new variables depends on the order in which substitutions are
made. A single substitution can be used in multiple monomials across different
equations. Among various options, the most convenient approach is to prioritize
substitutions based on their frequency of occurrence.

3 Grain ciphers family

The Grain cipher was first introduced in 2004 as a part of the eSTREAM project,
aiming to identify optimal encryption algorithms based on specific criteria [17].
Created by Martin Hell, Thomas Johansson, and Willi Meier, the Grain cipher
became a finalist in the Profile 2 category. It is designed with hardware efficiency
in mind, focusing on limited resources like storage, gate count, and power con-
sumption. Originally, it utilized an 80-bit key and a 64-bit initialization vector,
relying on two 80-bit registers: the Linear Feedback Shift Register (LFSR) and
the Non-Linear Feedback Shift Register (NFSR).

In 2006, an attack by Berbein, Bilbert, and Maximov [3] was presented, which
required the following:

– 243 operations;

– 243 bits of memory;

– 238 bits of keystream.

3.1 Grain 128

A new version called Grain 128 was introduced in response to the vulnerabilities
exposed. It employs a 128-bit key and a 96-bit initialization vector while retaining
the benefits of the original design [16]. Figure 1 illustrates the algorithm.
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Fig. 1: Grain 128 cipher scheme [16]

The internal state consists of two 128-bit registers:

– LFSR with internal state (si, si+1, . . . , si+127) and feedback function:

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96;

– NFSR with internal state (bi, bi+1, . . . , bi+127) and feedback function:

bi+128 = si + bi + bi+26 + bi+56 + bi+91bi+96+
+bi+3bi+67 + bi+11bi+13 + bi+17bi+18

+bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84.

From the 256-bit internal state, 9 bits are fed into the function h(x) as defined
by:

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8,

with xk representing specific bits from the internal state:

bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79, si+95.

The algorithm’s output bit is calculated as follows:

yi =
∑
j∈A

bi+j + h(x) + si+93, (6)

where A = {2, 15, 36, 45, 64, 73, 89}. The key and the IV vector need to be pro-
vided to initiate the algorithm’s operation. The NFSR is completely filled with
the key bits. Using the IV vector, the first 96 bits of the LFSR state are filled,
while the remaining bits are set to 1. Afterward, the entire system is clocked 256
times, during which the generator output is xored to the inputs of each register.
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3.2 Grain 128a

An attack by Itai Dinur and Adi Shamir in 2011 [12] led to further modifica-
tions, resulting in the Grain 128a version [1]. This variant keeps the key and
initialization vector sizes but introduces several changes:

– The NFSR feedback function has been modified as follows:

bi+128 = si + bi + bi+26 + bi+56 + bi+91 + bi+96

+bi+3bi+67 + bi+11bi+13 + bi+17bi+18

+bi+27bi+59 + bi+40bi+48 + bi+61bi+65

+bi+68bi+84 + bi+88bi+92bi+93bi+95

+bi+22bi+24bi+25 + bi+70bi+78bi+82;

– The output function is adjusted, employing the previously mentioned output
function as a pre-output function, and the output bit is determined according
to the following equation:

zi = y64+2i,

for mode with authentication or according to the equation:

zi = yi,

for mode without authentication. In this paper, we use only the mode of the
Grain 128a without authentication.

– The initialization method has also been modified. The internal state of the
LFSR is filled with the IV vector, along with 31 bits set to 1 and one bit
set to 0. The pre-output is xored to the inputs of each register during each
initial step.

3.3 Cryptanalysis

Several methods have been developed to analyze and attack the Grain ciphers.
One of the most significant contributions in this field was made in 2018 by Todo
et al. [23]. This research demonstrated an attack with a complexity lower than
required for an exhaustive search. Specifically, their Fast Correlation Attack
could break the Grain 128 cipher with a time complexity of O(2114.4) and a
memory complexity of O(2112.8). For the Grain 128a variant, the attack’s time
and memory complexities are O(2115.4) and O(2113.8), respectively.

Prior to this, Dinur and Shamir had presented another attack [12]. This
method exploits the low algebraic degree of the non-linear functions used in
the Grain 128 cipher, a factor considered in the design of later versions. Their
attack enables key recovery with a complexity of O(2103), assuming that the key
belongs to a subset of 2118 potential keys.

These contributions have significantly influenced the understanding of the
Grain cipher’s security landscape, prompting the development of more secure
versions and highlighting the need for ongoing research in this area.
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Quantum attacks for gate-based quantum computers have also been consid-
ered in the case of the Grain family of ciphers [2], [18].

It is worth noting that quantum circuits implementing Grover’s algorithm
have been studied for quantum attacks on Grain v1 (with an 80-bit key) and
Grain 128a in authentication mode [2]. However, both circuits require enor-
mous resources, rendering the attacks impractical. From the current perspective,
Grover’s attack on Grain ciphers seems unlikely to be made more efficient.

Table 1 below presents the resource requirements for implementing Grover’s
circuit for Grain v1 and Grain 128a in authentication mode.

Cipher #Clifford gates #T gates Gate Cost (G) T-depth Full depth (D) #qubits

Grain 128a 1.902 · 281 1.546 · 281 1.724 · 282 1.737 · 280 1.820 · 280 523

Grain v1 1.623 · 257 1.317 · 257 1.470 · 258 1.486 · 256 1.795 · 255 347

Table 1: Resource estimations for Grover’s algorithm with ⌊π
4 2

k
2 ⌋ oracle itera-

tions [2].

An adaptation of the HHL quantum algorithm [15] to algebraic attacks on
Grain 128 and Grain 128a ciphers was described in [18]. In this method, similar
to the method we described in this paper, equations based on the algebraic struc-
ture of the cipher are obtained and then transformed into an appropriate form.
Moreover, the time complexity of the attack is O

(
221N3.5κ2eϵ/ϵ0.5

)
for Grain

128 and O
(
221.5N3.5κ2eϵ/ϵ0.5

)
for Grain 128a, where κ is the condition number

of the matrix for the corresponding linear system and ϵ is a given error bound. It
is worth noting that estimating how large κ is is challenging. Experiments on toy
examples in [18] showed that κ depends on the keystream and can range from
relatively small (the smallest obtained value was 25.9932) to very large (about
250 in that toy example). Additionally, the quantum resources required for the
practical implementation of this attack have not been estimated. These factors
indicate that, although the attack presented in [18] is of theoretical interest, its
practical implementation and impact may be quite limited.

4 Transformation of the Grain 128 and Grain 128a
ciphers to the QUBO problem

This section describes the transformation of the Grain 128 and Grain 128a ci-
phers to the QUBO problem, a crucial part of the algebraic attack on this cipher
using quantum annealing.
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4.1 Probability of identifying the correct inner state of the stream
cipher

The assessment of an attack’s efficacy involves understanding the odds of cor-
rectly identifying the cipher’s internal state and, consequently, the secret key.
Let k denote the number of consecutive output bits that we assume to be known
or recoverable for this analysis.

Initially, the output sequence generated by the stream cipher is treated as
a random sequence. For a cipher internal state comprising n bits and a known
sequence of k consecutive bits, the mean number of inner states that could
produce the same sequence is expected to be 1. We also posit that at least one
correct inner state (the state responsible for generating the sequence) should
exist for a given sequence. The challenge is to determine the possibility of other
such states existing. The key points of this analysis are as follows:

1. At least one inner state generates the sequence α, composed of the first k
output bits.

2. The cipher’s output is assumed to behave like a random number generator.
3. The probability that a specific inner state S will generate the sequence α is

2−k.
4. There are 2n − 1 trials (inner states) to consider, as we know at least one

correct inner state exists.

We employ a binomial distribution model for this analysis, formulated as:

B(N, p) =

N∑
i=0

(
N

i

)
pi(1 − p)N−i. (7)

For N = 2n − 1 and p = 2−k, it translates to:

B(2n − 1, 2−k) =

2n−1∑
i=0

(
2n − 1

i

)
(2−k)i(1 − 2−k)2

n−1−i. (8)

The average number of ‘successes’ (inner states generating sequence α) is
µ = 1 + N · p = 1 + 2n−1

2k
.

To find the probability of having no additional inner states generating the
same sequence α, we calculate the probability for 0 successes:

B(N, p, 0) = (1 − 2−k)2
n−1 ≈ e−2n−k

, (9)

where e−2n−k

is a good approximation given that 2k and 2n are generally
large numbers.

We also want to estimate the probability that, found inner state, producing
the correct k-bit output α is indeed the state used to generate this sequence. Let
this probability be denoted as C(N, p):

C(N, p) =

N∑
i=0

(
N

i

)
1

i + 1
pi(1 − p)N−i. (10)
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Through the application of generating function properties, this simplifies to:

1 − (1 − p)N+1

(N + 1)p
≈ 1 − e−2n−k

2n−k
. (11)

The data presented in Table 2 suggests that the absolute sizes of n and k are
not as crucial as their difference n− k. A smaller n− k difference increases the
likelihood of identifying the correct inner state.

n− k µ B(N, p, 0) C(N, p)

3 9 0.00034 0.12496

2 5 0.01832 0.24542

1 3 0.13534 0.43233

0 2 0.36788 0.63212

-1 1.5 0.60653 0.78694

-2 1.25 0.77880 0.88480

-3 1.125 0.88250 0.94002

-4 1.0625 0.93941 0.96939

-5 1.03125 0.96923 0.98454

-6 1.015625 0.98450 0.99223

-7 1.007813 0.99222 0.99610

-8 1.003906 0.99610 0.99805

-9 1.001953 0.99805 0.99902

-10 1.000977 0.99902 0.99951

Table 2: Values of µ,B(N, p, 0), and C(N, p) for distinct values of n− k.

In the context of transforming algebraic attacks on Grain 128 and Grain
128a ciphers into the QUBO problem, it is worth noting that when k = n, the
probability of the inner state found via quantum annealing being the correct
one is over 63%. This level of likelihood is considered practically significant for
the attack scenario. However, to obtain a larger probability (around 94%) of
obtaining the proper internal state of the cipher, we assume that k = n + 3
output keystream bits are known - in the case of both Grain 128 and Grain
128a. Therefore, it is equal to 259.

4.2 Generating a system of equations for the Grain cipher

According to the principles of algebraic attacks, the initial k bits of the out-
put keystream are known. We aim to determine the initial state of each NFSR
and LFSR internal register after initialization. We can backtrack through the
initialization steps to recover the key based on the recovered initial state.

Let binary variables represent the initial states. The shift registers are regu-
larly clocked in both the Grain 128 and Grain 128a ciphers and a single bit of
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the output keystream is generated per clock cycle. Hence, an equation over the
binary field is generated for each known output bit yi, where i = 0, k − 1. During
the shift register updates, each generated bit bi+128 and si+128 is defined by the
characteristic polynomials of these registers and is a function of the unknown
binary variables representing the initial state. To avoid increasing the degree of
the equations for the output bits, we generate an equation for each bit and rep-
resent these bits by successive unknown binary variables. In summary, a system
of three equations is generated for each known output bit yi in the following
forms:

si + si+7 + si+38 + si+70 + si+81 + si+96 + si+128 = 0,
si + bi + bi+26 + bi+56 + bi+91 + bi+96 + bi+128 + bi+3bi+67 + bi+11bi+13+
+bi+17bi+18 + bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84 = 0,
yi + bi+2 + bi+15 + bi+36 + bi+45 + bi+64 + bi+73 + bi+89 + si+93+
+bi+12si+8 + si+13si+20 + bi+95si+42 + si+60si+79 + bi+12bi+95si+95 = 0,

(12)
for Grain 128, and



si + si+7 + si+38 + si+70 + si+81 + si+96 + si+128 = 0,
si + bi + bi+26 + bi+56 + bi+91 + bi+96 + bi+128 + bi+3bi+67+
+bi+11bi+13 + bi+17bi+18 + bi+27bi+59 + bi+40bi+48 + bi+61bi+65+
+bi+68bi+84 + bi+22bi+24bi+24 + bi+88bi+92bi+93bi+95 = 0,
yi + bi+2 + bi+15 + bi+36 + bi+45 + bi+64 + bi+73 + bi+89 + si+93+
+bi+12si+8 + si+13si+20 + bi+95si+42 + si+60si+79 + bi+12bi+95si+94 = 0,

(13)
for Grain 128a.

Consider the following example, presenting the transformation of the equa-
tions system for one cycle of the Grain 128 cipher to the QUBO problem. Let
us denote the initial state of the LFSR register using the variables x0, . . . , x127,
and let us denote the initial state of the NFSR register using the variables
x128, . . . , x255. In this example, let us consider the equations for cycle i = 0 and
assume that the corresponding keystream bit is y0 = 1. The registers are updated
in each cycle of the Grain 128 cipher so that we will represent bits s128 and b128
from one update as x256 and x257, respectively. According to these assumptions,
we obtain a system of three equations (14) over the field GF (2).


f0 = x0 + x7 + x38 + x70 + x81 + x96 + x256 ≡ 0 (mod 2),
f1 = x0 + x128 + x154 + x184 + x219 + x224 + x257 + x131x195 + x139x141+
+x145x146 + x155x187 + x168x176 + x189x193 + x196x212 ≡ 0 (mod 2),
f2 = 1 + x130 + x143 + x164 + x173 + x192 + x201 + x217 + x93+
+x140x8 + x13x20 + x223x42 + x60x79 + x140x223x95 ≡ 0 (mod 2),

(14)
Each equation of the obtained system is presented as the difference of the cor-
responding equation with binary variables and integer coefficients and multiple
of the number 2. The obtained system has the form of equation (15), where k0,
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k1 and k2 are integers.
f ′
0 = x0 + x7 + x38 + x70 + x81 + x96 + x256 − 2k0,
f ′
1 = x0 + x128 + x154 + x184 + x219 + x224 + x257 + x131x195 + x139x141+

+x145x146 + x155x187 + x168x176 + x189x193 + x196x212 − 2k1,
f ′
2 = 1 + x130 + x143 + x164 + x173 + x192 + x201 + x217 + x93+

+x140x8 + x13x20 + x223x42 + x60x79 + x140x223x95 − 2k2,
(15)

Table 3 presents the values of variables enabling the representation of multiples
ki using subsequent binary variables and the polynomials obtained for the ki
variables.

i fmax
i kmax

i bl(kmax
i ) ki

0 7 3 2 x258 + 2x259

1 14 7 3 x260 + 2x261 + 4x262

2 14 7 3 x263 + 2x264 + 4x265

Table 3: Representing the value of the multiple ki using binary variables.

In the system of equations (15), there is a linear equation f ′
0 and two non-

linear equations f ′
1 and f ′

2, of the second and third degree, respectively. There-
fore, the process of linearization of the system (15) consists of substituting a
new binary variable for each quadratic monomial in equations f ′

1 and f ′
2 and

determining the appropriate penalty. The third-degree monomial in equation f ′
2

is linearized by two substitutions. The substitutions made, and the appropriate
penalties assigned are presented in Table 4. Finally, we obtain a system of linear
equations of the form (16):

f ′
lin0

= x0 + x7 + x38 + x70 + x81 + x96 + x256 − 2x258 − 4x259,
f ′
lin1

= x0 + x128 + x154 + x184 + x219 + x224 + x257 + x266 + x267+
+x268 + x269 + x270 + x271 + x272 − 2x260 − 4x261 − 8x262,
f ′
lin2

= 1 + x130 + x143 + x164 + x173 + x192 + x201 + x217 + x93+
+x273 + x274 + x275 + x276 + x278 − 2x263 − 4x264 − 8x265,

(16)

and the following penalties for individual equations:
Pen0 = 0,
P en1 = 2x131x195 − 4x266x131 − 4x266x195 + 6x266 + 2x139x141 − 4x267x139 −
4x267x141 + 6x267 + 2x145x146 − 4x268x145 − 4x268x146 + 6x268 + 2x155x187 −
4x269x155 − 4x269x187 + 6x269 + 2x168x176 − 4x270x168 − 4x270x176 + 6x270 +
2x189x193 − 4x271x189 − 4x271x193 + 6x271 + 2x196x212 − 4x272x196 − 4x272x212 +
6x272,
P en2 = 2x140x8−4x273x140−4x273x8 +6x273 +2x13x20−4x274x13−4x274x20 +
6x274+2x223x42−4x275x223−4x275x42+6x275+2x60x79−4x276x60−4x276x79+
6x276 + 2x140x223 − 4x277x140 − 4x277x223 + 6x277 + 2x277x95 − 4x278x227 −
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fi quadratic monomials new variable penalty for substitution
of the fi for substitution

f1
x131x195 x266 2x131x195 − 4x266x131 − 4x266x195 + 6x266

x139x141 x267 2x139x141 − 4x267x139 − 4x267x141 + 6x267

x145x146 x268 2x145x146 − 4x268x145 − 4x268x146 + 6x268

x155x187 x269 2x155x187 − 4x269x155 − 4x269x187 + 6x269

x168x176 x270 2x168x176 − 4x270x168 − 4x270x176 + 6x270

x189x193 x271 2x189x193 − 4x271x189 − 4x271x193 + 6x271

x196x212 x272 2x196x212 − 4x272x196 − 4x272x212 + 6x272

f2
x140x8 x273 2x140x8 − 4x273x140 − 4x273x8 + 6x273

x13x20 x274 2x13x20 − 4x274x13 − 4x274x20 + 6x274

x223x42 x275 2x223x42 − 4x275x223 − 4x275x42 + 6x275

x60x79 x276 2x60x79 − 4x276x60 − 4x276x79 + 6x276

x140x223 x277 2x140x223 − 4x277x140 − 4x277x223 + 6x277

x277x95 x278 2x277x95 − 4x278x227 − 4x278x95 + 6x278

Table 4: Substitutions made in the process of linearization of the example system.

4x278x95 + 6x278.
Since the f ′

0 equation was linear, its penalty after the linearization process is 0.
Assuming k = 259, we obtain a system of polynomial equations comprising

777 equations and 774 binary variables for each of the Grain 128 and Grain 128a
ciphers.

The equations are then linearized, and the multiples of ki are represented
using additional binary variables, as shown in the earlier example.

Finally, the QUBO problem for the Grain 128 cipher consists of 6,213 binary
variables, while the Grain 128a cipher consists of 8,285 binary variables.

4.3 The first improvement

The last section described a basic attack method on the Grain-128 and Grain-
128a.

This section describes the first improvement of our attack. A straightforward
method to construct an equation for the algebraic attack involves computing, for
each bit of the output keystream, the update functions for yi, bi+128, and si+128.
However, we will demonstrate that if we have k consecutive bits of the output
keystream, then we need to create k equations for yi, one for each i = 1, k. For
register b, we need to create only k − 33 updating equations, and for register s,
we need to create only k− 33 updating equations for Grain 128 and only k− 34
updating equations for Grain 128a. It is worth noting that one does require k
equations for the output bit yi. For register b, we use up to bi+95 since it’s the
highest index appearing in yi, and similarly, for register s, we use up to si+95

for Grain 128 cipher and up to si+94 for Grain 128a cipher.
This simple observation allows us to reduce the number of necessary logic

variables estimated in the previous section from 6, 213 to 5, 751 for Grain 128
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cipher and from 8, 285 to 7, 623 for Grain 128a cipher, thereby decreasing the
attack’s computational complexity.

4.4 The second improvement

The second improvement involves a more meticulous examination of the equa-
tions describing the Grain ciphers. While the first improvement applies to both
Grain 128 and Grain 128a, this second improvement is specific to Grain 128a.

We will examine the update function of register b. The insight here is straight-
forward: if in the update function for bi+128 there is a monomial composed of
bi+lbi+m for l < m, verify that there is not another distinct monomial consisting
of bi+rbi+s where l < r < s. It’s important to note that if t = m− l = s−r, then
during the linearization of bi+rbi+s and replacing bi+rbi+s with a new variable
v, after u = r − l steps, during the linearization of bi+lbi+m, there’s no need to
use a new variable w as the linearization was done u steps earlier using vari-
able v. Consider the following example. In the update equation for bi+128, the
monomials that appear are:

– degree 2 monomials: bi+11bi+13 and bi+61bi+65;
– degree 4 monomial bi+88bi+92bi+93bi+95.

Note that for bi+88bi+92, the difference between the indices is t = 4, and for
bi+93bi+95, the difference is t = 2. During linearization, the term bi+88bi+92 is
replaced by a new variable v1, and bi+93bi+95 by v2.

Similarly, for bi+11bi+13, the difference between indices is t = 2, and for
bi+61bi+65, the difference is t = 4.

This implies that while variables v1 and v2 will not be reused during the lin-
earization in the update equation for bi+128, v1 will be reused u = 27 steps later
in the update equation for b(i+27)+128 = bi+155, because b(i+27)+61b(i+27)+65 =
bi+88bi+92. Similarly, v2 will be reused u = 82 steps later, because
b(i+82)+11b(i+82)+13 = bi+93bi+95.

This observation enables us to reduce the total number of necessary variables
by almost 900 and obtain a QUBO problem with 6,751 variables.

5 Computational Complexity of the Attack

In general, precisely estimating the time complexity of finding an optimal solu-
tion using quantum annealing is challenging. As discussed in [19], the problem
complexity primarily depends on the number of logical variables.

The significance of the number of logical variables is evident. Typically, the
smaller this number, the lower the time complexity of the problem. Additionally,
there is a higher probability that such a problem will be successfully embedded
into a real quantum annealer.

Moreover, estimating the time complexity of quantum annealing often de-
pends solely on the number of logical variables. In [20], the time complexity of
quantum annealing is heuristically analyzed. Specifically, it is assumed that the
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probability of quantum tunneling is represented by e−
w

√
∆

Γ , where ∆ denotes
the barrier height (of order N), w represents the barrier width, and Γ signifies
the kinetic energy or the strength of quantum fluctuation. For many problems,
the barrier width may be independent of N , resulting in a quantum tunneling

probability with an exponent of order
√
N . This can be written as c−

√
N for

some c > 1. The annealing time τQ must then satisfy [20]:

τQc
−
√
N

∫ 1

0

c−
√
Nx dx = 1, (17)

leading to τQ = ln(c)
√
Nc

√
N

1−c−
√

N
.

It is worth noting that this leads to the property that for any nonzero constant
ϵ, the following holds:

τQ = ω
(
eN

1
2 −ϵ

)
,

τQ = o
(
eN

1
2 +ϵ

)
,

(18)

and therefore, it is often assumed that when the barrier widths are N -independent,

the asymptotic complexity of QA may be expressed as e
√
N . The above asymp-

totic is interpreted in the exponential sense.
While this provides only a heuristic estimation of the time complexity for

solving a problem using quantum annealing, it offers insight into the attack’s
potency.

5.1 Problem rescaling

An intriguing question emerges: Can one estimate the complexity of QA for a
specific problem, even if not universally? Although this task is compelling, it
appears formidable. A pragmatic approach might involve rescaling the problem
to analyze the energy landscapes of these rescaled versions, thereby assessing
the behavior of barrier heights and widths. However, such analyses are typically
feasible only for small-scale problems. Additionally, rescaled versions of certain
problems might exhibit different behaviors compared to the original problems
under scrutiny.

Next, consider the scaling of the Grain 128 and Grain 128a ciphers. For an
algebraic attack on Grain ciphers, scaling could be performed as follows: One
should scale the secret key of length l and the inner state of length 2l, where l
is the size parameter. For Grain 128 and Grain 128a, this parameter is equal to
128. The equations used to generate the keystream and update registers b and s
should be similar; they should consist of the same number of monomials, and the
monomials should have the same degrees as in the original Grain 128 or Grain
128a cipher. Only the indices should be changed to use the entire necessary inner
state. Similar rescaling has been suggested in the case of Trivium cipher [22].
Lastly, one must also assume that at least 2l consecutive output keystream bits
are known and that equations are generated for all these bits.

We will present an interesting result as follows:
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Theorem 1. Using the rescaled versions of Grain 128 and Grain 128a ciphers,
the method presented above, we can show that an algebraic attack on these ci-
phers overtakes both brute-force and Grover’s attacks for sufficiently large l, even
if the barrier width grows with the number of variables. The only assumption here
is that the QA problem with N variables has any advantage over simulated an-

nealing (SA) in the exponential sense, and its complexity is equal to eN
β

for any
β < 1.

Proof. Let us only note that the number of variables n required for transfor-
mation of algebraic attack on Grain-like cipher to the QUBO problem depends
linearly on l, namely is equal to ∼ dl for some positive d. Therefore, the asymp-
totic time complexity of solving such a QUBO problem may be expressed as

e(dl)
β

. According to our assumption, β < 1. It is straightforward to note that

there will be sufficiently large l, for which e(dl)
β

< 2l, which means that for
such l, our attack overtake brute force attack, as well as there will be sufficiently

large l for which e(dl)
β

< 2
l
2 , which means that for such l our attack overtakes

Grover’s attack.

It may be a surprising result for readers who know there is no quantum
general database-search algorithm faster than Grover’s. The hint here is that
the algebraic attack, which we use here, uses the strictly algebraic structure of
the cipher. The weaker this structure is, the weaker it should be the attack.

For a foundational perspective, throughout this paper, we will employ the
heuristic estimation, suggesting that the time complexity of QA depends expo-
nentially on

√
N .

5.2 The sparsity of the QUBO matrix and the range of the
coefficients’ values

This factor is vital for the practical execution of the attack. Presently, the topol-
ogy employed by D-Wave quantum annealers does not always support direct
connections between all required qubits. In such scenarios, logical qubits are
represented by multiple physical qubits, leading to the creation of ”chains.”
Thus, a sparser matrix often results in shorter chains, implying fewer physical
qubits to embed the problem in the quantum annealer.

Additionally, the magnitude of the coefficients is crucial. In D-Wave comput-
ers, each coefficient is scaled to fit within the range [−1, 1] for the coefficients of
quadratic monomials and within [−2, 2] [11] for the coefficients of linear mono-
mials. This implies that if the differences between the original coefficient values
are large, scaling errors could significantly impact the quality of computations.

Grain 128 and Gran 128a ciphers’ coefficients in their QUBO matrix Q are
within the range [−40, 64] for quadratic monomials and within the range [1, 64]
for linear monomials. The difference between the extreme values of these ranges
is so small that the smallest value after scaling will have a significant number
in the second decimal place, which is high precision and sufficient for a physical
quantum annealer.
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6 Embedding the QUBO problem equivalent to the
algebraic attack on the Grain 128 and Grain 128a
ciphers in the D-Wave QPU Chip

Quantum computers based on quantum annealing solve optimization problems
in three steps.

First, a given problem is formulated as an optimization problem compatible
with a quantum annealer. This problem is represented by a graph known as
the problem graph, where vertices represent variables, and edges connect those
variables for which the coefficient of the quadratic monomial is nonzero.

Following this step, if the problem graph is not already in the native model,
the Ising model, it is transformed into this model. Subsequently, the problem
is embedded into the Quantum Processing Unit (QPU), which has a topology
represented by a hardware graph. For clarity, the Ising model is described by
the equation:

fIsing(S) =
∑
i

hisi +
∑
i<j

Jijsisj , (19)

where si and sj are spin variables, while the hi coefficients represent external
forces applied to the particles, and the Jij coefficients represent the interaction
forces between neighboring particles. The transformation from the QUBO prob-
lem to the Ising model involves a simple linear transformation: si = 1 − 2xi.
During the embedding process, known as minor-embedding, a subgraph of the
hardware graph is identified to represent the problem graph. The hardware graph
comprises nodes as qubits and edges as couplers, constituting the D-Wave ma-
chine’s physical architecture. Biases, electronic signals applied to the qubits and
couplers, correspond to the weights hi and Jij .

Finally, the quantum annealer iteratively performs the quantum annealing
process to find an optimal solution to the given optimization problem.

Finding an efficient embedding, one that minimizes the use of physical qubits,
is challenging, especially since the hardware graph is not complete. A quadratic
Boolean optimization problem can only be embedded in D-Wave hardware if its
graph is a subgraph of the D-Wave hardware graph. To address this, D-Wave
Systems Inc. developed a heuristic method, minorminer [7], which iteratively
attempts to find a feasible embedding.

Currently, three D-Wave QPU architectures are available: Chimera, Pegasus,
and Zephyr. Qubits are oriented vertically or horizontally in all these topologies,
as shown in Figure 2, forming a grid of identical fragments called unit cells.
This paper will focus on the Zephyr topology for embedding the problem. In
the Zephyr topology, each qubit, marked in green in Figure 2, connects to 16
orthogonal qubits via internal couplers (black dots), two qubits of the same
orientation via odd couplers (red), and two similarly aligned qubits via external
couplers (blue).

D-Wave hardware has certain limitations. For example, while arbitrary floating-
point values can be sent via the D-Wave Leap interface, the analog circuitry has a
fixed range and limited precision, affecting the fidelity of the embedded problem.
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Fig. 2: Overall diagram of the Zephyr topology. Source: based on [4]

Moreover, the incomplete nature of the hardware graph leads to chaining—where
one logical variable is mapped to multiple physical qubits—especially for densely
connected problems. For instance, consider the optimization problem defined by
the following objective function: x0x1+3x0x6+2x0x7+2x2x3+4x0x4+3x2x5+
6x2x7 + x3x5 + 2x3x6 + 4x5x6 + 2x5x7 + 6x4x6 + x4x7 + x6x7 + 6x0 + 2x3 +
x5 +3x6 +4x7. The graph of this problem is displayed in Figure 3. This problem

Fig. 3: Graph of the example problem.

involves eight logical variables, with the maximum vertex degree in its problem
graph being 5 for variables x6 and x7. Despite on Zephyr topology allowing a
single qubit to connect to 20 other qubits, the problem requires chaining dur-
ing embedding, necessitating nine physical qubits. Figure 4 on the left shows
the problem embedding in the Zephyr topology grid, while on the right shows
the result of embedding the problem in the physical QPU chip with the Zephyr
topology, where a chain of two physical qubits represents the boolean x7.
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Fig. 4: Result of embedding the example problem in the Zephyr architecture.

Embedding the QUBO problem for a full attack on the Grain 128 cipher
would require 5, 751 logical qubits and 77, 496 couplers. The soon-to-be-available
D-Wave Advantage 2, which employs the Zephyr architecture, will contain more
than 7, 000 physical qubits and more than 60, 000 couplers. Unfortunately, de-
spite the similarities between the required and available resources, it will not be
possible to embed problems for a full attack on the Grain 128 and Grain 128a
ciphers due to their size and density.

Currently, only an experimental prototype of the system with the next-
generation Zephyr architecture is available, featuring merely 576 physical qubits.
Therefore, for practical research on embedding the QUBO problem for ciphers
like Grain 128, an embedding simulation was performed using
the minorminer.find embedding() function. A target graph was defined in the
Zephyr topology with 7, 440 qubits. In this hardware graph, we successfully em-
bedded a smaller instance of the Grain 128 cipher, Grain 20, which uses 20-bit
registers and proportionally shifted indexes of variables in polynomials. Due to
the shift in variable indexes, some inefficient monomials were omitted. Of course,
the reduced version of the Grain cipher does not provide cryptographic security.
It is only intended to provide an illustration of the density of the QUBO problem.
The obtained reduced instance of the Grain cipher is as follows:

The internal state is stored in two 20-bit registers:

– LFSR with internal state:

(si, si+1, . . . , si+19)

accompanied by the feedback function:

si+20 = si + si+1 + si+6 + si+11 + si+15;

– NFSR with internal state:

(bi, bi+1, . . . , bi+19)
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accompanied by the feedback function:

bi+20 = si + bi + bi+4 + bi+9 + bi+15+
bibi+10 + bi+4bi+9 + bi+6bi+8 + bi+11bi+12.

Of the 40 bits of the internal state, 6 are input to the function h(x) as
depicted by the following equation:

h(x) = x0x1 + x2x3 + x4x2x5,

where the variables xk correspond to the following bits of the state:

si+2, si+3, bi+15, si+7, bi+2, si+15.

The function used to determine the output bit is as follows:

yi =
∑
j∈A

bi+j + h(x) + si+14, (20)

where A = {0, 2, 7, 14}.

The graph of the QUBO problem for the reduced Grain cipher, dubbed Grain
20, consists of 675 vertices and 6, 191 edges. The maximum degree of a vertex
in the problem graph is 100 for 15 vertices. Embedding this problem into the
Zephyr hardware graph requires 4, 852 qubits and 10, 368 couplers. For 639 log-
ical variables, chains ranging from 2 to 45 physical qubits need to be created.

Since the D-Wave computer is designed to solve various optimization prob-
lems within a certain class, it may be worth considering a hardware graph dedi-
cated solely to attacks against the Grain 128 and Grain 128a ciphers. The ideal
hardware graph for this purpose would have each physical qubit corresponding
to exactly one logical qubit. Additionally, the degree of each physical qubit and
its number of connections should match the degrees of the vertices and edges
in the problem graph. This way, no chains would be created during embedding.
However, these requirements can be relaxed by defining a connectivity parame-
ter, which specifies the maximum number of couplers for a single physical qubit
(i.e., the degree of the qubit in the hardware graph).

The problem graph for the Grain 128 cipher consists of 5, 751 vertices and
77, 496 edges, with the maximum vertex degree being 225 for 98 vertices. The
degrees of all vertices of the problem graph for the Grain 128 cipher are shown
in Table 5.
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degree of number of degree of number of degree of number of degree of number of
vertex vertices vertex vertices vertex vertices vertex vertices

4 259 44 10 89 32 163 5

8 452 46 23 92 4 166 5

10 2 48 10 94 5 168 5

15 777 49 9 95 105 177 2

16 680 53 17 96 6 183 8

17 1295 55 16 108 3 184 1

18 1582 56 2 110 17 192 4

20 6 57 7 122 1 196 1

24 7 58 1 123 1 199 8

25 14 59 3 125 5 201 1

27 16 60 8 127 6 203 4

31 1 63 1 129 5 205 2

32 1 65 43 130 3 207 8

33 8 72 7 143 1 209 3

34 8 75 1 145 10 211 32

35 24 77 9 147 1 225 98

36 30 79 5 149 5

39 1 80 2 161 11

41 2 82 1 162 3

Table 5: The degrees of all vertices of the problem graph for the Grain 128 cipher.

Because a maximum vertex degree of 225 is too large, let us assume that
the connectivity parameter is set to 50. Each vertex in the problem graph with
a degree greater than 50 is represented by a chain of qubits with a length of⌈

deg(xi)
50

⌉
, where deg(xi) is the degree of vertex xi. As a result, we obtain 534

chains: 275 chains have a length of 2 qubits, 52 chains have a length of 3 qubits,
50 chains have a length of 4 qubits, and 157 chains have a length of 5 physical
qubits. Moreover, the degree of each physical qubit or chain of qubits in the
hardware graph exactly matches the degree of the corresponding vertex in the
problem graph. In summary, a dedicated hardware graph consisting of 6, 908
physical qubits and 78, 653 couplers can be constructed to attack the Grain 128
cipher.

A similar analysis can be performed for the Grain 128a cipher. Its problem
graph consists of 6, 751 vertices and 94, 708 edges, with the maximum vertex
degree being 249 for a single vertex. The degrees of all vertices of the problem
graph for the Grain 128a cipher are shown in Table 6.
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degree of number of degree of number of degree of number of degree of number of
vertex vertices vertex vertices vertex vertices vertex vertices

2 81 46 6 91 1 163 1

4 288 48 4 93 32 169 11

8 450 50 18 98 4 171 5

10 1 52 10 99 96 174 1

15 777 53 25 100 5 176 2

17 1295 55 7 103 1 180 6

20 934 56 2 107 6 182 4

22 1873 57 5 108 5 185 2

24 343 58 1 111 1 197 9

25 14 59 13 114 3 198 1

26 8 60 7 116 8 204 4

27 17 61 2 122 9 208 1

28 10 62 1 135 3 219 7

34 2 65 31 136 2 221 2

35 1 67 2 137 6 223 14

36 14 69 12 139 8 225 3

37 9 72 7 140 3 227 32

38 5 81 1 151 3 245 96

39 23 83 9 153 1 249 1

40 18 84 1 155 2

41 3 86 2 157 3

44 5 87 4 159 6

Table 6: The degrees of all vertices of the problem graph for the Grain 128a
cipher.

Continuing with the previous hardware graph design assumptions, we obtain
552 chains: 179 chains have a length of 2 qubits, 156 chains have a length of 3
qubits, 47 chains have a length of 4 qubits, 73 chains have a length of 5 qubits,
and 97 chains have a length of 6 physical qubits. The chain length for a dedi-
cated architecture with a given connectivity degree cnv (the maximal number
of connections to a qubit) for a vertex v of degree deg(v) can be calculated as
follows: {

1, if deg(v) < cnv,
deg(v)−2
cnv−2 , if deg(v) > 2 and cnv > 2.

(21)

Here, we assume that each qubit has the same maximal connectivity cnv and
that cnv ≥ 3. Note that if cnv < 3, it will be impossible to embed graphs in
which any vertex has a degree of at least 3 into such an architecture, even making
chains. We also note that assuming we have linear chains, each inner element
of the chain uses two connections for its links to other elements in the chain.
Elements at both the beginning and end of the chain ”lose” only one connection
to another element in the chain. Therefore, at least one edge is always going from
the beginning and one edge from the end of the chain to some other physical
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(also logical) qubits. This leads to the result that if deg(v) > cnv > 2, the length

of a linear chain can be calculated as deg(v)−2
cnv−2 .

A dedicated hardware graph consisting of 8, 079 physical qubits and 96, 036
couplers can be constructed for an attack on the Grain 128a cipher.

Based on similar calculations, we estimated the resources required for dedi-
cated architectures to embed the problem graph for attacks on both the Grain
128 and Grain 128a ciphers, assuming a connectivity parameter of 20. Table 7
compares the resources for publicly available and dedicated architectures, de-
pending on the maximum vertex degree in the hardware graph.

Quantum Annealer #Qubits #Couplers Connectivity Chain lenght

DWave 2000Q 2, 048 6, 016 6

DWave Advantage > 5, 000 > 35, 000 15

DWave Advantage 2 > 7, 000 > 60, 000 20

Dedicated (Grain 128) ≈ 5, 800 ≈ 77, 500 max 225 1

Dedicated (Grain 128) ≈ 6, 900 ≈ 78, 700 max 50 5

Dedicated (Grain 128) ≈ 9, 600 ≈ 81, 500 max 20 13

Dedicated (Grain 128a) ≈ 6, 800 ≈ 95, 000 max 249 1

Dedicated (Grain 128a) ≈ 8, 100 ≈ 96, 100 max 50 6

Dedicated (Grain 128a) ≈ 13, 100 ≈ 101, 050 max 20 14

Table 7: Comparison of required resources for different quantum annealer archi-
tectures.

7 Discussion

Quantum annealing is a subject of debate for many researchers and professionals.
Common arguments cited against considering quantum annealing as a serious
threat include:

1. NIST contends that ”due to their specialized nature, these analog quantum
devices are not believed to be of relevance to cryptanalysis.” [8];

2. the behavior of physical quantum annealers has not been definitively proven
to be genuinely quantum;

3. the computational complexity of QA is not well-understood;

4. a prevalent assumption exists that it is not a serious threat (this argument
is often heard).

While we acknowledge these concerns, we must not limit our research to gate-
based quantum computers and the primary applications of Grover’s and Shor’s
algorithms (and their variants). Otherwise, other potentially useful approaches
could be overlooked.

To summarize our contributions:
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1. We have demonstrated how to transform the algebraic attack on Grain 128
and Grain 128a ciphers and precisely defined the problem—identifying the
number of logical variables and their interconnections;

2. We propose that it may be possible that a dedicated quantum annealer for
the problem we presented will be constructed in the near future, perhaps
within a few years;

3. We suggest that the time complexity of our attack may exceed that of a
classical brute-force attack, although this claim is challenging to validate.
Analysis suggests that quantum annealing could offer a time complexity
advantage, exponentially on the order of

√
N , over simulated annealing (and

brute force attack) in our attack scenario;

4. We have also demonstrated that applying our attack to rescaled versions
of the Grain 128 and Grain 128a ciphers, specifically Grain l and Grain la,
where l represents the key size, yields an advantage over both brute-force and
Grover’s attack for sufficiently large l, provided that quantum annealing has
any exponential advantage over simulated annealing. Specifically, it would
suffice if the time complexity of quantum annealing for a problem with N

variables is eN
β

for any β < 1.

Given the nascent state of this area of research, much remains to be explored.
However, if there is even a slight possibility that the attacks we have presented
could pose a threat, they warrant serious consideration.

Comparing our attack with other quantum attacks described in [2] and [18],
our attack appears to have greater potential for practical realization. Upon an-
alyzing Tables 7 and 1, it becomes evident that our method is technically easier
to implement and is much more realistic than the quantum circuits for Grover’s
algorithm presented in [2]. On the other hand, the method presented in [18],
similar to our approach, has a time complexity that strongly depends on the
exact form of the algebraic equations derived from the cipher’s structure. How-
ever, no estimates for the quantum resources required to implement this attack
have been presented. As a result, it is difficult to determine whether the attack
utilizing the adaptation of the HHL algorithm can be practically executed.

In the end, it is also worth noting that an algebraic attack using quantum
annealing on Grain 128 and Grain 128a requires much less logical qubits than the
attack on other algorithms with similar security levels. The results are presented
in the Table 8
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Problem N =#Qubits
√
N Sec. Lev. (log2 e ·

√
N) Sec. Lev. (π

4
·
√
N)

IFP ≈ 2, 360, 000 1 536 2 216 1,206

DLP ≈ 18, 900, 000 4 347 6 272 3,414

AES-128 ≈ 30, 000 173 250 136

Grain 128 5,751 76 109 60

Grain 128a 6,751 82 119 65

Table 8: Comparison of reduction of different algorithms (ensuring about 128-
bit classical security level) to the QUBO problem, assuming the time complexity

a
√
N for two values of a: e and 2

π
4 , and therefore security level: log2 e ·

√
N and

π
4 ·

√
N

Every cryptographic algorithm should be assessed for its resilience against
quantum annealing attacks. Although estimating the computational complex-
ity of quantum annealing is inherently difficult, we believe adopting the same
assumptions NIST used in the PQC competition is reasonable. Specifically, for
the first security level, a quantum attack on a given algorithm should be no
more feasible than a quantum attack on AES-128, which involves approximately
30,000 logical variables. For the third level, it should be comparable to AES-
192 (around 45,000 logical variables), and for the fifth level, akin to AES-256
(approximately 60,000 logical variables).
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6. Burek, E., Wroński, M., Mańk, K., Misztal, M.: Algebraic attacks on block ciphers
using quantum annealing. IEEE Transactions on Emerging Topics in Computing
10(2), 678–689 (2022)



(In)security of stream ciphers 27

7. Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors.
arXiv preprint arXiv:1406.2741 (2014)

8. Chen, L., Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R.A.,
Smith-Tone, D.: Report on post-quantum cryptography, vol. 12. US Department
of Commerce, National Institute of Standards and Technology . . . (2016)

9. Chen, L., Moody, D., Liu, Y.: Nist post-quantum cryptography standardization.
Transition 800(131A), 164 (2017)

10. Collins, H., Nay, C.: Ibm unveils 400 qubit-plus quantum processor and next-
generation ibm quantum system two (2022)

11. D-WAVE, T.Q.C.C.: Getting started with the d-wave system. User manual (2020)
12. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Fast

Software Encryption: 18th International Workshop, FSE 2011, Lyngby, Denmark,
February 13-16, 2011, Revised Selected Papers 18. pp. 167–187. Springer (2011)

13. Dworkin, M.J., Barker, E.B., Nechvatal, J.R., Foti, J., Bassham, L.E., Roback, E.,
Dray Jr, J.F.: Advanced encryption standard (aes) (2001)

14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing.
pp. 212–219 (1996)

15. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for lin-
ear systems of equations. Phys. Rev. Lett. 103, 150502 (Oct 2009).
https://doi.org/10.1103/PhysRevLett.103.150502, https://link.aps.org/

doi/10.1103/PhysRevLett.103.150502

16. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: 2006 IEEE International Symposium on Information Theory. pp. 1614–
1618. IEEE (2006)

17. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained en-
vironments. International journal of wireless and mobile computing 2(1), 86–93
(2007)

18. Liu, W., Gao, J.: Quantum security of grain-128/grain-128a stream cipher against
hhl algorithm. Quantum Information Processing 20, 1–22 (2021)

19. Lucas, A.: Ising formulations of many np problems. Frontiers in physics 2, 5 (2014)
20. Mukherjee, S., Chakrabarti, B.K.: Multivariable optimization: Quantum annealing

and computation. The European Physical Journal Special Topics 224(1), 17–24
(2015)

21. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th annual symposium on foundations of computer science.
pp. 124–134. Ieee (1994)

22. Tian, Y., Chen, G., Li, J.: On the design of trivium. Cryptology ePrint Archive,
Paper 2009/431 (2009), https://eprint.iacr.org/2009/431, https://eprint.
iacr.org/2009/431

23. Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation attack re-
visited: cryptanalysis on full grain-128a, grain-128, and grain-v1. In: Advances
in Cryptology–CRYPTO 2018: 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part II 38. pp. 129–
159. Springer (2018)
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