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Abstract. This paper explores the challenges and potential solutions
of implementing the recommended upcoming post-quantum cryptogra-
phy standards (the CRYSTALS-Dilithium and CRYSTALS-Kyber algo-
rithms) on resource constrained devices. The high computational cost of
polynomial operations, fundamental to cryptography based on ideal lat-
tices, presents significant challenges in an efficient implementation. This
paper proposes a hardware/software co-design strategy using RISC-V
extensions to optimize resource utilization and speed up the number-
theoretic transformations (NTTs). The primary contributions include a
lightweight custom arithmetic logic unit (ALU), integrated into a 4-stage
pipeline 32-bit RISC-V processor. This ALU is tailored towards the NTT
computations and supports modular arithmetic as well as NTT butter-
fly operations. Furthermore, an extension to the RISC-V instruction set
is introduced, with ten new instructions accessing the custom ALU to
perform the necessary operations. The new instructions reduce the cycle
count of the Kyber and Dilithium NTTs by more than 80% compared to
optimized assembly, while being more lightweight than other works that
exist in the literature.

Keywords: CRYSTALS-Dilithium · CRYSTALS-Kyber · NTT · RISC-
V · ISA extension.

1 Introduction

Research in the field of quantum computing has advanced tremendously in recent
years, which has brought significant changes to the field of cryptography. The
security of traditional public-key cryptography (PKC) is based on hard mathe-
matical problems such as the factorization of large integers and the calculation
of discrete logarithms, which are difficult to solve on a classic computer (i.e., in
(sub-)exponential time). However, these problems would be solved in polynomial
time on a large-scale quantum computer, using Shor’s algorithm [22]. This has
led to a growing interest in post-quantum cryptography (PQC). Post-quantum
cryptography refers to algorithms that run on the same classical hardware as
traditional PKC, but are deemed secure against quantum adversaries.
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Since 2016, PQC algorithms are in the process of being standardized by the
National Institute of Standards and Technology (NIST) [18]. In July 2022, NIST
recommended two primary algorithms to be implemented for most use cases:
CRYSTALS-Kyber [21] and CRYSTALS-Dilithium [16]. Dilithium is a digital
signatures algorithm, for example used to verify the authenticity and integrity
of a message or document and to secure digital transactions. Kyber is a Key-
Encapsulation Mechanism (KEM) and it is used to securely establish keys for a
variety of applications, such as secure web browsing and email encryption. Both
Dilithium and Kyber are based on hard problems coming from the theory of
ideal lattices.

Lattice-based cryptographic algorithms have gained significant attention due
to their security, efficiency and versatility. Although their efficiency is compara-
ble to their classical counterparts on many platforms, their implementation can
present challenges on resource-constrained systems. Looking at the performance
numbers on the pqm4 benchmarking framework [13] that compares software im-
plementations results on Arm Cortex-M4 cores, it can for example be seen that
more than 80% of the runtime of Dilithium signature verification is spent in Kec-
cak (SHAKE-256). For Kyber decapsulation more than 75% of the time is due to
Keccak. Although this does not include side-channel protections beside executing
in a constant running time, and while these numbers may differ for RISC-V, it
shows that Keccak is a dominant factor in both algorithms. Because (hardened)
Keccak accelerators are already well-researched (e.g., [6,23]), we do not inves-
tigate them in this work. Instead we focus on the next bottleneck that arises,
namely polynomial operations. The Number-Theoretic Transform (NTT), a spe-
cialized form of the Discrete Fourier Transform (DFT), is used by many lattice-
based algorithms to reduce the time complexity of polynomial multiplication.
Despite this optimization, the polynomial arithmetic remains time-consuming,
making efficient hardware implementations crucial, especially in constrained set-
tings.

Resource-constrained devices, characterized by their limited computational
capabilities, energy resources, and memory, pose unique challenges for the im-
plementation of cryptographic algorithms. Typical examples include Internet of
Things (IoT) devices, such as sensors, healthcare devices, automotive processors,
and other embedded systems in vehicles and industrial control systems. The im-
portance of implementing PQC algorithms with low area in mind lies in the need
to accommodate the constraints of these devices. However, these implementa-
tions are expensive due to the complexity of the operations involved. This has
led to exploration of hardware/software (HW/SW) co-design strategies, which
aim to combine the high-speed performance of hardware implementations with
the flexibility of software designs.

In the context of HW/SW codesign, RISC-V presents a promising approach.
RISC-V is an open-source instruction set architecture (ISA) that supports cus-
tom extensions, providing a flexible platform for the implementation of various
algorithms, including lattice-based algorithms. The support for custom exten-
sions allows developers to add specialized instructions tailored to specific ap-
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plications. These instructions can operate on the typical processor datapath or
on a co-processor connected to the main processor as a peripheral, or they can
operate on a modified processor datapath that integrates custom accelerators.

Contributions. The objective of this work is to design and implement a custom
hardware accelerator for the NTT and other polynomial operations of Dilithium
and Kyber. The primary aim is to optimize resource utilization of this accelerator
and to minimize the number of changes to the RISC-V core, while increasing
the speed of NTT computations for both Dilithium and Kyber. In short, in this
work we introduce PQVALUE and summarize our contributions as follows:

– A lightweight custom ALU that is tailored to the requirements of the NTT
computations for both schemes. The ALU is seamlessly integrated into a 4-
stage pipeline 32-bit RISC-V processor and it supports modular operations
(addition, subtraction and multiplication) as well as the NTT and inverse
NTT butterfly operations (Cooley-Tukey and Gentleman-Sande).

– An extension to the RISC-V ISA, by introducing ten new instructions, five
for each scheme. These instructions access the custom ALU and perform
the operations mentioned above. Each instruction takes one clock cycle to
execute.

– We show that our ALU is the smallest to appear in the literature and only
increases the resource utilization of the RI5CY core by 13–17% (depending
on the operating frequency). We measured our design for specific clock fre-
quencies (100–400MHz), similar to those used in real-world microprocessors,
and confirmed that our custom RISC-V core with the new tailored ALU op-
erates at these frequencies without any degradation compare to the original
RISC-V core.

– We implement and benchmark the various operations and confirm that PQ-
VALUE decreases the cycle count of the Kyber and Dilithium NTTs by more
than 80% compared to optimized assembly, and significantly improves the
runtime of the full algorithms.

2 Preliminaries

2.1 Number-Theoretics Transformations (NTTs)

The introduction of Ring- and Module-LWE has moved the arithmetic operations
from general lattices to polynomial rings of the form R = Zq[X]/(Xn + 1)
for a prime q and integer n. The critical operations are polynomial addition
and subtraction of linear complexity of n, and polynomial multiplication. The
latter is a more involved operation that naïvely has quadratic complexity using
schoolbook multiplication, but can be sped up using a variety of techniques such
as Karatsuba, Toom-Cook, and Number-Theoretic Transformations (NTTs). The
latter is not possible in generic polynomial rings, which is why the lattice-based
constructions choose R to be of this specific form. The prime q is selected to be
small, e.g., 12-bit for Kyber and 23-bit for Dilithium, while n is selected to be
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a power of 2 (typically 256). Moreover, q is selected such that it has a root of
unity ζ of sufficiently large order. That is, of order n or 2n.

An NTT can come in various forms or shapes, depending on the choice of
root of unity and the implementation. For example, the Kyber ring contains only
n-th roots of unity while the Dilithium ring contains 2n-th roots of unity. This
leads to slightly different strategies for implementing the NTT. For Kyber, given
an input polynomial f , the NTT computes (up to re-ordering)

R→
127∏
i=0

Zq[X]/(X2 − ζ2i+1)

f 7→
(
f mod (X2 − ζ), . . . , f mod (X2 − ζ255)

)
,

which is an isormophism via the Chinese Remainder Theorem (CRT). The in-
verse NTT computes the inverse isomorphism. For Dilithium, the NTT instead
computes (up to re-ordering)

R→
255∏
i=0

Zq[X]/(X − ζ2i+1)

f 7→
(
f mod (X − ζ), . . . , f mod (X − ζ511)

)
,

and the inverse computes the inverse isomorphism according to the CRT.
The actual implementation of the operation closely mimics the strategies of

Discrete Fourier Transforms (DFTs). The NTT can be constructed as a sequence
of log2(n) layers containing exactly n/2 butterflies, where each butterfly consists
of a base field multiplication, addition and subtraction. These are known as
Cooley-Tukey (CT) butterflies for the forward NTT, named after the authors
that first introduced the butterfly structure. It is graphically described in Fig-
ure 1a. The total complexity of the algorithm is therefore n log(n), which is
significantly faster than other existing methods. The sequence of butterflies in
the forward NTT introduces a re-ordering of the coefficients that deviates from
the CRT isomorphism. This is not a problem as long as this is included in the in-
verse NTT operation (typically without performance loss). For example, this can
be done by changing the butterfly structure from Cooley-Tukey to Gentleman-
Sande (GS) for the inverse NTT. The GS butterfly is described in Figure 1b.
Eventually, we note that Kyber NTT only uses log2(n) − 1 = 7 layers while
Dilithium uses log2(n) = 8 layers because of the different isomorphism described
above.

2.2 Barrett reduction

Barrett reduction [4] is an efficient method to compute modular reductions using
precomputed data which only depends on the modulus used. Given a positive
odd modulus q such that 2n−1 < q < 2n and some input value 0 ≤ c < q2 then
one can compute c′ = c mod q as

c′ = c−m · q, where m =

⌊
c

q

⌋
.
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Fig. 1: Butterflies blockdiagrams

Algorithm 1 Barrett Reduction in
Dilithium

Input: 0 ≤ x < 8 380 4172,
Output: z = x mod 8 380 417
1: t← (x� 23)+(x� 13)+(x� 3)−x
2: t← t� 46
3: t← (t� 23)− (t� 13) + t
4: z ← x− t
5: if z ≥ 8 380 417 then
6: z ← z − 8 380 417

7: return z

Algorithm 2 Barrett Reduction in
Kyber

Input: 0 ≤ x < 33292,
Output: z = x mod 3329
1: t← 5039 · x
2: t← t� 24
3: t← (t� 11) + (t� 10) + (t� 8) + t
4: z ← x− t
5: if z ≥ 3329 then
6: z ← z − 3329

7: return z

The idea behind Barrett reduction is inspired by a technique of emulating floating
point data types with fixed precision integers: namely, approximate m = bc/qc
by

m1 =

⌊
c

22n
·
⌊
22n

q

⌋⌋
=
⌊c · µ
22n

⌋
,

where µ =
⌊
22n/q

⌋
is a pre-computed constant. Since m − 1 ≤ m1 ≤ m this

approximation is almost correct while only efficient integer divisions by powers
of two (i.e., right shifts) are required.

Barrett modular reduction for the prime moduli used in Dilithium and Kyber
is shown in Algorithm 2 and Algorithm 1, respectively. Using the special form
of the modulus was also used in [3]. The Barrett reduction for Kyber is shown
in Algorithm 2. One has q = 3329, 211 < q < 212 and µ =

⌊
224/q

⌋
= 5039. The

computation of
⌊
c · µ/224

⌋
is performed in Line 1 and 2. Line 3 and 4 compute

c′ = c −m1 · q where the multiplication by q = 3329 = 211 + 210 + 28 + 20 is
performed as a sequence of shifts and additions.

The Barrett reduction for Dilithium is shown in Algorithm 1. One has q =
8380 417, 222 < q < 223 and µ =

⌊
246/q

⌋
= 8396 807 = 223 + 213 + 23 − 1. The

computation of
⌊
c · µ/246

⌋
is performed in Line 1 and 2 (where the multiplication

by µ makes use of the special form). Line 3 and 4 compute c′ = c−m1 · q where
the multiplication by q = 8380 417 = 223 − 213 + 1 is done as a series of shifts
and additions.
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funct7 rs2  rs1    funct3 rd  opcode

31 25 24 20 19 15 14 12 11 7 6 0

Fig. 2: RISC-V R-type instruction format

2.3 RISC-V

RISC-V defines a flexible and extensible Instruction Set Architecture (ISA). The
ISA defines small instruction sets that must be implemented by all the RISC-V
cores along with additional extensions that can optionally be implemented de-
pending on the target application. This makes this ISA portable to a large variety
of applications ranging from embedded system to high-performance computers.
The ISA does not define how instructions must be implemented, or their latency.
Compared to Arm architectures, cryptographic implementations on RISC-V gen-
eraly take advantage of its large register file, but suffer from the limited instruc-
tion sets when the appropriate extensions are not implemented [23].

For the purpose of this work, we focus on the 32-bit RISC-V architecture
where both the datapath and the instructions operate on 32-bit words. These
architectures have 32 registers from which 27 can be freely used. We have a closer
look at the R-type instructions that are highlighted in Figure 2. The instruction
is uniquely defined by the three fields opcode, funct3 and funct7, that combine
to a total of 17 control bits. Each instruction has a specific combination of control
bits and the CPU will use them to execute the corresponding operation. The R-
type instructions have 2 source and 1 destination registers that are the registers
that the instruction must operate on. These are encoded as rs1, rs2 and rd
respectively in Figure 2. Each of these registers are encoded on 5 bits as 32
different registers could be accessed.

2.4 Related Work

Research into PQC hardware accelerators has increased in recent years, with a
growing number of published works addressing its various aspects. There have
been hardware implementations of the full scheme of Dilithium [20,15,26,5,25,12]
and Kyber [7,24,19]. They use various optimizations in order to have small and
fast designs while also exploring how these designs can evolve into co-processors
capable of running the full schemes. Some studies have also focused on designing
co-processors that can accelerate more than one scheme. Aikata, Mert, Imran,
Pagiliarini, and Roy [1] create a unified architecture for both Dilithium and
Kyber by designing common building blocks for polynomial multiplication and
SHAKE. Moreover, Banerjee, Ukyab and Chandrakasan [3] create custom RISC-
V instructions for polynomial arithmetic and sampling to support a co-processor
for Frodo, NewHope, qTESLA, Kyber and Dilithium. All publications mentioned
above connect their hardware accelerators as peripherals to the main processor.
However, these peripherals, while beneficial, can be slowed down by the bus of
the processor and the transfer of data between the different components. An
alternative approach is to integrate the hardware accelerator directly into the
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datapath of the processor. For example Karl, Schupp, Fritzmann and Sigl [14]
accelerate the NTT transformation and pointwise multiplications as well as the
functions SHAKE128 and SHAKE256 for Dilithium and Falcon. The NTT accel-
erator is connected as peripheral and it needs its own memory in order to reduce
the transaction cost, but this increases also the resources, while the Keccak round
function for SHAKE is incorporated into RISC-V datapath.

There are two publications where a custom ALU with ISA extensions is im-
plemented to accelerate Dilithium and Kyber that can be directly compared with
our own. Fritzmann, Sigl and Sepúlveda [8] present an enhanced RISC-V archi-
tecture that integrates tightly coupled accelerators directly into the processor’s
pipeline datapath to speed-up NewHope, Kyber, and Saber while extending the
RISC-V ISA by twenty-nine new instructions. Nannipieri, Di Matteo, Zulberti,
Albicocchi, Saponara and Fanucci [17] introduce an extension to the RISC-V
ISA to facilitate the NTT operations of the Dilithium and Kyber cryptographic
schemes.

3 Extensions for Polynomial Arithmetic

In this section, we describe our dedicated ALU for polynomial arithmetic in-
cluding adders, subtractors, multipliers and butterflies. The main challenge to
support polynomial arithmetic for both Dilithium and Kyber is the difference in
prime size. For Dilithium we have the 23-bit prime q = 8340 417 while for Ky-
ber we have the 12-bit prime q = 3329. As our goal is to have a small hardware
design, we re-use the same base adders and multipliers for both schemes.

Representation: When implementing arithmetic modulo q, the question that
arises is how to represent the values. Optimized (embedded) software typically
use the signed interval [−(q − 1)/2, (q − 1)/2 ], as it may have advantages for the
number of reductions that take place in the butterflies [13,11,10]. Instead, we
choose the canonical interval [0, q − 1] as it leads to slightly simpler hardware.
Of course, the choice does not have a large impact as transforming between
representations is trivial and cheap.

3.1 Single-Cycle Modular Arithmetic

First, we describe the modular addition and the modular subtraction units.
Both have a similar structure as detailed in Figure 3. We start by describing the
addition for Dilithium, then its subtraction and finally we describe how this can
be re-used for Kyber.

The modular adder is based on an addition and a subsequent subtraction
approach as shown in Figure 3a. Concretely, both inputs a and b are first added
together with a 24-bit unsigned integer adder to obtain c’ = a + b. Next, we
perform a 24-bit unsigned subtraction such that c” = c’ − q. The final result
c is then selected conditionally: c = c’ if c’ < q (i.e., a borrow occurred in
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Fig. 3: Modular addition and subtraction circuits.

the subtraction), and c = c” otherwise. After the selection, only the 23 least
significant bits are needed, as it guarantees that c ∈ [0, q − 1].

The modular subtraction is described in Figure 3b and works in a similar
fashion. Namely, first compute c’ = a − b using a 24-bit unsigned subtractor.
The output signal c is then set to c = c’+ q if c’ < q (i.e., a borrow occurred
in the subtraction) and c = c’ otherwise. The selection between both cases is
performed based on the borrow bit and a multiplexer. Again, only the 23 least
significant bits are needed afterwards.

Exactly the same circuit can be used for all q < 223, and hence in particular
for both Dilithium and Kyber. The only difference is in the position of the borrow
bit. Interestingly, as additions and subtractions are based on similar designs, the
same circuit could be shared also between modular addition and subtraction.
However, as detailed in Section 3.2, one addition and one subtraction needs
to be performed in parallel to have butterflies in a single cycle. Hence, we use
independent circuits for modular addition and subtraction.

As detailed in Section 2.2, modular multiplication c = a · b mod q is per-
formed in two steps. The first step is an integer multiplication where both inputs
a and b are multiplied. In order to reduce the cost of the integer multiplier, we
share it between the modular multiplications used in both Dilithium and Kyber.
This means adding a 23×23-bit multiplier with 46-bit output. As Kyber requires
only a 12× 12-bit multiplication with 24-bit output, this is far from an optimal
multiplier size. We discuss possible alternatives at the end of this section.

The second step for modular multiplication is to perform the Barrett reduc-
tion. The Barrett reduction circuits tailored for both Dilithium and Kyber are
shown in Figure 4. These circuits are the direct implementation of Algorithm 1
and Algorithm 2. While several reduction methods exist, we chose Barrett reduc-
tion. It avoids expensive division operations and the special form of the modulus
in Dilithium and Kyber allows the multiplication to be performed as a sequence
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Fig. 5: Modular multiplication unit.
Computes c = a · b mod q for
Dilithium and Kyber primes q.

of shifts and additions, reducing the cost in time and area. For Dilithium, the
Barrett reduction has a logical depth of 7 additions/subtractions. For Kyber,
a total for 13 additions/subtractions is needed, of which 8 are for the constant
multiplication by 5039. Indeed, it can be decomposed into a sum of powers of
two as follows: 5039 = 212 + 29 + 28 + 27 + 25 + 23 + 22 + 21 + 20. We rely on
the synthesizer’s optimization strategies to efficiently implement this, allowing
it to choose between structures like adder trees or utilizing carry chains. In case
of an adder tree is used, the total logical depth of 8 adders is needed for the re-
duction (with 4 for the constant multiplication). We note that other options to
perform the modular reduction are also possible (see [15]), which target FPGA
implementations.

Finally, as the 23×23 base multiplier is shared for both Dilithium and Kyber,
both Barrett reductions are connected to it. The result of the modular multi-
plication is then chosen via a select signal and a multiplexer as illustrated in
Figure 5. As mentioned above, this base multiplier is not optimal for Kyber,
leading to the underutilization of one DSP block when Kyber is executed. While
a potential solution could be a vector instruction that executes two multiplica-
tions for the Kyber prime in parallel, thereby doubling the throughput and fully
utilizing the DSP block, we chose the simpler shared multiplier design without
the additional logic for parallel multiplications. This decision prioritizes area
savings and design simplicity, especially given the differing performance require-
ments between Kyber and Dilithium. Another interesting approach would be
to re-use the 32 × 32-bit multiplier from the original ALU if available, leading



10 Miteloudi, Bos, Bronchain, Fay, Renes

mod_mul

mod_add

mod_sub . . .

. . .

a

… mul out

… sub out

… mul out

a

a

b

b

twiddle

b

a’  

b’  

Fig. 6: Custom ALU unit.

Decoder

custom

ALU

IF  

ID

ID  

EX

EX  

WB

Register File

ALU

Fig. 7: Modified datapath.

to an even smaller design. As the performance would depend strongly on the
availability and latency of the instructions in the RISC-V core, it is not clear
what the benefit would be. Therefore, we take the general approach and include
our own multiplier.

3.2 Single-Cycle Butterflies

From the hardware for modular arithmetic, one can efficiently implement both
Cooley-Tukey and Gentleman-Sande butterflies by connecting them together as
illustrated in Figure 1. The simplest option is to use a sequence of assembly
instructions for the addition, subtraction, and multiplication (see Section 3.4
and Figure 8c) with a latency of 3 cycles. In this section, we also describe the
option to directly connect these operations within the custom ALU in order to
perform a butterfly in a single cycle.

From Figure 1, we observe that the Cooley-Tukey butterfly first performs
the multiplication followed by two independent addition and subtraction oper-
ations. Conversely, the Gentleman-Sande butterfly performs the addition and
subtraction before the multiplication with the twiddle factor. As a result, in or-
der to use a single unit for all three operations, multiplexers are needed. The
resulting connections between the different operations are detailed in Figure 6.
For the Cooley-Tukey butterfly, the multiplier is connected to b and twiddle,
and both the subtraction and addition are connected to a and the output of the
multiplication. For Gentleman-Sande, the output of the subtraction is directly
connected to the multiplier that takes the twiddle factor as its second input.

Finally, we note that to perform a single-cycle butterfly, three read and two
write ports on the register files are required. A typical register file has two read
ports and one write port, resulting in two clock cycles for reading the inputs and
two clock cycles for writing the outputs of the butterfly operations. However,
PULPino’s register file has three read and two write ports, which allows us to
read and write in a single clock cycle.
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3.3 Integration and Additional Instructions

Figure 7 depicts the modified datapath with our ALU at the execution stage.
There, the custom ALU is described in Figure 6 and contains a modular adder,
a subtractor and a multiplier. For simplicity the datapath is abstract and many
of its components are excluded from the diagram. We edited the decoder unit,
the decode stage and the execute stage. The decoder is responsible for interpret-
ing the instruction fetched from memory and generating control signals for the
subsequent pipeline stages. To accommodate the custom ALU, we extend the
decoder to recognize additional custom opcodes representing the new operations
supported by the custom ALU. This includes adding logic to the decoder to gen-
erate new control signals that will be used to steer data to and from the custom
ALU. In the Decode stage, the instruction is further analyzed, and the operands
are fetched from the register file. We modified this stage to handle the additional
control signals generated by the decoder for the custom ALU. This ensures that
when an instruction targeting the custom ALU is encountered, the appropriate
operands are fetched and routed to the custom ALU. We integrated the custom
ALU into the execution stage. The custom ALU is connected in parallel with the
existing ALU, and both share the same input interfaces. A multiplexer is used
to select between the output of the custom ALU and the regular ALU based on
the control signals generated by the decoder.

Table 1 lists the new instructions which are of R-type format and they have
the same opcode. Between the two schemes, the instructions are distinguished by
the funct7 and vary by a single bit. The Least Significant Bit (LSB) of funct7 is
utilized to control the modulus to be used and the effective width of the signals.
The operations themselves are distinguished by the funct3 field. Modular addi-
tion, subtraction, and multiplication operations are analogous to their integer
counterparts performed by the classic ALU. The operands for these operations
are read from two source registers, and the result is written back to a single des-
tination register. For the butterfly instructions, three read and two read write
are needed, which are already available in the PULPino core we consider. There,
the coefficients a and b are read from the first and second source registers, while
the twiddle is read from the destination register. The new coefficients a’ and
b’ are then computed and written back to the first and second source registers.
Furthermore, we managed to maintain a low number of sources by creating only
the bare minimum control signals for our multiplexers. In addition, by ensuring
that the same operands that go to the regular ALU also go to our custom ALU,
we were able to avoid increasing the pipeline registers. This approach allowed us
to maintain the efficiency of our design while expanding its capabilities.

3.4 PQVALUE: NTTs

We have described hardware blocks to support various modular arithmetic op-
erations with specific moduli, as well as their integration into a RISC-V mi-
crocontroller. In this section, we elaborate on how software can use the added
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Table 1: Custom arithmetic instructions for RISC-V ISA

opcode funct3 funct7 operation name

1110111 001 0000000 pq.mod_add_dil
1110111 010 0000000 pq.mod_sub_dil
1110111 011 0000000 pq.mod_mul_dil
1110111 100 0000000 pq.ct_btrfly_dil
1110111 101 0000000 pq.gs_btrfly_dil

1110111 001 0000001 pq.mod_add_kyb
1110111 010 0000001 pq.mod_sub_kyb
1110111 011 0000001 pq.mod_mul_kyb
1110111 100 0000001 pq.ct_btrfly_kyb
1110111 101 0000001 pq.gs_btrfly_kyb

instructions to improve the performance of polynomial arithmetic. The instruc-
tions detailed in Section 3.3 can be used to build the butterflies as detailed in
Figure 8c and Figure 8e. We consider the case where no single-cycle butterfly
is available (2 read and 1 write ports) and where it is available (3 read and 2
write ports), respectively. We refer to the first design as PQVALUE1, and the
latter as PQVALUE2. For reference, we also include optimized RISC-V software
butterflies in Figure 8a for comparison.

As can be seen from Section 2.1, NTTs and inverse NTTs can be implemented
in place with 8 separate layers, each containing 128 independent butterflies. A
straightforward implementation could process the layers of butterflies one by
one, in which case for each butterfly the input coefficients are read, the butterfly
is computed, and the results are stored back in memory. Hence, the polyno-
mial is read and stored at every layer: this leads to signification number of
memory access that can become a bottleneck. Hence, a common technique in
software implementations is to merge multiple layers in order to reduce these
overheads [11,10]. More specifically, multiple coefficients are loaded into the reg-
ister file such that multiple layers can be (partially) computed without need for
loading/storing for every butterfly. To merge ` layers one would load and store
2` (in-place) inputs/outputs and apply all ` · 2`−1 butterflies before loading the
next batch of coefficients. As this is repeated 256/2` = 28−` times, the total
cost of the ` merged layers is 28−` · (2 · 2` IO + ` · 2`−1 BFLY), where IO is the
cost of a read/write to memory and BFLY is the cost of a single butterfly. For
example, with single-cycle read/writes and using a single-cycle butterfly the cost
of 4 merged NTT layers is (at least) 24 · (32 + 4 · 8) = 1024 cycles. Since our
hardware designs affect BFLY but not IO, it is worthwhile merging layers even
with our extensions as it reduces the overheads of memory accesses. Finally, the
twiddle factors need to be loaded once at a cost of 256 IO. Note that an actual
implementation will have some additional overhead for stack and control flow
operations: we give more precise results in Section 4.
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As the register file on RISC-V has 32 general purpose registers, we can merge
at most 4 layers. Although we have 16 inputs/outputs, some registers are re-
served for other values such as twiddle factors. The Dilithium forward NTT can
be constructed by merging 4 layers twice and loading the twiddle factors once
throughout the layers. The Kyber forward NTT has an early-abort strategy
that achieves a cheaper NTT at the cost of a more expensive base multiplica-
tion. It can be constructed by merging 4 layers, then merging 3 layers, loading
the twiddle factors once throughout the layers. The inverse NTT functions in
the same way using Gentleman-Sande butterflies, and with the addition of a
final poly_mul to remove the constant factor n. Note that this can also help to
remove any factors of the Montgomery domain that might remain. For exam-
ple, the values in the matrix A are sampled into the Montgomery domain for
Kyber, which remains as we only use Barrett reduction in our implementation.
The additional inversion/multiplication makes the inverse NTT more expensive
than the forward NTT, but as it is used less frequently than the forward NTT,
the overall impact on Kyber or Dilithium is minimal. In that case, the final di-
vision by 256 can include the Montgomery constant as well. Finally, the base
multiplication is a direct application of mod_mul on each of the coefficients.

.macro montgomery al, ah, qi, q
mul \al, \a, \qi
mulh \al, \al , \q
sub \al, \ah , \al

.endm

.macro ct_butterfly a, b, qi, q, zeta ,
tmp

mul \tmp , \zeta , \b
mulh \b, \zeta , \b
montgomery \tmp , \b, \qi, \q
sub \b, \a, \tmp
add \a, \a, \tmp

.endm

(a) Cooley-Tukey, RV32

.macro montgomery al, ah, qi , q
mul \al, \a, \qi
mulh \al, \al , \q
sub \al, \ah , \al

.endm

.macro gs_butterfly a, b, qi , q, zeta ,
tmp

sub \tmp , \a, \b
add \a, \a, \right
mul \b, \zeta , \tmp
mulh \tmp , \zeta , \tmp
montgomery \b, \tmp , \qi, \q

.endm

(b) Gentleman-Sande, RV32

.macro ct_butterfly a, b, z, tmp
pq.mod_mul \tmp , \z, \b
pq.mod_sub \b, \a, \tmp
pq.mod_add \a, \a, \tmp

.endm

(c) Cooley-Tukey, PQVALUE1

.macro gs_butterfly a, b, zeta , tmp
pq.mod_sub \tmp , \a, \b
pq.mod_add \a, \a, \b
pq.mod_mul \b, \zeta , \tmp

.endm

(d) Gentleman-Sande, PQVALUE1

.macro ct_butterfly a, b, zeta
pq.ct_btrfly \a, \b, \zeta

.endm

(e) Cooley-Tukey, PQVALUE2

.macro gs_butterfly a, b, zeta , tmp
pq.gs_btrfly \a, \b, \zeta

.endm

(f) Gentleman-Sande, PQVALUE2

Fig. 8: Butterfly with custom assembly and two read, one write ports.
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4 Results

In this section we present area and performance results of our hardware de-
sign. We conduct synthesis for PQVALUE1 and PQVALUE2, and compare the
unmodified RI5CY core with the modified core that integrates our ALU. We
target two different platforms: Application-Specific Integrated Circuits (ASICs)
and Field-Programmable Gate Arrays (FPGAs) in order to assess their perfor-
mance and resource utilization. We also measure the cycle counts of our HW/SW
co-design implementations and compare to existing literature.

4.1 Setup

For integration and benchmarking we use the open-source PULPino platform
with its RI5CY core that has a 4-stage pipeline implementing the RISC-V
ISA [9]. It has support for the integer (I), compressed (C) and multiplication
(M) instruction set extensions. Notably, two 32-bit words are multiplied in 6 cy-
cles where 1 cycle is spent in the mul instruction, and 5 cycles are spent in mulh
(to compute the top half). The memory accesses are all single-cycle. PULPino
provides a comprehensive framework and a set of scripts that streamline the pro-
cess of running automated tests and simulations. This infrastructure simplifies
the task of compiling and running simulations, collecting and analyzing results,
and comparing these results against expected outputs. To verify the correct func-
tionality of our modified RI5CY core and measure the cycle counts, we utilize
the PULPino framework in conjunction with ModelSim HDL Simulator.

For the synthesis on ASICs we use Cadence Genus Synthesis Solution and
the TSMC 28nm standard cell library. We set timing constraints at frequencies
of 100 MHz, 200 MHz, 300 MHz, and 400 MHz. We choose these values to mimic
closely the typical operating ranges of modern microprocessors. We have con-
firmed that up to 600MHz, our ALU is not in the critical path of the processor.
This approach facilitates potential integration of our design in existing compu-
tational systems, while also accounting for the characteristics and limitations of
real-world microprocessor architectures. For the synthesis on FPGAs we used
Vivado 2019.2 and we target the ZedBoard Zynq-7000 development board. The
timing constraint for the FPGAs is already set by PULPino team at 20 Mhz.
From the whole PULPino system, we excluded the communication peripherals
and the memories and we measured the overhead in the RI5CY core only.

4.2 Hardware Cost of PQVALUE

We report the utilization on ASICs for both of our designs, comparing three
parameters: cells count, total cell area, and gate equivalents. The first two metrics
are reported by the tool. The gate equivalents are calculated by dividing the total
cell area with the size of the two-input NAND gate of the specific library. For
the TSMC 28nm library, the size of a two-input NAND gate is 0.378µm2.

We provide a comparison between the two designs: the unmodified RI5CY
core and the RI5CY core modified with a custom ALU (referred to as RI5CY +
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Table 2: Resource utilization of PQVALUE in ASICs. The Total Cell Area is
measured in µm2. All numbers are rounded to the nearest integer.

Freq. Metric RI5CY RI5CY Difference

+ PQVALUE Abs. Rel.

100 MHz
Total Cell Area 15 848 18 315 2 467 16%
Cell Count 19 044 22 204 3 160 17%
Gate Equivalent 41 926 48 452 6 526 16%

200 MHz
Total Cell Area 15 844 18 256 2 412 15%
Cell Count 19 026 21 951 2 925 15%
Gate Equivalent 41 915 48 297 6 382 15%

300 MHz
Total Cell Area 16 087 18 496 2 409 15%
Cell Count 19 756 22 723 2 967 15%
Gate Equivalent 42 559 48 932 6 373 15%

400 MHz
Total Cell Area 16 532 18 834 2 302 14%
Cell Count 20 912 23 670 2 758 13%
Gate Equivalent 43 737 49 825 6 088 14%

PQVALUE). The Total Cell Area represents the physical area occupied by the
design on the silicon. The Cell Count represents the number of logic cells used
in the design. Table 2 shows that as the operating frequency increases, the Total
Cell Area, Cells Count, and Gate Equivalents for both designs increase. This is
expected as meeting higher frequency requirements often necessitates the use of
more resources. However, we notice that at 200 MHz, all the metrics have values
slightly lower than the ones in 100 MHz. This is probably due to the variability
involved in the synthesis process. At 200 MHz, it’s possible that the synthesis
tool found a combination of logic cells that resulted in lower area utilization
and cell count. At 300Mhz and 400Mhz, the resource utilization significantly
increases. Notably, the percentage difference between the two designs decreases
as the timing constraint increases. This suggests that the unmodified RI5CY
core scales its resources more aggressively to meet higher frequency requirements
compared to the modified RI5CY + PQVALUE design. The relative increase of
our design compared to the unmodified RI5CY core ranges from 13% to 17% for
all metrics across the different frequencies that we measured with.

Table 3 provides a comparison between the two designs, when targeting the
same FGPA with the same operating frequency. Slice Look-Up Tables (LUTs)
are a fundamental resource in FPGAs used to implement combinational logic
functions. The modified RI5CY + PQVALUE shows a percentage increase of
5.29% in LUTs, a percentage increase of 0.72% in Registers, and a percentage
increase of 33.3% in Digital Signal Processors (DSPs). This increase was expected
as our ALU is pure combinational logic and we did the minimum modification in
the registers of RI5CY core. The 2 extra DSPs are from our base 23×23 integer
multiplier.
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Table 3: Resource utilization of PQVALUE in the Zynq-7000 FPGA.

Resources RI5CY RI5CY + % Difference
PQVALUE

Slice LUTs 6 797 7 157 5.3%
Slice Registers 2 212 2 228 0.7%
DSPs 6 8 33.3%

4.3 PQVALUE in Pulpino: NTTs

In this section, we discuss the concrete improvements that PQVALUE has on
the NTTs on Pulpino. We focus on Dilithium for simplicity, but very similar
numbers can be achieved for Kyber. Recall that Pulpino requires 1 cycle for
memory accesses, 1 cycle for mul, add, and sub, and 5 cycles to execute mulh.
Therefore the full Cooley-Tukey and Gentleman-Sande butterflies as shown in
Figure 8a can be performed in 15 clock cycles. Looking at the estimates from
Section 3.4 for 4 merged layers with IO = 1 and BFLY = 15, we expect the
forward NTT to require about 16 640 cycles. In this case 15 360 cycles are spent
on butterflies, and 1 280 on reads/writes. We confirm this by implementing and
measuring the cycle count on the Pulpino platform, resulting in 17 041 cycles
in total. The additional 401 cycles are expected as they come from stack and
control flow operations.

By reducing the butterfly operations to 3 cycles in the case of PQVALUE1,
we reduce the of the butterfly operations from 15 360 to 3 072 cycles. As the
cost of reads/writes and stack/control flow operations remains at 1 280 and 401
respectively, the expected cost is 4 753 cycles. The total impact of butterflies is
reduced from 90% for a full software implementation, to 65% in PQVALUE1. We
confirm this precise cycle count by implementing the code from Figure 8c and
benchmarking. For the single-cycle butterfly, the butterflies require 1 024 cycles
and the forward NTT in total 2 705 cycles. The butterflies only contribute to 38%
of the runtime, and are now dominated by the overhead for reads and writes.
Again, we confirm by implementing the code from Figure 8e and measuring the
number of cycles.

Similarly, we implement the operations for the inverse NTT, polynomial mul-
tiplication and addition. We provide an overview of the result in Table 4. Overall,
we see that PQVALUE1 leads to a performance improvement of 72% (70%) for
the (inverse) NTT, while PQVALUE2 leads to a reduction by 84% (80%) for the
(inverse) NTT. Both improve the polynomial multiplication by 71%, and have
no impact on polynomial addition or subtraction.

4.4 PQVALUE in Pulpino: Dilithium

In order to evaluate the impact of the polynomial arithmetic on Dilithium, we
integrate them into the reference implementation and compare its run time for
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Table 4: Cycle counts of polynomial operations in Dilithium for various instruc-
tions. PQVALUE2 is with single-cycle butterfly, PQVALUE1 is without single-
cycle butterfly.

RV32 PQVALUE1 PQVALUE2

poly_NTT 17 041 4 753 (-72%) 2 705 (-84%)
poly_iNTT 20 372 6 027 (-70%) 3 979 (-80%)
poly_mul 4 346 1 274 (-71%) 1 274 (-71%)
poly_add 1 274 1 274 1 274

various configurations in Table 5. The reported number are the minimal run-
time for each of the algorithms. This choice has an influence for the Sign results,
because of its non-deterministic execution time. The reported numbers include a
single execution of the rejection loop. Average run-time can be obtained by mul-
tiplying by the average number of aborts reported in [2]. For all the algorithms
the public matrix is computed on-the-fly in order to save stack.

The two left-most columns compare Dilithium-3 with and without PQVALUE2

entirely in software. Concretely, we consider the RISC-V optimized Keccak-1600
software implementation proposed in [23] and assembly optimized polynomial
addition, subtraction, Montgomery and base multiplication. In this context, we
observe that PQVALUE improves the performances by a small factor. Indeed,
KeyGen is sped up by a factor 1.09, Sign by 1.25 and Verify by a factor 1.13.
This is because Keccak is the bottleneck as usual in pure software implementa-
tions [13]. In the two right-most columns of Table 5, we consider a configuration
where a Keccak co-processor with 24 cycles per permutation is available. In that
context, the bottleneck operations are polynomial operations and therefore the
impact of PQVALUE is larger. Concretely, Keygen is sped up by a factor 1.72,
Sign by 2.32 and Verify 1.91. We note that in this case, the rest of the opera-
tions such as packing, rejection sampling, norm checks, and hint manipulations
take a large portion of the overall execution time as they are not assembly op-
timized. The impact of NTT extensions will be even larger on a fully optimized
implementation.

4.5 Comparison

As mentioned in Section 2.4 we compare our custom ALU to two other works
that target RISC-V extensions [8,17]. Fritzmann, Sigl and Sepúlveda [8] include
an arithmetic unit PQR-ALU for vectorized modular arithmetic and NTT oper-
ations, a vectorized modular multiply accumulate unit, a Keccak accelerator for
pseudo-random bit generation, and a binomial sampling unit for the generation
of distributed samples. The arithmetic units for modular arithmetic and NTT
operations are added to the decode stage of RISC-V leading to a decrease in
the overall processor clock frequency (see [8, Section 5.3]). This is a high price
to pay, as all functionality (possibly more critical than PQC) that runs on the
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Table 5: Minimum cycle count for Dilithum-3 for various available instructions.
Available Keccak co-processor is marked with k. PQVALUE2 has a single cycle
butterfly.

RV32 PQVALUE2 RV32k PQVALUE2,k

kCycles % kCycles % kCycles % kCycles %

KeyGen 4 316 100.0 3 970 100.0 825 100.0 479 100.0
Poly 518 12.0 172 4.3 518 62.8 172 36.0
Keccak 3 514 81.4 3 514 88.5 23 2.8 23 4.9
Others 283 6.6 283 7.1 283 34.3 283 59.1

Sign 5 253 100.0 4 218 100.0 1 817 100.0 782 100.0
Poly 1 469 28.0 434 10.3 1 469 80.9 434 55.6
Keccak 3 459 65.8 3 459 82.0 22 1.3 22 2.9
Others 324 6.2 324 7.7 324 17.9 324 41.5

Verify 4 178 100.0 3 712 100.0 976 100.0 511 100.0
Poly 697 16.7 232 6.3 697 71.4 232 45.5
Keccak 3 223 77.1 3 223 86.8 21 2.2 21 4.2
Others 257 6.2 257 6.9 257 26.4 257 50.3

Table 6: Size and efficiency comparison of post-quantum ALUs.

Resources Kyber perf.

LUT Reg. DSP BRAM Core NTT NTT−1

PQR-ALU [8] 2 908 170 9 0 RI5CY 1 935 1 930
PQ ALU [17] 555 0 15 1 CVA6 18 448 18 448
PQVALUE2 459 0 2 0 RI5CY 2 577 3 851

RISC-V core is impacted. In comparison, we have added our ALU to the execu-
tion stage, while we managed to maintain the original clock frequency ensuring
optimal performance of our design.

Nannipieri, Di Matteo, Zulberti, Albicocchi, Saponara and Fanucci [17] in-
troduce an extension to the RISC-V ISA to facilitate the NTT operations of the
Dilithium and Kyber cryptographic schemes. They implement two distinct cus-
tom ALUs, each tailored to a specific scheme. This approach, however, leads to a
significant increase in resource overhead compared to our design, which employs
a unified ALU for both schemes. The resource utilization and performance of
PQR-ALU and PQ ALU are detailed in Table 6.

As shown in Table 6, our proposed PQVALUE2 demonstrates a significant
advantage in terms of resource utilization compared to the other two designs.
The PQVALUE2 uses fewer LUTs, DSPs, and Block RAMs (BRAMs) than the
other two designs. In terms of performance for Kyber, PQVALUE2 performs the
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NTT operation in 2 577 cycles and the inverse NTT operation in 3 851 cycles.
This is slower than the PQR-ALU [8] which performs both operations in un-
der 2 000 cycles, meaning that we present a different area/performance trade-off
that puts the focus on small designs. We believe this is worthwhile as the ef-
ficiency is sufficiently high to move the bottlenecks elsewhere (see Table 5 for
Dilithium), and we have the additional benefit that we are able to maintain op-
erating frequency of the RI5CY core. We require significantly fewer cycles than
the PQ ALU [17], which requires 18 448 cycles for both operations. However, di-
rect comparison is difficult as they benchmark on the CVA6 core with external
DDR4 memory. For [17] a similar conclusion can be made for Dilithium, while
the efficiency of the NTT is not reported for Dilithium by Fritzmann et al. [8].
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