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Abstract

Byzantine agreement (BA) asks for a set of parties to reach agreement in an adversarial
setting. A central question is how to construct efficient BA protocols that scale well with
the number of parties. In particular, the communication complexity is a critical barrier for
large-scale implementations.

State-of-the-art, scalable BA protocols typically work by sampling a small, unpredictable
committee of parties that will send messages in each round. These messages must reach all
honest parties, to allow the next round’s committee to function. In practice, this is usually
accomplished by propagating messages over a gossip network, implemented over a partial
communication graph. Most formulations of gossip networks have an ideal guarantee that
every message delivered to any honest party will be delivered to every other honest party.
Unfortunately, realizing this guarantee necessarily makes the protocol vulnerable to denial-
of-service attacks, since an adversary can flood the network with many messages that the
protocol must deliver to all parties.

In this paper, we make several contributions towards realizing the goal of efficient, scal-
able byzantine agreement over a gossip network:

1. We define “gossip with abort,” a relaxed gossip model that can be efficiently realized
with minor modifications to existing gossip protocols, yet allows for significant savings
in communication compared to the full point-to-point model.

2. Our protocols work in a graded PKI model, in which honest parties only have partial
agreement about the set of participants in the protocol. This model arises naturally in
settings without trusted setup, such as the “permissionless” setting underlying many
blockchain protocols.

3. We construct a new, player-replaceable BA protocol in the graded PKI model. The
concrete communication complexity of our protocol, for typical parameter values, is
more than 25 times better than the current state-of-the-art BA protocols in the honest-
majority setting.

∗Reichman University, Herzliya, Israel. Email: cohenran@runi.ac.il.
†CISPA Helmholtz Center for Information Security, Germany. Email: lossjulian@gmail.com.
‡Reichman University, Herzliya, Israel. Email: talm@runi.ac.il.

https://orcid.org/0000-0002-1293-552X
https://orcid.org/0000-0002-7979-3810
https://orcid.org/0000-0002-1456-0899


Contents

1 Introduction 1
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 7

3 Graded PKI and Graded Gossip 7
3.1 d-Graded PKI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 d-Graded Gossip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 d-Graded f -Threshold-Gossip from d-Graded Gossip . . . . . . . . . . . . . . . . 15
3.4 Graded Crusader Agreement from 4-graded f -Threshold Gossip . . . . . . . . . . 17

4 Byzantine Agreement Over Graded PKI 18
4.1 Byzantine Agreement on Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Protocol Definitions and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Protocol Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Communication Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



1 Introduction

Byzantine agreement (BA) [32, 26] is a cornerstone for interactive protocols that require reaching
consensus in hostile environments. It considers n parties who wish to jointly agree on one of
their inputs in the presence of malicious agents. The problem is traditionally captured by
requiring the protocol to satisfy consistency, validity, and termination, even when a subset of
up to f colluding and cheating parties try to prevent it.

The motivation for this work is massively-scalable BA protocols, which are intended to run
with thousands (or even hundreds of thousands) of participants, over the public internet. We
focus on synchronous BA, where the protocol is assumed to proceed in rounds. Such protocols
are already being deployed in the context of blockchain protocols, e.g., [11, 13].

The goal: reducing complexity. A central question in this setting is bounding the resources
needed for BA as a function of the number of parties n (e.g., the round and communication
complexity). The classical communication model, used in numerous seminal results, considers
a complete communication graph where parties are connected via pairwise channels. In this
setting, if every party näıvely sends a message of size ℓ to every other party, the communication
overhead is Ω(n2ℓ). While this may be reasonable when the number of parties is small, com-
munication that is quadratic in the number of parties becomes infeasible for massively-scalable
protocols.

Luckily, a long series of results have shown that BA protocols with sub-quadratic communi-
cation complexity and expected constant rounds are possible [11, 1]. At a high level, the main
technique for achieving this is to randomly sample a small committee, then run an “internal”
BA protocol in which only committee members speak, rather than the entire set of parties.
The committee size can be polylogarithmic in n; therefore, even if the internal BA protocol has
quadratic complexity in the size of the committee, as a function of the total number of parties
the communication complexity can still be O(n · poly(log n)).

Player-replaceable protocols. Moreover, to guarantee security against adaptive adver-
saries (who could potentially corrupt an entire committee once they learn the identities of its
members), state-of-the-art consensus protocols usually require an additional property: player-
replaceability [29]. In a player-replaceable protocol, parties do not keep secret state across rounds
(other than their setup information); hence, a different committee can be sampled in each round
of the protocol. Intuitively, an adversary cannot tell who will be on the committee until the
members reveal themselves by sending messages, but once the messages are sent, corrupting the
committee is no longer helpful, since the next committee will be sampled independently.

Since any party can potentially be selected to a committee at any round, all honest parties
need to receive the messages sent by committee members. Technically, it is possible for the
committee members to send direct messages to every other party over point-to-point links, and
indeed, this is how the formal communication model is defined in many protocols. In practice,
however, propagating messages to all parties is usually accomplished using a gossip protocol.

Gossip. The function of a gossip protocol (also referred to as a diffusion channel [22]) is to
propagate messages to all parties, but without requiring full connectivity between them. A
simplified model to achieve this involves connecting parties using a low-degree communication
graph, such that each party has a small number of peers, but the distance between any two
parties is still small. Each party forwards every new message it receives to all of its neighbors.

Currently deployed protocols (such as libP2P’s gossipsub [34], or Bitcoin’s p2p network [16])
use more complex heuristics (such as choosing the communication graph randomly, and updating
it dynamically), but for the purposes of this paper they behave similarly, and our constructions
based on low-degree communication graphs can be adapted to these gossip protocols with very
minor modifications.
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The real power of gossip. Gossip protocols are used in practice to propagate messages in
player-replaceable consensus protocols (here we include both BA and state machine replication,
which can be thought of as a “continuous” BA). However, in most existing protocols, the formal
communication model is slightly different:

• On one end of the scale, the protocols assume only a multicast functionality, that guar-
antees delivery of honestly generated messages to all honest parties, but not necessarily
of adversarially generated messages. The actual gossip protocols guarantee something
stronger (looking ahead, we will use these stronger guarantees to reduce the concrete
communication complexity).

• At the other end of the scale, some consensus protocols assume that every message sent
or received by an honest party will eventually be received by every honest party.

This property can be achieved in the fully connected point-to-point communication setting
by having parties always “echo” every message they receive to all of the other parties.
Indeed, many classical BA protocols make use of this idea (in particular, the classical
protocol for implementing the “gradecast” primitive, by Feldman and Micali [20] has an
explicit echo step; this primitive subsequently formed the basis for a long line of Byzantine
agreement protocols).

Unfortunately, forcing the gossip protocol to satisfy the latter guarantee opens the door to
simple denial-of-service (DoS) attacks by a malicious adversary: since every message must be
propagated, the adversary can send a huge number of different messages, and force the honest
parties to retransmit them all. Locally checking the validity of a message might not prevent
this attack: for example, an adversary may be able to generate many different messages that
are each valid individually, and send each to a different honest party. Moreover, dealing with
this attack by simply dropping messages that appear to be from a malicious user might cause
consensus to fail, since the protocol security in the “strong” gossip model can rely on all honest
parties receiving the same set of messages from adversary (albeit with different timings).

Gossip rounds. To summarize briefly, the setting we are targeting is one in which the number
of participants is huge, making full connectivity infeasible and necessitating the use of protocols
with subquadratic communication. In this type of setting, gossip protocols are already widely
deployed as a communication substrate, and Algorand-style self-selection of small committees
is the norm in order to reduce communication complexity.

Apart from the very rare exceptions of protocols that explicitly consider gossip, BA protocols
are “translated” into this setting from the fully connected model. In this case, every round of
communication in the original protocol corresponds to multiple rounds of gossip. We define
a gossip round as the equivalent of the original (fully connected) protocol round: the time it
takes for a message to reach all honest nodes in the communication graph. This allows us to
make an apples-to-apples comparison between the round-complexity of our protocol and existing
constructions.

Note that the length of each gossip round depends on two parameters: the diameter of the
honest graph and the latency of its underlying point-to-point links. The diameter of the honest
graph is an assumption about the gossip network’s structure (or a bound if we construct the
graph dynamically), and does not depend on the protocol. The link latency, on the other hand,
usually depends on the size of the messages sent over the links (to prevent simple DoS attacks,
existing gossip network generally receive and verify an entire message before retransmitting it).

1.1 Our Contributions

In this paper, we make several contributions towards realizing practical, massively-scalable BA:
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• Graded gossip with abort. Our first contribution is identifying a gossip primitive that
is powerful enough to allow significant communication-complexity gains compared to plain
multicast over a fully connected network, but at the same time can be implemented with
essentially the same cost as multicast over typical gossip communication graphs. We call
the new primitive a d-graded gossip with abort.

• Working directly in a graded PKI model. Our construction of graded gossip with
abort can be realized directly in the graded PKI model. In this model, honest parties may
not know the number or the identities of other parties in advance, and may have only
partial consensus on who is allowed to participate in the protocol. This type of PKI is
much easier to construct in a setting where trusted setup is not available. In fact, our
requirements from graded PKI are general enough that we can model partial consensus
at a message level using the same definition (e.g., when parties need to self-select using a
VRF, but do not fully agree on the number of participants). Since all of our protocols in
this paper use d-graded gossip as a substrate, they also work directly in the graded PKI
model.

Looking ahead, since our BA protocol supports agreement on sets, it can be used to
bootstrap a graded PKI into a full PKI with a single BA invocation (by using the BA to
agree on the set of valid public keys).

• Constructing gradecast and graded crusader agreement. We show how to realize
two classic primitives: gradecast and graded crusader agreement, over gossip with abort.
This allows “transparent” compilation of any BA protocol based entirely on these prim-
itives to the gossip-with-abort model, thereby improving communication complexity by
an almost linear factor. Examples include the phase-king protocol of Berman, Garay and
Perry [7], which can be formulated using crusader agreement, and the simple gradecast
protocols of Ben-Or, Dolev, and Hoch [5, 6].

• Concretely efficient BA. We construct a new, player-replaceable BA protocol in the
graded PKI model. The concrete communication complexity of our protocol, for typical
parameter values, is more than 25 times better than the current state-of-the-art BA proto-
cols in the honest-majority setting (e.g., for 800 participants, it requires less than 2MiB of
communication per gossip peer, as opposed to more than 50MiB for previous protocols).
We note that the efficiency gains kick in even when all parties are honest (in this case our
protocol is still more than 18 times better than the state-of-the-art. (See Section 4.5.1 for
a detailed complexity comparison)

Our protocol achieves these gains by making slightly stronger (albeit still reasonable)
assumptions about the adversarial corruption model and network connectivity of honest
parties (honest parties remain connected throughout the protocol, and the adversary can
corrupt parties adaptively, but corruption is delayed for several communication rounds
after a party is selected by the adversary).

Our protocol is competitive in terms of latency, and terminates in expected 21 gossip
rounds. Moreover, because our protocol does not have any “large” communication rounds
or “large” messages (as opposed to, e.g., Micali and Vaikuntanathan [30]), in practice the
length of each gossip round can be made much shorter, so the real-world latency of our
protocol will usually be better than state-of-the-art protocols that have fewer rounds but
larger messages.

1.2 Technical Overview

We proceed to explain our contributions in more detail.
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Graded gossip with abort. As mentioned above, our starting point is the observation that
the standard gossip primitive, as defined, e.g., in [4, 9, 8, 28], which guarantees that every
message received by an honest party by round r will be received by every other honest party
by round r + 1, is too strong for an efficient realization against malicious adversaries.

In the terminology of secure multiparty computation (MPC), one can view the standard
definition of gossip as gossip with guaranteed output delivery, which forces honest parties to
output bad values entered by the adversary. Our relaxation can be viewed as a form of gossip
with restricted abort (hereafter, referred to as gossip with abort), by enabling honest parties to
output ⊥ when the message sender is malicious. Honest messages, on the other hand, are still
guaranteed to be delivered.1

We refer the reader to Section 3.2 for the formal definition. Loosely speaking, we require
the following properties from d-graded gossip with abort:

• Validity: Once an honest party Pi gossips a value v, it is guaranteed that all honest
parties output (Pi, v) together with the highest grade d.

• Consistency: In case an honest party outputs (Pj , v) with grade g > 1 in round r, then
every honest party will output (Pj , v

∗) with grade g∗ by round r+1 such that v∗ ∈ {v,⊥}
and |g − g∗| ≤ 1.

• Uniqueness: For each gossip session, if an honest party outputs (Pj , v) and (Pj , v
′), then

v′ ∈ {v,⊥}.

• Unforgeability: In case an honest party outputs (Pj , v) and Pj is honest, then Pj indeed
gossiped the value v in a previous round.

Intuitively, validity ensures that honest messages are always delivered with the highest grade,
and consistency ensures that if a corrupted party tries to equivocate and send different values
to different honest parties, e.g., send v to Pi and v′ ̸= v to Pj , then it could be that Pi outputs
v and Pj outputs v′ in round r, but later, in round r + 1 both parties will output ⊥. The
underlying idea is that it is sufficient for the honest parties to detect a cheating sender, but
they do not have to agree on the contents of the messages that incriminate the sender (it could
be that different honest parties will obtain a different pair of messages).

We note that the definition does not guarantee that all honest parties identify a cheating
sender. For example, consider d = 2; then, it could be that an honest Pi outputs (Pk, v) with
grade g = 2 in round r, and later an honest Pj outputs (Pk,⊥) with grade g = 1 in round r+1.
In this case, consistency does not ensure that Pi will also output (Pk,⊥) in round r + 2, since
Pj received grade g = 1 (consistency ensures this for grade g > 1). Increasing the number of
different grades (by increasing d) can prevent this special case (since inconsistencies can only
happen if a party received a message with grade 1). Intuitively, this is the reason we need d > 2
for the d-graded gossip on which we base our efficient BA protocol.

The graded-PKI model. More formally, we define d-graded gossip with abort in a model
that generalizes the standard public-key infrastructure (PKI) model for signatures, called the
d-graded PKI model [3, 23, 15]. Similarly to standard PKI, in this model every party holds a
private signing key and obtains a vector of verification keys; unlike standard PKI, the parties do
not necessarily agree on the verification keys. Instead, each party assigns a grade in {0, . . . , d}
to each verification key, and it is guaranteed that: (1) for every honest party2 Pi, all other
honest parties agree on the verification key of Pi and give it the highest grade d, and (2) for
every verification key vk, if two honest parties received vk then the corresponding grades differ
by at most 1.

1Security with restricted abort [12] enables a specific set of parties to abort the protocol if corrupted; in our
setting, only a corrupted sender can cause an abort.

2A party is honest for the purposes of this definition if it is not corrupted at any point during the protocol.
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At a high level, grades represent “bounded disagreement” between the parties. This notion
of graded PKI is particularly suitable for permissionless protocols in which parties do not
necessarily agree on the set of participates, and is often the first step in constructing a full PKI
“from scratch.”

Realizing graded gossip with abort in the graded PKI model. Our first technical
result is a simple d-graded gossip with abort protocol in the d-graded PKI model. We consider
an incomplete communication network in which each party knows the set of its neighbors (but
need not have a global view of the network); in addition, we consider a public bound on the
honest diameter D, i.e., that every pair of parties is connected by a path of length at most D
consisting of honest nodes (this is called a strongly connected network in [4]).

At a high level, gossip with abort involves a small modification to the näıve flooding protocol
(on the partial communication graph). In order to gossip a value v, the sender Pi signs v to
obtain the signature σ, and sends (vki, v, σ) to all its neighbors. Upon receiving a new message
(vk, v, σ), a party Pj gossips this message to all neighbors (from which it did not previously
receive it).

The difference between näıve flooding and gossip with abort is that if two different messages
were received from the same public key vk, the information that will be flooded is a proof that vk
behaved maliciously (consisting of a pair of different messages signed by the same key). The key
insight is that we do not care about the consistency of the messages comprising the malfeasance
proofs. Thus, if party Pi sent a malfeasance proof for a key vk to a neighbor, it will not send
any additional messages for vk to that neighbor (even if it receives different malfeasance proofs
for vk).

Even when a cheating sender floods the honest parties with many messages, each honest
party sends at most two messages for that sender; therefore, the communication cost that
honest parties send is at most 2|E| times the message size, where E is the set of edges in the
communication graph.

Basing gossip with abort on existing flooding protocols. While we prove our con-
struction directly, given a predetermined communication graph, the same idea can be applied
much more widely. For example, both practical flooding implementations (such as Ethereum
and Bitcoin’s underlying gossip networks) as well as theoretical constructions, such the flooding
protocol of Liu-Zhang et al. [27] (which also takes into account resource weights of participating
nodes), can easily be adapted to achieve d-Graded Gossip in the d-Graded PKI model, with al-
most no overhead. For example, [27] provide a “Skeleton for Flooding Protocols” in which each
node maintains a list of already-relayed messages. The change required is to consider a message
as already relayed if two different messages from the same key have already been relayed (even
if the message value is different from either). The underlying proofs of propagation can be used
essentially unchanged to show that if two or more different messages were signed by the same
key, all honest parties will receive this information (albeit possibly not the same two messages).

Graded threshold gossip. Next, we identify a new primitive, f -threshold-gossip, which
abstracts the operation of “propagate signatures and check if f + 1 distinct parties signed
a value,” that can also be efficiently (and very simply) implemented over gossip-with-abort.
The high-level idea is that each party can count malfeasant public-keys as “supporting” every
possible value (intuitively, if we know a public key is malicious, then the adversary could have
signed every value). This allows us to maintain consistency of the output even though honest
parties may not all receive the same signatures. For example, if an honest party Pi received
f +1 signatures for a value v over gossip with abort, it is possible that Pj received some aborts
instead of signatures for v. However, gossip with abort guarantees that the sum of signatures
and aborts will have to be at least f+1 for Pj . We refer the reader to Section 3.3 for the formal
definition and realization.
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Efficient Byzantine agreement. Using the building blocks described above, we construct a
new and efficient BA protocol. Our construction is inspired by the expected constant-round BA
protocol of Abraham et al. [2]. However, their protocol requires parties to send “certificates”
proving that f + 1 parties signed some value, necessitating quadratic communication.

Instead, the parties in our new protocol communicate only using gradecast (which we realize
using graded gossip with abort) and threshold-gossip. The consistency properties of these
primitives let us remove the requirement to explicitly form certificates. However, because the
arrival times of messages may be inconsistent, the protocol construction is non-trivial, and
requires careful analysis. Section 4 describes the protocol in detail.

We note that disagreement about message timing is one of the main challenges for consensus
even in the full PKI model. By abstracting it as a “graded agreement” on the messages, we can
include additional sources of bounded disagreement essentially “for free” (e.g., by combining
the bounded disagreement about in-protocol message timing with the bounded disagreement
about key validity.) Thus, the relaxation to a graded PKI arises naturally from our BA protocol
construction.

Bootstrapping graded to full PKI using set agreement. Our BA protocol generalizes
standard byzantine agreement to agreement on sets of strings. Briefly, in a set agreement,3 the
inputs of the parties are sets of strings, and the output is a set. The validity guarantees for
set agreement ensure that every string in the intersection of honest inputs is contained in the
output, while every string in the output set is contained in the union of honest inputs. (See
section 4.1 for the formal definition of set agreement.)

This generalization allows us to easily bootstrap a graded PKI into a full PKI. Each party
uses as its input set the keys that (locally) received grade d. Since honest keys always receive
grade d, they are in the intersection of all honest inputs and thus must appear in the output
set. On the other hand, if a key appeared in the output set, it must have been included in the
input set of at least one honest party, and hence must have grade at least d − 1 for all honest
parties.

1.3 Related Work

While gossip protocols [17, 24] are widely studied in the literature, their use to improve the com-
munication of consensus protocols has only recently been explored. In the context of blockchain
protocols, the famous protocol of Nakamoto utilizes gossip as a means of communication to
keep the communication among a large potential number of miners as low as possible. While
early works have treated the gossip layer in the Nakamoto protocol as a black box, a recent
work by Coretti et al. [14] gave a new Byzantine-resilient gossip protocol and studies the effect
of using it as a communication layer in the Nakamoto protocol. In closely related work, Matt et
al. [28] studied the effect of adaptive corruptions on gossip protocols. In the context of classical
consensus protocols (i.e., not based on the longest chain rule), recent works by Momose and
Ren [31] and Tsimos et al. [33] showed how to reduce the communication complexity of Byzan-
tine agreement by implementing particularly expensive protocol steps over a gossip network.
These works are similar in spirit to our own; however, our protocol is optimized for concrete
efficiency in a permissionless setting. Moreover, our protocol is the first to have an expected
constant gossip-round complexity, and can be directly executed over a graded PKI.

Organization of the paper. Preliminaries can be found in Section 2. Section 3 presents
the graded-PKI model and the constructions of graded gossip, gradecast, threshold gossip, and
graded crusader agreement. In Section 4 we present our byzantine agreement on sets protocol
and prove its security.

3Not to be confused with k-set agreement [10].
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2 Preliminaries

We consider synchronous protocols that proceed in a round-by-round manner. The parties
communicate over a partial communication graph, where every party is connected to each of its
neighbors by an ideally authenticated channel; that is, the adversary can view communication
sent over those channels, but cannot drop or inject messages. We denote the number of parties
in our protocols (i.e., the number of nodes in the graph) by n; however, the parties are not
aware of n and each party is only aware of its local neighbor-set.

All our constructions assume the existence of digital signatures which are existentially un-
forgeable under chosen message attack. We denote the security parameter by λ, and all our
security guarantees hold with all but negligible probability in λ. Note that since a party in a
permissionless protocol may not have a globally-agreed identifier, we identify parties by their
corresponding signature verification keys. For example, in the graded gossip protocol, the out-
put is of the form (vk, v) where vk is the verification key of the sender.

We consider PPT adversaries that have weak adaptive-corruption capabilities; namely, that
are delayed adaptive [28]. That is, the adversary can announce that it wishes to corrupt a party
dynamically during the course of the protocol, but it only gets hold of the corrupted party
after some time elapses. In all our constructions, we consider this delay to be the duration of a
single gossip execution. Once a party is corrupted, the adversary can see its internal state and
instruct this party to behave in an arbitrary manner; that is, the adversary is malicious (aka
Byzantine).

3 Graded PKI and Graded Gossip

In this section, we present the building blocks with which we construct the BA protocol in
Section 4. In Section 3.1 we define the graded PKI model; in Section 3.2 we define and construct
graded gossip with abort and gradecast; in Section 3.3 we use those primitives to construct
threshold gossip; finally, in Section 3.4 we show how to realize graded crusader agreement.

In the classical BA model, the set of participating parties is public and known ahead of time.
When considering an honest majority, BA protocols cannot exist in the plain model [26, 21],
and usually rely on a Public-Key Infrastructure (PKI): each party has an associated public
verification key for a signature scheme, which is known to all participants.

Modern, massively-scalable BA protocols, on the other hand, often target a permissionless
setting, in which there is no initial consensus about the set of participants or their public keys.
Previous works [3, 23, 15] have shown how to construct a PKI “from scratch” in this setting
based on resource-bound assumptions, such as Proofs of Work (PoW).

These protocols for achieving PKI typically achieve a weaker primitive first: a graded PKI
(also known as a ranked PKI [3]), in which parties have only partial agreement on the partici-
pating identities. The graded PKI abstraction can also capture partial consistency in validating
eligibility proofs for committee sampling. For example, the Algorand-style method of deter-
mining eligibility by comparing a party’s VRF output to a difficulty threshold may yield only
partial consistency if honest parties can disagree slightly about the threshold value.

Our BA protocol can utilize a graded PKI directly, obviating the (expensive) conversion to
a full PKI. Below, we formally define the graded PKI model we use, and show how it can be
used to efficiently implement a graded version of “gossip with abort.”

3.1 d-Graded PKI

In the d-graded PKI model, every honest party Pi holds a signing key ski for a digital-signature
scheme, and a corresponding verification key vki. In addition, there exists a protocol with a
method GradeKey that accepts a verification key vk and session id sid and outputs a grade
g ∈ {0, 1, . . . , d}.

7



We denote GradeKeyi(vk, sid) the result of party Pi executing GradeKey on input (vk, sid).
While GradeKey is a protocol, rather than a deterministic function of the public key and session
(e.g., the grade can depend on interaction with other parties, and additional local informa-
tion), we assume without loss of generality that for a given party Pi and key/session (vk, sid),
GradeKeyi(vk, sid) always returns the same value (this is without loss of generality since Pi can
always store a table of inputs that have already been queried).

A d-graded PKI must satisfy the following properties (except with negligible probability in
the security parameter):

1. Validity: For every two honest parties Pi and Pj and every session id sid, if
GradeKeyi(vki, sid) = d then it holds that GradeKeyj(vki, sid) = d (i.e., if a party sees
its own key/session pair with the highest grade, then every other honest party will also
give it the highest grade).

2. Graded Consistency: For every key/sessionid pair (vk, sid), and every two honest parties
Pi and Pj ,

|GradeKeyi(vk, sid)− GradeKeyj(vk, sid)| ≤ 1.

Note that it is trivial to construct a d′-graded PKI from a d-graded PKI when d′ < d, by
defining GradeKey(vk, sid)′ = max {0,GradeKey(vk, sid)− (d− d′)}.

3.1.1 Player Replaceable Protocols and Active Parties

In each round, only a subset of the parties may be allowed to speak. These parties are considered
active. The typical use case of a player-replaceable protocol involves electing a small committee
of parties in each round, such that only parties on the committee are active.

We abstract the mechanism for determining the active parties into the graded PKI. This
allows us to model protocols in which there is only partial agreement about which parties are
active in each round. To do this, we consider the round as part of the session id, and denote a
party Pi active in session sid if GradeKeyi(vki, sid) = d. (This use of the graded PKI abstraction
is why the validity definition is only required to hold when GradeKeyi(vki, sid) = d.)

See Section 3.1.3 for an example of how this can be implemented.

3.1.2 Bounding Corruptions in the Graded-PKI Model

In the standard model, it is customary to bound the number of parties corrupted by the ad-
versary. This works in the full PKI model as well, since every public key is associated with a
single party. In the graded PKI model, however, the adversary can create many different keys
without corrupting additional parties.

Moreover, for player-replaceable protocols, the honest-majority requirement must hold sep-
arately for each committee. Thus, we need to modify the notion of an honest majority to take
this into account.

f-faulty and f-bounded executions. Let H be the set of honest verification keys (keys
generated by parties that are still honest at the end of the protocol). Define Vj,sid ={
vk | GradeKeyj(vk, sid) > 0

}
to be the set of verification keys accepted by party Pj for ses-

sion id sid during a protocol execution and Fj,sid = Vj,sid \H to be the subset of those keys that
are not honest. We say a protocol execution is f -faulty if for every honest party Pj and every
sid, it holds that |Fj,sid| ≤ f , and that an execution is f -bounded if for every sid it holds that
|
⋃

i Fi,sid| < f .
We emphasize that honest parties might disagree on the set of accepted keys, so an f -faulty

execution might not be f -bounded.
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Definition 3.1 (f -faulty adversaries). An adversary A is f -faulty (resp., f -bounded) with
respect to a protocol Π, if the probability that A interacting with an execution of Π is not
f -faulty (resp., f -bounded) is negligible in the security parameter (where the probability is over
the coins of the adversary, of the honest parties, and of the setup).

Note that in the full PKI setting, an adversary that can corrupt at most f parties is f -
bounded against any protocol in which GradeKey(vk, sid) checks whether vk is a valid key.
Similarly, consider in a Algorand-style trusted PKI setting, with VRF keys which are used to
sample committees of expected size λ out of a population of N parties, such that each committee
is denoted with a separate session id. In this case, an adversary that can corrupt at most a
c-fraction of the population (c + ε) · λ-bounded for every constant ε > 0 (λ is the security
parameter).

3.1.3 Examples of Graded PKI

In prior work [3, 23, 15], a graded PKI is a setup protocol, executed by the parties ahead of
time, such that each party outputs a vector of verification keys with grades (with the same
consistency requirements we have).

In this work, we use the graded PKI to capture graded eligibility proofs for committee
selection as well. In this case, the public keys may not be known in advance to honest parties.
Below, we give three examples of graded PKI implementations to give some motivation for our
slightly different interface.

Full PKI. A full PKI (where parties agree on the entire set of valid public keys ahead of
time) can trivially serve as a d-graded PKI for any d: GradeKey(vk, sid) = d if vk is a valid key
in the full PKI, and 0 otherwise.

PoW-based PKI Setup. Andrychowicz and Dziembowski [3] show how to construct a graded
PKI (which they call a ranked key set) without setup assumptions, using Proofs of Work instead.
This protocol runs as a setup phase, requiring interaction between all participating parties
and outputs the entire set of public keys with non-zero grades to each party. In this case,
GradeKey(vk, sid) is the grade output by the protocol if vk is in the set, and 0 otherwise.

VRF-based Eligibility. A common method of randomly electing a committee with expected
size n, out of a population of N parties, is Algorand-style self-sortition [11]: each party computes
a VRF of the session id (which typically includes the round number), and self-selects if the
output (interpreted as a value in the range [0, 1]) is less than n/N . The VRF output also serves
as a publicly-verifiable proof of eligibility.

However, in some cases the number of parties N is not in full consensus. For example,
parties can self-select by running a proof-of-work solver locally, and N is estimated locally by
each party based on observed published proofs. In this case, parties can still generate a graded
eligibility proof, assuming that for every two honest parties Pi and Pj , the disagreement about
N is bounded by some fixed constant k.

For a public key vk and session id sid, let GradeKey(vk, sid) return g if a VRF proof was
previously received that shows VRFvk(sid) < n/(N − (k−1)− (d−g) ·k). In this case, an honest
party Pi considers itself active in session sid if VRFvk(sid) < n/N . Since every other honest
party has N ′ ≥ N − k, if another honest party considers itself active, it will receive grade d.

3.2 d-Graded Gossip

In this section, we define a weaker gossip primitive, d-Graded Gossip (with abort), that can be
realized in the d-graded PKI model, for d ≥ 3.
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A protocol π is a d-graded gossip protocol if it has the following API (i.e., input/output inter-
face) and satisfies the following properties: The API is defined by the method GradeGoss(sid, v),
where v is a value and sid is an arbitrary unique session id (string). The output of a party is of
the form (vk, sid, v, g) for a public key vk, a session id sid, a value v, and a grade g; note that a
party may produce more than one output per (vk, sid) pair.

The session id will be used to bound communication complexity by allowing each party to
gossip at most one message for each sid. (Typically, the session id would contain the protocol
round number or a specific role in the protocol.)

The d-graded gossip protocol π is defined in the d-graded PKI model, and guarantees the
following, for every round r and every session id sid:

1. Validity: If Pi is honest, invokes GradeGoss(sid, v) at round r, and this is the first time
that Pi made any call to GradeGoss(·) with sid, then every honest party will receive
(vki, sid, v, d) from π at round r + 1, and will never receive (vki, sid, v

′, g′) from π for
(v′, g′) ̸= (v, d).

2. Consistency: If an honest party received (vk, sid, v, g) from π at round r with g > 1, and
it remains honest in round r+1, then every honest party will receive (vk, sid, v∗, g∗) from
π by round r + 1, for v∗ ∈ {v,⊥} and |g∗ − g| ≤ 1.

3. Uniqueness: If an honest party received (vk, sid, v, g) and (vk, sid, v′, g′) from π, then
v′ ∈ {v,⊥}.

4. Unforgeability: For all v and g, if Pi is honest and an honest party received (vki, sid, v, g)
from π, then Pi invoked GradeGoss(sid, v).

When a party receives (vk, sid,⊥, g), we call this an equivocation proof for (vk, sid).

3.2.1 Partial Communication Graphs

Our graded gossip implementation assumes an underlying directed communication graph G =
(V,E), where the vertices V represent parties, every two parties Pi and Pj such that (Pi, Pj) ∈ E
have a direct communication link (that lets Pi send messages to Pj), and every party knows
their immediate neighbors in G.

We note that no party is required to know the entire graph G; thus, it is possible to construct
G “locally.”

Definition 3.2 (Honest Distance). The honest distance between two parties Pi, Pj ∈ V is the
length of the shortest path between Pi and Pj in G that passes only through honest nodes.

If there is no honest path between Pi and Pj the honest distance is defined to be ∞.

Note that in an adaptive corruption setting, the honest distance between two nodes can
grow when additional nodes are corrupted.

Definition 3.3 (Honest Diameter). The honest diameter of a graph G is the maximum honest
distance between two honest nodes.

3.2.2 Implementing d-Graded Gossip from d-Graded PKI

Protocol 1 is a minor modification of the näıve flooding protocol, in which each party may send
an equivocation proof instead of a message if the sender is malicious. Each party maintains a
table of “equivocating keys.” Denote by Bvk,sid the table entry for key vk in session sid; that
is, Bvk,sid = 1 if key vk was “caught” equivocating in session sid (we initialize all values to 0, so
for every pair (vk, sid) for which the value Bvk,sid has not explicitly been set, Bvk,sid = 0). Note
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that this table is local to each party (and honest parties may not necessarily agree on the value
of Bvk,sid).

Protocol 1: π
(d)
graded-gossip

The protocol is parameterized by a maximum message size L and a maximum grade d.
Each round of the protocol consists of D subrounds; subrounds are the underlying
synchronous communication rounds, and are counted consecutively from the beginning
of the protocol (subround t is in protocol round ⌊D/t⌋).
In each subround:

1. When a party Pi calls GradeGoss(sid, v), it signs (sid, v) as σ ← Signski(sid, v).
Next, Pi sends (sid, v, vki, σ) to itself (and handles it as a received message).

2. When a party receives (sid, v, vk, σ) from itself or a neighbor perform one of the
following actions:

Case 1: |v| > L, GradeKey(vk, sid) = 0, or σ is not a valid signature under vk of
(sid, v). In this case, drop the message.

Case 2: Bvk,sid = 1 (we already have an equivocation proof for (vk, sid)). In this
case, drop the message.

Case 3: Bvk,sid = 0 and GradeKey(vk, sid) > 0, but a previous message (sid, v′, vk, σ′)
was received, such that v′ ̸= v:

i. set Bvk,sid = 1

ii. send (sid, v, vk, σ) to all neighbors.

iii. output (vk, sid,⊥,GradeKey(vk, sid))
Case 4: Bvk,sid = 0, GradeKey(vk, sid) > 0 and no previous message (sid, v′, vk, σ′)

was received:

i. send (sid, v, vk, σ) to all neighbors.

ii. output (vk, sid, v,GradeKey(vk, sid))

Claim 3.4. Let Pi be an honest party that outputs (vk, sid, v, g) at subround t of π
(d)
graded-gossip

(Protocol 1), such that g > 1. For all j ≥ 0, every node whose honest distance from Pi at
subround t+ j is at most j will have output (vk, sid, v′, g′) by subround t+ j, where v′ ∈ {v,⊥}
and g′ ≥ g − 1.

Proof. Consider the event that the adversary succeeds in forging an honest sender’s signature;
by the security of the signature scheme this happens with negligible probability. We proceed
by conditioning on the complementary event and prove the claim by induction on j. The base
case of j = 0 is trivial. For j + 1, consider a node Pi′ at distance j + 1 from Pi. By definition,
since Pi′ is at honest distance j+1 from Pi, there is a path of honest nodes of length j+1 from
Pi to Pi′ at subround t+ j +1. Let Ppred be the predecessor of Pi′ on this path; then, Ppred has
honest distance j from Pi at subround t+ j + 1, and since honest distance can only grow with
time, it has honest distance j from Pi at subround t + j. Thus, by the induction hypothesis,
Ppred must have output (vk, sid, v′, g′) at some subround t + j′, for j′ ≤ j and v′ ∈ {v,⊥} and
g′ ≥ g − 1.

First, note that since Pi output (vk, sid, v, g) and g > 1, it must be that GradeKeyi(vk, sid) =
g > 1. Thus, by graded consistency of the PKI, it holds that

GradeKeyi′(vk, sid) ≥ GradeKeyi(vk, sid)− 1 = g − 1 > 0. (3.1)
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Next, consider the two cases which could cause Ppred to produce output in the byzantine
gossip protocol:

Case 1: In Protocol 1, case 3 was satisfied for Ppred at subround t + j′. This means Ppred re-
ceived (sid, v1, vk, σ1) for some v1 and a valid signature σ1, and also previously received
(sid, v2, vk, σ2) for v2 ̸= v1 and a valid signature v2. Let (sid, v∗2, vk, σ

∗
2) be the first such

message it received (at subround t+ j′′ ≤ t+ j′ ≤ t+ j).

At that point, case 4 must have been satisfied, so Ppred must have sent (sid, v∗2, vk, σ
∗
2)

to all of its neighbors, and in particular to Pi′ . At subround t + j′, it must have
sent (sid, v1, vk, σ1) to Pi′ . If at subround t + j′ party Pi′ has not yet output
(vk, sid,⊥,GradeKeyi′(vk, sid)), then Bvk,sid = 0. By Inequality 3.1, GradeKeyi′(vk, sid) >
0, and thus this second message will satisfy case 3, causing Pi′ to output
(vk, sid,⊥,GradeKeyi′(vk, sid)). Since GradeKeyi′(vk, sid) ≥ g−1 this satisfies the induction
hypothesis.

Case 2: In Protocol 1, case 4 was satisfied for Ppred at subround t+ j′. This means Ppred received
(sid, v, vk, σ) and a valid signature σ, and sent it to all of its neighbors, and in particular
Pi′ would receive this message by subround t+ j′ +1. Assume Pi′ has not already output
(vk, sid, v′,GradeKeyi′(vk, sid)) for v′ ∈ {v,⊥} (otherwise we are already done). In that
case, for Pi′ it must hold that Bvk,sid = 0. By Inequality 3.1, GradeKeyi′(vk, sid) > 0;
hence, one of the following must be the case:

Case 2.1: Pi′ previously received a message (vk, sid, v′, . . . ) for v′ ̸= v. Then, case 3
would be satisfied for Pi′ at subround t + j′ + 1; hence, Pi′ would output
(vk, sid,⊥,GradeKeyi′(vk, sid)) at subround t+ j′ + 1.

Case 2.2: Pi′ did not receive any message with prefix (vk, sid). Then, case 4 would be satisfied
for Pi′ at subround t+ j′ + 1; hence, Pi′ would output (vk, sid, v,GradeKeyi′(vk, sid))
at subround t+ j′ + 1.

We proceed to show that the protocol π
(d)
graded-gossip satisfies the graded-gossip requirements,

as long as the adversary does not disconnect honest parties on the graph (or makes the honest
diameter too big). Given a communication graph G, an adversary A, and an integer D, repre-

senting the assumed honest diameter in the protocol π
(d)
graded-gossip (see Definition 3.3), we define

the event EA,D in which the honest diameter of G is D at the end of an execution of π
(d)
graded-gossip

with the adversary A; the event is defined over the random coins used by the honest parties
and the adversary.

Theorem 3.5 (Graded Gossip Security). For every delayed-adaptive PPT adversary A and
every communication graph G, either Pr [EA,D] = 0 or, conditioned on EA,D it holds that

π
(d)
graded-gossip (Protocol 1) is a d-graded gossip protocol for messages of length L in the d-graded

PKI model.

Proof. Unforgeability follows from the security of the signature scheme. If the protocol outputs
(vki, sid, v, g), then it must have received a message (sid, v, vki, σ) where vki is the verification
key of Pi and σ is a valid signature on (sid, v). If Pi did not call GradeGoss(sid, v), this implies
σ is a forged signature.

Uniqueness can be seen by inspecting the code: if the protocol outputs (vk, sid, v, g), then
case 4 cannot be satisfied again for (sid, v′, vk, σ′) for any v′; therefore, the only remaining output
option is (vk, sid,⊥, g).

Consistency is directly implied by Claim 3.4 and the bound on the honest diameter: round
r starts at subround D · r, while round r + 1 starts at subround D · r +D, and for every two
honest nodes Pi and Pi′ , honest node Pi′ has honest distance at most D from Pi. Thus, by
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Claim 3.4 if an honest node vk outputs (vk, sid, v, g) in round r then every honest node will
output (vk, sid, v, g′) or (vk, sid,⊥, g′) by the end of round r + 1, with g′ ≥ g − 1.

For Validity, it suffices to note that an honest party Pi will never sign two different messages
with the same sid; hence, case 3 can never be satisfied, and for every two honest parties Pi and
Pi′ it holds that GradeKeyi′(vki, sid) = d. By consistency, that implies every honest node will
output (vki, sid, v, d).

Theorem 3.6 (Graded Gossip Communication Complexity). Let |sid| ≤ λ and let the public
keys and signatures be of size λpk and λsig, respectively (we assume both are polynomial in λ).

When Protocol π
(d)
graded-gossip (Protocol 1) is implemented over a communication graph G = (V,E)

for messages of size L, the communication complexity for every (vk, sid) pair output by an honest
party (regardless of the number of messages output) is at most

2|E|(λ + λpk + λsig + L) = 2|E|(poly(λ) + L).

Proof. By inspection, every honest party sends a message with matching (sid, ∗, vk, ∗) at most
twice to every neighbor: once when case 4 is satisfied (after which it can never be satisfied again
for the same (sid, vk) pair) and once when case 3 is satisfied (after which it can never be satisfied
again for the same (sid, vk) pair). Thus, for every given (sid, vk) pair, at most two messages are
sent by honest parties over each edge in the graph.

Since each message sent has the form (sid, v, vk, σ), the length of each message is bounded
by λ + λpk + λsig + L. Therefore, the total complexity is 2|E|(λ + λpk + λsig + L).

Corollary 3.7. In an f -bounded execution with |H| honest parties, The total communication
complexity for every sid is at most 2(f + |H|)|E|(λ + λpk + λsig + L).

Proof. The execution is f -bounded, hence the total number of keys that have non-zero grade is
at most f + |H|. Since honest parties do not output messages from keys with grade less than 1,
the total communication complexity for every sid is at most

2(f + |H|)|E|(λ + λpk + λsig + L).

Corollary 3.8. If G has degree polynomial in the security parameter λ, then the communication
complexity is bounded by poly(λ) · |V | · L.

Proof. In this case, |E| = |V | · poly(λ), so

2|E|(poly(λ) + L) = 2|V | · poly(λ) + 2|V | · poly(λ) · L = 2|V | · poly(λ) · L.

3.2.3 Implementing Gradecast from 3-Graded Gossip

Following Feldman and Micali [20], we define r-round gradecast as a protocol that has the
following API and satisfies the following properties: The API is defined by the method
Gradecast(sid, v), where v is a value and sid is an arbitrary unique session id (string). The
output of a party is of the form (vk, sid, v, g) for a public key vk, a session id sid, a value v, and
a grade g ∈ {0, 1, 2}.

An R-round gradecast protocol guarantees the following properties with overwhelming prob-
ability, for every round r and every session id sid:

1. Validity: If Gradecast(sid, v) is called by an honest party Pi in round r, then every
honest party will output (vki, sid, v, 2) to at round r +R.

2. Weak consistency: If an honest party outputs (vk, sid, v, 2), then every honest party
outputs (vk, sid, v, g) with g ∈ {1, 2}.
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We implement 3-round gradecast over 3-graded gossip in Protocol 2.

Protocol 2: πgradecast

The protocol is parameterized by a maximum message size L and uses the protocol

π
(3)
graded-gossip (Protocol 1) in the 3-graded PKI model.

1. When a party Pi calls Gradecast(sid, v) at round r, invoke the protocol

π
(3)
graded-gossip with GradeGoss(sid, (r, v)).

2. The protocol outputs (vk, sid, v, 2) at round r + 3 if and only if all the following
are satisfied:

(a) It received a message (vk, sid, (r, v), 3) from π
(3)
graded-gossip at round r + 1.

(b) It did not receive (vk, sid,⊥, g) from π
(3)
graded-gossip up to round r+3 (for any

grade g).

3. If it did not output yet, the protocol outputs (vk, sid, v, 1) at round r + 3 if and
only if all the following are satisfied:

(a) It received a message (vk, sid, (r, v), g), for g ∈ {2, 3}, from π
(3)
graded-gossip up

to round r + 2.

(b) It did not receive (vk, sid,⊥, g) from π
(3)
graded-gossip up to round r+2 (for any

grade g).

4. If it did not output yet, the protocol outputs (vk, sid,⊥, 0) at round r + 3 if any
of the following are satisfied:

(a) It received (vk, sid,⊥, g) from π
(3)
graded-gossip up to round r + 2 (for any grade

g).

(b) The first message from π
(3)
graded-gossip with prefix (vk, sid, . . . , ) was received

at round r + 3.

Theorem 3.9 (Gradecast Security). For every delayed-adaptive PPT adversary A, if

π
(d)
graded-gossip (Protocol 1) is a d-graded gossip protocol against A, then πgradecast (Protocol 2)

is a 3-round gradecast protocol in the 3-graded PKI model against A.

Proof. We prove each property separately:

Validity. Since Pi is honest, it will only call GradeGoss(·) once for sid at round r; hence, by
3-graded gossip unforgeability no equivocation proof (vk, sid,⊥) will ever be received.

Further, Pi calls GradeGoss(sid, (r, v)) at round r; hence, by 3-graded gossip validity all
honest parties receive (vk, sid, (r, v), 3) by round r + 1 and no equivocation. Thus, the protocol
will satisfy the conditions to output (vk, sid, v, 2) at round r + 3.

Weak Consistency. Suppose an honest party outputs a message (vk, sid, v, 2) at round r+3.
This means the party received a message (vk, sid, (r, v), 3) at round r+1, and it did not receive an
equivocation proof (vk, sid,⊥, ·) up to round r + 3. By 3-graded gossip consistency, every other
honest party must have received (vk, sid, (r, v), g) or (vk, sid,⊥, g) by round r+2, for g ∈ {2, 3};
however, it cannot be (vk, sid,⊥, g) since then (by 3-graded gossip consistency) every honest
party must have received (vk, sid,⊥, g′) by round r + 3 (for g′ > 0). Thus, every honest party

14



must have received (vk, sid, (r, v), g) by round r + 2, and must have output either (vk, sid, v, 1)
or (vk, sid, v, 2) at round r + 3. Thus, weak consistency is satisfied.

Observing that the gradecast protocol makes only a single call to graded gossip, and no
other communication is required, gives us a simple bound on the communication complexity of
Protocol 2:

Lemma 3.10 (Communication Complexity). Let BCost(L) be the communication complexity
for graded gossip with maximum message size of L bits, and let |r| a bound on the encoding of
the communication round. Then, the communication complexity of πgradecast (Protocol 2) is at
most BCost(|r|+ L).

3.3 d-Graded f-Threshold-Gossip from d-Graded Gossip

Threshold gossip abstracts the common pattern of requiring f + 1 distinct signatures on a
gossiped value (where f is a bound on the number of corrupt public keys) in order to ensure
that at least one honest party signed the value.

A protocol π is a d-graded f -threshold-gossip protocol if it has the following API and satisfies
the following properties: The API is defined by the method T-GradeGoss(sid, r, S), where sid is
the session id, r is the round number, and S is a set of values. The output of a party is of the
form (sid, r, v, g) for a session id sid, a round number r, a value v, and a grade g.

A d-graded f -threshold-gossip protocol is defined in the d-graded PKI model, and guarantees
the following properties with overwhelming probability, for every round r and every session id sid:

• Graded f-Threshold-Completeness: For every value v, if f + 1 honest parties {Pi}
called T-GradeGoss(sid, r, Si) at round r and v ∈

⋂
{i|Pi is honest} Si, then every honest

party will output (sid, r, v, d) by the beginning of round r + 1.

• Graded f-Threshold-Soundness: In every f -faulty execution, for all r′ > r and g > 0,
if by the beginning of round r′ an honest party outputs (sid, r, v, g), then there exist a
set S and an honest party Pi such that v ∈ S and Pi called T-GradeGoss(sid, r, S) at
round r.

• Graded Gossip: For all r′ > r and g > 1: if, by the beginning of round r′, an honest
party Pi output (sid, r, v, g), then every honest party Pj will output (sid, r, v, g′) by the
beginning of round r′ + 1, and |g − g′| ≤ 1.

We emphasize that if an honest party receives a value with grade g = 1, it is not guaranteed
that other honest parties will receive the value at all.
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Protocol 3: π
(d,f)
thresh-gossip

The protocol is parameterized by a maximum grade d, a bound f on the corrupt public
keys seen by an honest party, and a maximum message size L.

1. When a node calls T-GradeGoss(sid, r, S), invoke the protocol π
(d)
graded-gossip with

GradeGoss(sid, (r, S)).

2. For all vk, sid, r, v, if more than one message of the form (vk, sid, r, v, g) were

received from π
(d)
graded-gossip, discard all but the one with the maximal grade.

3. For all s ∈ {1, . . . , d}, at round r + s:

(a) Let Vsid,r,v,g be the number of different Valid messages (vk, sid∗, r∗, S∗, g∗)

received from π
(d)
graded-gossip up to round r + s such that

• (sid∗, r∗) = (sid, r),

• v ∈ S∗,

• g∗ ≥ g, and

• no message of the form (vk, sid, r,⊥, g′) was received from π
(d)
graded-gossip

with g′ ≥ g.

(b) Let Msid,r,g be the number of different Malicious messages

(vk, sid∗, r∗,⊥, g∗) received from π
(d)
graded-gossip up to round r + s such

that (sid∗, r∗) = (sid, r) and g∗ ≥ g. (This counts how many distinct parties
were identified as equivocating for (sid, r) with grade at least g.)

(c) For all v, if Vsid,r,v,d+1−s > 0, Vsid,r,v,d+1−s+Msid,r,d+1−s > f , and (sid, r, v, g)
has not yet been output for any g, output (sid, r, v, d+ 1− s).

Theorem 3.11. If π
(d)
graded-gossip (Protocol 1) is a d-graded gossip protocol, then π

(d,f)
thresh-gossip

(Protocol 3) is a d-graded f -threshold gossip protocol against f -faulty PPT adversaries in the
d-graded PKI model.

Proof. For session id sid, round r, value v, and grade g, let V
(i)
sid,r,v,g and M

(i)
sid,r,g be the values

of Vsid,r,v,g and Msid,r,g for party Pi.

Graded f-threshold completeness. Let v be a value, let P = {Pi} be the set of honest
parties that called GradeGoss(sid, r, Si) at round r such that v ∈ Si, and assume that |P| ≥ f+1.
By d-graded gossip validity, for every Pi ∈ P, every honest party will receive (vki, sid, Si, d) from

π
(d)
graded-gossip by round r + 1. Since v ∈ Si, and no honest party ever equivocates, it holds that

Vsid,r,v,d ≥ |P| ≥ f + 1. Thus, every honest party will output (sid, r, v, d) in round r + 1.

Graded f-threshold soundness. Let Pi be an honest party, let v be a value, let g > 0 be
a grade, and let r be a round number. Then, every key vk for which a message (vk, sid, r, S, g′)

was received by Pi from π
(d)
graded-gossip at round r′ > r, for some grade g′ and a set S such that

v ∈ S, counts at most once in the sum V
(i)
sid,r,v,g +M

(i)
sid,r,g. Since the execution is f -faulty, if the

sum is greater than f then at least one honestly generated key vki′ belonging to an honest party
Pi′ must have contributed to the sum. By d-graded gossip unforgeability, this can only occur if
Pi′ called GradeGoss(sid, r, S) at round r; that is, Pi′ must have called T-GradeGoss(sid, r, S)
at round r.
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Graded gossip. Let Pi be an honest party and suppose that Pi output (sid, r, v, g) at round
r′ = r + s. This can only happen if g = d + 1 − s and, for Pi, at round r′ it holds that

V
(i)
sid,r,v,d+1−s +M

(i)
sid,r,d+1−s > f .

By definition, every message received from π
(d)
graded-gossip that was counted for either

V
(i)
sid,r,v,d+1−s or M

(i)
sid,r,d+1−s has the form (vk, sid, r, S, g′), where g′ ≥ g and S is either a set

of values or ⊥. By d-graded gossip consistency, if Pi received such a message at round r′, then
every honest party must have received a message (vk, sid, r, S′, g′′) by round r′ + 1, such that
g′′ ≥ g′ − 1 ≥ g − 1, and S′ ∈ {S,⊥}. Let Pj be an arbitrary honest party.

By f -threshold soundness, for every honest party, and all r′ > r, it must hold that
Vsid,r,v,d ≥ 1 (since at least one honest party called T-GradeGoss(sid, r, S′′) for some S′′ with
v ∈ S′′).

If Pj already output (sid, r, v, g′) up to round r′, then g′ ≥ g. If it did not output (sid, r, v, g′)

up to round r′, then it must hold that V
(j)
sid,r,v,d−s +M

(j)
sid,r,d−s > f , since every message counted

by Pi at round r′ would be counted by Pj at round r′ + 1, for g′ = g − 1 = d− s.
Thus, every honest party that did not output (sid, r, v, ·) at round r′ must output (sid, r, v, g−

1) at round r′ + 1.

Observing that each threshold gossip invokes π
(d)
graded-gossip exactly once for each party gives

us the following bound on its communication complexity:

Lemma 3.12 (Graded Threshold-Gossip Communication Complexity). Let BCost(L) be the
communication complexity for d-graded gossip with maximum message size of L-bits, and |r| a
bound on the encoding of the communication round. Then, the communication complexity for

π
(d,f)
thresh-gossip (Protocol 3) is at most BCost(|r|+ L).

3.4 Graded Crusader Agreement from 4-graded f-Threshold Gossip

In the same way that gradecast is a relaxation of broadcast, graded crusader agreement [18]
is a relaxation of byzantine agreement. Formally, a protocol π is an R-round graded crusader
agreement protocol if it has the following API and satisfies the following properties: The API
is defined by the method GA(sid, v), where v is a value and sid is an arbitrary unique session id
(string). The output of a party is of the form (sid, v, g) for a session id sid, a value v, and a
grade g ∈ {0, 1, 2}.

An R-round graded crusader agreement guarantees the following properties with overwhelm-
ing probability, for every round r and every session id sid:

1. Validity: If all honest parties called GA(sid, v) at round r, then all honest parties output
(sid, v, 2) at round r +R.

2. Graded agreement: For every two honest parties Pi and Pi′ : if Pi outputs (sid, v, g)
and Pi′ outputs (sid, v

′, g′), then

• |g − g′| ≤ 1

• v′ ∈ {v,⊥} or v ∈ {v′,⊥}
• If g = 2 then v′ = v

For any f -faulty adversary, and assuming the number honest parties is at least f + 1, we
can construct 4-round graded crusader agreement from 4-graded f -threshold gossip:
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Protocol 4: πGA

The protocol is parameterized by a bound f on the corrupt public keys seen by an

honest party, and a maximum message size L. It makes use of the protocol π
(4,f)
thresh-gossip

(Protocol 3) in the 4-graded PKI model.

1. When a node calls GA(sid, v) at round r, it invokes π
(4,f)
thresh-gossip with

T-GradeGoss(sid, r, {v}).

2. At round r + 4:

Case 1: If the node received (sid, r, v′, 4) from πthresh-gossip at round r + 1, and no
other message (sid, r, v′′, ·) for v′′ ̸= v′ up to round r + 4, output (sid, v′, 2).

Case 2: If the node has not yet produced output, received (sid, r, v′, g) from
πthresh-gossip for g ≥ 3 by round r + 2, and no other message (sid, r, v′′, g′′)
for v′′ ̸= v′ and g′′ ≥ 2 up to round r + 3, output (sid, v′, 1).

Case 3: Otherwise output (sid,⊥, 0)

Lemma 3.13. If the number of honest parties is at least f +1, and π
(4,f)
thresh-gossip is a 4-graded f -

threshold gossip protocol, then πGA (Protocol 4) is a 4-round graded crusader agreement protocol
against f -faulty adversaries in the 4-graded PKI model.

Proof. We prove each property separately.

Validity. If all honest parties called GA(sid, v) at round r, then f + 1 honest parties called
T-GradeGoss(sid, r, {v}) at round r. By 4-graded f -threshold-gossip completeness, every honest
party will receive (sid, r, v, 4) from πthresh-gossip by round r + 1. Since no honest party called
πthresh-gossip with any other value, by 4-graded f -threshold-gossip soundness, no honest party
will receive any other message (sid, r, v′′, g′′) for v′′ ̸= v from πthresh-gossip up to round r + 4.
Thus, every honest party will output (sid, v, 2) at round r + 1.

Graded agreement. Suppose node Pi output (sid, v, g) and node Pi′ output (sid, v
′, g′).

Case 1: g = 2 or g′ = 2. Assume without loss of generality that g = 2 (the other case is symmetric).
In this case, Pi received (sid, r, v, 4) from πthresh-gossip at round r+ 1; hence, by the graded
gossip property of 4-graded f -threshold-gossip, Pi′ received (sid, r, v, g′′) by round r + 2,
for g′′ ≥ 3. Further, Pi′ cannot have received any (sid, r, v′′′, g′′′) for v′′′ ̸= v and g′′′ ≥ 2 by
round r+3, since then by the graded gossip property Pi would have received (sid, r, v′′′, g′′′′)
by round r + 4 for g′′′′ ≥ 1; hence, would not have output with g = 2.

Thus, Pi′ must output either (sid, v, 1) or (sid, v, 2).

Case 2: g = 1 and g′ = 1. In this case Pi received (sid, r, v, g′′) from πthresh-gossip by round r + 2,
for g′′ ≥ 3. By the graded gossip property of 4-graded f -threshold-gossip, Pi′ received
(sid, r, v, g′′′) from πthresh-gossip up to round r + 3, for g′′′ ≥ 2. But this implies v′ = v,
otherwise Pi′ would not have output (sid, v, 1).

Case 3: g = 0 and g′ ≤ 1, or g ≤ 1 and g′ = 0. In this case, graded agreement is trivially
satisfied.

4 Byzantine Agreement Over Graded PKI

In this section we construct an efficient BA protocol using gradecast and graded threshold
gossip. As we showed in Section 3, these can be constructed directly in the graded-PKI model.
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Our protocol requires 5-graded PKI, which we use to implement 5-graded f -threshold gossip.

4.1 Byzantine Agreement on Sets

In fact, our protocol achieves a stronger notion than traditional BA. We achieve byzantine
agreement on sets, in the sense that each party begins with a set of values and outputs a set of
values. It is guaranteed that: (1) all honest parties output the same set Sout, (2) this common
set Sout is a superset of the intersection of all honest input sets, and (3) Sout is a subset of
the union of all honest input sets. As discussed in section 1.2, this notion of agreement can be
immediately used to boost a graded-PKI into a standard PKI.

Definition 4.1 (Byzantine Agreement on Sets). We say that a protocol Π run by parties
P1, . . . , Pn, where Pi initially holds a set S in

i , achieves Byzantine agreement on sets if at the end
of the protocol, every honest party outputs a set Sout

i such that the following four conditions
are satisfied with overwhelming probability (in the security parameter λ):

• Consistency: for every two honest parties Pi and Pj , if Pi terminates with set Sout
i and

Pj terminates with set Sout
j then Sout

i = Sout
j .

• Inclusion Validity: For every value v, if for every honest party Pi it holds that v ∈ S in
i ,

then for every honest party Pj it holds that v ∈ Sout
j .

• Exclusion Validity: For every value v, if for every honest party Pi it holds that v /∈ S in
i ,

then for every party Pj it holds that v ̸∈ Sout
j .

• Termination: All honest parties terminate the protocol with overwhelming probability.

Note that we can easily construct standard byzantine agreement in a black-box fashion from
byzantine agreement on sets by using a singleton set as the input.

4.2 Protocol Definitions and Overview

The protocol is parameterized by the corruption threshold f and the messages’ length L. The

maximal grades is set to d = 5. For clarity, we denote by πthresh-gossip the protocol π
(5,f)
thresh-gossip

and by πgradecast a gradecast protocol for messages on size L in the 5-graded PKI model. Denote
by S in

i the input set of Pi. Each execution of the protocol also has an associated session id sid.

p-Weak Leader Election. The protocol makes use of a leader-election subprotocol in each
iteration. We abstract this as a special case of graded PKI, with an additional protocol
πquality(vk, sid, r). This protocol receives a public key vk, session id sid, and round index r
as input, and returns a quality score in the range [0, 1].

The leader in round r of session sid, in the view of party Pi, is the key (vk, sid, r) such that
GradeKeyi(vk, (sid, r)) > 04 and for every other key vk′ ̸= vk in the view of Pi, it holds that
πquality(vk, sid, r) > πquality(vk

′, sid, r). (Note that if a round has a leader, in Pi’s view, it is
unique, but a round may not have a leader at all.)

We define IsLeader(i)(vk, sid, r) to return 1 if (vk, sid, r) is the leader in the view of party
Pi, and 0 otherwise.

We assume that the protocol πquality to be a p-Leader Election protocol. A p-Leader Election
protocol is defined in the d-graded PKI model, and guarantees the following properties with
overwhelming probability, for every round r and every session id sid:

4Note that the GradeKey treats the tuple (sid, r) as a session id.
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• Quality Consistency: For every pair of honest parties Pi and Pj , and every tuple
(vk, sid, r) such that GradeKeyi(vk, (sid, r)) > 0 and GradeKeyj(vk, (sid, r)) > 0, if both
parties invoke πquality(vk, sid, r) (not necessarily at the same time), their outputs are iden-
tical.

• p-Honest Leader Election: For every sid and round r, with probability at least p,
there exists an honestly-generated vk such that for every honest party Pi it holds that
IsLeader(i)(vk, sid, r) = 1.

These properties ensure that an honest leader is chosen with probability p at each round,
and that when this occurs all honest parties will agree on the leader’s identity.

Claim 4.2. For every two honest parties Pi and Pj, if vk and vk′ are honest keys, and
IsLeader(i)(vk, sid, r) = IsLeader(j)(vk′, sid, r) = 1, then vk = vk′ (i.e., if the leader is honest
then Pi and Pj agree on the identity of the leader).

Proof. We assume without loss of generality that every active honest party speaks in each
round. Assume, in contradiction, that vk ̸= vk′. By d-graded PKI completeness, both
GradeKeyj(vk, (sid, r)) = d > 0 and GradeKeyi(vk

′, (sid, r)) = d > 0. Since (vk, sid, r) is the
leader in Pi’s view it holds that πquality(vk, sid, r) > πquality(vk

′, sid, r). But for the same reason,
using Pj ’s view, it must be that πquality(vk

′, sid, r) > πquality(vk, sid, r). By quality consistency,
the outputs of πquality are consistent. Thus, we have reached a contradiction.

Note that p-Weak Leader Election (also referred to as oblivious leader election [19, 25]) is
trivially satisfied by the simple leader election functionality used in many BA protocols, where
the leader is always in full consensus, but may be a corrupt party with probability 1 − p.
However, it is strictly weaker: with probability 1−p, honest parties are not guaranteed to agree
about the leader’s identity. This lets it model the Algorand-style leader election protocol based
on VRFs, which is a common subprotocol in permissionless protocols. (The protocol is typically
be implemented by self-selecting several potential leaders using a VRF, and a posteriori picking
the one with the lowest VRF value as the leader; the VRF here translates to the quality score
in our definition.)

Iterations and rounds. The protocol proceeds in sequential iterations, beginning with iter-
ation 0; we denote the iteration number by j. Each iteration consists of 7 rounds, except for
iteration 0 that consists of 8 rounds. Let R(j, r) = 7j + r be the absolute round number for
iteration j, round r (iteration 0 is the first iteration, and the preround is considered round -1;
that is, iteration 0 consists of rounds −1 till 6).

Local variables. For each iteration j, party Pi maintains several variables:

• L
(j)
i contains the set of values to which Pi is “locked,” or ⊥ if it is not locked. Pi will not

commit to any other set in iteration j if it is locked.

• HardLocked
(j)
i ∈ {0, 1} is a boolean variable indicating whether Pi is “hard locked” to

the set L
(j)
i . When Pi is hard locked to a set, it will commit to the set regardless of any

proposal in iteration j.

• T
(j)
i records the sets from “valid proposals” received in iteration j. As part of the security

proof, we show that the output must always be such a set. Since, apart from the proposal
and preround, the protocol only requires parties to exactly compare sets, it is ok to replace
the encodings of sets in these rounds with the hash of the set.
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4.3 Protocol Execution

The byzantine agreement protocol πBA is parameterized by a bound f on the corrupt public
keys seen by an honest party, and a maximum message size L. The protocol is defined in the 5-

graded PKI model, and makes use of the 5-graded f -faulty threshold gossip protocol π
(5,f)
thresh-gossip

(Protocol 3) and the 3-round gradecast protocol πgradecast (Protocol 2).
Each protocol iteration proceeds as follows:

Round -1 (preround): (Executed only a single time)

• If Pi is active: Pi invokes the 5-graded πthresh-gossip with
T-GradeGoss(sid||preround,−1, S in

i ), informing everybody of its set S in
i .

Valid Values. At the beginning of rounds r ∈ {0, 1, 2, 3} of iteration 0, Pi forms a set of valid

values V
(g)
i by taking the union of all values v such that (sid||preround,−1, v, g) was

received from πthresh-gossip with g ≥ 5 − r. (E.g., at round 0 it sets V
(5)
i to be the set of

values received with grade 5, at round 1 it sets V
(4)
i be the set of values received with

grades 5 or 4, etc.)

Round 0 (hard-lock):

• If j > 0 and by the beginning of round 0 of iteration j, party Pi received from πthresh-gossip

the message (sid||commit-(j − 1), R(j− 1, 5), S∗, g) on a set S∗ ∈
⋃j−1

ℓ=0 T
(ℓ)
i , for g ≥ 4,

it sets L
(j)
i ← S∗ and HardLocked

(j)
i ← 1.

• Otherwise, Pi sets HardLocked
(j)
i ← 0.

Round 1 (soft-lock): (This round is not required in the first iteration)

• If j > 0 and up to the beginning of round 1, party Pi received from πthresh-gossip the

message (sid||commit-(j − 1), R(j − 1, 5), S∗, g) on a set S∗ ∈
⋃j−1

ℓ=0 T
(ℓ)
i , for g ≥ 3, Pi

sets L
(j)
i ← S∗.

• Otherwise, Pi sets L
(j)
i ← ⊥.

Round 2 (propose):

• If Pi is active:

– If j > 0 and, up to the beginning of round 2, party Pi received from πthresh-gossip the

message (sid||commit-(j − 1), R(j − 1, 5), S∗, g) on a set S∗ ∈
⋃j−1

ℓ=0 T
(ℓ)
i , for g ≥ 2,

Pi sets S ← S∗.

– Otherwise, Pi sets S ← V
(4)
i .

Pi invokes πgradecast with Gradecast(sid||proposal-j, S).

Round 3 (wait1): Wait for messages.

Round 4 (wait2): Wait for messages.

Round 5 (commit):

• For every proposal (vk, sid||proposal-j, S, g) that Pi received from πgradecast up to the
beginning of round 5, such that:

(a) g ≥ 1

(b) S ⊆ V
(2)
i ,
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Pi adds S to T
(j)
i . If no such proposals were received, Pi sets T

(j)
i ← ⊥.

• If Pi is active: If HardLocked
(j)
i = 1, then Pi invokes πthresh-gossip with the message

T-GradeGoss(sid||commit-j, R(j, 5), {L(j)
i }).

Otherwise, if Pi received a proposal (vk, sid||proposal-j, S, g) such that all of the fol-
lowing conditions are met:

(c) {S} = T
(j)
i (i.e., S is the only set in T

(j)
i ).

(d) IsLeader(i)(vk, sid||proposal-j, R(j, 2)) = 1

(e) g = 2

(f) S ⊆ V
(3)
i ,

(g) Either V
(5)
i ⊆ S or (sid||commit-(j − 1), R(j − 1, 5), S, g) was received from

πthresh-gossip for g ≥ 1 by the beginning of round 5 of iteration j.

(h) L
(j)
i = ⊥ or L

(j)
i = S,

then Pi invokes πthresh-gossip with T-GradeGoss(sid||commit-j, R(j, 5), {S}).

Round 6 (notify):

Case 1: If Pi received (sid||notify-(j − 1), R(j − 1, 6), S, 5) from πthresh-gossip at round 0 of

iteration j, such that S ∈
⋃j−1

ℓ=0 T
(ℓ)
i :

• it outputs S

• if Pi is active, it invokes πthresh-gossip with
T-GradeGoss(sid||notify-j, R(j, 6), {S})

• Pi terminates. (Pi continues to participate in the πthresh-gossip protocol for one
more iteration.)

Case 2: Otherwise, if Pi is active: if it has received (sid||commit-j, R(j, 5), S, 5) from

πthresh-gossip and S ∈ T
(j)
i , it calls T-GradeGoss(sid||notify-j, R(j, 6), {S}).

Iteration-end: At the end of round 6, Pi sets j ← j + 1 and continues from round 0.

4.4 Security Analysis

We proceed to state the security guaranteed of the protocol.

Theorem 4.3. Let 0 < p < 1 be a constant, and assume that πgradecast (Protocol 2) is a 3-round

gradecast protocol, that πquality is a p-leader-election protocol, and that π
(5,f)
thresh-gossip (Protocol 3)

is a 5-graded f -threshold gossip protocol against f -faulty PPT adversaries in the 5-graded PKI
model.

Then, the protocol πBA (Section 4.3) achieves byzantine agreement on sets against f -faulty
PPT adversaries in the 5-graded PKI model.

Recall that a 5-graded PKI also defines a 3-graded PKI as required by our 3-round gradecast
protocol, see Section 3.1.

The rest of this subsection is devoted to proving Theorem 4.3. In Section 4.4.1 we prove
consistency, in Section 4.4.2 we prove termination, and in Section 4.4.3 we prove validity.

4.4.1 Consistency

Lemma 4.4 (Commit Consistency). For all j ≥ 0, if an honest party Pi called
T-GradeGoss(sid||commit-j, R(j, 5), {S}) at iteration j, then for every honest party Pi′:

1. S ∈
⋃j

ℓ=0 T
(ℓ)
i′ and
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2. if Pi′ called T-GradeGoss(sid||commit-j, R(j, 5), {S′}) in iteration j, then S′ = S.

Proof. Consider the event that the adversary succeeds in forging an honest sender’s signature;
by the security of the signature scheme this happens with negligible probability. We proceed
by conditioning on the complementary event and prove the lemma by induction on j.
Base case: For j = 0, the only way Pi can call T-GradeGoss(sid||commit-j, R(j, 5), {S}) is if
Pi received (vk, sid||proposal-j, S, 2) at round 3 of iteration j that satisfies conditions 5a to 5h.

By gradecast weak consistency, Pi′ must have received (vk, sid||proposal-j, S, g) by round 4

of iteration j, for g ≥ 1. By condition 5f, S ⊆ V
(3)
i ; hence, for every honest Pi′ it holds that

S ⊆ V
(2)
i′ , and thus condition 5b is satisfied for Pi′ . Since conditions 5a to 5b are all satisfied,

Pi′ must have added S to T
(j)
i′ in round 5. This also implies that if Pi′ sent a commit message

for S′ in iteration j, then S′ = S (otherwise we would have S′, S ∈ T
(j)
i′ , hence |T (j)

i′ | > 1).
Induction Step: Assume the induction hypothesis is true up to some j ≥ 0. Suppose Pi called
T-GradeGoss(sid||commit-(j + 1), R(j + 1, 5), {S}) at iteration j + 1. There are exactly two
options for how this could happen:

Case 1: Hard-locked: HardLocked
(j+1)
i = 1.

In this case, Pi must have received (sid||commit-j, R(j, 5), S, 4) from πthresh-gossip up
to round 0 of iteration j + 1. Thus, by the graded-gossip property of πthresh-gossip, Pi′

must have received (sid||commit-j, R(j, 5), S, g) from πthresh-gossip up to round 1 of iter-
ation j + 1, for g ≥ 3. Moreover, by graded f -threshold-soundness, at least one hon-
est party must have called T-GradeGoss(sid||commit-j, R(j, 5), {S}) at iteration j. By

the induction hypothesis, this means S ∈
⋃j

ℓ=0 T
(ℓ)
i′ and that no honest party called

T-GradeGoss(sid||commit-j, {S′}) for S′ ̸= S in iteration j. Therefore, by graded f -
threshold-soundness, Pi′ cannot have received (sid||commit-j, R(j, 5), S′, ∗) for S′ ̸= S,

thus, Pi′ will set L
(j+1)
i′ ← S in round 1 of iteration j + 1.

To see that if Pi′ called T-GradeGoss(sid||commit-(j + 1), R(j + 1, 5), {S′}), then S′ = S,
suppose it did. Then either:

• HardLocked
(j+1)
i′ = 1.

In this case S′ = S because Pi′ calls T-GradeGoss(sid||commit-(j + 1), R(j + 1, 5), {L(j+1)
i′ }),

and we have just shown that L
(j+1)
i′ = S, or

• HardLocked
(j+1)
i′ = 0.

In this case S′ = S because otherwise condition 5h would not be satisfied.

Case 2: Good Proposal: HardLocked
(j+1)
i = 0, and Pi received (vk, sid||proposal-j, S, 2) from

πgradecast by round 5 of iteration j + 1 that satisfies conditions 5a to 5h.

By the same arguments as for the base case, it must be that Pi′ received the proposal, it

satisfies conditions 5a to 5b, and thus Pi′ will add S to T
(j+1)
i′ .

To see that if Pi′ called T-GradeGoss(sid||commit-(j + 1), R(j + 1, 5), {S′}), then S′ = S,
suppose it did. Then either

• HardLocked
(j+1)
i′ = 0.

In this case S′ = S because otherwise condition 5c would not be satisfied, or

• HardLocked
(j+1)
i′ = 1 and L

(j+1)
i′ = S′.

In this case, Pi′ must have received (sid||commit-j, R(j, 5), S′, 4) from πthresh-gossip
up to round 0 of iteration j +1. By the consistent-gossip property of πthresh-gossip, Pi

must have received (sid||commit-j, R(j, 5), S′, 3) from πthresh-gossip up to round 1 of
iteration j + 1. By the graded f -threshold-soundness property, at least one honest
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party must have called (sid||commit-j, R(j, 5), S′), and therefore, by the induction

hypothesis, S′ ∈
⋃j

ℓ=0 T
(ℓ)
i and no honest party called (sid||commit-j, R(j, 5), S′′)

for S′′ ̸= S′. By graded f -threshold-soundness, Pi could not have received
(sid||commit-j, R(j, 5), S′′, ∗) for S′′ ̸= S′. Thus, in round 1 of iteration j + 1,

Pi must have set L
(j+1)
i ← S′. By condition 5h, this implies S′ = S.

Lemma 4.5 (Notify Implies Termination). Let j ≥ 0 be the first iteration at which an honest
party Pi calls T-GradeGoss(sid||notify-j, R(j, 6), {S}) for some set S. Then, every honest party
will terminate by the end of iteration j + 2 with output S.

Proof. Since no honest party called T-GradeGoss(sid||notify-j′...) for j′ < j, by f -threshold-
soundness Pi cannot have received (sid||notify-(j − 1), R(j − 1, 6), S, 5), hence must be in case
2 of round 6 at iteration j. Since Pi called T-GradeGoss(sid||notify-j, R(j, 6), {S}) in case 2 of
round 6 of iteration j, Pi must have received (sid||commit-j, R(j, 5), S, 5) from πthresh-gossip by
the beginning of round 6 of iteration j.

By Lemma 4.4, this implies that for every honest party Pi′ , S ∈
⋃j

ℓ=0 T
(ℓ)
i′ and for all S′ ̸= S,

no honest party called T-GradeGoss(sid||commit-j, R(j, 5), {S′}). By f -threshold-soundness,
this implies that for all S′ ̸= S, no honest party received (sid||commit-j, R(j, 5), S′, ∗) (in any
round).

Thus, no honest party called T-GradeGoss(sid||notify-j, R(j, 6), {S′}), and—again by f -
threshold soundness—no honest party can receive (sid||notify-j, R(j, 6), S′, ∗), hence no honest
party can terminate with output other than S in iteration j + 1.

Since Pi received (sid||commit-j, R(j, 5), S, 5) from πthresh-gossip by the beginning of
round 6 of iteration j, then by the consistent-gossip property, Pi′ must have received
(sid||commit-j, R(j, 5), S, g) from πthresh-gossip by the beginning of the next round, for g ≥ 4.

That is, in round 0 of iteration j + 1. Moreover, since S ∈
⋃j

ℓ=0 T
(ℓ)
i′ , it follows that Pi′ , and

every honest party, must set L
(j+1)
i′ ← S and HardLocked

(j+1)
i′ ← 1 at round 0 of iteration j+1.

Since HardLocked
(j+1)
i′ ← 1, Pi′ must have called

T-GradeGoss(sid||commit-(j + 1), R(j + 1, 5), {S}) in iteration j + 1. This holds for ev-
ery honest party, and no honest party could have terminated yet (honest parties only terminate
one iteration after first receiving a notify, and the first is in iteration j + 1). Thus for every
S′ ̸= S,

• no honest party called T-GradeGoss(sid||commit-(j + 1), R(j + 1, 5), S′),

• hence by graded f -threshold-soundness, no honest party receives
(sid||commit-(j + 1), R(j + 1, 5), S′, ∗),

• thus no honest party calls T-GradeGoss(sid||notify-(j + 1), R(j + 1, 6), S′),

• hence no honest party receives (sid||notify-(j + 1), R(j + 1, 6), S′, ∗)

Moreover, all honest parties called T-GradeGoss(sid||commit-(j + 1), {S}) in round 5 of itera-
tion j +1. Since there are at least f +1 active honest parties, by the f -threshold-completeness
property of πthresh-gossip, all honest parties will receive (sid||commit-(j + 1), R(j + 1, 5), S, 5)
by the beginning of round 6 of iteration j + 1. Therefore, all honest parties will call
T-GradeGoss(sid||notify-(j + 1), R(j + 1, 6), {S}) at round 6 (whether due to case 1 or case 2).
By graded f -threshold-completeness all honest parties will receive (sid||notify-(j + 1), R(j +
1, 6), S, 5) by the end of iteration j+1 and any party that was not in case 1 of round 6 in itera-
tion j + 1. Honest parties that previously received (sid||notify-(j), R(j, 6), S, 5), will terminate
with output S at iteration j + 1; the remaining honest parties will terminate with output S in
iteration j + 2 (due to case 1 of round 6).
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Lemma 4.6 (Consistency). Under the assumptions in Theorem 4.3, Protocol πBA satisfies
consistency.

Proof. Honest parties only terminate if there exists j and a set S such that they received
(sid||notify-j, R(j, 6), S, 5) from πthresh-gossip. Thus, by f -threshold-soundness, if any honest
party terminated with output S, there must exist a minimal iteration j∗ such that an hon-
est party called T-GradeGoss(sid||notify-j∗, R(j∗, 6), {S}) at iteration j∗. By Lemma 4.5, all
honest parties will terminate with output S in this case.

4.4.2 Termination

Claim 4.7 (Honest Proposal Lock Consistency). For all j ≥ 0, if the leader Pi in iteration j is
honest and proposes a set S, then for every honest party Pi′ the proposal satisfies condition 5h
in round 5.

Proof. If L
(j)
i′ = ⊥ the condition is trivially satisfied. Otherwise, suppose Pi′ set L

(j)
i′ ← S′ in

round 0 or round 1 of iteration j. In this case, Pi′ must have received (sid||commit-(j − 1), R(j−
1, 5), S′, g) from πthresh-gossip by the beginning of round 1 of iteration j, where g ≥ 3.

By consistent-gossip, every honest party, including Pi must have received
(sid||commit-(j − 1), R(j − 1, 5), S′, g′) from πthresh-gossip by the beginning of round 2 of
iteration j, with g′ ≥ 2. By f -threshold-soundness, at least one honest party called
T-GradeGoss(sid||commit-(j − 1), R(j − 1, 5), S′) in iteration j − 1, and by Lemma 4.4,

S′ ∈
⋃j−1

ℓ=0 T
(ℓ)
i and every other honest commit in iteration j − 1 was for S′. Therefore, by

f -threshold-soundness, Pi could not have received (sid||commit-(j − 1), R(j − 1, 5), S′′, ∗) for
S′′ ̸= S′.

Thus, it must be that Pi called Gradecast(sid||proposal-j, S′); that is, S′ = S, and condi-
tion 5h is satisfied for Pi′ .

Claim 4.8. For every iteration j, if any honest party receives (sid||commit-j, R(j, 5), S, g) for
g > 0 then

• there exists an honest party Pi such that V
(5)
i ⊆ S and

• for every j′ > j and every honest party Pi′, it holds that S satisfies conditions 5b and 5f
for Pi′ at iteration j′

Proof. The proof is by induction on j.
Base case (j = 0): If any honest party receives (sid||commit-j, R(j, 5), S, g),
then by f -threshold-soundness there must be an honest party Pi that called
T-GradeGoss(sid||commit-j, R(j, 5), S) in iteration j. Since this is the first iteration,

HardLocked
(j)
i = 0, S must satisfy conditions 5b and 5f for Pi, hence S ⊆ V

(3)
i . Moreover,

since no previous commit messages could have been sent, in order to satisfy condition 5g it

must be that V
(5)
i ⊆ S. Finally, for every honest Pi′ and j′ > j, it holds that V

(3)
i ⊆ V

(2)
i′ , and

therefore S ⊆ V
(3)
i′ and satisfies conditions 5b and 5f for Pi′ at iteration j′

Induction Step: Assume the hypothesis holds up to some j ≥ 0. If an honest party receives
(sid||commit-(j + 1), R(j+1, 5), S, g), then by f -threshold-soundness there must be an honest
party Px that called T-Gossip(sid||commit-(j + 1), R(j + 1, 5), S) in iteration j + 1.

Case 1: Some honest party received (sid||commit-j∗, R(j∗, 5), S, g) for some j∗ ≤ j up to iteration
j+1. In this case, by the induction hypothesis there exists Pi that we need and conditions
are satisfied for j′ = j + 1 > j∗. Otherwise,

Case 2: No honest party received (sid||commit-j∗, R(j∗, 5), S, g) for j∗ ≤ j and g > 0 up to
iteration j + 1. In this case, the proof is essentially identical to the base case, since it

must be that HardLocked
(j+1)
x = 0 and satisfying condition 5g requires V

(5)
x ⊆ S.
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Lemma 4.9 (Honest-Leader Termination). For all j ≥ 0, if the leader Pi in iteration j is honest
and called Gradecast(sid||proposal-j, S), then all honest parties will terminate with output S
by the end of iteration j + 1.

Proof. Let Pi′ be an honest party. By 3-round gradecast validity, if Pi is honest and called
Gradecast(sid||proposal-j, S) at round 2, then Pi′ will receive (vki, sid||proposal-j, S, 2) by
round 5. Thus, it will satisfy conditions 5a and 5e for Pi′ .

Case 1: S = V
(4)
i . In this case,

(a) Since V
(4)
i ⊆ V

(3)
i′ for every two honest parties Pi, Pi′ , S must satisfy conditions 5b

and 5f.

(b) Since V
(5)
i′ ⊆ V

(4)
i it follows that V

(5)
i′ ⊆ S hence it will satisfy condition 5g.

Case 2: S ̸= V
(4)
i . In this case, it must be that Pi received (sid||commit-(j − 1), R(j − 1, 5), S, g)

from πthresh-gossip for g ≥ 2 by round 2. Thus.

(a) By Claim 4.8 S will satisfy conditions 5b and 5f.

(b) By graded threshold soundness, P ′
i will receive (sid||commit-(j − 1), R(j−1, 5), S, g)

from πthresh-gossip for g ≥ 1 by round 3, thus S will satisfy condition 5g due to the
second part of the condition.

So far, we have shown that conditions 5a, 5b and 5e to 5g must be satisfied. Since

conditions 5a and 5b are satisfied, Pi′ will add S to T
(i′)
j . Since Pi is an honest leader,

IsLeader(i
′)(vki, sid||proposal-j, R(j, 2)) = 1, hence condition 5d is satisfied. Since it is honest,

it will not send any additional proposals in this iteration, and by Claim 4.2, it is the only leader
in this round, hence no additional proposals will be sent that satisfy condition 5d for Pi′ . Thus,

no other set S′ ̸= S can be added to T
(i′)
j , and therefore condition 5c will also be satisfied for

Pi′ .
By Claim 4.7, S must satisfy condition 5h for Pi′ . Thus, there are two options:

Case 1: HardLocked
(j)
i′ = 1. In this case, condition 5h implies that L

(j)
i′ = S, hence Pi′ will call

T-GradeGoss(sid||commit-j, R(j, 5), S).

Case 2: HardLocked
(j)
i′ = 0. In this case, since all the conditions are satisfied, Pi′ will call

T-GradeGoss(sid||commit-j, R(j, 5), S).

Since this is true for every honest party, every honest party will call
T-GradeGoss(sid||commit-j, R(j, 5), S) in round 5 of iteration j, and by threshold-completeness
every honest party will receive (sid||commit-j, R(j, 5), S, 5) by round 6 of iteration j, and will
therefore call T-GradeGoss(sid||notify-j, R(j, 6), S). Since there are at least f+1 active honest
parties, by f -threshold-completeness, every honest party will receive (sid||notify-j, R(j, 6), S, 5)
by the end of iteration j and terminate with output S at iteration j + 1.

Let Xj denote the event “An honest leader is elected in iteration j.”

Lemma 4.10 (Expected Termination). If the events Xj are independent, and Pr [Xj ] ≥ p, then
Protocol πBA is expected to terminate in at most 7 · (1 + 1/p) rounds.

Proof. By Lemma 4.9, for all j ≥ 0 the event Xj implies that all honest parties terminate in
iteration j+1. The number of iterations is thus bounded by a geometrically-distributed random
variable with parameter p, plus an extra iteration. Hence, the expected number of iterations is
at most 1+1/p. Every iteration has 7 rounds (in the first iteration, there is a preround, but no
soft-lock round, every subsequent iteration lacks a preround but has a soft-lock round instead),
so the expected number of rounds is bounded by 7 · (1 + 1/p).
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4.4.3 Validity

Lemma 4.11 (Validity). Under the assumptions in Theorem 4.3, Protocol πBA satisfies Inclu-
sion and Exclusion Validity.

Proof. Suppose an honest party terminated with output S, it must have received
(sid||notify-j, S) from FT-Goss. By f -threshold-soundness, some honest party Pi′ must
have called T-Gossip(sid||notify-j, R(j, 6), S, g), which means it must have received
(sid||commit-j, R(j, 5), S, g′) from πthresh-gossip. By Claim 4.8, there exists an honest party
Pi such that

• V
(5)
i ⊆ S and

• for every j′ > j and every honest party Pi′ , it holds that S satisfies conditions 5b and 5f
for Pi′ at iteration j′.

Inclusion validity. Let v be a value in the intersection of all honest parties’ inputs. In the
preround, v is in every set Si′ for which honest parties call T-GradeGoss(sid||preround,−1, Si′).
Since there are at least f + 1 active honest parties, by f -threshold-completeness, πthresh-gossip

will output (sid||preround,−1, v, 5) to every honest party, and hence v ∈ V
(5)
i , which implies

v ∈ S.

Exclusion validity. Let v be a value that is not in the union of honest parties’ inputs. In the
preround, v is not in any set Si′ for which honest parties call T-GradeGoss(sid||preround, Si′),
so by f -threshold-soundness no honest party will receive (sid||preround,−1, v, ∗). Thus, for all
i and g > 0, it holds that v /∈ V

(g)
i . Since S satisfies condition 5b for Pi, it holds that S ⊆ V

(2)
i ,

and thus v /∈ S.

4.5 Communication Complexity

Let |S| be a bound on the encoding of the union of the input sets, |r| a bound on the encoding of
the round number and λH a bound on the output of a collision-resistant hash. Denote BCost(L)
the cost of 5-graded gossip for an L-bit message. Let TCost(L) denote the communication cost
of 5-graded f -threshold gossiping a set with encoding size L, and GCost(L) the communication
cost of gradecasting an L-bit message.

Theorem 4.12. Let n be an upper bound on the number of participating public keys with
non-zero grades (i.e., those eligible to generate messages in the protocol), n′ an upper bound on
the number of participating propose-round keys and p a lower bound on the probability that an
iteration elects an honest leader. The communication complexity of the BA protocol, such that
the probability of choosing an honest leader in each iteration is at least p, is at most

n · TCost(|S|) + (1 + 1/p) ·
(
2n · TCost(λH) + n′ · GCost(|S|)

)
.

Proof. In the preround, every party threshold-gossips its input set. Since our threshold-gossip
protocol’s communication cost depends only on the encoding size of the input set, the cost of
this round is at most n ·TCost(|S|). In rounds 5 and 6, every party threshold-gossips a “pointer”
to a set. This can be a collision-resistant hash of the set (which has length λH). Thus, the
total cost of both rounds is at most 2n · TCost(λH). In round 2, at most n′ keys are eligible to
gradecast a set, so the cost of this round is at most n′ · GCost(|S|).

Thus, in the first iteration, the total cost is bounded by

n · TCost(|S|) + 2n · TCost(λH) + n′ · GCost(|S|)

and each subsequent iteration by 2n · TCost(λH) + n′ · GCost(|S|). Since the expected number
of iterations is 1 + 1/p, the total expected cost is thus bounded by

Exp(Cost) = n · TCost(|S|) + (1 + 1/p) ·
(
2n · TCost(λH) + n′ · GCost(|S|)

)
.
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Denote λoverhead = λ + λpk + λsig + |r|. Using our implementations over graded gossip, over
a graph G = (V,E), the communication complexity above translates into

Exp(Cost) = n · BCost(|r|+ |S|) + (1 + 1/p) ·
(
2n · BCost(|r|+ λH) + n′ · BCost(|r|+ |S|)

)
= (n+ (1 + 1/p) · n′) · BCost(|r|+ |S|) + 2n · (1 + 1/p) · BCost(|r|+ λH)

= (n+ (1 + 1/p) · n′) · 2|E|(λoverhead + |S|) + 2n · (1 + 1/p) · 2|E|(λoverhead + λH)

= 2|E|
(
(n+ (1 + 1/p) · n′) · (λoverhead + |S|) + 2n · (1 + 1/p) · (λoverhead + λH)

)
= 2|E|

(
(n+ (1 + 1/p) · (2n+ n′)) · λoverhead + (n+ (1 + 1/p) · n′) · |S|+ 2n · (1 + 1/p) · λH

)
.

4.5.1 Concrete Complexity Comparison

To demonstrate to what extent the communication complexity is improved in practice, we
compare the concrete complexity of our new protocol with several state-of-the-art protocols,
using reasonably-chosen concrete parameters. We measure the complexity in terms of the total
worst-case amount gossiped per peer, as the underlying gossip functionality has a similar cost
in all the cases.

We compare only to protocols that are highly scalable in the permissionless setting, and
security assuming simple honest majority. In all of these protocols, a small committee is sampled
at random from the entire population (for the purposes of communication complexity, it does not
matter if the same committee is chosen for every round). To guarantee an honest majority in the
committee with probability at least 1− 2−40 (a commonly used statistical security parameter),
we need n ≈ 800 when the population has a 2/3 honest majority (for a smaller honest majority,
the committee size would be larger, tilting the comparison even further in our favor).

Reasonable values for the security parameters are λ = |r| = 64, λH = λpk = 256 and
λsig = 512 (e.g., using SHA256 for hashing and ed25519 for signatures). Thus, λoverhead = 896.

For the leader-election (which is required in all the protocols), we assume we are using
Algorand-style leader election using VRFs, and rely only on a simple honest majority. The
committee for the propose round only needs to guarantee that at least one party is elected with
overwhelming probability (rather than an honest majority on the committee); thus, we can use
n′ ≪ n. Using the same 2−40 statistical security parameter, it is enough to use n′ = 30.

Since at least half of the population is honest, the probability that the minimal VRF value
will be honest is at least 1/2, thus it is reasonable to use p = 1/2.

For an apples-to-apples comparison, we will use our protocol to agree on 256-bit scalars
rather than sets; thus, |S| = 256.

Our protocol. Plugging these values into the computation of Theorem 4.12, we have

Exp(Cost) ≤ 2|E|
(
(n+ (1 + 1/p) · (2n+ n′)) · λoverhead

+(n+ (1 + 1/p) · n′) · |S|+ 2n · (1 + 1/p) · λH

)
≤ 2|E| ((7n+ 90) · λoverhead + (n+ 90) · |S|+ 6n · λH)

= 2|E|(7808n+ 80640) + (n+ 90) · |S|)
= |E| · (15616n+ 161280 + 2(n+ 90) · |S|).

Thus, per communication link, over the entire protocol:

• Less than 1.6MiB for signatures, keys and hashes (independent of the input size).

• Less than 256 bytes per bit of input.

With a 256-bit input, the total communication per link is still less than 1.6MiB.
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ADDNR19 without threshold signatures [2]. Counting only the commit round, in
which each honest party sends a message containing f + 1 > n/2 signatures, hence of size
(n/2) · (λpk + λsig) + |S|. Assuming only 2 iterations (i.e., p = 1/2, just the signatures in
this round alone are responsible for n2 · (λpk + λsig) = bits per communication link. For our
parameters, this is more than 58MiB per link.

Abraham et al. [2] propose reducing the communication by replacing the certificate of f +1
signatures with a single share of a threshold signature scheme (whose size is on the order of a
single signature). This does indeed reduce the communication complexity, but requires trusted
setup (which is not usually feasible in permissionless settings).

ACDNPRS23 [1]. The synchronous protocol for f < n/2 is very similar to [2]. In this case,
in expectation the protocol will need at least one Commit and one Status round, each of which
requires every party to send a “certificate,” of size at least (n/2) · (λpk + λsig) (counting only
public keys and signatures). Thus, the total communication for our parameters would also be
more than 58MiB.

Micali-Vaikuntanathan agreement for f < n/2 [30]. The protocol uses one “large” round,
in which each party broadcasts n/2 signatures. In [30], the protocol assumes a single sender
(and implements broadcast). For apples-to-apples comparison, assuming we use random leader
selection to select a sender, the expected number of iterations is at least 2, so the total cost
would be n2 · (λpk + λsig). This is also more than 58MiB per communication link.
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