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cuML-DSA: Optimized Signing Procedure and
Server-Oriented GPU Design for ML-DSA

Shiyu Shen, Hao Yang, Wenqian Li, and Yunlei Zhao

Abstract—The threat posed by quantum computing has precip-
itated an urgent need for post-quantum cryptography. Recently,
the post-quantum digital signature draft FIPS 204 has been
published, delineating the details of the ML-DSA, which is
derived from the CRYSTALS-Dilithium. Despite these advance-
ments, server environments, especially those equipped with GPU
devices necessitating high-throughput signing, remain entrenched
in classical schemes. A conspicuous void exists in the realm of
GPU implementation or server-specific designs for ML-DSA.

In this paper, we propose the first server-oriented GPU design
tailored for the ML-DSA signing procedure in high-throughput
servers. We introduce several innovative theoretical optimizations
to bolster performance, including depth-prior sparse ternary
polynomial multiplication, the branch elimination method, and
the rejection-prioritized checking order. Furthermore, exploit-
ing server-oriented features, we propose a comprehensive GPU
hardware design, augmented by a suite of GPU implementa-
tion optimizations to further amplify performance. Additionally,
we present variants for sampling sparse polynomials, thereby
streamlining our design. The deployment of our implementation
on both server-grade and commercial GPUs demonstrates sig-
nificant speedups, ranging from 170.7× to 294.2× against the
CPU baseline, and an improvement of up to 60.9% compared
to related work, affirming the effectiveness and efficiency of the
proposed GPU architecture for ML-DSA signing procedure.

Index Terms—post-quantum cryptography, digital signature,
ML-DSA, sparse polynomial multiplication, GPU acceleration.

I. INTRODUCTION

D IGITAL signatures, serving as the bedrock for data
integrity and authentication, have always been indispens-

able in the realm of data security. The essence lies in detecting
unauthorized alterations to data and validating the identity
of the signatory. However, the strides in quantum computing
technology threaten the foundation of existing digital signature
schemes primarily based on integer factorization and discrete
logarithms [1]. Such schemes, while robust against classical
computing attacks, crumble before quantum computers.

Recognizing the impending challenge, there has been an in-
ternational endeavor to identify and standardize cryptographic
algorithms resistant to quantum attacks. Spearheading this
movement, the National Institute of Standards and Technology
(NIST) initiated an extensive public vetting process in search
of quantum-resistant public-key cryptographic algorithms [2].
This rigorous initiative saw a deluge of proposals, reflecting
the global urgency and effort in thwarting quantum threats.
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After three rounds, NIST select one key encapsulation mech-
anism (KEM) and three digital signature algorithms for stan-
dardization in commerce, where the CRYSTALS-Dilithium
emerged as the primary choice [3]. The recent unveiling of the
draft standard FIPS 204 [4] epitomizes this endeavor, detailing
the ML-DSA (Module Lattice Digital Signature Algorithm) –
a derivative of the Dilithium [5], [6]. This standard promises
strong unforgeability and is envisioned to provide long-term
security in the impending quantum era.

In the commercial arena, throughput is not just desirable,
but indispensable. Contemporary businesses grapple with an
immense volume of online transactions, each utilizing digital
signatures to guarantee message integrity and authenticity.
This necessitates the implementation of high-throughput and
real-time cryptographic solutions. Servers, being the backbone
of such transactions, need designs emphasizing throughput.
One of the key allies in this challenge is the GPU. With
its inherent parallelism, GPUs offer concurrent processing
capabilities, making them prime candidates for accelerating
server-grade tasks. Recent literature showcases several opti-
mizations of Dilithium, targeting diverse hardware like ASICs
and FPGAs [7]–[9], and software platforms ranging from high-
performance processors [10]–[13] to embedded devices [14],
[15]. Moreover, while GPU implementations of post-quantum
KEMs abound [16]–[21], there is a conspicuous dearth of GPU
implementations for post-quantum digital signature schemes
[11], [12], [22], and high-throughput designs remain largely in
classical schemes. To date, there exists no implementation for
the ML-DSA and for GPU design of Dilithium, only studies
[11], [12] have been reported.

Contributions. In this work, we introduce several theoreti-
cal optimizations as well as the first server-centric GPU design
for the ML-DSA signing procedure. Our aim is to enhance
both signing performance and throughput. A summary of our
contributions is as follows:

• Optimization of the Rejection Process. Utilizing the
sparse ternary polynomial multiplication technique, we
introduce an enhanced depth-prior version that facilitates
earlier rejection, and we leverage both vertical and hori-
zontal parallelism to bolster parallelism. Then, we present
a method to eradicate branching, promoting constant-time
execution which is more amenable to parallel operations.
Additionally, we recommend a rejection-prioritized norm
checking sequence for the initial three checks, allowing
for more prompt identification of invalid signatures.

• Server-Oriented Design. We delve into the possible accel-
erations that a server-centric design might offer and put
forward a comprehensive hardware architecture for the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 ii

ML-DSA signing process. Then, we introduce an opti-
mized GPU acceleration engine, accompanied by several
implementation enhancements. These include integration
with early evaluation, refined memory access patterns,
and the caching of key component, resulting a reduction
in IO latency and an uptick in overall performance.

• Performance Analysis. We execute our implementation
on both server-grade and commercial GPUs, assessing
both batching and streaming methods. Compared to the
CPU baseline, we achieve performance gains of 170.7×
to 202.4× on the A100 and 208.6× to 294.2× on the
4090 GPU across the three parameter sets. In comparison
to the AVX2 optimized implementation, our implementa-
tion is faster by factors ranging from 37.4× to 42.4×
on the A100 and 45.6× to 61.7× on the 4090 GPU.
Furthermore, we record improvements of up to 60.9%
against recent GPU-based work on identical platforms.

II. PRELIMINARIES

A. Notation

We denote n as a power-of-two and q as a prime satisfying
q ≡ 1 (mod 2n). Let Z represent the set of integers, and
let R = Z[X]/(Xn + 1) be the 2n-th cyclotomic ring.
Additionally, Zq is defined as Z/qZ, while Rq is given by
R/qR ∼= Zq[X]/(Xn+1). We restrict our attention to integer
intervals. For instance, the range [0, n] encompasses elements
from the set {0, 1, ..., n}.

Elements in R (or Rq) are represented as polynomials,
typically denoted using bold, italicized lowercase letters like
f . In contrast, vectors are indicated using bold, upright lower-
case letters such as x. Every polynomial element, whether
f ∈ R or f ∈ Rq , can be exclusively expressed as
f =

∑n−1
i=0 fiX

i, where fi belongs to Z (or Zq) for all
i ∈ [0, n). Matrices over R or Rq are denoted using uppercase
boldface letters, e.g., M. For a polynomial f ∈ R, its ℓ∞-
norm is given by ||f ||∞ = max{|fi|}. Similarly, for a vector
x = (x0,x1, ...,xn−1) ∈ Rn, its ℓ∞-norm is defined as
||x||∞ = max{||xi||∞}.

B. Polynomial Multiplication

Given polynomials a =
∑n−1

i=0 aiX
i, c =

∑n−1
i=0 ciX

i ∈
Rq , the multiplication of these polynomials over Rq results in
b =

∑n−1
i=0 biX

i. We discuss two widely-accepted methods to
compute this result.

Number-Theoretic Transform (NTT). The NTT is an
efficient strategy for polynomial multiplications within the ring
Rq . Representing ζ as the primitive 2n-th root of unity, this
method starts by transforming the polynomials to the NTT
domain, producing â and ĉ such that âj =

∑n−1
i=0 aiζ

(2i+1)j

(mod q) and analogously for ĉj , with i, j ∈ [0, n). The
multiplication is then reduced to point-wise multiplication by
b̂j = âj ◦ ĉj . Following this, b̂ is reverted to the standard
domain using bi = 1

n

∑n−1
i=0 b̂jζ

(2i+1)j (mod q). Employing
NTT, the complexity is reduced from O(n2) to O(n log n).

Sparse Ternary Polynomial Multiplication (STPM). Let
d be a polynomial of degree 2n − 2 such that d = a · c =∑2n−2

i=0 diX
i. We then get dj =

∑j
i=0 ciaj−i for j ∈ [0, n)

Algorithm 1 Sparse ternary polynomial multiplication
Input: c =

∑n−1
i=0 ci · xi ∈ Bτ , a =

∑n−1
i=0 ai · xi ∈ Rq

Output: u = c · a ∈ Rq

1: for i ∈ [0, n) do
2: wi := 0, vi := ai, vi−n := −ai
3: for i ∈ [0, n) do
4: if ci = 1 then
5: for j ∈ [0, n) do
6: wj := wj + vj−i

7: if ci = −1 then
8: for j ∈ [0, n) do
9: wj := wj − vj−i

10: for i ∈ [0, n) do
11: ui := wi (mod q)

12: return u =
∑n−1

i=0 ui · xi

Algorithm 2 ML-DSA.Sign
Input: sk = (ρ,K, tr, s1, s2, t0), M ∈ {0, 1}∗

• ρ,K, tr ∈ {0, 1}256
• s1 := [s

(0)
1 , . . . , s

(ℓ−1)
1 ] ∈ Rℓ

q , s2 := [s
(0)
2 , . . . , s

(k−1)
2 ] ∈ Rk

q

• t0 := [t
(0)
0 , . . . , t

(k−1)
0 ] ∈ Rk

q

Output: σ = (c̃, z,h)
1: µ ∈ {0, 1}512 := H(tr∥M)
2: rnd := {0}256 ▷ Deterministic variant
3: ρ′ ∈ {0, 1}512 := H(K∥rnd∥µ)
4: Â ∈ Rk×ℓ

q := ExpandA(ρ)
5: κ := 0; (z,h) :=⊥
6: while (z,h) =⊥ do
7: y ∈ Sℓ

γ1
:= ExpandMask(ρ′, κ)

8: w := A · y
9: w1 := HighBitsq(w, 2γ2)

10: c̃ := (c̃1, c̃2) ∈ {0, 1}256 × {0, 1}2λ−256 := H(µ∥w1)
11: c ∈ Bτ := SamplelnBall(c̃1)
12: z := y + c · s1
13: r0 := LowBitsq(w − c · s2, 2γ2)
14: if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
15: (z,h) :=⊥
16: else
17: h := MakeHintq(−c · t0,w − c · s2 + c · t0, 2γ2)
18: if ∥c · t0∥∞ ≥ γ2 or number of 1’s in h exceeds ω then
19: (z,h) :=⊥
20: κ := κ+ ℓ

and dj =
∑n−1

i=j−n+1 cjaj−i for j ∈ [n, 2n−1). Subsequently,
bj = dj − dj+n for j ∈ [0, n − 1), and bn−1 = dn−1.
Introducing a condition where ai−n = −ai for i ∈ (0, n),
the earlier formula restructures to bj =

∑n−1
i=0 ciaj−i for

j ∈ [0, n). If c is recognized as a sparse ternary polynomial
with τ non-zero coefficients equaling 1 or −1, the mul-
tiplication computation complexity diminishes. Specifically,
multiplications can be substituted with conditional structures,
as detailed in Algorithm 1.

C. ML-DSA and Parallel STPM

ML-DSA is a digital signature scheme, verified as strongly
unforgeable in the QROM based on the decisional Module-
LWE and the SelfTargetMSIS assumptions [4]. This scheme
emerges from the CRYSTALS-Dilithium, a proposal submitted
to the NIST PQC standardization project. The signing pro-
cedure is summarized in Algorithm 2, with three parameter
sets detailed in Table I. This function uses the secret key
sk and message M as input and generates a valid signature
σ := (c̃, z,h) after several rounds of checks. The specifics of
sub-procedures are available in [4]–[6].
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TABLE I
ML-DSA PARAMETER SETS.

Parameter Set n q d τ γ1 γ2 (k, ℓ) η β ω λ
ML-DSA-44 256 8380417 13 39 217 95232 (4,4) 2 78 80 128
ML-DSA-65 256 8380417 13 49 219 261888 (6,5) 4 196 55 192
ML-DSA-87 256 8380417 13 60 219 261888 (8,7) 2 120 75 256

A distinctive feature of the ML-DSA signing procedure is
the sparse ternary nature of c, and the vectors s1, s2, and
t0 composed of polynomials with minor norms. Specifically,
considering i ∈ [0, n) and j in the range [0, l) for s1 or [0, k)
for s2, the following holds:

• c is a ternary polynomial where ci ranges within
{−1, 0, 1}, with only τ non-zero coefficients.

• The polynomial coefficients in s1 and s2 are confined to
[−η, η], denoting that s(j)1,i , s(j)2,i ∈ [−η, η].

• The polynomial coefficients in t0 are restricted to
[−2d−1 + 1, 2d−1], a subset of [−2d−1, 2d−1].

Due to these properties, the conventional approach of using
NTT to compute c · s1, c · s2 and c · t0 becomes inef-
ficient. This method transforms smaller integers in [−η, η]
and [−2d−1, 2d−1] to Zq , where η and 2d−1 are significantly
smaller than q, resulting in increased memory usage.

To optimize based on the aforementioned property, a parallel
STMP method has been introduced as an alternative to NTT
for Dilithium in [13]. This technique calculates the polyno-
mial multiplications concurrently as detailed in Algorithm 3.
Initially, the vector a is packed into an array v := {vi}.
Subsequently, parallel computation results are stored in the
array w := {wj}, which is derived by summing elements in
v according to the values of ci. Each polynomial multiplication
result is then extracted by decomposing w. Here, U denotes
the upper limit of ai, M represents the boundary for τ
multiplicative additions, and γ assists in decomposition. The
vector a can be substituted by s1, s2, or t0 to determine
multiplication outcomes with c.

D. Target Platform

Our focus is high-performance GPU platforms, leveraging
their inherent parallel capabilities to enhance the speed of the
signing procedure. While CPUs excel at managing the logical
flow of general-purpose programs, GPUs have been specially
designed for tasks that demand intense parallel processing.
This design principle renders GPUs exceptionally effective
for computationally demanding tasks, offloading much of the
burden traditionally borne by CPUs.

Within this architecture, instructions are executed in streams
by threads. These threads can be organized into blocks during
processing. Functions that operate on the GPU are termed
kernels. A Streaming Multiprocessor (SM) is the primary unit
responsible for executing a thread block of a kernel. During ex-
ecution, a block is partitioned into warps for single-instruction-
multiple-thread (SIMT) execution. Each warp comprises a set
of 32 threads with sequential thread indices.

The GPU memory hierarchy is structured to facilitate rapid
data access. Closest to the CUDA cores and also part of
each SM are the register file (RF), L1 cache, shared memory

Algorithm 3 Parallel sparse ternary polynomial multiplication
Input: (c,a), where a = [a(0), · · · ,a(r−1)]T ∈ Rr

q , every a(j) =∑n−1
i=0 a

(j)
i · xi ∈ Rq , and c =

∑n−1
i=0 ci · xi ∈ Bτ

Output: u = c ·a = [u(0), · · · ,u(r−1)]T ∈ Rr
q , where u(j) = c ·a(j) =∑n−1

i=0 u
(j)
i Xi ∈ Rq

1: for i ∈ {0, 1, · · · , n− 1} do
2: wi := 0, vi := 0, vi−n := 0
3: for j ∈ (0, 1, · · · , r − 1) do
4: vi := vi ·M +

(
U + a

(j)
i

)
5: vi−n := vi−n ·M +

(
U − a

(j)
i

)
6: γ := 2U · M

r−1
M−1

7: for i ∈ [0, n) do
8: if ci = 1 then
9: for j ∈ [0, n) do

10: wj := wj + vj−i

11: if ci = −1 then
12: for j ∈ [0, n) do
13: wj := wj + (γ − vj−i)

14: for i ∈ {0, 1, · · · , n− 1} do
15: t := wi

16: for j ∈ (0, 1, · · · , r − 1) do
17: u

(r−1−j)
i := (t mod M)− τU(modq)

18: t := ⌊t/M⌋
19: return u = [u(0), · · · ,u(r−1)]T

(SMEM), and constant caches, where the RF boasts the fastest
access speed. Beyond these are larger regions with higher IO
latency shared across all SMs, such as the L2 Cache, global
memory (GMEM), local memory, texture, and constant mem-
ory. Among them, only the RF, SMEM, and GMEM support
read-write operations, while texture and constant memory are
cached in L1 and constant caches, respectively.

III. THEORETICAL OPTIMIZATIONS TO ML-DSA SIGNING
PROCEDURE

In this section, we detail theoretical improvements to
theML-DSA signing procedure. After outlining the signing ar-
chitecture, we present our depth-prior optimization, strategies
for branch elimination, and a refined order for norm checks,
all aimed at enhancing signing efficiency.

A. Signing Architecture Overview

To offer a lucid understanding of the process, we succinctly
summarize the arithmetic involved. We decompose and recon-
struct the operations intrinsic to the ML-DSA signing proce-
dure considering the associativity, and the detailed graphical
representation is shown in Fig. 1.

• CRH: This function refers to a collision resistant hash
function that maps to {0, 1}512 and is instantiated through
SHAKE-256. During signing, the CRH is invoked twice
with different inputs, including the concatenated form
tr||M and K||rnd||µ, each producing the first 64 bytes
to be designated as the element µ and ρ′, respectively.

• ExpandA: This function adopts the rejection sampling
mechanism to sample uniform polynomials and obtain
the matrix A ∈ Rk×ℓ

q . The random streams are gener-
ated from the seed ρ and obtained via SHAKE-128. In
this mechanism, sequences of 3 bytes are sequentially
extracted and compared against q. Those byte sequences
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Message Keys

Reject loop
Reject,

Start

Signature

Fig. 1. Structure of the ML-DSA signing procedure.

that are numerically inferior to q are retained as polyno-
mial coefficients. The derived matrix is interpreted within
the NTT domain to enable fast polynomial multiplication.

• ExpandMask: This function employs a similar principle
to ExpandA but a different SHAKE-256 to generate a
random polynomial vector y ∈ Sℓ

γ1
. Since the bound

γ1 is a power of 2, the rejection will not happen and
all coefficients are sampled one by one. The input is
the concatenation of ρ′ and a nonce κ that introduces
randomness to each round, and the output coefficients
are generated by taking 2γ1 bits as a positive integer and
then subtracting γ1 − 1 as each result.

• Compute w: This process computes the inner-product of
the matrix A and the vector y to deriving w ∈ Rk

q , and
decomposes to the high-order and low-order vectors w1

and w0. Moreover, a serialization process is invoked on
w1 in anticipation of the subsequent hashing stage.

• SampleInBall: This process commences with employing
SHAKE-256 to absorb µ||w1 to yield c̃, and then re-input
to SHAKE-256 to obtain a random stream to generate c,
which has τ nonzero coefficients that equals 1 or −1. The
initial τ bits serve as sign determinants, and the rejection
sampling is invoked to synthesize τ distinct positions
within the domain of [0, n) for nonzero values.

• Reject: This process involves sk-related arithmetic com-
putations and checks the resultant signature to ensure
correct verification and avoid disclosure of secret in-
formation. It requires to compute z := y + c · s1,
r0 := LowBitsq(w− c · s2), and c · t0. Then it examines
if conditions ||z||∞ < γ1 − β, ||r0||∞ < γ2 − β, and
||c · t0||∞ < γ2 are satisfied. Meanwhile, the output h of
MakeHint also have bound on the hamming weight. Any
deviation from these stipulations results in an abortive
process and the commencement of a new iteration.

Potential for Acceleration. Despite intensive research,
the acceleration of the ML-DSA scheme is still possible,
especially in some specific scenarios. Below we discuss the
potential of acceleration.

1) Server-oriented design. In scenarios where a server op-
erates as the subject, two primary strategies emerge to
optimize computational efficiency amidst a high volume

Algorithm 4 Depth-prior sparse ternary polynomial multipli-
cation
Input: c =

∑n−1
i=0 ci · xi ∈ Bτ , a =

∑n−1
i=0 ai · xi ∈ Rq

Output: u = c · a ∈ Rq

1: for i ∈ [0, n) do
2: wi := 0
3: vi := ai
4: vi−n := −ai
5: for j ∈ [0, n) do
6: for i ∈ [0, n) do
7: if ci = 1 then
8: wj := wj + vj−i

9: if ci = −1 then
10: wj := wj − vj−i

11: for i ∈ [0, n) do
12: ui := wi (mod q)

13: return u =
∑n−1

i=0 ui · xi

of signing requests. Firstly, given the server’s consistent
key, certain key-related operations can be precomputed
offline. Secondly, several operations are common across
signing tasks and, thus, need not be redundantly executed.

2) Different polynomial multiplication techniques. During
the Reject procedure, one can capitalize on the char-
acteristic that c is a sparse ternary polynomial. Opt-
ing for a general NTT approach might overlook this
property, leading to inefficiencies. Leveraging specialized
multiplication techniques tailored for sparse polynomials
can not only diminish computational complexity but also
eliminate the need for domain conversions.

3) Earlier rejection. In the traditional execution of ML-
DSA, a comprehensive polynomial evaluation result must
be computed before any verification can commence. By
refining the computational pattern, certain coefficients can
be determined in advance, enabling earlier inspection of
checkpoints and facilitating swifter rejection. Moreover,
the conditions to be checked vary in their likelihood
of rejection. Prioritizing the assessment of conditions
with higher rejection probabilities can further mitigate
unnecessary computations.

In the following, we start from these aspects and propose
our optimizations to accelerate the signing of the ML-DSA.

B. Depth-Prior Sparse Polynomial Multiplication

Within the ML-DSA scheme, one often encounters compu-
tational waste when the norms of the resulting values exceed
the set bounds. Conventional methods like NTT-based [4], [6]
or PSPM-based polynomial multiplication [13] also grapple
with this inefficiency. The applied width-prior approach man-
dates a full polynomial arithmetic operation evaluation before
any bounds check can be performed. Motivated by the prospect
of obtaining coefficient values to be checked more rapidly, we
delve into a depth-first strategy. This strategy aims to curtail
wasteful computations, which is particularly beneficial when
the coefficients that exceed the limits have small indices.

Building upon the foundation of sparse ternary polynomial
multiplication detailed in Algorithm 1, we introduce a depth-
prior method depicted in Algorithm 4. The original methodol-
ogy computes the accumulation operation on wj based on ci
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value, requiring all wj values to be determined. In contrast,
our approach commences from the wj index. For every wj ,
the polynomial c is traversed, accumulating to wj according to
each ci value. Consequently, some wj values is obtained more
swiftly, facilitating earlier checks, which in turn minimizes
potential unnecessary operations.

Vertical Parallelism. Given the bounded coefficient values
of the input polynomial a and a constant τ , each wj possesses
an upper limit linearly related to the coefficient bounds of
a. If the infinity norm is relatively compact, especially when
compared to machine word size, we can employ packing tech-
niques. This enables the bundling of multiple polynomials into
a singular machine word unit, facilitating SIMD computations.
Consequently, this approach allows operations on polynomial
vectors to be performed simultaneously, introducing a vertical
parallelism approach.

For a given a = [a(0), · · · ,a(r−1)]T ∈ Rr
q , where

||a(j)||∞ = U ≪ q, j ∈ [0, r), we utilize a similar construct
as in Algorithm 3 to define:

v
(j)
i =

{
U + a

(j)
i , i ∈ [0, n)

U − a
(j)
n+i, i ∈ (−n, 0)

, j ∈ I(r − 1)

Here, v(j)i ∈ [0, 2U ], implying all non-negative values. Conse-
quently, the value of w

(j)
i is constrained to the limit of 2τU .

Let M be a power-of-two that satisfies M > 2τU , ensuring
that 2τU < M ≪ q. Given this, we can define:

vi =

{
(U + a

(r−1)
i ) ·Mr−1 + ...+ U + a

(0)
i , i ∈ [0, n)

(U − a
(r−1)
n+i ) ·Mr−1 + ...+ U − a

(0)
n+i, i ∈ (−n, 0)

Typically, we set M = 2⌈log2(1+2τU)⌉ to simplify implementa-
tion through bit-shifting. We discern the upper-bound for wj

as γ = 2U · Mr−1
M−1 . Within ML-DSA, wj will conform to

either 32-bit or 64-bit dimensions, allowing for streamlined
representation in software. After accumulation, we subtract
the extraneous τU , with the ultimate result procured via bit-
shifting and unpacking. This methodology achieves vertical
parallel computation by packing r polynomial coefficients.

Horizontal Parallelism. Since the computation of each vi is
independent, we introduce horizontal parallelism beyond verti-
cal parallelism, which involves the simultaneous computation
of multiple vi values. This form of parallelism is similar to
NTT, wherein distinct butterfly operations can be executed
concurrently. With the computational capabilities of modern
systems, such parallelism is readily achievable. For instance,
on a GPU, multiple threads can be launched, with each thread
handling the computation for a single vi or a set thereof.

Advantage of Depth-Prior PSTPM. The principal merit of
our method lies in its rapid rejection capability via the depth-
prior computational pattern, significantly reducing redundant
calculations during the rejection phase. Besides this, our
technique offers additional benefits:

• Multi-dimensional parallelism: Unlike the singularly hor-
izontal parallelism of NTT, our DPSTPM introduces an
additional vertical parallelism dimension. This facilitates
simultaneous operations on diverse polynomials even
within standard machine word boundaries.

Algorithm 5 Depth-prior parallel sparse ternary polynomial
multiplication
Input: (c,a), where a = [a(0), · · · , a(r−1)]T ∈ Rr

q , every a(j) =∑n−1
i=0 a

(j)
i · xi ∈ Rq , and c =

∑n−1
i=0 ci · xi ∈ Bτ

Output: u = c · a = [u(0), · · · , u(r−1)]T ∈ Rr
q , where u(j) = c · a(j) =∑n−1

i=0 u
(j)
i · xi ∈ Rq

1: for i ∈ {0, 1, · · · , n− 1} do
2: wi := 0, vi := 0, vi−n := 0
3: for j ∈ (0, 1, · · · , r − 1) do
4: vi := vi ·M +

(
U + a

(j)
i

)
5: vi−n := vi−n ·M +

(
U − a

(j)
i

)
6: γ := 2U · M

r−1
M−1

7: for j ∈ {0, 1, · · · , n− 1} do
8: for i ∈ {0, 1, · · · , n− 1} do
9: if ci = 1 then

10: wj := wj + vj−i

11: if ci = −1 then
12: wj := wj + (γ − vj−i)

13: t := wj

14: for i ∈ (0, 1, · · · , r − 1) do
15: u

(r−1−i)
j := (t mod M)− τU(modq)

16: t := ⌊t/M⌋
17: return u = [u(0), · · · , u(r−1)]T

• Flexibility: DPSTPM’s parallelism boasts inherent adapt-
ability due to its minimal constraints on parallelism
degree. Conversely, NTT entails stringent requirements
relating to parameter selection and parallelism degree.
Our approach permits an arbitrary number of vi com-
putations at once, each functioning independently.

• Lightweight and constant-time implementation: On sev-
eral lightweight platforms, multiplication operations can
be burdensome and potentially variable in execution time,
introducing a risk of side-channel attacks. Our PSTPM
eliminates multiplication operations, relying solely on
lightweight addition, subtraction, and bit-shifting. Addi-
tionally, branching operations solely pertain to the public
polynomial c, sidestepping energy analysis concerns.

C. Methods for Branch Elimination

In the aforementioned algorithm, one remaining concern
pertains to the inclusion of branching statements. Notably,
while these do not raise side-channel security issues, their
presence considerably hinders the potential for code optimiza-
tion. Branching statements inhibit several compilation-phase
optimizations, including but not limited to loop unrolling and
constant folding. Additionally, the unpredictability introduced
by these statements disrupts the optimal alignment of pipeline
scheduling due to the indeterminacy of the instructions. Fur-
ther complications arise within multi-threaded parallel sys-
tems, where differing execution paths can culminate in chal-
lenges such as thread divergence. Given the aggregation of
these factors, there is a consequent degradation in perfor-
mance and an impediment to achieving optimal execution, thus
highlighting the imperative to devise strategies that effectively
address and minimize branching instructions.

To eliminate branching statements within the algorithm,
it is pivotal to first elucidate the foundational reasons for
their incorporation. The execution logic can be categorically



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 vi

Algorithm 6 Unified depth-prior parallel sparse ternary poly-
nomial multiplication
Input: (c,a), where a = [a(0), · · · , a(r−1)]T ∈ Rr

q , every a(j) =∑n−1
i=0 a

(j)
i · xi ∈ Rq , and c =

∑n−1
i=0 ci · xi ∈ Bτ

Output: u = c · a = [u(0), · · · , u(r−1)]T ∈ Rr
q , where u(j) = c · a(j) =∑n−1

i=0 u
(j)
i · xi ∈ Rq

1: cp := {cpk}k∈[0,τ), j := 0 ▷ Position array generation phase
2: for i ∈ [0, n) do
3: if ci = 1 then
4: cpj := −i, j = j + 1

5: if ci = −1 then
6: cpj := n− i, j = j + 1

7: for i ∈ [0, n) do ▷ Vector packing phase
8: wi := 0, vi := 0, vi−n := 0
9: for j ∈ (0, 1, · · · , r − 1) do

10: vi := vi ·M +
(
U + a

(j)
i

)
11: vi−n := vi−n ·M +

(
U − a

(j)
i

)
12: vi+n := vi+n ·M +

(
U − a

(j)
i

)
13: for j ∈ [0, n) do ▷ Evaluation phase
14: for i ∈ [0, τ) do
15: wj := wj + vj+cpi

16: t := wj

17: for i ∈ [0, r) do
18: u

(r−1−i)
j := (t mod M)− τU(modq)

19: t := ⌊t/M⌋
20: return u = [u(0), · · · , u(r−1)]T

delineated into two predominant pathways, contingent upon
the disparate values of c:

– if ci = 1, wj := wj + vj−i;
– if ci = −1, wj := wj + (γ − vj−i).

Here, γ := 2U · Mr−1
M−1 . Thus the primary impetus for these

branches arises from the heterogeneity in the addends.
To address the complexity introduced by these diverse

addends, our preliminary strategy seeks to standardize them.
By defining v̄j−i = γ − vj−i, j ∈ [0, r), we obtain:

v̄
(j)
i =

{
(U − a

(r−1)
i ) ·Mr−1 + · · ·+ U − a

(0)
i , i ∈ [0, n)

(U + a
(r−1)
n+i ) ·Mr−1 + · · ·+ U + a

(0)
n+i, i ∈ (−n, 0)

By refining the range of i within this equation, we can in-
corporate it into the original expression of v(j)i . Consequently,

v
(j)
i =


(U + a

(r−1)
n+i ) ·Mr−1 + · · ·+ U + a

(0)
n+i, i ∈ [n, 2n)

(U − a
(r−1)
i ) ·Mr−1 + · · ·+ U − a

(0)
i , i ∈ [0, n)

(U + a
(r−1)
n+i ) ·Mr−1 + · · ·+ U + a

(0)
n+i, i ∈ (−n, 0)

Therefore, the previous branching statement can be reformu-
lated as:

– if ci = 1, wj := wj + vj−i;
– if ci = −1, wj := wj + vn+j−i.
One residual challenge lies in the inconsistent index of the

addends. To address this, we advocate for an alteration in the
structure of c. Instead of preserving the complete c during
sampling, we only conserve the respective τ positions, thereby
mitigating the index variations. Let cp represent the positions
array, thus cpj := −i if ci = 1 and cpj := n − i if ci = −1.
This configuration enables the unification of the accumulation
phase expression as wj := wj+vj+cpi , successfully obviating
the need for branching. A detailed representation of this
refined approach is delineated in Algorithm 6.

D. Rejection-Prioritized Norm Checking Order

In the signing procedure of Dilithium four distinct condi-
tions must be met to ensure a valid signature, as delineated in
Algorithm 2. The initial two conditions stipulate that ||z||∞ <
γ1−β and ||r0||∞ < γ2−β. The likelihood of all coefficients
adhering to these bounds are e−256·βl/γ1 and e−256·βk/γ2 ,
respectively. Given that the cumulative probability of both
conditions being met is e−256·β(l/γ1+k/γ2), it becomes evident,
based on the parameter values in Table I, that these two
conditions primarily dictate the restarts during the rejection
process, rather than the conditions encompassing ||c · t0||∞
and hints. Furthermore, since k/γ2 typically surpasses l/γ1,
it can be inferred that r0 is more susceptible to rejection than
z. Drawing from this analysis, we advocate for a rejection-
prioritized norm checking sequence. Within the PSTPM com-
putation, we commence with the calculation of c · s2, which
is attributed with the highest rejection probability, followed
sequentially by c·s1 and c·t0. Implementing this refined norm
checking sequence enables conditions with elevated rejection
probabilities to be checked at the outset, effectively curtailing
redundant execution procedures.

IV. SERVER-ORIENTED GPU ACCELERATOR DESIGN

In this section, we introduce cuML-DSA, a tailored GPU
accelerator optimized for server-centric environments. We ex-
plore the potential benefits under this scenario, and outline
a dedicated GPU architecture for the ML-DSA signing and
describe several optimization techniques. This encompasses in-
tegrating DPSTPM with early evaluation, optimizing memory
access, and strategic component caching, collectively culmi-
nating in minimized IO latency and heightened performance.

A. Design Overview

Our implementation pivots around the proposed optimized
signing of ML-DSA. In contrast to [23], which employs
32 threads, and [11], which alternates between 32 and 128
threads, our approach dedicates a block of 128 threads to each
task. This allocation confers significant benefits, including op-
timized memory access, minimized IO latency, and a potential
SM occupancy of 100%. This stands in stark contrast to the
33.3% theoretical occupancy achieved with just 32 threads.
Adhering to the operation decomposition delineated in Sec
III-A, we implement the associated kernels. Furthermore, we
incorporate a Pack kernel to facilitate the preprocessing of
secret key components. As our focus is on a server-oriented
architecture, only the message-centric kernels remain online,
relegating the ExpandA and Pack kernels to offline operations.

To handle multiple signing tasks, we incorporate batch
processing within the implemented kernels, facilitating simul-
taneous task execution. Concurrently, we adopt the memory
pool design in [11], ensuring both secure and efficient memory
access. We also harness the dynamic scheduling mechanism
delineated in [11] to guarantee optimal hardware resource
allocation. This mechanism addresses the potential decline in
occupancy due to varying repetitions across different signing
tasks. With this, we ensure consistent high occupancy and
maximize hardware utilization of our implementation.
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Fig. 2. Architectural design of the ML-DSA signing procedure, segmented by the implemented kernels and comprised of the associated inline functions.

TABLE II
STRUCTURED DECOMPOSITION OF THE IMPLEMENTED GPU KERNELS

AND THE CONSTITUENT INLINE FUNCTIONS.

Kernels Composing inline functions
CRH SHAKE

ExpandMask SHAKE, Serialization
Compute w NTT, MontMul, ModRed, Decompose, Serialization
SampleInBall SHAKE, Sampling

Reject DPSTPM, CheckNorm, MakeHint, Serialization

B. Implementation Details

In pursuit of a coherent and streamlined design, we de-
construct the six stages in ML-DSA signing to extract and
identify their underlying arithmetic structures. The detailed
breakdown of each resultant step and their encompassing func-
tions is presented in Table II. Stemming from this analytical
deconstruction, we have subsequently derived a comprehensive
structural design, as illustrated in Fig. 2.

Below we delineate our GPU implementation pertaining
to the inline functions. Some details of the pseudocode are
presented in Algorithm 7. The inline functions can be stratified
into two distinct categories. The first category comprises
functions that operate singularly on one operand, eschewing
requisite for data or thread interaction. Every thread processes
a single element, invoking the functions to derive the out-
comes. The functions within this category include:

• ModRed: We employ a variant of Barrett Reduction [6],
[24] for modular reduction, where the division is sup-
planted by more efficient multiplication and bit-shifting.
Contrary to the original method [24], we compute t in
a more effective strategy using only addition and bit-
shifting, with stricter bounds on both the input and output.

• MontMul: We leverage Montgomery Reduction [25] to
implement a modular multiplication. This function ac-
cepts two integers within the Montgomery domain and
yields a result in the range (−q, q). Given that the product
of two 32-bit integers surpasses the register size, we resort
to CUDA PTX assembly instructions to optimize register
usage and minimize the instruction count.

• Decompose: Given that this function encompasses two
cases corresponding to distinct values of γ2, we em-
ploy macro definitions to encapsulate these cases. The
computation of the high-order and low-order elements

Algorithm 7 Details of the implementation for the first group
of inline functions
1: function MontMul(x ∈ [− ν

2
, ν
2
], ζ ∈ (−q, q))

2: .reg .s32 ah, al ▷ a := ah · ν + al
3: mul.hi.s32 ah, x, ζ
4: mul.lo.s32 al, x, ζ ▷ a← x · ζ
5: mul.lo.s32 t, al, p ▷ t← [a · p]ν
6: mul.hi.s32 t, t, q ▷ t← t · q/ν
7: sub.s32 t, ah, t ▷ a← ah − t

8: function ModRed(a ≤ 231 − 222 − 1)
9: t := (a+ (1≪ 22))≫ 23

10: return t := a− t · q ▷ −6283009 ≤ t ≤ 6283007

11: function Decompose(a)
12: a1 = (a+ 127)≫ 7
13: # IF γ2 == (q − 1)/32
14: a1 = (1025 · a1 + (1≪ 21))≫ 22, a1 = a1&15
15: # ELIF γ2 == (q − 1)/88
16: a1 = (11275 · a1 + (1≪ 23))≫ 24
17: a1 = a1 ∧ (((43− a1)≫ 31)&a1)
18: a0 = a− 2γ2 · a1
19: a0 = a0 − (((q − 1)/2− a0)≫ 31)&q
20: return (a1, a0)

21: function CheckNorm(a,B)
22: t := a≫ 31
23: t := a− (t&2 · a)
24: return 1− ((t−B)≫ 31)

25: function MakeHint(a1, a0)
26: if a0 > γ2||a0 < −γ2||(a0 = −γ2&a1 ̸= 0) then
27: return 1
28: return 0

adheres to the definitions in [6]. Results are derived using
a approximately equal method that ensures constant-time
execution and cost-efficiency.

• CheckNorm: The function evaluates the value of a rela-
tive to the threshold B. Given the potential negativity, we
derive |a| in constant time using the sign bit. By masking
2a with the sign bit and subtracting it from a, we achieve
the absolute value. The comparison result is discerned
from the sign bit following subtraction from B.

• MakeHint: This function takes the pair (a1, a0) as input,
evaluates three specified conditions, and subsequently
yields the corresponding hint bit.

The subsequent category is inherently more intricate, en-
compassing functions necessitating data interchange, including
SHAKE, NTT, and DPSTPM. In implementing SHAKE, we
follow the optimized warp-level design as delineated in [11].
The specifics of the remaining functions are elucidated below.
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TABLE III
PARAMETER CONFIGURATION FOR THE DPSTPM IMPLEMENTATION.

Scheme Operation τ U 2τU M r
c · s1 39 2 156 28 4

ML-DSA-44 c · s2 39 2 156 28 4
c · t0 39 213 638976 220 1
c · s1 49 4 392 29 5

ML-DSA-65 c · s2 49 4 392 29 6
c · t0 49 213 802816 220 1
c · s1 60 2 240 28 7

ML-DSA-87 c · s2 60 2 240 28 8
c · t0 60 213 983040 220 1

• NTT: Contrary to [11] that employs both radix-2 and
radix-8 approaches, we exclusively leverage radix-2 uti-
lizing 128 threads. In our implementation, temporary
values are stored in SMEM while twiddle factors are
cached in constant memory. Each thread processes two
elements separated by a distance of 28−i at level i, where
i ∈ [1, 8]. To circumvent the performance degradation due
to bank conflicts arising from stride SMEM accesses, we
strategically pad the SMEM bank units, ensuring conflict-
free access within identical read or write cycles.

• DPSTPM: In our implementation, we focus on the
evaluation phase of the unified DPSTPM. Accepting the
packed vector element v and position array cp as inputs,
the function yields evaluation results. We deploy 128
threads and accomplish the evaluation in two distinct
rounds. During the kth round, the jth thread manages
the element w128k+j and iteratively conducts a τ -loop,
sequentially adding the element v128k+j+cpi

to w128k+j ,
with k ∈ [0, 2), j ∈ [0, 128), and i ∈ [0, τ). Notably, el-
ements accessed by neighboring threads during identical
read/write cycles are contiguous, resulting in coalesced
memory access, which maximizes access speed.

C. Optimized Reject Kernel

Throughout the entire reject process, our implemented ker-
nel receives the challenge cp, the secret key elements, and
other pertinent polynomials as inputs, conducts arithmetic
operations over the ring R, and checks the norms to derive
a valid signature. Within this implementation, we incorporate
three previously discussed optimizations. Initially, we employ
the DPSTPM algorithm illustrated in Section III-B. Subse-
quently, we introduce a merging technique that leverages the
early evaluation approach. Finally, we embrace an order that
facilitates easier rejection by prioritizing the norm-checking
of r0. The conventional signing process demands numerous
NTT and INTT computations. Transitioning to the PSTPM
approach reduces the number of multiplications and facilitates
the concurrent evaluation of multiple polynomials through a
singular computation. Combining the depth-first computational
mode with this optimized order, we can expedite rejection,
thereby curtailing unnecessary computations.

Merging with Early Evaluation. We introduce a technique
that merges DPSTPM with early evaluation, aimed at expedit-
ing the rejection of invalid signatures, which is compatible
with all three evaluation processes. The underlying principle

Algorithm 8 GPU implementation of depth-prior PSTPM with
early evaluation for c · s2
Input: cp, pack s2
Output: c · s2
1: shared s table, s s2, s cp, s f ▷ Allocate shared memory
2: s cp← cp, s f := 0, reg := 0
3: tmp := pack s2[tid]
4: s table[tid+N ] := tmp ▷ Prepare PSTPM table
5: s table[tid+N + 128] := tmp
6: s table[tid], s table[tid+ 2N ] := Mask s2 − tmp
7: s table[tid+ 128], s table[tid+ 2N + 128] := Mask s2 − tmp
8: for j ∈ [0, τ) do ▷ First round DPSTPM evaluation
9: idx := tid+ s cp[j]

10: reg = reg + s table[idx]

11: syncthreads()
12: for i ∈ [0, k) do
13: res := (reg&Mask P )− τ · η
14: reg := reg ≫ Bit P
15: res := w0[i][tid]− res mod q
16: rejF lag := any sync(CheckNorm(γ2 − β, res))
17: if lid = 0 and rejF lag = 1 then
18: s f := 1

19: syncthreads()
20: if s f then return
21: s s2[i][tid] := res ▷ Write results to shared memory
22: for j ∈ [0, τ) do ▷ Second round DPSTPM evaluation
23: idx := tid+ s cp[j]
24: reg = reg + s table[idx+ 128]

25: syncthreads()
26: for i ∈ [0, k) do
27: res := (reg&Mask P )− τ · η
28: reg := reg ≫ Bit P
29: res := w0[i][tid+ 128]− res mod q
30: rejF lag := any sync(CheckNorm(γ2 − β, res))
31: if lid = 0 and rejF lag = 1 then
32: s f := 1

33: syncthreads()
34: if s f then return
35: s s2[i][tid+ 128] := res ▷ Write results to shared memory

Shared Memory

Global Memory

Store Generate DPSTPM table

Accept

Reject

128 threads

positions

DPSTPM evaluation

Fig. 3. Optimized memory sccess pattern and processing logic flow for the
DPSTPM evaluation of c · s2.

is splitting the evaluation phase into two rounds. Upon the
completion of each round, a sequential unpacking is executed
to derive each half results. This is followed by arithmetic
operations and a subsequent assessment to determine if the
norms exceed their bounds. An illustrative implementation of
the merged method for computing r0 := w0 − c · s2 and
verifying ||r0||∞ < γ2 − β in ML-DSA-44 is detailed in
Algorithm 8. Here, r = k, tid represents the thread indices
and lid signifies the lane indices of threads within a warp. By
our design parameters, tid ∈ [0, 128) and lid ∈ [0, 32). The
procedure commences with generating a table base on s2 for
PSTPM evaluation. Each thread subsequently undertakes the
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Fig. 4. Layered Caching Strategy for the computation of A · y.

τ -loop for a singular round of evaluation, and then unpacks
the coefficient of the ith polynomial and subtract it from
w0[i][tid] to check the norm. Finally, a synchronization of the
thread states is conducted to determine if rejection is required,
subsequently updating the rejection flag.

Optimized Memory Access Pattern. To achieve low la-
tency data access across all evaluation processes, we allocate
the array cp and the three DPSTPM tables to the SMEM,
while frequently accessed accumulation results are designated
to the RF. In contrast to the other evaluations, the result of c·s2
need to be temporarily stored for subsequent computations.
Consequently, we transfer the it from the RF to the SMEM to
maintain an equilibrium. This process is visually elucidated in
Fig. 3. Such an approach presents dual advantages. Firstly, it
conserves registers for other computations, thereby mitigating
the risk of register overuse, which diminish kernel occupancy.
Secondly, it ensures relatively fast memory access speeds for
both the writing and retrieval of c · s2.

D. Caching Key Component

In the basic design of the Compute w kernel, a block
comprising 128 threads is dedicated to manage computations
of a signing task. For the calculations that involve the inner-
product of matrix A and vector y, each thread loads two
coefficients of both entities from the GMEM, subsequently
storing them in the block’s specific memory segment. The
thread then undertakes the multiplication task, accumulating
the result accordingly, thereby accomplishing the computation.
Notably, when the server functions as an entity and the
key remains invariant, the matrix A is subject to consistent
reloading across all active blocks. In the architecture of [11],
the memory segment dedicated to each signing task in the
memory pool reserves space for A, prompting each signing
task to load it autonomously. Such an approach fails to proffer
computational advantages during compilation and results in
pronounced memory access overhead.

Leveraging caching for the A matrix presents a potential so-
lution to the issue. However, the substantial memory demands
of A render the SMEM inadequate for storing it, particularly
for larger parameter sets such as ML-DSA-65 and ML-DSA-
87. Since excessive SMEM allocation can detrimentally affect
SM occupancy and overall performance, we separate A from
the memory segments allocated to tasks and allocate it within

a discrete region in the GMEM. All blocks then access this
matrix from this location. Under this memory access paradigm,
and given the frequent loading patterns, both L2 and L1 caches
play pivotal roles in caching the matrix. The comprehensive
design is depicted in Fig. 4. In this architecture, A adheres
to the memory hierarchy, being cached in a stratified man-
ner, transitioning from GMEM to L2 and then to L1. Each
block independently loads its associated yi to the RF to
expedite access, given its recurrent use during computations.
Simultaneously, we allocate 2k registers within each thread
as accumulators to retain the summative results. A temporary
space within SMEM is designated for data interchange for
NTT and INTT. Subsequent to the computation and through
decomposition, we derive w0 and w1, which are subsequently
transferred back to GMEM.

E. Sparse Polynomial Sampler and Adaptations

To cater to both the original sampling method and our
DPSTPM strategy, we have devised three distinct versions of
the sparse polynomial sampler dedicated to the sampling of c.

In the first version, we follow the original sampling proce-
dure, preserving the entire c. The random stream is generated
from c̃, wherein the initial 8 bytes function as sign deter-
minants while the remainder facilitate position generation. A
notable limitation of this approach is the necessity to traverse
c to obtain the τ positions in DPSTPM. Consequently, in
our secondary variant, we directly archive the positions cp
during the sampling mechanism, eschewing the retention of c.
Here, we establish cpj := −i when ci = 1 and cpj := n − i
when ci = −1. Nonetheless, for both aforementioned versions,
the random nature of the data inhibits parallel computations
through multiple threads, owing to potential data conflicts and
read/write competition.

Therefore, we introduce a third version that allow parallel
computations. While positions can be generated in a conven-
tional sequential manner, they can also be obtained concur-
rently. We construct a Boolean lookup table to meticulously
monitor pre-existing positions, thereby ensuring the generation
of τ distinct positions. This method eliminates the need for
exhaustive comparisons or traversal processes, which is more
efficient and can serve as a complementary solution given its
intrinsic alterations in test vectors.

V. PERFORMANCE EVALUATION

A. Experimental Setup

The C/C++ source code is compiled utilizing g++ 12.2.0,
whereas GPU implementation is compiled using CUDA 11.8.
All compilations and executions are conducted on an Arch
Linux system running kernel 5.15. For CPU benchmarks, we
use an Intel(R) Core(TM) i9-12900KS CPU endowed with
16 cores. The performance evaluations are performed on a
NVIDIA Tesla A100 80G PCIe and a NVIDIA GeForce RTX
4090. This provides a comprehensive spectrum of computa-
tional capabilities to bolster the robustness of our analysis. In
the experiments, we batch processing 10,000 computational
tasks, and the execution time is recorded and presented in
microseconds (µs). For the overall efficiency, throughput is
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TABLE IV
KERNEL PROFILING RESULTS FOR (w1,w0) = A · y COMPUTATION PRE- AND POST-OPTIMIZATION ACROSS THE THREE ML-DSA PARAMETER SETS.

HERE, FMA REPRESENTS THE FUSED MULTIPLY ADD/ACCUMULATE PIPELINE, WHILE ALU DENOTES THE ARITHMETIC LOGIC UNIT.

Parameter Set ML-DSA-44 ML-DSA-65 ML-DSA-87
Optimization Method Before After Opt. Before After Opt. Before After Opt.
Execution Time (µs) 69.86 56.64 1.23× 104.64 80.8 1.30× 169.76 119.1 1.43×

Achieved Occupancy (%) 41.59 42.92 +3.19% 38.92 38.99 +0.19% 39.08 39.58 +1.27%

Throughput (%) Compute 42.39 51.26 +20.91% 38.29 50.18 +31.04% 34.6 48.9 +41.31%
Memory 47.36 56.89 +20.12% 44.33 55.98 +26.28% 49.08 52.73 +7.44%

Pipeline FMA 30.67 38.08 +24.15% 27.98 36.77 +31.43% 22.84 36.08 +57.96%
Utilization (%) ALU 29.16 36.57 +25.39% 26.38 36.63 +38.84% 25.31 36.02 +42.32%

Cache Hit L1 9.2 57.34 +523.40% 3.21 60.78 +1790.76% 2.14 63.77 +2876.22%
Rate (%) L2 42.67 72.15 +69.08% 41.7 76.21 +82.76% 38.71 78.31 +102.31%
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Fig. 5. Performance analysis of batch processing 10,000 executions for c ·s1
and c·s2. Vertical parallelism values are r = 4, 5, 7 for c·s1, and r = 4, 6, 8
for c · s2, across the three respective parameter sets.

TABLE V
EXECUTION TIME OF THREE SPARSE POLYNOMIAL SAMPLERS (MEASURED

IN MICROSECONDS (µs)).

Platform Parameter Set Sampling Method
I II III

GeForce
RTX 4090

ML-DSA-44 87.52 87.62 71.04
ML-DSA-65 86.72 87.36 72.54
ML-DSA-87 101.57 100.32 88.93

Tesla A100
ML-DSA-44 130.85 131.84 115.3
ML-DSA-65 132.99 133.7 117.63
ML-DSA-87 159.42 160.19 145.18

represented as operations per second (OP/s), elucidating the
number of signatures successfully finalized within a second.

B. Evaluation of Optimization Effectiveness

Below, we undertake a series of experiments to to evaluate
the efficacy of the proposed methods.

Comparison of DPSTPM and NTT. Given that the eval-
uation of c · s1 and c · s2 extensively harnesses our proposed
parallel technique, with vertical parallelism denoted by r = k
or l for the respective cases, we depict a comparative execution
time between the NTT approach and our DPSTPM for these
processes in Fig. 5, which are representative in the signing

procedure. Performance metrics across both the 4090 and
A100 GPUs are presented. For each computation of c · s1
and c · s2, a batch of 10,000 computational tasks is processed
to obtain the execution time. Our DPSTPM consistently sur-
passes the original NTT method, showcasing execution speed
enhancements ranging from 52.0% to 59.7% for c · s1 and
between 56.9% and 62.5% for c · s2. The A100 GPU reveals
a marginally diminished acceleration effect for ML-DSA-
65, primarily attributable to parameter-induced influences on
hardware task scheduling. For the remaining parameter sets,
the performance enhancement persists, lying in the vicinity of
33.6% to 42.3%. Considering the vertical parallelism, which
is r = 4, 5, 7 for c · s1 and r = 4, 6, 8 for c · s2 across the
three parameter sets, it is discernible that the execution time for
c·s2 is nominally more prolonged than that for c·s1, primarily
by approximately 4 µs on the 4090 GPU. In contrast to the
NTT, the main performance dominant for the DPSTPM is the
variable τ , which affect both the computational complexity
and the entire computation.

Speedups through Caching. An examination of the kernel
profiling metrics, pre and post-optimization, for the compu-
tation (w1,w0) = A · y is tabulated in Table IV. The en-
hancement is largely attributed to our refined memory config-
uration and access strategies. Our approach leverages varying
classes of on-chip memory commensurate with specific access
properties, leading to a substantial increase in both L1 and
L2 cache hit rates by 2876.22% and 102.31%, respectively.
As a consequence, memory accesses witness heightened effi-
ciency, leading to reduced execution time, optimized processor
resource usage, and superior pipeline scheduling. Given that
our method predominantly harnesses addition and logical
operations, there is an increase in the FMA and ALU pipeline
utilization. For the ML-DSA-44 parameter set, the execution
time is reduced from 69.86 µs to 56.64 µs, indicating a
speedup factor of 1.23×. Similar enhancements are evident
for the ML-DSA-65 and ML-DSA-87 configurations, showing
speedups of 1.30× and 1.43×, respectively.

Performance of Sampler Variants. In Table V, we de-
lineate the execution time associated with three sparse poly-
nomial samplers, benchmarked on the 4090 and A100 GPU
platforms. Specifically, sampling method I corresponds to the
original method where entire c is stored, method II represents
the variant which stores cp, whereas method III directly
samples positions. The first two methods are incompatible
with parallel computing, primarily due to the data conflicts
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TABLE VI
THROUGHPUT COMPARISON BETWEEN C, AVX2 IMPLEMENTATIONS, THE GPU APPROACH OF [11], AND OUR GPU IMPLEMENTATION.

MEASUREMENTS ARE GIVEN IN OP/S. FOR SPEEDUP METRICS, ONLY THE STREAMING METHOD IS CONSIDERED: THE FIRST LINE INDICATES SPEEDUP
RELATIVE TO THE C BASELINE, WHILE THE SECOND DENOTES IMPROVEMENT OVER [11]. THE SAMPLING TECHNIQUE EMPLOYED IS METHOD II.

Parameter Set
CPU Dilithium [11] This Work (ML-DSA)

Ref AVX2 A100 4090 A100 4090
Streaming Streaming Batching Streaming Speedup Batching Streaming Speedup

ML-DSA-44 5,182 23,678 765,855 984,803 771,943 884,683 170.7× 1,049,238 1,080,871 208.6×
(Dilithium2) +15.5% +9.8%
ML-DSA-65 3,396 15,415 513,468 649,498 538,742 615,811 181.3× 736,109 884,195 260.4×
(Dilithium3) +19.9% +36.1%
ML-DSA-87 2,669 12,728 396,894 488,006 448,515 540,285 202.4× 554,651 785,277 294.2×
(Dilithium5) +36.1% +60.9%

TABLE VII
THROUGHPUT COMPARISON OF DILITHIUM IMPLEMENTATIONS ACROSS
DIFFERENT PLATFORMS. MEASUREMENTS ARE REPRESENTED IN OP/S.
THE THROUGHPUT IS DERIVED FROM THE CYCLE COUNTS, TIMES, AND

FREQUENCIES PRESENTED IN THE RESPECTIVE PUBLICATIONS.

Related Work Dilithium2 Dilithium3 Dilithium5 Platform
[7] 23,256 15,873 10,526 UltraScale+ FPGA
[8] 3,448 2,167 1,977 Artix-7 FPGA
[10] 2,310 1,377 1,044 ARM Cortex-A72
[12] 33,965 14,875 20,396 AGX Xavier GPU

and competition. A comparative analysis across both GPU
platforms reveals that I marginally outpaces II, though III
consistently demonstrates superior performance. However, the
method I necessitates an additional step to generate cp in
subsequent kernels. This particularity accentuates the superior
compatibility of method II within our implemented framework.

C. Overall Performance

Table VI encapsulates the throughput results of the basic
software implementation, and the GPU implementations from
both the related work of Dilithium [11] and our solutions.
Given the absence of an officially open-source implementation
of ML-DSA, we utilize the open-source version of Dilithium1

to serve as our CPU baseline. This repository contains both a
C reference and an AVX2-optimized implementation. Notably,
the primary difference is a minor adjustment in the length of
some seeds, exerting a minimal influence on overall perfor-
mance. The study [11] represents the most recent GPU imple-
mentation of Dilithium, and achieves best performance. For
a comprehensive assessment, we executed the corresponding
performance comparison on identical GPU platforms.

For the performance evaluation, we provide two distinct
methodologies include batching and streaming, where we
batch process 10,000 signing tasks in the first method and
initiate 10 CUDA streams with each processing 1,000 signing
tasks in the second method. The results show a consistent
superior performance of the streaming method over batching,
predominantly attributed to its advantage in hiding memory
transfer latency. On the 4090 GPU, the streaming approach
manifests a 41.6% acceleration relative to the batching ap-
proach for the ML-DSA-87. Similarly, on the A100 GPU,
it consistently surpasses the batching technique, displaying
enhancements ranging from 14.3% to 20.5%.

1https://github.com/pq-crystals/dilithium

Utilizing the server-caliber A100 GPU, our framework
exhibits speedups of 170.7×, 181.3×, and 202.4× for the three
ML-DSA parameter sets against the C baseline. Analogously,
employing the commercially oriented 4090 GPU, our solution
achieves accelerations of 208.6×, 260.4×, and 294.2×, re-
spectively. In juxtaposition with the AVX2-optimized method-
ology, we achieve a speedup ranging from 37.4× to 42.4×
on the A100 GPU and 45.6× to 61.7× on the 4090 GPU.
Although CPU designs can harness performance gains via
multi-threaded executions, GPU architectures display superior
adeptness in concurrently processing computational tasks. This
capacity enables GPUs to function as efficient co-processors,
thereby alleviating the computational burden on CPUs and
allowing them to prioritize scheduling tasks.

Furthermore, when benchmarked against the generalized
GPU design in [11], our implementation demonstrates im-
provements of 9.8%, 36.1%, and 60.9% for the three ML-
DSA parameter sets on the 4090 GPU. Additionally, we
observe enhancements of 15.5%, 19.9%, and 36.1% on the
A100 platform. Such marked improvements are ascribable to
our refined signing procedure amalgamated with our server-
attuned architectural considerations.

Table VII delineates the throughput results derived from
several related studies [7], [8], [10], [12] spanning diverse
computational platforms. The research elucidated in [10] is
calibrated for ARM processors, leveraging the acceleration
capabilities of NEON. The work [12] delineates GPU imple-
mentations, specifically tailored for the AGX Xavier GPU.
Concurrently, the studies [7], [8] focus on FPGA-centric hard-
ware designs. While there is potential to enhance throughput
by allocating more hardware area, in server-grade scenarios
emphasizing high-performance and real-time solutions, GPU
implementations often stand out as a preferred choice.

VI. CONCLUSION

In this work, we address a significant gap in GPU-optimized
implementations for ML-DSA in server environments. By
introducing a tailored, server-centric design enhanced with
novel theoretical optimizations, we have achieved substantial
performance gains. Demonstrated speedups against both CPU
benchmarks and existing methods emphasize the effectiveness
of our approach. Our work contributes to post-quantum crypto-
graphic deployments and underscores the potential of special-
ized GPU designs in cryptographic performance. As a future
direction, we aim to study the acceleration of other standard

https://github.com/pq-crystals/dilithium
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post-quantum digital signatures and explore the integration of
our design in various protocols to facilitate a seamless post-
quantum migration.
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